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A generating method of self-affine tilings for Pisot, unimodular, irreducible substitutions, as well as the fact that the
associated substitution dynamical systems are isomorphic to rotations on the torus are established in [Al01]. The aim
of this paper is to extend these facts in the case where the characteristic polynomial of a substitution is non-irreducible
for a special class of substitutions on five letters. Finally we show that the substitution dynamical systems for this
class are isomorphic to induced transformations of rotations on the torus.
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1 Introduction

In this paper we want to discuss tilings and dynamical systems generated by the following substitutions
given by

K+1 times
—

1 —- 11---1 2

2 —- 3

o 3 — 4 , K>0. (1.1)

K times
—~

4 —- 1---15

5 — 1

The characteristic polynomial of the incidence matffixis
2’ — (K+ 12t~ Kr—1= (2 -2+ 1)(2* - K2? — (K + 1)z — 1). (1.2)

Since it is non-irreducible, its facter® — Kz? — (K + 1)z — 1 is a minimal polynomial of some Pisot
numbers. Furthermorédet(L, )| = 1; we thus say that the above substitutiois of the non-irreducible,

Pisot, unimodular type. The aim of this paper is to discuss how we obtain tilings and dynamical systems
generated by non-irreducible, Pisot, unimodular substitutions for the special[clgss (1.1) which is coming
from Pisot/3-expansions.
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Let us recall some results in the irreducible, Pisot, unimodular case. [(Se€ [AI01].) For example we
consider the following substitutios on 3 letters:

1 — 12
o 2 — 13 . (1.3)
3 — 1
The substitutionr has the incidence matrix
1 1 1
Lo,=11 0 O
01 0

and its characteristic polynomia? —z? —x—1. So this substitution is of the irreducible, Pisot, unimodular
type.

For the contractive planP of the matrixL,,, a stepped surface which is a discrete plane approximation
of P is determined. Thus we have a tiling of the plaRevith three prototiles, which are parallelograms,
by using the projectiom defined as the map froiR> to P along the eigenvectat of L, corresponding
to the Pisot eigenvalug.

This substitutiors has a unique fixed point and we denote itdy= sgs; - - - s, - - -. Then we obtain
the setsX; (i = 1,2, 3) given by the closure ofr Z;é s, | Sn =1, n=1,2,---}andX = U}_, X;,
where{e; }i—1,2,3 is the canonical basis @°. These set;, X are called atomic surfaces of

On the other hand, it is known that the tiling and the atomic surfaces can be generated by the so called
tiling substitutionE7 (o) on theZ-moduleG; defined by

g = > nsdlns €2, € ZP x {17,27,3"} | ns # 0} < 0
§EZ3 x {1*,2%,3%}

Here we identify(x,i*) € Z3 x {1*,2*,3*} with the unit square
{m+sej +ter e RP{j,k} = {1,2,3}\{i}, 0<s <1, 0<t <1},

and summation “+" in an element il means the union of these unit squares. More generally we
consider a substitution denoted byo(i) = W W .. W,E’) e V[/l((i))fl' By using the canonical
homomorphismf from the free monoid o letters toZ? defined byf(i) = e; (i = 1,2,3) and the

notationsP,gi) andS,(j) stand for respectively the prefix of lengthand suffix of length;) — 1 — & of
o (i), we define the endomorphishy (o) on G; as follows:

3
i)z, i)=Y > (Lj'm+ L7'E(SY), %)

=1 g, @) —;
I=l s WP =i

On this setting we can generate the stepped surface of the BldmeE; "(o)((e1, 1*) + (e2,2%) +
(e3,3%)) (n — oo ) and the atomic surfaces by

X; = — lim L'nE; "(0)(e;,i*) (i = 1,2,3),

n—oo



Tilings from some non-irreducible, Pisot substitutions 83

where the right side converges in the sense of the Hausdorff metric and we lenote, L7 E; "(o)(e;,i*)
by X;. Furthermore, we have the following property:

Property 1.1 (1) The pieces inthe unicmf:l)/(\i denoted byX do not overlap up to a set of Lebesgue
measure 0,

(2) the following set equation holds:
L% = (X; — L 'nf(PY)),

where the sets in the right side of the equation do not overlap up to a set of Lebesgue measure 0,
and moreover, the transformatidn : X — X given by

F(x) = L; (x +f(PY)) if x € L,X; — nf(PY)
is well-defined and it is a Markov transformation with matrix structilge

(3) the transformatior® : X — X, called the domain exchange transformation, given by
E(x) = x — me; azej(\i

is well-defined and the transformatidii is measure-theoretically isomorphic to a rotation on the
2-dimensional torus, and moreover, the orbit of the origin pointbyatisfiesE* (0) € X, , k =
0,1,---.

Property [(2) and[(3) are not known to hold for any irreducible Pisot substitution. Propgrty (2) holds
provided that[(]L) holds if the substitutianhas the strong coincidence condition (€f. [Al01]). Moreover,
for the transformatiott’ to be well-defined, the pieces must not overlap. The isomorphism with a rotation
(3) is equivalent with the tiling property.

The aim of the paper is to obtain the analogous property for the non-irreducible, Pisot, unimodular
substitutions given by (1].1).

This paper is sketched as follows.

In Sectiorﬂa, we define a projection mapfrom R to the contractive 2-dimensional plane of the
incidence matrixL, of o. A substitution given by[(1]1) has a unique fixed point. Therefore, using the
projection we obtain atomic surfacésand X; (i = 1,2, 3,4, 5) with respect to the letterin the same
way as in the irreducible case. (See [Fig. 1.)

In Section 3 4 and|6, we define the tiling substitutidrof a substitutiornr according to some modifica-
tion of the method by [AIO1]. Since we deal with the non-irreducible case, we can not use the same method
as in the irreducible case. However, we introduce new polygonal tiles instead of parallelograms, a tiling
substitutionr™ and the concept of a stepped surface; and try to construct atomic surfaces by using a map
7* and tilingsZ, - with five polygonal prototiles an@ ¥ with the atomic surfaceX; (i = 1,2,3,4,5).

(See Fig[ P and Fig]3.) R

In Section 5, we introduce two dynamical systems¥n= — X associated with non-irreducible sub-

stitutions, that is, a Markov transformation and a domain exchange transformation related to Property 1.1
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0

Fig. 1: The atomic surfac& of the substitutiorr in the case of<

0

Fig. 2: The tiling 7 in the case o
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Fig. 3: The tiling ij in the case o =0

(2) and [[B). The main theorems in this paper are The¢rem 5.2 and Theolem 5.3, and these theorems say
the following: R R
The domain exchange transformatisn X — X is defined by
E(x) = x — me; reX;

and the orbit of the origin point by the transformatiéhsatisfiesE*(0) € )?Sk, k =0,1,---. The
transformationE is not measure-theoretically isomorphic to a rotation on the 2-dimensional torus, but
isomorphic to thenducedtransformation of a rotation on the torus.

2 Substitutions and atomic surfaces

2.1 General results on atomic surfaces

Let A be an alphabet consisting dfletters{1,2,--- ,d} . The free monoid on the alphahdtwith the
empty worde is denoted byd* = U ;A" and AN denotes the collection of all right infinite sequences
of symbols fromA. Leto be an endomorphism ed* such thav (i) € A* \ {e} for all i € A, which is
called asubstitution By definingo (UV') = o (U)o (V) for a concatenatiofy V' of words, the substitution

o is extended to an endomorphism 4 and.AN. Put

oli) = wlwiw |
_ P}Ei)Wéi)Sl(ci)
and
on(i) = wirtwit it

_ P]gn,i)wlgn,i)slin,i) 7
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wherePé’) = PO("’”) = ¢ for anyi € A and any positive integet. We caIIP,f) (resp.,S,ff)) the k-prefix
(resp., thek-suffiy of a wordo(i). We define the canonical homomorphigm A* — Z< by f(e) = 0
andf(i) = e; (i € A), where{e;};—1,...4 is the canonical basis @¢. This is naturally extended to a
map onA* by definingf(UV) = £(U) + £(V) for wordsU, V in A*. There is a matriX., onZ? for a
substitutionos satisfying the following commutative diagram:

A S A
£ | f
7d Le 7

The matrix L,, is called theincidence matrixof the substitution and its entri, (i, j) is equal to the
number of occurrences of the letten o (j).

Recall that aPisot numbeiis an algebraic integer greater than 1 and whose conjugates have modulus
strictly less than 1. Before discussing atomic surfaces of substitutions givén by (1.1), we will define
atomic surfaces on a general setting with the following assumption:

Assumption Throughout this paper, we assume that for a substitution
1) WY =1, thatis,o(1) begins withl,
(2) o is unimodular, thatis| det(L,) |=1,

(3) the characteristic polynomial df, is not irreducible and is decomposed Agr)g(x) such that
f(z) is a minimal polynomial of some Pisot numiggrand the roots of(z) have modulus 1.

A substitution with Assumption (2) and (3) is referred to bainfmodular, non-irreducible, Pisdype.
From Assumption[(|1), there exists a fixed painof the substitutior:

w= lim o"™(1) = 5081 8p """

n—oo

From AssumptionEZ) an(ﬂ3), we define the expanding subsg&ag spanned by the eigenvectar
corresponding to the eigenvalgeand the contractive subspa&t # {0}(c R?) corresponding to the
other conjugate eigenvalues@f Then we have a direct sSuRf = P@ L(u)® P’, whereP’ corresponds
to the other eigenvectors coming frgrtr). Let us define the projection: R? — P by

m(p+z+p')=p,
wherep € P, x +p' € L(u) ® P’ .

Definition 2.1 From setsZ;, Z! of prefixes of a fixed point:

Zl' = {8081"'Sk_1‘Sk:i,k:].,Q,"'}
Z! = {sos1---sk|sk=1ik=0,1,---1},

we define set¥;, Y/ in P as follows:
Y, = 7f(Z;) ={rf(sps1- - 8k-1) | sp =i, k=1,2,---}
Y/ = nf(Z]) = {nf(sos1- sk)|sk=1i,k=0,1,---} .

K2 7
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The setsX, X;, X! in P are defined by

X = d.(UL,Y;) =cl.(UL,Y))
Xi = Cl(}/z)
X! = (Y,

wherecl.S means the closure of a s&t

We call the sets(, X; (i € A) atomic surfacesf . Note that the equalitX; = X; + we; holds from
Y/ =Y, +me;,whereS +a={x+a|xec S}

For wordsU = wouq -+ -ug, V.= vv1 -+ - vy, € A*, U < V denotes that < m andwvgvy -+ -v; = U.
The following proposition can be found in [AIDLI[FFIWDO].

Proposition 2.1 The following set equations hold:

d
(1) L'x;=) U &g+Ltfp?)

3=1 p@ W) =
) L'X] = U U &j-L'ni ().
j=1 S(J).WEJ)_,L

Remark 1 We will see the following property in Theor-@ (4):
the setsX; + L, 'nf(P, ”) (resp., X} — L, wf (S 59)) with W,g” =iinthe equatlonml) (resp BZ)) do
not overlap up to a set of Lebesgue mea$].|re

Proof: From the property

n

UAU 49,

i=1
it is enough to show that

U <L £(Z;) + £(PY)). (2.1)
W

Takesgsy - - - s, € Z; With s,,41 = 4, then there exists an integer (m < n) such that
(8081 Sm—1) < 8081 Snt =< (8081 Sm)-
Consequently there exists an integsuch that
8081+ Spi =0 (8081 - 57,L_1)Pt(sm)Wt(sm),
WhereWt(SM) = ¢. Letf act on both sides of the above equality,

f(sos1---sni) =f(o(spsy--- sm_l)Pt(Sr“)Wt(S*”)).



88 Hiromi Ei and Shuniji Ito
Hence, byf o 0 = L, o f, we have

f(s081 -+ 8n) = Lof(8081+ Sm_1) + f(Pt(S"L)) )
Thusf(sgsy - $n) € Lof(Zs, )+ £(P)) with W) = i. This showsC is true for the equalitl)
by choosingj = s,, andk = t.

On the other hand, for argys; - - - s, € Z; With 5,11 = j andW,gj) =4, we have

Lof(s051 - 5m) + f(P,Ej)) = f(o(s051- - Sm)) + f(Plij))
= f(U(Sosl t SHL)P/gj)) .

Sinces,,+1 = 7, then itis clear that
o(spsy- -+ sm)P,E])i =< 0(s081" " SmSm—+1) -

Thereforeg(sgsy - - - sm)P,gj) € Z; . This leads to the other direction of the equaIZ.l). The second
set equation is shown b&](l) add = X/ — me;. O

2.2 Atomic surfaces generated by the labeled graph G*

To obtain a numerical representation¥for X; as we will see in Theorein 3.1, we introduce the new
alphabeis and the subsd$’; of the monoid5* by using the prefix automaton as follows:

5= {(1)1 10t o-n |

e B R R DR © wln) = — 1,2, —0,1,-
= {(i0) (1) (&) e 1w =i o= 120 ) N =01 .

where|U| means the length of a woid. (See Fig[ }4.)

U(infl):\ J
olin) = [in1 ] |
k,, th
0 (ins1)= | ENE
knJr] th

Fig. 4: A subword(;" ) (2”;*1 ) of aword inB3;

141
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We define a labeled grapgh* such that the set of verticesis= {1,2,--- ,d} and the set of edges is

E={0,1,--- ,|o(ip)| — 1} with the largesto (io)| for igp € A. If W,Ej) = i, that is, the lette§ occurs
in o(j) ask-th letter, then one edge from the verteto the vertexj namedk is drawn. (See Fig.|5. cf.
[CS01))

k
Fig. 5: The edgeék from the vertex to the vertexj (W,Ej> = 1)

From the definition of the labeled grag, the set3} is given by all finite paths 0(”522?) in G*

(cf. Fig@). Define the subsét;” of B::

e (1) (1) (i) <o i =i o

The setB;") is the set of all finite paths whose initial vertexiim G*.

Theorem 2.1 For any substitutiorr satisfying Assumption, the following equalities hold:

n=0 N

N . . .
X = cl.{z Linf(PI™)) | (;z) (;11) (};AV[) € B;, PINYWIN <o, N:O,l,---} .
n=0

N . . .
n in 7 1 ? % (1 i i
X, = cz.{§ Leaf(P) | (,;)) (kll) (,;V) e B;®, PIYWIN 2w, N:o,L-..}

Proof: We show

N _ _ '
i ¢ ¢ N *(1 % 7
Y, = {ZL?f(P,ﬁn N (,;;) (;;1) (k ) € B, pONI ) L, N:o,l,...} |

n=0 N
By the proof in Proposition 2}1, fofys; - - - s,,, € Z;, there exist positive integefs, ko, mo such that

£(s0s1 -+ 8m) = Lof(5081 - Smy) + f(P,EZO))

and

(i0) _ ;
Wkgo =1, 5051 Smyg S Zio .
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Forsgst -+ smy € Zi,, €t US CcONtinue the same procedure. Becdsss - - - s,,,, | IS mMonotone decreas-
ing with respect td, at last we have the following equality:

£(5051° Sm) = Lof(s051- Smo) +E(PLY)

= Lo(Lot(sos1 - m,) + £(PL)) + £(PCY)

= LYE(PI) ¢ LY (PN D) g (P

kn—1

where(j°) (j1) -+~ () € B This shows

N . _ '
n in 10 11 IN i ; ;
Y; C {ZLUf(Pén | <k0> <k1> (kN) € B, PIVWN Ly N=o,1,...} |

n=0

We obtain the converse inclusion as in the proof of Proposjtion 2.1. Thus the first equality is proved.
Analogously we prove the second one. O

From the above decomposition fifsgs; - - - s,,), we have the following corollary:
Corollary 2.1 For any substitution which satisfies Assumption, the atomic sufaissbounded.

2.3 Atomic surfaces corresponding to a substitution given by (1.1)
From now on, let us deal with the non-irreducible, Pisot, unimodular substitutigingen by [1.1):

K+1 times
—

N}

— 1
— 3
— 4
K times

5

I

In this case,

—_
o= O O
_oo o o

o oo X
coor

0 0 0 0

We see that the characteristic polynomial of the incidence maédyiis given by [1.2) and it is also the
characteristic polynomial ¢f (cf. [PARG0]). It is easy to check that the equatioh— K22 — (K + 1)z —

1 = 0 gives one real roaf and two imaginary rootg(®), 5 if K < 2, or three real rootg, 32, 3(3)
if K > 3. The five roots oft> — (K + 1)z* — Ka — 1 = 0 are denoted by; (i = 1,2,3,4,5), where
M =083 N=p52 N\ =pif K<20r\ =03, Xy =0, A3 =pif K>3, and\y, \s
are the imaginary roots af?> — = + 1 = 0. Choose any eigenvectar; associated with the eigenvalue
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A (1=1,2,3,4,5) such thatus = w7 if K <2 andus = ug. Put
v1 = 3(uz +u1), vo=q(uz—u1), vy=us, vs=35(us+uy), vs= %(’% —uy) IfK<2,
v = uq, vy = U2, vy =u3, V= 5(us+ug), vs= g (us—ug) if K>3,
and let us define the x 5 matrix V' by

=0

V = (’0171]271}37’047”5)'

The real vectory; (i = 1,2, 3,4, 5) and the real matri¥” satisfy the following relation:

0 0 0
By 0
L,V=Vv]|o 0 8 o0 o |,
0 0 0 R -\
0 0 0 S RN\

whereR[a] (resp.,S[a]) means the real (resp., imaginary) partaind

RBP] —F[p@ )
(8] ey ) i1 K<
B=Y /50 o\

The spaceP v, v,> Spanned by vectors;, v, is an invariant contractive space of the linear transforma-
tion L. More precisely, we know

Loz = (vi,v2)R <x1> ,
T2

wherex = x1v1 + 1202 € Py, v,>, 1,22 € R. We have the direct SUR® = Py, v,> ® L(v3) ®
Py, v.~. WhereP_,, ,, . is spanned by,, vs; and define the projection map: R® — Py, v,>
by

7'('(%1’01 + ZoVo + T3V3 + T4V4 + 1‘5’1}5) =x1v1 + 2202, x; ER (Z =1,2,3,4, 5)

It is easy to see that

/ !
Te; = v1;V1 + Uy V3,

whereV ! = (v};) 1<i<s -
1<5<5
By Propositiorj Z]1, in this case we obtain equations in concrete terms as stated in the following corol-
lary:

Corollary 2.2 For the substitutionr given by[(L.]L), the setSX; }i—1 2,345 given in Theorerh 2}1 satisfy
the following set equations:
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(1)

X, UX;5 if K=0
LilX - K K-—1
o O U +nLitren) U | ) (Xa+nLl;lre)UXs  if K>1,
n=0 n=0
L7'x, = X -1
o 2 = 1+(K+1)L0 mey,
L7'X; = Xy,
L7'Xy = Xs,
L7'Xs = X4+ KL 'mey,
(2)
(X7 — L;'mes) U XL if K=0
I-lx! = K K—-1
o U X1 - L7 n(e2 +nex)) U | (X — Ly w(es + nex)) UXE  if K >1,
n=0 n=0
L7'X, = Xj,
L7'X, = X3,
Ly'Xy = X,
L'X, = X}.

For the substitutiowr, the alphabeB and the grapliz* are as follows:

BZ{@G)<K1+1><§)(3>(3><%>(§)(8)} '

From the definition ofr given by ), we havé(P,Ej)) = ke foranyj € {1,2,3,4,5}. Hence itis
enough to take only the patio, k1, -- - , kn) of the edges ir(;°) (i) --- () € B*. Then the seK is
written as follows:

N
X = d {ZLWPS:’) [ Go) () () € Bz, PRYWY <w, N = 0,1»---}
n=0

N
— {Z knL'mer | t(kp) = i(kns1) in G*, N =0,1,- - } ,
n=0

wh_eret(e_) € V (resp.,i(e)) means the terminal (resp., the initial) vertex of an edgdhe condition
P,SLN)W,E;N) < win the first line of the above equality meaffs ) € B\{(;), (i), ()} by the definition

of o, but we can omit this condition for the following reason: Let us consider the(géige= (), thatis,

the path inB; is written as(;°) (;!) - -+ (;¥-!) (i) From the grapk&* in Fig.|6, the path is determined

as(;%) -+ (,..) () (), and it provides the same summatpi,_, ngf(P,gif' ) as the one for the path
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0 K

.
@V@\

Fig. 6: The graphG™

(1) -+ (4a-,) (o) (%) Therefore we can alloy;" ) = (). The other caseg ) = (¢) or (§) can be

shown analogously.
Moreover, from the labeled gragh*, the setS X, },—1 2,3.4,5 are given by

N ) ) . e
X;=d. {Z kn,Lyme; | 3\([k0:) 0_117t(kn) = ilkny) in G } .
n=0 Y )

This leads to the following corollary:
Corollary 2.3 An element in the atomic surfaéé has an infinite expansion, that is,

X = {Z knLimey | t(ky) = i(kny1) in G*} .
n=0

Example 2.1 Let us consider the case &f = 0. The substitutiom is

2

Ll
— Ot W

Q
U W N~
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By the labeled grapldé* in Fig.[6, the following admissible conditions hold for the sequence of digits

{Fn}:

X = {anL’;welH(kn)i(an)inG*}

n=0

{Z knLlmer | ky =1 = kpit = knto = knys = kppa = 0} :

n=0

3 Atiling with polygonal tiles of the plane P, ,,-
3.1 Atiling substitution 7*

In this subsection we introduce a tiling substitutichassociated witlr according to[[AIO1]. From now
on leto be a substitution given by (1.1) in Sectioh 1. Then we have the directium Py, v,> @
L(v3) & Py, v.~, and the mapr is a projection fronR® to the 2-dimensional plan® -y, v,

Lemma 3.1 The following relations hold:

Te3 + ey = Tmey, ey + Tey = Me] + Tey , Tes = Mey + mes .

Proof: We check that we can choose the veéfer1,0,1,1,0) = —e; + e3 + e4 as the vectows. Since
vy is mapped td by the projectionr, we have

—me; + mes + mey = 0.

From the fact thal, o # = 7w o L., we have the second and third equalities. O

We introduceZ-modulesF and.F* using finite integer combinations of element6fx {1,2,3, 4,5}
andZz® x {1*,2* 3* 4* 5*} as follows:

Fui= S nsd|ns € ZH{ € Z° x {1,2,3,4,5} | ng # 0} < oo ¢,
5€75%{1,2,3,4,5}

Fr= Z ned | ns € Z,7{6 € Z° x {1*,2*,3*,4* 5"} | ns # 0} < o0
SEZ5 x {1*,2% 3* 4* 5%}
. . . " . N .
From Lemm we can introduce the equivalence relation 7, (resp.,F,;) defined byd ","_ | (x, i) ~

SN (Y, ix) if Ty, = my,, for all k (resp.,Son_ (xr,i%) ~ S, (y, %) if Ty, = 7wy, for all k)
and we seff := F,/ ~ (resp.,.F* := F;/ ~). F will be used in Sectiop]|4 mainly.

To give a geometrical meaning 6f, i*), first we define the map; : 7 — Py, v,>, Which gives a
one dimensional geometric representation of the symbolic obje¢j, by

mi(x, i) = {mx+tre; |0 <t <1},
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where forS | ny (@, i) € F with ng, € Z — {0}

N N
st <an(mk,ik)> = U Wl(mk,ik).
k=1
(See Fig[T7.)

TE

;\1(0,2)

T es

Fig. 7: Representation af,(0,) (¢ = 1,2, 3,4, 5)

A set consisting of three vectofs, b, ¢} (a, b, c € R?) is called ahexa-generatoif the domain
{t1a+51b,t2a+5207t3b+53c ‘ 0 S ti S 1,0 § S; S ].,Z = 1,2,3}

is a hexagon. (See Fig| 8.)
Lemma 3.2 {req, Te3, me,} and{—me,, —mes, —we; — wes} are hexa-generators.

Proof: We show{res, mes, mes} is a hexa-generator. The other part can be shown analogously.
Forxz = (2) € R?, n(x) denotes(_xf?), that is, a normal vector at. We can calculate the co-

ordinates ofre; (i = 1,2,3,4,5) and easily check that every(w(ez)) - w(e4), n(w(es)) - 7(e3) and

n(m(es)) - 7(e2) has the same signature, where b means the inner product far, b € R?. Therefore

{mes, mes, e, } is a hexa-generator. (See Hig. 8.) O

From Lemmd 3]1 and Lemnja B.2, we can consider the map 7* — P .y, v,>, Which gives a
two-dimensional geometric representation of the symbolic oljject*), by

m(0,1%) = [m(0,2),71(0,5), 7 (e2,3)]

m(0,2%) = [m(0,1),71(0,3),m(e3,4)]

m(0,3%) = [m1(0,2),71(0,4), 71 (e, 1), 71(eq,5)]
m2(0,4%) = [m(0,3),71(0,5),71(es,2)]

m(0,5%) = [m(0,1),71(0,4), 7 (ey,3)]

mo(x,i") = me(0,i%) + 7w,
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-me;

ey

Fig. 8: Hexa-generator§mes, mes, mes } and{—me1, —mes, —me1 — mea}

where[x,y, - - - , 2] is the convex hull of the segmentsy, - - - , z and foer@V:1 ng(xg, ix*) € F* with
n, € Z — {0}
N N
T2 <an(l’k7ik*>> = U T2 (T, k") -
k=1 k=1
(See. Figl P.)

Fig. 9: Representation of0, i*), (e;,4*) andid’, U

By analogy with the definition oF7 (o) in [AI01], let us define the endomorphisnat on 7* called a
tiling substitutionassociated witlar, by

5
i)=Y Y (Lte+ LS, ) (3.1)
7=1 80w =

We remark that the sign is plus here in this definition with respect to the sign minus in Fofthula (2) in
Propositioff 2.]l. (See Remdrk 4 in Secfijn 4.)
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Remark 2
7 (z,17)
n=1

™(@,2) = (L;'®,17),
™(x,3%) = (L;lw,2*),
T (x,4") = (L;lw,S*),
T™(x,5%) = (L;lw,4*)
(See Fig[1ID.)

(0,1%)

Q

For the substitutiorr given by|[(Z.1L), the tiling substitutior* is defined explicitly by

[ (L'z+er—es,1%) + (L a, 5%)
o ZKH(L;la: +e; —nes, 1*) + Ef;l(L;lw +e4 —nes, 4*) + (L 1z, 5%)

(0,27)

<

(0,3%)

7’

(0

.

(0!

,4%)
5%)

o (7*(0,7*))

K times

Ve
4
4
4

P

/

_
7

Fig. 10: The tiling substitutionr™

97
if K=0
if K>1

Remark 3 The formula of the tiling substitution* can be found in[[AI01] under the notatiol} (o).
But the geometrical meaning 6£,i*) (i = 1,2, 3,4, 5) is different. In [AI01] we mean by, i*) a unit

)



98 Hiromi Ei and Shuniji Ito

cube of dimension four iR and a cubg z, i*) projected byr is a good prototile for the tiling oR* for

an irreducible substitution, however, for a non-irreducible substitution which we deal with now, a cube
(x,*) projected byr does not work as prototile of a tiling of the contractive spdey, v,>. In this
section we will see that the tiles (x, i*) given by Fig[ § work well.

We defineld = 2°_ (e;,i*), U’ = 30_,(0,i*) as the union of these five elements/if. (See
Fig.[9.)

Proposition 3.1 The following relations hold:
™U)DU, U DO U,

where forv, W € F*, ¥V D W means thatrz(V) D m2(W), and that there existg)’ = fo:l ng(zk,if) €
F* withn; > 0 for all 7 such thaty = W + W’; moreover,

U - T =U - U

and for any positive integet
MUY -TPUNY =U - U

Proof: From the definition of-*, we see

u+(€1—€5,1*) ZfKZO
U = K+1 K
N U+ Z(L;lw—i—el—ne5,1*)+Z(L;1w+e4—ne5,4*) if K>1
n=1 n=1
ul+(€1—€571*) ZfKZO
T*(U/) _ K+1 K
N u + Z(L;lzc—l—el—ne5,1*)+Z(L;1w+e4—ne5,4*) if K>1.
n=1 n=1
Therefore, we know*(U) — 7*(U") =U —U'. O

The replacing and re-dividing method

Observe the two domains (7*(x, i*)) and L (m2(x, i*)), then we have the following three cases (See

Fig.[10.):
(1) mo(r*(x, i) = Ly (ma(a,i%)) (i =2,5)
(2) ma(r (i) C L (mo(w,i*) (i =3,4)
(3) ma(r*(x, ")) D Lyt (ma(a,i%)) (i =1)

In the case where = 1, 3,4, each of these domains(x,:*) (i = 1, 3,4) contains at least one edge
of the formm (y, 2) and one edge of the form, (y’,5), so we introduce the following “replacing and
re-dividing” method to get the domair, (7*(z, i*)) from the domainL ;! (72 (z,i*)).
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First, we “replace” every edgk; 7 (y,2) on L ! (ma(x,i*)) (i = 1,3,4) with

K+1
m{(L; 'y, 1)+ Y (L, 'y +er —nes,5)},

n=1

what is more, in the case & > 1, replace every edge; ' (y’,5) on L 1 (ma(z,i*)) (i = 1,3,4) with

K
m{(Ly 'y 4) + ) (L' + es —nes, 5)}.
n=1

By this procedure, we have,(7*(x,*)) in the case of = 3, 4.
Secondly, we “re-divide” the domain in the caseiof= 1 (i.e. m2(7*(x,1*))). Then, we have

mo(7*(2,i*)). (See Fig[ 1f1.)

(0,1%) Ls ™1(0,5)

» Lg replacing re-dividing
—_—
Ls m(0,2)

Fig. 11: The replacing and re-dividing method for the domaip' (72 (x, 1*))

3.2 Atiling of the plane P, ,,~ generated by 7*

We construct a first quasi-periodic tiling @& 4, v,> With five polygonal prototiles generated by the
tiling substitutionT* associated te. (See Fig[ R in Sectign 1.) This tiling corresponds to the projection

of a discrete plane approximation (stepped surface) in the Pisot case. First we will see the property of
non-overlap.

Proposition 3.2 The setsro (7% ™ (U)) (resp.,m2(7* ™ (U"))) consisting of five prototiles of the form (x, i*)
(1 =1,2,3,4,5) do not overlap for any positive integet

Proof: Suppose that the pieces of(7* "(/)) do not overlap, then the pieces bf 'ms(7* (i) do

not overlap. By the replacing and re-dividing method, we obtair* "+ (U/)) from L, 1wy (7* " (U)).
Therefore, to show the piecesof(7* "**(U/)) do not overlap, it is enough to show that replaced edges
on L tmy(7* ™(U)) do not cause overlap. Froﬁ (3) in the replacing and re-dividing method, it is possible
that overlaps occur by replacing edgesmefz, 1*). We list the pairs of tiles which are just touching with
the segment (z, 2) or 7 (x, 5) onms(x, 1*), which are given by

{(mv 1*)7 (:I} - 6374*)}a {(513, 1*)3 (mv 3*)}a {(wv 1*)7 (.’13,4*)}, {(.’B, 1*)7 (:1]‘ — €y, 3*)} :

We deal with the paif (z, 1*), (x—e3, 4*)}. The edge which substitutes fbr 'y (z,2) on L, 1o (x, 1%)
is not included in the domaih ! (x, 1*), but in the adjoining domail; !7>(x — ez, 4*). Moreover,
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the edge does not cross the other edges. Thus there is no overlap by replacing edges. We see other cases
analogously. (See Fig. [12.)

In the case wherg; (x, i) (i = 2,5) in my(x, 1*) is a part of the boundary of; (7* " (U)), it is easy to
see that replacing edges do not cause overlap. O

Ty(x-e,,4)
L

) el

T,(x,3")

7tz(X-e4 ,3 >k)

Fig. 12: Four pairs includingz, 1*)

Secondly we consider the covering of the pldPey, v,> by ma(7* ™ (U)).
Proposition 3.3 USZ  mo (7 ™(U)) = P<w, v,>, thatis,m(7* " (U)) covers the plane as goes toc.

The proof of this proposition is long and not easy. So the detail of this proof is put in Sgftion 6. In the
irreducible case, we can prove the property in Propodition 3.3 by using the notion of stepped surface of a
substitutionos (cf. JAIO1]), but here we must prove it without such a notion. That is the reason why the
proof is difficult.

The following proposition is deduced from Propositjon| 3.2 and Propo$itign 3.3:

Proposition 3.4 The sets™* ™ (/) generate a tiling of the plan® .y, v,>, that is,
Trw i= {ma(x,i") | (x,3") C 7 " (U) for some n}

is atiling of Py, v,~. (See Fig| R in Sectidrj 1.)
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Finally we discuss the periodicity of the tilirfj-. Let us introduce the following notation:
G* = {(x,i*) € F* | (&,i*) C 7" (U) for some n},

thatis,7;- = {m(x, ") | (=,i*) € G}, and we also introduce the new prototiles i*) based onrz
and the tiling associated t9* defined by

(z,i*) := 7*(Lyx,") for (Lyx,i*) € G*,

G* = {(,i*) | (Lyx,i*) € G*} .

So we have the ordinary tiling,- by dividing the prototiles iG> following the method in Subsecti ‘: A
We sayG* (or 7,-) is periodicif there exists at least one non-zero peripd R® such thatx,i*) € G*
implies (x + p,*) € G*.

Lemma 3.3 If p is a non-zero period of *, thengG* also has the periog.

Proof: AssumeG* has a non-zero periopl. At first we consider the periodicity of the tiles of the form
(z,1*) in G*. Note that the onlyr*(x, 1*) in the images byr* includes a tile of the form{y, 5*),
that is, (, 1) € G* if and only if (x,5*) € G*. Supposgx,1*) € G*, then(z,5*) € G*, and so

(x + p,5*) € G* by the assumption, and finally we hage + p,1*) € G*. It means thap is also a
period for the tiles of the forniz, 1*). Now we want to observe the periodicity for the tilein except
the tiles(x, 1*). Put

D = {(y.J)€G" | (y,5) C (1) for some (x,1%) € G}

D = {(z1%) | (z,1%) € G*}.

From the above discussion we know tiahas a periogh. This means thab is closed for the translation
by p, and has trEsame peripd ThusG* — D also has a periogl by the assumption. After projection by
w2, G* — D andG* — D provide the same covering ¢y, v,> With many holes by the equality

(x,1*) = (z,(i — 1)) (i =2,3,4,5).
SoG* — Dhas a periog. ThereforeG* has a periog. m]
Theorem 3.1 The tilingZ.- is not periodic.

Proof: Suppose the tilind- is periodic, that isG* is periodic. Sinc&;* is a discrete set, there exists
a non-zero and minimum perigal of G*, where a minimum period is a period whose ndfmp || is
minimum. From Lemm:iq is also a period off*. Define the map* : G* — G* by

(i) = (Lox,i*) (i=1,2,3,4,5) .

By the definition ofG*, L*(a:,z'N*) is in G*, that is,.* is well-defined. Moreover, it is a bijection and the
inverse is given by B

Ty, i) = (L 'y, i) for (y,i%) € G~
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Hence(x, j*), (z+p, j*) € G* implies.*(z, j*) = (Lox, j*) € G*, 1" (x+p, j*) = (Lox+Lop, j*) €
G*. This meansr(L,p) is a period of the tilindZ,«. On the other hand,,, is contractive onP <y, v,>-
Therefore, it contradicts the minimality of the peripd |

Definition 3.1 A tiling 7 = {7\ | A € A, T\ is atile onP} of the spaceP is called a quasi-periodic

tiling if for any » > 0 there existskR > 0 such that any patchy = J/carca T Whose diameter is
#A <o

smaller than r occurs somewhere in a neighbourhood of radiiug any point.

Fory,§ € F*,~ = 6 denotes that there existsc Z° such that\/ v O §, whereM 5 is the translation
map given by

for chvzl nk(wk, Zk*) c F*.

Theorem 3.2 The tiling 7.~ is quasi-periodic.

Proof: Take anyr > 0. There exists a positive integé¥ such thatr* ¥ (/) = ~, for anyy € G*
satisfying the diameter of» () is smaller thanr, because the number of suefs is finite. From
7 8(e;,i*) D 7 *(e1, 1) DU foranyi = 1,2,3,4,5, putting M=N+8, we have

Mg i*) =~ (i=1,2,3,4,5).

By the definition ofG*, for any(x,i*) € G* there existy, j*) € G* such that
(x,i*) C 7" M(y,j").
Therefore, we have
UR(CC) D) 7T2(T* M(ya]*)) )

whereR = max;_1 2 345 diam.(ma(7* M (e;,1*))) andUg(x) means the neighbourhood sfwith the
radiusR. Thus,Ug(x) contains any configuration af,(y) whose diameter is smaller than O

4 Atomic surfaces given by 7" and a second tiling

In Sectiorfj]z we constructed atomic surfacésX; (i = 1,2,3,4,5) from the fixed point of a substi-

tution and the projection map. In Subsectiof 4|1 we generate the atomic surfaces by using the tiling
substitutionr*; and by the virtue of this construction, we can observe the boundaries of atomic surfaces
in Subsectiof 4]2; and in Subsectjon|4.3 we obtain a second tiling with atomic surfaces by replacing the
polygonal tiles on the first tiling@-- by atomic surfaces.
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4.1 Atomic surfaces given by 7*

Definition 4.1 Define the domain®,,, D, (resp..D,,’, D" ) as follows:

D, = m(r*™(U))
D = ma(r* "(es,4%))
L 7))
DW= m(r7™(0,4)).

Theorem 4.1 We take a renormalization of the domaibsg, Dﬁf), then

(1) the following limit sets exist in the sense of the Hausdorff metric:

X; = lim L"DY
n—oo
X! = lim L2DY

and they satisfy the relations:
j(\i = 3(\1/ + me; ) ()? ::) U?Zl j(\b = U?:lj(\; )

(2) the following inequality holds:

p(X1) p(X1)
X X
L. M('2) > 3 w(X2) :
1(X5) (X5)
moreover, the vector of volumam()?l), ,u()/(\g), e ,M()?r))) is an eigenvector of , with respect

to the maximum eigenvalyg wherey is the Lebesgue measure,

(3) the following set equations hold:

5

% = J U &-rL'eed)
=1 p .y _;
5

L'x; = | (X + L 'mE(S¢))

(4) the sets in the right side of the equation[ih (3) do not overlap up to a set of Lebesgue measure 0.

The proof of the theorem can be obtained by a quite similar way as in [Al01] following Lemma 11,
Lemma 12 and Corollary 2.
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Remark 4 We can find a relationship betweéf; and the atomic surfaceX;. By Propositio, we
have the following equation for the atomic surfacés

5
L'-x)=U U (=x)-L;'tr")).
3=1 p@ .=
This means-X; and 5(\2 (1 = 1,2,3,4,5) satisfy the same set equations. Sidgeis a contractive

transformation on the plané€” 4, v,>~ and from the uniqueness of self-affine sets (See Theorem 1 in
[MW88] for the uniqueness.), we have the following relation

-X; = X; (i=1,2,3,4,5).

Remark 5 We are interested in the disjointness of the partitiﬁs(z‘ =1,2,3,4,5) of X. From the
propertyr* 4(ey, 1*) D U, any X; is included in the right side of the equation

L74X) = U U &L=z,
J=1 pd) D) =1
thus by Theoren 4.1|(4), for any j (i # j)
p(X;NX;)=0.
This property of disjointness holds for substitutions satisfying the strong coincidence propérty in [AIO1].
4.2 Boundaries of atomic surfaces

In this subsection we will observe the boundaries of atomic surtﬁqe;’i. One of our aims here is to

obtain Propositiol, which says that the origin is an inner point of the doMairFor that we will

show that the distance between the origin point and the boundary is positive by studying the boundary.
We introduce an endomorphisfron F as follows (See Fig. 13.):

T(x,1) = (L;la:,5)
K+1
7(®,2) = (L;'®,1)— > (L;'w+ e —nes,b)
n=1
7(x,3) = (L;'z,2)
7(x,4) (L;la:, 3)
H(2.5) (L;tx,4) if K=0

(Ly'a,4) — S5 (L; 'z + ey —nes,5) if K>1
Define the boundary mapy- : F* — F as follows:

Or=(x,1") = —(x,2)+ (x,5) — (x + e2,3)

OF-(2,2") = (x,1) = (¢,3) — (x +e3,4)

O+ (x,3") = (x,2)— (x,4)+ (x+ea,1) — (x+eq4,b)
Or+(x,4%) = (x,3) — (x,5) + (x + e3,2)

OF=(x,5") —(z,1) + (z,4) + (x + e4,3) .
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T

c T, s \
s e T /
- K+ 1 times
(0,2)
T
—_—
(0,3)
T
—
(0,4)
K times

T
- —
(0,5) LT N
LG1TC1(O,5)/ -
Fig. 13: Geometrical meaning af

The following diagram is commutative:

Fr L F
8]:* l B J, 8]-"* ’
F L F

and from the definition of the mapsg , w2, we have

F* T Py v,
o | o,

!
F = P<vl,v2>

whered D denotes the boundary of the domdin
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From the two diagrams, we deduce that

O(LyDY) = O(Lyma(r""(ei")))
= Lg(@ma(r" "(e;,i")))
Lomi (7" (07 (€i,1"))) -

Let B\ denote the set of vertices &L" D).

Lemma 4.1 The sequences of se{t&(LgD,(f))} and {B,(f)} converge towards the same setragoes to
oo in the sense of the Hausdorff metric.

Proof:
Existence of the limit set o{f)(LZ;fo))};’f:l. It is enough to show that the following limit set exists:

I; = lim L}m(7"(0,7)) foranyj =1,2,3,4,5.
Put
Co = i:lrn,2?3%4,5 dH( L0-7T1 (?(O7 Z))7 T (O, Z) ),
wheredy is the Hausdorff metric. In general the following property holds:
dg(AUB,CUD) <max(dy(A,C),dg(B,D)),

for setsA, B,C, D. It is easy to check that"(x, ) does not have cancellation for agy,) and any
positive integen. Therefore we see

dH( La’ﬂ-l(?n—‘rl(O,i)), 71'1(?”(0,7;)) ) S Co -

Hence,
dg( Ly m (7711(0,4)), Lim (77(0,4) ) < cofo” , 4.1)
£ K<2
wherej, = { VB -
©T 1 max{|p®, 1))} K>3

This means the sequeng®?m (77(0,14))}52 , is a Cauchy sequence and it has a limit set in the sense of
the Hausdorff metric.

Analogously we see that the sequenR;Sé> converges.

By the construction oB,(f) and a simple approximation argument, we see these limit sets are equal.
O

Let B® (resp.,B) denote the limit selim,, . (LD ) (= limy_oe BY) (resp. limy .o (L2 Dy,)).

Lemma 4.2 u(X; NU,(x)) > 0 (i = 1,2,3,4,5) for anyx € X; and anyr > 0.
Proof: From Theorerf 4]1{3),

5
xi=U U @x-ner).
j=1 P}gn,J'):W]in,y‘):i
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By the boundedness 51\1 (See Corollarl.), forany ¢ 5(\1 and anyr > 0, there exist positive integers
n, j, k such that ‘

xe L'X, —rf(P"™) c Uy(z) .
Thus we have

—

(X N U () > (X N (LY X, — nf (P))) = p(L2X5) > 0.

Lemma 4.3 We have)X; = B® fori = 1,2,3,4,5.
Lemm says that the boundarw/ﬁfis constructed by the map Proof: We show thaf))/(\l =BM

and the other cases are shown analogously. TdB$Bec 8)/(\1, it is sufficient to seeB,(f) C 8)?1 for any
n. Let NV be the collection of tiles which consists @f;, 1*) and its neighbour tiles:

N = (e1,1%) + (e3,3%) + (e4,4™) + (e5,5%) .
By N C 7% 4(es, 1*) and Theorerh 4|13),
w(X1NX;) =0 for (e;,i*) CN,i#1.
Takez € BY, then there existée;, j*) C N, j # 1 such thate € X, andz € )?J Suppose that is
an inner point ofX;, that is, there is > 0 such that/,.(z) C X;. By z € X; and Lemm2, we have
(X5 N U () > 0,
therefore, for(e;,i*) € N
[J,(Xl N Xj) > ,U,(UT(SE) N Xj) >0,

which leads to a contradiction and it impliéébl) C 90X, for anyn.

Conversely, suppose thate 9X; C X;. Then there are sequencgs, }2° ; with x,, € LZ;D,(}) and
{y,}32, with y,, ¢ X, such thatl(z, z,) < L andd(z,y,) < + for any positive integen, whered is
the usual Euclidean distance on the pldhey, v,>. By y,, X, we have Sequencey,, ,, fo—1-

lim Ynm = Yn»

m—00

and for anym there existsM > m such thaty,, ,, ¢ L{,”DE&I). Therefore, we can choosg, , ¢
LﬁnD,S} so thatd(y,, ;. ,y,) < = andk; < ky < ---. Thus the sequendgy,, ;. }52, satisfies

2
d(yn,knjw) < d(yn,kna yn) + d(yvmm) = ﬁ )

and this meansim,, .. y,, ;, = x. On the segment between,, € ijnD,(iL) andy,, ,, & L(’jnD,(cln),

there existgy, € 8L’;'LD,(€?, andlim,,_, ¢, = @. This implies

z e lim JL5 DY = lim 9L2 DV

n—oo

andoX, c B, O
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Proposition 4.1 The origin is an inner point of(\l

Proof: By Lemmg4.B, we see

LyNO(X;) = lim Lemy (7" (9r (7" N (es,i%))) )

n—oo

for any positive integeN. This means thdb;NB()/(\i) is constructed by replacing each edgéx, j) (j =
1,2,3,4,5) ondD? with I; + @, wherel,; = lim,, .o, L7m (7"(0, 7)).
By the inequality[(4.]L), we have the following inequality

n—1
dy (Lgﬂnl(?n(oai))aﬂ-l (072>) < ZCOﬁOj <c for anyn,

J=0

wherec is some positive number. Therefore,
dp (L1, m(0,7)) = dpg ( lim L% (7(0,4)), ™1 (072')) <ec. (4.2)

n—oo

By the fact thatr,(7* ™(U{)) is covering the plané® .y, v,~ asn goes toco (See Propositioh 3.3 and
Sectior] 6.), there exists a positive integésuch that

inf {d(0,z) | € Oma(7* N (e1,1%))} > 2¢.
From the construction dE;Na()/(\l) and ), we have
inf {d(O,w) |z e L;Na()?l)} >ec.
Thus we see that for some positive number
inf{d(O,w) |z e a(ﬁ)} > >0.
This implies the origin is an inner point of . a

Proposition 4.2 The Hausdorff dimension of the limit g8iof the boundarieim,, .., (L D,,) satisfies

(dimp 0X =) dimy B < lesgg 2‘9 ,
0 00O 1
1 0 00 K+1
whereMy =10 1 0 O 0 and )y is the maximum eigenvalue of the mathify, that is, the
0 010 0
0 0 0 1 K

maximum solution of the equatiofl — Kz* — (K + 1)z — 1 = 0.
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Proof: We define the endomorphisfron the free groupc 1+1, 2+1 3+1 4+1 5+1 > associated with:

1 — 5
K+1 times

——~

2 — 157157 t...570
— 2
4 —- 3

K times

—_——~
5 — 457 1...571

We see that™(15-134712371) has no cancellation for all. Therefore, from the method df [BED86],
[DEK82], [1093], [IK91], we have this result. a

Corollary 4.1 For any K > 0 the Hausdorff dimension of B satisfies the inequality:
(dimy 0X =)dimy B < 2.

In the case oy = 0, dimy dX = 1.10026 - - - .
Proof: By Propositiorj 4., it is enough to show the inequalty< 3. We can assum& > 1. Put

fz) = 2 - Ka? —(K+1)z—1
glz) = 2% Kz — (K + 1)z — 1.

By a simple computation, one gets that

FIK+1)<0, f(K+1+ ) >0,

3K +2
K +2
2
Thismeand +1 < f < K+ 1+ ﬁ and there is some solutioxi of the equatiory(z) = 0 such
that 52 < X' < K + 1. Fromg/(K + 1) > 0 andg”(z) > 0 with z > K + 1, we know there is no
solution of the equatiop(x) = 0 with z > K + 1, thatis,\’ = Ay and% < Mg < K + 1. Using the
above two inequalities we have the conclusion. O

g( ) <0, g(K+1)>0.

4.3 A second tiling given by 7* with atomic surfaces

In Sectior{ 3 we introduce a first tilin@,- with five polygonal prototilesr,(z, i*) (i=1,2,3,4,5). Here
we consider a second tiling with five prototilés; with fractal boundary by replacing each prototile
ma(x + e;,1*) in T.» with X; + 7. Put

TT)? = {S(\i—l—mc | mo( + €;,1") € T+ } .

Theorem 4.2 The family of tiIes{X\Z— + 7z | mo(x + e;,1*) € T+ } is a quasi periodic tiling with five
prototilesX; (:=1,2,3,4,5) of the planeP .y, v,>.
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Proof: At first we show thal‘]’jf is a tiling of P .y, v,>. From Propositiol, there exists a positive
numbers such that -
U§(0) Cc X;.

Notice that for any positive integer
Ug,—ns(0) C L;"Us(0).

By Theorenj 4.11[(3)

Ug,—n5(0) C L;"X; = U U & - L7t (p™)),
G=1 plmd) (i)

where the tileg X — L;"wf(P,E"’j))) do not overlap for any, j. From
Tre = UpZoma (77 "(U)) = UpZoma (7" "(€1,17)),

the union of tiIesU?:1 Upén,j):wén,_ﬂ:l(z - L;”wf(P,i"’j))) is a part oij:‘. This means that the
pieces ofZ*X do not overlap and covdr g, —n5(0) for anyn. ThereforeZ X is a tiIing of Pov, v,> by

takingn — oo. On the other hand, from the quasi periodicity of the tiliig, 7. is also quasi periodic.
a

At the beginning of this paper, we started from the substltuhqmven by (1.1). And we obtained

atomic surface$X;}i—12345(= {— X, i }i=12,3,4,5) and the tlllngTX We also get tile§T;}i=12345
and a tilingZz by using the numeration system related to a Pisot nurfiteer in [AKI9Q], [THU89]. We

plan to make the relation betwe¢X; },—1 2345 (resp.Tff) and{T;}i=1,2.3,4,5 (resp.73) explicit with
the subdivision rule in [EIRQ2].

5 Dynamical systems

We introduce two types of measured dynamical system§’ an Markov transformation and a domain
exchange transformation withstructure.

From Theorer@ﬂB)z; € X, implies that there exist integefsk such that
L'z € X; — L;'nf(PY).
Therefore we get the division 51':
e <+
= U xv,

(ave=

(I
whereX; (k) ={x ¢ X; | Ltz € X — L'nf(P, ]))} Here we have the following theorem which
provides a Markov transformat|on
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Theorem 5.1 Let us define the map : X — X by

i

F(x)=L;'z + L, 'nf(PY) if © € )’(}(i)
then the magF' is well-defined and _
FEW) - %,
The transformatiori” is well-defined because of Theorgm|4.1L (4), and it is called a Markov transformation

with matrix structurel,, with respect to partition$X; };=1,2,3.4.5.
From now on we consider a domain exchange transformationoagtinucture.

Definition 5.1 Let(X, T, 1) be a measured dynamical systena substitution over the alphabgt such
that
o) =wg"wy? Wy

and consider a measurable partitiddX () | i € A} of X, a subsetd of X and a measurable partition
{A®) | i€ A} of A.

We say that the transformatidh haso-structure with respect to the pair of partitiofsy ()}, { A}
if T satisfies the following condition:

TAG ¢ X W) forall i€ A, k=0,1,--- 1 — 1
T AW ¢ A forallic A
X =Ujea Uogkgl(i)—l Tk A (non — overlapping)
For the transformatiorf” with o-structure, the induced transformatidr 4 on A is defined by

Tla(x) =T (x) forxe AD .

Proposition 5.1 Leto be a substitution satisfying (1.1) and put

L= (A58 150 0 187)
(1) The transformatiot,, : D,, — D,, given by
En@)=x—nf" ifxecD® (i=1,234,5)
is well-defined and preserves the Lebesgue measy®ee Figl I4.)

(2) The transformatiort’; : D1 — D; haso-structure with respect to the pair of partitior{sDy)},
{D((f’)} and the induced transformation satisfies

Eilp, = Ep .

Moreover, for any positive integ@rthe transformatiorty, : Dy — D;, haso-structure with respect
to the pair of partitions{D,(j)}, {D,(Ql} and the induced transformation satisfies

Exlp,_, = Ex-1 .
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(3) For any positive integek the transformationy, : Dy — Dy, hasc*-structure with respect to the
pair of partitions{Dif)}, {D((,Z)} and the induced transformation satisfies

Exlp, = Ep .

d g
vl | v

AN L

Fig. 14: Domain exchange transformatiofs on D;

|

E
E

The transformationg&’;, are calleddomain exchange transformatioos Dy.

Proof: From the equation
T (e, i) = Mf@ (7" ™(0,7%))

andD,, = D, by Propositionf 3J1, we see the transformatignis well-defined.
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First statement of {2) is obtained from Hig] 14. The second and third statements are proved inductively.
]

This proposition leads to the following:
Theorem 5.2 Define the transformatioft : X — X by

E(x) = x — me; wej(\i.

The transformation®, which preserves the Lebesgue meagyrées well-defined onX. AndE haso-
structure with respect to the pair of partitiofs\; }, {L,X;}, moreoverE haso™-structure with respect
to the pair of partitions{ X;}, {L"X;} forall n € N.

Proof: From Theorem 4]1{1), the transformatiéhis well-defined. From the equation given by Theo-
rem[4.1 [(B) and{4), we have

Hence,

Analogously we say

fork=0,1,---,l;-1 and

E'(L,X;) = LoX; —mf(c(i))
= L,(X;—Te;)
= Laj(\i/ .

This meanst hasco-structure with respect to the pair of partitio{&’\i}, {LJ(:-}. By induction, we can
show the second statement. O

This transformatior : X — X is also called the domain exchange transformation associated with a
substitutions. From this theorem and Proposition 4.1 we have the following corollaries:

Corollary 5.1 Fork =0,1,---, we have

E*(0) € X,

kO

Wherew = hmn—>o<> gn(l) = 3031 .. 'STL cee

From Corollary 5.]L we have the following corollary: (See Lemma 6 in [Al01] and [BFMS02].)
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Corollary 5.2 Let (Q,,.S) be the substitution dynamical system generated by a substitwtgiven by
). The dynamical systefi, E) is a realization of({,, S), and the realization map from 2, to X
is given by using(S*(s¢s; - - - )) = E¥(0) for all positive integers:.

Finally to observe ergodic property of the domain exchange transformatiare define new domains
bvn (resp.,)?) and domain exchange transformatioﬁs (resp.,E) on the domains which are measure-
theoretically isomorphic to a rotation on the 2-dimensional torus.

Since the domainry (i) is not a 2-dimensional fundamental domain, we introduce the symmetrical

image ofi/ denoted by/ and the union o/ and/ denoted by/ (cf. Fig. and Fi@G), which will be
a 2-dimensional fundamental domain as follows:

U = {(es,1*) + (e4,3") + (€4,5%) + (2€4,1%) + (€2 + €4,5)},
U = U+,
L = {m(es—e4)+n(e; +ex—2e3)| mnei},
Dy = ma(U)=DoU{—Dy+ (res + mey + mey)},
7(L) = {nz|zel}.

Then we have the following lemma:

Lemma 5.1 The domaind.}ms(7* ™ (U)) are 2-dimensional fundamental domains for the latti¢g.),
that is, L™mo(7* " (U)) = R?/L for any non negative integer. In other words, we have periodic tilings

{Lo72(y,j*) | (z,7*) C Mz(U) forsomez € L, (y,j*) C 7" *(x,*)} for any non negative integer
n.

Proof: Replace the segmefitm(es —e4) | 0 < ¢ < 1}, which is an edge of the fundamental domain
{sm(ez —e4) +im(e; +e2 —2e3) | 0 < s <1, 0<¢ < 1} for the latticer(IL), with 1 ((—eq,4) +
(—eq,2)); and the segmentir(e; + ex — 2e3) | 0 < t < 1} with m1((—es,3) + (—es,1) + (e —

2e3, 3) + (e; —2es, 2)). We replace the other sides of these edges analogously. Then we have the domain
mo(M_., (U)). Thusm, (i) is a 2-dimensional fundamental domain. By replacing every ed¢e, i) on

mo(U) With L7y (7" (2, 4) ), we can also say thdt?m, (7* ™(i/)) is a 2-dimensional fundamental domain.

(See Fig[ 1b.) O
Let us define the maﬁvo : bvo — /Dvo by

Eo(x) =« — mes (modw(L)) .

For example, the domair, (e, 1*) is mapped bevo as follows:

mo(e1,1%) 2 1 (2e4, 1) 28 mo(eq, 1%) 28 m5(0,1%).

Therefore,EJ is well-defined and measure-theoretically isomorphic to a rotation on the 2-dimensional
torus, moreover, we have
Eolp, = Eop .
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o (e1 +e, —2e3 )

=

n(e,-e,)

Fig. 15: The periodic tiling{m2 (x,i*) | (z,i*) C M.(U) for somez € L}

In Lemmg5.1 we obtained 2-dimensional fundamental domains and they were constructed by replacing
every edger; (x, i) onmy(U) with L2 (7" (x, 7)). Moreover, in the same way as in the proof of Proposi-
tion|4.1, we also obtain a new 2-dimensional fundamental domain by replacing every,g¢agée) on the
boundary of the domain®, and{—Dg + (re; + mes + wes5) } with I; + wx. Then we have the following

theorem, which says the domain exchange transformafidgs measure-theoretically isomorphic to the
induced transformation of a rotation on the 2-dimensional torus:

Te o

Fig. 16: The domaingD, and X

Theorem 5.3 The domain given by

X =X U{-X + (re, + mey + mes)}
is a 2-dimensional fundamgntal gomain.
Let us define the map : X — X by

E(x) =z —mey (modn(L)) ,
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then it is well-defined and measure-theoretically isomorphic to a rotation on the 2-dimensional torus,
moreover, we have

6 Appendix: The proof of Proposition
In this section we prove the following proposition stated in Se¢fjon 3:
Proposition 3.3 U2, ma(7* ™(U)) = P<w, v,>, thatis,m(7* ™ (U)) covers the plane as goes tox.

First we introduce the notion @f-covered property of a seéX € F* associated with the connectivity
of the domainry(A) as in [I[093]. Define the subséy of 7* andC consisting of translated elements of
Co by

CO = {(6171 ) (847 )7(617 ) (63,3*),(8272*)4-(6575*),(61,1*)+(€5,5*),(0,1*)+(62,4*),
(0,1%) +(0,3%),(0,2%) + (0,5%),(0,17) + (0,4%), (0,3%) 4 (0,5%),(0,27) + (0,47)}

C:={MzEcF*|£€Cy, z€ L)

Fig. 17: The elements of,

Definition 6.1 An elementA € F* is C-covered if there exists a finite subdét= {y;, € C | i =
1,2,---, N} of C such that

(1) forany(z,i*), (y,j*) C A, there exists a subsét,, }#_, of ' such that
(‘Eai*) C Vs1s Vst m’Yst-H 7£ @ (t = 1727 e 7k - 1)7 (yaj*) c Vs s

where fory, ' € F*, v N~' = 0 meansu(ma(vy) Nm2(y')) =0,
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(2) m2(T) = m2(A), wherems (T') = UN o (7).
The subsel is called aC-cover ofA.

Lemma 6.1 If A € F*isC-covered, them*(A) is C-covered.

Proof: It is enough and easy to check that the image of every eleméhtlnf 7 is alsoC-covered. (See

Fig.[18.) O

(el’ 1*) + (e4s 4‘<)

0,2)+ (0,5

Fig. 18: The images ofe1, 1*) + (es,4*) and(0,2%) + (0,5%) by 7*

Definition 6.2 C-coveredA € F* is called aC-covered cell ifrz(A) is a topological cell.
Lemma 6.2 For anyn, 7* ™(U) is aC-covered cell.

Proof: U is aC-covered cell. Suppose that "(U/) is aC-covered cell but-* "*1(1/) is not, that is,
Py, v,>—m(7* "1 (U)) has a bounded componelt and an unbounded compondnt. Recall that

from LemmZzeL M -, (7™ (U)) give periodic tilings. Then, there exigt,i*) and(y,j*) C

D zerL M- o (77 1)) such that
mo(x,i") C Dy andma(y,j*) C Do .

And for (z,4*), (y, j*) there exis(x’, "), (y',7'") C 3 zep, My —n (7" ™(U)) such that
(x,i*) € (2',4") and(y, 5°) C 7*(y',5"7).-
From Fig[T% we have the following properties:
(1) U, U areC-covered,
(2) if z, 2 € L (z # 2') satistyms (M (U)) No(Mz: (U)) # 0, thenM (U) + M (U) is C-covered,
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(3) if z € L (z # 0) satisfiesr, (1) N wo(Mz(U)) # 0, thenld + M (U) is C-covered.

Hence, there exists a finite sub$et {v, € C |t =1,2,--- , N} of C such that

(wl77;l*) C 7157t ﬁ’yi%l»l #@(t: 1727"' 7N_ 1)7(y/7j/*) C YN,
N T U) =0 (t=1,--- , N).

The second condition implies

On the other hand;*(T') := {7*(y+) | t = 1,2,--- , N} has the following property:

(") < 7°(n),
™) N T ) #0(E=1,-- N 1),
y,j°) < (),

andr* () is C-covered by Lemmp 6|1 for arty that is, > (x,i*) andm(y, j*) are connected by using
elements of. This providesz,{i1 7*(v¢) N 7* ") # 0, which leads to a contradiction. O

Finally we want to show that, (7* ™ (i/)) is expanding oP <, v,> asn goes tac.

Definition 6.3 An elementA € F* including 7* ™ (/) has ann-th C-belt if there exists a finite subset
'={yeC|t=1,2,--- N} ofC such that

(1) 7T2<A> D) 7T2(F),
() v N7*"(U) =0 foranyt (t =1,2,--- ,N),

(3) there existgx,i*) C A satisfying
(1:71-*) - Y1, ,ytﬂ,yt#»l 7é Q) (t = 1727"' 7N_ 1); ($7Z*) C’YN ’

(4) m2(T) is an annulus andry(I')*? O mo(7* "(U)), where A? means the bounded domain of the
complement of an annulus.

I is called ann-th C-belt of A .
Lemma 6.3 If A € F* including7* (/) has ann-th C-beltT, thent*(A) has an(n + 1)-th C-belt.

Proof: Assume thal’ = {, € C |t = 1,2,--- , N} is ann-th C-belt of A. Since the subsdt’ =

v ecCly cr*(w),t=1,---,N}of Crelated t0r A) satisfies|(lL),[([2)] (3) of Definition .3, it is
enough to show that,(I”) is an annulus and, ()" 3 mo(7* "F1(U)). Let us consider two domains
L;1me(T) and L tmo(7* ™(U)), and replace every edge on these domalns by using the replacing and re-
dividing method. Then we have,(I”) andm (7* "1 (U4)). By the property) of Definitio@]iarg(l“’

is an annulus. From the relatidiy, * 7o (I')%¢ O L 1wy (7* ™ (U)) by the assumption, we see the relation

of inclusion.
O
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Proof of Proposition 3.3.1n the case o = 0, we can take a firgt-beltI"; of 7* 8(1/) concretely. (See
Fig[I9.) In the case ok > 1, take a firsC-beltI'; as follows:

I = {yeCly> (i),
(x,i") € {(e1 —e5,1%),(eq — €5,4"),(e1 — eq,1%), (e5,4%), (e5 — €3,5"), (e1 — e3,17),
(es —e3,4"),(e1 —es —e5,1%),(e1 — ea,17), (€5 — €2,4"), (e5 — €2,3%),(e; — ea — ey4,1%),
(es —e€9,4"),(es + €5 —e1,4%),(e5,1%),(e5s — e3,17), (es + €5 — €1,3%)} }.

R=0 Ez1

Fig. 19: The figure ofre (7 #(U)) (K = 0) andma (7" °(U)) (K > 1)

From Lemma 6.37* 8" (1/) has arg(n — 1)-th C-beltT's(,_) for anyn such that
ma(r* S U) = 7 SV U)) D ma(Dgno1))-
Thus the distance of the boundary of(* ™ (i/)) from the origin tends tao; and from Lemma 6]2,

mo(7* ™(U)) is atopological cell for any. Thereforess(7* (1)) is covering the plan€” ., v,> asn
goes tooo. O
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