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A generating method of self-affine tilings for Pisot, unimodular, irreducible substitutions, as well as the fact that the
associated substitution dynamical systems are isomorphic to rotations on the torus are established in [AI01]. The aim
of this paper is to extend these facts in the case where the characteristic polynomial of a substitution is non-irreducible
for a special class of substitutions on five letters. Finally we show that the substitution dynamical systems for this
class are isomorphic to induced transformations of rotations on the torus.
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1 Introduction
In this paper we want to discuss tilings and dynamical systems generated by the following substitutions
given by

σ :



1 →
K+1 times︷ ︸︸ ︷
11 · · · 1 2

2 → 3
3 → 4

4 →
K times︷ ︸︸ ︷
1 · · · 1 5

5 → 1

, K ≥ 0. (1.1)

The characteristic polynomial of the incidence matrixLσ is

x5 − (K + 1)x4 −Kx− 1 = (x2 − x + 1)(x3 −Kx2 − (K + 1)x− 1). (1.2)

Since it is non-irreducible, its factorx3 −Kx2 − (K + 1)x − 1 is a minimal polynomial of some Pisot
numberβ. Furthermore|det(Lσ)| = 1; we thus say that the above substitutionσ is of the non-irreducible,
Pisot, unimodular type. The aim of this paper is to discuss how we obtain tilings and dynamical systems
generated by non-irreducible, Pisot, unimodular substitutions for the special class (1.1) which is coming
from Pisotβ-expansions.
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Let us recall some results in the irreducible, Pisot, unimodular case. (See [AI01].) For example we
consider the following substitutionσ on3 letters:

σ :

 1 → 12
2 → 13
3 → 1

. (1.3)

The substitutionσ has the incidence matrix

Lσ =

1 1 1
1 0 0
0 1 0


and its characteristic polynomialx3−x2−x−1. So this substitution is of the irreducible, Pisot, unimodular
type.

For the contractive planeP of the matrixLσ, a stepped surface which is a discrete plane approximation
of P is determined. Thus we have a tiling of the planeP with three prototiles, which are parallelograms,
by using the projectionπ defined as the map fromR3 to P along the eigenvectoru of Lσ corresponding
to the Pisot eigenvalueβ.

This substitutionσ has a unique fixed point and we denote it byω = s0s1 · · · sn · · · . Then we obtain
the setsXi (i = 1, 2, 3) given by the closure of{π

∑n−1
k=0 esk

| sn = i, n = 1, 2, · · · } andX = ∪3
i=1Xi,

where{ei}i=1,2,3 is the canonical basis ofR3. These setsXi, X are called atomic surfaces ofσ.
On the other hand, it is known that the tiling and the atomic surfaces can be generated by the so called

tiling substitutionE∗
1 (σ) on theZ-moduleG∗1 defined by

G∗1 =

 ∑
δ∈Z3×{1∗,2∗,3∗}

nδδ | nδ ∈ Z, #{δ ∈ Z3 × {1∗, 2∗, 3∗} | nδ 6= 0} < ∞

 .

Here we identify(x, i∗) ∈ Z3 × {1∗, 2∗, 3∗} with the unit square

{x + sej + tek ∈ R3|{j, k} = {1, 2, 3}\{i}, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1},

and summation “+” in an element inG∗1 means the union of these unit squares. More generally we
consider a substitutionσ denoted byσ(i) = W

(i)
0 W

(i)
1 · · ·W (i)

k · · ·W (i)
l(i)−1. By using the canonical

homomorphismf from the free monoid on3 letters toZ3 defined byf(i) = ei (i = 1, 2, 3) and the
notationsP (i)

k andS
(i)
k stand for respectively the prefix of lengthk and suffix of lengthl(i) − 1 − k of

σ(i), we define the endomorphismE∗
1 (σ) onG∗1 as follows:

E∗
1 (σ)(x, i∗) :=

3∑
j=1

∑
S

(j)
k :W

(j)
k =i

(L−1
σ x + L−1

σ f(S(j)
k ), j∗) .

On this setting we can generate the stepped surface of the planeP by E∗ n
1 (σ)((e1, 1∗) + (e2, 2∗) +

(e3, 3∗)) (n →∞ ) and the atomic surfaces by

Xi = − lim
n→∞

Ln
σπE∗ n

1 (σ)(ei, i
∗) (i = 1, 2, 3),
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where the right side converges in the sense of the Hausdorff metric and we denotelimn→∞ Ln
σπE∗ n

1 (σ)(ei, i
∗)

by X̂i. Furthermore, we have the following property:

Property 1.1 (1) The pieces in the union∪3
i=1X̂i denoted byX̂ do not overlap up to a set of Lebesgue

measure 0,

(2) the following set equation holds:

L−1
σ X̂i =

3⋃
j=1

⋃
P

(j)
k :W

(j)
k =i

(X̂j − L−1
σ πf(P (j)

k )) ,

where the sets in the right side of the equation do not overlap up to a set of Lebesgue measure 0,
and moreover, the transformationF : X̂ → X̂ given by

F (x) = L−1
σ (x + πf(P (j)

k )) if x ∈ LσX̂j − πf(P (j)
k )

is well-defined and it is a Markov transformation with matrix structureLσ,

(3) the transformationE : X̂ → X̂, called the domain exchange transformation, given by

E(x) = x− πei x ∈ X̂i

is well-defined and the transformationE is measure-theoretically isomorphic to a rotation on the
2-dimensional torus, and moreover, the orbit of the origin point byE satisfiesEk(0) ∈ X̂sk

, k =
0, 1, · · · .

Property (2) and (3) are not known to hold for any irreducible Pisot substitution. Property (2) holds
provided that (1) holds if the substitutionσ has the strong coincidence condition (cf. [AI01]). Moreover,
for the transformationF to be well-defined, the pieces must not overlap. The isomorphism with a rotation
(3) is equivalent with the tiling property.

The aim of the paper is to obtain the analogous property for the non-irreducible, Pisot, unimodular
substitutions given by (1.1).

This paper is sketched as follows.
In Section 2, we define a projection mapπ from R5 to the contractive 2-dimensional plane of the

incidence matrixLσ of σ. A substitution given by (1.1) has a unique fixed point. Therefore, using the
projection we obtain atomic surfacesX andXi (i = 1, 2, 3, 4, 5) with respect to the letteri in the same
way as in the irreducible case. (See Fig. 1.)

In Section 3, 4 and 6, we define the tiling substitutionτ∗ of a substitutionσ according to some modifica-
tion of the method by [AI01]. Since we deal with the non-irreducible case, we can not use the same method
as in the irreducible case. However, we introduce new polygonal tiles instead of parallelograms, a tiling
substitutionτ∗ and the concept of a stepped surface; and try to construct atomic surfaces by using a map
τ∗ and tilingsTτ∗ with five polygonal prototiles andT bX

τ∗ with the atomic surfacesXi (i = 1, 2, 3, 4, 5).
(See Fig. 2 and Fig. 3.)

In Section 5, we introduce two dynamical systems onX̂ := −X associated with non-irreducible sub-
stitutions, that is, a Markov transformation and a domain exchange transformation related to Property 1.1
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Fig. 1: The atomic surfaceX of the substitutionσ in the case ofK = 0

Fig. 2: The tilingTτ∗ in the case ofK = 0
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X 12X
3X

4X

5X

Fig. 3: The tilingT bX
τ∗ in the case ofK = 0

(2) and (3). The main theorems in this paper are Theorem 5.2 and Theorem 5.3, and these theorems say
the following:

The domain exchange transformationE : X̂ → X̂ is defined by

E(x) = x− πei x ∈ X̂i

and the orbit of the origin point by the transformationE satisfiesEk(0) ∈ X̂sk
, k = 0, 1, · · · . The

transformationE is not measure-theoretically isomorphic to a rotation on the 2-dimensional torus, but
isomorphic to theinducedtransformation of a rotation on the torus.

2 Substitutions and atomic surfaces
2.1 General results on atomic surfaces
LetA be an alphabet consisting ofd letters{1, 2, · · · , d} . The free monoid on the alphabetA with the
empty wordε is denoted byA∗ = ∪∞n=0An andAN denotes the collection of all right infinite sequences
of symbols fromA. Let σ be an endomorphism onA∗ such thatσ(i) ∈ A∗ \ {ε} for all i ∈ A, which is
called asubstitution. By definingσ(UV ) = σ(U)σ(V ) for a concatenationUV of words, the substitution
σ is extended to an endomorphism onA∗ andAN. Put

σ(i) = W
(i)
0 W

(i)
1 · · ·W (i)

l(i)−1

= P
(i)
k W

(i)
k S

(i)
k

and

σn(i) = W
(n,i)
0 W

(n,i)
1 · · ·W (n,i)

l(n,i)−1

= P
(n,i)
k W

(n,i)
k S

(n,i)
k ,
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whereP
(i)
0 = P

(n,i)
0 = ε for anyi ∈ A and any positive integern. We callP (i)

k (resp.,S(i)
k ) thek-prefix

(resp., thek-suffix) of a wordσ(i). We define the canonical homomorphismf : A∗ → Zd by f(ε) = 0
andf(i) = ei (i ∈ A), where{ei}i=1,···d is the canonical basis ofRd. This is naturally extended to a
map onA∗ by definingf(UV ) = f(U) + f(V ) for wordsU, V in A∗. There is a matrixLσ on Zd for a
substitutionσ satisfying the following commutative diagram:

A∗ σ→ A∗
f ↓ ↓ f

Zd Lσ→ Zd .

The matrixLσ is called theincidence matrixof the substitution and its entryLσ(i, j) is equal to the
number of occurrences of the letteri in σ(j).

Recall that aPisot numberis an algebraic integer greater than 1 and whose conjugates have modulus
strictly less than 1. Before discussing atomic surfaces of substitutions given by (1.1), we will define
atomic surfaces on a general setting with the following assumption:

Assumption Throughout this paper, we assume that for a substitutionσ

(1) W
(1)
0 = 1, that is,σ(1) begins with1,

(2) σ is unimodular, that is,| det(Lσ) |= 1,

(3) the characteristic polynomial ofLσ is not irreducible and is decomposed asf(x)g(x) such that
f(x) is a minimal polynomial of some Pisot numberβ, and the roots ofg(x) have modulus 1.

A substitution with Assumption (2) and (3) is referred to be ofunimodular, non-irreducible, Pisottype.
From Assumption (1), there exists a fixed pointω of the substitutionσ:

ω = lim
n→∞

σn(1) = s0s1 · · · sn · · · .

From Assumption (2) and (3), we define the expanding subspaceL(u) spanned by the eigenvectoru
corresponding to the eigenvalueβ and the contractive subspaceP 6= {0}(⊂ Rd) corresponding to the
other conjugate eigenvalues ofβ. Then we have a direct sumRd = P⊕L(u)⊕P ′, whereP ′ corresponds
to the other eigenvectors coming fromg(x). Let us define the projectionπ : Rd → P by

π(p + x + p′) = p,

wherep ∈ P , x + p′ ∈ L(u)⊕ P ′ .

Definition 2.1 From setsZi, Z ′i of prefixes of a fixed pointω:

Zi := {s0s1 · · · sk−1 | sk = i, k = 1, 2, · · · }
Z ′i := {s0s1 · · · sk | sk = i, k = 0, 1, · · · },

we define setsYi, Y ′
i in P as follows:

Yi := πf(Zi) = {πf(s0s1 · · · sk−1) | sk = i, k = 1, 2, · · · }
Y ′

i := πf(Z ′i) = {πf(s0s1 · · · sk) | sk = i, k = 0, 1, · · · } .
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The setsX, Xi, X ′
i in P are defined by

X := cl.(∪d
i=1Yi) = cl.(∪d

i=1Y
′
i )

Xi := cl.(Yi)
X ′

i := cl.(Y ′
i ) ,

wherecl.S means the closure of a setS.

We call the setsX, Xi (i ∈ A) atomic surfacesof σ. Note that the equalityX ′
i = Xi +πei holds from

Y ′
i = Yi + πei, whereS + a = {x + a | x ∈ S}.
For wordsU = u0u1 · · ·ul, V = v0v1 · · · vm ∈ A∗, U ≺ V denotes thatl < m andv0v1 · · · vl = U .

The following proposition can be found in [AI01][FFIW00].

Proposition 2.1 The following set equations hold:

(1) L−1
σ Xi =

d⋃
j=1

⋃
P

(j)
k :W

(j)
k =i

(Xj + L−1
σ πf(P (j)

k ))

(2) L−1
σ X ′

i =
d⋃

j=1

⋃
S

(j)
k :W

(j)
k =i

(X ′
j − L−1

σ πf(S(j)
k )) .

Remark 1 We will see the following property in Theorem 4.1 (4):
the setsXj + L−1

σ πf(P (j)
k ) (resp.,X ′

j − L−1
σ πf(S(j)

k )) with W
(j)
k = i in the equation (1) (resp., (2)) do

not overlap up to a set of Lebesgue measure0.

Proof: From the property

cl.(
n⋃

i=1

Ai) =
n⋃

i=1

cl.(Ai),

it is enough to show that

f(Zi) =
d⋃

j=1

⋃
P

(j)
k :W

(j)
k =i

(Lσf(Zj) + f(P (j)
k )). (2.1)

Takes0s1 · · · sn ∈ Zi with sn+1 = i, then there exists an integerm (m < n) such that

σ(s0s1 · · · sm−1) ≺ s0s1 · · · sni � σ(s0s1 · · · sm).

Consequently there exists an integert such that

s0s1 · · · sni = σ(s0s1 · · · sm−1)P
(sm)
t W

(sm)
t ,

whereW
(sm)
t = i. Let f act on both sides of the above equality,

f(s0s1 · · · sni) = f(σ(s0s1 · · · sm−1)P
(sm)
t W

(sm)
t ).
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Hence, byf ◦ σ = Lσ ◦ f , we have

f(s0s1 · · · sn) = Lσf(s0s1 · · · sm−1) + f(P (sm)
t ) .

Thusf(s0s1 · · · sn) ∈ Lσf(Zsm
)+ f(P (sm)

t ) with W
(sm)
t = i. This shows⊆ is true for the equality (2.1)

by choosingj = sm andk = t.
On the other hand, for anys0s1 · · · sm ∈ Zj with sm+1 = j andW

(j)
k = i, we have

Lσf(s0s1 · · · sm) + f(P (j)
k ) = f(σ(s0s1 · · · sm)) + f(P (j)

k )

= f(σ(s0s1 · · · sm)P (j)
k ) .

Sincesm+1 = j, then it is clear that

σ(s0s1 · · · sm)P (j)
k i � σ(s0s1 · · · smsm+1) .

Therefore,σ(s0s1 · · · sm)P (j)
k ∈ Zi . This leads to the other direction of the equality (2.1). The second

set equation is shown by (1) andXi = X ′
i − πei. 2

2.2 Atomic surfaces generated by the labeled graph G∗

To obtain a numerical representation ofX or Xi as we will see in Theorem 2.1, we introduce the new
alphabetB and the subsetB∗σ of the monoidB∗ by using the prefix automaton as follows:

B :=
{(

i
ti

)
| i ∈ A

ti ∈ {0, 1, · · · , |σ(i)| − 1}

}
,

B∗σ :=
{(

i0
k0

)(
i1
k1

)
· · ·
(

iN
kN

)
∈ B∗ | W (in)

kn
= in−1 (n = 1, 2, · · · , N), N = 0, 1, · · ·

}
,

where|U | means the length of a wordU . (See Fig. 4.)

σ(in−1)=
@

@
@

���������
σ(in) = in−1

kn th
H

HHHHH

�
�

�
σ(in+1)= in

kn+1 th

Fig. 4: A subword
`

in
kn

´`
in+1
kn+1

´
of a word inB∗

σ
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We define a labeled graphG∗ such that the set of vertices isV = {1, 2, · · · , d} and the set of edges is
E = {0, 1, · · · , |σ(i0)| − 1} with the largest|σ(i0)| for i0 ∈ A. If W

(j)
k = i, that is, the letteri occurs

in σ(j) ask-th letter, then one edge from the vertexi to the vertexj namedk is drawn. (See Fig. 5. cf.
[CS01])

i
k

j

Fig. 5: The edgek from the vertexi to the vertexj (W (j)
k = i)

From the definition of the labeled graphG∗, the setB∗σ is given by all finite paths of

(
vertex
edge

)
in G∗

(cf. Fig 6). Define the subsetB∗(i)σ of B∗σ:

B∗(i)σ :=
{(

i0
k0

)(
i1
k1

)
· · ·
(

iN
kN

)
∈ B∗σ | W

(i0)
k0

= i, N = 0, 1, · · ·
}

.

The setB∗(i)σ is the set of all finite paths whose initial vertex isi in G∗.

Theorem 2.1 For any substitutionσ satisfying Assumption, the following equalities hold:

Xi = cl.

{
N∑

n=0

Ln
σπf(P (in)

kn
) |
(

i0
k0

)(
i1
k1

)
· · ·
(

iN
kN

)
∈ B∗(i)σ , P

(iN )
kN

W
(iN )
kN

≺ ω, N = 0, 1, · · ·

}

X = cl.

{
N∑

n=0

Ln
σπf(P (in)

kn
) |
(

i0
k0

)(
i1
k1

)
· · ·
(

iN
kN

)
∈ B∗σ, P

(iN )
kN

W
(iN )
kN

≺ ω, N = 0, 1, · · ·

}
.

Proof: We show

Yi =

{
N∑

n=0

Ln
σf(P (in)

kn
) |
(

i0
k0

)(
i1
k1

)
· · ·
(

iN
kN

)
∈ B∗(i)σ , P

(iN )
kN

W
(iN )
kN

≺ ω, N = 0, 1, · · ·

}
.

By the proof in Proposition 2.1, fors0s1 · · · sm ∈ Zi, there exist positive integersi0, k0,m0 such that

f(s0s1 · · · sm) = Lσf(s0s1 · · · sm0) + f(P (i0)
k0

)

and

W
(i0)
k0

= i, s0s1 · · · sm0 ∈ Zi0 .
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For s0s1 · · · sm0 ∈ Zi0 , let us continue the same procedure. Because|s0s1 · · · sml
| is monotone decreas-

ing with respect tol, at last we have the following equality:

f(s0s1 · · · sm) = Lσf(s0s1 · · · sm0) + f(P (i0)
k0

)

= Lσ(Lσf(s0s1 · · · sm1) + f(P (i1)
k1

)) + f(P (i0)
k0

)
= · · ·
= LN

σ f(P (iN )
kN

) + LN−1
σ f(P (iN−1)

kN−1
) + · · ·+ f(P (i0)

k0
) ,

where
(

i0
k0

)(
i1
k1

)
· · ·
(

iN

kN

)
∈ B∗(i)σ . This shows

Yi ⊆

{
N∑

n=0

Ln
σf(P (in)

kn
) |
(

i0
k0

)(
i1
k1

)
· · ·
(

iN
kN

)
∈ B∗(i)σ , P

(iN )
kN

W
(iN )
kN

≺ ω, N = 0, 1, · · ·

}
.

We obtain the converse inclusion as in the proof of Proposition 2.1. Thus the first equality is proved.
Analogously we prove the second one. 2

From the above decomposition off(s0s1 · · · sm), we have the following corollary:

Corollary 2.1 For any substitution which satisfies Assumption, the atomic surfaceX is bounded.

2.3 Atomic surfaces corresponding to a substitution given by (1.1)
From now on, let us deal with the non-irreducible, Pisot, unimodular substitutionsσ given by (1.1):

σ :



1 →
K+1 times︷ ︸︸ ︷
11 · · · 1 2

2 → 3
3 → 4

4 →
K times︷ ︸︸ ︷
1 · · · 1 5

5 → 1 .

In this case,

Lσ =


K + 1 0 0 K 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

We see that the characteristic polynomial of the incidence matrixLσ is given by (1.2) and it is also the
characteristic polynomial ofβ (cf. [PAR60]). It is easy to check that the equationx3−Kx2−(K +1)x−
1 = 0 gives one real rootβ and two imaginary rootsβ(2), β(2) if K ≤ 2, or three real rootsβ, β(2), β(3)

if K ≥ 3. The five roots ofx5 − (K + 1)x4 −Kx − 1 = 0 are denoted byλi (i = 1, 2, 3, 4, 5), where
λ1 = β(2), λ2 = β(2), λ3 = β if K ≤ 2, or λ1 = β(2), λ2 = β(3), λ3 = β if K ≥ 3, andλ4, λ5

are the imaginary roots ofx2 − x + 1 = 0. Choose any eigenvectorui associated with the eigenvalue



Tilings from some non-irreducible, Pisot substitutions 91

λi (i = 1, 2, 3, 4, 5) such thatu2 = u1 if K ≤ 2 andu5 = u4. Put
v1 = 1

2 (u2 + u1), v2 = 1
2i (u2 − u1), v3 = u3, v4 = 1

2 (u5 + u4), v5 = 1
2i (u5 − u4) if K ≤ 2 ,

v1 = u1, v2 = u2, v3 = u3, v4 = 1
2 (u5 + u4), v5 = 1

2i (u5 − u4) if K ≥ 3 ,
and let us define the5× 5 matrixV by

V := (v1,v2,v3,v4,v5).

The real vectorsvi (i = 1, 2, 3, 4, 5) and the real matrixV satisfy the following relation:

LσV = V


R

0
0

0
0

0
0

0 0 β 0 0
0 0 0 <[λ4] −=[λ4]
0 0 0 =[λ4] <[λ4]

 ,

where<[a] (resp.,=[a]) means the real (resp., imaginary) part ofa and

R =


(
<[β(2)] −=[β(2)]
=[β(2)] <[β(2)]

)
if K ≤ 2(

β(2) 0
0 β(3)

)
if K ≥ 3

.

The spaceP <v1,v2> spanned by vectorsv1,v2 is an invariant contractive space of the linear transforma-
tion Lσ. More precisely, we know

Lσx = (v1,v2)R
(

x1

x2

)
,

wherex = x1v1 +x2v2 ∈ P <v1,v2>, x1, x2 ∈ R. We have the direct sumR5 = P <v1,v2>⊕L(v3)⊕
P ′

<v4,v5>, whereP ′
<v4,v5> is spanned byv4,v5; and define the projection mapπ : R5 → P <v1,v2>

by

π(x1v1 + x2v2 + x3v3 + x4v4 + x5v5) = x1v1 + x2v2 , xi ∈ R (i = 1, 2, 3, 4, 5).

It is easy to see that

πei = v′1iv1 + v′2iv2 ,

whereV −1 = (v′ij) 1≤i≤5
1≤j≤5

.

By Proposition 2.1, in this case we obtain equations in concrete terms as stated in the following corol-
lary:

Corollary 2.2 For the substitutionσ given by (1.1), the sets{Xi}i=1,2,3,4,5 given in Theorem 2.1 satisfy
the following set equations:
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(1)

L−1
σ X1 =


X1 ∪X5 if K = 0
K⋃

n=0

(X1 + nL−1
σ πe1) ∪

K−1⋃
n=0

(X4 + nL−1
σ πe1) ∪X5 if K ≥ 1 ,

L−1
σ X2 = X1 + (K + 1)L−1

σ πe1,

L−1
σ X3 = X2,

L−1
σ X4 = X3,

L−1
σ X5 = X4 + KL−1

σ πe1,

(2)

L−1
σ X ′

1 =


(X ′

1 − L−1
σ πe2) ∪X ′

5 if K = 0
K⋃

n=0

(X ′
1 − L−1

σ π(e2 + ne1)) ∪
K−1⋃
n=0

(X ′
4 − L−1

σ π(e5 + ne1)) ∪X ′
5 if K ≥ 1 ,

L−1
σ X ′

2 = X ′
1,

L−1
σ X ′

3 = X ′
2,

L−1
σ X ′

4 = X ′
3,

L−1
σ X ′

5 = X ′
4 .

For the substitutionσ, the alphabetB and the graphG∗ are as follows:

B =
{(

1
0

)
,

(
1
1

)
, · · · ,

(
1

K + 1

)
,

(
2
0

)
,

(
3
0

)
,

(
4
0

)
,

(
4
1

)
, · · · ,

(
4
K

)
,

(
5
0

)}
.

From the definition ofσ given by (1.1), we havef(P (j)
k ) = ke1 for anyj ∈ {1, 2, 3, 4, 5}. Hence it is

enough to take only the path(k0, k1, · · · , kN ) of the edges in
(

i0
k0

)(
i1
k1

)
· · ·
(

iN

kN

)
∈ B∗. Then the setX is

written as follows:

X = cl.

{
N∑

n=0

Ln
σπf(P (in)

kn
) |
(

i0
k0

)(
i1
k1

)
· · · ,

(
iN

kN

)
∈ B∗σ, P

(iN )
kN

W
(iN )
kN

≺ ω, N = 0, 1, · · ·

}

= cl.

{
N∑

n=0

knLn
σπe1 | t(kn) = i(kn+1) in G∗, N = 0, 1, · · ·

}
,

wheret(e) ∈ V (resp.,i(e)) means the terminal (resp., the initial) vertex of an edgee. The condition
P

(iN )
kN

W
(iN )
kN

≺ ω in the first line of the above equality means
(

iN

kN

)
∈ B\{

(
2
0

)
,
(
3
0

)
,
(

4
K

)
} by the definition

of σ, but we can omit this condition for the following reason: Let us consider the case
(

iN

kN

)
=
(

4
K

)
, that is,

the path inB∗σ is written as
(

i0
k0

)(
i1
k1

)
· · ·
(

iN−1
kN−1

)(
4
K

)
. From the graphG∗ in Fig. 6, the path is determined

as
(

i0
k0

)
· · ·
(

1
kN−2

)(
5
0

)(
4
K

)
, and it provides the same summation

∑N
n=0 Ln

σπf(P (in)
kn

) as the one for the path
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1

2

3 4

5

K

0

0

0

K

K+1

0
0

K-1

....

..

1

2

3 4

5

0

0

01

0

0

K=0 K > 1=

Fig. 6: The graphG∗

(
i0
k0

)
· · ·
(

1
kN−2

)(
1
0

)(
1
K

)
. Therefore we can allow

(
iN

kN

)
=
(

4
K

)
. The other cases

(
iN

kN

)
=
(
2
0

)
or
(
3
0

)
can be

shown analogously.
Moreover, from the labeled graphG∗, the sets{Xi}i=1,2,3,4,5 are given by

Xi = cl.

{
N∑

n=0

knLn
σπe1 |

i(k0) = i, t(kn) = i(kn+1) in G∗

N = 0, 1, · · ·

}
.

This leads to the following corollary:

Corollary 2.3 An element in the atomic surfaceX has an infinite expansion, that is,

X =

{ ∞∑
n=0

knLn
σπe1 | t(kn) = i(kn+1) in G∗

}
.

Example 2.1 Let us consider the case ofK = 0. The substitutionσ is

σ :


1 → 12
2 → 3
3 → 4
4 → 5
5 → 1

.
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By the labeled graphG∗ in Fig. 6, the following admissible conditions hold for the sequence of digits
{kn}:

X =

{ ∞∑
n=0

knLn
σπe1 | t(kn) = i(kn+1) in G∗

}

=

{ ∞∑
n=0

knLn
σπe1 | kn = 1 ⇒ kn+1 = kn+2 = kn+3 = kn+4 = 0

}
.

3 A tiling with polygonal tiles of the plane P<v1,v2>

3.1 A tiling substitution τ ∗

In this subsection we introduce a tiling substitutionτ∗ associated withσ according to [AI01]. From now
on letσ be a substitution given by (1.1) in Section 1. Then we have the direct sumR5 = P <v1,v2> ⊕
L(v3)⊕ P ′

<v4,v5>, and the mapπ is a projection fromR5 to the 2-dimensional planeP <v1,v2>.

Lemma 3.1 The following relations hold:

πe3 + πe4 = πe1 , πe4 + πe5 = πe1 + πe2 , πe5 = πe2 + πe3 .

Proof: We check that we can choose the vectort(−1, 0, 1, 1, 0) = −e1 + e3 + e4 as the vectorv5. Since
v5 is mapped to0 by the projectionπ, we have

−πe1 + πe3 + πe4 = 0.

From the fact thatLσ ◦ π = π ◦ Lσ, we have the second and third equalities. 2

We introduceZ-modulesF andF∗ using finite integer combinations of elements ofZ5×{1, 2, 3, 4, 5}
andZ5 × {1∗, 2∗, 3∗, 4∗, 5∗} as follows:

Fu :=

 ∑
δ∈Z5×{1,2,3,4,5}

nδδ | nδ ∈ Z, #{δ ∈ Z5 × {1, 2, 3, 4, 5} | nδ 6= 0} < ∞

 ,

F∗u :=

 ∑
δ∈Z5×{1∗,2∗,3∗,4∗,5∗}

nδδ | nδ ∈ Z, #{δ ∈ Z5 × {1∗, 2∗, 3∗, 4∗, 5∗} | nδ 6= 0} < ∞

 .

From Lemma 3.1 we can introduce the equivalence relation∼ onFu (resp.,F∗u) defined by
∑N

k=1(xk, ik) ∼∑N
k=1(yk, ik) if πxk = πyk for all k (resp.,

∑N
k=1(xk, i∗k) ∼

∑N
k=1(yk, i∗k) if πxk = πyk for all k)

and we setF := Fu/ ∼ (resp.,F∗ := F∗u/ ∼). F will be used in Section 4 mainly.
To give a geometrical meaning of(x, i∗), first we define the mapπ1 : F → P <v1,v2>, which gives a

one dimensional geometric representation of the symbolic object(x, i), by

π1(x, i) = {πx + tπei | 0 ≤ t ≤ 1} ,



Tilings from some non-irreducible, Pisot substitutions 95

where for
∑N

k=1 nk(xk, ik) ∈ F with nk ∈ Z− {0}

π1

(
N∑

k=1

nk(xk, ik)

)
=

N⋃
k=1

π1(xk, ik) .

(See Fig. 7.)

π 2e
e4π

.0

e3π

5eπ

1π e

π 1 ( 0, 1 )

π 1 ( 0, 4 )
π 1 ( 0, 2 )

π 1 ( 0, 5 )

π 1 ( 0, 3 )

Fig. 7: Representation ofπ1(0, i) (i = 1, 2, 3, 4, 5)

A set consisting of three vectors{a, b, c} (a, b, c ∈ R2) is called ahexa-generatorif the domain

{t1a + s1b, t2a + s2c, t3b + s3c | 0 ≤ ti ≤ 1, 0 ≤ si ≤ 1, i = 1, 2, 3}

is a hexagon. (See Fig. 8.)

Lemma 3.2 {πe2, πe3, πe4} and{−πe1,−πe5,−πe1 − πe2} are hexa-generators.

Proof: We show{πe2, πe3, πe4} is a hexa-generator. The other part can be shown analogously.
For x =

(
x1
x2

)
∈ R2, n(x) denotes

(−x2
x1

)
, that is, a normal vector ofx. We can calculate the co-

ordinates ofπei (i = 1, 2, 3, 4, 5) and easily check that everyn(π(e2)) · π(e4), n(π(e4)) · π(e3) and
n(π(e3)) · π(e2) has the same signature, wherea · b means the inner product fora, b ∈ R2. Therefore
{πe2, πe3, πe4} is a hexa-generator. (See Fig. 8.) 2

From Lemma 3.1 and Lemma 3.2, we can consider the mapπ2 : F∗ → P <v1,v2>, which gives a
two-dimensional geometric representation of the symbolic object(x, i∗), by

π2(0, 1∗) = [π1(0, 2), π1(0, 5), π1(e2, 3)]
π2(0, 2∗) = [π1(0, 1), π1(0, 3), π1(e3, 4)]
π2(0, 3∗) = [π1(0, 2), π1(0, 4), π1(e2, 1), π1(e4, 5)]
π2(0, 4∗) = [π1(0, 3), π1(0, 5), π1(e3, 2)]
π2(0, 5∗) = [π1(0, 1), π1(0, 4), π1(e4, 3)]
π2(x, i∗) = π2(0, i∗) + πx ,
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π 2e
e4π

..0

e3π

05eπ-

1π e-

ee -1 2ππ-

Fig. 8: Hexa-generators{πe2, πe3, πe4} and{−πe1,−πe5,−πe1 − πe2}

where[x, y, · · · , z] is the convex hull of the segmentsx, y, · · · , z and for
∑N

k=1 nk(xk, ik
∗) ∈ F∗ with

nk ∈ Z− {0}

π2

(
N∑

k=1

nk(xk, ik
∗)

)
=

N⋃
k=1

π2(xk, ik
∗) .

(See. Fig. 9.)

2
2

2

2

2

2

2

2

2

2

Fig. 9: Representation of(0, i∗), (ei, i
∗) andU ′,U

By analogy with the definition ofE∗
1 (σ) in [AI01], let us define the endomorphismτ∗ onF∗ called a

tiling substitutionassociated withσ, by

τ∗(x, i∗) :=
5∑

j=1

∑
S

(j)
k :W

(j)
k =i

(L−1
σ x + L−1

σ f(S(j)
k ), j∗) . (3.1)

We remark that the sign is plus here in this definition with respect to the sign minus in Formula (2) in
Proposition 2.1. (See Remark 4 in Section 4.)
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Remark 2 For the substitutionσ given by (1.1), the tiling substitutionτ∗ is defined explicitly by

τ∗(x, 1∗) =
{

(L−1
σ x + e1 − e5, 1∗) + (L−1

σ x, 5∗) if K = 0∑K+1
n=1 (L−1

σ x + e1 − ne5, 1∗) +
∑K

n=1(L
−1
σ x + e4 − ne5, 4∗) + (L−1

σ x, 5∗) if K ≥ 1
,

τ∗(x, 2∗) = (L−1
σ x, 1∗) ,

τ∗(x, 3∗) = (L−1
σ x, 2∗) ,

τ∗(x, 4∗) = (L−1
σ x, 3∗) ,

τ∗(x, 5∗) = (L−1
σ x, 4∗) .

(See Fig. 10.)

π2(τ∗(0, i∗)) L−1
σ (π2(0, i∗))

K times

Fig. 10: The tiling substitutionτ∗

Remark 3 The formula of the tiling substitutionτ∗ can be found in [AI01] under the notationE∗
1 (σ).

But the geometrical meaning of(x, i∗) (i = 1, 2, 3, 4, 5) is different. In [AI01] we mean by(x, i∗) a unit
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cube of dimension four inR5 and a cube(x, i∗) projected byπ is a good prototile for the tiling ofR4 for
an irreducible substitution, however, for a non-irreducible substitution which we deal with now, a cube
(x, i∗) projected byπ does not work as prototile of a tiling of the contractive spaceP <v1,v2>. In this
section we will see that the tilesπ2(x, i∗) given by Fig. 9 work well.

We defineU =
∑5

i=1(ei, i
∗), U ′ =

∑5
i=1(0, i∗) as the union of these five elements inF∗. (See

Fig. 9.)

Proposition 3.1 The following relations hold:

τ∗(U) ⊃ U , τ∗(U ′) ⊃ U ′ ,

where forV, W ∈ F∗, V ⊃ W means thatπ2(V) ⊃ π2(W), and that there existsW ′ =
∑N

k=1 nk(xk, i∗i ) ∈
F∗ with ni > 0 for all i such thatV = W +W ′; moreover,

τ∗(U)− τ∗(U ′) = U − U ′

and for any positive integern
τ∗ n(U)− τ∗ n(U ′) = U − U ′.

Proof: From the definition ofτ∗, we see

τ∗(U) =


U + (e1 − e5, 1∗) if K = 0

U +
K+1∑
n=1

(L−1
σ x + e1 − ne5, 1∗) +

K∑
n=1

(L−1
σ x + e4 − ne5, 4∗) if K ≥ 1

τ∗(U ′) =


U ′ + (e1 − e5, 1∗) if K = 0

U ′ +
K+1∑
n=1

(L−1
σ x + e1 − ne5, 1∗) +

K∑
n=1

(L−1
σ x + e4 − ne5, 4∗) if K ≥ 1 .

Therefore, we knowτ∗(U)− τ∗(U ′) = U − U ′. 2

The replacing and re-dividing method
Observe the two domainsπ2(τ∗(x, i∗)) andL−1

σ (π2(x, i∗)), then we have the following three cases (See
Fig. 10.):

(1) π2(τ∗(x, i∗)) = L−1
σ (π2(x, i∗)) (i = 2, 5)

(2) π2(τ∗(x, i∗)) ⊂ L−1
σ (π2(x, i∗)) (i = 3, 4)

(3) π2(τ∗(x, i∗)) ⊃ L−1
σ (π2(x, i∗)) (i = 1)

In the case wherei = 1, 3, 4, each of these domainsπ2(x, i∗) (i = 1, 3, 4) contains at least one edge
of the formπ1(y, 2) and one edge of the formπ1(y′, 5), so we introduce the following “replacing and
re-dividing” method to get the domainπ2(τ∗(x, i∗)) from the domainL−1

σ (π2(x, i∗)).
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First, we “replace” every edgeL−1
σ π1(y, 2) onL−1

σ (π2(x, i∗)) (i = 1, 3, 4) with

π1{(L−1
σ y, 1) +

K+1∑
n=1

(L−1
σ y + e1 − ne5, 5)},

what is more, in the case ofK ≥ 1, replace every edgeL−1
σ π1(y′, 5) onL−1

σ (π2(x, i∗)) (i = 1, 3, 4) with

π1{(L−1
σ y′, 4) +

K∑
n=1

(L−1
σ y′ + e4 − ne5, 5)}.

By this procedure, we haveπ2(τ∗(x, i∗)) in the case ofi = 3, 4.
Secondly, we “re-divide” the domain in the case ofi = 1 (i.e. π2(τ∗(x, 1∗))). Then, we have

π2(τ∗(x, i∗)). (See Fig. 11.)

K times

replacing re-dividing

(   , 2 )1π 0

(   , 5 )1π 0-1L σ

-1L σ

-1L σ

Fig. 11: The replacing and re-dividing method for the domainL−1
σ (π2(x, 1∗))

3.2 A tiling of the plane P<v1,v2> generated by τ ∗

We construct a first quasi-periodic tiling ofP <v1,v2> with five polygonal prototiles generated by the
tiling substitutionτ∗ associated toσ. (See Fig. 2 in Section 1.) This tiling corresponds to the projection
of a discrete plane approximation (stepped surface) in the Pisot case. First we will see the property of
non-overlap.

Proposition 3.2 The setsπ2(τ∗ n(U)) (resp.,π2(τ∗ n(U ′))) consisting of five prototiles of the formπ2(x, i∗)
(i = 1, 2, 3, 4, 5) do not overlap for any positive integern.

Proof: Suppose that the pieces ofπ2(τ∗ n(U)) do not overlap, then the pieces ofL−1
σ π2(τ∗ n(U)) do

not overlap. By the replacing and re-dividing method, we obtainπ2(τ∗ n+1(U)) from L−1
σ π2(τ∗ n(U)).

Therefore, to show the pieces ofπ2(τ∗ n+1(U)) do not overlap, it is enough to show that replaced edges
onL−1

σ π2(τ∗ n(U)) do not cause overlap. From (3) in the replacing and re-dividing method, it is possible
that overlaps occur by replacing edges onπ2(x, 1∗). We list the pairs of tiles which are just touching with
the segmentπ1(x, 2) or π1(x, 5) onπ2(x, 1∗), which are given by

{(x, 1∗), (x− e3, 4∗)}, {(x, 1∗), (x, 3∗)}, {(x, 1∗), (x, 4∗)}, {(x, 1∗), (x− e4, 3∗)} .

We deal with the pair{(x, 1∗), (x−e3, 4∗)}. The edge which substitutes forL−1
σ π1(x, 2) onL−1

σ π2(x, 1∗)
is not included in the domainL−1

σ π2(x, 1∗), but in the adjoining domainL−1
σ π2(x− e3, 4∗). Moreover,
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the edge does not cross the other edges. Thus there is no overlap by replacing edges. We see other cases
analogously. (See Fig. 12.)

In the case whereπ1(x, i) (i = 2, 5) in π2(x, 1∗) is a part of the boundary ofπ2(τ∗ n(U)), it is easy to
see that replacing edges do not cause overlap. 2

(   , 2 )1π x
*(   , 1  )xπ 2

(   , 5 )1π x

(    , 3  )x *π 2

π 2 3
*(         , 4  )x-e

π 2
*(    , 4  )x

(         , 3  )x-e 4
*π 2

replacing

(   , 2 )1π x

(   , 5 )1π x

-1L σ

-1L σ

-1L σ

Fig. 12: Four pairs including(x, 1∗)

Secondly we consider the covering of the planeP <v1,v2> by π2(τ∗ n(U)).

Proposition 3.3 ∪∞n=1π2(τ∗ n(U)) = P <v1,v2>, that is,π2(τ∗ n(U)) covers the plane asn goes to∞.

The proof of this proposition is long and not easy. So the detail of this proof is put in Section 6. In the
irreducible case, we can prove the property in Proposition 3.3 by using the notion of stepped surface of a
substitutionσ (cf. [AI01]), but here we must prove it without such a notion. That is the reason why the
proof is difficult.

The following proposition is deduced from Proposition 3.2 and Proposition 3.3:

Proposition 3.4 The setsτ∗ n(U) generate a tiling of the planeP <v1,v2>, that is,

Tτ∗ := {π2(x, i∗) | (x, i∗) ⊂ τ∗ n(U) for some n}

is a tiling ofP <v1,v2>. (See Fig. 2 in Section 1.)
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Finally we discuss the periodicity of the tilingTτ∗ . Let us introduce the following notation:

G∗ := {(x, i∗) ∈ F∗ | (x, i∗) ⊂ τ∗ n(U) for some n},

that is,Tτ∗ = {π2(x, i∗) | (x, i∗) ∈ G∗}, and we also introduce the new prototiles(x, ĩ∗) based onπx

and the tiling associated tõG∗ defined by

(x, ĩ∗) := τ∗(Lσx, i∗) for (Lσx, i∗) ∈ G∗ ,

G̃∗ := {(x, ĩ∗) | (Lσx, i∗) ∈ G∗} .

So we have the ordinary tilingTτ∗ by dividing the prototiles iñG∗ following the method in Subsection 3.1.
We sayG∗ (or Tτ∗ ) is periodic if there exists at least one non-zero periodp ∈ R5 such that(x, i∗) ∈ G∗
implies(x + p, i∗) ∈ G∗.

Lemma 3.3 If p is a non-zero period ofG∗, thenG̃∗ also has the periodp.

Proof: AssumeG∗ has a non-zero periodp. At first we consider the periodicity of the tiles of the form
(x, 1̃∗) in G̃∗. Note that the onlyτ∗(x, 1∗) in the images byτ∗ includes a tile of the form(y, 5∗),
that is, (x, 1̃∗) ∈ G̃∗ if and only if (x, 5∗) ∈ G∗. Suppose(x, 1̃∗) ∈ G̃∗, then(x, 5∗) ∈ G∗, and so
(x + p, 5∗) ∈ G∗ by the assumption, and finally we have(x + p, 1̃∗) ∈ G̃∗. It means thatp is also a
period for the tiles of the form(x, 1̃∗). Now we want to observe the periodicity for the tiles iñG∗ except
the tiles(x, 1̃∗). Put

D := {(y, j∗) ∈ G∗ | (y, j∗) ⊂ (x, 1̃∗) for some (x, 1̃∗) ∈ G̃∗}
D̃ := {(x, 1̃∗) | (x, 1̃∗) ∈ G̃∗} .

From the above discussion we know thatD̃ has a periodp. This means thatD is closed for the translation
by p, and has the same periodp. ThusG∗−D also has a periodp by the assumption. After projection by
π2, G∗ −D andG̃∗ − D̃ provide the same covering ofP<v1,v2> with many holes by the equality

(x, ĩ∗) = (x, (i− 1)∗) (i = 2, 3, 4, 5) .

SoG̃∗ − D̃ has a periodp. Therefore,̃G∗ has a periodp. 2

Theorem 3.1 The tilingTτ∗ is not periodic.

Proof: Suppose the tilingTτ∗ is periodic, that is,G∗ is periodic. SinceG∗ is a discrete set, there exists
a non-zero and minimum periodp of G∗, where a minimum period is a period whose norm‖ πp ‖ is
minimum. From Lemma 3.3,p is also a period of̃G∗. Define the mapι∗ : G̃∗ → G∗ by

ι∗(x, ĩ∗) = (Lσx, i∗) (i = 1, 2, 3, 4, 5) .

By the definition ofG̃∗, ι∗(x, ĩ∗) is in G∗, that is,ι∗ is well-defined. Moreover, it is a bijection and the
inverse is given by

ι∗−1(y, i∗) = (L−1
σ y, ĩ∗) for (y, i∗) ∈ G∗ .
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Hence,(x, j̃∗), (x+p, j̃∗) ∈ G̃∗ impliesι∗(x, j̃∗) = (Lσx, j∗) ∈ G∗, ι∗(x+p, j̃∗) = (Lσx+Lσp, j∗) ∈
G∗. This meansπ(Lσp) is a period of the tilingTτ∗ . On the other hand,Lσ is contractive onP <v1,v2>.
Therefore, it contradicts the minimality of the periodp. 2

Definition 3.1 A tiling T = {Tλ | λ ∈ Λ, Tλ is a tile onP } of the spaceP is called a quasi-periodic
tiling if for any r > 0 there existsR > 0 such that any patchγ =

⋃
λ′∈Λ′⊂Λ
#Λ′<∞

Tλ′ whose diameter is

smaller than r occurs somewhere in a neighbourhood of radiusR of any point.

Forγ, δ ∈ F∗, γ � δ denotes that there existsz ∈ Z5 such thatMzγ ⊃ δ, whereMz is the translation
map given by

Mz(
N∑

k=1

nk(xk, ik
∗)) =

N∑
k=1

nk(xk + z, ik
∗)

for
∑N

k=1 nk(xk, ik
∗) ∈ F∗.

Theorem 3.2 The tilingTτ∗ is quasi-periodic.

Proof: Take anyr > 0. There exists a positive integerN such thatτ∗ N (U) � γ, for any γ ∈ G∗
satisfying the diameter ofπ2(γ) is smaller thanr, because the number of suchγ’s is finite. From
τ∗ 8(ei, i

∗) ⊃ τ∗ 4(e1, 1∗) ⊃ U for anyi = 1, 2, 3, 4, 5, putting M=N+8, we have

τ∗ M (ei, i
∗) � γ (i = 1, 2, 3, 4, 5).

By the definition ofG∗, for any(x, i∗) ∈ G∗ there exists(y, j∗) ∈ G∗ such that

(x, i∗) ⊂ τ∗ M (y, j∗).

Therefore, we have

UR(x) ⊃ π2(τ∗ M (y, j∗)) ,

whereR = maxi=1,2,3,4,5 diam.(π2(τ∗ M (ei, i
∗))) andUR(x) means the neighbourhood ofx with the

radiusR. Thus,UR(x) contains any configuration ofπ2(γ) whose diameter is smaller thanr. 2

4 Atomic surfaces given by τ ∗ and a second tiling
In Section 2 we constructed atomic surfacesX, Xi (i = 1, 2, 3, 4, 5) from the fixed point of a substi-
tution and the projection mapπ. In Subsection 4.1 we generate the atomic surfaces by using the tiling
substitutionτ∗; and by the virtue of this construction, we can observe the boundaries of atomic surfaces
in Subsection 4.2; and in Subsection 4.3 we obtain a second tiling with atomic surfaces by replacing the
polygonal tiles on the first tilingTτ∗ by atomic surfaces.
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4.1 Atomic surfaces given by τ ∗

Definition 4.1 Define the domainsDn, D
(i)
n , (resp.,Dn

′, D
(i)
n

′
) as follows:

Dn := π2(τ∗ n(U))
D(i)

n := π2(τ∗ n(ei, i
∗))

Dn
′ := π2(τ∗ n(U ′))

D(i)
n

′
:= π2(τ∗ n(0, i∗)).

Theorem 4.1 We take a renormalization of the domainsDn, D
(i)
n , then

(1) the following limit sets exist in the sense of the Hausdorff metric:

X̂i := lim
n→∞

Ln
σD(i)

n

X̂ ′
i := lim

n→∞
Ln

σD(i)
n

′

and they satisfy the relations:

X̂i = X̂ ′
i + πei , (X̂ :=) ∪5

i=1 X̂i = ∪5
i=1X̂

′
i ,

(2) the following inequality holds:

Lσ


µ(X̂1)
µ(X̂2)

...
µ(X̂5)

 ≥ β


µ(X̂1)
µ(X̂2)

...
µ(X̂5)

 ;

moreover, the vector of volumest(µ(X̂1), µ(X̂2), · · · , µ(X̂5)) is an eigenvector ofLσ with respect
to the maximum eigenvalueβ, whereµ is the Lebesgue measure,

(3) the following set equations hold:

L−1
σ X̂i =

5⋃
j=1

⋃
P

(j)
k :W

(j)
k =i

(X̂j − L−1
σ πf(P (j)

k ))

L−1
σ X̂ ′

i =
5⋃

j=1

⋃
S

(j)
k :W

(j)
k =i

(X̂ ′
j + L−1

σ πf(S(j)
k )) ,

(4) the sets in the right side of the equation in (3) do not overlap up to a set of Lebesgue measure 0.

The proof of the theorem can be obtained by a quite similar way as in [AI01] following Lemma 11,
Lemma 12 and Corollary 2.
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Remark 4 We can find a relationship between̂Xi and the atomic surfacesXi. By Proposition 2.1, we
have the following equation for the atomic surfacesXi:

L−1
σ (−Xi) =

5⋃
j=1

⋃
P

(j)
k :W

(j)
k =i

((−Xj)− L−1
σ f(P (j)

k )).

This means−Xi and X̂i (i = 1, 2, 3, 4, 5) satisfy the same set equations. SinceLσ is a contractive
transformation on the planeP <v1,v2> and from the uniqueness of self-affine sets (See Theorem 1 in
[MW88] for the uniqueness.), we have the following relation

−Xi = X̂i (i = 1, 2, 3, 4, 5).

Remark 5 We are interested in the disjointness of the partitionsX̂i (i = 1, 2, 3, 4, 5) of X̂. From the
propertyτ∗ 4(e1, 1∗) ⊃ U , anyX̂i is included in the right side of the equation

L−4
σ X̂1 =

5⋃
j=1

⋃
P

(4,j)
k :W

(4,j)
k =1

(X̂j − L−4
σ πf(P (4,j)

k )) ,

thus by Theorem 4.1 (4), for anyi, j (i 6= j)

µ(X̂i ∩ X̂j) = 0 .

This property of disjointness holds for substitutions satisfying the strong coincidence property in [AI01].

4.2 Boundaries of atomic surfaces
In this subsection we will observe the boundaries of atomic surfacesX̂, X̂i. One of our aims here is to
obtain Proposition 4.1, which says that the origin is an inner point of the domainX̂1. For that we will
show that the distance between the origin point and the boundary is positive by studying the boundary.

We introduce an endomorphismτ onF as follows (See Fig. 13.):

τ(x, 1) = (L−1
σ x, 5)

τ(x, 2) = (L−1
σ x, 1)−

K+1∑
n=1

(L−1
σ x + e1 − ne5, 5)

τ(x, 3) = (L−1
σ x, 2)

τ(x, 4) = (L−1
σ x, 3)

τ(x, 5) =
{

(L−1
σ x, 4) if K = 0

(L−1
σ x, 4)−

∑K
n=1(L

−1
σ x + e4 − ne5, 5) if K ≥ 1

Define the boundary map∂F∗ : F∗ → F as follows:

∂F∗(x, 1∗) = −(x, 2) + (x, 5)− (x + e2, 3)
∂F∗(x, 2∗) = (x, 1)− (x, 3)− (x + e3, 4)
∂F∗(x, 3∗) = (x, 2)− (x, 4) + (x + e2, 1)− (x + e4, 5)
∂F∗(x, 4∗) = (x, 3)− (x, 5) + (x + e3, 2)
∂F∗(x, 5∗) = −(x, 1) + (x, 4) + (x + e4, 3) .
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K+1

K

times

times

( )0 , 1

2( )0 ,

τ−

τ−

τ−

τ−

τ−

3( )0 ,

4( )0 ,

5( )0 ,
1π 5( )0 ,

1π 2( )0 ,-1L σ

-1L σ

Fig. 13: Geometrical meaning ofτ

The following diagram is commutative:

F∗ τ∗→ F∗
∂F∗ ↓ ↓ ∂F∗

F τ→ F
,

and from the definition of the mapsπ1, π2, we have

F∗ π2→ P <v1,v2>

∂F∗ ↓ ↓ ∂

F π1→ P <v1,v2>

,

where∂D denotes the boundary of the domainD.
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From the two diagrams, we deduce that

∂(Ln
σD(i)

n ) = ∂(Ln
σπ2(τ∗ n(ei, i

∗)))
= Ln

σ(∂ π2(τ∗ n(ei, i
∗)))

= Ln
σπ1(τn(∂F∗(ei, i

∗))) .

Let B(i)
n denote the set of vertices on∂(Ln

σD
(i)
n ).

Lemma 4.1 The sequences of sets{∂(Ln
σD

(i)
n )} and{B(i)

n } converge towards the same set asn goes to
∞ in the sense of the Hausdorff metric.

Proof:
Existence of the limit set of{∂(Ln

σD
(i)
n )}∞n=1. It is enough to show that the following limit set exists:

Ij = lim
n→∞

Ln
σπ1(τn(0, j)) for anyj = 1, 2, 3, 4, 5 .

Put
c0 := max

i=1,2,3,4,5
dH( Lσπ1(τ(0, i)), π1(0, i) ),

wheredH is the Hausdorff metric. In general the following property holds:

dH(A ∪B,C ∪D) ≤ max(dH(A,C), dH(B,D)) ,

for setsA,B,C, D. It is easy to check thatτn(x, i) does not have cancellation for any(x, i) and any
positive integern. Therefore we see

dH( Lσπ1(τn+1(0, i)), π1(τn(0, i)) ) ≤ c0 .

Hence,
dH( Ln+1

σ π1(τn+1(0, i)), Ln
σπ1(τn(0, i)) ) ≤ c0β0

n , (4.1)

whereβ0 =
{ 1√

β
K ≤ 2

max{|β(2)|, |β(3)|} K ≥ 3
.

This means the sequence{Ln
σπ1(τn(0, i))}∞n=1 is a Cauchy sequence and it has a limit set in the sense of

the Hausdorff metric.
Analogously we see that the sequenceB

(i)
n converges.

By the construction ofB(i)
n and a simple approximation argument, we see these limit sets are equal.

2

LetB(i) (resp.,B) denote the limit setlimn→∞ ∂(Ln
σD

(i)
n )(= limn→∞B

(i)
n ) (resp.,limn→∞ ∂(Ln

σDn)).

Lemma 4.2 µ(X̂i ∩ Ur(x)) > 0 (i = 1, 2, 3, 4, 5) for anyx ∈ X̂i and anyr > 0.

Proof: From Theorem 4.1 (3),

X̂i =
5⋃

j=1

⋃
P

(n,j)
k :W

(n,j)
k =i

(Ln
σX̂j − πf(P (n,j)

k )) .
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By the boundedness of̂Xi (See Corollary 2.1.), for anyx ∈ X̂i and anyr > 0, there exist positive integers
n, j, k such that

x ∈ Ln
σX̂j − πf(P (n,j)

k ) ⊂ Ur(x) .

Thus we have

µ(X̂i ∩ Ur(x)) ≥ µ(X̂i ∩ (Ln
σX̂j − πf(P (n,j)

k ))) = µ(Ln
σX̂j) > 0 .

2

Lemma 4.3 We have∂X̂i = B(i) for i = 1, 2, 3, 4, 5.

Lemma 4.3 says that the boundary of̂Xi is constructed by the mapτ . Proof: We show that∂X̂1 = B(1)

and the other cases are shown analogously. To seeB(1) ⊂ ∂X̂1, it is sufficient to seeB(1)
n ⊂ ∂X̂1 for any

n. LetN be the collection of tiles which consists of(e1, 1∗) and its neighbour tiles:

N := (e1, 1∗) + (e3, 3∗) + (e4, 4∗) + (e5, 5∗) .

By N ⊂ τ∗ 4(e1, 1∗) and Theorem 4.1 (3),

µ(X̂1 ∩ X̂i) = 0 for (ei, i
∗) ⊂ N , i 6= 1 .

Takex ∈ B
(1)
n , then there exists(ej , j

∗) ⊂ N , j 6= 1 such thatx ∈ X̂1 andx ∈ X̂j . Suppose thatx is
an inner point of̂X1, that is, there isr > 0 such thatUr(x) ⊂ X̂1. By x ∈ X̂j and Lemma 4.2, we have

µ(X̂j ∩ Ur(x)) > 0,

therefore, for(ei, i
∗) ∈ N

µ(X̂1 ∩ X̂j) ≥ µ(Ur(x) ∩ X̂j) > 0 ,

which leads to a contradiction and it impliesB
(1)
n ⊂ ∂X̂1 for anyn.

Conversely, suppose thatx ∈ ∂X̂1 ⊂ X̂1. Then there are sequences{xn}∞n=1 with xn ∈ Ln
σD

(1)
n and

{yn}∞n=1 with yn 6∈ X̂1 such thatd(x,xn) < 1
n andd(x,yn) < 1

n for any positive integern, whered is

the usual Euclidean distance on the planeP <v1,v2>. By yn 6∈ X̂1, we have sequences{yn,m}∞m=1:

lim
m→∞

yn,m = yn,

and for anym there existsM ≥ m such thatyn,M 6∈ LM
σ D

(1)
M . Therefore, we can chooseyn,kn

6∈
Lkn

σ D
(1)
kn

so thatd(yn,kn
,yn) < 1

n andk1 < k2 < · · · . Thus the sequence{yn,kn
}∞n=1 satisfies

d(yn,kn
,x) ≤ d(yn,kn

,yn) + d(yn,x) =
2
n

,

and this meanslimn→∞ yn,kn
= x. On the segment betweenxkn ∈ Lkn

σ D
(1)
kn

andyn,kn
6∈ Lkn

σ D
(1)
kn

,

there existsckn
∈ ∂Lkn

σ D
(1)
kn

, andlimn→∞ ckn
= x. This implies

x ∈ lim
n→∞

∂Lkn
σ D

(1)
kn

= lim
n→∞

∂Ln
σD(1)

n

and∂X̂1 ⊂ B(1). 2
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Proposition 4.1 The origin is an inner point of̂X1.

Proof: By Lemma 4.3, we see

L−N
σ ∂(X̂i) = lim

n→∞
Ln

σπ1( τn(∂F∗(τ∗ N (ei, i
∗))) ) ,

for any positive integerN . This means thatL−N
σ ∂(X̂i) is constructed by replacing each edgeπ1(x, j) (j =

1, 2, 3, 4, 5) on∂D
(i)
N with Ij + x, whereIj = limn→∞ Ln

σπ1(τn(0, j)).
By the inequality (4.1), we have the following inequality

dH (Ln
σπ1(τn(0, i)), π1(0, i)) ≤

n−1∑
j=0

c0β0
j < c for anyn,

wherec is some positive number. Therefore,

dH(Ii, π1(0, i)) = dH

(
lim

n→∞
Ln

σπ1(τn(0, i)), π1(0, i)
)
≤ c . (4.2)

By the fact thatπ2(τ∗ n(U)) is covering the planeP <v1,v2> asn goes to∞ (See Proposition 3.3 and
Section 6.), there exists a positive integerN such that

inf
{
d(0,x) | x ∈ ∂π2(τ∗ N (e1, 1∗))

}
> 2c .

From the construction ofL−N
σ ∂(X̂1) and (4.2), we have

inf
{

d(0,x) | x ∈ L−N
σ ∂(X̂1)

}
> c .

Thus we see that for some positive numberc′

inf
{

d(0,x) | x ∈ ∂(X̂1)
}

> c′ > 0 .

This implies the origin is an inner point of̂X1. 2

Proposition 4.2 The Hausdorff dimension of the limit setB of the boundarieslimn→∞ ∂(Ln
σDn) satisfies

(dimH ∂X̂ =)dimH B ≤ 2 log λθ

log β
,

whereMθ =


0 0 0 0 1
1 0 0 0 K + 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 K

 andλθ is the maximum eigenvalue of the matrixMθ, that is, the

maximum solution of the equationx5 −Kx4 − (K + 1)x− 1 = 0.
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Proof: We define the endomorphismθ on the free group< 1±1, 2±1, 3±1, 4±1, 5±1 > associated withτ :

θ :



1 → 5

2 → 1

K+1 times︷ ︸︸ ︷
5−15−1 · · · 5−1

3 → 2
4 → 3

5 → 4

K times︷ ︸︸ ︷
5−1 · · · 5−1

.

We see thatθn(15−134−123−1) has no cancellation for alln. Therefore, from the method of [BED86],
[DEK82], [IO93], [IK91], we have this result. 2

Corollary 4.1 For anyK ≥ 0 the Hausdorff dimension of B satisfies the inequality:

(dimH ∂X̂ =)dimH B < 2.

In the case ofK = 0, dimH ∂X̂ = 1.10026 · · · .

Proof: By Proposition 4.2, it is enough to show the inequalityλθ < β. We can assumeK ≥ 1. Put

f(x) = x3 −Kx2 − (K + 1)x− 1
g(x) = x5 −Kx4 − (K + 1)x− 1.

By a simple computation, one gets that

f(K + 1) < 0 , f(K + 1 +
1

3K + 2
) > 0,

g(
K + 2

2
) < 0 , g(K + 1) > 0 .

This meansK + 1 < β < K + 1 + 1
3K+2 and there is some solutionλ′ of the equationg(x) = 0 such

that K+2
2 < λ′ < K + 1. Fromg′(K + 1) > 0 andg′′(x) > 0 with x ≥ K + 1, we know there is no

solution of the equationg(x) = 0 with x ≥ K + 1, that is,λ′ = λθ and K+2
2 < λθ < K + 1. Using the

above two inequalities we have the conclusion. 2

4.3 A second tiling given by τ ∗ with atomic surfaces
In Section 3 we introduce a first tilingTτ∗ with five polygonal prototilesπ2(x, i∗) (i=1,2,3,4,5). Here
we consider a second tiling with five prototileŝXi with fractal boundary by replacing each prototile
π2(x + ei, i

∗) in Tτ∗ with X̂i + πx. Put

T bX
τ∗ := {X̂i + πx | π2(x + ei, i

∗) ∈ Tτ∗} .

Theorem 4.2 The family of tiles{X̂i + πx | π2(x + ei, i
∗) ∈ Tτ∗} is a quasi periodic tiling with five

prototilesX̂i (i = 1, 2, 3, 4, 5) of the planeP <v1,v2>.
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Proof: At first we show thatT bX
τ∗ is a tiling of P <v1,v2>. From Proposition 4.1, there exists a positive

numberδ such that
Uδ(0) ⊂ X̂1 .

Notice that for any positive integern

Uβ0
−nδ(0) ⊂ L−n

σ Uδ(0).

By Theorem 4.1 (3)

Uβ0
−nδ(0) ⊂ L−n

σ X̂1 =
5⋃

j=1

⋃
P

(n,j)
k :W

(n,j)
k =1

(X̂j − L−n
σ πf(P (n,j)

k )) ,

where the tiles(X̂j − L−n
σ πf(P (n,j)

k )) do not overlap for anyk, j. From

Tτ∗ = ∪∞n=0π2(τ∗ n(U)) = ∪∞n=0π2(τ∗ n(e1, 1∗)),

the union of tiles
⋃5

j=1

⋃
P

(n,j)
k :W

(n,j)
k =1

(X̂j − L−n
σ πf(P (n,j)

k )) is a part ofT bX
τ∗ . This means that the

pieces ofT bX
τ∗ do not overlap and coverUβ0

−nδ(0) for anyn. ThereforeT bX
τ∗ is a tiling of P <v1,v2> by

takingn →∞. On the other hand, from the quasi periodicity of the tilingTτ∗ , T bX
τ∗ is also quasi periodic.

2

At the beginning of this paper, we started from the substitutionσ given by (1.1). And we obtained
atomic surfaces{Xi}i=1,2,3,4,5(= {−X̂i}i=1,2,3,4,5) and the tilingT bX

τ∗ . We also get tiles{Ti}i=1,2,3,4,5

and a tilingTβ by using the numeration system related to a Pisot numberβ as in [AKI99], [THU89]. We

plan to make the relation between{Xi}i=1,2,3,4,5 (resp.T bX
τ∗ ) and{Ti}i=1,2,3,4,5 (resp.Tβ) explicit with

the subdivision rule in [EIR02].

5 Dynamical systems
We introduce two types of measured dynamical systems onX̂ a Markov transformation and a domain
exchange transformation withσ-structure.

From Theorem 4.1 (3),x ∈ X̂i implies that there exist integersj, k such that

L−1
σ x ∈ X̂j − L−1

σ πf(P (j)
k ).

Therefore we get the division of̂Xi:

X̂i =
⋃(

j
k

)
:W

(j)
k =i

X̂i

(
j
k

)
,

whereX̂i

(
j
k

)
:= {x ∈ X̂i | L−1

σ x ∈ X̂j − L−1
σ πf(P (j)

k )}. Here we have the following theorem which
provides a Markov transformation.
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Theorem 5.1 Let us define the mapF : X̂ → X̂ by

F (x) = L−1
σ x + L−1

σ πf(P (j)
k ) if x ∈ X̂i

(
j
k

)
,

then the mapF is well-defined and

F (X̂i

(
j
k

)
) = X̂j .

The transformationF is well-defined because of Theorem 4.1 (4), and it is called a Markov transformation
with matrix structureLσ with respect to partitions{X̂i}i=1,2,3,4,5.

From now on we consider a domain exchange transformation withσ-structure.

Definition 5.1 Let (X, T, µ) be a measured dynamical system,σ a substitution over the alphabetA such
that

σ(i) = W
(i)
0 W

(i)
1 · · ·W (i)

l(i)−1 ,

and consider a measurable partition{X(i) | i ∈ A} of X, a subsetA of X and a measurable partition
{A(i) | i ∈ A} of A.

We say that the transformationT hasσ-structure with respect to the pair of partitions{X(i)}, {A(i)}
if T satisfies the following condition:

T kA(i) ⊂ X(W
(i)
k ) for all i ∈ A , k = 0, 1, · · · , l(i) − 1

T l(i)A(i) ⊂ A for all i ∈ A
X =

⋃
i∈A

⋃
0≤k≤l(i)−1 T kA(i) (non− overlapping)

.

For the transformationT with σ-structure, the induced transformationT |A onA is defined by

T |A(x) = T l(i)(x) for x ∈ A(i) .

Proposition 5.1 Letσ be a substitution satisfying (1.1) and put

L−n
σ =

(
f

(n)
1 ,f

(n)
2 ,f

(n)
3 ,f

(n)
4 ,f

(n)
5

)
.

(1) The transformationEn : Dn → Dn given by

En(x) = x− πf
(n)
i if x ∈ D(i)

n (i = 1, 2, 3, 4, 5)

is well-defined and preserves the Lebesgue measureµ. (See Fig. 14.)

(2) The transformationE1 : D1 → D1 hasσ-structure with respect to the pair of partitions{D(i)
1 },

{D(i)
0 } and the induced transformation satisfies

E1|D0 = E0 .

Moreover, for any positive integerk the transformationEk : Dk → Dk hasσ-structure with respect
to the pair of partitions{D(i)

k }, {D(i)
k−1} and the induced transformation satisfies

Ek|Dk−1 = Ek−1 .
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(3) For any positive integerk the transformationEk : Dk → Dk hasσk-structure with respect to the
pair of partitions{D(i)

k }, {D(i)
0 } and the induced transformation satisfies

Ek|D0 = E0 .

τ*

τ*

τ*

τ*

:

:

:

2E

E 1

0E

Fig. 14: Domain exchange transformationsEi onDi

The transformationsEk are calleddomain exchange transformationsonDk.

Proof: From the equation
τ∗ n(ei, i

∗) = Mf (n)
i

(τ∗ n(0, i∗))

andDn = Dn
′ by Proposition 3.1, we see the transformationEn is well-defined.
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First statement of (2) is obtained from Fig. 14. The second and third statements are proved inductively.
2

This proposition leads to the following:

Theorem 5.2 Define the transformationE : X̂ → X̂ by

E(x) = x− πei x ∈ X̂i .

The transformationE, which preserves the Lebesgue measureµ, is well-defined onX̂. AndE hasσ-
structure with respect to the pair of partitions{X̂i}, {LσX̂i}, moreover,E hasσn-structure with respect
to the pair of partitions{X̂i}, {Ln

σX̂i} for all n ∈ N.

Proof: From Theorem 4.1 (1), the transformationE is well-defined. From the equation given by Theo-
rem 4.1 (3) and (4), we have

X̂i =
5⋃

j=1

⋃
P

(j)
k :W

(j)
k =i

(LσX̂j − πf(P (j)
k )) ,

LσX̂i ⊂ X̂
W

(i)
0

.

Hence,
E(LσX̂i) = LσX̂i − πf(W (i)

0 ) ⊂ X̂
W

(i)
1

.

Analogously we say

Ek(LσX̂i) = LσX̂i − πf(P (i)
k ) ⊂ X̂

W
(i)
k

for k = 0, 1, · · · , l(i)−1 and

El(i)(LσX̂i) = LσX̂i − πf(σ(i))

= Lσ(X̂i − πei)

= LσX̂i

′
.

This meansE hasσ-structure with respect to the pair of partitions{X̂i}, {LσX̂i}. By induction, we can
show the second statement. 2

This transformationE : X̂ → X̂ is also called the domain exchange transformation associated with a
substitutionσ. From this theorem and Proposition 4.1 we have the following corollaries:

Corollary 5.1 For k = 0, 1, · · · , we have

Ek(0) ∈ X̂sk
,

whereω = limn→∞ σn(1) = s0s1 · · · sn · · · .

From Corollary 5.1 we have the following corollary: (See Lemma 6 in [AI01] and [BFMS02].)
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Corollary 5.2 Let (Ωσ, S) be the substitution dynamical system generated by a substitutionσ given by
(1.1). The dynamical system(X̂, E) is a realization of(Ωσ, S), and the realization mapφ fromΩσ to X̂
is given by usingφ(Sk(s0s1 · · · )) = Ek(0) for all positive integersk.

Finally to observe ergodic property of the domain exchange transformationE, we define new domains

D̃n (resp., ˜̂X) and domain exchange transformations̃En (resp.,Ẽ) on the domains which are measure-
theoretically isomorphic to a rotation on the 2-dimensional torus.

Since the domainπ2(U) is not a 2-dimensional fundamental domain, we introduce the symmetrical
image ofU denoted byU and the union ofU andU denoted bỹU (cf. Fig. 15 and Fig. 16), which will be
a 2-dimensional fundamental domain as follows:

U := {(e4, 1∗) + (e4, 3∗) + (e4, 5∗) + (2e4, 1∗) + (e2 + e4, 5∗)},
Ũ := U + U ,

L := {m(e2 − e4) + n(e1 + e2 − 2e3) | m,n ∈ Z},
D̃0 := π2(Ũ) = D0 ∪ {−D0 + (πe1 + πe2 + πe4)},

π(L) := {πz | z ∈ L}.

Then we have the following lemma:

Lemma 5.1 The domainsLn
σπ2(τ∗ n(Ũ)) are 2-dimensional fundamental domains for the latticeπ(L),

that is,Ln
σπ2(τ∗ n(Ũ)) = R2/L for any non negative integern. In other words, we have periodic tilings

{Ln
σπ2(y, j∗) | (x, i∗) ⊂ Mz(Ũ) for somez ∈ L, (y, j∗) ⊂ τ∗ n(x, i∗)} for any non negative integer

n.

Proof: Replace the segment{tπ(e2 − e4) | 0 ≤ t ≤ 1}, which is an edge of the fundamental domain
{sπ(e2 − e4) + tπ(e1 + e2 − 2e3) | 0 ≤ s ≤ 1, 0 ≤ t ≤ 1} for the latticeπ(L), with π1((−e4, 4) +
(−e4, 2)); and the segment{tπ(e1 + e2 − 2e3) | 0 ≤ t ≤ 1} with π1((−e3, 3) + (−e3, 1) + (e1 −
2e3, 3)+(e1−2e3, 2)). We replace the other sides of these edges analogously. Then we have the domain
π2(M−e1(Ũ)). Thusπ2(Ũ) is a 2-dimensional fundamental domain. By replacing every edgeπ1(x, i) on
π2(Ũ) with Ln

σπ1(τn(x, i)), we can also say thatLn
σπ2(τ∗ n(Ũ)) is a 2-dimensional fundamental domain.

(See Fig. 15.) 2

Let us define the map̃E0 : D̃0 → D̃0 by

Ẽ0(x) = x− πe2 (modπ(L) ) .

For example, the domainπ2(e1, 1∗) is mapped bỹE0 as follows:

π2(e1, 1∗)
fE0→ π2(2e4, 1∗)

fE0→ π2(e4, 1∗)
fE0→ π2(0, 1∗).

Therefore,Ẽ0 is well-defined and measure-theoretically isomorphic to a rotation on the 2-dimensional
torus, moreover, we have

Ẽ0|D0 = E0 .
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π (e  -e  )420 

1(e  +e  -2e  ) 32π

Fig. 15: The periodic tiling{π2(x, i∗) | (x, i∗) ⊂ Mz( eU) for somez ∈ L}

In Lemma 5.1 we obtained 2-dimensional fundamental domains and they were constructed by replacing
every edgeπ1(x, i) onπ2(Ũ) with Ln

σπ1(τn(x, i)). Moreover, in the same way as in the proof of Proposi-
tion 4.1, we also obtain a new 2-dimensional fundamental domain by replacing every edgeπ1(x, i) on the
boundary of the domainsD0 and{−D0 +(πe1 +πe2 +πe5)} with Ii +πx. Then we have the following
theorem, which says the domain exchange transformationE is measure-theoretically isomorphic to the
induced transformation of a rotation on the 2-dimensional torus:

eπ 2

Fig. 16: The domainsfD0 and ebX
Theorem 5.3 The domain given by˜̂

X := X̂ ∪ {−X̂ + (πe1 + πe2 + πe5)}

is a 2-dimensional fundamental domain.

Let us define the map̃E : ˜̂X → ˜̂
X by

Ẽ(x) = x− πe2 (mod π(L) ) ,
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then it is well-defined and measure-theoretically isomorphic to a rotation on the 2-dimensional torus,
moreover, we have

Ẽ| bX = E .

6 Appendix: The proof of Proposition 3.3
In this section we prove the following proposition stated in Section 3:

Proposition 3.3 ∪∞n=1π2(τ∗ n(U)) = P <v1,v2>, that is,π2(τ∗ n(U)) covers the plane asn goes to∞.

First we introduce the notion ofC-covered property of a set∆ ∈ F∗ associated with the connectivity
of the domainπ2(∆) as in [IO93]. Define the subsetC0 of F∗ andC consisting of translated elements of
C0 by

C0 := {(e1, 1∗) + (e4, 4∗), (e1, 1∗) + (e3, 3∗), (e2, 2∗) + (e5, 5∗), (e1, 1∗) + (e5, 5∗), (0, 1∗) + (e2, 4∗),
(0, 1∗) + (0, 3∗), (0, 2∗) + (0, 5∗), (0, 1∗) + (0, 4∗), (0, 3∗) + (0, 5∗), (0, 2∗) + (0, 4∗)} ,

C := {Mzξ ∈ F∗ | ξ ∈ C0, z ∈ Z5}.

Fig. 17: The elements ofC0

Definition 6.1 An element∆ ∈ F∗ is C-covered if there exists a finite subsetΓ = {γi ∈ C | i =
1, 2, · · · , N} of C such that

(1) for any(x, i∗), (y, j∗) ⊂ ∆, there exists a subset{γst}k
t=1 of Γ such that

(x, i∗) ⊂ γs1 , γst ∩ γst+1 6= ∅ (t = 1, 2, · · · , k − 1), (y, j∗) ⊂ γsk
,

where forγ, γ′ ∈ F∗, γ ∩ γ′ = ∅ meansµ(π2(γ) ∩ π2(γ′)) = 0,
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(2) π2(Γ) = π2(∆), whereπ2(Γ) = ∪N
i=1π2(γi).

The subsetΓ is called aC-cover of∆.

Lemma 6.1 If ∆ ∈ F∗ is C-covered, thenτ∗(∆) is C-covered.

Proof: It is enough and easy to check that the image of every element ofC0 by τ∗ is alsoC-covered. (See
Fig. 18.) 2

τ∗

 (0, 2  ) + *  (0, 5  )  *

 (    , 4  )   (    , 1  ) + e1
* e4

*

Fig. 18: The images of(e1, 1
∗) + (e4, 4

∗) and(0, 2∗) + (0, 5∗) by τ∗

Definition 6.2 C-covered∆ ∈ F∗ is called aC-covered cell ifπ2(∆) is a topological cell.

Lemma 6.2 For anyn, τ∗ n(U) is aC-covered cell.

Proof: U is a C-covered cell. Suppose thatτ∗ n(U) is a C-covered cell butτ∗ n+1(U) is not, that is,
P <v1,v2>−π2(τ∗ n+1(U)) has a bounded componentD1 and an unbounded componentD2. Recall that
from Lemma 5.1

∑
z∈L ML−n

σ z(τ∗ n(Ũ)) give periodic tilings. Then, there exist(x, i∗) and(y, j∗) ⊂∑
z∈L M

L
−(n+1)
σ z(τ∗ n+1(Ũ)) such that

π2(x, i∗) ⊂ D1 andπ2(y, j∗) ⊂ D2 .

And for (x, i∗), (y, j∗) there exist(x′, i′∗), (y′, j′∗) ⊂
∑

z∈L ML−n
σ z(τ∗ n(Ũ)) such that

(x, i∗) ⊂ τ∗(x′, i′∗) and(y, j∗) ⊂ τ∗(y′, j′∗).

From Fig. 15 we have the following properties:

(1) U , Ũ areC-covered,

(2) if z,z′ ∈ L (z 6= z′) satisfyπ2(Mz(Ũ))∩π2(Mz′(Ũ)) 6= ∅, thenMz(Ũ)+Mz′(Ũ) is C-covered,
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(3) if z ∈ L (z 6= 0) satisfiesπ2(U) ∩ π2(Mz(Ũ)) 6= ∅, thenU + Mz(Ũ) is C-covered.

Hence, there exists a finite subsetΓ = {γt ∈ C | t = 1, 2, · · · , N} of C such that

(x′, i′∗) ⊂ γ1, γt ∩ γt+1 6= ∅ (t = 1, 2, · · · , N − 1), (y′, j′∗) ⊂ γN ,

γt ∩ τ∗ n(U) = ∅ (t = 1, · · · , N).

The second condition implies
N∑

t=1

τ∗(γt) ∩ τ∗ n+1(U) = ∅ .

On the other hand,τ∗(Γ) := {τ∗(γt) | t = 1, 2, · · · , N} has the following property:

(x, i∗) ⊂ τ∗(γ1),
τ∗(γt) ∩ τ∗(γt+1) 6= ∅ (t = 1, · · · , N − 1),
(y, j∗) ⊂ τ∗(γN ),

andτ∗(γt) is C-covered by Lemma 6.1 for anyt, that is,π2(x, i∗) andπ2(y, j∗) are connected by using
elements ofC. This provides

∑N
t=1 τ∗(γt) ∩ τ∗ n+1(U) 6= ∅, which leads to a contradiction. 2

Finally we want to show thatπ2(τ∗ n(U)) is expanding onP <v1,v2> asn goes to∞.

Definition 6.3 An element∆ ∈ F∗ including τ∗ n(U) has ann-th C-belt if there exists a finite subset
Γ = {γt ∈ C | t = 1, 2, · · ·N} of C such that

(1) π2(∆) ⊃ π2(Γ),

(2) γt ∩ τ∗ n(U) = ∅ for anyt (t = 1, 2, · · · , N),

(3) there exists(x, i∗) ⊂ ∆ satisfying
(x, i∗) ⊂ γ1, γt ∩ γt+1 6= ∅ (t = 1, 2, · · · , N − 1), (x, i∗) ⊂ γN ,

(4) π2(Γ) is an annulus andπ2(Γ)bd ⊃ π2(τ∗ n(U)), whereAbd means the bounded domain of the
complement of an annulusA.

Γ is called ann-th C-belt of∆ .

Lemma 6.3 If ∆ ∈ F∗ includingτ∗ n(U) has ann-th C-beltΓ, thenτ∗(∆) has an(n + 1)-th C-belt.

Proof: Assume thatΓ = {γt ∈ C | t = 1, 2, · · · , N} is ann-th C-belt of ∆. Since the subsetΓ′ =
{γ′ ∈ C | γ′ ⊂ τ∗(γt), t = 1, · · · , N} of C related toτ∗(∆) satisfies (1), (2), (3) of Definition 6.3, it is
enough to show thatπ2(Γ′) is an annulus andπ2(Γ′)bd ⊃ π2(τ∗ n+1(U)). Let us consider two domains
L−1

σ π2(Γ) andL−1
σ π2(τ∗ n(U)), and replace every edge on these domains by using the replacing and re-

dividing method. Then we haveπ2(Γ′) andπ2(τ∗ n+1(U)). By the property (3) of Definition 6.3,π2(Γ′)
is an annulus. From the relationL−1

σ π2(Γ)bd ⊃ L−1
σ π2(τ∗ n(U)) by the assumption, we see the relation

of inclusion.
2
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Proof of Proposition 3.3. In the case ofK = 0, we can take a firstC-beltΓ1 of τ∗ 8(U) concretely. (See
Fig 19.) In the case ofK ≥ 1, take a firstC-beltΓ1 as follows:

Γ1 = {γ ∈ C | γ ⊃ (x, i∗),
(x, i∗) ∈ {(e1 − e5, 1∗), (e4 − e5, 4∗), (e1 − e4, 1∗), (e5, 4∗), (e5 − e3, 5∗), (e1 − e3, 1∗),
(e4 − e3, 4∗), (e1 − e3 − e5, 1∗), (e1 − e2, 1∗), (e5 − e2, 4∗), (e3 − e2, 3∗), (e1 − e2 − e4, 1∗),
(e4 − e2, 4∗), (e4 + e5 − e1, 4∗), (e5, 1∗), (e5 − e3, 1∗), (e4 + e5 − e1, 3∗)} }.

Fig. 19: The figure ofπ2(τ
∗ 8(U)) (K = 0) andπ2(τ

∗ 5(U)) (K ≥ 1)

From Lemma 6.3,τ∗ 8n(U) has an8(n− 1)-th C-beltΓ8(n−1) for anyn such that

π2(τ∗ 8n(U)− τ∗ 8(n−1)(U)) ⊃ π2(Γ8(n−1)).

Thus the distance of the boundary ofπ2(τ∗ n(U)) from the origin tends to∞; and from Lemma 6.2,
π2(τ∗ n(U)) is a topological cell for anyn. Therefore,π2(τ∗ n(U)) is covering the planeP <v1,v2> asn
goes to∞. 2
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