Discrete Mathematics and Theoretical Computer Scieh@901, 247-254

A Degree-Decreasing Lemma
for (MODy—MOD,,) Circuits

Vince Grolmus?

Department of Computer Sciencéti®s University, Budapest.

Address: Rzmany P. stny. 1/C, Room 3-614, H-1117 Budapest, Hungary.
Email: grolmusz@cs.elte.hu

received Jun 15, 20Qhccepted Sep 15, 2001

Consider a(MODgy,MODy,) circuit, where the inputs of the bottom MQyates are degresd-{polynomials with

integer coefficients of the input variables, ¢ are different primes). Using our main tool — the Degree Decreasing
Lemma — we show that this circuit can be converted {#DDg, MODy,) circuit with linear polynomials on the
input-level with the price of increasing the size of the circuit. This resultimplies special cases of the Constant Degree
Hypothesis of Barrington, Straubing andérfen [3], and implies also a generalization of the lower bound results of
Yan and Parbernij21], Krause and Waack [12] and Krause andaR{itil]. Perhaps the most important application

is an exponential lower bound for the size(tfODg, MODy) circuits computing the fan-in AND, where the input

of each MOL gate at the bottom is aarbitrary integer valued function ofn variables(c < 1) plus an arbitrary

linear function ofn input variables.
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1 Introduction

Boolean circuits are one of the most interesting models of computation. They are widely examined in
VLSI design, in general computability theory and in complexity theory context as well as in the theory of
parallel computation.

Almost all of the strongest and deepest lower bound results for the computational complexity of finite
functions were proved using the Boolean circuit model of computation ([13], [22],09], [12], [15], or see
[P0] for a survey).

Even these famous and sophisticated lower bound results were proven for very restricted circuit classes.

Bounded depth and polynomial size is one of the most natural restrictions. [Ajtai [1], Furst, Saxe, and
Sipser [5] proved that no polynomial sized, constant depth circuit can compute the PARITY function. Yao
[22] and Hastad [9] generalized this result for sub-logarithmic depths.

TA preliminary version of this work appeared in the Proceedings of ICALP'98, Springer Verlag, LNCS 1443, pp. 215-222.
1365-80500C) 2001 Maison de I'Informatique et des Mé&tiatiques Disates (MIMD), Paris, France
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Since the modular gates are very simple to define, and they are immune to the random restriction
techniques in lower bound proofs for the PARITY function, the following natural question was asked by
several researchers: How powerful will become the Boolean circuits if — beside the standard AND, OR
and NOT gates — MOR gates are also allowed in the circuit? Here a MgXate outputs 1 iff the sum
ofitsinputsisinasef C {0,1,2,...,m— 1} modulom.

Razborov [T4] showed that for computing MAJORITY with AND, OR, NOT and MOdates, ex-
ponential size is needed with constant depth. This result was generalized by Smoiehsky [15] fgr MOD
gates instead of MOPones, wherg denotes a prime.

Very little is known, however, if both MOPand MODL gates are allowed in the circuit for different
primesp, g, or, if the modulus is a non-prime power composite, e.g., 6. For example, it is consistent with
our present knowledge that depth-3, linear-size circuits with M@&esonly, recognize the Hamiltonian
graphs (se€[3]). The existing lower bound results use diverse techniques from Fourier-analysis, commu-
nication complexity theory, group-theory and several forms of random restrictions(se2[3],[{11], [17],
(18], [T6], [8], [8], [@], [2], [1O]).

It is not difficult to see that constant-depth circuits with MP@ates only p prime), cannot compute
even simple functions: the fan-mOR or AND functions, since they can only compute constant degree
polynomials of the input variables over GEsee [15]).

But depth-2 circuits with MOBR and MOD; gates, or MOIg gates can compute thefan-in OR and
AND functions [10], [8]. Consequently, these circuits are more powerful than circuits with Mgaies
only.

By the famous results of Yad 23] and Beigel and Taiui [4], and Tada [19], every polynomial-size,
constant-depth circuit with AND, OR, NOT and MQ@{@ates can be converted to a depth-2 circuit with a
SYMMETRIC gate at the top and quasi-polynomially many AND gates of poly-logarithmic fan-in at the
bottom. One might hope that this result is an excellent tool for bounding the power of circuits containing
modular gates. Unfortunately, the existing lower bound techniques are not strong enough to bound the
computational power of these circuits.

Our main contribution here is a lemma, the Degree Decreasing Lemma, which yields a tool for dealing
with low-fan-in AND gates at the bottom §MOD4, MODy,) circuits. We believe that — in the light of the
result of Yao, Beigel and Tarui — our result may have further important consequences in modular circuit
theory.

2 Preliminaries

Definition 1 A fan-in n gate is an n-variable Boolean function. Lat Gy, ...,G, be gates of unbounded
fan-in. Then a

(G1,Gy,...,Gy;d) — circuit
denotes a depthicircuit with a G;-gate on the top, @gates on the second levelz @Gates on the third
level from the top,..., and Qyates on the last level. Multi-linear polynomials (i.e., polynomials where the
exponent of every variable is 0 or 1) with integer coefficients and of input-variahles x ., x, of degree
at most d are connected toy@ates on the last level. The size of a circuit is defined to be the total number
of the gates @ G, ...,Gy in the circuit.

All of our gates are of unbounded fan-in, and we allow to connect inputs to gates or gates to gates
with multiple wires. Let us remark, that we are interested mainly in circuits with modular gates and with
constant moduli; consequently, the number of wires is polynomially related to the number of gates.
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In the literature MOLR, gates are sometimes defined to be 1, iff the sum of their inputs is divisible by
m, and sometimes they are defined to be 1, iff the sum of their inputs is not divisilote Diye following,
more general definition covers both cases.

Definition 2 We say that gate G is MIODy-gatg if there exists a non-empty@&{0,1,...,m— 1}, such
that
1 if 3, modme A
G =47 i=1
(X%, %) {O otherwise.

Ais called the 1-set of GIOD;, gates with 1-set A are denoted KADDA.

Definition 3 Let p be a prime. We say that polynomialxi xz, ...,Xn) over the p element field is a
depth-d polynomial, if it can be computed by an arithmetic circuit from inputex . . , X, and constants

1 and 0, as follows: the arithmetic circuit is levelled, the variables and constants 0 and 1 are situated
on the lowest level, and multiple wires (i.e., constant multipliers) are allowed in the circuit. The levels of
the circuit contains ADDITION and MULTIPLICATION gates, the ADDITION gates are of unbounded
fan-in, the MULTIPLICATION gates are of fan-in 2. There are only d levels where MULTIPLICATION
gates occur, and within the same level, one input of each MULTIPLICATION gates are connected to the
same node (called the common multiplier on the level), situated one level lower.

In other words, if on the same level there are several MULTIPLICATION gates, and one of them com-
putesPQ, then all the other MULTIPLICATION gates on the same level should compRigPR,,... PR;
or, alternativelyR; Q, RxQ,... RsQ, whereP, Q andR, fori =1,2,... sdenote polynomials, computed in
the nodes just below our level.

Note, that we have not bounded the number of gates in the arithmetic circuit, just the number of levels
containing multiplications and the structure within the levels.

Lemma 4 Any multi-linear polynomial with n variables is a depth— 1) polynomial.

Proof:  We prove by induction. Our induction hypothesis is the followind®(iXy, Xz, . . . , %) is @ multi-
linear polynomial o variables, then it can be computed by an arithmetic circuit of Definfiion 3 such that
on the first (lowest) multiplication level the common multiplieris on the second multiplication level
the common multiplier i3, ...., on then — 1st multiplication-level the common multiplier xg.

The base case is obvious. The induction ste@®(¥;, Xz, ...,%,) is @ multi-linear polynomial, then
P = x,Q+ RwhereQ andR are multi-linear polynomials of variableg, Xz, . ..,X,_1. Consequently, for
Q andRthe induction hypothesis is satisfied with depth 2, so we are done. O

We remark, that linear polynomials are depth-0 polynomials. Polynomial
(Xl+X2+X3+X4+X5)(X2+X4+X5)2(X3+X5+2) + (X2 +Xa+Xs5) (X3 + X1+ X5) + 12

is a depth-2 polynomial.

Definition 5 Let p and g be two different primes, and let d be a non-negative integer. Then
(MODg,MODy,; depth—d)

denotes §MODgy, MODy)) circuit, where the input of eadlODp-gate is a depth-d polynomial.
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3 The Degree-Decreasing Lemma

The following lemma is our main tool. It exploits a surprising property(MOD, MODq)-circuits,

which lacks in(MODp, MODy) circuits, since constant-depth circuits with M@Bates are capable only

to compute a constant degree polynomial of the inputs, and this constant depends on the depth, and not on
the size.

Remark 1. Generally, the inputs of the modular gates are Boolean variables. Here, however, for wider
applicability of the lemma, we allow inputfor a general MOIp, gate to be chosen from sg,1,... ,m—
1}. This will allow us to substitute polynomials into the variables of the lemma.

Remark 2. The output of the general MQPgates depend only on the sum of the inputs. In the
next lemma it will be more convenient to denote Mml,yz,...,yp) i.e., gate MOIZﬁ\1 with inputs
Y1,¥2:- -+ Ye, BY MODR(Y1 +Y2 + -+ + V).

Lemma 6 (Degree Decreasing Lemma) Let p and q be different primes, and bet,x3 be variables
with values from{0,1,...,p—1}. Then

MODZ(MODj (X1 + X3)) = MODg(Ho+H1 + -+ +Hp_1+B),
where H abbreviates

p—1
H=a Z)MODﬁ(ixz—ng—kj(xl—i))
=

fori=0,1,...,p—1, wherea is the multiplicative inverse of p modulogp=1 (modq), andfis a
positive integer satisfyin = —|A|(p— 1)a modg.

In the special case ¢MOD3, MODél}) circuit, the statement of Lemnﬁl 6 is illustrated on Figﬂlre 1.

Fig. 1: Degree-decreasing in ti#OD3, MODél}) case: on the left the input is a degree-2 polynomial, on the right
the inputs are linear polynomials.
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Proof: Letx;=kandletO<i<p-—1, k#i. Then

p—1
Hy = o Z)MOD’S(ka +X3) = apMOD}(kxe + X3) = MODf(x1X2 + X3)  (modaq),
J:

and
p—1
Hi=a Z)MOD’S(in+X3+ j(k—i)) =alA,
J:

since for any fixedky, X3, i,k expressiorixz + X3 + j(k—i) takes on every value exactly once modplo
while j=0,1,...,p—1; so MODS(ix2+x3+ j(k—1i)) equals to 1 exactlyA| times. Consequently,

MODg(Ho+H1+---+Hp_1+B) = MODZ(MODp(x1%z +X3) + (p— 1)a|A| + B)
= MODg(MODp(x1%2 +X3)).

4  Applications of the Degree Decreasing Lemma

The following theorem facilitates the applications of the Degree Decreasing Lemma:

Theorem 7 Suppose, that function: f0,1}" — {0,1} can be computed by(eMODg’, MOD/S; depth—d)
circuit of size s, where p and q are two different primes, and d is a non-negative integer. Then f can also
be computed by 8MODg, MOD?; 1) circuit of size

(P +1)s.

Proof:

We first show, that our(MODg,MODj;depth— d) circuit of size s can be converted into a
(MODE", MODﬁ;depth— (d — 1)) circuit of size at mosp?s+ 1. Repeating this conversiah- 2 times,
the statement follows.

We know that the input of every Mopgate can be constructed with at masmultiplications in
an arithmetic circuit. Let us consider a fixed MQ@ate. Suppose, that the last multiplication, which
computes its input-polynomial BQ+ R, whereP,Q,R are depthd — 1) multi-linear polynomials oh
variables. This MOIQ—gate, using the Degree Decreasing Lemma (Lerﬂma 6), can be converted to at most
p? MODﬁ—gates, each with depttd — 1) polynomials as inputs, plus (possibly) a leftover M@@ate
with input 1 (which may be connected to the M@@ate with multiple wires) such that the sum of these
gates give the same output moddglas the original one. If the conversion is done for all I\/I’pghtes, the

resultis aMODg,MOD?; depth- (d — 1)) circuit of size at mosp®s+ 1, since the “leftover” MOB-gate
with input 1 should be counted once. a
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4.1 Constant Degree Hypothesis

Barrington, Straubing and Ehien in [3] conjectured that arr)MODg, MOD’S;d) circuit needs exponen-
tial size to compute the fan-imn AND function. They called it the&Constant Degree Hypothegi€DH),
and proved thel = 1 case, with group-theoretic techniques.

Yan and Parberry [21] - using Fourier-analysis — proved also the= 1
case for(MODél’z"“’qfl},MODgl}; 1) circuits, but their method also works for the special case of the
CDH where the sum of the degrees of the monongat: the input-level satisfies:

n
dqu)Zl(dqul) -1 < m -0(1).

Our Theorenj]7 yields the following generalization of this result:

Theorem 8 For any prime p there exists a constdk ¢, < 1, such that for any) < ¢ < ¢p there exists a
0< ¢ <1, such that if aMODE, MOD’S,depth— |cn|) circuit computes the n-fan-in AND function, then

its size is at leasz™.
Proof:  From the result ofii3] and from Theoren 7 the statement is immediate. O

We should add, that Theorgin 8 does not imply the CDH, but it greatly generalizes the lower bounds of
[21] and of [3], and it works not only for the constant degree, but degngmlynomials as well.

Corollary 9 For any prime p there exists a constdh ¢, < 1, such that for any < ¢ < ¢, there exists
a0< ¢ <1, such that if the fan-in n AND function is computed by a circuit wiM@Dg gate at the top,
MOD’; gates at the next level, where the input of eMIDD/Q gate isan arbitrary integer-valued function

of cn variables plus an arbitrary linear polynomial of n variables, then the circuit must contain at least
2°" MOD}, gates.

Proof:  First we convert the integer-valued functionafvariables into a polynomial over Gy, for
each MO[% gates. These polynomials have degree at nsosand depend on at mosh variables.

Consequently, the circuit is(MODS, MOD’S, depth— (|cn| — 1)) circuit, and Theorerﬁ] 8 applies. O

We should mention, that Corollafy 9 is much stronger than Yan and Parberry’s fesult [21], since here the
degree-sum of the inputs of each M@I@ate can be even exponentially largenirvs. the small linear
upper bound ofif21].

4.2 The ID function

Krause and Waack [[12], using communication-complexity techniques, showed that any
(MOD{*™ Y SYMMETRIC; 1) circuit, computing the ID function:

_J 1 ifx=y,
ID0xy) = { 0 otherwise,

forx,y € {0,1}", should have size at least/dogm, where SYMMETRIC is a gate, computing an arbitrary
symmetric Boolean function.
Using this result, we prove:



A Degree-Decreasing Lemma fMODq—MODy,) Circuits 253

Theorem 10 Let p and g be two different primes. If a
(MOD{H™ % MODA, depth— [ (1 —&)n))

circuit computes th@n-fan-inID function, then its size is at lea®", where0 < ¢ < 1 depends only on
p.

Proof:  From the result ofi[12] and from Theordin 7 the statement is immediate. O

Unfortunately, the methods cf{12] do not generalize for N&Iﬁﬂtes with unrestricteB’s.

4.3 The MOD; function

Krause and Pudk [TL] proved that an{/MODg,z}, MOD{O}; 1) circuit which computes the MQB} func-

tion has size at leasf?, for somec” > 0, wherep,q andr are different primes. We also generalize this
result as follows:

Theorem 11 There exist0 < ¢’ < ¢ < 1 for different primes pg,r, and positive integer k, if circuit
(MODEE}, MODéO};deptI% lcn)) computeMOD;{O} (X1,X2,- .., %), then its size is at leagf™.

Proof:  From the result ofi[11] and from Theordin 7 the statement is immediate. O
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