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Abstract. We define and discuss lax and weighted colimits of dia-
grams in ∞-categories and show that the coCartesian fibration cor-
responding to a functor is given by its lax colimit. A key ingredi-
ent, of independent interest, is a simple characterization of the free
Cartesian fibration on a functor of ∞-categories. As an application
of these results, we prove that 2-representable functors are preserved
under exponentiation, and also that the total space of a presentable
Cartesian fibration between is presentable, generalizing a theorem of
Makkai and Paré to the ∞-categories setting. Lastly, in an appendix,
we observe that pseudofunctors between (2,1)-categories give rise to
functors between ∞-categories via the Duskin nerve. setting and the
Duskin nerve.
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1. Introduction

In the context of ordinary category theory, Grothendieck’s theory of fibra-
tions [Gro63] can be used to give an alternative description of functors to the
category Cat of categories. This has been useful, for example, in the theory
of stacks in algebraic geometry, as the fibration setup is usually more flexible.
When working with ∞-categories, however, the analogous notion of Cartesian
fibrations is far more important: since defining a functor to the ∞-category
Cat∞ of ∞-categories requires specifying an infinite amount of coherence data,
it is in general not feasible to “write down” definitions of functors, so that ma-
nipulating Cartesian fibrations is often the only reasonable way to define key
functors.
For ordinary categories, the Grothendieck construction gives a simple descrip-
tion of the fibration classified by a functor F : Cop → Cat; this can also be
described formally as a certain weighted colimit, namely the lax colimit of the
functor F . For∞-categories, on the other hand, the equivalence between Carte-
sian fibrations and functors has been proved by Lurie using the straightening
functor, a certain left Quillen functor between model categories. This leaves
the corresponding right adjoint, the unstraightening functor, quite inexplicit.
One of our main goals in this paper is to show that Lurie’s unstraightening
functor is a model for the ∞-categorical analogue of the Grothendieck con-
struction. More precisely, we introduce ∞-categorical versions of lax and oplax
limits and colimits and prove the following:

Theorem 1.1.

(i) Suppose F : C → Cat∞ is a functor of ∞-categories, and E → C is a
coCartesian fibration classified by F . Then E is the oplax colimit of the
functor F .

(ii) Suppose F : Cop → Cat∞ is a functor of ∞-categories, and E → C is
a Cartesian fibration classified by F . Then E is the lax colimit of the
functor F .

To prove this we make use of an explicit description of the free Cartesian fibra-
tion on an arbitary functor of ∞-categories. More precisely, the ∞-category
Catcart∞/C of Cartesian fibrations over C is a subcategory of the slice ∞-category
Cat∞/C, and we show that the inclusion admits a left adjoint given by a simple
formula:

Theorem 1.2. Let C be an ∞-category. For p : E → C any functor of ∞-

categories, let F (p) denote the map E ×C{1} C∆1

→ C{0} (i.e. the pullback is

along the map C∆1

→ C given by evaluation at 1 ∈ ∆1 and the projection is
induced by evaluation at 0). Then F defines a functor Cat∞/C → Catcart∞/C,

which is left adjoint to the forgetful functor Catcart∞/C → Cat∞/C.

In the special case where p : E → C is a Cartesian fibration and C is an ∞-
category equipped with a “mapping ∞-category” functor MAPC : C

op × C →
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Cat∞, such as is the case when C is the underlying ∞-category of an (∞, 2)-
category, then it is natural to ask when p is classified by a functor of the
form MAPC(−, X) : Cop → Cat∞ for some object X of C. We say that p is
2-representable when this is the case. As an application of our theorems, we
show that, if p : E → C is a 2-representable Cartesian fibration such that the
mapping ∞-category functor MAPC is tensored and cotensored over Cat∞,
and D is any ∞-category, then the exponential q : Fun(D,E) → Fun(D,C) is
itself 2-representable. This is relevant in the description of the functoriality of
twisted cohomology theories as discussed in joint work of the third author with
U. Bunke [BN14]. More precisely it describes a converse to the construction in
Section 3 and Appendix A of this paper.
The third main result of this paper provides a useful extension of the theory
of presentable ∞-categories in the context of Cartesian fibrations, generalizing
a theorem of Makkai and Paré [MP89] to the ∞-categorical context. More
precisely, we show:

Theorem 1.3. Suppose p : E → C is a Cartesian and coCartesian fibration
such that C is presentable, the fibres Ex are presentable for all x ∈ C, and the

classifying functor F : Cop → Ĉat∞ preserves κ-filtered limits for some regular
cardinal κ. Then the ∞-category E is presentable, and the projection p is an
accessible functor (i.e. it preserves λ-filtered colimits for some sufficiently large
cardinal λ).

While the theory of accessible and presentable categories is already an impor-
tant part of ordinary category theory, when working with ∞-categories the
analogous notions turn out to be indispensable. Whereas, for example, it is of-
ten possible to give an explicit construction of colimits in an ordinary category,
when working with ∞-categories we often have to conclude that colimits exist
by applying general results on presentable ∞-categories. Similarly, while for
ordinary categories one can frequently just write down an adjoint to a given
functor, for ∞-categories an appeal to the adjoint functor theorem, which is
most naturally considered in the presentable context, is often unavoidable. It
is thus very useful to know that various ways of constructing ∞-categories give
accessible or presentable ones; many such results are proved in [Lur09a, §5],
and our result adds to these by giving a criterion for the source of a Cartesian
fibration to be presentable.

1.1. Overview. In §2 we briefly review the definitions of twisted arrow ∞-
categories and ∞-categorical ends and coends, and use these to define weighted
(co)limits. Then in §3 we prove our main result for coCartesian fibrations over
a simplex, using the mapping simplex defined in [Lur09a, §3.2.2]. Before we
extend this result to general coCartesian fibrations we devote three sections to
preliminary results: in §4 we give a description of the free Cartesian fibration,
i.e. the left adjoint to the forgetful functor from Cartesian fibrations over C to
the slice ∞-category Cat∞/C; in §5 we prove that the space of natural trans-
formations between two functors is given by an end (a result first proved by
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Glasman [Gla16, Proposition 2.3.]), and in §6 we prove that the straightening
equivalence extends to an equivalence of the natural enrichments in Cat∞ of
the two ∞-categories involved. §7 then contains the proof of our main result:
Cartesian and coCartesian fibrations are given by weighted colimits of the clas-
sifying functors. In §8 we give a simple application of our results to functors
that are representable via an enrichment in Cat∞, and in §9 we apply them to
identify the functor classifying a certain simple Cartesian fibration; this is a key
step in our proof in §10 that the source of a presentable fibration is presentable.
Finally, in appendix A we use Duskin’s nerve for strict (2,1)-categories to check
that the pseudonaturality of the unstraightening functors on the level of model
categories implies that they are natural on the level of ∞-categories.

1.2. Notation. Much of this paper is based on work of Lurie in [Lur09a,
Lur14]; we have generally kept his notation and terminology. In particular, by
an∞-category we mean an (∞, 1)-category or more specifically a quasicategory.
We also use the following conventions, some of which differ from those of Lurie:

• Generic categories are generally denoted by single capital bold-face letters
(A,B,C) and generic ∞-categories by single caligraphic letters (A,B,C).
Specific categories and ∞-categories both get names in the normal text
font.

• If C is an ∞-category, we write ιC for the interior or underlying space of
C, i.e. the largest subspace of C that is a Kan complex.

• If f : C → D is left adjoint to a functor g : D → C, we will refer to the
adjunction as f ⊣ g.

• We write PrL for the ∞-category of presentable ∞-categories and functors
that are left adjoints, i.e. colimit-preserving functors, and PrR for the ∞-
category of presentable ∞-categories and functors that are right adjoints,
i.e. accessible functors that preserve all small limits.

• If C and D are ∞-categories, we will denote the ∞-category of functors
C → D by both Fun(C,D) and DC.

• If S is a simplicial set, we write

St+S : (Set+∆)/S♯ ⇄ Fun(C(S)op, Set+∆) : Un
+
S

for the marked (un)straightening Quillen equivalence, as defined in
[Lur09a, §3.2].

• We write Catcart∞/C for the subcategory of Cat∞/C consisting of Cartesian
fibrations over C, with morphisms the functors that preserve Cartesian
edges, MapCart

C (–, –) for the mapping spaces in Catcart∞/C, and Funcart
C (–, –)

for the ∞-category of functors that preserve Cartesian edges, defined as a
full subcategory of the ∞-category FunC(–, –) of functors over C. Similarly,
we write Catcocart∞/C for the ∞-category of coCartesian fibrations over C,

MapcocartC (–, –) for the mapping spaces in Catcocart∞/C , and FuncocartC (–, –) for

the full subcategory of FunC(–, –) spanned by the functors that preserve
coCartesian edges.
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• If C is an ∞-category, we write

StC : Cat
cart
∞/C ⇄ Fun(Cop,Cat∞) : UnC

for the adjoint equivalence of ∞-categories induced by the
(un)straightening Quillen equivalence via [Lur09a, Proposition 5.2.4.6].

• If S is a simplicial set, we write

St+,co
S : (Set+∆)/S♯ ⇄ Fun(C(S), Set+∆) : Un

+,co
S

for the coCartesian marked (un)straightening Quillen equivalence, given

by St+,co
S (X) := (St+Sop(Xop))op.

• If C is an ∞-category, we write

StcoC : Catcocart∞/C ⇄ Fun(C,Cat∞) : UncoC

for the adjoint equivalence of ∞-categories induced by the coCartesian
(un)straightening Quillen equivalence.

• If C is an ∞-category, we denote the Yoneda embedding for C by

yC : C → P(C),

where P(C) is the presheaf ∞-category Fun(Cop, S) with S the ∞-category
of spaces.

1.3. Acknowledgments. David : Thanks to Joachim Kock for helpful dis-
cussions regarding free fibrations and lax colimits.
Rune: I thank Clark Barwick for helpful discussions of the presentability result
and Michael Shulman for telling me about [MP89, Theorem 5.3.4] in answer to
a MathOverflow question.
We thank Aaron Mazel-Gee and Omar Antoĺın Camarena for pointing out some
inaccuracies in the first version of this paper. We also thank an anonymous
referee for a very careful and helpful report.

2. Twisted Arrow ∞-Categories, (Co)ends, and Weighted
(Co)limits

In this section we briefly recall the definitions of twisted arrow∞-categories and
(co)ends, and then use these to give a natural definition of weighted (co)limits
in the ∞-categorical setting.

Definition 2.1. Let ǫ : ∆ → ∆ be the functor [n] 7→ [n] ⋆ [n]op. The edgewise
subdivision of a simplicial set S is the composite ǫ∗S = S ◦ ǫ.

Definition 2.2. Let C be an ∞-category. The twisted arrow ∞-category
Tw(C) of C is the simplicial set ǫ∗C. Thus in particular

Hom(∆n,Tw(C)) ∼= Hom(∆n ⋆ (∆n)op,C).

The natural transformations ∆•, (∆•)op → ∆• ⋆ (∆•)op induce a projection
Tw(C) → C× Cop.
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Remark 2.3. The twisted arrow ∞-category, which was originally introduced
by Joyal, has previously been extensively used by Barwick [Bar13,Bar17] and
collaborators [BGN14], and by Lurie [Lur14, §5.2.1]. By [Lur14, Proposition
5.2.1.3] the projection Tw(C) → C × Cop is a right fibration; in particular,
the simplicial set Tw(C) is an ∞-category if C is. The functor Cop × C → S

classified by this right fibration is the mapping space functor MapC(–, –) by
[Lur14, Proposition 5.2.1.11].

Warning 2.4. There are two possible conventions for defining the edgewise
subdivision (and therefore also the twisted arrow∞-category); we follow that of
Lurie in [Lur14, §5.2.1]. Alternatively, one can define the edgewise subdivision
using the functor [n] 7→ [n]op ⋆ [n], in which case Tw(C) → Cop × C is a left
fibration — this is the convention used in the papers of Barwick cited above.

Example 2.5. The twisted arrow category Tw([n]) of the category [n] is the
partially ordered set with objects (i, j) where 0 ≤ i ≤ j ≤ n and with (i, j) ≤
(i′, j′) if i ≤ i′ ≤ j′ ≤ j.

A natural definition of (co)ends in the ∞-categorical setting is then the follow-
ing.

Definition 2.6. If F : C× Cop → D is a functor of ∞-categories, the coend of
F is the colimit of the composite functor

Tw(C) → C× Cop → D.

Similarly, if G : Cop × C → D is a functor of ∞-categories, then the end of G is
the limit of the composite functor

Tw(C)op → Cop × C → D.

Remark 2.7. These ∞-categorical notions of ends and coends are also dis-
cussed in [Gla16, §2]. In the context of simplicial categories, a homotopically
correct notion of coends was extensively used by Cordier and Porter [CP97];
see their paper for a discussion of the history of such definitions.

Now we can consider weighted (co)limits:

Definition 2.8. Let R be a presentably symmetric monoidal ∞-category, i.e.
a presentable ∞-category equipped with a symmetric monoidal structure such
that the tensor product preserves colimits in each variable, and let M be a right
R-module in PrL. Then M is in particular tensored and cotensored over R, i.e.
there are functors

(–⊗ –): M× R → M,

(–)(–) : Rop ×M → M,

such that for every x ∈ R the functor –⊗x : M → M is left adjoint to (–)x. Given

functors F : C → M andW : Cop → R, theW -weighted colimit colimW
C F of F is

defined to be the coend colimTw(C) F (–)⊗W (–). Similarly, given F : C → M and

W : C → R, the W -weighted limit limW
C F of F is the end limTw(C)op F (–)

W (–).
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We are interested in the case where both R and M are the ∞-category Cat∞ of
∞-categories, with the tensoring given by Cartesian product and the cotensor-
ing by Fun(–, –). In this case there are two special weights for every∞-category
C: we have functors C/– : C → Cat∞ and C–/ : C

op → Cat∞ sending x ∈ C to
C/x and Cx/, respectively. Precisely, these functors are obtained by straighten-

ing the source and target projections C∆1

→ C, which are respectively Cartesian
and coCartesian. Using these functors, we can define lax and oplax (co)limits:

Definition 2.9. Suppose F : C → Cat∞ is a functor. Then:

• The oplax colimit of F is the colimit of F weighted by C–/, i.e.

colim
Tw(C)

F (–)× C–/.

• The lax colimit of F is the colimit of F weighted by (Cop)/–, i.e.

colim
Tw(C)

F (–)× (Cop)/–.

• The lax limit of F is the limit of F weighted by C/–, i.e.

lim
Tw(C)op

Fun(C/–, F (–)).

• The oplax limit of F is the limit of F weighted by (Cop)–/, i.e.

lim
Tw(C)op

Fun((Cop)–/, F (–)).

3. CoCartesian Fibrations over a Simplex

In this preliminary section we study coCartesian fibrations over the simplices
∆n, and observe that in this case the description of a coCartesian fibration as
an oplax colimit follows easily from results of Lurie in [Lur09a, §3.2]. More
precisely, we will prove:

Proposition 3.1. There is an equivalence

colim
Tw([n])

φ(–)× [n]
–/

∼
−→ Unco

[n](φ)

of functors Fun([n],Cat∞) → Cat∞, natural in ∆
op.

To see this we first recall fron [Lur09a, §3.2] the definition and some fea-
tures of the mapping simplex of a functor φ : [n] → Set+∆ and show that its
fibrant replacement is a coCartesian fibration classified the corresponding func-
tor ∆n → Cat∞.

Definition 3.2. Let φ : [n] → Set+∆ be a functor. The mapping simplex
M[n](φ) → ∆n has k-simplices given by a map σ : [k] → [n] together with

a k-simplex ∆k → φ(σ(0)). In particular, an edge of M[n](φ) is given by a pair
of integers 0 ≤ i ≤ j ≤ n and an edge f in φ(i); let S be the set of edges of

M[n](φ) where the edge f is marked. Then M ♮
[n](φ) is the marked simplicial set

(M[n](φ), S). This gives a functor M ♮
[n] : Fun([n], Set

+
∆) → (Set+∆)/∆n , pseudo-

natural in ∆
op (with respect to composition and pullback) — see Appendix A

for a discussion of pseudonatural transformations.
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Definition 3.3. Let φ : [n] → Set∆ be a functor. The relative nerve N[n](φ) →
∆n has k-simplices given by a map σ : [k] → [n] and for every ordered subset
J ⊆ [k] with greatest element j, a map ∆J → φ(σ(j)) such that for J ′ ⊆ J the
diagram

∆J′

φ(σ(j′))

∆J φ(σ(j))

commutes. Given a functor φ : [n] → Set+∆ we define N+
[n](φ) to be the marked

simplicial set (N[n](φ),M) where φ is the underlying functor [n] → Set∆ of φ,

and M is the set of edges ∆1 → N[n]φ determined by

• a pair of integers 0 ≤ i ≤ j ≤ n,
• a vertex x ∈ φ(i),
• a vertex y ∈ φ(j) and an edge φ(i→ j)(x) → y that is marked in φ(j).

This determines a functor N+
[n] : Fun([n], Set

+
∆) → (Set+∆)/∆n , pseudonatural in

∆
op.

Remark 3.4. By [Lur09a, Proposition 3.2.5.18], the functor N+
[n] is a right

Quillen equivalence from the projective model structure on Fun([n], Set+∆) to

the coCartesian model structure on (Set+∆)/∆n . In particular, if φ : [n] → Set+∆
is a functor such that φ(i) is fibrant (i.e. is a quasicategory marked by its set
of equivalences) for every i, then N+

[n](φ) is a coCartesian fibration.

Definition 3.5. There is a natural transformation ν[n] : M
♮
[n](–) → N+

[n](–)

that sends a k-simplex (σ : [k] → [n],∆k → φ(σ(0))) inM ♮
[n](σ) to the k-simplex

of N+
[n](φ) determined by the composites ∆J → ∆k → φ(σ(0)) → φ(σ(j)).

This is clearly pseudonatural in maps in ∆
op, i.e. we have a pseudofunctor

∆
op → Fun([1],Cat) that to [n] assigns

ν[n] : [1]× Fun([n], Set+∆) → (Set+∆)/∆n .

Proposition 3.6. Suppose φ : [n] → Set+∆ is fibrant. Then the natural map

ν[n],φ : M
♮
[n](φ) → N+

[n](φ) is a coCartesian equivalence.

Proof. Since N+
[n](φ) → ∆n is a coCartesian fibration by [Lur09a, Proposition

3.2.5.18], it follows from [Lur09a, Proposition 3.2.2.14] that it suffices to check
that ν[n],φ is a “quasi-equivalence” in the sense of [Lur09a, Definition 3.2.2.6].

Thus we need only show that the induced map on fibres M ♮
[n](φ)i → N+

[n](φ)i
is a categorical equivalence for all i = 0, . . . , n. But unwinding the definitions
we see that this can be identified with the identity map φ(i) → φ(i) (marked
by the equivalences). �
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Let Un+,co
[n] : Fun([n], Set+∆) → (Set+∆)/∆n be the coCartesian version of the

marked unstraightening functor defined in [Lur09a, §3.2.1]. By [Lur09a, Re-

mark 3.2.5.16] there is a natural transformation λ[n] : N
+
[n] → Un+,co

[n] , which is

a weak equivalence on fibrant objects by [Lur09a, Corollary 3.2.5.20]. Since
this is also pseudonatural in ∆

op, combining this with Proposition 3.6 we im-
mediately get:

Corollary 3.7. For every [n] ∈ ∆
op there is a natural transformation

λ[n]ν[n] : M
♮
[n](–) → Un+,co

[n] (–), and this is pseudonatural in [n] ∈ ∆
op. If

φ : [n] → Set+∆ is fibrant, then the map M ♮
[n](φ) → Un+,co

[n] (φ) is a coCartesian

equivalence.

It is immediate from the definition that M ♮
[n](φ) is the pushout

φ(0)♮ × (∆{1,...,n})♯ φ(0)♮ × (∆n)♯

M
♮
[n−1](φ|{1,...,n}) M

♮
[n](φ).

Moreover, since all objects are cofibrant in the model structure on marked
simplicial sets and the top horizontal map is a cofibration, this is a homotopy
pushout. Combining this with Corollary 3.7, we get the following:

Lemma 3.8. Suppose F : [n] → Cat∞ is a functor, and that E → ∆n is the cor-
responding coCartesian fibration. Let E′ be the pullback of E along the inclusion
∆{1,...,n} →֒ ∆n. Then there is a pushout square

F (0)×∆{1,...,n} F (0)×∆n

E′ E

in Cat∞.

Unwinding the definition, we see that M ♮
[n](φ) is the colimit of the diagram
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φ(0)× (∆n)♯

φ(0)× (∆{1,...,n})♯

φ(1)× (∆{1,...,n})♯

φ(1)× (∆{2,...,n})♯

φ(2)× (∆{2,...,n})♯

...

φ(n− 1)× (∆{n−1,n})♯

φ(n− 1)× (∆{n})♯

φ(n)× (∆{n})♯.

By Example 2.5 the category indexing this colimit is a cofinal subcategory of the
twisted arrow category Tw([n]) of [n] — this is easy to check using [Lur09a,
Corollary 4.1.3.3] since both categories are partially ordered sets. Hence we

may identify M ♮
[n](φ) with the coend

colim
Tw([n])

(φ(–)×N[n]–/).

Moreover, since we can write this colimit as an iterated pushout along cofibra-
tions, this is a homotopy colimit. From this we can prove Proposition 3.1 using
the results of appendix A together with the following observation:

Lemma 3.9. Let G : C → D be a right Quillen functor between model categories.
Suppose f : X → X̄ and g : Y → Ȳ are weak equivalences such that X̄ and Ȳ
are fibrant, and G(f) and G(g) are weak equivalences in D. Then if h : X → Y

is a weak equivalence, the morphism G(h) is also a weak equivalence in D.

Proof. Choose a factorization of the composite g ◦ h : X → Ȳ as a trivial
cofibration i : X →֒ X ′ followed by a fibration p : X ′ → Ȳ . We then have a
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commutative diagram

X X̄

X ′

Y Ȳ

h

f

i

p

q

g

where the dotted arrow q exists since X̄ is fibrant and i is a trivial cofibration,
and all morphisms are weak equivalences by the 2-of-3 property. By assumption
G takes f and g to weak equivalences, and as G is a right Quillen functor
by Brown’s Lemma it also takes q and p to weak equivalences as these are
weak equivalences between fibrant objects. By the 2-of-3 property we can then
conclude first that G(i) is a weak equivalence and then that G(h) is a weak
equivalence. �

Proof of Proposition 3.1. We will prove this by applying Proposition A.30 to
a relative Grothendieck fibration constructed in the same way as in Propo-
sition A.31. The only difference is that the mapping simplex of a functor
φ : [n] → Set+∆ is not in general fibrant. We must therefore consider a larger

relative subcategory of (Set+∆)/∆n containing the mapping simplices of fibrant

functors whose associated ∞-category is still Catcocart∞/∆n .

By [Lur09a, Proposition 3.2.2.7] every mapping simplex admits a weak equiva-
lence to a fibrant object that is preserved under pullbacks along all morphisms

in ∆. We therefore think of M ♮
[n] and Un+,co

[n] as functors from fibrant objects

in Fun([n], Set+∆) to objects in (Set+∆)/∆n that admit a weak equivalence to a
fibrant object that is preserved by pullbacks — by Lemma 3.9 all weak equiva-
lences between such objects are preserved by pullbacks, so we still get functors
of relative categories.
It remains to show that inverting the weak equivalences in this subcategory
gives the same ∞-category as inverting the weak equivalences in the subcat-
egory of fibrant objects. This follows from [BK12, 7.5], since any fibrant re-
placement functor gives a homotopy equivalence of relative categories. �

4. Free Fibrations

Our goal in this section is to prove that for any ∞-category C, the forgetful
functor

Catcart∞/C → Cat∞/C

has a left adjoint, given by the following explicit formula:

Definition 4.1. Let C be an ∞-category. For p : E → C any functor of ∞-

categories, let F (p) denote the map E ×C{1} C∆1

→ C{0}, where the pullback

is along the target fibration C∆1

→ C given by evaluation at 1 ∈ ∆1, and
the projection F (p) is induced by evaluation at 0. Then F defines a functor
Cat∞/C → Cat∞/C.
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We will call the projection F (p) : E×C C∆1

→ C the free Cartesian fibration on
p : E → C — the results of this section will justify this terminology.

Example 4.2. The free Cartesian fibration on the identity C → C is the source

fibration F : C∆1

→ C, given by evaluation at 0 ∈ ∆1.

Lemma 4.3. The functor F factors through the subcategory Catcart∞/C → Cat∞/C.

Proof. By [Lur09a, Corollary 2.4.7.12] the projection F (p) → C is a Cartesian
fibration for any p : E → C, and a morphism in F (p) is Cartesian if and only
if its image in E is an equivalence. It is thus clear that for any map φ : E → F

in Cat∞/C, the induced map F (φ) preserves Cartesian morphisms, since the
diagram

E×C C∆1

F ×C C∆1

E F

commutes. �

Remark 4.4. If p : E → C is a functor, the objects of F (p) can be identified
with pairs (e, φ : c→ p(e)) where e ∈ E and φ is a morphism in C. Similarly, a
morphism in F (p) can be identified with the data of a morphism α : e′ → e in
C and a commutative diagram

c′ p(e′)

c p(e).

If (e, φ) is an object in F (p) and ψ : c′ → c is a morphism in C, the Cartesian
morphism over ψ with target (e, φ) is the obvious morphism from (e, φψ).

Theorem 4.5. Let C be an ∞-category. The functor F : Cat∞/C → Catcart∞/C is

left adjoint to the forgetful functor U : Catcart∞/C → Cat∞/C.

Remark 4.6. Analogues of this result in the setting of ordinary categories (as
well as enriched and internal variants) can be found in [Str80] and [Web07].

Composition with the degeneracy s0 : ∆
1 → ∆0 induces a functor C → C∆1

(which sends an object of C to the constant functor ∆1 → C with that value).

Since the composition of this with both of the evaluation maps C∆1

→ C is

the identity, this induces a natural map E → E ×C C∆1

over C, i.e. a natural
transformation

η : id → UF
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of functors Cat∞/C → Cat∞/C. We will show that this is a unit transformation
in the sense of [Lur09a, Definition 5.2.2.7], i.e. that it induces an equivalence

MapCart
C (F (E),F) → MapC(UF (E), U(F)) → MapC(E, U(F))

for all E → C in Cat∞/C and F → C in Catcart∞/C.

We first check this for the objects of Cat∞/C with source ∆0 and ∆1, which (in

a weak sense) generate Cat∞/C under colimits. If a map ∆0 → C corresponds to
the object x ∈ C, then its image under F is the projection C/x → C. (Strictly

speaking, the image is the “alternative overcategory” C/x in the notation of
[Lur09a, §4.2.1], but this is naturally weakly equivalent to C/x by [Lur09a,
Proposition 4.2.1.5].) Thus in this case we need to show the following:

Lemma 4.7.

(i) For every x ∈ C, the map MapCart
C (C/x,E) → MapC({x},E) ≃ ιEx is an

equivalence.
(ii) More generally, for any X ∈ Cat∞, the map

MapCart
C (C/x × X,E) → MapC({x} × X,E) ≃ Map(X,Ex)

is an equivalence.

Proof. The inclusion of the ∞-category of right fibrations over C into Catcart∞/C

has a right adjoint, which sends a Cartesian fibration p : E → C to its restric-
tion to the subcategory Ecart of E where the morphisms are the p-Cartesian
morphisms. The map MapCart

C (C/x,E) → ιEx thus factors as

MapCart
C (C/x,E)

∼
−→ MapC(C/x,Ecart) → ιEx,

where MapC(C/x,Ecart) is the mapping space in the ∞-category of right fi-
brations over C, which is modelled by the contravariant model structure on
(Set∆)/C constructed in [Lur09a, §2.1.4].
By [Lur09a, Proposition 4.4.4.5], the inclusion {x} → C/x is a trivial cofibration
in this model category. Since this is a simplicial model category by [Lur09a,
Proposition 2.1.4.8], it follows immediately that we have an equivalence

MapC(C/x,Ecart)
∼
−→ MapC({x},Ecart).

This proves (i). To prove (ii) we simply observe that since the model category
is simplicial, the product {x} ×K → C/x ×K is also a trivial cofibration for
any simplicial set K. �

For the case of maps ∆1 → C, the key observation is:

Proposition 4.8. If ∆1 → C corresponds to a map f : x → y in C, then the
diagram

C/x C/x ×∆1

C/y C∆1

×C ∆1
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is a pushout square in Catcart∞/C, where the top map is induced by the inclusion

{0} →֒ ∆1.

Proof. Since colimits in Catcart∞/C ≃ Fun(Cop,Cat∞) are detected fibrewise, it
suffices to show that for every c ∈ C, the diagram on fibres is a pushout in
Cat∞. This diagram can be identified with

MapC(c, x) MapC(c, x)×∆1

MapC(c, y) Cc/ ×C ∆1.

This is a pushout by Lemma 3.8, since Cc/ ×C ∆1 → ∆1 is the left fibra-
tion corresponding to the map of spaces MapC(c, x) → MapC(c, y) induced by
composition with f . �

Corollary 4.9. For every map σ : ∆1 → C and every Cartesian fibration
E → C, the map

η∗σ : MapCart
C (C∆1

×C ∆1,E) → MapC(∆
1,E)

is an equivalence.

Proof. By Proposition 4.8, if the map σ corresponds to a morphism f : x → y

in C, we have a pullback square

MapCart
C (C∆1

×C ∆1,E) MapCart
C (C/y ,E)

MapCart
C (C/x ×∆1,E) MapCart

C (C/x,E).

The map η∗σ fits in an obvious map of commutative squares from this to the
square

MapC(∆
1,E) MapC({y},E)

MapC({x} ×∆1,E) MapC({x},E),

where the right vertical map is given by composition with Cartesian morphims
over f . Since E → C is a Cartesian fibration, this is also a pullback square (this
amounts to saying morphisms in E over f are equivalent to composites of a
morphism in Ex with a Cartesian morphism over f). But now, by Lemma 4.7,
we have a natural transformation of pullback squares that’s an equivalence ev-
erywhere except the top left corner, so the map in that corner is an equivalence
too. �
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To complete the proof, we now only need to observe that F preserves colimits:

Lemma 4.10. F preserves colimits.

Proof. Colimits in Catcart∞/C are detected fibrewise, so we need to show that for

every x ∈ C, the functor Cx/ ×C (–) : Cat∞/C → Cat∞ preserves colimits. But
Cx/ → C is a flat fibration by [Lur14, Example B.3.11], so pullback along it
preserves colimits as a functor Cat∞/C → Cat∞/Cx/

(since on the level of model

categories the pullback functor is a left Quillen functor by [Lur14, Corollary
B.3.15]), and the forgetful functor Cat∞/Cx/

→ Cat∞ also preserves colimits.
�

Proof of Theorem 4.5. By Lemma 4.10 the source and target of the natural
map

MapCart
C (F (E),F) → MapC(E, U(F))

both take colimits in E to limits of spaces. Since Cat∞ is a localization of
P(∆), every object of Cat∞/C is canonically the colimit of a diagram consisting
of objects of the form ∆n → C, so it suffices to show that the map is an
equivalence for such objects. But ∆n can in turn be identified with the colimit
∆1 ∐∆0 · · · ∐∆0 ∆1, so it suffices to check that the map is an equivalence when
E = ∆0 and ∆1. Thus the result follows from Lemma 4.7 and Corollary 4.9. �

Proposition 4.11.

(i) Suppose X → S is a map of ∞-categories and K is an ∞-category. Then
there is a natural equivalence F (K ×X) ≃ K × F (X).

(ii) The unit map X → F (X) induces an equivalence of ∞-categories

FuncartS (F (X), Y )
∼
−→ FunS(X,Y ).

Proof. (i) is immediate from the definition of F . Then (ii) follows from the
natural equivalence

Map(K,FunS(A,B)) ≃ MapS(K ×A,B) ≃ MapcartS (F (K ×A), B)

≃ MapcartS (K × F (A), B) ≃ Map(K,FuncartS (F (A), B)).

�

5. Natural Transformations as an End

It is a familiar result from ordinary category theory that for two functors
F,G : C → D the set of natural transformations from F to G can be iden-
tified with the end of the functor C

op × C → Set that sends (C,C′) to
HomD(F (C), G(C′)). Our goal in this section is to prove the analogous re-
sult for ∞-categories:
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Proposition 5.1. Let F,G : C → D be two functors of ∞-categories. Then the
space MapFun(C,D)(F,G) of natural transformations from F to G is naturally
equivalent to the end of the functor

Cop × C
(F op,G)
−−−−−→ Dop ×D

Map
D−−−−→ S.

A proof of this is also given in [Gla16, Proposition 2.3]; we include a slightly
different proof for completeness.

Lemma 5.2. Suppose i : C0 →֒ C is a fully faithful functor of ∞-categories.
Then for any ∞-category X the functor Fun(X,C0) → Fun(X,C) is also fully
faithful.

Proof. A functor G : A → B is fully faithful if and only if the commutative
square of spaces

Map(∆1,A) Map(∆1,B)

ιA×2 ιB×2

is Cartesian. Thus, we must show that for any X, the square

Map(∆1 × X,C0) Map(∆1 × X,C)

Map(X,C0)
×2 Map(X,C)×2

is Cartesian. But this is equivalent to the commutative square of ∞-categories

C∆1

0 C∆1

C×2
0 C×2

being Cartesian. By [Lur09a, Corollary 2.4.7.11] the vertical maps in this
diagram are bifibrations in the sense of [Lur09a, Definition 2.4.7.2], so by
[Lur09a, Propositions 2.4.7.6 and 2.4.7.7] to prove that this square is Carte-
sian it suffices to show that for all x, y ∈ C0 the induced map on fibres

(C∆1

0 )(x,y) → (C∆1

)(ix,iy) is an equivalence. But this can be identified with
the map MapC0

(x, y) → MapC(ix, iy), which is an equivalence as i is by as-
sumption fully faithful. �

Proof of Proposition 5.1. By [Lur09a, Corollary 3.3.3.4], we can identify the
limit of the functor

φ : Tw(C)op → Cop × C
(F op,G)
−−−−−→ Dop ×D

Map
D−−−−→ S
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with the space of sections of the corresponding left fibration. By [Lur14, Propo-
sition 5.2.1.11], the left fibration classified by MapD is the projection
Tw(D)op → Dop × D, so the left fibration classified by φ is the pullback of
this along Tw(C)op → Cop × C → Dop × D. Thus the space of sections is
equivalent to the space of commutative diagrams

Tw(C)op Tw(D)op

Cop × C Dop ×D,

i.e. the space of maps from Tw(C) to the pullback of Tw(D) in the ∞-category
of left fibrations over Cop × C. Using the “straightening” equivalence between
this ∞-category and that of functors Cop×C → S we can identify our limit with
the space of maps from yC to F ∗ ◦ yD ◦ G in Fun(Cop × C, S) ≃ Fun(C,P(C)).
Since F ∗ has a left adjoint F!, we have an equivalence

MapFun(C,P(C))(yC, F
∗yD ◦G) ≃ MapFun(C,P(D))(F!yC, yD ◦G).

But by [Lur09a, Proposition 5.2.6.3] the functor F!yC is equivalent to yD ◦ F ,
and so the limit is equivalent to MapFun(C,P(D))(yD ◦ F, yD ◦G). The Yoneda

embedding yD is fully faithful by [Lur09a, Proposition 5.1.3.1], so Lemma 5.2
implies that the functor Fun(C,D) → Fun(C,P(D)) given by composition with
yD is fully faithful, hence we have an equivalence

MapFun(C,P(D))(yC ◦ F, yD ◦G) ≃ MapFun(C,D)(F,G),

which completes the proof. �

6. Enhanced Mapping Functors

The Yoneda embedding for ∞-categories, constructed in [Lur09a, Proposition
5.1.3.1] or [Lur14, Proposition 5.2.1.11], gives for any ∞-category C a mapping
space functor MapC : C

op×C → S. In some cases, this is the underlying functor
to spaces of an interesting functor Cop ×C → Cat∞ — in particular, this is the
case if C is the underlying ∞-category of an (∞, 2)-category. For a definition
and a comparison of different models of (∞, 2)-categories see [Lur09b].

Definition 6.1. A mapping ∞-category functor for an ∞-category C is a
functor

MAPC : C
op × C → Cat∞

together with an equivalence from the composite Cop × C → Cat∞
ι
−→ S to the

mapping space functor MapC.

Lemma 6.2. Suppose C is an (∞, 2)-category with underlying ∞-category C′.
Then C′ has a mapping ∞-category functor that sends (C,D) to the ∞-category
of maps from C to D in C.
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Proof. This follows from the same argument as in [Lur09a, §5.1.3], using the
model of (∞, 2)-categories as categories enriched in marked simplicial sets, cf.
[Lur09b]. �

Example 6.3. The ∞-category Cat∞ of ∞-categories has a mapping ∞-
category functor

MAPCat∞ := Fun,

defined using the construction of Cat∞ as the coherent nerve of the simplicial
category of quasicategories.

Lemma 6.4. Suppose C is an ∞-category with a mapping ∞-category functor
MAPC. Then for any ∞-category D the functor ∞-category CD has a mapping
∞-category functor MAPCD given by the composite

(CD)op × CD → Fun(Dop ×D,Cop × C) → Fun(Tw(D)op,Cat∞)
lim
−−→ Cat∞,

where the second functor is given by composition with the projection
Tw(D)op → Dop ×D and MAPC.

Proof. We must show that the underlying functor to spaces ι ◦ MAPCD is
equivalent to MapCD . Since ι preserves limits (being a right adjoint), this
follows immediately from Proposition 5.1. �

Definition 6.5. Suppose C is an ∞-category with a mapping ∞-category
functor MAPC. We say that C is tensored over Cat∞ if for every C ∈ C the
functor MAPC(C, –) has a left adjoint – ⊗ C : Cat∞ → C; in this case these
adjoints determine an essentially unique functor ⊗ : Cat∞ × C → C.

Example 6.6. The ∞-category Cat∞ is obviously tensored over Cat∞ via the
Cartesian product × : Cat∞ × Cat∞ → Cat∞.

Lemma 6.7. Suppose C is an ∞-category with a mapping ∞-category MAPC

that is tensored over Cat∞. Then for any ∞-category D, the mapping ∞-
category functor for CD defined in Lemma 6.4 is also tensored over Cat∞, via
the composite

Cat∞ × CD → CatD∞ × CD ≃ (Cat∞ × C)D → CD

where the first functor is given by composition with the functor D → ∗ and the
last by composition with the tensor functor for C.

Proof. We must show that for every functor F : D → C there is a natural
equivalence

MapCD(X⊗ F,G) ≃ MapCat∞(X,MAPCD(F,G)).

By Proposition 5.1 and the definition of ⊗ for CD, there is a natural equivalence

MapCD(X⊗ F,G) ≃ lim
Tw(D)op

MapC(X⊗ F (–), G(–)).

Now using that C is tensored over Cat∞, this is naturally equivalent to

lim
Tw(D)op

MapCat∞(X,MAPC(F (–), G(–))).

Documenta Mathematica 22 (2017) 1225–1266



Lax Colimits and Free Fibrations in ∞-Categories 1243

Moving the limit inside, this is

MapCat∞(X, lim
Tw(D)op

MAPC(F (–), G(–))),

which is MapCat∞(X,MAPCD(F,G)) by definition. �

Example 6.8. For any ∞-category D, the ∞-category CatD∞ is tensored over
Cat∞: X⊗ F is the functor D 7→ X× F (D).

In the case where C is the ∞-category Cat∞ of ∞-categories, Lemma 6.4 gives
a mapping ∞-category functor

NatDop := MAPFun(Dop,Cat∞)

for Fun(Dop,Cat∞), for any ∞-category D. However, using the equivalence
Fun(Dop,Cat∞) ≃ Catcart∞/D we can construct another such functor: the space

of maps from E to E′ in Catcart∞/D is the underlying∞-groupoid of the∞-category

Funcart
D (E,E′), the full subcategory of FunD(E,E′) spanned by the functors that

preserve Cartesian morphisms. We will now prove that these two functors are
equivalent:

Proposition 6.9. For every ∞-category C there is a natural equivalence

FuncartC (E,E′) ≃ NatCop(StCE, StCE
′).

Proof. By the Yoneda Lemma it suffices to show that there are natural equiv-
alences

MapCat∞(X,FuncartC (E,E′)) ≃ MapCat∞(X,NatCop(StCE, StCE
′)).

It is easy to see that MapCat∞(X,FuncartC (E,E′)) is naturally equivalent
to MapCatcart

∞/C
(X × E,E′) — these correspond to the same components of

MapCat∞(X,FunC(E,E
′)). The equivalence StC preserves products, so this is

equivalent to the mapping space

MapFun(Cop,Cat∞)(StC(X× C)× StCE, StCE
′).

But the projection X×C → C corresponds to the constant functor c∗X : Cop →
∗ → Cat∞ with value C (since the Cartesian fibration classified by this com-
posite is precisely the pullback of X → ∗ along C → ∗). Thus there is a natural
equivalence

MapCat∞(X,FuncartC (E,E′)) ≃ MapFun(Cop,Cat∞)(c
∗X× StCE, StCE

′).

But by Lemma 6.7, the ∞-category Fun(Cop,Cat∞) is tensored over Cat∞ and
this is naturally equivalent to MapCat∞(X,NatCop(StCE, StCE

′)), as required.
�
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7. Cartesian and CoCartesian Fibrations as Weighted Colimits

In ordinary category theory it is a familiar fact that the Grothendieck fibration
classified by a functor F : Cop → Cat can be identified with the lax colimit
of F , and the Grothendieck opfibration classified by a functor F : C → Cat
with the oplax colimit of F . In this section we will show that Cartesian and
coCartesian fibrations admit analogous descriptions.
It is immediate from our formula for the free Cartesian fibration that the sec-
tions of a Cartesian fibration are given by the oplax limit of the corresponding
functor:

Proposition 7.1. The ∞-category of sections of the Cartesian fibration clas-
sified by F is given by the oplax limit of F . In other words, there is a natural
equivalence

FunC(C,UnC(F )) ≃ lim
Tw(C)op

Fun(C
–/, F (–))

of functors Fun(Cop,Cat∞) → Cat∞.

Proof. By Theorem 4.5 and Proposition 6.9 we have natural equivalences

FunC(C,UnC(F )) ≃ Funcart
C (F (C),UnC(F )) ≃

≃ NatCop(C–/, F ) ≃ lim
Tw(C)op

Fun(C–/, F (–)).�

Definition 7.2. Let F : C → Cat∞ be a functor, and let F → C be its associ-
ated coCartesian fibration. Given an ∞-category X, write ΦF

X for the simplicial
set over C with the universal property

Hom(K ×C F,X) ∼= HomC(K,Φ
F
X).

By [Lur09a, Corollary 3.2.2.13] the projection ΦF
X → C is a Cartesian fibration.

Proposition 7.3. The Cartesian fibration ΦF
X → C corresponds to the functor

Fun(F (–),X) : Cop → Cat∞.

Proof. We first consider the case where C is a simplex ∆n. By Proposition 3.1
there are natural equivalences

colim
Tw([n])

φ(–)× [n]–/
∼
−→ Unco

[n](φ)

for any φ : [n] → Cat∞, natural in ∆
op. Thus by Proposition 7.1 there are

natural equivalences

Fun∆n(∆n,Φφ
X
) ≃ Fun(Unco

[n](φ),X) ≃ lim
Tw([n])op

Fun([n]–/,Fun(φ(–),X))

≃ Fun∆n(∆n,Un[n](Fun(φ(–),X))).

Since this equivalence is natural in ∆
op and Cat∞ is a localization of the

presheaf ∞-category P(∆), we get by the Yoneda lemma a natural equivalence

Φφ
X
≃ Uncart[n] (Fun(φ(–),X))).
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Since Cat∞ is an accessible localization of P(∆), any ∞-category C is naturally
equivalent to the colimit of the diagram ∆

op
/C → Cat∞/C → Cat∞. Now given

F : C → Cat∞, we have, since pullback along a Cartesian fibration preserves
colimits,

UncartC (Fun(F (–),X))) ≃ colim
σ∈∆

op

/C

Un[n](Fun(Fσ(–),X)) ≃ colim
σ∈∆

op

/C

ΦFσ
X ≃ ΦF

X,

which completes the proof. �

Theorem 7.4. The coCartesian fibration classified by a functor F : C → Cat∞
is given by the oplax colimit of F . In other words, there is a natural equivalence

UncoC (F ) ≃ colim
Tw(C)

F (–)× C
–/

of functors Fun(C,Cat∞) → Cat∞.

Proof. Let F : C → Cat∞ be a functor. Then by Proposition 7.3, we have a
natural equivalence

Fun(UnC(F ),X) ≃ FunC(C,Φ
F
X).

By Proposition 7.1 we have a natural equivalence between the right-hand side
and

lim
Tw(C)op

Fun(C–/,Fun(F (–),X)) ≃ Fun
(
colim
Tw(C)

F (–)× C–/,X
)
.

By the Yoneda lemma, it follows that UnC(F ) is naturally equivalent to
colimTw(C) F (–)× C–/. �

Corollary 7.5. Any ∞-category C is the oplax colimit of the constant functor
C → Cat∞ with value ∗.

Proof. The identity C → C is the coCartesian fibration classified by this functor.
�

Corollary 7.6. The Cartesian fibration classified by a functor F : Cop →
Cat∞ is given by the lax colimit of F . In other words, there is a natural
equivalence

UnC(F ) ≃ colim
Tw(Cop)

F (–)× C/–

of functors Fun(Cop,Cat∞) → Cat∞.

Proof. We have a natural equivalence UnC(F ) ≃ UncoCop(F op)op. Since (–)op is
an automorphism of Cat∞ it preserves colimits, so by Theorem 7.4 we have

UnC(F ) ≃

(
colim

Tw(Cop)
F (–)op × (Cop)–/

)op

≃ colim
Tw(Cop)

F (–)× C/–. �

Similarly, dualizing Proposition 7.1 gives:
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Corollary 7.7. The ∞-category of sections of the coCartesian fibration clas-
sified by F is given by the lax limit of F . In other words, there is a natural
equivalence

FunC(C,Un
co
C (F )) ≃ lim

Tw(C)op
Fun(C/–, F (–))

of functors Fun(C,Cat∞) → Cat∞.

8. 2-Representable Functors

Suppose C is an ∞-category equipped with a mapping ∞-category functor
MAPC : C

op × C → Cat∞. We say a functor F : Cop → Cat∞ is 2-representable
by C ∈ C if F is equivalent to MAPC(–, C). Similarly, we say a Cartesian
fibration p : E → C is 2-representable by C if p is classified by the functor
MAPC(–, C). Our goal in this section is to prove that if a Cartesian fibration
p : E → C is 2-representable then, under mild hypotheses, the same is true
for the induced map ED → CD for any ∞-category D. We begin by giving a
somewhat unwieldy description of the functor classifying such fibrations for an
arbitrary Cartesian fibration p:

Proposition 8.1. Suppose p : E → C is a Cartesian fibration corresponding to
a functor F : Cop → Cat∞. Then for any ∞-category D the functor ED → CD

given by composition with p is a Cartesian fibration classified by a functor
FD : (CD)op → Cat∞ that sends a functor φ : D → C to

lim
Tw(D)op

Fun(D
–/, F ◦ φ(–)).

Proof. The induced functor ED → CD is a Cartesian fibration by [Lur09a,
Proposition 3.1.2.1]. For f : K ×D → C we have a natural equivalence

FunCD(K,ED) ≃ FunC(K ×D,E) ≃ FunK×D(K ×D, f∗E).

But then by Proposition 7.1 we have a natural equivalence

FunK×D(K ×D, f∗E) ≃ lim
Tw(K×D)op

Fun((K ×D)–/, F ◦ f(–)),

and then as Tw preserves products (being a right adjoint) we can rewrite this
as

lim
Tw(K)op

Fun(K–/, lim
Tw(D)op

Fun(D–/, F ◦ f(–))) ≃ lim
Tw(K)op

Fun(K–/, FD ◦ f(–)),

which we can identify, using Proposition 7.1, with

FunK(K, f∗UnCD(FD)) ≃ FunCD(K,UnCD(FD)).

Now applying the Yoneda Lemma completes the proof. �

Definition 8.2. Suppose C is an ∞-category equipped with a mapping ∞-
category functor. We say that C is cotensored over Cat∞ if for every C ∈ C the
functor MAPC(–, C) : C → Catop∞ has a right adjoint C(–) : Catop∞ → C; in this
case these adjoints determine an essentially unique functor (–)(–) : Catop∞ ×C →
C. If C is also tensored over Cat∞, being cotensored is equivalent to the functor
–⊗ X having a right adjoint (–)X for all ∞-categories X.
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Corollary 8.3. Let C be an ∞-category equipped with a mapping ∞-category
functor MAPC that is tensored and cotensored over Cat∞, and suppose p : E →
C is a Cartesian fibration that is 2-representable by C ∈ C. Then for any
∞-category D the fibration ED → CD is 2-representable by the functor CD

–/.

Proof. By Proposition 8.1 this fibration corresponds to the functor sending
φ : D → C to

lim
Tw(D)op

Fun(D–/, F ◦ φ(–)),

where F is the functor corresponding to p. If F is 2-representable by C, this
is equivalent to

lim
Tw(D)op

Fun(D–/,MAPC(φ(–), C) ≃ lim
Tw(D)op

MAPC(φ(–), C
D–/),

which is MAPCD(φ,CD–/) by definition of the mapping ∞-category of CD. �

9. Some Cartesian Fibrations Identified

In this section we will use our results so far to explicitly identify the Cartesian
fibrations classified by certain classes of functors. This is the key input needed
to prove our presentability result in the next section. We start with some
notation:

Definition 9.1. If p : E → B is a functor of ∞-categories, we denote by E⊲
B

the pushout
B ∐E×{1} E×∆1,

and by E⊳
B the pushout

B ∐E×{0} E×∆1.

Warning 9.2. The notations E⊲
B and E⊳

B are somewhat abusive, as these sim-
plicial sets depend on the functor p rather than just on E and B. Moreover, if
B = ∆0 then the definition does not reduce to E⊲ and E⊳ but rather the “al-
ternative joins” E⋄∆0 and ∆0 ⋄E in the notation of [Lur09a, §4.2.1]. However,
these are weakly equivalent to the usual joins by [Lur09a, Proposition 4.2.1.2].

Remark 9.3. Observe that (E⊲
B)

op ≃ (Eop)⊳Bop and (E⊳
B)

op ≃ (Eop)⊲Bop .

We then have the following simple observation:

Lemma 9.4. Given a functor p : E → B, write i : B →֒ E⊳
B and j : B →֒ E⊲

B for
the inclusions in the pushout diagrams defining E⊳

B and E⊲
B, respectively. Then

for any ∞-category D, we have:

(i) The functor
i∗ : Fun(E⊳

B,D) → Fun(B,D)

given by composition with i is a Cartesian fibration classified by the func-
tor Fun(B,D)op → Cat∞ that sends F to Fun(E,D)F◦p/.

(ii) The functor
j∗ : Fun(E⊲

B,D) → Fun(B,D)

given by composition with j is a coCartesian fibration classified by the
functor Fun(B,D) → Cat∞ that sends F to Fun(E,D)/F◦p.
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Proof. We will prove (i); the proof of (ii) is similar. By the definition of E⊳
B we

have a pullback square

Fun(E⊳
B,D) Fun(E×∆1,D)

Fun(B,D) Fun(E,D)

i∗ ev0

p∗,

where the right vertical map can be identified with the evaluation-at-0 functor

Fun(E,D)∆
1

→ Fun(E,D)

This is the Cartesian fibration classified by the undercategory functor
Fun(E,D)(–)/, hence the pullback i∗ is the Cartesian fibration classified by
the composite functor Fun(E,D)p∗(–)/. �

Remark 9.5. If D has pushouts, then i∗ is also a coCartesian fibration, with
coCartesian morphisms given by taking pushouts. Similarly, if D has pullbacks
then j∗ is also a Cartesian fibration, with Cartesian morphisms given by taking
pullbacks.

In particular, given a map p : E → B we see that P(E⊳
B) → P(B) is a coCartesian

and Cartesian fibration (recall that P(C) = Fun(Cop, S) denotes the presheaf
∞-category). The corresponding functors are given on objects by P(E)/p∗(–),
with functoriality determined by composition and pullbacks, respectively. Our
next goal is to give an alternative description of this functor:

Proposition 9.6. Let p : E → B be a functor of ∞-categories, and let
j : B → E⊳

B be the obvious inclusion. Then the functor j∗ : P(E⊳
B) → P(B) is a

Cartesian fibration corresponding to the functor P(B)op ≃ RFib(B)op → Cat∞
that sends a right fibration Y → B to P(Y ×B E).

To prove this, we need to identify the functor P(E)/p∗(–) with the functor P(–×B

E) under the equivalence P(B) ≃ RFib(B), for which we use the following
observation:

Proposition 9.7. Suppose p : K → C is a right fibration of ∞-categories. Then
the functor

p! : RFib(K) → RFib(C)/p

given by composition with p is an equivalence. Moreover, this equivalence is
natural in p ∈ RFib(C) (with respect to composition with maps f : K → L over
C, and also with respect to pullbacks along such maps).

Proof. The functor p! is described by the left Quillen functor p! : Set∆/K →
(Set∆/C)/p given by composition with p, where Set∆/K is equipped with the
contravariantmodel structure of [Lur09a, §2.1.4] and (Set∆/C)/p with the model
structure induced from the contravariant model structure on Set∆/C. It there-
fore suffices to show that p! is a left Quillen equivalence. The functor p! is
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obviously an equivalence of underlying categories, and we claim it is actually
an equivalence of model categories. The cofibrations clearly correspond under
p!, being the monomorphisms of underlying simplicial sets in both cases, so by
[Joy08, Proposition E.1.10] it suffices to show the fibrant objects are the same.
In Set∆/K these are the right fibrations X → K by [Lur09a, Corollary 2.2.3.12],
while in (Set∆/C)/p they are the diagrams

X K

C

f

p

where f is a fibration in Set∆/C. But as p is a right fibration, this is equivalent
to f being a right fibration by [Lur09a, Corollary 2.2.3.14]. �

Corollary 9.8. Suppose p : K → C is a right fibration, corresponding to a
functor F : Cop → S. Then the functor p! : P(K) → P(C)/F given by left Kan
extension along pop is an equivalence, natural in p ∈ RFib(C) (with respect to
left Kan extensions along maps f : K → L over C and composition with the
associated natural transformation, as well as with respect to composition with
f and pullback along the natural transformation).

Proof. This follows from combining Proposition 9.7 with the naturality of the
straightening equivalence between right fibrations and functors, which can be
proved by the same argument as in the proof of Corollary A.32. �

Proof of Proposition 9.6. This follows from combining Lemma 9.4 with Corol-
lary 9.8, since under the equivalence between presheaves and right fibrations
the functor p∗ : P(B) → P(E) corresponds to pullback along p.

�

Corollary 9.9.

(i) Let p : E → B be a Cartesian fibration classified by a functor F : Bop →
Cat∞, and write j for the inclusion B →֒ E⊳

B. Then the functor
j∗ : P(E⊳

B) → P(B) is a Cartesian fibration classified by the functor
RFib(B)op → Cat∞ that sends Y → B to FunBop(Yop,ΦF

S ), where ΦF
S →

Bop is the Cartesian fibration classified by the functor P◦F : B → Cat∞.
(ii) Let p : E → B be a coCartesian fibration classified by a functor

F : B → Cat∞, and write j for the inclusion B →֒ E⊳
B. Then the

functor j∗ : P(E⊳
B) → P(B) is a Cartesian fibration classified by the

functor RFib(B)op → Cat∞ that sends Y → B to FunBop(Yop, Φ̃F
S ),

where Φ̃F
S → Bop is the coCartesian fibration classified by the functor

P ◦ F : Bop → Cat∞.

Proof. Combine Proposition 9.6 with Proposition 7.3 and its dual. �
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Our next observation lets us identify several interesting functors with full sub-

functors of the functor FunBop((–)op, Φ̃F
S ), which will allow us to identify the

corresponding Cartesian fibrations with full subcategories of P(E⊳
B).

Lemma 9.10. Suppose F : Bop → Cat∞ is a functor of ∞-categories corre-
sponding to the Cartesian fibration p : E → B and the coCartesian fibration

q : F → Bop. Let F̂ : P(B)op → Cat∞ be the unique limit-preserving functor
extending F . Then:

(i) The functor Funcart
B (B/–,E) : B

op → Cat∞ is equivalent to F .

(ii) The functor FuncartB (–,E) : RFib(B) → Cat∞ corresponds to F̂ under the
equivalence RFib(B) ≃ P(B).

(iii) The functor Funcocart
Bop ((Bop)

–/,F) : B
op → Cat∞ is equivalent to F .

(iv) The functor FuncocartBop ((–)op,F) : RFib(B) → Cat∞ corresponds to F̂ un-
der the equivalence RFib(B) ≃ P(B).

Proof. We will prove (i) and (ii); the proofs of (iii) and (iv) are essentially
the same. To prove (i), observe that the straightening equivalence between
Cartesian fibrations and functors to Cat∞ gives us a natural equivalence

MapCat∞(C,Funcart
B (B/–,E)) ≃ MapcartB (C×B/–,E)

≃ MapFun(Bop,Cat∞)(C× yB(–), F )

≃ MapFun(Bop,Cat∞)(yB(–), F
C).

Now the Yoneda Lemma implies that this is naturally equivalent to ιFC(–) ≃
MapCat∞(C, F (–)), and so we must have Funcart

B (B/–,E) ≃ F . This proves (i).

To prove (ii), we first observe that the functor Funcart
B (–,E) preserves limits,

since for any ∞-category C we have

MapCat∞(C,FuncartB (–,E)) ≃ MapcartB ((C×B)×B (–),E)

and the Cartesian product in Catcart∞/B preserves colimits in each variable. More-

over, it follows from (i) that this functor extends F , since the right fibration
B/b → B corresponds to the presheaf yB(b) under the equivalence between
RFib(B) and P(B). �

Definition 9.11. Suppose F : B → Cat∞ is a functor. Then we write

PF : Bop → Cat∞ for the composite of F op with P : Catop∞ → Ĉat∞, and

let P̂F : P(B)op → Ĉat∞ be the unique limit-preserving functor extending PF .

Proposition 9.12. Let F : B → Cat∞ be a functor, with p : E → B an asso-
ciated coCartesian fibration. We define Pcocart(E⊳

B) to be the full subcategory
of P(E⊳

B) spanned by those presheaves φ : (E⊳
B)

op → S such that for every co-
Cartesian morphism ᾱ : e → α!e in E over α : b → b′ in B, the commutative
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square

φ(α!e, 1) φ(e, 1)

φ(b′, 0) φ(b, 0)

φ(ᾱ, 1)

φ(α, 0)

is a pullback square. Then the restricted projection Pcocart(E⊳
B) → P(B) is a

Cartesian fibration classified by the functor P̂F .

Proof. Combining Lemma 9.10 with (the dual of) Proposition 7.3, we may

identify P̂F with the functor Funcocart
Bop ((–)op, Φ̃F

S ). This is a natural full sub-

category of FunBop((–)op, Φ̃F
S ), the functor classified by the Cartesian fibration

P(E⊳
B) → P(B) by Proposition 9.6. It follows that P̂F is classified by the pro-

jection to P(B) of the full subcategory of P(E⊳
B) spanned by those presheaves

that correspond to objects of FuncocartBop ((–)op, Φ̃F
S ) under the identification of

the fibres with FunBop((–)op, Φ̃F
S ).

By [Lur09a, Corollary 3.2.2.13], the coCartesian edges of Φ̃F
S are those that

correspond to functors ∆1 ×Bop Eop → S that take Cartesian edges of Eop

to equivalences in S. Thus if F → Bop is a coCartesian fibration, a functor

F → Φ̃F
S over Bop preserves coCartesian morphisms precisely if the classifying

functor F×Bop Eop → S takes morphisms of the form (φ, ǫ) with φ coCartesian
in F and ǫ Cartesian in Eop to equivalences in S.

If Y → B is a right fibration, this means that FuncocartBop (Yop, Φ̃F
S ) corresponds to

the full subcategory of P(Y ×B E) spanned by the presheaves (Y ×B E)op → S

that take morphisms of the form (η, ǫ) with ǫ coCartesian in E to equivalences
in S.
Suppose φ : Bop → S is the presheaf classified by Y → B. Then unwinding the
equivalence

P(E⊳
B)φ ≃ P(E)/p∗φ ≃ RFib(E)/p∗Y ≃ RFib(E×B Y) ≃ P(E×B Y),

we see that the presheaf Ψ̃ on E×B Y classified by Ψ: Eop → S over p∗φ assigns

to (e, y) ∈ E×BY the fibre Ψ(e)y of the map Ψ(e) → φ(pe) at y. Thus Ψ̃(ᾱ, η) is
an equivalence for every coCartesian morphism ᾱ : e→ α!e in E if and only if for
every y ∈ φ(p(α!e)) the map on fibres Ψ(α!e)y → Ψ(e)φ(α)(e) is an equivalence.
This is equivalent to the commutative square

Ψ(α!e) Ψ(e)

φ(pα!e) φ(pe)
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being Cartesian. Thus FuncocartBop (Yop, Φ̃F
S ) corresponds to the full subcategory

Pcocart(E⊳
B)φ of P(E⊳

B)φ, which completes the proof. �

Definition 9.13. Let K be a collection of small simplicial sets. We write CatK∞
for the subcategory of Cat∞ with objects the small ∞-categories that admit K-
indexed colimits for all K ∈ K and morphisms the functors that preserve these.
Given C ∈ CatK∞ we let PK(C) denote the full subcategory of P(C) spanned by
those presheaves Cop → S that take K-indexed colimits in C to limits for all

K ∈ K. This defines a functor PK : (CatK∞)op → Ĉat∞.

Example 9.14. Let K(κ) be the collection of all κ-small simplicial sets. In

this case we write Catκ∞ for CatK(κ)
∞ and Pκ for PK(κ). For C ∈ Catκ∞ the

∞-category Pκ(C) is equivalent to Indκ C by [Lur09a, Corollary 5.3.5.4].

Definition 9.15. SupposeK is a collection of small simplicial sets and F : B →

CatK∞ is a functor of ∞-categories. Then we write PKF : Bop → Ĉat∞ for the

composite of F op with PK : (CatK∞)op → Ĉat∞, and let P̂KF : P(B)op → Ĉat∞
be the unique limit-preserving functor extending PKF .

Proposition 9.16. Let K be a collection of small simplicial sets and let
F : B → CatK∞ be a functor, with p : E → B an associated coCartesian fibration.
We define Pcocart

K (E⊳
B) to be the full subcategory of Pcocart(E⊳

B) spanned by those
presheaves φ : (E⊳

B)
op → S such that for every colimit diagram q̄ : K⊲ → Eb (for

any b ∈ B), the composite

(K⊳⊲)op → (E⊳
b )

op → (E⊳
B)

op → S

is a limit diagram. Then the restricted projection Pcocart
K (E⊳

B) → P(B) is a

Cartesian fibration associated to the functor P̂KF .

Proof. Since PKF (b) is a natural full subcategory of PF (b), we may identify
the coCartesian fibration classified by PKF with the projection to Bop of a

full subcategory Φ̃F
S (K) of Φ̃F

S . By Lemma 9.10 we may then identify the

functor P̂KF with FuncocartBop ((–)op, Φ̃F
S (K)), which is a natural full subcategory

of Funcocart
Bop ((–)op, Φ̃F

S ). By Proposition 9.12 we may therefore identify the

Cartesian fibration classified by P̂KF with the projection to P(B) of a full
subcategory of Pcocart(E⊳

B).
It thus remains to identify those presheaves on E⊳

B that correspond to objects

of the ∞-category Funcocart
Bop ((–)op, Φ̃F

S (K)) under the identification of the fi-

bres with FunBop((–)op, Φ̃F
S ). If Y → B is a right fibration, it is clear that

FunBop(Yop, Φ̃F
S (K)) corresponds to the full subcategory of P(Y×B E) spanned

by the presheaves (Y ×B E)op → S such that for every y ∈ Y over b ∈ B, the
restriction ({y} ×B E)op ≃ E

op
b → S preserves K-indexed limits for all K ∈ K.

Suppose φ : Bop → S is the presheaf classified by Y → B. Then unwinding the
equivalence

P(E⊳
B)φ ≃ P(E)/p∗φ ≃ RFib(E)/p∗Y ≃ RFib(E×B Y) ≃ P(E×B Y),

Documenta Mathematica 22 (2017) 1225–1266



Lax Colimits and Free Fibrations in ∞-Categories 1253

we see that these presheaves on E×B Y correspond to presheaves Ψ: Eop → S

over p∗φ such that for every b ∈ B, the restriction

E
op
b → S/φ(b)

has the property that for every y ∈ φ(b), the composite with the map S/φ(b) → S

given by pullback along {y} → φ(b) takes K-indexed colimits to limits for all
K ∈ K.
Now recall that the ∞-category S/φ(b) is equivalent to Fun(φ(b), S), with pull-
back to {y} corresponding to evaluation at y, and that limits in functor cate-
gories are computed pointwise. Thus we may identify our full subcategory with
that of presheaves Ψ such that for every b ∈ B, the restriction

E
op
b → S/φ(b)

takes K-indexed colimits to limits in S/φ(b).
For any ∞-category C and x ∈ C, a diagram K⊳ → C/x is a limit diagram if
and only if the associated diagram K⊳⊲ → C is a limit diagram. Therefore,
the full subcategory of Pcocart(E⊳

B) we have identified is precisely Pcocart
K (E⊳

B),
which completes the proof. �

Corollary 9.17. Suppose F : B → Catκ∞ is a functor, with p : E → B an asso-

ciated coCartesian fibration. Let ÎndκF : P(B)op → Ĉat∞ be the unique limit-

preserving functor extending Indκ ◦F op : Bop → Ĉat∞. Then the restricted
projection Pcocart

κ (E⊳
B) := Pcocart

K(κ) (E⊳
B) → P(B) is a Cartesian fibration classi-

fied by the functor ÎndκF .

10. Presentable Fibrations are Presentable

In ordinary category theory, an accessible fibration is a Grothendieck fibration
p : E → C such that C is an accessible category, the corresponding functor

F : Cop → Ĉat factors through the category of accessible categories and acces-
sible functors, and F preserves κ-filtered limits for κ sufficiently large.
In [MP89], Makkai and Paré prove that if p is an accessible fibration, then its
source E is also an accessible category, and p is an accessible functor. The goal
of this section is to prove an ∞-categorical variant of this result. As it makes
the proof much clearer we will, however, restrict ourselves to considering only
presentable fibrations of ∞-categories, defined as follows:

Definition 10.1. A presentable fibration is a Cartesian fibration p : E → B

such that B is a presentable ∞-category, the corresponding functor F : Bop →

Ĉat∞ factors through the ∞-category PrR of presentable ∞-categories and
right adjoints, and F preserves κ-filtered limits for κ sufficiently large.

Remark 10.2. Suppose p : E → B is a presentable fibration. Since the mor-
phisms of B are all mapped to right adjoints under the associated functor, it
follows that p is also a coCartesian fibration.

The goal of this section is then to prove the following:
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Theorem 10.3. Let p : E → B be a presentable fibration. Then E is a pre-
sentable ∞-category.

As in Makkai and Paré’s proof of [MP89, Theorem 5.3.4], we will prove this by
explicitly describing the total space of the presentable fibration classified by a
special class of functors as an accessible localization of a presheaf ∞-category.
To state this result we first recall some notation from [Lur09a, §5.5.7]:

Definition 10.4. Suppose κ is a regular cardinal. As before, let Catκ∞ be
the category of small ∞-categories that have all κ-small colimits, and functors
that preserve these. Then Indκ gives a functor from Catκ,op∞ to the ∞-category

PrRκ of κ-presentable ∞-categories and limit-preserving functors that preserve

κ-filtered colimits. Using the equivalence PrL ≃ (PrR)op we may equivalently

regard this as a functor Ind∨κ : Cat
κ
∞ → PrLκ, where PrLκ is the ∞-category

of κ-presentable ∞-categories and colimit-preserving functors that preserve κ-
compact objects.

The key step in the proof of Theorem 10.3 can then be stated as follows:

Proposition 10.5. Suppose F : B → Catκ∞ is a functor of ∞-categories with

associated coCartesian fibration p : E → B. Let q : Ê → P(B) be a Cartesian

fibration classified by the unique limit-preserving functor ÎndκF : P(B)op → PrRκ
extending Indκ ◦F op : Bop → PrRκ . Then the ∞-category Ê is an accessible ∞-
category, and q is an accessible functor.

We will prove Proposition 10.5 using Corollary 9.17 together with the following
simple observation:

Lemma 10.6. Suppose C is a small ∞-category, and let S = {pα : K
⊲
α → C}

be a small set of diagrams in C. Then the full subcategory of P(C) spanned by
presheaves that take the diagrams in S to limit diagrams in S is accessible, and
the inclusion of this into P(C) is an accessible functor.

Proof. Let yC : C → P(C) denote the Yoneda embedding. A presheaf F : Cop →
S takes popα to a limit diagram if and only if it is local with respect to the map
of presheaves

colim(yC ◦ p|Kα) → yC(∞),

where ∞ denotes the cone point. Thus if S′ is the set of these morphisms for
pα ∈ S, the subcategory in question is precisely the full subcategory of S′-
local objects. (This observation can also be found e.g. in the proof of [Lur09a,
Proposition 5.3.6.2].) Since S, and hence S′, is by assumption a small set, it
follows that this subcategory is an accessible localization of P(C). In particular,
it is itself accessible and the inclusion into P(C) is an accessible functor. �

Proof of Proposition 10.5. By Proposition 9.17 the Cartesian fibration Ê →
P(B) can be identified with the restriction to the full subcategory Pcocart

κ (E⊳
B)

of the functor j∗ : P(E⊳
B) → P(B) induced by composition with the inclusion

j : B →֒ E⊳
B.
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The ∞-category Pcocart
κ (E⊳

B) is by definition the full subcategory of P(E⊳
B)

spanned by presheaves that take two classes of diagrams to limit diagrams
in S — one indexed by coCartesian morphisms in E, which form a set, and one
indexed by κ-small colimit diagrams in the fibres of p; these do not form a set,
but we can equivalently consider only pushout squares and coproducts indexed
by κ-small sets, which do form a set. It then follows from Lemma 10.6 that
Pcocart
κ (E⊳

B) is accessible and the inclusion Pcocart
κ (E⊳

B) →֒ P(E⊳
B) is an acces-

sible functor. The functor j∗ : P(E⊳
B) → P(B) preserves colimits, since these

are computed pointwise, and so the composite Pcocart
κ (E⊳

B) → P(B) is also an
accessible functor. �

To complete the proof of Theorem 10.3 we now just need an easy Lemma:

Lemma 10.7. Suppose π : E → B is a coCartesian fibration such that both B and
the fibres Eb for all b ∈ B admit small colimits, and the functors f! : Eb → Eb′

preserve colimits for all morphisms f : b → b′ in B. Then E admits small
colimits.

Proof. The coCartesian fibration π satisfies the conditions of [Lur09a, Corollary
4.3.1.11] for all small simplicial sets K, and so in every diagram

K E

K⊲ B

p

π

q̄

p̄

there exists a lift p̄ that is a π-colimit of p. Given a diagram p : K → E we can
apply this with q̄ a colimit of π ◦ p to get a colimit p̄ : K⊲ → E of p. �

Proof of Theorem 10.3. It follows from Lemma 10.7 that E has small colimits.
It thus remains to prove that E is accessible and p is an accessible functor.

Let F : Bop → Ĉat∞ be a functor corresponding to p. Choose a regular car-
dinal κ so that B is κ-presentable and F preserves κ-filtered limits. Since B

is κ-presentable, B ≃ Indκ B
κ is the full subcategory of P(Bκ) spanned by

the presheaves that preserve κ-small limits. Let F̂ : P(Bκ)op → Ĉat∞ be the
unique limit-preserving functor extending F |Bκ,op ; then F is equivalent to the

restriction of F̂ to Indκ B
κ. If p̂ : Ê → P(Bκ) is a Cartesian fibration classified

by F̂ we therefore have a pullback square

E Ê

B P(Bκ),
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where the bottom map preserves κ-filtered colimits, so by [Lur09a, Proposition

5.4.6.6] it suffices to show that Ê is accessible and p̂ is an accessible functor.
Since Bκ is a small ∞-category, we can choose a cardinal λ such that F |Bκ,op

factors through the ∞-category PrR,λ of λ-presentable ∞-categories and right
adjoints that preserve λ-filtered colimits. By [Lur09a, Proposition 5.5.7.2] we

can equivalently think of this, via the equivalence PrR ≃ (PrL)op, as a functor

from Bκ to the ∞-category PrL,λ of λ-presentable ∞-categories and functors
that preserve colimits and λ-compact objects. Taking λ-compact objects de-
fines a functor (–)λ : PrL,λ → Catλ∞. Then, defining F0 : (B

κ) → Cat∞ to be

(F op|Bκ)λ, we see that F ≃ Indλ F0, and so Ê is accessible and p̂ is an accessible
functor by Proposition 10.5. �

Appendix A. Pseudofunctors and the Naturality of
Unstraightening

At several points in this paper we will need to know that the unstraightening
functors Fun(Cop,Cat∞) → Catcart∞/C (and a number of similar constructions)
are natural as we vary the ∞-category C. The obvious way to prove this
is to consider the naturality of the unstraightening Un+

S : Fun(C(S), Set+∆) →
(Set+∆)/S as we vary the simplicial set S. However, since pullbacks are only
determined up to canonical isomorphism, these functors are not natural “on
the nose”, but only up to natural isomorphism — i.e. they are only pseudo-
natural. In the body of the paper we have swept such issues under the rug,
but in this appendix we indulge ourselves in a bit of 2-category theory to
prove that pseudo-naturality on the level of model categories does indeed give
naturality on the level of ∞-categories. We begin by reviewing Duskin’s nerve
of bicategories [Dus02] and its basic properties. However, we will only need to
consider the case of strict 2- and (2,1)-categories:

Definition A.1. A strict 2-category is a category enriched in Cat, and a strict
(2,1)-category is a category enriched in Gpd. We write Cat2 for the category
of strict 2-categories and Cat(2,1) for the category of strict (2,1)-categories.

Definition A.2. Suppose C and D are strict 2-categories. A normal oplax
functor F : C → D consists of the following data:

(a) for each object x ∈ C, an object F (x) ∈ D,
(b) for each 1-morphism f : x→ y in C, a 1-morphism F (f) : F (x) → F (y),
(c) for each 2-morphism φ : f ⇒ g in C(x, y), a 2-morphism F (φ) : F (f) ⇒

F (g) in D(F (x), F (y)),
(d) for each pair of composable 1-morphisms f : x → y, g : y → z in C, a

2-morphism ηf,g : F (g ◦ f) ⇒ F (g) ◦ F (f),

such that:

(i) for every object x ∈ C, the 1-morphism F (idx) = idF (x),
(ii) for every 1-morphism f : x→ y in C, the 2-morphism F (idf ) = idF (f),
(iii) for composable 2-morphisms φ : f ⇒ g, ψ : g ⇒ h in C(x, y), we have

F (ψ ◦ φ) = F (ψ) ◦ F (φ),
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(iv) for every morphism f : x → y, the morphisms ηidx,f and ηf,idy : F (f) →
F (f) are both idF (f),

(v) if φ : f ⇒ f ′ is a 2-morphism in C(x, y) and ψ : g ⇒ g′ is a 2-morphism
in C(y, z), then the diagram

F (g ◦ f) F (g) ◦ F (f)

F (g′ ◦ f ′) F (g′) ◦ F (f ′)

ηf,g

F (ψ ◦ φ) F (ψ) ◦ F (φ)

ηf ′,g′

commutes,
(vi) for composable triples of 1-morphisms f : x → y, g : y → z, h : z → w,

the diagram

F (h ◦ g ◦ f) F (h ◦ g) ◦ F (f)

F (h) ◦ F (g ◦ f) F (h) ◦ F (g) ◦ F (f))

ηf,hg

ηgf,h ηg,h ◦ id

id ◦ ηf,g

commutes.

We say a normal oplax functor F from C to D is a normal pseudofunctor if the
2-morphisms ηf,g are all isomorphisms. In particular, if the 2-category C is a
(2,1)-category, all normal oplax functors C → D are normal pseudofunctors.

Remark A.3. In 2-category theory one typically considers the more general
notions of (not necessarily normal) oplax functors and pseudofunctors, which
do not satisfy F (idx) = idF (x) but instead include the data of natural maps
F (idx) → idF (x) (which are isomorphisms for pseudofunctors). We only con-
sider the normal versions because, as we will see below, these correspond to
maps of simplicial sets between the nerves of strict 2- and (2,1)-categories.

Before we recall the definition of the nerve of a strict 2-category, we first review
the definition of nerves for ordinary categories and simplicial categories:

Definition A.4. Let N: Cat → Set∆ be the usual nerve of categories, i.e.
if C is a category then NCk is the set Hom([k],C) where [k] is the category
corresponding to the partially ordered set {0, . . . , k}.

Remark A.5. Since Cat has colimits, the functor N has a left adjoint
C: Set∆ → Cat, which is the unique colimit-preserving functor such that
C(∆n) = [n].

Lemma A.6. The functor C: Set∆ → Cat takes inner anodyne morphisms to
isomorphisms.
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Proof. Let W denote the class of monomorphisms of simplicial sets that are
taken to isomorphisms by C. To see that W contains the inner anodyne mor-
phisms we apply [JT07, Lemma 3.5], which says that W contains the inner
anodyne maps if

(i) W is weakly saturated, i.e. it contains the isomorphisms and is closed un-
der composition, transfinite composition, cobase change, and codomain
retracts,

(ii) W has the right cancellation property, i.e. it if fg and g are in W then f
is in W,

(iii) W contains the inclusions Spn →֒ ∆n, where Spn denotes the n-spine,
i.e. the simplicial set ∆{0,1} ∐∆{1} · · · ∐∆{n−1} ∆{n−1,n}.

Here conditions (i) and (ii) follow immediately from the definition of W, as
the functor C preserves colimits. It remains to prove (iii), i.e. to show that
C(Spn) → C(∆n) is an isomorphism. Since C preserves colimits, this is the
map of categories

[1]∐[0] · · · ∐[0] [1] → [n].

But the category [n] is the free category on the graph with vertices 0, . . . , n
and edges i → (i + 1), which obviously decomposes as a colimit in this way,
and the free category functor on graphs preserves colimits. �

Proposition A.7. The functor C: Set∆ → Cat preserves products.

Proof. Since C preserves colimits and the Cartesian products in Cat and Set∆
both commute with colimits in each variable, it suffices to check that the nat-
ural map C(∆n × ∆m) → C(∆n) × C(∆m) is an isomorphism for all n,m.
Since products of inner anodyne maps are inner anodyne by [Lur09a, Corollary
2.3.2.4], the inclusion Spn × Spm → ∆n ×∆m is inner anodyne. Thus in the
diagram

C(Spn × Spm) C(Spn)× C(Spm)

C(∆n ×∆m) C(∆n)× C(∆m)

the vertical maps are isomorphisms by Lemma A.6. It hence suffices to prove
that the upper horizontal map is an isomorphism. Since C preserves colimits
and the Cartesian products preserve colimits in each variable, in the commu-
tative diagram

C(∆1 × Spm) ∐C(∆0×Spm) C(Sp
n × Spm) C(Spn+1 × Spm)

C(∆1)× C(Spm)∐C(∆0)×C(Spm) C(Sp
n)× C(Spm) C(Spn+1)× C(Spm)
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C(∆1 × Spm) ∐
C(∆0×Spm)

C(Spn × Spm) C(Spn+1 × Spm)

C(∆1)× C(Spm) ∐
C(∆0)×C(Spm)

C(Spn)× C(Spm) C(Spn+1)× C(Spm)

the vertical morphisms are isomorphisms. By inducting on n andm this implies
that the map in question is an isomorphism for all n and m provided

C(∆n ×∆m) → C(∆n)× C(∆m)

is an isomorphism when n and m are both either 0 or 1. The cases where n or
m is 0 are trivial, so it only remains to show that C(∆1 × ∆1) → [1] × [1] is
an isomorphism. The simplicial set ∆1 ×∆1 is the pushout ∆2 ∐∆{0,2} ∆2, so
this amounts to showing that the analogous functor [2]∐[1] [2] → [1]× [1] is an
isomorphism, or equivalently that for any category C, the square

Hom([1]× [1],C) Hom([2],C)

Hom([2],C) Hom([1],C)

is Cartesian. But this claim is equivalent to the statement that a commutative
square in C is the same as two compatible commutative triangles, which is
obvious. �

Definition A.8. The functor N preserves products, being a right adjoint, and
so induces a functor N∗ : Cat2 → Cat∆, given by applying N on the mapping
spaces; this has a left adjoint C∗ : Cat∆ → Cat2 given by composition with C,
since C preserves products by Proposition A.7.

We now briefly recall the definition of the coherent nerve functor from simplicial
categories to simplicial sets, following [Lur09a, §1.1.5]:

Definition A.9. Let Pi,j be the partially ordered set of subsets of {i, i +
1, . . . , j} containing i and j. Then C(∆n) denotes the simplicial category with
objects 0, . . . , n and

C(∆n)(i, j) =

{
∅, i > j

NPi,j , otherwise

Composition of morphisms is induced by union of the subsets in the Pi,j ’s.

Remark A.10. The simplicial set NPi,j is isomorphic to (∆1)×(j−i−1) for j > i.

Definition A.11. The coherent nerve is the functor N : Cat∆ → Set∆ defined
by

NCk = Hom(C(∆k),C).

This has a left adjoint C : Set∆ → Cat∆, which is the unique colimit-preserving
functor extending the cosimplicial simplicial category C(∆•).
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Definition A.12. Let N2 : Cat2 → Set∆ denote the composite

Cat2
N∗−−→ Cat∆

N
−→ Set∆.

This functor has a left adjoint C2, which is the composite

Set∆
C
−→ Cat∆

C∗−−→ Cat2.

Remark A.13. It is clear from the definitions given in [Dus02, §§6.1–6.7] that
the functor N2 as we have defined it is simply the restriction of Duskin’s nerve
for bicategories to strict 2-categories. (This nerve also implicitly appeared
earlier in [Str87].)

Remark A.14. We can describe the strict 2-category C2(∆
n) as follows: its

objects are 0, . . . , n. For i > j, the category C2(∆
n)(i, j) is empty, and for

j > i it is the partially ordered set Pi,j (which is isomorphic to [1]×(j−i−1) if
j > i). We can thus describe the low-dimensional simplices of the nerve N2C

of a strict 2-category C as follows:

• The 0-simplices are the objects of C.
• The 1-simplices are the 1-morphisms of C.
• A 2-simplex in N2C is given by objects x0, x1, x2, 1-morphisms f01 : x0 →
x1, f12 : x1 → x2, f02 : x0 → x2, and a 2-morphism φ012 : f02 ⇒ f12 ◦ f01.

• A 3-simplex is given by
– objects x0, x1, x2, x3,
– 1-morphisms fij : xi → xj for 0 ≤ i < j ≤ 3,
– 2-morphisms φ012 : f02 ⇒ f12 ◦ f01, φ123 : f13 ⇒ f23 ◦ f12, φ023 : f03 ⇒
f23 ◦ f02 and φ013 : f03 ⇒ f13 ◦ f01, such that the square

f03 f13 ◦ f01

f23 ◦ f02 f23 ◦ f12 ◦ f01

φ013

φ023 φ123 ◦ id

id ◦ φ012

commutes.

Definition A.15. Let ∆≤k denote the full subcategory of ∆ spanned by the
objects [n] for n ≤ k. The restriction skk : Set∆ → Fun(∆op

≤k, Set) has a right
adjoint

coskk : Fun(∆
op
≤k, Set) → Set∆.

We say a simplicial set X is k-coskeletal if it is in the image of the functor
coskk. Equivalently, X is k-coskeletal if every map ∂∆n → X extends to a
unique n-simplex ∆n → X when n > k.

Proposition A.16. For every strict 2-category C, the simplicial set N2C is
3-coskeletal.

Remark A.17. A more general version of this result in the setting of bicate-
gories appears in [Dus02].
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Proof. We must show that every map ∂∆k → N2C extends to a unique map
from ∆k if k > 3. Equivalently, we must show that given a map C(∂∆k) → N∗C

it has a unique extension to C(∆k) for k > 3. We can describe the simplicial
category C(∂∆k) and its map to C(∆k) as follows:

• the objects of C(∂∆k) are 0, . . . k,
• the maps C(∂∆k)(i, j) → C(∆k)(i, j) are isomorphisms except when i = 0
and j = k,

• the simplicial set C(∂∆k)(0, k) is the boundary of the (k − 1)-cube
C(∆k)(0, k) ∼= (∆1)×(k−1).

Thus extending a map F : C(∂∆k) → N∗C to C(∆k) amounts to extending the
map

C(∂∆k)(0, k) → NC(F (0), F (k))

to C(∆k)(0, k). But the inclusion C(∂∆k)(0, k) → C(∆k)(0, k) is a composition
of pushouts of inner horn inclusions and the inclusion ∂∆k−1 → ∆k−1, and if
k − 1 > 2 the nerve of a category has unique extensions along these. �

Theorem A.18 (Duskin, Bullejos–Faro–Blanco). Suppose C and D are strict
2-categories. Then the maps of simplicial sets N2C → N2D can be identified
with the normal oplax functors C → D.

Remark A.19. The more general version of this result for bicategories appears
to be an unpublished result of Duskin; for 2-categories it is proved by Bullejos,
Faro, and Blanco as [BFB05, Proposition 4.3]. We do not include a complete
proof here, but we will now briefly indicate how a map of nerves gives rise
to a normal oplax functor. By Proposition A.16, a map N2C → N2D can
be identified with a map F : sk3N2C → sk3N2D. Using Remark A.14 we can
identify this with the data of a normal oplax functor as given in Definition A.2:

• The 0-simplices of N2C are the objects of C, so F assigns an object F (c) ∈
D to every c ∈ C, which gives (a)

• The 1-simplices of N2C are the 1-morphisms inC, with sources and targets
given by the face maps [0] → [1], so F assigns a 1-morphism F (f) : F (x) →
F (y) to every 1-morphism f : x→ y in C, which gives (b).

• Moreover, identity 1-morphisms correspond to degenerate edges in N2C,
so since these are preserved by any map of simplicial sets we get F (idx) =
idF (x), i.e. (i).

• The 2-simplices of N2C are given by three 1-morphisms f : x→ y, g : y →
z, h : z → w (corresponding to the three face maps), and a 2-morphism
φ : h⇒ g ◦ f . In particular:

– Considering 2-simplices where the second edge is degenerate, which
correspond to 2-morphisms in C, we see that F assigns a 2-morphism
F (φ) : F (h) ⇒ F (g) to every φ : h⇒ g in C, which gives (c).

– Considering 2-simplices where the 2-morphism φ is the identity, we see
(as this condition is not preserved by F ) that F assigns a 2-morphism
F (g◦f) ⇒ F (g)◦F (f) to all composable pairs of 1-morphisms, which
gives (d).
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• Since F preserves degenerate 2-simplices, which correspond to identity
2-morphisms of the form f ◦ id ⇒ f and id ◦ f ⇒ f , we get (ii) and (iv).

• The 3-simplices of N2C are given by
– objects x0, x1, x2, x3,
– 1-morphisms fij : xi → xj for 0 ≤ i < j ≤ 3,
– 2-morphisms φ012 : f02 ⇒ f12 ◦ f01, φ123 : f13 ⇒ f23 ◦ f12, φ023 : f03 ⇒
f23 ◦ f02 and φ013 : f03 ⇒ f13 ◦ f01, such that the square

f03 f13 ◦ f01

f23 ◦ f02 f23 ◦ f12 ◦ f01

φ013

φ023 φ123 ◦ id

id ◦ φ012

commutes.
In particular, we have:

– If x1 = x2 = x3, f12 = f13 = f23 = idx1
, and φ123 = ididx1

, then
this says φ013 = φ012 ◦φ023, and since F preserves identities this gives
(iii).

– In the case where the 2-morphisms are all identities, we get (vi).
– To get (v), we consider the 3-simplices where f12 = id, φ023 = id, and
φ013 is the composite of φ012 and φ123.

Definition A.20. The inclusion Gpd →֒ Cat of the category of groupoids
preserves products, and so induces a functor Cat(2,1) → Cat2; we write N(2,1)

for the composite

Cat(2,1) → Cat2
N2−−→ Set∆.

Corollary A.21. If C and D are strict (2,1)-categories, then a morphism of
simplicial sets N(2,1)C → N(2,1)D can be identified with a normal pseudofunctor
C → D.

Definition A.22. Recall that a relative category is a categoryC equipped with
a subcategory W containing all isomorphisms; see [BK12] for a more extensive
discussion. A functor of relative categories f : (C,W ) → (C′,W ′) is a functor
f : C → C

′ that takes W into W ′. We write RelCat(2,1) for the strict (2,1)-
category of relative categories, functors of relative categories, and all natural
isomorphisms between these.

We now want to prove that a normal pseudofunctor to RelCat(2,1) determines
a map of ∞-categories to Cat∞ via the following construction:

Definition A.23. If (C,W ) is a relative category, let L(C,W ) ∈ Set+∆
be the marked simplicial set (NC,NW1). This defines a simplicial functor
N∗RelCat(2,1) → Set+∆.

Definition A.24. If (C,W ) is a relative category, we write C[W−1] for the ∞-
category obtained by taking a fibrant replacement of the marked simplicial set
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L(C,W ). More generally, if C is a strict (2,1)-category andW is a collection of
1-morphisms in C, we write C[W−1] for the ∞-category obtained by fibrantly
replacing the marked simplicial set (N(2,1)C,W ).

Lemma A.25. Let C be a strict (2,1)-category, and let F be a normal pseud-
ofunctor F : C → RelCat(2,1). If W is a collection of 1-morphisms in C such
that F takes the morphisms in W to weak equivalences of relative categories,
then F determines a functor of ∞-categories C[W−1] → Cat∞, which sends
x ∈ C to Ex[W

−1
x ] where F (x) = (Ex,Wx).

Proof. By Proposition A.21 the normal pseudofunctor F corresponds to a map
of simplicial sets N(2,1)C → N(2,1)RelCat(2,1). Composing this with the map

N(L) : N(2,1)RelCat(2,1) → NSet+∆ we get a map N(2,1)C → NSet+∆. We may
regard this as a map of marked (large) simplicial sets

(N(2,1)C,W ) → (NSet+∆,W
′),

where W ′ is the collection of marked equivalences in Set+∆. Now invoking
[Lur14, Theorem 1.3.4.20] we conclude that Cat∞ is a fibrant replacement
for the marked simplicial set (NSet+∆,W

′), so this map corresponds to a map

C[W−1] → Cat∞ in the ∞-category Ĉat∞ underlying the model category of
(large) marked simplicial sets. �

We will now make use of Grothendieck’s description of pseudofunctors to the
(2,1)-category of categories to get a way of constructing pseudofunctors to
RelCat(2,1):

Theorem A.26 (Grothendieck [Gro63]). Let C be a category. Then pseud-
ofunctors from C

op to the strict 2-category CAT correspond to Grothendieck
fibrations over C.

Remark A.27. Let us briefly recall how a pseudofunctor is constructed from
a Grothendieck fibration, as this is the part of Grothendieck’s theorem we will
actually use. A cleavage of a Grothendieck fibration p : E → B is the choice,
for each (e ∈ E, f : b → p(e)), of a single Cartesian morphism over f with
target e; cleavages always exist, by the axiom of choice. Given a choice of
cleavage of p, we define the pseudofunctor Cop → CAT by assigning the fibre
Eb to each b ∈ B, and for each f : b → b′ the functor f∗ assigns to e ∈ Eb the
source of the Cartesian morphism over f with target e in the cleavage. Clearly,
this pseudofunctor will be normal precisely when the cleavage is normal in the
sense that the Cartesian morphisms over the identities in B are all chosen to be
identities in E. Every Grothendieck fibration obviously has a normal cleavage,
so from any Grothendieck fibration we can construct a normal pseudofunctor.

Definition A.28. A relative Grothendieck fibration is a Grothendieck fibration
p : E → C together with a subcategory W of E containing all the p-Cartesian
morphisms. In particular, the restricted projection W → C is also a Cartesian
fibration. Moreover, for every x ∈ C the fibres (Ex,Wx) are relative categories,
and the functor f∗ induced by each f in C is a functor of relative categories.
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If (C, U) is a relative category, we say that the relative Grothendieck fibra-
tion is compatible with U if this functor f∗ : (Eq,Wq) → (Ep,Wp) is a weak
equivalence of relative categories for every f : p→ q in U .

The following is then an obvious consequence of Theorem A.26:

Lemma A.29. Relative Grothendieck fibrations over a category C correspond
to normal pseudofunctors C

op → RelCat(2,1).

Proposition A.30. Let (E,W) be a relative Grothendieck fibration over C

compatible with a collection U of morphisms in C. Then this induces a functor
of ∞-categories

C[U−1]op → Cat∞

that sends p ∈ C to Ep[W
−1
p ].

Proof. Combine Lemmas A.29 and A.25. �

All the maps whose naturality we are interested in can easily be constructed
as relative Grothendieck fibrations. We will explicitly describe this in the case
of the unstraightening equivalence, and leave the other cases to the reader.

Proposition A.31. The unstraightening functors

Un+
S : Fun∆(C(S)op, Set+∆)

fib → (Set+∆)
fib
/S

define a relative Grothendieck fibration over Set∆ × ∆1 compatible with the
categorical equivalences in Set∆.

Proof. Let E be the category whose objects are triples (i, S,X) where i = 0 or
1, S ∈ Set∆, and X is a fibrant map Y → S♯ in Set+∆ if i = 0 and a fibrant

simplicial functor C(S)op → Set+∆ if i = 1; the morphisms (i, S,X) → (j, T, Y )
consist of a morphism i → j in [1], a morphism f : S → T in Set∆, and the
following data:

• if i = j = 1, X : C(S) → Set+∆ and Y : C(T ) → Set+∆, a simplicial natural
transformation X → C(f) ◦ Y ,

• if i = j = 0, X is E → S and Y is F → T , a commutative square

E F

S♯ T ♯

in Set+∆,
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• if i = 1 and j = 0, Y is a functor C(S)op → Set+∆ and X is E → T , a
commutative square

Un+S (X) E

S T.

Composition is defined in the obvious way, using the natural maps of
[Lur09a, Proposition 3.2.1.4]. We claim that the projection E → ∆1 × Set∆ is
a Grothendieck fibration. It suffices to check that Cartesian morphisms exist
for morphisms of the form (idi, f) and (0 → 1, idS), which is clear. �

Corollary A.32. There is a functor of ∞-categories Catop∞ → Fun(∆1, Ĉat∞)
that sends C to the unstraightening equivalence

Fun(Cop,Cat∞)
∼
−→ Catcart∞/C.
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