Chromatic Turán problems and a new upper bound for the Turán density of \mathcal{K}_4^-

John Talbot

Department of Mathematics, University College London, UK E-mail: talbot@math.ucl.ac.uk

We consider a new type of extremal hypergraph problem: given an r-graph \mathcal{F} and an integer $k \geq 2$ determine the maximum number of edges in an \mathcal{F} -free, k-colourable r-graph on n vertices.

Our motivation for studying such problems is that it allows us to give a new upper bound for an old problem due to Turán. We show that a 3-graph in which any four vertices span at most two edges has density less than $\frac{33}{100}$, improving previous bounds of $\frac{1}{3}$ due to de Caen [1], and $\frac{1}{3} - 4.5305 \times 10^{-6}$ due to Mubayi [9].

Keywords: Extremal combinatorics, Turán-type problems, Hypergraphs

Given an r-graph \mathcal{F} the Turán number $ex(n, \mathcal{F})$ is the maximum number of edges in an n-vertex r-graph not containing a copy of \mathcal{F} . The Turán density of \mathcal{F} is

$$\pi(\mathcal{F}) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, \mathcal{F})}{\binom{n}{r}}.$$

For 2-graphs the Turán density is determined completely by the chromatic number of \mathcal{F} , but for $r \geq 3$ there are very few r-graphs for which $\pi(\mathcal{F})$ is known. (Examples of 3-graphs for which $\pi(\mathcal{F})$ is now known include the Fano plane [2], $\mathcal{F} = \{abc, abd, abe, cde\}$ [8] and $\mathcal{F} = \{abc, abd, cde\}$ [7].)

The two most well-known problems in this area are to determine $\pi(\mathcal{K}_4)$ and $\pi(\mathcal{K}_4^-)$, where $\mathcal{K}_4 = \{abc, abd, acd, bcd\}$ is the complete 3-graph on 4 vertices and $\mathcal{K}_4^- = \{abc, abd, acd\}$ is the complete 3-graph on 4 vertices with an edge removed. For $\pi(\mathcal{K}_4)$ we have the following bounds due to Turán and Chung and Lu [3] respectively

$$\frac{5}{9} \le \pi(\mathcal{K}_4) \le \frac{3 + \sqrt{17}}{12} = 0.59359\dots$$

Although the problem of determining $\pi(\mathcal{K}_4)$ is an extremely natural question in some respects the problem of determining $\pi(\mathcal{K}_4^-)$ is even more fundamental since \mathcal{K}_4^- is the smallest 3-graph satisfying $\pi(\mathcal{F}) \neq 0$. Note also that this problem may be restated as follows: determine the maximum density of a 3-graph in which any four vertices span at most two edges.

1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

The problem of determining $\pi(\mathcal{K}_4^-)$ has been considered by many people, including Turán [12], Erdős and Sós [5], Frankl and Füredi [6], de Caen [1] and Mubayi [9]. Previously the best known bounds were

$$\frac{2}{7} \le \pi(\mathcal{K}_4^-) \le \frac{1}{3} - (4.5305 \times 10^{-6}).$$

The upper bound was proved by Mubayi [9], improving on the upper bound $\pi(\mathcal{K}_4^-) \leq 1/3$, due to de Caen [1]. The lower bound is from a construction due to Frankl and Füredi [6].

Our main result is the following theorem, improving the upper bound for $\pi(\mathcal{K}_4^-)$.

Theorem 1 The Turán density of \mathcal{K}_4^- satisfies

$$\frac{2}{7} \le \pi(\mathcal{K}_4^-) < \frac{33}{100}.$$

The proof of this result leads naturally to a new general class of extremal problems which we call *chro*matic Turán problems. These are questions of the form: given an r-graph \mathcal{F} and an integer $k \ge 2$ determine the maximum number of edges in an \mathcal{F} -free, k-colourable r-graph on n vertices. (Recall that an r-graph is k-colourable iff its vertices can be partitioned into k classes, none of which contain an edge.) We denote this quantity by $ex_k(n, \mathcal{F})$. The corresponding k-chromatic Turán density is then defined to be

$$\pi_k(\mathcal{F}) = \lim_{n \to \infty} \frac{\operatorname{ex}_k(n, \mathcal{F})}{\binom{n}{r}}.$$

The following lemma shows that any upper bound for the chromatic Turán density $\pi_3(\mathcal{K}_4^-)$ will yield an upper bound for the ordinary Turán density $\pi(\mathcal{K}_4^-)$. (The proof of Theorem 1 actually requires a slightly stronger result but the principle is the same.)

Lemma 1 If $\pi_3 = \pi_3(\mathcal{K}_4^-)$ and $\pi = \pi(\mathcal{K}_4^-)$ then

$$\pi \le \frac{2 + \pi_3/\pi}{9}.$$

To prove Lemma 1 we first note that if \mathcal{F} is a \mathcal{K}_4^- -free 3-graph with n vertices and m edges then it satisfies

$$mn = \sum_{xy \in V^{(2)}} d_{xy}^2 + q_1, \tag{1}$$

where q_1 is the number of 4-sets in \mathcal{F} spanning exactly one edge. Lemma 1 is proved by giving a lower bound for q_1 .

This idea of giving a lower bound for q_1 was previously used by Mubayi [9] (he used supersaturation to achieve this). Our approach is quite different in that it involves a chromatic Turán problem.

To be more precise the key idea used in the proof of Lemma 1 is as follows. Let \mathcal{F} be a \mathcal{K}_4^- -free 3-graph of order n and let $uvw \in \mathcal{F}$. If $E_{ij} = \{k : ijk \in \mathcal{F}\}$ then E_{uv}, E_{uw} and E_{vw} are pairwise disjoint. We say that an edge $xyz \in \mathcal{F}$ is *bad* relative to the edge uvw if $xyz \cap uvw = \emptyset$ and none of the following

Chromatic Turán problems

4-sets span exactly one edge: uvwx, uvwy, uvwz, xyzu, xyzv, xyzw. It is straightforward to check that if xyz is bad relative to uvw then $xyz \,\subset E_{uv} \cup E_{uw} \cup E_{vw}$ and xyz is not contained entirely in either E_{uv}, E_{uw} or E_{vw} . Hence the collection of bad edges relative to uvw is 3-colourable. This fact can then be used to give a lower bound for q_1 in terms of the 3-chromatic Turán density $\pi_3(\mathcal{K}_4^-)$.

One obvious reason why chromatic Turán problems do not seem to have been considered before is that for 2-graphs they are rather uninteresting. If K_t is the complete 2-graph of order t then Turán's theorem determines not only their Turán numbers but also their chromatic Turán numbers.

Theorem 2 (Turán[11]) If $t \ge 3$ then the unique K_t -free graph with n vertices and $ex(n, K_t)$ edges is the complete (t - 1)-partite graph whose vertex classes are as equal as possible in size.

Corollary 1 If $t \ge 3$ and $k \ge 2$ then

$$ex_k(n, K_t) = \begin{cases} ex(n, K_t), & k \ge t - 1, \\ ex(n, K_{k+1}), & k \le t - 2. \end{cases}$$

For general r-graphs with $r \ge 3$ the problems of determining chromatic and ordinary Turán numbers seem to be genuinely different. While the extremal K_t -free 2-graph is not only K_t -free but also (t - 1)colourable this does not seem to be the case in general. For example the conjectured extremal \mathcal{K}_4^- -free 3-graph has rather large chromatic number.

In order to make use of Lemma 1 we need an upper bound on $\pi_3(\mathcal{K}_4^-)$. To achieve this we first consider $\pi_2(\mathcal{K}_4^-)$.

Theorem 3 The 2-chromatic Turán density $\pi_2(\mathcal{K}_4^-)$ satisfies

$$\frac{4}{9\sqrt{3}} \le \pi_2(\mathcal{K}_4^-) \le \frac{3}{10}.$$

Proof: The lower bound follows from a simple construction. For the upper bound let $\mathcal{F} = ((A, B), E)$ be a bipartite \mathcal{K}_4^- -free 3-graph with n vertices and m edges. Let $|A| = \alpha n$, so $|B| = (1 - \alpha)n$. Then

$$\sum_{xy \in A \times B} d_{xy} = 2m, \qquad \sum_{xy \in A^{(2)} \cup B^{(2)}} d_{xy} = m.$$
(2)

From (1) and the fact that $q_1 \ge 0$ we obtain

$$mn \geq \sum_{xy \in A \times B} d_{xy}^2 + \sum_{xy \in A^{(2)} \cup B^{(2)}} d_{xy}^2$$

Convexity and (2) then imply that

$$m \le \frac{n^3}{\frac{4}{\alpha(1-\alpha)} + \frac{2}{\alpha^2 + (1-\alpha)^2}} \le \frac{n^3}{20}$$

The result then follows directly.

With some more work we can obtain an upper bound for $\pi_3(\mathcal{K}_4^-)$. (Again the lower bound follows from a simple construction.)

Theorem 4 The 3-chromatic Turán density $\pi_3(\mathcal{K}_4^-)$ satisfies

$$\frac{5}{18} \le \pi_3(\mathcal{K}_4^-) < \frac{58}{177}.$$

References

- [1] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combinatoria 16 (1983) 5-10.
- [2] D. de Caen and Z. Füredi, The maximum size of 3-uniform hypergraphs not containing a Fano plane, Journal of Combinatorial Theory Series B, 78 (2000) 274-276.
- [3] F. Chung and L. Lu, An upper bound for the Turán number $t_3(n, 4)$, Journal of Combinatorial Theory Series A, (1999) 87 381-389.
- [4] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983) 181-192.
- [5] P. Erdős and V.T. Sós, On Ramsey–Turán type theorems for hypergraphs, Combinatorica 2 (1982) 289-295.
- [6] P. Frankl and Z. Füredi, An exact result for 3-graphs, Discrete Math. 50 (1984), no. 2-3, 323-328.
- [7] P. Frankl and Z. Füredi, A new generalization of the Erdős–Ko–Rado theorem, Combinatorica 3 (1983) 341-349.
- [8] Z. Füredi, O. Pikhurko and M. Simonovits, The Turán density of the hypergraph *abc*, *ade*, *bde*, *cde*, Electronic Journal of Combinatorics, 10 (2003) 7pp
- [9] D. Mubayi, On hypergraphs with every four points spanning at most two triples, Electronic Journal of Combinatorics 10 (2003), #N10
- [10] D. Mubayi and V. Rödl, On the Turán number of triple systems, Journal of Combinatorial Theory, Series A 100 (2002) 136-152.
- [11] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 [in Hungarian].
- [12] P. Turán, Turán memorial volume, Journal of Graph Theory 1 (2) (1977).