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Carathéodory on the Road to the Maximum Principle

Hans Josef Pesch

Abstract. On his Royal Road of the Calculus of Variations1 the
genious Constantin Carathéodory found several exits – and missed at
least one – from the classical calculus of variations to modern optimal
control theory, at this time, not really knowing what this term means
and how important it later became for a wide range of applications.
How far Carathéodory drove into these exits will be highlighted in
this article. These exits are concerned with some of the most promi-
nent results in optimal control theory, the distinction between state
and control variables, the principle of optimality known as Bellman’s
equation, and the maximum principle. These acchievements either
can be found in Carathéodory’s work or are immediate consequences
of it and were published about two decades before optimal control the-
ory saw the light of day with the invention of the maximum principle
by the group around the famous Russian mathematician Pontryagin.
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1 On the road

Carathéodory’s striking idea was to head directly for a new sufficient condition
ignoring the historical way how the necessary and sufficient conditions of the
calculus of variations, known at that time, had been obtained.

This article contains material from the author’s paper: Carathéodory’s Royal Road of the

Calculus of Variations: Missed Exits to the Maximum Principle of Optimal Control Theory,
to appear in Numerical Algebra, Control and Optimization (NACO).

1Hermann Boerner coined the term “Königsweg der Variationsrechnung” in 1953; see
H. Boerner: Carathéodorys Eingang zur Variationsrechnung, Jahresbericht der Deutschen
Mathematiker Vereinigung, 56 (1953), 31–58. He habilitated 1934 under Carathéodory.
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318 Hans Josef Pesch

Figure 1: Constantin Carathéodory – ΚωνσταντÐνος Καραθεοδορ¨ (1938)
(Born: 13 Sept. 1873 in Berlin, Died: 2 Feb. 1950 in Munich, Germany) and
Constantin Carathéodory and Thales from Milet on a Greek postage stamp
(Photograph courtesy of Mrs. Despina Carathéodory-Rodopoulou, daugh-
ter of Carathéodory. See: ∆. Καραθεοδορ -ΡοδοπÔλου, ∆. ΒλαχοστεργÐου-
Βασβατèκη: ΚωνσταντÐνος Καραθεοδορ : Ο σοφìς ÇΕλλην του Μον�χου, Εκ-
δìσεις Κακτος, Athens, 2001.)

We follow, with slight modifications of the notation,2 Carathéodory’s book
of 1935, Chapter 12 “Simple Variational Problems in the Small” and Chap-
ter 18 “The Problem of Lagrange”.3

We begin with the description of Carathéodory’s Royal Road of the Calculus
of Variations directly for Lagrange problems that can be regarded as precursors
of optimal control problems. We will proceed only partly on his road, in partic-
ular we are aiming to Carathéodory’s form of Weierstrass’ necessary condition
in terms of the Hamilton function. For the complete road, see Carathéodory’s
original works already cited. Short compendia can be found in Pesch and Bu-
lirsch (1994) and Pesch (to appear), too.

Let us first introduce a C1-curve x = x(t) = (x1(t), . . . , xn(t))
⊤
, t′ ≤ t ≤ t′′,

in an (n+ 1)-dimensional Euclidian space Rn+1. The line elements (t, x, ẋ) of
the curve are regarded as elements of a (2n+ 1)-dimensional Euclidian space,
say S2n+1.
Minimize

I(x) =

∫ t2

t1

L(t, x, ẋ) dt (1)

2We generally use the same symbols as Carathéodory, but use vector notation instead of
his component notation.

3The book was later translated into English in two parts (1965–67). The German edition
was last reprinted in 1994.
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Carathéodory on the Road to the Maximum Principle 319

subject to, for the sake of simplicity, fixed terminal conditions x(t1) = a and
x(t2) = b, t′ < t1 < t2 < t′′, and subject to the implicit ordinary differential
equation

G(t, x, ẋ) = 0 (2)

with a real-valued C2-function L = L(t, x, ẋ)4 and a p-vector-valued C2-
functionG = G(t, x, ẋ) with p < n, both defined on an open domainA ⊂ S2n+1.
It is assumed that the Jacobian of G has full rank,

rank

(

∂Gk

∂ẋj

)

k=1,...,p
j=1,...,n

= p . (3)

1st Stage: Definition of extremals. Carathéodory firstly coins the term
extremal in a different way than today. According to him, an extremal is a
weak extremum of the problem (1), (2).5 Hence, it might be either a so-called
minimal or maximal.

2nd Stage: Legendre-Clebsch condition. Carathéodory then shows the
Legendre-Clebsch necessary condition

Lẋ ẋ(t, x, ẋ) must not be indefinite.

Herewith, positive (negative) regular, resp. singular line elements (t, x0, ẋ0) ∈ A
can be characterized by Lẋ ẋ(t, x0, ẋ0) being positive (negative) definite, resp.
positive (negative) semi-definite. Below we assume that all line elements are
positive regular. In today’s terminology: for fixed (t, x) the map v 7→ L(t, x, v)
has a positive definite Hessian Lvv(t, x, v).

3rd Stage: Existence of extremals and Carathéodory’s sufficient

condition. We consider a family of curves which is assumed to cover simply
a certain open domain of R ⊂ Rn+1 and to be defined, because of (3), by the
differential equation ẋ = ψ(t, x) with a C1-function ψ so that the constraint (2)
is satisfied. Carathéodory’s sufficient condition then reads as follows.

Theorem 1 (Sufficient condition). If a C1-function ψ and a C2-function
S(t, x) can be determined such that

L(t, x, ψ)− Sx(t, x)ψ(t, x) ≡ St(t, x), (4)

L(t, x, x′)− Sx(t, x)x
′ > St(t, x) (5)

4The twice continuous differentiability of L w. r. t. all variables will not be necessary right
from the start.

5In Carathéodory’s terminology, any two competing curves x(t) and x̄(t) must lie in a
close neighborhood, i.e., |x̄(t)− x(t)| < ǫ and | ˙̄x(t)− ẋ(t)| < η for positive constants ǫ and η.
The comparison curve x̄(t) is allowed to be continuous with only a piecewise continuous
derivative; in today’s terminology x̄ ∈ PC1([t1, t2],Rn). All results can then be extended to
analytical comparison curves, if necessary, by the well-known Lemma of Smoothing Corners.
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Figure 2: Constantin Carathéodory as a boy (1883), as élève étranger of the
École Militaire de Belgique (1891), a type of military cadet institute, and
together with his father Stephanos who belonged to those Ottoman Greeks
who served the Sublime Porte as diplomats (1900) (Photographs courtesy of
Mrs. Despina Carathéodory-Rodopoulou, daughter of Carathéodory. See: ∆.
Καραθεοδορ -ΡοδοπÔλου, ∆. ΒλαχοστεργÐου-Βασβατèκη: ΚωνσταντÐνος Καρα-
θεοδορ : Ο σοφìς ÇΕλλην του Μον�χου, Εκδìσεις Κακτος, Athens, 2001.)

for all x′, which satisfy the boundary conditions x′(t1) = a and x′(t2) = b and
the differential constraint G(t, x, x′) = 0, where |x′−ψ(t, x)| is sufficiently small
with |x′−ψ(t, x)| 6= 0 for the associated line elements (t, x, x′), t ∈ (t1, t2), then
the solutions of the boundary value problem ẋ = ψ(t, x), x(t1) = a, x(t2) = b

are minimals of the variational problem (1), (2).

2 Exit to Bellman’s Equation

Carathéodory stated verbatim (translated by the author from the German edi-
tion of 1935, p. 201 [for the unconstrained variational problem (1)]: According
to this last result, we must, in particular, try to determine the functions ψ(t, x)
and S(t, x) so that the expression

L∗(t, x, x′) := L(t, x, x′)− St(t, x)− Sx(t, x)x
′ , (6)

considered as a function of x′, possesses a minimum for x′ = ψ(t, x), which,
moreover, has the value zero. In today’s terminology:

St = min
x′

{L(t, x, x′)− Sx x
′} ; (7)

see also the English edition of 1965, Part 2) or the reprint of 1994, p. 201. This
equation became later known as Bellman’s equation and laid the foundation of
his Dynamic Programming Principle; see the 1954 paper of Bellman.6

6In Breitner: The Genesis of Differential Games in Light of Isaacs’ Contributions, J. of
Optimization Theory and Applications, 124 (2005), p. 540, there is an interesting comment
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Carathéodory on the Road to the Maximum Principle 321

Actually, the principle of optimality traces back to the founding years of
the Calculus of Variations,7 to Jacob Bernoulli. In his reply to the famous
brachistochrone problem8 by which his brother Johann founded this field in
16969, Jacob Bernoulli wrote:

Si curva ACEDB talis sit, quae requiritur, h.e. per quam descen-
dendo grave brevissimo tempore ex A ad B perveniat, atque in illa
assumantur duo puncta quantumlibet propinqua C & D: Dico, pro-
portionem Curvae CED omnium aliarum punctis C & D termi-
natarum Curvarum illam esse, quam grave post lapsum ex A bre-
vissimo quoque tempore emetiatur. Si dicas enim, breviori tem-
pore emetiri aliam CFD, breviori ergo emetietur ACFDB, quam
ACEDB, contra hypoth. (See Fig. 3.)

If ACEDB is the required curve, along which a heavy particle de-
scends under the action of the downward directing gravity from A

to B in shortest time, and if C andD are two arbitrarily close points
of the curve, the part CED of the curve is, among all other parts
having endpoints C and D, that part which a particle falling from A

under the action of gravity traverses in shortest time. Viz., if a dif-
ferent part CFD of the curve would be traversed in a shorter time,
the particle would traverse ACFDB in a shorter time as ACEDB,
in contrast to the hypothesis.

Jacob Bernoulli’s result was later formulated by Euler10 (Carathéodory: in one
of the most wonderful books that has ever been written about a mathematical
subject) as a theorem. Indeed, Jacob Bernoulli’s methods were so powerful and
general that they have inspired all his illustrious successors in the field of the
calculus of variations, and he himself was conscious of his outstanding results
which is testified in one of his most important papers (1701)11 (Carathéodory:

by W. H. Flemming: Concerning the matter of priority between Isaacs’ tenet of transition

and Bellman’s principle of optimality, my guess is that these were discovered independently,

even though Isaacs and Bellman were both at RAND at the same time . . . In the context of

calculus of variations, both dynamic programming and a principle of optimality are implicit

in Carathéodory’s earlier work, which Bellman overlooked. For more on Bellmann and his
role in the invention of the Maximum Principle, see Plail (1998) and Pesch and Plail (2009,
2012)

7For roots of the Calculus of Variations tracing back to antiquity, see Pesch (2012).
8Bernoulli, Jacob, Solutio Problematum Fraternorum, una cum Propositione reciproca

aliorum, Acta Eruditorum, pp. 211–217, 1697; see also Jacobi Bernoulli Basileensis Opera,
Cramer & Philibert, Geneva, Switzerland, Jac. Op. LXXV, pp. 768–778, 1744.

9Bernoulli, Johann, Problema novum ad cujus solutionem Mathematici invitantur, Acta
Eruditorum, pp. 269, 1696; see also Johannis Bernoulli Basileensis Opera Omnia, Bousquet,
Lausanne and Geneva, Switzerland, Joh. Op. XXX (pars), t. I, p. 161, 1742.

10Euler, L., Methodus inveniendi Lineas Curvas maximi minimive proprietate gaudentes,

sive Solutio Problematis Isoperimetrici latissimo sensu accepti, Bousquet, Lausanne and
Geneva, Switzerland, 1744; see also Leonhardi Euleri Opera Omnia, Ser. Prima, XXIV (ed.
by C. Carathéodory), Orell Fuessli, Turici, Switzerland, 1952.

11Bernoulli, Jacob, Analysis magni Problematis Isoperimetrici, Acta Eruditorum, pp. 213–
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Figure 3: Jacob Bernoulli’s figure for the proof of his principle of optimality

eine Leistung allerersten Ranges) not only by the dedication to the four math-
ematical heroes Marquis de l’Hôspital, Leibniz, Newton, and Fatio de Duillier,
but also by the very unusual and dignified closing of this paper:

Deo autem immortali, qui imperscrutabilem inexhaustae suae sapi-
entiae abyssum leviusculis radiis introspicere, & aliquousque rimari
concessit mortalibus, pro praestita nobis gratia sit laus, honos &
gloria in sempiterna secula.

Trans.: Verily be everlasting praise, honor and glory to eternal God
for the grace accorded man in granting mortals the goal of intro-
spection, by faint (or vain) lines, into the mysterious depths of His
Boundless knowledge and of discovery of it up to a certain point. –
This prayer contains a nice play upon words: radius means ray or
line as well as drawing pencil or also the slat by which the antique
mathematicians have drawn their figures into the green powdered
glass on the plates of their drawing tables.

For the Lagrange problem (1), (2), Eq. (7) reads as

St = min
x′ such that
G(t,x,x′)=0

{L(t, x, x′)− Sx x
′} ; (8)

compare Carathéodory’s book of 1935, p. 349. Carathéodory considered only
unprescribed boundary conditions there.
Carathéodory’s elegant proof relys on so-called equivalent variational prob-

lems and is ommitted here; cf. Pesch (to appear).

3 On the road again

4th Stage: Fundamental equations of the calculus of variations.

This immediately leads to Carathéodory’s fundamental equations of the calcu-
lus of variations, here directly written for Lagrangian problems: Introducing

228, 1701; see also Jacobi Bernoulli Basileensis Opera, Cramer & Philibert, Geneva, Switzer-
land, Jac. Op. XCVI, pp. 895–920, 1744.
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Carathéodory on the Road to the Maximum Principle 323

the Lagrange function

M(t, x, ẋ, µ) := L(t, x, ẋ) + µ⊤G(t, x, ẋ)

with the p-dimensional Lagrange multiplier µ, the fundamental equations are

Sx =Mẋ(t, x, ψ, µ) , (9)

St =M(t, x, ψ, µ)−Mẋ(t, x, ψ, µ)ψ, (10)

G(t, x, ψ) = 0 . (11)

These equations can already be found in Carathéodory’s paper of 1926, al-
most 30 years prior to Bellman’s version of these equations. They constitute
necessary conditions for an extremal of (1), (2).

5th Stage: Necessary condition of Weierstrass. Replacing ψ by ẋ in
the right hand sides of (9)–(11), Weierstrass’ Excess Function for the Lagrange
problem (1), (2) is obtained as

E(t, x, ẋ, x′, µ) =M(t, x, x′, µ)−M(t, x, ẋ, µ)−Mẋ(t, x, ẋ, µ) (x
′ − ẋ) (12)

with line elements (t, x, ẋ) and (t, x, x′) both satisfying the constraint (2). By a
Taylor expansion, it can be easily seen that the validity of the Legendre-Clebsch
condition in a certain neighborhood of the line element (t, x, ẋ) is a sufficient
condition for the necessary condition of Weierstrass,

E(t, x, ẋ, x′, µ) ≥ 0 . (13)

The Legendre–Clebsch condition can then be formulated as follows: The min-
imum of the quadratic form

Q = ξ⊤Mẋ ẋ(t, x, ẋ, µ) ξ ,

subject to the constraint
∂G

∂ẋ
ξ = 0

on the sphere ‖ξ‖2 = 1, must be positive. This immediately implies
(

Mẋ ẋ G⊤

ẋ

Gẋ 0

)

must be positive semi-definite . (14)

This result will play an important role when canonical coordinates are now
introduced.

6th Stage: Canonical coordinates and Hamilton function. New
variables are introduced by means of

y :=M⊤

ẋ (t, x, ẋ, µ) , (15)

z := G(t, x, ẋ) =M⊤

µ (t, x, ẋ, µ) . (16)
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Figure 4: Constantin Carathéodory in Göttingen (1904), his office in his home
in Munich-Bogenhausen, Rauchstraße 8, and in Munich (1932) in his home of-
fice (Photographs courtesy of Mrs. Despina Carathéodory-Rodopoulou, daugh-
ter of Carathéodory. See: ∆. Καραθεοδορ -ΡοδοπÔλου, ∆. ΒλαχοστεργÐου-
Βασβατèκη: ΚωνσταντÐνος Καραθεοδορ : Ο σοφìς ÇΕλλην του Μον�χου, Εκ-
δìσεις Κακτος, Athens, 2001.)

Because of (14), these equations can be solved for ẋ and µ in a neighborhood
of a “minimal element” (t, x, ẋ, µ),12

ẋ = Φ(t, x, y, z) , (17)

µ = X(t, x, y, z) . (18)

Defining the Hamiltonian in canonical coordinates (t, x, y, z) by

H(t, x, y, z) = −M(t, x,Φ, X) + y⊤ Φ+ z⊤X , (19)

the function H is at least twice continuously differentiable and there holds

Ht = −Mt , Hx = −Mx , Hy = Φ⊤ , Hz = X⊤ . (20)

Letting H(t, x, y) = H(t, x, y, 0), the first three equations of (20) remain
valid for H instead of H. Alternatively, H can be obtained directly from
y = M⊤

ẋ (t, x, ẋ, µ) and 0 = G(t, x, ẋ) because of (14) via the relations
ẋ = φ(t, x, y) and µ = χ(t, x, y),

H(t, x, y) = −L(t, x, φ(t, x, y)) + y⊤ φ(t, x, y) . (21)

12Carathéodory has used only the term extremal element (t, x, ẋ, µ) depending whether the
matrix (14) is positive or negative semi-definite. For, there exists a p-parametric family of
extremals that touches oneself at a line element (t, x, ẋ). However, there is only one extremal
through a regular line element (t, x, ẋ).
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Carathéodory on the Road to the Maximum Principle 325

Note that φ is at least of class C1 because L ∈ C2, hence H is at least C1, too.
The first derivatives of H are, by means of the identity y = L⊤

ẋ (t, x, ẋ)
⊤,

Ht(t, x, y) = −Lt(x, y, φ) , Hx(t, x, y) = −Lx(t, x, φ),

Hy(t, x, y) = φ(t, x, y)⊤.

Therefore, H is even at least of class C2. This Hamilton function can also serve
to characterize the variational problem completely.

4 Missed exit to optimal control

7th Stage: Carathéodory’s closest approach to optimal control.

In Carathéodory’s book of 1935, p. 352, results are presented that can be in-
terpreted as introducing the distinction between state and control variables in
the implicit system of differential equations (2). Using an appropriate numera-
tion and partition x = (x(1), x(2)), x(1) := (x1, . . . , xp), x

(2) := (xp+1, . . . , xn),
Eq. (2) can be rewritten due to the rank condition (3):13

G(t, x, ẋ) = ẋ(1) −Ψ(t, x, ẋ(2)) = 0 .

By the above equation, the Hamiltonian (21) can be easily rewritten as

H(t, x, y) = −L̄(t, x, φ(2)) + y(1)
⊤

φ(1) + y(2)
⊤

φ(2) (22)

with L̄(t, x, φ(2)) := L(t, x,Ψ, φ(2))

and ẋ(1) = Ψ(t, x, φ(2)) = φ(1)(t, x, y) and ẋ(2) = φ(2)(t, x, y). This is exactly
the type of Hamiltonian known from optimal control theory. The canonical
variable y stands for the costate and ẋ(2) for the remaining freedom of the
optimization problem (1), (2) later denoted by the control.
Nevertheless, the first formulation of a problem of the calculus of variations

as an optimal control problem, which can be designated justifiably so, can be
found in Hestenes’ RAND Memorandum of 1950. For more on Hestenes and
his contribution to the invention of the Maximum Principle, see Plail (1998)
and Pesch and Plail (2009, 2012).

8th Stage: Weierstrass’ necessary condition in terms of the

Hamiltonian. From Eqs. (13), (15), (16), (19), and (20) there follows
Carathéodory’s formulation of Weierstrass’ necessary condition which can be
interpreted as a precursor of the maximum principle

E = H(t, x, y)−H(t, x, y′)−Hy(t, x, y
′) (y − y′) ≥ 0 , (23)

13The original version is Γk′ (t, xj , ẋj) = ẋk′ − Ψk′ (t, xj , ẋj′′ ) = 0, where k′ = 1, . . . , p,
j = 1, . . . , n, j′′ = p+ 1, . . . , n. Note that Carathéodory used Γ in his book of 1935 instead
of G which he used in his paper of 1926 and which we have inherit here.
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where (t, x, y) and (t, x, y′) are the canonical coordinates of two line ele-
ments passing through the same point. This formula can already be found
in Carathéodory’s paper of 1926.
From here, there is only a short trip to the maximum principle, however

under the strong assumptions of the calculus of variations as have been also
posed by Hestenes (1950). For the general maximum principle see Bolyanskii,
Gamkrelidze, and Pontryagin (1956).

5 Side road to a maximum principle of Optimal Control Theory

In Pesch, Bulirsch (1994), a proof for the maximum principle was given for an
optimal control problem of type

∫ t2

t1

L(t, z, u) dt
!
= min subject to ż = g(t, z, u)

starting with Carathéodory’s representation of Weierstrass’ necessary condi-
tions (23) in terms of a Hamiltonian.
In the following we pursue a different way leading to the maximum principle

more directly, still under the too strong assumptions of the calculus of variations
as in Hestenes (1950). Herewith, we continue the tongue-in-cheek story on 300
years of Optimal Control by Sussmann and Willems (1997) by adding a little
new aspect.
Picking up the fact that ẋ = v(t, x) minimizes v 7→ L∗

v(t, x, v), we are led
by (6) to the costate p = L⊤

v (t, x, ẋ) [as in (15), now using the traditional
notation] and the Hamiltonian H,

H(t, x, p) = min
ẋ

{L(t, x, ẋ) + p⊤ ẋ} .

Then Carathéodory’s fundamental equations read as follows

p = −S⊤

x (t, x) , St = H(t, x, S⊤

x ) .

This is the standard form of the Hamiltonian in the context of the calculus of
variations leading to the Hamilton–Jacobi equation.
Following Sussmann and Willems (1997) we are led to the now maximizing

Hamiltonian (since we are aiming to a maximum principle), also denoted by H,

H(t, x, u, p) = −L(t, x, u) + p⊤ u

with p = L⊤

u (t, x, u) defined accordingly and the traditional notation for the
degree of freedom, the control ẋ = u, when we restrict ourselves, for the sake
of simplicity, to the most simplest case of differential constraints.
It is then obvious that H⊤

p = u as long as the curve x satisfies

ẋ(t) = H⊤

p

(

t, x(t), ẋ(t), p(t)
)

. (24)
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By means of the Euler-Lagrange equation

d

dt
Lu(t, x, ẋ)− Lx(t, x, ẋ) = 0

and because of Hx = −Lx, we obtain

ṗ(t) = −H⊤

x (t, x, ẋ, p(t)) . (25)

Furthermore, we see H⊤

u = −L⊤

u + p = 0. Since the Hamiltonian H(t, x, u, p)
is equal to −L(t, x, u) plus a linear function in u, the strong Legendre–Clebsch
condition for now maximizing the functional (1) is equivalent to Huu < 0.
Hence H must have a maximum with respect to u along a curve (t, x(t), p(t))
defined by the above canonical equations (24), (25).
If L depends linearly on u, the maximization of H makes sense only in the

case of a constraint on the control u in form of a closed convex set Uad of
admissible controls, which would immediately yield the variational inequality

Hu(t, x, ū, p) (u− ū) ≤ 0 ∀u ∈ Uad (26)

along a candidate optimal trajectory x(t), p(t) satisfying the canonical equa-
tions (24), (25) with ū denoting the maximizer. That is the maximum principle
in its known modern form.
A missed exit from the royal road of the calculus of variations to the maxi-

mum principle of optimal control? Not at all! However, it could have been at
least a first indication of a new field of mathematics looming on the horizon.
See also Pesch (to appear).

6 Résumé

With Carathéodory’s own words:

I will be glad if I have succeeded in impressing the idea that it is not
only pleasant and entertaining to read at times the works of the old
mathematical authors, but that this may occasionally be of use for
the actual advancement of science. [. . . ] We have seen that even
under conditions which seem most favorable very important results
can be discarded for a long time and whirled away from the main
stream which is carrying the vessel science. [. . . ] It may happen
that the work of most celebrated men may be overlooked. If their
ideas are too far in advance of their time, and if the general public
is not prepared to accept them, these ideas may sleep for centuries
on the shelves of our libraries. [. . . ] But I can imagine that the
greater part of them is still sleeping and is awaiting the arrival of
the prince charming who will take them home.14

14On Aug. 31, 1936, at the meeting of the Mathematical Association of America in Cam-

Documenta Mathematica · Extra Volume ISMP (2012) 317–329



328 Hans Josef Pesch

Figure 5: Constantin Carathéodory on a hike with his students at
Pullach in 1935 (Photographs courtesy of Mrs. Despina Carathéodory-
Rodopoulou, daughter of Carathéodory. See: ∆. Καραθεοδορ -ΡοδοπÔλου, ∆.
ΒλαχοστεργÐου-Βασβατèκη: ΚωνσταντÐνος Καραθεοδορ : Ο σοφìς ÇΕλλην του
Μον�χου, Εκδìσεις Κακτος, Athens, 2001.)
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Edited, commented and extended by R. Klötzler. Teubner-Archiv der Math-
ematik 18, Teubner-Verlagsgesellschaft, Stuttgart, Leipzig, Germany.

Hestenes, M. R. (1950) A General Problem in the Calculus of Variations with
Applications to the Paths of Least Time. Research Memorandum No. 100,
ASTIA Document No. AD 112382, RAND Corporation, Santa Monica.

Pesch, H. J. (2012) The Princess and Infinite-dimensional Optimization In:
M. Grötschel (ed.): Optimization Stories. Documenta Mathematica.

Pesch, H. J. and Plail, M. (2009) The Maximum Principle of Optimal Con-
trol: A History of Ingenious Ideas and Missed Opportunities. Control and
Cybernetics 38, No. 4A, 973-995.
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