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Several recent papers have shown how to approximate the difference∑i |ai−bi | or ∑ |ai−bi |2 between two functions,
when the function valuesai and bi are given in a data stream, and their order is chosen by an adversary. These
algorithms use little space (much less than would be needed to store the entire stream) and little time to process
each item in the stream. They approximate with small relative error. Using different techniques, we show how to
approximate theLp-difference∑i |ai −bi |p for any rational-valuedp∈ (0,2], with comparable efficiency and error.
We also show how to approximate∑i |ai−bi |p for larger values ofp but with a worse error guarantee. Our results fill
in gaps left by recent work, by providing an algorithm that is precisely tunable for the application at hand.

These results can be used to assess the difference between two chronologically or physically separated massive data
sets, making one quick pass over each data set, without buffering the data or requiring the data source to pause. For
example, one can use our techniques to judge whether the traffic on two remote network routers are similar without
requiring either router to transmit a copy of its traffic. A web search engine could use such algorithms to construct
a library of small “sketches,” one for each distinct page on the web; one can approximate the extent to which new
web pages duplicate old ones by comparing the sketches of the web pages. Such techniques will become increasingly
important as the enormous scale, distributional nature, and one-pass processing requirements of data sets become
more commonplace.

1 Introduction
[Some of the following material is excerpted from [FKSV99], with the authors’ permission. Readers
familiar with [FKSV99] may skip to Section 1.1.]

Massive data sets are becoming more and more important in a wide range of applications, including
observational sciences, product marketing, and monitoring and operations of large systems. In network
operations, raw data typically arrive instreams, and decisions must be made by algorithms that make
one pass over each stream, throw much of the raw data away, and produce “synopses” or “sketches” for
further processing. Moreover, network-generated massive data sets are oftendistributed. Several different,
physically separated network elements may receive or generate data streams that, together, comprise one
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logical data set. To be of use in operations, the streams must be analyzed locally and their synopses sent to
a central operations facility. The enormous scale, distributed nature, and one-pass processing requirement
on the data sets of interest must be addressed with new algorithmic techniques.

In [AMS96, KOR98, AGMS99, FKSV99], the authors presented a new technique: a space-efficient,

one-pass algorithm for approximating theL1 difference∑i |ai − bi | or L2 difference
‡ (

∑i |ai−bi |2
)1/2

between two functions, when the function valuesai andbi are given as data streams, and their order is
chosen by an adversary. Here we continue that work by showing how to compute∑i |ai − bi |p for any
rational-valuedp∈ (0,2]. These algorithms fit naturally into a toolkit for Internet-traffic monitoring. For
example, Cisco routers can now be instrumented with the NetFlow feature [CN98]. As packets travel

through the router, the NetFlow software produces summary statistics on eachflow.
§

Three of the fields
in the flow records are source IP-address, destination IP-address, and total number of bytes of data in the
flow. At the end of a day (or a week, or an hour, depending on what the appropriate monitoring interval
is and how much local storage is available), the router (or, more accurately, a computer that has been
“hooked up” to the router for monitoring purposes) can assemble a set of values(x, ft(x)), wherex is a
source-destination pair, andft(x) is the total number of bytes sent from the source to the destination during
a time intervalt. TheLp difference between two such functions assembled during different intervals or at
different routers is a good indication of the extent to which traffic patterns differ.

Our algorithm allows the routers and a central control and storage facility to computeLp differences
efficiently under a variety of constraints. First, a router may want theLp difference betweenft and ft+1.
The router can store a small “sketch” offt , throw out all other information aboutft , and still be able to
approximate‖ ft − ft+1‖p from the sketch offt and (a sketch of)ft+1.

The functionsf (i)
t assembled at each of several remote routersRi at time t may be sent to a central

tape-storage facilityC. As the data are written to tape,C may want to compute theLp difference between

f (1)
t and f (2)

t , but this computation presents several challenges. First, each routerRi should transmit its
statistical data whenRi ’s load is low and theRi-C paths have extra capacity; therefore, the data may
arrive atC from theRi ’s in an arbitrarily interleaved manner. Also, typically, thex’s for which f (x) 6= 0

constitute a small fraction of allx’s; thus,Ri should only transmit(x, f (i)
t (x)) when f (i)

t (x) 6= 0. The set

of transmittedx’s is not predictable byC. Finally, because of the huge size of these streams,
¶

the central
facility will not want to buffer them in the course of writing them to tape (and cannot read from one part
of the tape while writing to another), and tellingRi to pause is not always possible. Nevertheless, our

algorithm supports approximating theLp difference betweenf (1)
t and f (2)

t atC, because it requires little
workspace, requires little time to process each incoming item, and can process in one pass all the values

of both functions{(x, f (1)
t (x))}∪{(x, f (2)

t (x))} in any permutation.
OurLp-difference algorithm achieves the following performance for rationalp∈ (0,2]:

‡
Approximating theLp difference,‖〈ai〉−〈bi〉‖p = (∑ |ai −bi |p)1/p, is computationally equivalent to approximating the easier-to-
read expression∑ |ai −bi |p. We will use these interchangeably when discussing computational issues.

§
Roughly speaking, a “flow” is a semantically coherent sequence of packets sent by the source and reassembled and interpreted
at the destination. Any precise definition of “flow” would have to depend on the application(s) that the source and destination
processes were using to produce and interpret the packets. From the router’s point of view, a flow is just a set of packets with the
same source and destination IP-addresses whose arrival times at the routers are close enough, for a tunable definition of “close.”

¶
In 1999, a WorldNet gateway router generated more that 10Gb of NetFlow summary data each day.
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Consider two data streams of length at mostn, each representing the non-zero points on the
graph of an integer-valued function on a domain of sizen. Assume that the maximum value of
either function on this domain isM. Then a one-pass streaming algorithm can compute with
probability 1− δ an approximationA to theLp-differenceB of the two functions, such that
|A−B| ≤ εB, using total space and per-item processing time(log(M) log(n) log(1/δ)/ε)O(1).
The input streams may be interleaved in an arbitrary (adversarial) order.

1.1 Lp-Differences for p other than 1 or 2

While theL1- andL2- differences are most commonly used, theLp-differences for otherp, say theL1.5-
difference, provide additional information. In particular, there are〈ai〉, 〈bi〉, 〈a′i〉, and 〈b′i〉 such that
∑ |ai−bi |= ∑ |a′i−b′i | and∑ |ai−bi |2 = ∑ |a′i−b′i |2 but∑ |ai−bi |1.5 and∑ |a′i−b′i |1.5 are different. Asp
increases, the measure∑ |ai −bi |p attributes more significance to a large individual difference|ai0−bi0|,
while reducing the significance of a large number of differences,|{i : |ai −bi |> 0}|. By showing how to
compute theLp difference for varingp, we provide an approximate difference algorithm that is precisely
tunable for the application at hand.

We also give an algorithm forp> 2, though with an error guarantee somewhat worse than the guarantee
available for thep≤ 2 cases. Still, that result is a randomized algorithm with the correct mean, which is
an advantage in some situtations.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we describe precisely our model of compu-
tation and its complexity measure. We present our main technical results in Section 3. We discuss the
relationship of our algorithm to other recent work and present some open problems, in Section 4.

Proofs of lemmas end with a� and other proofs and definitions terminate with a.

2 Background
We describe the details of our algorithm in terms of the streaming model used in [FKSV99]. This model
is closely related to that of [HRR98].

2.1 Model of Computation

A data streamis a sequence of data itemsσ1,σ2, . . . ,σn such that, on eachpassthrough the stream, the
items are read once in increasing order of their indices. We assume the itemsσi come from a set of size
M, so that eachσi has size logM. In the computational model, we assume that the input is one or more
data streams. We focus on two resources—theworkspacerequired in words and thetime to processan
item in the stream, but disregard pre- and post-processing time.

It is immediate to adapt our algorithm to the sketch model of [FKSV99, BCFM98]. The latter used
sketches to check whether two documents are nearly duplicates. A sketch can also be regarded as a
synopsis data structure[GM98].

2.2 Medians and Means of Unbiased Estimators

We now recall a general technique of randomized approximation schemes.
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Lemma 1 Let X be a real-valued random variable such that, for some c, E[X2] ≤ c · var[X]. Then, for
anyε,δ> 0, there exists a random variable Z such thatPr(|Z−E[X]| ≥ εE[X])≤ δ. Furthermore, Z is a
function of O(log(1/δ)/ε2) independent samples of X.

Proof. LetY be the average of 8c/ε2 independent copies ofX. ThenE[Y] = E[X] and var[Y]≤ ε2E2[X]/8.

By the Chebychev inequality, Pr(|Y−E[X]| > εE[X]) ≤ var(Y)
ε2E2[X] ≤

1
8. Let Z be the median of 4 log(1/δ)

independent copies ofY. Then|Z−E[X]| ≥ εE[X] iff for at least half theYi ’s, |Yi−E[X]| ≥ εE[X]. Since,
for eachi, this happens only with probability 1/8, the Chernoff inequality implies that Pr(|Z−E[X]| ≥
εE[X])≤ δ. �

3 The Algorithm
In this section we prove our main theorem:

Theorem 2 For rational p∈ (0,2], the Lp-difference of two functions〈ai〉 and 〈bi〉 can be computed in
time and space(log(n) log(M) log(1/δ)/ε)O(1), where (1) the input is a data stream of values ai or bi ,
0≤ i < n, from a set of size M, (2) one can output a random variable X such that|X− f | < ε f with
probability at least1−δ, and (3) computation of X can be done by making a single pass over the data.

3.1 Intuition
We first give an intuitive overview of the algorithm. Our goal is to approximateLp = ∑ |ai −bi |p, where
the valuesai , bi ∈ [0,M) are presented in a stream in any order, and the indexi runs up ton. We are given
toleranceε and maximum error probabilityδ.

The input is a stream consisting of tuples of the form(i,c,θ), where 0≤ i< n, 0≤ c<M, andθ∈{±1}.
The tuple(i,c,θ) denotes the data itemai with valuec if θ = +1 and indicates thatbi = c if θ =−1. We
wish to output a random variableZ such that Pr(|Z− Lp| > εLp) < δ, using total space and per-item
processing time polynomial in(log(n) log(M) log(1/δ)/ε).

In the next few sections, we will construct a randomized functionf (r,x) such that

E
[
( f (r,b)− f (r,a))2]≈ |b−a|p. (1)

In a first reading of the algorithm below, the reader may assumef to be a deterministic function with
( f (b)− f (a))2 = |b−a|p. The algorithm proceeds as in Figure 1.

To see how the algorithm works, first focus on single values fork and`. Let Z be an abbreviation for
Zk,` = ∑i σi( f (ai)− f (bi)). We separate the diagonal and off-diagonal terms ofZ2 to simplify,

E
[
Z2] = E

[
∑
i

σ2
i ( f (ai)− f (bi))2 + ∑

i 6=i′
±σiσi′( f (ai)− f (bi))( f (ai′)− f (bi′))

]

≈ E

[
∑
i

σ2
i |ai−bi |p + ∑

i 6=i′
±σiσi′( f (ai)− f (bi))( f (ai′)− f (bi′))

]
(2)

= E

[
∑
i
|ai−bi |p

]
.
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Fig. 1: Main algorithm, intuition

Algorithm Lp(〈(i,c,θ)〉)

Initialize:
Fork = 1 toO(log(1/δ)) do

For `= 1 toO(1/ε2) do
Zk,` = 0
pick sample points for
a family{σi} of n 4-wise independent±1-valued random variables and
a family{~r i} of n 4-wise independent random variables (described further below)

Stream processing:
For each tuple(i,c,θ) in the input stream do

Fork = 1 toO(log(1/δ)) do
For `= 1 toO(1/ε2) do

Zk,` += σiθ f~r i (c)
Report:

Output mediank avg̀ Z2
k,`.

The result follows sinceσ2
i ≡ 1, E[σi ] = 0, andσi andσi′ are independent fori 6= i′. Similarly, var(Z2)≤

O(E2[Z2]). We can apply Lemma 1 and take a median of means of independent copies ofZ2 to get the
desired result∑ |ai−bi |p.

3.2 Construction of f

3.2.1 Overview
Construction off is the main technical content of this paper. We construct a functionf : Z→ Z such that

E
[
( f (b)− f (a))2

]
= (1± ε)|b−a|p.

We put f~r(x) = cφ(~r)d(T~r(0),T~r(x)) (rounding appropriately from reals to integers), defining the com-
ponent functions as follows. When the choice of~r is clear, we drop the subscript. We will come back to
f in the overview in the next subsection. The functiond(a,b) satisfies

• |d(a,b)| ∈O(|b−a|p/2) for all a andb,

• |d(a,b)| ∈Ω(|b−a|p/2) for a significant fraction ofa andb, and

• d(c,b)−d(c,a) = d(a,b) for all c.
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The family{T~r} of transformationson the reals, with correspondinginverse scale factorsφ(~r) are such
that:

• the transformation is an approximate isometry,i.e., |a−b|p≈ c2φ2(~r)|T~r(b)−T~r(a)|p, and,

• the distribution onφ(~r)d(T~r(a),T~r(b))/|b−a|p/2 is approximately constant, independent ofa and
b.

Due to the above properties, our function, acting on parametersa andb, is tightly bounded near|b−a|p.
We compute an upper bound of

E~r
[
( f (b)− f (a))2] = E~r

[
c2φ2(~r)(d(T~r(0),T~r(a))−d(T~r(0),T~r(b)))2]

= E~r
[
c2φ2(~r)(d(T~r(a),T~r(b)))2] (3)

∈ O
(
E~r
[
c2φ2(~r)|T~r(a)−T~r(b)|p

])
≈ O(|a−b|p).

Because|d(α,β)| ∈Ω
(
|β−α|p/2

)
for a significant fraction ofα,β (according to the distribution(α,β) =

(T~r(a),T~r(b))), the Markov inequality gives

E~r
[
d(T~r(a),T~r(b))2]≥Ω(|T~r(a)−T~r(b)|p) .

We get the lower bound similarly as above. It follows thatE~r
[
( f (b)− f (a))2

]
∈Θ(|b−a|p).

We then show that the distribution onφ(~r)d(T~r(a),T~r(b))/|b−a|p/2 is approximately independent of
a and b, thus E~r

[
( f (b)− f (a))2

]
≈ c′(1± ε)|b− a|p, for c′ independent ofa and b. By choosingc

appropriately, we can arrange thatc′ = 1. Finally, we address the issue of precision.
We now proceed with a detailed construction off .

3.2.2 Construction of d
The functiond(a,b) takes the formd(a,b) = ∑a≤ j<b π j , whereπ j is a±1-valued function ofj, related to
a function described in [FKSV99]. This function is selected to fulfil the properties listed in the overview.

First, find integersu,v such that log(v−u)
log(v+u) = p/2, and, for technical reasons,v− u ≥ 17 andu ≥ 2.

To do this, find integersα > 1 andβ > 1 with p/2 = α/β (by hypothesis, a rational number). Put

v = 2β−1 + 2α−1 andu = 2β−1−2α−1; thus log(v−u)
log(v+u) = p/2. If v−u< 17 or u = 1, then (repeatedly, if

necessary) replacev by v2 + u2 and replaceu by 2uv. Observe thatlog(v2+u2−2uv)
log(v2+u2+2uv) = log(v−u)

log(v+u) and the new

valuev2 +u2−2uv= (v−u)2 is greater than the old valuev−u. Also note that(v+u)p/2 = v−u.
Now, we define a sequenceπ as a string of+1’s and−1’s, as follows. Letπ = lim i→∞ π(i) whereπ(i) is

defined recursively fori ≥ 1 as

π(1) = (+1)u(−1)v (4)

π(i+1) = πu
(i)π

v
(i), (5)

andπ(i) denotesπ(i) with all +1’s replaced by−1’s and all−1’s replaced by+1’s. Note thatπ(i) is a prefix
of π(i+1). For example, a graph ofπ with u = 1 andv = 3 is given in Figure 2 (Figure 2 also describes sets
Ss,t , to be defined later).
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Let π j (differentiate this fromπ( j)) denote thej ’th symbol ofπ. Now d(a,b) = ∑b−1
j=a π j is the discrep-

ancy between+1’s and−1’s in the interval[a,b). The self-similarity ofπ allows the value ofd, applied
on random transformations of the parametersa andb to have the desired expected value. Note thatd and
π depend onu andv, which, in turn, depend onp. We only consider one set of values foru,v at a time
and drop them from the notation.

3.2.3 Adding randomness
We now define the transformationT~r() and the reconstructionφ(~r).

Definition 3 Set

u,v : integers such that
log(v−u)
log(v+u)

= p/2

c1 = min

(
1
2
,

3v
4(v−u)

)
c2 = 3u+3v

η =
log(v−6/8)− log(v−10/8)

log(v+u)
· 5/8−3/8

v+u

N1 = log(8)/ log(u+v)
N2 = N1 +8c2 log(M)/c1ηε
N3 = least power of(u+v) such thatN3≥ (u+v)MN2.

These values are motivated by several subsequent proofs, particularly those for Lemma 12 and (average);
we state them now for clarity. Letr be (u+ v)s, wheres is chosen uniformly at random from the real
interval [N1,N2]. Let r ′ be an integer chosen uniformly at random from[0,N3). PutT~r(a) = ra + r ′ and
put φ(~r) = r−p/2.

Let d̂(a,b) denoteφ(~r)d(T~r(a),T~r(b)), i.e., d acting in the transformed domain, rounding the arguments
of d appropriately from reals to integers (we will specify the rounding precisely below).

3.2.4 Expectation of d(a,b)
We now prove that|d(a,b)| has tight upper and lower bounds. (More precisely, we show the lower bound
for d̂ as defined above.) This utilizes a succession of properties aboutπ, d, T~r , andφ(~r). Some of the
following assume thatv− u≥ 17. The constantsγ0,γ1,γ2 below may depend onp,M, andε, but are
bounded uniformly inM andε. The dependence ofγ0,γ1,γ2 on p,M, andε is hard to find analytically; in
Section 4.3 we discuss in more detail a method for determining the gammas.
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d((u+v)a,(u+v)b) = −(v−u)d(a,b). (homogeneity)

For all r, all a≤ b< (u+v)r and allx, |d(a,b)|= |d(a+x(u+v)r ,b+x(u+v)r)|. (periodicity)

For somec2, |d(a,b)| ≤ c2(b−a)p/2. (upper bound)

For somec1 > 0 and someη> 0,Pr
~r

(∣∣d̂(a,b)
∣∣ ≥ c1|b−a|p/2

)
> η. (averaged lower bound)

For someγ0 > 0, E~r
[∣∣d̂(a,b)

∣∣] = γ0|(b−a)|p/2(1± ε).

For someγ1 > 0, E~r
[
d̂2(a,b)

]
= γ1|(b−a)|p(1± ε).

For someγ2 > 0, E~r
[
d̂4(a,b)

]
= γ2|(b−a)|2p(1± ε).

 (average)

Claim 4 The sequenceπ(i+1) can be obtained by starting withπ(i) and replacing each+1 with π(1) and
each−1 with π(1).

Proof. Consider a top-down rather than a bottom-up recursive definition ofπ.

Proof. [(homogeneity) and (periodicity)] The homogeneity and periodicity properties are immediate from
the definition ofπ and from Claim 4.

Proof. [(upper bound)] Next, consider the upper bound property. Note that (homogeneity) implies (upper
bound) infinitely often,i.e., for boundeda andb, we have

|d(a(u+v)s,b(u+v)s)| = (v−u)sd(a,b)

= (v+u)sp/2d(a,b) (6)

=
(

d(a,b)
|b−a|p/2

)
(b(u+v)s−a(u+v)s)p/2

Intuitively, sinced(a,b)≈ d(a′,b′) for a≈ a′ andb≈ b′, the result follows.
Formally, assume by induction that, for alla andb with 0≤ b− a≤ (u+ v)r , we have|d(a,b)| ≤

qr |b−a|p/2. Now assume that(u+v)r < b−a≤ (u+v)r+1. Let a′ be the smallest multiple of(u+v) that
is at leasta and letb′ be the largest multiple of(u+ v) that is at mostb. Then|d(a′,b′)| ≤ qr(b′−a′)p/2

by homogeneity and by induction. Also,|d(a,b)−d(a′,b′)| ≤ 2(u+v). Thus|d(a,b)| ≤ qr(b′−a′)p/2 +
2(u+v). Let qr+1 be the maximum over(u+v)r < b−a≤ (u+v)r+1 of |d(a,b)|/|b−a|p/2; then

qr+1 ≤ qr +2(u+v)|b−a|−p/2

≤ qr +2(u+v)(u+v)−rp/2 (7)

= qr +2(u+v)(v−u)−r

Similarly,

qr ≤ qr−1 +2(u+v)(v−u)−(r−1).
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Fig. 2: Geometric view ofπ (continuous polygonal curve) foru = 1 andv = 3. The setsSs,t are indicated by
segments with vertical ticks. Each element ofSs,t is a pair(α,β), indicated in the diagram by two of the vertical ticks
near opposite ends of the interval labeledSs,t . The discrepancy ofπ is relatively high over intervals with endpoints in
Ss,t .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3839 40 41 42 43 44 45 46 47

S0,0 S0,1 S0,2 S0,3 S0,4 S0,5 S0,6 S0,7 S0,8 S0,9 S0,10 S0,11

S1,0 S1,1 S1,2

Unwinding the recursion, we have

qr+1 = q1 +2(u+v)
[
(v−u)−r +(v−u)−(r−1) + · · ·+(v−u)−1

]
≤ q1 +2(u+v), (8)

whereq1 is such thatd(a,b) ≤ q1|b−a|p/2 for all 0< b−a≤ v+ u. Since, for thesea andb, we have
d(a,b)≤ v+u and|b−a|p/2≥ 1, we can takeq1 = v+u, and so we can takec2 = 3u+3v.

Proof. [(averaged lower bound)]
The proof consists of two lemmas. We identify a setSof (a,b) values. We then show in Lemma 6 that

|d(a,b)| is large onSand we show in Lemma 7 that the setS itself is big. The result follows.

Definition 5 Fix u andv. We define a setSof (a,b) values as follows. For each integers andt, let Ss,t

consist of the pairs(a,b) such that{
t(u+v)s+1 +u(u+v)s ≤ a < t(u+v)s+1 +(u+1)(u+v)s

t(u+v)s+1 +(u+v−1)(u+v)s < b ≤ (t +1)(u+v)s+1

Let Sbe the (disjoint) union of allSs,t .

Geometrically speaking,s adjusts the size of the set andt linearly translates the range of the set. Note
thatS0,0 is the singleton(u,u+ v), i.e., the endpoints of the interval ofv−1’s (the interval of maximum
discrepancy inπ(1)). Elements ofSs,0 are close to analogs ofS0,0 = {(u,u+ v)}, scaled-up (by(u+ v)s).
Elements ofSs,t are analogs of elements ofSs,0, translated (byt(u+v)s+1).

Figure 2 shows the case ofu = 1 andv = 3. Here,

π(2) = +1−1−1−1 −1+1+1+1 −1+1+1+1 −1+1+1+1.

The componentS0,2 is the singleton{(9,12)}. The componentS1,0 is {4,5,6,7}×{13,14,15,16}. The
element(a,b) = (5,14) ∈ S1,0 leads tod(5,14) which is the sum of the 9 symbols

+1+1+1 −1+1+1+1 −1+1.

It has a relatively high discrepancy.
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Lemma 6 For some constant c1, for each(a,b) ∈ S, we have

|d(a,b)| ≥ c1|b−a|p/2.

Proof. We show the lemma for(a,b) ∈ Ss,0. The general result follows immediately from (periodicity).
One can easily show that the lower bound property is satisfied ifu = 0. We now assumeu> 0.
For eachs, we define close to maximalqs such that for alla,b as defined in Definition 5 (i.e. with

u(v+ u)s≤ a< (u+ 1)(v+ u)s and(v+ u−1)(v+ u)s< b≤ (v+ u)s+1), we have|d(a,b)| ≥ qs(b−a).
(Recallt = 0.) We will considerqs for s= 0, show thatqs−1−qs drops exponentially ins, then bound the
sum of|qs−1−qs|. We consider two cases, depending on whether or notu≤ v/2.

First, supposeu≤ v/2. Note thatπ(1) =

u︷ ︸︸ ︷
+1+1· · ·+1

v︷ ︸︸ ︷
−1−1· · ·−1. If s = 0, we havea = u and

b = v+u. The discrepancyd(a,b) consists of the sum ofv copies of−1, so|d(a,b)|= v = b−a, and we
wantv≥ q0vp/2. Sincev≥ vp/2, we can putq0 = 1.

Considers≥ 1. Supposea,b are such thatu(v+u)s≤ a< (u+1)(v+u)s and(v+u−1)(v+u)s< b≤
(v+u)s+1. Definea′ to be the greatest multiple of(v+u) that is at mosta and defineb′ to be the smallest
multiple of (v+u) that is at leastb.

Using the homogeneity property and induction,

|d(a′,b′)| = (v−u)
∣∣∣∣d( a′

v+u
,

b′

v+u

)∣∣∣∣
≥ qs−1(v−u)

(
b′−a′

v+u

)p/2

(11)

≥ qs−1(b′−a′)p/2

≥ qs−1(b−a)p/2.

It follows that
|d(a,b)| ≥ qs−1(b−a)p/2−2v.

Therefore we want to defineqs such that|d(a,b)| ≥ qs−1(b−a)p/2−2v≥ qs(b−a)p/2, i.e., such that

qs≤ qs−1−2v(b−a)−p/2. (12)

Note thatv−u≥ 17 implies(v−2) ≥ v+u
2 andu≤ v/2 implies 2(v−u) ≥ v. Also, note thatb−a≥

(v−2)(u+v)s. We have

qs−1−2v(b−a)−p/2 ≥ qs−1−2v((v−2)(v+u)s)−p/2

≥ qs−1−2v
(
(v+u)s+1/2

)−p/2

≥ qs−1−4v(v−u)−(s+1) (13)

≥ qs−1−8(v−u)(v−u)−(s+1)

= qs−1−8(v−u)−s.

Thus it suffices to makeqs≤ qs−1−8(v−u)−s, for s≥ 1. Since

8 ∑
s≥1

(v−u)−s≤ 8∑
s≥1

17−s = 1/2,
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we can make allqs = q0−1/2 = 1/2.
Now, assumeu ≥ v/2. Whens = 0, so thata = u and b = v+ u, thend(a,b) = −v and we need

|d(a,b)| ≥ q0vp/2. Since

v

vp/2
≥ v

(v+u)p/2

=
v

v−u
, (15)

We can putq0 = v
v−u.

Now considers≥ 1 whenu≥ v/2. As in (12), we want to defineqs such that

qs≤ qs−1−2v(b−a)−p/2.

Sinceb−a≥ (v−2)(v+u)s≥ 1/2(v+u)s+1, we have

(b−a)−p/2≤ 2p/2(v+u)−(p/2)(s+1) ≤ 2(v−u)−(s+1).

Thus
qs−1−2v(b−a)−p/2≥ qs−1−4v(v−u)−(s+1),

and it suffices to make
qs≤ qs−1−4v(v−u)−(s+1).

Unwinding the recursion, this becomes

qs≤ q0−4v
∞

∑
s=2

(v−u)−s.

We get

q0−4v
∞

∑
s=2

(v−u)−s =
v

v−u
−4v

∞

∑
s=2

(v−u)−s

=
v

v−u
− 4v

(v−u)2

1
1−1/(v−u)

=
v

v−u

(
1− 4

(v−u)
1

1−1/(v−u)

)
(16)

=
v

v−u

(
1− 4

v−u−1

)
≥ 3v

4(v−u)
,

using the fact thatv−u≥ 17 in the last line. It suffices to putqs = 3v
4(v−u) .

We can makec1 in (averaged lower bound) be the minimum of 1/2 and 3v
4(v−u) . �

We now return to the proof of (averaged lower bound) by showing thatShas positive probability.
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Lemma 7 Let a,b< M be arbitrary. Then for any u,v there existsη > 0 such thatPr
(
(T~r(a),T~r(b)) ∈

S
)
≥ η.

Proof.
With probability log(v−6/8)−log(v−10/8)

log(v+u) , we have

log(v−10/8)≤ log(r(b−a)) mod log(v+u)< log(v−6/8),

i.e., for some integers,

(v−10/8)(u+v)s≤ r(b−a)< (v−6/8)(u+v)s. (17)

Find the integert with t(u+v)s+1≤ ra + r ′ < (t +1)(u+v)s+1. With probability 5/8−3/8
v+u ,

t(u+v)s+1 +(u+3/8)(u+v)s≤ ra + r ′ < t(u+v)s+1 +(u+5/8)(u+v)s. (18)

If both (17) and (18) hold, then the following also holds:

t(u+v)s+1 +(v+u−7/8)(u+v)s≤ rb+ r ′ < t(u+v)s+1 +(v+u−1/8)(u+v)s.

It follows that{
t(u+v)s+1 +(u+3/8)(u+v)s ≤ ra + r ′ ≤ t(u+v)s+1 +(u+5/8)(u+v)s

t(u+v)s+1 +(v+u−7/8)(u+v)s ≤ rb+ r ′ ≤ t(u+v)s+1 +(v+u−1/8)(u+v)s,
(19)

whence(T~r(a),T~r(b))∈Ss,t ⊆S, with positive probability. IfN1≥ log(8)/ log(u+v), then(u+v)s/8≥ 1.
It follows that(T~r(a)±1,T~r(b)±1) ∈ Ss,t ⊆ Swith positive probability. (The±1’s allow us to roundT~r()
to a nearby integer in an arbitrary way.) �

Let η > 0 denote the probability thatra + r ′ and rb + r ′ are as above. (This concludes the proof of
(averaged lower bound).)

Proof. [(average)]
We showE

[
d̂(a1,b1)

]
≈ γ0(b1−a1)p/2. The other conditions are similar.

From property (upper bound), we conclude that

E
[
d̂(a1,b1)

]
≤ c2(b1−a1)p/2. (20)

Similarly, from property (averaged lower bound) and the Markov inequality, we conclude

E
[
d̂(a1,b1)

]
≥ ηc1(b1−a1)p/2. (21)

Equations 20 and 21 indicate that some multiple ofE[d̂(a,b)] gives ac2/(ηc1)-factor approximation to
|b−a|p/2. The equations leave open the possibility, however, that

E
[∣∣d̂(a1,b1)

∣∣]= ηc1(b1−a1)p/2

while
E
[∣∣d̂(a2,b2)

∣∣]= c2(b2−a2)p/2,
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wherec2/(ηc1) > (1+ ε). If that were the case, no multiple ofE
[∣∣d̂(a2,b2)

∣∣] would be a(1± ε)-factor
approximation. Fortunately, as we show, a(1± ε)-approximationdoesresult from our algorithm. Our
proof proceeds by showing that∣∣d̂(a1,b1)

∣∣
|b1−a1|p/2

and

∣∣d̂(a2,b2)
∣∣

|b2−a2|p/2

have approximately the same distribution. It follows that these distributions have approximately the same
expectancy,γ0, whence it follows that, for this universalγ0,

E
[∣∣d̂(a,b)

∣∣]≈ γ0(b−a)p/2

for all a andb.
Note that, ifa = b, thend(a,b) = d̂(a,b) = |b−a|p/2 = 0, identically. Thus, in approximating∑i |bi−

ai |p by ∑i d̂(ai ,bi), we may restrict attention only toi such thatai 6= bi .

Definition 8 The randomized rounding [x]ρ of a real numberx by a (random) realρ ∈ [0,1] is defined
by

[x]ρ =
{
dxe , x≥ ρ + bxc
bxc , otherwise

Note thatE([x]ρ) = x.

Lemma 9 For any real numbers a≤ b, the distribution on[b− a]ρ is the same as the distribution on
[b]ρ′ − [a]ρ′ .

Note that it isnot the case that, for alla,b,ρ, [b−a]ρ = [b]ρ− [a]ρ.
Proof. (Tedious, straightforward, omitted.) Note that the expected values of[b−a]ρ and[b]ρ′ − [a]ρ′ are
the same. One can show that these random variables take on the same two values,bb−ac anddb−ae.
The result follows. �

We now clarify the definition ofd̂ and indicate how to do rounding.

Definition 10 Let~r = (r, r ′,ρ). Defined̂(~r,a,b) by r−p/2d([ra]ρ + r ′, [rb]ρ + r ′).

Lemma 11 For all a < b and for all i∈ [M(u+ v)N1,(u+ v)N2], the probabilityPrr,ρ([rb]ρ− [ra]ρ = i)
does not depend on a or b.

Proof. By Lemma 9, for each fixedr, Prρ([rb]ρ− [ra]ρ = i) = Prρ([r(b−a)]ρ = i). It follows that

Pr
r,ρ

([rb]ρ− [ra]ρ = i) = Pr
r,ρ

([r(b−a)]ρ = i).
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Next, for each fixedρ,

Pr
r

([r(b−a)]ρ = i) = Pr
r

(i−1+ ρ≤ r(b−a)< i + ρ)

= Pr
r

(
log

(
i−1+ ρ

b−a

)
≤ log(r)< log

(
i + ρ
b−a

))
(22)

= log

(
i + ρ

i−1+ ρ

)
.

Thus

Pr
r,ρ

([rb]ρ− [ra]ρ = i) = Pr
r,ρ

([r(b−a)]ρ = i) =
∫ 1

0
log

(
i + ρ

i−1+ ρ

)
dρ,

and, in any case, this probability does not depend ona or b. �

Note that ifi ∈ [M(u+v)N1,(u+v)N2], then Pr([rb]ρ− [ra]ρ = i)> 0.

Lemma 12 For all distinct a and b, the probabilityPr
(
[rb]ρ− [ra]ρ 6∈ [M(u+v)N1,(u+v)N2]

)
is at most

2log(M)/(N2−N1).

Proof. Immediate from the definition ofr and the fact that 0≤ b−a≤M. �

PutN2−N1 = 8c2 log(M)/(c1ηε). Then Pr([rb]ρ− [ra]ρ 6∈ [M(u+v)N1,(u+v)N2])≤ c1ηε/(4c2).

Lemma 13 For i ∈ [M(u+v)N1,(u+v)N2], given that[rb]ρ− [ra]ρ = i, the conditional expectation of

|d̂(~r,a,b)|
|b−a|p/2

=

∣∣φ(~r)d([ra]ρ + r ′, [rb]ρ + r ′)
∣∣

|b−a|p/2

is independent of a and b.

Proof. Follows from (periodicity), using the fact thatu≥ 2. �

We return to the proof of (average). Fix a2,b2,a1,b1, such thatE
[
d̂(~r,a,b)/|b−a|p/2

]
is minimized at

(a,b) = (a1,b1) and maximized at(a2,b2). Write

E
[
d̂(~r,a,b)/|b−a|p/2

]
= ∑

i
E
[
d̂(~r,a,b)/|b−a|p/2

∣∣[rb]ρ− [ra]ρ = i
]
·Pr([rb]ρ− [ra]ρ = i).
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Using Lemmas 11, 12, and 13, we have

E
[
d̂(~r,a2,b2)/|b2−a2|p/2

]
−E

[
d̂(~r,a1,b1)/|b1−a1|p/2

]
= ∑

i
Pr
(
[rb2]ρ− [ra2]ρ = i

)
E
[
d̂(~r,a2,b2)

∣∣[rb2]ρ− [ra2]ρ = i
]
/|a2−b2|p/2

− ∑
i

Pr
(
[rb1]ρ− [ra1]ρ = i

)
E
[
d̂(~r,a1,b1)

∣∣[rb1]ρ− [ra1]ρ = i
]
/|a1−b1|p/2

≤ ∑
i∈[M(u+v)N1 ,(u+v)N2 ]

Pr
(
[rb2]ρ− [ra2]ρ = i

)(E
[
d̂(~r,a2,b2)

∣∣[rb2]ρ− [ra2]ρ = i
]

|a2−b2|p/2

−
E
[
d̂(~r,a1,b1)

∣∣[rb1]ρ− [ra1]ρ = i
]

|a1−b1|p/2

) (23)

+ ∑
i 6∈[M(u+v)N1 ,(u+v)N2 ]

(
Pr
(
[rb2]ρ− [ra2]ρ = i

)
+Pr

(
[rb1]ρ− [ra1]ρ = i

))

·

(
E
[
d̂(~r,a2,b2)

∣∣[rb2]ρ− [ra2]ρ = i
]

|a2−b2|p/2
+

E
[
d̂(~r,a1,b1)

∣∣[rb1]ρ− [ra1]ρ = i
]

|a1−b1|p/2

)

≤ 2max
~r

d̂(~r,a2,b2)/|a2−b2|p/2 · ∑
i 6∈[M(u+v)N1 ,(u+v)N2 ]

(
Pr
(
[rb2]ρ− [ra2]ρ = i

)
+Pr

(
[rb1]ρ− [ra1]ρ = i

))
≤ 2c2 · (c1ηε/(4c2))

≤ εE
[
d̂(~r,a1,b1)/|b1−a1|p/2

]
.

It follows that

E
[
d̂(~r,a2,b2)/|b2−a2|p/2

]
= (1± ε)E

[
d̂(~r,a1,b1)/|b1−a1|p/2

]
, (24)

so that forγ0 equal to the (approximate) common value (24), for alla,b,

E
[
d̂(~r,a,b)

]
= γ0|b−a|p/2(1± ε). (25)

3.2.5 Precision
Last, we look at the precision needed to implement our solution. Above,r andρ were specified as real
numbers, but, in practice, they are limited-precision floating point numbers. Let ˆr andρ̂ denote the floating
point equivalents ofr andρ.
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Note that the proofs of (upper bound) and Lemma 6 hold for anyr and anyρ. The proof of Lemma 7
works provided[r̂a]ρ̂ = ra±1 and[r̂b]ρ̂ = rb±1; this is the case if ˆr−r <O(1/M), i.e., if r̂ hasO(log(M))
bits of precision to the right of the radix point.

The proof of (average) requires that Pr
(
[rb1]ρ− [ra1]ρ = i

)
be close to Pr

(
[r̂b1]ρ̂− [r̂a1]ρ̂ = i

)
, in sev-

eral places—in Lemma 11, in (23) directly, and in (23) buried in the conditional expectation (in the
numerator and denominator). It is tedious but straightforward to check that the required number of bits of
precision to the right of the radix point is within the overall space bound claimed. To get an approximation
of Pr

(
[r̂b1]ρ̂− [r̂a1]ρ̂ = i

)
to within some errorζ, one needs to maintainρ andr(b−a) to within ζ, i.e.,

maintainr to within ζ/M. This requires log(M)+ log(1/ζ) bits of precision to the right of the radix point.
The total error in the sum ofn terms may ben times as much, so we need to maintainρ to within Ω(δ/n)
andr to within Ω(δ/(Mn)). This requiresO(log(M)+ log(n)+ log(1/δ)) bits of precision to the right of
the radix point. Analysis of the expectancy in (23) is slightly more involved, but similar.

A completely analogous argument shows that, fork = 2,4, E[d̂k(a,b)]/|b−a|kp/2 is the same, up to the
factor(1± ε), for all values ofa andb.

3.3 Top Level Algorithm, Correctness

We now revisit the overall algorithm in detail, thereby proving Theorem 2.
Proof. (of Theorem 2)

Put
f (x) = γ−1/2

1 d̂(0,x). (26)

Then
E
[
( f (b)− f (a))2]= (b−a)p(1± ε), (27)

and, similarly,

E
[
( f (b)− f (a))4]=

γ2

γ2
1

(b−a)2p(1± ε). (28)

Thus
var
(
( f (b)− f (a))2)≤O(E2[( f (a)− f (b))2]) (29)

and, similarly,
var
(
( f (a)− f (b))4)≤O(E2[( f (a)− f (b))4]). (30)

Choose families of 4-wise independent random variables{r i},{r ′i}, and{ρi} such that eachr, r ′ is
distributed as in Definition 3 andρi is uniformly distributed in[0,1]. Also choose a 4-wise independent
family {σi} of ±1-valued random variables. The 4-wise independence is needed below to boundZ4, i.e.,
to bound var(Z2).

Each parallel repetition of the algorithm computesZ = ∑i σi( f (ai)− f (bi)). Then

E[Z2] = ∑
i

σ2
i ( f (ai)− f (bi))2 + ∑

i 6=i′
σiσi′( f (ai)− f (bi))( f (ai′)− f (bi′))

= ∑
i
|bi−ai |p(1± ε). (31)

Here we used the fact thatσ2
i ≡ 1 andE[σiσi′ ] = 0 for i 6= i′.
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Similarly,

E[Z4] = ∑
i

σ4
i ( f (ai)− f (bi))4 +6∑

i 6=i′
σ2

i σ2
i′( f (ai)− f (bi))2( f (ai′)− f (bi′))2

=
(

A∑
i
|bi−ai |2p +B

(
∑
i
|bi−ai |p

)2
)

(1± ε), (32)

whereA and B are nonzero constants. Thus var(Z2) ≤ O(E2[Z2]), and we can apply Lemma 1. We
conclude that

Pr
(∣∣X−∑ |ai−bi |p

∣∣> ε∑ |ai−bi |p
)
≤ δ,

whereX is a median of means of independent copies ofZ2.

3.4 Algorithm in the Sketch Model
We can apply this algorithm to the sketching model, also. PerformO(log(1/d)/ε2) parallel repetitions of
the following. Given one function〈ai〉, construct the small sketch∑i σi f (ai). Later, given two sketches
A = ∑i σi f (ai) andB = ∑i σi f (bi), one can reconstruct∑ |ai −bi |p by outputting a median of means of
independent copies of|A−B|2.

3.5 Cost
We first consider the space. The algorithm needs to store seeds for families of random variables and
values of theZ’s. Each family is of sizen, so requires spaceO(logn) times the number of bits in a single
random variable [AS92]. The variablesr and r ′ each requireO(log(M)/ε) bits to the left of the radix
point. We needO(log(1/d)/ε2) parallel repetitions of the random variables, so the total space for random
variables is(log(M) log(n) log(1/d)/ε)O(1). The countersZ are bounded byMO(1/ε), so they also require
comparable space.

In [FKSV99], the authors show that, forM = 2, any randomized algorithm that approximates∑ |ai−bi |
to within the factor(1±ε) uses more thanω(logα(n)/ε1−β) space, for any (large)α and any (small)β> 0.
A similar argument applies here, too. Thus the space used by our algorithm is within a constant power of
optimal.

We now consider the time to process an item in the stream. To process(i,c,θ), the algorithm first
produces values for the random variables, which is quick. The algorithm then needs to compute∑C

j=0 π j ,

whereC≤ cMO(1/ε). From the recursive structure ofπ, it is clear that this computation requires time at
most logO(1)(cM)1/ε, i.e., polynomial in the size of(i,c,θ).

3.6 Top Level Algorithm, 2≤ p≤ 4

We can also approximate∑i |ai −bi |p for p∈ [2,4], though with worse error. The algorithm should use
8-wise independent random variables instead of 4-wise independent random variables. Givenp∈ [2,4],
use (32) to approximateA∑i |bi −ai |p + B

(
∑i |bi−ai |p/2

)2
. This approximation will have small relative

error, i.e., error small compared with the larger term,
(
∑i |bi−ai |p/2

)2
. Next, approximate∑i |bi −ai |p/2

and solve for∑i |ai−bi |p, getting error that is small compared with
(
∑i |bi−ai |p/2

)2
. Thus we cannot, by

this method, approximate∑i |ai−bi |p with small relative error, forp> 2.
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We now analyze this error guarantee compared with error guarantees of related work. In previous
work, there are three types of error guarantees given. In typical sampling arguments, using resources
(log(n) log(M)/ε)O(1), an error is produced which is bounded byεn or evenεMn. The techniques of
[BCFM98] can be used to approximate∑ |ai −bi | whenai ,bi ∈ {0,1}. In this case, the error is bounded
by ε∑ |ai + bi |—already a substantial improvement over errorεn and the best possible in the original
context of [BCFM98]. Relative error,i.e., error smaller thanε times the returned value, is better still, and
is achievable forp∈ (0,2]. Our error guarantee forp> 2 falls between relative error andO(∑ |ai +bi |). In
particular, our error in approximating∑ |ai−bi |p is small compared with(∑ |ai−bi |p)2, so our error gets
small as the returned value∑ |ai−bi |p gets small—this is not true for an error bound of, say,ε∑ |ai +bi |p
or ε∑ |ai +bi |.

Since

∑ |ai−bi |p/2≤∑ |ai−bi |p≤
(
∑ |ai−bi |p/2

)2
, (33)

one could also approximate∑ |ai − bi |p by
(
∑ |ai−bi |p/2

)3/2
. This will be correct to within the factor(

∑ |ai−bi |p/2
)1/2

. Note that our algorithm is an unbiased estimator,i.e., it has the correct mean—an

advantage in some contexts; this is not true of
(
∑ |ai−bi |p/2

)3/2
. Furthermore, our algorithm provides a

smooth trade-off between guaranteed error and cost, which is not directly possible with the trivial solution.
We hope that, in some applications, our approximation to∑ |ai−bi |p provides information not contained
in ∑ |ai−bi |p/2.

We conjecture that one can approximate∑ |ai −bi |p for any p this way. To do this, one needs to show
thatE[Z2bp/2c] is a polynomial in∑ |ai−bi |p,∑ |ai−bi |p/2, . . ., in which∑ |ai−bi |p appears with nonzero
coefficient. The algorithm may be quite expensive inp.

4 Discussion

4.1 Relationship with Previous Work

We give an approximation algorithm for, among other cases,p = 1 andp = 2. Thep = 1 case was first
solved in [FKSV99], using different techniques. Our algorithm is less efficient in time and space, though
by no more than a power. The casep = 2 was first solved in [AMS96, AGMS99], and it is easily seen that
our algorithm for the casep = 2 coincides with the algorithm of [AMS96, AGMS99].

Our algorithm is similar to [AMS96, FKSV99] at the top level, using the strategy proposed by [AMS96].

4.2 Random-Self-Reducibility

Our proof technique can be regarded as exploitation of a random-self-reduction [F93] of theLp difference.
Roughly, a functionf (x) is random-self-reducible via(σ,φ) if, for randomr, f (x) = φ(r, f (σ(r,x))), where
the distributionσ(·,x) does not depend onx. That is, to computef (x), one can transformx to a random
y = σ(r,x), computef (y), then transformf (y) back to f (x) = φ(r, f (y)). If one can show that a function
f is random-self-reducible then one can show

• The functionf is hard on average (with respect toσ) if it is hard in worse case. Average-case hard
functions are useful in cryptography.
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• A programP that is guaranteed to computef correctly only on 3/4 of the inputs tox can be made to
computef correctly, with high probability, on all inputs. That is,P has a self-corrector. (On input
x, repeatedly runP onσ(r,x) (using independentr ’s), then output the majority of(φ(r,P(σ(r,x)))).)

• If Alice has x and Bob can computef (), then Alice can get Bob to computef (x) without Bob
learningx. (Alice gives Bobσ(r,x), which is uncorrelated withx. She receivesf (σ(r,x)) and then
computesφ(r, f (σ(r,x))).)

In [FS97], the authors generalized existing notions of random-self-reducibility to include transforma-
tionsσ that are slightly correlated withx, but the correlation is tightly bounded. They called such random-
self-reductions “leaky.”

Our construction involves producing a form of self-corrector for programs for a function,Lp, that have
a sort of leaky random-self-reduction. The functionLp of two streams is random-self-reducible in the
sense that

|ai−bi |p =
1
r p

∣∣∣(rai + r ′)− (rbi + r ′)
∣∣∣p,

where the distribution(rai + r ′, rbi + r ′) is only weakly dependent on(ai ,bi). We present a deterministic
function, d(a,b), that produces a result guaranteed to be correct only up to a large constant factor and
only on a setS that is small but has non-negligible probabilityη; from that, we produce the function,
r−p/2d(Tr(a),Tr(b)), that produces a correct result with high probability, on all inputs.

It is easiest to present our current work without invoking random-self-reducibility machinery. We hope
to investigate further the random-self-reducibility issues for massive data streams, for sketches, and for
real-valued functions. A theory of random-self-reducibility for streams may make it easier to produce
streaming algorithms, to give performance guarantees for heuristics thought to work in many cases, and
to characterize functions that have or do not have efficient streaming algorithms.

4.3 Determination of Constants

Our function f involves some constantc, such thatE[( f (a)− f (b))2]≈ c|b−a|p, but we do not explicitly
provide the constantc. This needs to be investigated further. We give a few comments here.

One can approximatec using a randomized experiment. Due to our fairly tight upper and lower bounds
for c, we can, using Lemma 1, estimatec reliably as

∣∣d̂(a,b)
∣∣ · |b−a|−p/2. At worst, this occurs once for

eachp,M,n, andε; it is not necessary to do this once for each item or even once for each stream. Further-
more, one can fix generously largeM andn and generously smallε to avoid repeating the estimation ofc
for changes in these values.

In some practical cases, not knowingc may not be a drawback. In practice, as in [BCFM98], one may
use the measure∑ |ai−bi |p to quantify the difference between two web pages, whereai is the number of
occurrences of featurei in pageA andbi is the number of occurrences of featurei in pageB. For example,
one may want to keep a list of non-duplicate web pages, where two web pages that are close enough may
be deemed to be duplicates. According to this model, there are sociological empirical constants ˆc and
p̂ such that web pages with ˆc∑ |ai −bi |p̂ < 1 are considered to be duplicates. To apply this model, one
must estimate the parameters ˆc and p̂ by doing sociological experiments,e.g., by asking human subjects
whether they think pairs of webpages, with varying measures of ˆc∑ |ai −bi |p̂ for various values of ˆc and
p̂, are or are not duplicates. If one does not knowc, one can simply estimate ˆc/c at once by a single
sociological experiment.
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4.4 Non-grouped Input Representation
Often, in practice, one wants to compare〈ai〉 and〈bi〉when the valuesai andbi are represented differently.
For example, suppose there are two grocery stores,A andB, that sell the same type of items. Each time
either store sells an item it sends a record of this to headquarters in an ongoing stream. Suppose itemi
sellsai times in storeA andbi times in storeB. Then headquarters is presented with two streams,A and
B, such thati appearsai times inA andbi times inB; ∑ |ai−bi |p measures the extent to which sales differ
in the two stores. Unfortunately, we don’t see how to apply our algorithm in this situation. Apparently, in
order to use our algorithm, each store would have to aggregate sales data and presentai or bi , rather than
presentai or bi non-grouped occurrences ofi. The algorithm of [AMS96, AGMS99] solves thep = 2 case
in the non-grouped case, but the problem for otherp is important and remains open.

We have recently learned of a solution the non-grouped problem [I00]. Note that, in general, a solution
A in the non-grouped representation yields a solution in the function-value representation, since, on input
ai , an algorithm can simulateA on ai occurrences ofi; this simulation takes time exponential in the size
of ai to processai . The proposed solution, however, appears to be of efficiency comparable to ours in
the function-value representation, at least in theory, but there may be implementation-related reasons to
prefer our algorithm in the grouped case.
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