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Several recent papers have shown how to approximate the diffefefaze-bj| or 5 |a; — b |2 between two functions,

when the function valueg; andb; are given in a data stream, and their order is chosen by an adversary. These
algorithms use little space (much less than would be needed to store the entire stream) and little time to process
each item in the stream. They approximate with small relative error. Using different techniques, we show how to
approximate thé P-differencey; |aj — bj|P for any rational-valueg € (0, 2], with comparable efficiency and error.

We also show how to approxima}g |a; — bj| P for larger values op but with a worse error guarantee. Our results fill

in gaps left by recent work, by providing an algorithm that is precisely tunable for the application at hand.

These results can be used to assess the difference between two chronologically or physically separated massive data
sets, making one quick pass over each data set, without buffering the data or requiring the data source to pause. For
example, one can use our techniques to judge whether the traffic on two remote network routers are similar without
requiring either router to transmit a copy of its traffic. A web search engine could use such algorithms to construct

a library of small “sketches,” one for each distinct page on the web; one can approximate the extent to which new
web pages duplicate old ones by comparing the sketches of the web pages. Such techniques will become increasingly
important as the enormous scale, distributional nature, and one-pass processing requirements of data sets become
more commonplace.

1 Introduction

[Some of the following material is excerpted from [EKSV99], with the authors’ permission. Readers
familiar with [EKSY99] may skip to Sectiop1.1.]

Massive data sets are becoming more and more important in a wide range of applications, including
observational sciences, product marketing, and monitoring and operations of large systems. In network
operations, raw data typically arrive streams and decisions must be made by algorithms that make
one pass over each stream, throw much of the raw data away, and produce “synopses” or “sketches” for
further processing. Moreover, network-generated massive data sets amisgtfibnted Several different,
physically separated network elements may receive or generate data streams that, together, comprise one

TPart of this work was done while the first author was visiting AT&T Labs.
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logical data set. To be of use in operations, the streams must be analyzed locally and their synopses sent to
a central operations facility. The enormous scale, distributed nature, and one-pass processing requirement
on the data sets of interest must be addressed with new algorithmic techniques.

one-pass algorithm for approximating thé differencey;|a — bj| or L? differencﬂ (Yilai— bi|2)1/2
between two functions, when the function val@gsandb; are given as data streams, and their order is
chosen by an adversary. Here we continue that work by showing how to compate- bj|P for any
rational-valuedo € (0,2]. These algorithms fit naturally into a toolkit for Internet-traffic monitoring. For
example, Cisco routers can now be instrumented with the NetFlow feafure [CN98]. As packets travel

through the router, the NetFlow software produces summary statistics orﬁlm&Three of the fields
in the flow records are source IP-address, destination IP-address, and total number of bytes of data in the
flow. At the end of a day (or a week, or an hour, depending on what the appropriate monitoring interval
is and how much local storage is available), the router (or, more accurately, a computer that has been
“hooked up” to the router for monitoring purposes) can assemble a set of aldg)), wherex is a
source-destination pair, arfdx) is the total number of bytes sent from the source to the destination during
a time intervat. ThelLP difference between two such functions assembled during different intervals or at
different routers is a good indication of the extent to which traffic patterns differ.

Our algorithm allows the routers and a central control and storage facility to cormputiéferences
efficiently under a variety of constraints. First, a router may wantthdifference betweer; and f; ;.
The router can store a small “sketch” §f throw out all other information about, and still be able to
approximate| fy — fi1||p from the sketch of; and (a sketch offi,1.

The functionsft<i> assembled at each of several remote rouRerat timet may be sent to a central

tape-storage facilit€. As the data are written to tap@,may want to compute thieP difference between
ft<1> and ft(z), but this computation presents several challenges. First, each Ryugkould transmit its
statistical data whelR’s load is low and theR;-C paths have extra capacity; therefore, the data may
arrive atC from theR;’s in an arbitrarily interleaved manner. Also, typically, tkie for which f(x) # 0

constitute a small fraction of al's; thus,R; should only transmitx, ft<i)(x)) when ft(”(x) # 0. The set
of transmittedx’s is not predictable b. Finally, because of the huge size of these stre%rhe, central

facility will not want to buffer them in the course of writing them to tape (and cannot read from one part
of the tape while writing to another), and tellifigy to pause is not always possible. Nevertheless, our
algorithm supports approximating thé difference betweerﬁt(l) and ft(z) atC, because it requires little
workspace, requires little time to process each incoming item, and can process in one pass all the values
of both functions{(x, ft(l) (X)) FU{(x ft<2> (X))} in any permutation.

Our LP-difference algorithm achieves the following performance for ratignal(0, 2]:

: Approximating theL P difference,||(a;) — (bi)||p = (3 |a — bj |p)1/p, is computationally equivalent to approximating the easier-to-
read expressiol |a; — b;|P. We will use these interchangeably when discussing computational issues.

8 Roughly speaking, a “flow” is a semantically coherent sequence of packets sent by the source and reassembled and interpreted
at the destination. Any precise definition of “flow” would have to depend on the application(s) that the source and destination
processes were using to produce and interpret the packets. From the router’s point of view, a flow is just a set of packets with the
same source and destination IP-addresses whose arrival times at the routers are close enough, for a tunable definition of “close.”

"in 1999, a WorldNet gateway router generated more that 10Gb of NetFlow summary data each day.
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Consider two data streams of length at mstach representing the non-zero points on the
graph of an integer-valued function on a domain of sizAssume that the maximum value of
either function on this domain M. Then a one-pass streaming algorithm can compute with
probability 1— & an approximatiorA to the LP-differenceB of the two functions, such that
|A—BJ < €B, using total space and per-item processing tffng(M) log(n) Iog(l/é)/s)o<1).

The input streams may be interleaved in an arbitrary (adversarial) order.

1.1 LP-Differences for p other than 1 or 2

While theLl- andL2- differences are most commonly used, tiedifferences for othep, say thel.1->-
difference, provide additional information. In particular, there @e, (i), (&), and (b)) such that
s |a—bi| =3 |& —b/| andy |a —bi|2 =5 |/ — bf|? but ¥ |a — bj|*® andy |a — bf|*® are different. Ap
increases, the measugda; — by|P attributes more significance to a large individual differefage— by, |,
while reducing the significance of a large number of differenggs,|a; — bj| > 0}|. By showing how to
compute the_P difference for varingp, we provide an approximate difference algorithm that is precisely
tunable for the application at hand.

We also give an algorithm fgv > 2, though with an error guarantee somewhat worse than the guarantee
available for thep < 2 cases. Still, that result is a randomized algorithm with the correct mean, which is
an advantage in some situtations.

1.2 Organization

The rest of this paper is organized as follows. In Sedfjon 2, we describe precisely our model of compu-
tation and its complexity measure. We present our main technical results in Sgction 3. We discuss the
relationship of our algorithm to other recent work and present some open problems, in Section 4.

Proofs of lemmas end with[@ and other proofs and definitions terminate with a

2 Background

We describe the details of our algorithm in terms of the streaming model usedin [FKSV99]. This model
is closely related to that of [HRR98].

2.1 Model of Computation

A data streams a sequence of data iteras, 02, . ..,0, such that, on eacpassthrough the stream, the
items are read once in increasing order of their indices. We assume thegitemmse from a set of size
M, so that eaclw; has size lo§yl. In the computational model, we assume that the input is one or more
data streams. We focus on two resources—whbekspaceequired in words and thiéme to procesan
item in the stream, but disregard pre- and post-processing time.

It is immediate to adapt our algorithm to the sketch modellof TEKSV99, BCFM98]. The latter used
sketches to check whether two documents are nearly duplicates. A sketch can also be regarded as a
synopsis data structuf&sM9s].

2.2 Medians and Means of Unbiased Estimators

We now recall a general technique of randomized approximation schemes.
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Lemma 1 Let X be a real-valued random variable such that, for some[¥2E< c-varX]. Then, for
anye, 0 > 0, there exists a random variable Z such tiRaf|Z — E[X]| > €E[X]) < 8. Furthermore, Z is a
function of Qlog(1/8) /€?) independent samples of X.

Proof. LetY be the average oitge? independent copies &f. ThenE[Y] = E[X] and vafY] < e?E?[X]/8.
By the Chebychev inequality, BY — E[X]| > eE[X]) < 2] < 1 | et Z be the median of 41dg,/d)

= 82E2[ ] =
independent copies df. Then|Z — E[X]| > €E[X] iff for at least half theY’s, |Y; — E[X]| > €E[X]. Since,
for eachi, this happens only with probability/8, the Chernoff inequality implies that #Z — E[X]| >

eE[X]) < 8. O

3 The Algorithm

In this section we prove our main theorem:

Theorem 2 For rational p € (0,2], the LP- dlfference of two function&;) and (bj) can be computed in
time and spacélog(n)log(M)log(1/8)/¢)°Y, where (1) the input is a data stream of valugab;,

0 <i < n, from a set of size M, (2) one can output a random variable X suchj¥hatf| < ef with
probability at leastl — &, and (3) computation of X can be done by making a single pass over the data.

3.1 Intuition

We first give an intuitive overview of the algorithm. Our goal is to approxinate= 3 |a; — bi|P, where
the valuesy, bj € [0,M) are presented in a stream in any order, and the indaxs up ton. We are given
tolerances and maximum error probability.

The input is a stream consisting of tuples of the fgimo, 8), where 0<i <n,0<c< M, and® € {+1}.
The tuple(i, c,8) denotes the data item with valuec if 8 = +1 and indicates thdt; = cif 6 = —1. We
wish to output a random variabl& such that R{Z —L,| > €L) < &, using total space and per-item
processing time polynomial ilog(n) log(M)log(1/d)/¢).

In the next few sections, we will construct a randomized funcfigmx) such that

E [(f(r,b) - f(r,a))?] ~|b—al’. (1)

In a first reading of the algorithm below, the reader may asst@iteebe a deterministic function with
(f(b) — f(a))? = |b—al|P. The algorithm proceeds as in Figlite 1.

To see how the algorithm works, first focus on single valuekfand/. Let Z be an abbreviation for
Z, = 5;0i(f(a)— f(bi)). We separate the diagonal and off-diagonal termizab simplify,

E[zZ?] = E zo ) — f(bi)) 2+Zicioi/(f(a)—f(bi))(f(ai/)—f(by))]
il
~ E zozwa bilP+ 3 +0i0y( f(an—f(b»)(f(a«)—f(bv»] )
L i#l
= E Z|&—bi|p .
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Fig. 1: Main algorithm, intuition

Algorithm LP({(i,c,0)))

Initialize:
Fork=1toO(log(1/9)) do
For/=1t0o0O(1/¢?) do
Zkyg =0
pick sample points for
a family {g;} of n 4-wise independent1-valued random variables and
a family {ri} of n 4-wise independent random variables (described further below)
Stream processing:
For each tupléi, c,8) in the input stream do
Fork=11to0O(log(1/9)) do
For/=1t00(1/¢?) do
Zk,(; += Oiefri (C)
Report:
Output mediapavg, ZZ,.

The result follows since? = 1, E[oj] = 0, ando; andoy are independent far# i’. Similarly, varz?) <
O(E?[Z?]). We can apply Lemmf 1 and take a median of means of independent co@isooget the
desired resuly |a — bj|P.

3.2 Construction of f
3.2.1 Overview

Construction off is the main technical content of this paper. We construct a fundtidh — 7Z such that
E [(f(b)_ f(a))z} = (1+¢)|b—al’.

We put fz(x) = c(T)d(T(0), Tr(X)) (rounding appropriately from reals to integers), defining the com-
ponent functions as follows. When the choica’éé clear, we drop the subscript. We will come back to
f in the overview in the next subsection. The functifa, b) satisfies

e |d(a,b)| € O(|b—a|P/?) for all a andb,
e |d(a,b)| € Q(|b—a|P/?) for a significant fraction of andb, and

e d(c,b) —d(c,a) =d(a,b) for all c.
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The family{T;} of transformation®on the reals, with correspondiimyerse scale factorg(r) are such
that:

e the transformation is an approximate isomeisy, |a— b|P ~ c?¢?(7)|T(b) — Tr(a)|P, and,

o the distribution onp(F)d(T(a), (b)) /|b— a|P/2 is approximately constant, independentaaind
b.

Due to the above properties, our function, acting on parametangb, is tightly bounded nedb—a|P.
We compute an upper bound of

Er[(f(b)—f(@)?] = Er[P@(F)(d(Tr(0),Tr(a)) —d(Tr(0), Tr(b)))?]
= E[P@(N)(d(Tr(a), Tr(b)))?] ®)
€ O(E [¢¢*(N)[Tr(a) — Tr(D)[?])
~ O(la—blP).

Becaused(a,B)| € Q (|8 — a|P/2) for a significant fraction ofr, B (according to the distributiofo, B) =
(Tr(a), Tr(b))), the Markov inequality gives

Er [d(Tr(@), Te(b))?] > Q(ITr(@) ~ Te(b)[P).

We get the lower bound similarly as above. It follows tBaf(f(b) — f(a))?] € ©(lb—a[P).

We then show that the distribution asir)d(T;(a), Ty(b))/|b — a|P/? is approximately independent of
a andb, thusEr [(f(b) — f(a))?] ~ ¢/(1+¢€)|b—alP, for ¢’ independent of andb. By choosingc
appropriately, we can arrange tltat= 1. Finally, we address the issue of precision.

We now proceed with a detailed constructionfof

3.2.2 Construction of d

The functiond(a, b) takes the fornt(a,b) = ¥ .-, T, wherery; is a+1-valued function ofj, related to

a function described In[EKSV99]. This function is selected to fulfil the properties listed in the overview.
First, find integersu,v such that:gggjrﬂ; = p/2, and, for technical reasong—u > 17 andu > 2.
To do this, find integerst > 1 andf > 1 with p/2 = a/B (by hypothesis, a rational number). Put

v=28-11 20-1 gnduy = 28-1 _ 20-1: thys :ggglﬁg = p/2. If v—u < 17 oru = 1, then (repeatedly, if

necessary) replaceby V2 + u? and replacel by 2uv. Observe tha

log(v*+u2-2uv) _ log(v—u)
fog(v2 12 12uv) — Tog(v+u) and the new

valuev? 4 u? — 2uv= (v—u)? is greater than the old value- u. Also note tha(v+u)P?2 =v—u.
Now, we define a sequenceas a string oft-1's and—1's, as follows. Lett= lim;_.., T};) whereTy;, is
defined recursively for> 1 as

My = (+)Y(-D" 4)
Ty = TG ©®)
andTg;) denotest;) with all +1's replaced by-1's and all-1's replaced by+-1's. Note thatr;) is a prefix

of 1;,.1). For example, a graph afwith u=1 andv = 3 is given in Figurg]2 (Figurf 2 also describes sets
Sst, to be defined later).
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Let m; (differentiate this fromy;)) denote thej’th symbol oft Nowd(a,b) = 2']?’;31 T is the discrep-
ancy between-1's and—1’s in the intervalia,b). The self-similarity ofrtallows the value ofl, applied
on random transformations of the parameteandb to have the desired expected value. Note thahd
1tdepend oru andv, which, in turn, depend op. We only consider one set of values faw at a time
and drop them from the notation.

3.2.3 Adding randomness
We now define the transformatidp() and the reconstructiop(r).

Definition 3 Set
. log(v—u)
uv: integers such thafz; =p/2
g og(v+u) P/

C = min }i
t 2’ 4(v—u)

Cc; = 3u+3v
log(v—6/8) —log(v—10/8) 5/8—3/8
n = log(v+u) " v+u
Np = log(8)/log(u+v)
N2 = Ni+8czlog(M)/cine
N3 = leastpower ofu+v) such thatNz > (u+v)MN;.

These values are motivated by several subsequent proofs, particularly those for C&émmaghEead(
we state them now for clarity. Letbe (u+ V)5, wheresis chosen uniformly at random from the real
interval [N1,N>]. Letr’ be an integer chosen uniformly at random fr@@N3). PutTy(a) =ra+r’ and
put@(F) =r—P/2, n

Letd(a,b) denotep(F)d(T;(a), Tr(b)), i.e., d acting in the transformed domain, rounding the arguments
of d appropriately from reals to integers (we will specify the rounding precisely below).

3.2.4 Expectation of d(a,b)

We now prove thald(a, b)| has tight upper and lower bounds. (More precisely, we show the lower bound
for d as defined above.) This utilizes a succession of properties abaiitT;, and@(r). Some of the
following assume thav — u > 17. The constantg, y1,Y2 below may depend op,M, andeg, but are
bounded uniformly irM ande. The dependence §, 1, Y2 on p, M, ande is hard to find analytically; in
Section 43 we discuss in more detail a method for determining the gammas.



308 Jessica H. Fong and Martin Strauss

d((u+v)a, (u+v)b) = —(v—u)d(a,b). (homogeneity
For allr,alla<b < (u+v)" and allx, |d(a,b)| = |[d(a+x(u+V)",b+x(u+v)")]. (periodicity)
For somec,, |d(a,b)| < ca(b—a)P/2. (upper bounil
For somec; > 0 and some > O, F;r(\&(a, b)] > cilb—a p/z) >1. (averaged lower bound
Forsomey >0, E[|d(ab)|]] = yol(b—a)|??(1xe).
Forsomey1 >0, Er[d?(ab)] = vyi|(b—a)P(1+e). (averagd
Forsomey, >0, Er[d*ab)] = ys|(b—a)?(1+e).

Claim 4 The sequencsg;;, 1) can be obtained by starting withy;) and replacing eachr1 with 17, and
each—1 with Tgy).

Proof. Consider a top-down rather than a bottom-up recursive definition of |

Proof. [(homogeneifyand periodicity)] The homogeneity and periodicity properties are immediate from
the definition ofrtand from Clainii. |

Proof. [(Upper bounp] Next, consider the upper bound property. Note th@niogeneityimplies
infinitely often,i.e., for boundeda andb, we have

|d(a(u+Vv)%,b(u+v)®)| = (v—u)®d(ab)
= (v+u)*P2d(a,b) (6)

i (%> (b(u-+V)*—a(u+v)*)""?

Intuitively, sinced(a,b) ~ d(a/,b’) for a~ & andb ~ I, the result follows.

Formally, assume by induction that, for alandb with 0 < b—a < (u+v)", we have|d(a,b)| <
ar|b—a|P/2. Now assume thau+Vv)" <b—a< (u+Vv)"+1. Leta be the smallest multiple dfi+v) that
is at leasta and leth’ be the largest multiple dfu+v) that is at mosb. Then|d(&,b)| < g, (' —&)P/?
by homogeneity and by induction. Als@(a,b) —d(a,b/)| < 2(u+V). Thus|d(a,b)| < g, (b/ —&)P/2 +
2(u+V). Letgy 1 be the maximum ovefu+Vv)" <b—a< (u+v)"+!of |d(a,b)|/|b— a|P/?; then

Orr1 < qr+2(U+V)\b—a|_p/2
< G +2(u+V)(utv) P2 (7)
= g +2u+v)(v—u)'

Similarly,
O <Gr1+2(u+v)(v—u)~
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Fig. 2: Geometric view offt (continuous polygonal curve) far=1 andv = 3. The setsS; are indicated by
segments with vertical ticks. Each elemenggf is a pair(a, B), indicated in the diagram by two of the vertical ticks
near opposite ends of the interval labefg. The discrepancy afis relatively high over intervals with endpoints in
St

]

13)0I

S),ll%S),zl%S),aiES),4==5075=ES)76==S),7==50,8==S),9“=S),10“=S),11

Sio Sia Si2

Unwinding the recursion, we have

i1 = QG+2u+v) |[(v—u) "+ v-u Y (v—ut
< Ot2(u+v), 8)

whereq; is such thatd(a,b) < g;|b—a| P/2 for all 0 < b—a < v+u. Since, for thesa andb, we have
d(a,b) <v+uand|b—alP’? > 1, we can takey = v+ u, and so we can take = 3u+ 3v. n

Proof. [(averaged Tower boumi
The proof consists of two lemmas. We identify a Seff (a,b) values. We then show in Lemnfia 6 that
|d(a,b)| is large onSand we show in Lemmg 7 that the Stself is big. The result follows.

Definition 5 Fix u andv. We define a seb of (a,b) values as follows. For each integeandt, let Ss;
consist of the pairéa, b) such that

t(u+v)St 4 u(u+v)s < a < tu+vSTH(u+)(utv)s
tu+v)SHtH(u+v—1)u+v)sS < b < (t+1)(utv)stt
Let Sbe the (disjoint) union of alks;. |

Geometrically speaking adjusts the size of the set ahtinearly translates the range of the set. Note
that S is the singletor(u,u+v), i.e,, the endpoints of the interval of—1's (the interval of maximum
discrepancy iry)). Elements of5o are close to analogs &, = {(u,u+V)}, scaled-up (byu+v)3).
Elements of5;; are analogs of elements 8fy, translated (by(u+v)st1).

Figure[2 shows the case of= 1 andv = 3. Here,

My =+1-1-1-1 —14+14+1+1 —1+1+14+1 —14+1+1+1

The componen$; is the singletor{(9,12)}. The componen®; o is {4,5,6,7} x {13,14,15,16}. The
element(a,b) = (5,14) € S, g leads tod(5, 14) which is the sum of the 9 symbols

+1+1+1 —14+14+1+1 —1+1

It has a relatively high discrepancy.
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Lemma 6 For some constanti¢cfor each(a,b) € S, we have
d(a,b)| > c1b—alP/2.

Proof. We show the lemma faia, b) € S;0. The general result follows immediately frope[iodiCity).

One can easily show that the lower bound property is satisfiee:iD. We now assume > 0.

For eachs, we define close to maximajk such that for alla,b as defined in Definitiofi] 5 (i.e. with
uv+uS<a< (u+1)(v+uSand(v+u—1)(v+u)s < b < (v+u)st1), we haved(a,b)| > gs(b—a).
(Recallt = 0.) We will considems for s= 0, show thatjs_; — gs drops exponentially i, then bound the
sum of|gs_1 — gs|.- We consider two cases, depending on whether ourot/2.

u \'

First, suppose: < v/2. Note thatyy) = +1+1---+1-1-1...—1. If s=0, we havea = u and
b = v+ u. The discrepancy(a, b) consists of the sum afcopies of—1, so|d(a,b)| =v=b—a, and we
wantv > gov”/2. Sincev > vP/2, we can putyp = 1.

Considers> 1. Suppose, b are such thati(v+u)®* <a< (u+1)(v+u)®*and(v+u—1)(v+u)*<b <
(v+u)StL. Defined to be the greatest multiple ¢¥ -+ u) that is at mosa and definey’ to be the smallest
multiple of (v+ u) that is at leasb.

Using the homogeneity property and induction,

A b)) = <v—u>]d( o)

v+u'v+u
b —a\ P2
& av-u (g ) 1)
q$ﬁ1(b/ o a/)p/z
ds-1(b—a)P2.

v

AVANAY,

It follows that
|d(a,b)| > gs_1(b—a)P2—2v.

Therefore we want to defirg such thatd(a, b)| > gs_1(b—a)??—2v > gs(b—a)P/?, i.e., such that
Os < Gs-1—2v(b—2) P2 (12)

Note thatv—u > 17 implies(v—2) > 3! andu < v/2 implies 2v—u) > v. Also, note thab—a >

(v—2)(u+v)s. We have

Os_1— 2V((V—2)(v+u)®)P/2

Os—1—2v((v+ u)S“/Z)*p/2

Os_1 — 4v(v—u)~ D) (13)

Os.1—8(v—u)(v—u)~ D

Os-1—8(v—u)~s.

Thus it suffices to makes < gs_1 — 8(v—u) 5, for s> 1. Since

8 s;(v— uyS< 85;1T5 =1/2,

Os_1—2v(b—a)~P/?

Y

Y

ARV
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we can make alfis=qo—1/2=1/2.
Now, assumeu > v/2. Whens =0, so thata = u andb = v+ u, thend(a,b) = —v and we need
|d(a,b)| > govP/2. Since

Voo v
W2 T (vru)p/2
v
We can putjo = ;-
Now considers > 1 whenu > v/2. As in (I2), we want to defings such that
Os < Gs_1 — 2v(b—a) P/2,
Sinceb—a > (v—2)(v+u)$ > 1/2(v+u)st, we have
(b_ a)*p/z < 2p/2(v+ u)*(p/2>(s+1> < 2(\/_ u)f(S‘H-)_
Thus
Os_1—2v(b—a) P2 > qs_1 — 4v(v—u)~ ),
and it suffices to make
Os < Gs_1 — 4v(v—u)~ (5D,
Unwinding the recursion, this becomes
Os<qo—4vy (v—u)~s
2,
We get
qo— 4VSZQ(vf u-s = vau - 4VS;(vf uys
_ v oo 4v 1
 v—u (v—u)2l-1/(v—u)
Y 4 1
= 1— 1
v—u( (v—u)l—l/(v—u)) (16)
\Y; 4
= 1—
v—u ( V—u— 1)
S 3v
— 4v—u)’
using the fact that — u > 17 in the last line. It suffices to pag = 4(V—3Xu).
We can make; in (pveraged lower bour])dae the minimum of 12 and4(v—3fu). O

We now return to the proof ofveraged Tower bourdy showing that has positive probability.




312 Jessica H. Fong and Martin Strauss

Lemma 7 Let ab < M be arbitrary. Then for any v there exists) > 0 such thatPr((Tr(a), Tr(b)) €
S) >n.

Proof.

With probability 129V 6{59(\/'1%)" 198 we have

log(v—10/8) < log(r(b—a)) mod logv+u) < log(v—6/8),

i.e., for some integes,

(v—10/8)(u+Vv)*<r(b—a) < (v—6/8)(u+V)>. (17)
Find the integet with t(u+4v)S*! <ra+r’ < (t4 1)(u+v)$1. With probability 5/§+3/8,
t(U+Vv)S 1 (uU+3/8)(u+Vv)S<ra+r' <t(u+Vv)> + (u+5/8)(U+V)S. (18)

If both (I7) and [8) hold, then the following also holds:
t(U+Vv)S + (VvHu—7/8)(U+V)S < rb 41’ < t(u+ V) 4 (v u—1/8)(u+v)S.
It follows that

{ t(u+Vv)ST 4 (u43/8)(u+v)S

( t(u+v)St 4 (u+5/8)(u+v)s
t(u+Vv)S+ (v+u—7/8)(u+v)s
)

t(u+Vv)S+ (Vv+u—1/8)(u+Vv)S,

ra+r’

<
< rb+r’

<
- (19)
whence(T(a), Tr(b)) € S5t C S, with positive probability. IfN; > log(8)/log(u+ V), then(u+v)3/8 > 1.
It follows that (Tr(a) £ 1, Tr(b) £ 1) € S;¢ C Swith positive probability. (Thet1's allow us to round()
to a nearby integer in an arbitrary way.) |

Let n > O denote the probability thaa +r" andrb +r’ are as above. (This concludes the proof of
(Bveraged Tower bour)d |

Proof. [(averagy]

We showE [d(al, bl)} ~Yo(b1 — al)p/z. The other conditions are similar.
From property pper boung, we conclude that

E [d(ab bl)] <cy(b1—a1) P2, (20)

Similarly, from property fiveraged Tower bourjcand the Markov inequality, we conclude

E [6(a1,b1)] >ncy(by — al)p/z. (22)

Equationg 20 and 21 indicate that some multipl&af(a, b)] gives ac,/ (¢ )-factor approximation to
|b—a|P/2. The equations leave open the possibility, however, that

E [|d(az,b1)|] = nca(by —a1)??

while .
E [|d(az,b2)|] = ca(bz —a)P/?,
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wherecy/(ncy) > (1+¢). If that were the case, no multiple Bf[|d(a, by)|] would be a(1+ €)-factor
approximation. Fortunately, as we show(Jat €)-approximationdoesresult from our algorithm. Our
proof proceeds by showing that

|0T(a1,b1)| |CI(82,b2)|
|by —ay|P/2 and by — ap|P/2

have approximately the same distribution. It follows that these distributions have approximately the same
expectancyyp, whence it follows that, for this universg,

E [|d(a,b)|] ~ yo(b—a)P/2

for all aandb. A
Note that, ifa = b, thend(a,b) = d(a,b) = |b—a| P/2 = 0, identically. Thus, in approximating; |b; —

ai|P by y;d(a;, b;), we may restrict attention only fcsuch thaty # b;.

Definition 8 Therandomized rounding [x], of a real numbex by a (random) reap < [0,1] is defined
by
X], X>p+|x
o= [ X204

otherwise

Note thatE([x]p) = x.

Lemma 9 For any real numbers & b, the distribution onb — al, is the same as the distribution on
[b}p/ — [a]p/.

Note that it isnotthe case that, for all, b, p, [b—a], = [b]p — [alp.

Proof. (Tedious, straightforward, omitted.) Note that the expected valufis-oé], and(b]y — [a]y are
the same. One can show that these random variables take on the same two|bategsand [b—a].
The result follows. O

We now clarify the definition ofl and indicate how to do rounding.
Definition 10 Let¥ = (r,r’,p). Defined(F,a,b) by r—P/2d([ra]p + I, [rb]o + ). [

Lemma 11 For all a < b and for all i€ [M(u+v)Nt, (u+v)N2], the probabilityPr, ,([rb], — [ra], = i)
does not depend on a or b.

Proof. By Lemma[P, for each fixed Pry([rb]p — [ra]p, =1) = Pry([r(b—a)]p =1). It follows that

Pr(lrblp — [ralp =) = Pr(Ir(b—a)lp =1).
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Next, for each fixeg,

Pr(r(b—a)jp=i) = Pr(i-1+p<r(b—a)<i+p)
i-1+p i+p
= < _
Fr’r(log( b a )_Iog(r)<log<ba>) (22)
_ i+p
- Iog(i—1+p>'
Thus
Pr([iblp — ralp = 1) = Pr([r(b—a)lp =) = [ Tog (1P )a
ol PP T T p=U= J 09Ty )
and, in any case, this probability does not depend onb. ]

Note that ifi € [M(u+Vv)Nt, (u+v)N2], then P([rb], — [ra], = i) > 0.

Lemma 12 For all distinct a and b, the probabilitfr ([rb], — [ra]p & [M(u+ V)™, (u+v)Ne]) is at most
210g(M) /(N2 — Ny).
Proof. Immediate from the definition afand the factthat& b—a <M. O

PutN, — Ny = 8czlog(M)/(cing). Then Perb, — [ralp & [M(u+ V)N, (u+v)N2]) < cine/(4cy).

Lemma 13 For i € [M(u+v)™, (u+v)N2], given thatirb], — [ra], = i, the conditional expectation of

d(r,a.b)| _ |@(r)d([ra]p + 1, [rb]p +1)|
lb—a|p/2 lb—a|p/2

is independent of a and b.

Proof. Follows from periodicity), using the fact that > 2. O

We return to the proof offveragp. Fix ap, by, a1, by, such thak [d(F, a,b)/|b—a|P/?] is minimized at
(a,b) = (a1,b1) and maximized afaz,by). Write

[(rab/|b a|P/2} ZE[ (T,a,b)/[b—a["2|[rb], ra}pq} Pr([rb], — [ralp = ).
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Using Lemmag$ 1112, aijd]13, we have

E [oT(r’, a2.bp) /|bs — a2|P/2} _E [&(F’, a,by)/|bs — a1|p/2}

= 3 Pr([rbzlp — [razlp =) E [d(F, a2, bp) |[rb2]p — [raz]p = i] /|az — bz |2

— S Pr([rbip — [ras]p = i) E [d(F, a1, by)|[rbalp — [rau]p = i] /]as — by [P/

= % Pr([rba]p — [razlp = i) (E dr az,b;) H_rlt);]ﬁ/_z ez =1
€M U+ (u+v)N2) 22 23)
~ E[d(7,a1,b1)|[rba]p — [ras]p = ]
|ag — by |P/2

+ Pr([rbalp — [razlp = i) + Pr([rb]p — [razlp = i))

ig{[M(u+v)Zl,(u+v)N2]
' E [d\(?, a27b2)][rb2]p — [raz]p = i} n E [Cf(?, al,bl)‘[l’b]_]p — [ral]p = i]
lag — bp|P/2 lag — by |P/2

< 2mrax&(?, az,by) /|ag — by|P/? (Pr([rbalp — [razlp =1i) +Pr([rby]p — [ras]p = 1))

i¢[M(u+v)Zl,(u+v)N2]
< 2c- (c1ng/(4c2))

< €& [d(r,ar,by)/|bs ~a1]P?].

It follows that

E [&(r, az,bz)/|b2_a2\p/2] = (1+¢)E [d“(r, ag,by)/|oy —ay|P/?|, (24)

so that foryp equal to the (approximate) common val{ig (24), foiaall,
E [d(F,a,b)] = yolb—aP2(1+¢). (25)
|

3.2.5 Precision

Last, we look at the precision needed to implement our solution. Alroaadp were specified as real
numbers, but, in practice, they are limited-precision floating point numbers.drei denote the floating
point equivalents of andp.
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Note that the proofs oflipper boungland Lemmd]6 hold for any and anyp. The proof of Lemmd]7
works providedfa]s = ra+1 and[fb]s = rb=+1; thisis the case if = r < O(1/M), i.e,, if f hasO(log(M))
bits of precision to the right of the radix point.

The proof of requires that Prb1], — [rai]p = i) be close to P{[fb1]5 — [fai]p =1i), in sev-
eral places—in Lemm@TL1, in(23) directly, and [n](23) buried in the conditional expectation (in the
numerator and denominator). It is tedious but straightforward to check that the required number of bits of
precision to the right of the radix point is within the overall space bound claimed. To get an approximation
of Pr([fby]s — [fai]p =) to within some erro, one needs to maintamandr(b— a) to within Z, i.e,,
maintainr to within /M. This requires logM) +log(1/) bits of precision to the right of the radix point.
The total error in the sum of terms may be times as much, so we need to maintaito within Q(d/n)
andr to within Q(8/(Mn)). This require$(log(M) +log(n) +log(1/d)) bits of precision to the right of
the radix point. Analysis of the expectancy [n](23) is slightly more involved, but similar.

A completely analogous argument shows thatkfer2, 4, E[d¥(a, b)] /|b—a|*P/2 is the same, up to the
factor (1+¢), for all values ofa andb.

3.3 Top Level Algorithm, Correctness

We now revisit the overall algorithm in detail, thereby proving Theofem 2.
Proof. (of Theoreni2)

Put
f(x) =y, /d(0.). (26)
Then
E[(f(b)— f(a))z] =(b—a)P(1+¢), (27)
and, similarly,
E[(f(b)—f(a)*] = Z(b—a)®(1+e). (28)
vi
Thus
var((f(b) - f(a))?) < O(E*[(f(a) - f(b))?]) (29)
and, similarly,
var((f(a) - f(b))*) < O(E2 [(f(a) — f(b))"]). (30)

Choose families of 4-wise independent random varialtes {r{}, and{p;} such that eacln,r’ is
distributed as in Definitiof] 3 ang is uniformly distributed in[0,1]. Also choose a 4-wise independent
family {o;} of +1-valued random variables. The 4-wise independence is needed below toZfhiied
to bound vafZz?).

Each parallel repetition of the algorithm compufes: 3;0i(f (&) — f(b;)). Then

E[Z%) = Yof(fa)—f()*+ Y oiov(f(a)— f(b))(f(ay)— f(br)
[ il

Y |bi—a|P(1+e). (31)

Here we used the fact thaf = 1 andE[ojo;/] = 0 fori # i
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Similarly,
E[ZY] = Yoi(f(a)—f(b))*+6 ofof(f(a)— f(bi))*(f(ar)—f(by))?
| i
- (AZ|bi—a|2p+B(Z|bi—ai|p)2>(1is), (32)

whereA and B are nonzero constants. Thus (&) < O(E2[Z?]), and we can apply Lemmia 1. We
conclude that

Pr(|X—Z|a4—bi|p\ >y |ai—hilP) <8,

whereX is a median of means of independent copieg%of

3.4 Algorithm in the Sketch Model

We can apply this algorithm to the sketching model, also. Perffiog(1/d)/e?) parallel repetitions of
the following. Given one functioria;), construct the small sketch; o; f(a). Later, given two sketches
A=73;0if(a) andB = 5;0if(b), one can reconstruct |a; — bi|P by outputting a median of means of
independent copies GA — B|2. |

3.5 Cost

We first consider the space. The algorithm needs to store seeds for families of random variables and
values of theZ's. Each family is of sizen, so requires spad@(logn) times the number of bits in a single
random variable[JAS92]. The variablesandr’ each requirgd(log(M)/¢) bits to the left of the radix
point. We need(log(1/d)/e?) parallel repetitions of the random variables, so the total space for random
variables iglog(M)log(n)log(1/d)/€)°Y). The counterg are bounded bi°1/¢), so they also require
comparable space.

In [EKSV99], the authors show that, ftd = 2, any randomized algorithm that approximayes; — b
to within the factor(1+¢€) uses more thaw(log® (n) /e ~#) space, for any (large) and any (smallp > 0.
A similar argument applies here, too. Thus the space used by our algorithm is within a constant power of
optimal.

We now consider the time to process an item in the stream. To prdices8), the algorithm first
produces values for the random variables, which is quick. The algorithm then needs to cgrf;ryﬂﬁ

whereC < cMP(/8) From the recursive structure of it is clear that this computation requires time at
most lod®¥ (cM)Y/¢, i.e., polynomial in the size ofi, c,8).
3.6 Top Level Algorithm, 2<p<4

We can also approximatg; |a; — b;|P for p € [2,4], though with worse error. The algorithm should use
8-wise independent random variables instead of 4-wise independent random variablesp Gi\&4],
use ) to approximatay; |bi —ai|P+ B (3 |bi — & p/z)Z_ This approximation will have small relative
error,i.e., error small compared with the larger ter(mi |bi — & |p/2)2. Next, approximat&; |bj — & |P/2

and solve fory; |a; — bj|P, getting error that is small compared witfi; [b; — a \9/2)2. Thus we cannot, by
this method, approximatg; |a; — bi|P with small relative error, fop > 2.
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We now analyze this error guarantee compared with error guarantees of related work. In previous
work, there are three types of error guarantees given. In typical sampling arguments, using resources
(log(n)log(M) /€)%, an error is produced which is bounded sryor eveneMn. The techniques of
[BCEM98] can be used to approxima¥da; — bj| whena;, by € {0,1}. In this case, the error is bounded
by €5 |a + bij|—already a substantial improvement over ernrand the best possible in the original
context of [BCEMY8]. Relative error.e., error smaller thai times the returned value, is better still, and
is achievable fop € (0,2]. Our error guarantee fqr> 2 falls between relative error ai@(y |a +bi|). In
particular, our error in approximatirig|a; — bj|P is small compared withiy |a — by IP), so our error gets
small as the returned valge|a; — b |P gets small—this is not true for an error bound of, sdy)a; + bi|P
orey |a+bi.

Since

2
Y la—bilP2 <y la—bilP < (3 la—bI"2)", (33)

one could also approximatg|a — bi|P by (Z lay — bi\p/z)s/z. This will be correct to within the factor
(3]ai— bi\p/z)l/z. Note that our algorithm is an unbiased estimaia@r, it has the correct mean—an

advantage in some contexts; this is not truépfa; —by |P/2)3/2. Furthermore, our algorithm provides a
smooth trade-off between guaranteed error and cost, which is not directly possible with the trivial solution.
We hope that, in some applications, our approximatiop fa — bj|P provides information not contained
iny |a — by /2,

We conjecture that one can approxim&tgs; — b;|P for any p this way. To do this, one needs to show
thatE[Z2.P/2]] is a polynomial iny |a; —bi|P, S [a —bi|P/2,.. ., in which s |a; — bj|P appears with nonzero
coefficient. The algorithm may be quite expensivein

4 Discussion
4.1 Relationship with Previous Work

We give an approximation algorithm for, among other capes,1 andp = 2. Thep =1 case was first
solved in [EKSV99], using different techniques. Our algorithm is less efficient in time and space, though
by no more than a power. The cgse- 2 was first solved iNfAMS96, AGMS99], and it is easily seen that
our algorithm for the casp = 2 coincides with the algorithm of [AMS96, AGMS99].

Our algorithm is similar to[AMS96, EKSV99] at the top level, using the strategy proposed by [AMS96].

4.2 Random-Self-Reducibility

Our proof technigue can be regarded as exploitation of a random-self-redticfion [F93| 8fdifference.
Roughly, a functiorf (x) is random-self-reducible vig, @) if, for randomr, f(x) = ¢(r, f (o(r,x))), where
the distributiono(-,x) does not depend an That is, to computd (x), one can transform to a random
y = o(r,x), computef (y), then transfornt (y) back tof (x) = @(r, f(y)). If one can show that a function
f is random-self-reducible then one can show

e The functionf is hard on average (with respectddif it is hard in worse case. Average-case hard
functions are useful in cryptography.
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e A programP that is guaranteed to computeorrectly only on 34 of the inputs toc can be made to
computef correctly, with high probability, on all inputs. That iB,has a self-corrector. (On input
x, repeatedly ru? ona(r, x) (using independents), then output the majority afp(r, P(a(r,x)))).)

e If Alice hasx and Bob can computé(), then Alice can get Bob to computigx) without Bob
learningx. (Alice gives Boba(r,x), which is uncorrelated witk. She receives$(a(r,x)) and then

computesy(r, f(o(r,x))).)

In [ES9T], the authors generalized existing notions of random-self-reducibility to include transforma-
tionso that are slightly correlated witky but the correlation is tightly bounded. They called such random-
self-reductions “leaky.”

Our construction involves producing a form of self-corrector for programs for a fundtfpihat have
a sort of leaky random-self-reduction. The functioh of two streams is random-self-reducible in the
sense that

lay — bi|P = rip (raj+r') — (rbj +r) p,
where the distributiorfra; +r’, rb; +r’) is only weakly dependent of@&;,b;). We present a deterministic
function, d(a,b), that produces a result guaranteed to be correct only up to a large constant factor and
only on a setSthat is small but has non-negligible probability from that, we produce the function,
r—P/2d(T;(a), T; (b)), that produces a correct result with high probability, on all inputs.

It is easiest to present our current work without invoking random-self-reducibility machinery. We hope
to investigate further the random-self-reducibility issues for massive data streams, for sketches, and for
real-valued functions. A theory of random-self-reducibility for streams may make it easier to produce
streaming algorithms, to give performance guarantees for heuristics thought to work in many cases, and
to characterize functions that have or do not have efficient streaming algorithms.

4.3 Determination of Constants

Our functionf involves some constant such tha€|[(f(a) — f(b))?] ~ c|b—a|P, but we do not explicitly
provide the constartt This needs to be investigated further. We give a few comments here.

One can approximateusing a randomized experiment. Due to our fairly tight upper and lower bounds
for ¢, we can, using Lemmd 1, estimateeliably as|<f(a, b)|-|b— al~P/2. At worst, this occurs once for
eachp,M, n, andg; it is not necessary to do this once for each item or even once for each stream. Further-
more, one can fix generously larlyeandn and generously smadlto avoid repeating the estimation of
for changes in these values.

In some practical cases, not knowiagnay not be a drawback. In practice, aslin [BCEM98], one may
use the measurg|a — bj|P to quantify the difference between two web pages, wheigthe number of
occurrences of featuién pageA andb; is the number of occurrences of featuiie pageB. For example,
one may want to keep a list of non-duplicate web pages, where two web pages that are close enough may
be deemed to be duplicates. According to this model, there are sociological empirical coostadts ~
p such that web pages withy Ja — bi|P < 1 are considered to be duplicates. To apply this model, one
must estimate the parameterarid g’ by doing sociological experiments,g, by asking human subjects
whether they think pairs of webpages, with varying measuresd# ™ b |P for various values o and
p, are or are not duplicates. If one does not kmgvene can simply estimate/C at once by a single
sociological experiment.
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4.4 Non-grouped Input Representation

Often, in practice, one wants to compaag and(b;) when the values; andb; are represented differently.

For example, suppose there are two grocery stéxemdB, that sell the same type of items. Each time
either store sells an item it sends a record of this to headquarters in an ongoing stream. Suppose item
sellsa times in storeA andb; times in storeB. Then headquarters is presented with two streaasd

B, such that appearsy times inA andb; times inB; ¥ |a; — bj|P measures the extent to which sales differ

in the two stores. Unfortunately, we don’t see how to apply our algorithm in this situation. Apparently, in
order to use our algorithm, each store would have to aggregate sales data andgp@dgntather than
preseng; or b; non-grouped occurrencesiofThe algorithm of [AMS96[ AGMS99] solves the= 2 case

in the non-grouped case, but the problem for ofhéximportant and remains open.

We have recently learned of a solution the non-grouped proliiemn [I00]. Note that, in general, a solution
Ain the non-grouped representation yields a solution in the function-value representation, since, on input
a;, an algorithm can simulat& on g occurrences of;, this simulation takes time exponential in the size
of g to process. The proposed solution, however, appears to be of efficiency comparable to ours in
the function-value representation, at least in theory, but there may be implementation-related reasons to
prefer our algorithm in the grouped case.
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