
Documenta Math. 1303

Milne’s Correcting Factor

and Derived De Rham Cohomology II

Baptiste Morin

Received: December 1, 2016

Communicated by Stephen Lichtenbaum

Abstract. Milne’s correcting factor, which appears in the Zeta-
value at s = n of a smooth projective variety X over a finite field Fq,
is the Euler characteristic of the derived de Rham cohomology of X/Z
modulo the Hodge filtration Fn. In this note, we extend this result
to arbitrary separated schemes of finite type over Fq of dimension at
most d, provided resolution of singularities for schemes of dimension
at most d holds. More precisely, we show that Geisser’s generalization
of Milne’s factor, whenever it is well defined, is the Euler characteristic
of the eh-cohomology with compact support of the derived de Rham
complex relative to Z modulo Fn.
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1 Introduction

For any separated scheme X of finite type over the finite field Fq, the special
values of the zeta function Z(X, t) :=

∏

x∈X0
(1 − tdeg(x))−1 are conjecturally

given by

limt→q−nZ(X, t) · (1− qnt)ρn = ±χ(H∗
W,c(X,Z(n)),∪e) · q

χeh
c (X/Fq,O,n). (1)

Here H∗
W,c(X,Z(n)) denotes Geisser’s ”arithmetic cohomology with compact

support”, ∪e is cup-product with the fundamental class e ∈ H1(WFq ,Z) and

qχ
eh
c (X/Fq,O,n) is Geisser’s generalization of Milne’s correcting factor. The fac-

tor qχ
eh
c (X/Fq ,O,n) is well defined under the assumption that resolution of sin-

gularities for schemes of dimension ≤ dim(X) holds. The same assumption
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1304 Baptiste Morin

guaranties that, for X smooth projective, H∗
W,c(X,Z(n)) coincides with Weil-

étale motivic cohomology and qχ
eh
c (X/Fq ,O,n) coincides with Milne’s correcting

factor. For arbitrary X , the definitions of H∗
W,c(X,Z(n)) and qχ

eh
c (X/Fq,O,n)

involve eh-cohomology with compact support. For instance

χehc (X/Fq,O, n) :=
∑

i≤n,j∈Z

(−1)i+j · (n− i) · dimFqH
j
c (Xeh,Ω

i)

whereHi
c(Xeh,Ω

i) denotes eh-cohomology with compact support of the sheaf of
differentials Ωi. Let Schd/Fq be the category of separated schemes of finite type

over Fq of dimension at most d. We say that R(d) holds if any X ∈ Sch
d/Fq

admits resolution of singularities (see [2] Definition 2.4 for a precise statement).
T. Geisser has shown in [2] that, if R(d) holds and if the groups Hi

W (Y,Z(n))
are finitely generated for any smooth projective variety Y of dimension at most
d, then χehc (X/Fq,O, n) is well defined and (1) holds for any X ∈ Sch

d/Fq.
It was pointed out in [6] that, forX smooth projective, Milne’s correcting factor
is the (multiplicative) Euler-Poincaré characteristic of the derived de Rham co-
homology complex RΓ(XZar, LΩ

∗
X/Z/F

n) and that (1) can be restated in terms
of a certain fundamental line. The aim of this note is to show that this remark
applies for arbitrary separated schemes of finite type over Fq. More precisely,

we denote by Sheh(Sch
d/Fq) the category of sheaves of sets on the category

Sch
d/Fq endowed with the eh-topology. The resulting eh-topos Sheh(Sch

d/Fq)
is endowed with a structure ring Oeh, which is defined as the eh-sheafification
of the presheaf X 7→ OX(X) on Sch

d/Fq. We denote by LΩ∗
Oeh/Z/F

n the

derived de Rham complex modulo the Hodge filtratio n Fn associated with the
morphism of ringed topoi

(Sheh(Sch
d/Fq),O

eh) −→ (Spec(Z),OSpec(Z))

where OSpec(Z) is the usual structure sheaf on Spec(Z). Then we consider
its cohomology with compact support RΓc(Xeh, LΩ

∗
Oeh/Z/F

n). Under the as-

sumption of Theorem 1.1(4) below, one may define the fundamental line

∆(X/Z, n) := detZRΓW,c(X,Z(n))⊗Z detZRΓc(Xeh, LΩ
∗
Oeh/Z/F

n)

and its trivialization

λX : R
∼
−→ ∆(X/Z, n)⊗Z R

which is induced by the acyclic complex

· · ·
∪θ
−→ Hi

W,c(X,Z(n))R
∪θ
−→ Hi+1

W,c(X,Z(n))R
∪θ
−→ · · ·

Here the fundamental class θ = IdR ∈ H1(R,R) = ”H1(WF1 ,R)” is in some
sense analogous to e ∈ H1(WFq ,Z). We denote by ζ∗(X,n) the leading coeffi-
cient in the Taylor development of ζ(X, s) = Z(X, q−s) near s = n.
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Theorem 1.1. Let X be a separated scheme of finite type over Fq and let n ∈ Z

be an integer. Assume that X has dimension d and that R(d) holds.

1. If X is smooth projective, the canonical map

RΓ(XZar, LΩ
∗
X/Z/F

n)→ RΓc(Xeh, LΩ
∗
Oeh/Z/F

n)

is a quasi-isomorphism.

2. The complex RΓc(Xeh, LΩ
∗
Oeh/Z/F

n) is bounded with finite cohomology
groups.

3. We have

∏

i∈Z

| Hi
c(Xeh, LΩ

∗
Oeh/Z/F

n) |(−1)i = qχ
eh
c (X/Fq,O,n). (2)

4. Assume moreover that for any smooth projective variety Y of dimension
≤ d, the usual Weil-étale cohomology groups Hi

W (Y,Z(n)) are finitely
generated for all i. Then one has

∆(X/Z, n) = Z · λX
(

ζ∗(X,n)−1
)

.

In particular, Theorem 1.1(1)–(3) holds (unconditionally) for dim(X) ≤ 2 and
Theorem 1.1(4) holds for dim(X) ≤ 1. This note is organized as follows. We
fix some notations and definitions in Section 2. In Section 3, we give the
proof of Theorem 1.1, which is based on the following computation of the
cohomology sheaves of the complex LΛn

OehLOeh/Z: we define an isomorphism
(see Proposition 3.6)

Hi−n(LΛnOehLOeh/Z) ≃ Ωi≤n
Oeh/Fq

where Ωi≤n := Ωi for i ≤ n and Ωi≤n := 0 for i > n. This argument also gives
a slightly different proof of the main result of [6], see Remark 3.5.

2 Preliminaries

2.1 The derived de Rham complex

Given a ring A and an A-module M , we denote by ΛA(M) (resp. ΓA(M)) the
exterior A-algebra of M (resp. the divided power algebra of M , see [1] App.
A), and by ΛiA(M) (resp. ΓiA(M)) its submodule of homogeneous elements of
degree i. If (S, A) is a ringed topos and M an A-module, one defines ΛA(M),
ΓA(M), ΛiA(M) and ΓiA(M) as above, internally in S. Then ΛA(M) (resp.
ΓA(M)) coincides with the sheafification of U 7→ ΛA(U)(M(U)) (resp. U 7→
ΓA(U)(M(U))). We denote by LΛiA the left derived functor of the (non-additive)
exterior power functor ΛiA (see [4] I.4.2). We often omit the subscript A and
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1306 Baptiste Morin

simply write ΛiM , ΓiM and LΛiM . Let A → B be a morphism of rings in
S. We denote by Ω1

B/A the B-module of Kähler differe ntials, we set ΩiB/A :=

ΛiBΩ
1
B/A and we denote by Ω<nB/A the complex of A-modules [Ω0

B/A → Ω1
B/A →

· · · → Ωn−1
B/A] put in degrees [0, n−1]. Let PA(B) be the standard simplicial free

resolution of the A-algebra B (see [4] I.1.5.5.6), and let LB/A be the cotangent
complex ([4] II.1). By definition LB/A is the complex of B-modules associated
with the simplicial B-module Ω1

PA(B)/A⊗PA(B)B. Similarly we define LΛiBLB/A
as the (actual) complex of B-modules associated with the simplicial B-module
ΩiPA(B)/A ⊗PA(B) B. The derived de Rham complex modulo Fn is defined as

the total complex (see [5] VIII.2.1)

LΩ∗
B/A/F

n := Tot(Ω<nPA(B)/A)

which we simply see in this paper as a complex of A-modules. The Hodge
filtration on LΩ∗

B/A/F
n satisfies grp(LΩ∗

B/A/F
n) ≃ LΛpBLB/A[−p] for p < n

and grp(LΩ∗
B/A/F

n) = 0 otherwise. For example, if (X,OX) is a scheme, then

PZ(OX) denotes the standard simplicial free resolution of Z→ OX in the small
Zariski topos of the scheme X , and LX/Z := LOX/Z is the cotangent complex
associated with the morphism of schemes X → Spec(Z).
If f : S ′ → S is a morphism of topoi, we write f−1 : S → S ′ for the set-theoretic
inverse image functor of f . Let f : (S ′, A′)→ (S, A) be a morphism of ringed
topoi, i.e. a morphism of topoi f : S ′ → S together with a morphism of rings
f−1A→ A′ in S ′. One defines

LΩ∗
f/F

n = LΩ∗
(S′,A′)/(S,A)/F

n := LΩ∗
A′/f−1A/F

n

which is a complex of f−1A-modules in S ′. We denote by f∗ : Mod(A) →
Mod(A′) the inverse image functor for modules, i.e. f∗M := f−1M ⊗f−1A A

′,
where Mod(A) (resp. Mod(A′)) is the category of A-modules in S (resp. of
A′-modules in S ′).

Lemma 2.1. Let f : S ′ → S be a morphism of topoi and let A → B be
a morphism of rings in S. Then we have f−1(PA(B)) ≃ Pf−1A(f

−1B),

f−1
(

LΩ∗
B/A/F

n
)

≃ LΩ∗
f−1B/f−1A/F

n, an isomorphism of f−1B-modules

f−1(ΩiB/A) ≃ Ωif−1B/f−1A and an isomorphism of complexes of f−1B-modules

f−1(LΛiBLB/A) ≃ LΛ
i
f−1BLf−1B/f−1A.

Proof. The identifications f−1(PA(B)) ≃ Pf−1A(f
−1B) and f−1(Ω1

B/A) ≃

Ω1
f−1B/f−1A follow from the definitions (see [4] II.1.2.1.4 and [4] II.1.1.4.1).

Moreover we have f−1(ΛiR(M)) ≃ Λif−1R(f
−1M) for any ring R in S and any

R-module M . The result follows easily.

2.2 Derived de Rham cohomology with compact support

The following definition is due to Thomas Geisser [2]. Let Sch
d/Fq be the

category of separated schemes of finite type over Fq of dimension ≤ d.
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Definition 2.2. The eh-topology on Sch
d/Fq is the Grothendieck topology

generated by the following coverings:

• étale coverings

• abstract blow-ups: If we have a cartesian square

Z ′ i′ //

f ′

��

X ′

f

��
Z

i // X

where f is proper, i a closed embedding, and f induces an isomorphism

X ′ − Z ′ ∼
−→ X − Z, then (X ′ f

→ X,Z
i
→ X) is a covering.

We denote by PSh(Schd/Fq) the category of presheaves of sets on Sch
d/Fq

and by Sheh(Sch
d/Fq) the topos of eh-sheaves of sets on Sch

d/Fq. Note that
the functor

y : Schd/Fq →֒ PSh(Schd/Fq)→ Sheh(Sch
d/Fq),

given by composing the Yoneda embedding and eh-sheafification, is not fully
faithful. Hence the eh-topology is not subcanonical. For example, if Xred

denotes the maximal reduced closed subscheme of X ∈ Sch
d/Fq, then the

induced map yXred → yX is an isomorphism. If U is an object of Schd/Fq
and F an eh-sheaf on Sch

d/Fq, we choose a Nagata compactification U →֒ X
with closed complement Z →֒ X (so that X is proper over Fq and U is open
and dense in X), and we define

RΓc(Ueh,F) := Cone (RΓ(Xeh,F)→ RΓ(Zeh,F)) [−1].

Here RΓ(Xeh,F) denotes the cohomology of the slice topos Sheh(Sch
d/Fq)/yX

with coefficients in F×yX → yX . Equivalently, RΓ(Xeh,−) is the total derived
functor of the functor F 7→ F(X). It can be shown that RΓc(Ueh,F) does not
depend on the compactification (see [2] Proposition 3.2). Then RΓc(Ueh,F)
is contravariant for proper maps and covariant for open immersions. For an

open-closed decomposition (U
j
→ X

i
← Z), there is an exact triangle

RΓc(Ueh,F)→ RΓc(Xeh,F)→ RΓc(Zeh,F)→

Notation 2.3. The structure ring Oeh on Sheh(Sch
d/Fq) is the eh-sheaf as-

sociated with the presheaf of rings

R : (Schd/Fq)
op −→ Rings

X 7−→ OX(X)
.

Consider the morphism of ringed topoi

ψ : (Sheh(Sch
d/Fq),O

eh) −→ (Spec(Z),OSpec(Z))
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induced by the evident morphism of sites. Let

LΩ∗
Oeh/Z/F

n := LΩ∗
ψ/F

n

be the corresponding derived de Rham complex modulo the nth-step of the Hodge
filtration. Derived de Rham cohomology modulo Fn with compact support is
given by

X 7→ RΓc(Xeh, LΩ
∗
Oeh/Z/F

n)

for X ∈ Sch
d/Fq. It is covariantly functorial for open immersions and con-

travariantly functorial for proper maps.

We now explain our notation LΩ∗
Oeh/Z/F

n. There is a unique morphism of

rings Zeh → Oeh, where Zeh denotes the constant sheaf of rings associated
with Z on Sheh(Sch

d/Fq). Let LΩ
∗
Oeh/Zeh/F

n be the corresponding derived de

Rham complex modulo Fn. Then we have

LΩ∗
ψ/F

n ≃ LΩ∗
Oeh/Zeh/F

n. (3)

Indeed, consider the structure sheaf OSpec(Z) and the constant sheaf Z over
the small Zariski topos of Spec(Z). We have LOSpec(Z)/Z = 0 (see [4] II.2.3.1
and II.2.3.6), hence LOeh/ψ−1OSpec(Z)

≃ LOeh/ψ−1Z = LOeh/Zeh . We obtain
LΛ∗LOeh/Zeh ≃ LΛ∗LOeh/ψ−1OSpec(Z)

hence

LΩ∗
Oeh/Zeh/F

n ≃ LΩ∗
Oeh/ψ−1OSpec(Z)

/Fn := LΩ∗
ψ/F

n

by the Hodge filtration. Finally, we note that LOeh/Z and LΩ∗
Oeh/Z/F

n could

be left-unbounded (see however Corollary 3.8).

2.3 The fundamental line

For an object C in the derived category of abelian groups such that Hi(C) is
finitely generated for all i and Hi(C) = 0 for almost all i, we set

detZ(C) :=
⊗

i∈Z

det
(−1)i

Z Hi(C).

If Hi(C) is moreover finite for all i, then we call the following isomorphism

detZ(C)⊗Z Q
∼
→
⊗

i∈Z

det
(−1)i

Q

(

Hi(C) ⊗Z Q
) ∼
→
⊗

i∈Z

det
(−1)i

Q (0)
∼
→ Q

the canonical Q-trivialization of detZ(C). In this situation, the canonical Q-
trivialization detZ(C)⊗Z Q ≃ Q identifies detZ(C) with

Z ·

(

∏

i∈Z

|Hi(C)|(−1)i+1

)

⊂ Q.
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For X ∈ Sch
d/Fq, one defines [2]

RΓW,c(X,Z(n)) := RΓ(WFq , RΓc(XFq,eh
, ρ−1Z(n)))

where Fq is an algebraic closure, WFq is the Weil group, ρ is the morphism de-
fined in Lemma 3.1, and the Z(n) on the right hand side is the motivic complex
on Sm

d/Fq. Assuming that RΓW,c(X,Z(n)) and RΓc(Xeh, LΩ
∗
Oeh/Z/F

n) are

both well defined and perfect, the fundamental line is defined as follows:

∆(X/Z, n) := detZRΓW,c(X,Z(n)) ⊗Z detZRΓc(Xeh, LΩ
∗
Oeh/Z/F

n).

Recall that WFq ≃ Z with generator given by the Frobenius F . Consider the
map f : WFq → WF1 := R satisfying f(F ) = log(q), and define θ = IdR ∈
H1(R,R). Then f∗θ ∈ H1(WFq ,R) maps the Frobenius F ∈ WFq to log(q) ∈ R,
whereas e ∈ H1(WFq ,R) maps the Frobenius F to 1 ∈ R. We have

RΓW,c(X,Z(n))R ≃ RΓ(WFq , RΓc(XFq,eh
, ρ−1Z(n))R).

So cup-product with the class f∗θ ∈ H1(WFq ,R) defines a map

Hi
W,c(X,Z(n))R

∪θ
−→ Hi+1

W,c(X,Z(n))R

which differs from

Hi
W,c(X,Z(n))R

∪e
−→ Hi+1

W,c(X,Z(n))R

by the factor log(q). The complex

· · ·
∪θ
−→ Hi

W,c(X,Z(n))R
∪θ
−→ Hi+1

W,c(X,Z(n))R
∪θ
−→ · · ·

is acyclic [2] hence gives a trivialization

λX : R
∼
−→ detRRΓW,c(X,Z(n))R

∼
−→ ∆(X/Z, n)⊗Z R.

where the second isomorphism is induced by the canonical Q-
trivialization of detZRΓc(Xeh, LΩ

∗
Oeh/Z/F

n), whose existence requires that

RΓc(Xeh, LΩ
∗
Oeh/Z/F

n) is bounded with finite cohomology groups.

3 Proof of Theorem 1.1

We denote by Sm
d/Fq the full subcategory of Schd/Fq consisting of smooth

Fq-schemes. We endow Sm
d/Fq with the Zariski topology and we denote by

ShZar(Sm
d/Fq) the corresponding topos.

Recall the following description of the topos ShZar(Sm
d/Fq) (see [3] IV.4.10.6).

A sheaf F on ShZar(Sm
d/Fq) can be seen as a family of sheaves FX on the

small Zariski topos XZar for any X ∈ Sm
d/Fq together with transition maps
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αf : f−1FX → FY for any map f : Y → X satisfying αf◦g = αg ◦ g
−1αf

and such that αf is an isomorphism whenever f is an open immersion. A

morphism F → G in ShZar(Sm
d/Fq) is a given by a family of morphisms

FX → GX compatible with the transition maps. For any X ∈ Sm
d/Fq, the

functor
resX : ShZar(Sm

d/Fq) −→ XZar

F 7−→ FX
,

mapping the big Zariski sheaf F to its restriction FX to the small Zariski site
of X , commutes with arbitrary small limits and colimits. It is therefore the
inverse image of a morphism of topoi

sX : XZar −→ ShZar(Sm
d/Fq)/X −→ ShZar(Sm

d/Fq).

In fact the morphismXZar −→ ShZar(Sm
d/Fq)/X is a section of the morphism

ShZar(Sm
d/Fq)/X ≃ ShZar((Sm

d/Fq)/X) −→ XZar (4)

which is induced by the evident morphism of sites. The same description of
abelian sheaves on ShZar(Sm

d/Fq) is valid. We denote by O the canonical

structure ring on ShZar(Sm
d/Fq), i.e. O(X) := OX(X) for any X ∈ Sm

d/Fq.
We have resX(O) = OX where OX denotes the usual structure sheaf on the
smooth scheme X . As above, a complex of O-modules F can be seen as family
of complexes of OX -modules FX in the small Zariski topos XZar together with
transition maps of complexes of OY -modules αf : f∗FX := f−1FX ⊗f−1OX

OY → FY for any map f : Y → X satisfying αf◦g = αg ◦ g
∗αf , and such that

αf is an isomorphism whenever f is an open immer sion.
We denote by R(d) the condition given in ([2] Definition 2.4). The morphism
ρ of the next lemma was defined in ([2] Lemma 2.5), see also ([7] Proposition
5.11).

Lemma 3.1. Assume that R(d) holds. Then we have a composite morphism of
topoi

ρ : Sheh(Sch
d/Fq)

∼
−→ Sheh(Sm

d/Fq) −→ ShZar(Sm
d/Fq)

where the first morphism is an equivalence. Moreover we have

ρ−1O ≃ Oeh. (5)

Proof. We consider the topology on Sm
d/Fq induced by the eh-topology on

Sch
d/Fq (see [3] III.3), and we define Sheh(Sm

d/Fq) as the topos of sheaves

on this site. It follows from R(d) and ([2] Lemma 2.2.b) that Sm
d/Fq is a

topologically generating full subcategory of Schd/Fq with respect to the eh-
topology. By ([3] III.4.1), the first morphism is an equivalence. The inclusion
functor (Smd/Fq, Zar)→ (Schd/Fq, eh) is continuous, i.e. if F is an eh-sheaf

on Sch
d/Fq then its restriction to Sm

d/Fq is a Zariski sheaf. In other words,

the induced eh-topology on Sm
d/Fq is stronger than the Zariski topology;

hence the second morphism is well defined.
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Let u : Sm
d/Fq → Sch

d/Fq be the inclusion functor, and let f :

Sheh(Sch
d/Fq)

∼
→ Sheh(Sm

d/Fq) be the induced equivalence. We have a com-
mutative square (see [3] III.1.3)

Sheh(Sch
d/Fq) Sheh(Sm

d/Fq)
f−1

oo

PSh(Schd/Fq)

a

OO

PSh(Smd/Fq)
u!oo

asm

OO

where the vertical arrows are the associated sheaf functors. Let F ∈
PSh(Schd/Fq) be a presheaf of sets and let u∗ be the right adjoint of u!.
The adjunction morphism u!u

∗F → F is ”bicouvrant” (see [3] III.4.1.1) hence
a(u!u

∗F)
∼
→ a(F) is an isomorphism (see [3] II.5.3). Since the square above is

commutative, we obtain

f−1 ◦ asm ◦ u∗(F) ≃ a ◦ u! ◦ u
∗(F) ≃ a(F).

So we have an isomorphism of left exact functors f−1 ◦ asm ◦ u∗ ≃ a, hence a
similar isomorphism of functors between the categories of ring objects. Let R
(resp. O) be the presheaf of rings on Sch

d/Fq (resp. on Sm
d/Fq) mapping X

to OX(X). By definition we have O = u∗R, Oeh = a(R) and g−1O = asm(O),
where g : Sheh(Sm

d/Fq) → ShZar(Sm
d/Fq) is the morphism of topoi defined

above. We obtain

ρ−1(O) ≃ f−1 ◦ g−1(O) ≃ f−1 ◦ asm(O) ≃ f−1 ◦ asm ◦ u∗(R) ≃ a(R) =: Oeh.

We may therefore promote ρ into a morphism of ringed topoi

ρ : (Sheh(Sch
d/Fq),O

eh) −→ (ShZar(Sm
d/Fq),O).

For any X ∈ Sm
d/Fq, we shall also consider the morphism of ringed topoi

obtained by localisation over X :

ρ/X : (Sheh(Sch
d/Fq),O

eh)/yX −→ (ShZar(Sm
d/Fq),O)/X.

We denote by Z the constant sheaf on either ShZar(Sm
d/Fq) or Sheh(Sch

d/Fq),
and we apply the constructions of Section 2.1 to the unique morphism of rings
Z → Oeh (respectively Z → O) in the topos Sheh(Sch

d/Fq) (respectively in

the topos ShZar(Sm
d/Fq)); see (3) and its proof.

Lemma 3.2. Assume R(d). We have

LΩ∗
Oeh/Z/F

n ≃ ρ−1
(

LΩ∗
O/Z/F

n
)

(6)
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and the complex of abelian sheaves LΩ∗
O/Z/F

n on ShZar(Sm
d/Fq) is given by

the complexes of abelian sheaves on XZar

resX

(

LΩ∗
O/Z/F

n
)

= LΩ∗
X/Z/F

n := Tot(Ω<nPZ(OX)/Z) (7)

and obvious transition maps. Similarly, we have an isomorphism of complexes
of Oeh-modules

LΛiOehLOeh/Z ≃ ρ
−1
(

LΛiOLO/Z

)

(8)

and the complex of O-modules LΛiOLO/Z is given by the complexes of OX-
modules

resX
(

LΛiOLO/Z

)

= LΛiOX
LX/Z := Tot(ΩiPZ(OX)/Z ⊗PZ(OX) OX) (9)

and obvious transition maps. Finally, we have an isomorphism of Oeh-modules

ΩiOeh/Z ≃ ρ
−1ΩiO/Z (10)

and the O-module Ωi
O/Z is given by the OX-modules

resX

(

ΩiO/Z

)

= ΩiX/Z (11)

and obvious transition maps.

Proof. The complex LΩ∗
X/Z/F

n := Tot(Ω<nPZ(OX)/Z) is functorial on the nose in

X ∈ Sm
d/Fq. Indeed, given a map f : Y → X , there is a canonical morphism

of complexes of abelian sheaves

f−1LΩ∗
X/Z/F

n ≃ LΩ∗
f−1OX/Z

/Fn → LΩ∗
Y/Z/F

n, (12)

where the first map is supplied by Lemma 2.1 and the second map is in-
duced by the structural morphism f−1OX → OY . The map f−1LΩ∗

X/Z/F
n →

LΩ∗
Y/Z/F

n is an isomorphism of complexes of abelian sheaves if f : Y → X is
an open immersion. Similarly, the map f induces a morphism of complexes of
OY -modules

f∗LΛiOX
LX/Z ≃ LΛ

i
f−1OX

Lf−1OX/Z ⊗f−1OX
OY → LΛiOY

LOY /Z (13)

which is an isomorphism of complexes if f is an open immersion. We apply
Lemma 2.1 to the morphism of topoi

sX : XZar −→ ShZar(Sm
d/Fq)

and we observe that the transition maps

f−1resX(LΩ∗
O/Z/F

n)→ resY (LΩ
∗
O/Z/F

n)
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and
f∗resX(LΛiOLO/Z/F

n)→ resY (LΛ
i
OLO/Z/F

n)

can be identified with (12) and (13) respectively. This yields (7) and (9). We
obtain (6) and (8) by applying Lemma 2.1 to the morphism

ρ : Sheh(Sch
d/Fq) −→ ShZar(Sm

d/Fq)

since we have Oeh ≃ ρ−1O by (5). The proof of (10) and (11) is similar.

For a complex C of sheaves of modules on some topos, we denote by Hi(C) its
i-th cohomology sheaf.

Lemma 3.3. Let X be a smooth separated scheme of finite type over Fq. Then
there is a canonical isomorphism of sheaves of OX-modules

Hi(LΛnLX/Z[−n]) ≃ Ωi≤nX/Fq

where Ωi≤nX/Fq
:= ΩiX/Fq

for 0 ≤ i ≤ n and Ωi≤nX/Fq
= 0 otherwise. Moreover, for

f : Y → X a morphism in Sm
d/Fq, the square of OY -modules

f∗Hi(LΛnLX/Z[−n])
∼ //

��

f∗Ωi≤nX/Fq

��
Hi(LΛnLY/Z[−n])

∼ // Ωi≤nY/Fq

commutes, where the left vertical map is induced by (13) and the right vertical
map is the evident one.

Proof. Let X be a scheme in Sm
d/Fq. We have an exact triangle in the derived

category D(OX) of OX -modules (see [6] for details):

OX [1]→ LX/Z → Ω1
X/Fq

ωX→ OX [2].

Let U ⊂ X be an affine open subscheme. Then ωU ∈ Ext2OU
(Ω1

U/Fq
,OU ) = 0

and there is a unique isomorphism

αU : LU/Z
∼
−→ OU [1]⊕ Ω1

U/Fq

in the derived category D(OU ) of OU -modules, such that H−1(αU ) :
H−1(LU/Z) ≃ OU and H0(αU ) : H0(LU/Z) ≃ Ω1

X/Fq
are the isomorphisms

given by the triangle above. Indeed, the canonical map

HomD(OU )(LU/Z,OU [1]⊕ Ω1
U/Fq

)

−→ HomOU (H
−1(LU/Z),OU )⊕HomOU (H

0(LU/Z),Ω
1
U/Fq

)
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is an isomorphism, as it follows from the spectral sequence

∏

n∈Z

Extp(Hn(LU/Z),H
n+q(OU [1]⊕ Ω1

U/Fq
))⇒

⇒ Hp+q(RHom(LU/Z,OU [1]⊕ Ω1
U/Fq

))

and from the fact higher Ext’s vanish since U is affine and Ω1
X/Fq

is locally

free of finite rank. Then αU is functorial in the open affine subscheme U , in
the sense that, if V ⊆ U is the inclusion of an open affine subscheme V , then
αU | V = αV by uniqueness of αV . We obtain the following isomorphism in
D(OU ) (see [6] for details):

LΛnLU/Z

≃ LΛn([OU
0
→ Ω1

U/Fq
][1])

≃ [ΓnOU ⊗ Λ0Ω1
U/Fq

0
→ Γn−1OU ⊗ Λ1Ω1

U/Fq

0
→ · · ·

0
→ Γ0OU ⊗ ΛnΩ1

U/Fq
][n]

where the differential maps are all trivial. This yields a canonical isomorphism
of OU -modules

aU : Hi(LΛnLX/Z[−n]) | U ≃ H
i(LΛnLU/Z[−n]) ≃ Γn−iOU ⊗OU ΩiU/Fq

for any i ∈ Z, where Γn−iOU := 0 for n − i < 0 and ΩiU/Fq
:= 0 for i < 0.

Moreover, the isomorphisms aU are compatible with the restriction maps given
by inclusions of affine open subsets V ⊆ U , in the sense that (aU ) | V = aV .
Covering X by open affine subschemes U (recall that X is separated so that
the intersection of two affine open subschemes is affine), the identifications aU
therefore give an isomorphism of sheaves of OX -modules

Hi(LΛnLX/Z[−n]) ≃ Γn−iOX ⊗OX ΩiX/Fq
.

For n−i ≥ 0, the OX -module Γn−iOX is free of rank one with generator γn−i(1)
where 1 ∈ OX is the unit section and γn−i : OX → Γn−iOX the canonical map.
So we obtain an isomorphism

Hi(LΛnLX/Z[−n]) ≃ Γn−iOX ⊗OX ΩiX/Fq
≃ Ωi≤nX/Fq

. (14)

We now check that the isomorphism (14) is functorial in X ∈ Sm
d/Fq. Let Y

and X be schemes in Sm
d/Fq and let f : Y → X be an arbitrary map. There

is a morphism of exact triangles (see [4] II.2.1.5)

Lf∗OX [1] //

��

Lf∗LX/Z //

��

Lf∗Ω1
X/Fq

Lf∗ωX //

��

Lf∗OX [2]

��
OY [1] // LY/Z // Ω1

Y/Fq

ωY // OY [2]
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Suppose first that X and Y are affine. Then ωX = 0 and ωY = 0, and the
square

Lf∗LX/Z
Lf∗αX

∼ //

��

f∗OX [1]⊕ f∗Ω1
X/Fq

��
LY/Z αY

∼ // OY [1]⊕ Ω1
Y/Fq

commutes in D(OY ), since a morphism Lf∗LX/Z → OY [1] ⊕ Ω1
Y/Fq

is deter-

mined by the morphisms it induces on cohomology (as for αX above). Hence
the bottom square in the following diagram

Lf∗LΛnLX/Z
∼ //

��

f∗[Γn
OX

OX ⊗ Λ0
OX

Ω1
X/Fq

0
→ · · ·

0
→ Γ0

OX
OX ⊗ Λn

OX
Ω1

X/Fq
][n]

��

LΛnLf∗LX/Z
∼ //

��

[Γn
OY

f∗
OX ⊗ Λ0

OY
f∗Ω1

X/Fq

0
→ · · ·

0
→ Γ0

OY
f∗

OX ⊗ Λn
OY

f∗Ω1
X/Fq

][n]

��

LΛnLY/Z
∼ // [Γn

OY ⊗ Ω0
Y/Fq

0
→ · · ·

0
→ Γ0

OY ⊗ Ωn
Y/Fq

][n]

commutes as well (see [4] I.4.3.1.3). Here the top left vertical map is induced
by the derived version Lf∗LΛnOX

→ LΛnOY
Lf∗ of the natural transformation

f∗ΛnOX
→ ΛnOY

f∗, and the top right vertical map is induced by f∗ΛiOX
→

ΛiOY
f∗ and f∗Γn−iOX

→ Γn−iOY
f∗. It follows that the upper square in the previous

diagram commutes. Since the cohomology sheaves of LΛnLX/Z are flat OX -
modules, we have the isomorphism

f∗Hi(LΛnLX/Z[−n])
∼
→ Hi(Lf∗LΛnLX/Z[−n]).

We obtain the following commutative square of OY -modules

f∗Hi(LΛnLX/Z[−n])
∼ //

��

f∗(Γn−iOX ⊗OX ΩiX/Fq
)

��
Hi(LΛnLY/Z[−n])

∼ // Γn−iOY ⊗OY ΩiY/Fq

where X and Y are affine schemes in Sm
d/Fq. Let f : Y → X be a map

between arbitrary X , Y in Sm
d/Fq. Covering Y and X by affine open sub-

schemes (compatibly with f) we see that the previous square commutes for ar-
bitrary X and Y . The result follows because the identification of OX -modules
Γn−iOX

OX ≃ OX is functorial in X . Indeed, the map f∗(Γn−iOX
OX) → Γn−iOY

OY
maps γn−i(1) to itself.
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Remark 3.4. An isomorphism of the form

LΛnLX/Z ≃ [OX
0
→ Ω1

X/Fq

0
→ · · ·

0
→ ΩnX/Fq

][n]

is false in general, e.g. take n = 1 and X such that αX 6= 0 (i.e. such that X
has no lifting over Z/p2Z).

Remark 3.5. In order to prove the main result of [6], one may use Lemma 3.3
above instead of ([6] Lemma 2).

Proposition 3.6. Assume R(d). There is a canonical isomorphism of sheaves
of Oeh-modules

Hi(LΛnLOeh/Z[−n]) ≃ Ωi≤n
Oeh/Fq

where Ωi≤n
Oeh/Fq

= Ωi
Oeh/Fq

for 0 ≤ i ≤ n and Ωi≤n
Oeh/Fq

= 0 otherwise.

Proof. We first work in the ringed topos (ShZar(Sm
d/Fq),O). By exactness of

resX , Lemma 3.2(9) and Lemma 3.3, we have

resX(Hi(LΛnLO/Z[−n])) ≃ Hi(resX(LΛnLO/Z[−n]))

≃ Hi(LΛnLX/Z[−n]))

≃ Ωi≤nX/Fq

for any X in Sm
d/Fq. Moreover, for a morphism f : Y → X in Sm

d/Fq, the
transition map

αf : f∗resX(Hi(LΛnLO/Z[−n])) −→ resY (H
i(LΛnLO/Z[−n]))

may be identified with the canonical map (see Lemma 3.2)

f∗Hi(LΛnLX/Z[−n]) −→ H
i(LΛnLY/Z[−n])

which in turn may be identified with the canonical map

f∗Ωi≤nX/Fq
−→ Ωi≤nY/Fq

by Lemma 3.3. In view of (11), we obtain an isomorphism

Hi(LΛnLO/Z[−n]) ≃ Ωi≤n
O/Fq

(15)

ofO-modules in the topos ShZar(Sm
d/Fq). By Lemma 3.2 (8) and by exactness

of ρ−1, we have

Hi(LΛnLOeh/Z) ≃ H
i(ρ−1LΛnLO/Z) ≃ ρ

−1Hi(LΛnLO/Z). (16)

By (16), (15) and (10), we obtain

Hi(LΛnLOeh/Z[−n]) ≃ ρ
−1Hi(LΛnLO/Z[−n]) ≃ ρ

−1Ωi≤n
O/Fq

≃ Ωi≤n
Oeh/Fq

.
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Remark 3.7. One may think of trying to prove Proposition 3.6 more directly
using the exact triangle

Oeh[1]→ LOeh/Z → Ω1
Oeh/Fq

ωeh

→ Oeh[2],

which is the image by ρ−1 of the exact triangle

O[1]→ LO/Z → Ω1
O/Fq

ω
→ O[2]

in the derived category of O-modules on ShZar(Sm
d/Fq). A direct computation

of LΛnLOeh/Z as in (14) would not work since the extension ω is non-trivial
by Remark 3.4 and Lemma 3.2.

The following corollary follows immediately from Proposition 3.6.

Corollary 3.8. If R(d) holds then LΛp
OehLOeh/Z is concentrated in degrees

[−p, 0] and LΩ∗
Oeh/Z/F

n is concentrated in degrees [0, n− 1].

Corollary 3.9. Let X be a smooth projective scheme over Fq of dimension d
and let n ∈ Z be an integer. If R(d) holds then the canonical maps

RΓ(XZar, LΛ
p
OX
LX/Z)→ RΓ(Xeh, LΛ

p
OehLOeh/Z)

and
RΓ(XZar, LΩ

∗
X/Z/F

n)→ RΓ(Xeh, LΩ
∗
Oeh/Z/F

n)

are quasi-isomorphisms.

Proof. The morphism of ringed topoi

(Sheh(Sch
d/Fq),O

eh)/y(X)
ρ/X
−→ (ShZar(Sm

d/Fq),O)/X
(4)
−→ (X,OX). (17)

induces a morphism of (derived Hodge to de Rham) spectral sequences from

Ep,q1 = Hq(XZar, LΛ
p<nLX/Z) =⇒ Hp+q(XZar, LΩ

∗
X/Z/F

n) (18)

to

′Ep,q1 = Hq(Xeh, LΛ
p<nLOeh/Z) =⇒ Hp+q(Xeh, LΩ

∗
Oeh/Z/F

n). (19)

Here the convergent spectral sequences (18) and (19) are obtained (using Corol-
lary 3.8) as spectral sequences for the hypercohomology of filtered bounded
below complexes. One is therefore reduced to showing that the maps

Hq(XZar, LΛ
pLX/Z)→ Hq(Xeh, LΛ

pLOeh/Z)

are isomorphisms. By Lemma 3.3, Proposition 3.6 and Corollary 3.8, the mor-
phism (17) induces a morphism of hypercohomology spectral sequences from

Ei,j2 = Hi(XZar,Ω
j≤p
X/Fq

) =⇒ Hi+j(XZar, LΛ
pLX/Z[−p])
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to
′Ei,j2 = Hi(Xeh,Ω

j≤p
Oeh/Fq

) =⇒ Hi+j(Xeh, LΛ
pLOeh/Z[−p]).

One is therefore reduced to showing that the map

Hi(XZar ,Ω
j
X/Fq

)→ Hi(Xeh,Ω
j
Oeh/Fq

)

is an isomorphism for any i, j. Assuming R(d), this follows from ([2] Theorem
4.7) since Ωj

Oeh/Fq
≃ ρ−1Ωj

O/Fq
.

Recall from the introduction that one defines

χehc (X/Fq,O, n) :=
∑

i≤n,j∈Z

(−1)i+j · (n− i) · dimFqH
j
c (Xeh,Ω

i
Oeh/Fq

).

Corollary 3.10. Let X be a separated scheme of finite type over Fq of di-
mension d and let n ∈ Z be an integer. If R(d) holds then the complex
RΓc(Xeh, LΩ

∗
Oeh/Z/F

n) is bounded with finite cohomology groups, and we have

∏

i∈Z

| Hi
c(Xeh, LΩ

∗
Oeh/Z/F

n) |(−1)i = qχ
eh
c (X/Fq,O,n).

Proof. We consider the convergent spectral sequences

Hq
c (Xeh, LΛ

p<nLOeh/Z) =⇒ Hp+q
c (Xeh, LΩ

∗
Oeh/Z/F

n) (20)

and
Hi
c(Xeh,Ω

j≤p
Oeh/Fq

) =⇒ Hi+j
c (Xeh, LΛ

pLOeh/Z[−p]). (21)

In view of Corollary 3.8 and the isomorphism (see [2] Remark before Lemma
3.5)

RΓc(Xeh,−) ≃ RHom(Zceh(X),−)

(20) and (21) may be obtained as spectral sequences for the hypercohomol-
ogy of filtered bounded below complexes. The complex RΓc(Xeh,Ω

j
Oeh/Fq

) ≃

RΓc(Xeh, ρ
−1Ωj

O/Fq
) is bounded with finite cohomology groups by ([2] Corol-

lary 4.8). In view of (20) and (21), the complexes RΓc(Xeh, LΛ
pLOeh/Z/F

n)
and RΓc(Xeh, LΩ

∗
Oeh/Z/F

n) are also bounded with finite cohomology groups.

By ([6] Lemma 1), the spectral sequences (20) and (21) give isomorphisms

detZRΓc(Xeh, LΩ
∗
Oeh/Z/F

n) (22)

∼
−→

⊗

p<n

det
(−1)p

Z RΓc(Xeh, LΛ
pLOeh/Z) (23)

∼
−→

⊗

p<n

detZRΓc(Xeh, LΛ
pLOeh/Z[−p]) (24)

∼
−→

⊗

p<n





⊗

i≤p,j

det
(−1)i+j

Z Hj
c (Xeh,Ω

i
Oeh/Fp

)



 (25)

Documenta Mathematica 22 (2017) 1303–1321



Milne’s Correcting Factor II 1319

such that the square of isomorphisms

(

detZRΓc(Xeh, LΩ
∗
Oeh/Z/F

n)
)

Q

//

γ

��

(

⊗

p<n

⊗

i≤p,j det
(−1)i+j

Z Hj
c (Xeh,Ω

i
Oeh/Fq

)
)

Q

γ′

��
Q

Id // Q

commutes, where the top horizontal map is induced by (25), and the vertical
isomorphisms are the canonical trivializations (see Section 2.3). The result
follows:

Z ·

(

∏

i∈Z

| Hi
c(Xeh, LΩ

∗
Oeh/Z/F

n) |(−1)i

)−1

= γ
(

detZRΓc(Xeh, LΩ
∗
Oeh/Z/F

n)
)

= γ′





⊗

p<n

⊗

i≤p,j

det
(−1)i+j

Z Hj
c (Xeh,Ω

i
Oeh/Fq

)





= Z · q−χ
eh
c (X/Fq,O,n).

Recall from Section 2.3 the definitions of ∆(X/Z, n) and λX .

Corollary 3.11. Let X be a separated scheme of finite type over Fq of di-
mension d and let n ∈ Z be an integer. Assume that for any smooth projective
variety Y of dimension ≤ d the Weil-étale cohomology groups Hi

W (Y,Z(n)) are
finitely generated for all i. If R(d) holds, then one has

∆(X/Z, n) = Z · λX
(

ζ∗(X,n)−1
)

.

Proof. All the schemes we consider in this proof are in Sch
d/Fq. For an open-

closed decomposition (U
j
→ X

i
← Z), we have exact triangles

RΓc(Ueh, LΩ
∗
Oeh/Z/F

n)→ RΓc(Xeh, LΩ
∗
Oeh/Z/F

n)→ RΓc(Zeh, LΩ
∗
Oeh/Z/F

n)

and

RΓW,c(U,Z(n))→ RΓW,c(X,Z(n))→ RΓW,c(Z,Z(n)). (26)

Moreover, the triangle (26) is compatible (in the obvious sense) with ∪θ. This
gives an isomorphism

∆(X/Z, n) ≃ ∆(U/Z, n)⊗Z ∆(Z/Z, n) (27)
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such that the square of isomorphisms

R
Id //

λX

��

R

λU⊗λZ

��
∆(X/Z, n)R

(27)R // ∆(U/Z, n)R ⊗R ∆(Z/Z, n)R

commutes. Similarly, one has

ζ∗(X,n) = ζ∗(U, n) · ζ∗(Z, n).

It follows that if the result is true for two out of the three schemes (X,U,Z) then
it is true for the third. Moreover, the result is true for X smooth projective by
[6], Corollary 3.9 and ([2] Theorem 4.3). It follows for arbitrary X ∈ Sch

d/Fq
by ([2] Lemma 2.7).
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