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Abstract. The so-called Atiyah conjecture states that the
N (G)-dimensions of the L2-homology modules of finite free G-CW-
complexes belong to a certain set of rational numbers, depending on
the finite subgroups of G. In this article we extend this conjecture
to a statement for the center-valued dimensions. We show that the
conjecture is equivalent to a precise description of the structure as a
semisimple Artinian ring of the division closureD(Q[G]) ofQ[G] in the
ring of affiliated operators. We prove the conjecture for all groups in
Linnell’s class C, containing in particular free-by-elementary amenable
groups.

The center-valued Atiyah conjecture states that the center-valued L2-
Betti numbers of finite free G-CW-complexes are contained in a cer-
tain discrete subset of the center of C[G], the one generated as an
additive group by the center-valued traces of all projections in C[H ],
where H runs through the finite subgroups of G.

Finally, we use the approximation theorem of Knebusch [15] for the
center-valued L2-Betti numbers to extend the result to many groups
which are residually in C, in particular for finite extensions of products
of free groups and of pure braid groups.
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1 Introduction

In [3], Atiyah introduced L2-Betti numbers for manifolds with cocompact
free G-action for a discrete group G (later generalized to finite free G-CW-
complexes). There, he asked [3, p. 72] about the possible values these can
assume. This question was later popularized in precise form as the so-called
“strong Atiyah conjecture”. One easily sees that the possible values depend on
G. For a finite subgroup of order n in G, a free cocompact G-manifold with
L2-Betti number 1/n can be constructed. For certain groups G which contain
finite subgroups of arbitrarily large order, with quite some effort manifolds M
with π1(M) = G and with transcendental L2-Betti numbers have been con-
structed [4, 12, 26]. In the following, we will therefore concentrate on G with a
bound on the orders of finite subgroups.
The L2-Betti numbers are defined using the L2-chain complex. The chain
groups there are of the form l2(G)d, and the differentials are given by convolu-
tion multiplication with a matrix over Z[G]. The strong Atiyah conjecture for
free finite G-CW-complexes is equivalent to the following (with K = Z):

1.1 Definition. Let G be a group with a bound on the orders of finite sub-
groups and let lcm(G) ∈ N (the positive integers) denote the least common
multiple of these orders. Let K ⊂ C be a subring.
We say that G satisfies the strong Atiyah conjecture over K, or K[G] satisfies
the strong Atiyah conjecture if for every n ∈ N and every A ∈ Mn(K[G])

dimG(ker(A)) := trG(prkerA) ∈
1

lcm(G)
Z.

Here, as before, we consider A : l2(G)n → l2(G)n as a bounded operator, act-
ing by left convolution multiplication — the continuous extension of the left
multiplication action on the group ring to l2(G). trG is the canonical trace
on Mn(N (G)), i.e. the extension (using the matrix trace) of trG : N (G) → C;
a 7→ 〈aδe, δe〉l2(G), where N (G), the weak closure of C[G] ⊂ B(ℓ2(G)) is the
group von Neumann algebra.
If G contains arbitrarily large finite subgroups, we set lcm(G) := +∞.

A projection P will always be a self adjoint idempotent, so P = P 2 = P ∗, where
∗ indicates the involution on N (G). If E is an idempotent, then E is similar
to a projection P and then trG(E) = trG(P ). Also a central idempotent is
always a projection. Note that if G is an infinite group, then the set {trG(P )},
where P runs through the projectors in Mn(N (G)), n ∈ N consists of all non-
negative real numbers. The strong Atiyah conjecture predicts, on the other
hand, that the L2-Betti numbers take values in the subgroup of R generated
by traces of projectors defined already over Q[H ] for the finite subgroups H
of G: the projector pH = (

∑

h∈H h)/ |H | satisfies trG(pH) = 1/ |H |. And by
the Chinese remainder theorem, the additive subgroup of R generated by the
|H |−1

is exactly 1
lcm(G)Z.
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We now turn to the center-valued refinements of the above statements. The
center-valued L2-Betti numbers are obtained by replacing the canonical (com-
plex-valued) trace trG by the center-valued trace truG (see Definition 2.1), taking
values in the center of N (G). Note that by general theory [14, Chapter 8], as
every finite von Neumann algebra has a unique normalized center-valued trace,
this is a powerful invariant: two finitely generated projective Hilbert N (G)-
modules are isomorphic if and only if their center-valued dimensions coincide.
The center of a ring R will be denoted Z(R).

1.2 Definition. Let G be a group with lcm(G) < ∞, let K be a subring of C,
let F be the field of fractions of K, and assume that F is closed under complex
conjugation. Let LK(G) be the additive subgroup of Z(N (G)) generated by
truG(P ) ∈ Z(C[G]) ⊂ Z(N (G)) where P runs through projections P ∈ F [H ]
with H ≤ G a finite subgroup.
We say thatG satisfies the center-valued Atiyah conjecture over K, or K[G] sat-
isfies the center-valued conjecture if for every n ∈ N and every A ∈ Mn(K[G])
we have dimu

G(ker(A)) := truG(prkerA) ∈ LK(G).

Observe that G satisfies the center-valued Atiyah conjecture over K if and
only if G satisfies the center-valued conjecture over its field of fractions F .
Indeed the “only if” is obvious. On the other hand if A ∈ Mn(F [G]), then
(“clearing denominators”) there exists 0 6= k ∈ K such that kA ∈ Mn(K[G]),
and kerA = ker kA, which verifies the “if” part.

1.3 Proposition. If a group G satisfies the center-vlaued Atiyah conjecture
over K of Definition 1.2, then G also satisfies the (classical) strong Atiyah
conjecture over K of Definition 1.1.

Proof. By the universal property of the center-valued trace [14, Chapter 8],
trG = trG ◦ truG. We therefore only have to check that trG(a) ∈

1
lcm(G)Z for all

a ∈ LK(G). By the definition of LK(G), we just have to show that trG(P ) ∈
1

lcm(G)Z for each projector P ∈ F [H ], where H ≤ G is an arbitrary finite

subgroup. This is of course well known to be true, it follows e.g. from the fact
that finite groups satisfy the strong Atiyah conjecture over K.

1.4 Proposition (compare Corollary 3.5). If lcm(G) < ∞ then LK(G) ⊂
Z(N (G)) is discrete. In particular, the center-valued Atiyah conjecture predicts
a “quantization” of the center-valued L2-Betti numbers.

1.5 Remark. As for the ordinary strong Atiyah conjecture, the center-valued
Atiyah conjecture over Z[G] is equivalent to the statement that the center-
valued L2-Betti numbers for finite free G-CW-complexes take values in LZ(G).
The center-valued L2-Betti numbers have been introduced and used in [21].

The strong Atiyah conjecture has many applications. Most interesting are
those for a torsion-free group G, i.e. if lcm(G) = 1. This is exemplified by the
following surprising result of Linnell [17]. We first recall the notion of “the”
division closure of K[G].
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1.6 Definition. Let G be a discrete group and let K ⊂ C be a subring.
Let U(G) denote the ring of unbounded operators on l2(G) affiliated to N (G)
(algebraically, U(G) is the Ore localization of N (G) at the set of all non-zero-
divisors).
Define the division closure D(K[G]) to be the smallest subring of U(G) con-
taining K[G] which is closed under taking inverses in U(G).

1.7 Theorem. Let G be a discrete group with lcm(G) = 1 and let K be a
subring of C. Then K[G] satisfies the strong Atiyah conjecture if and only if
D(K[G]) is a skew field.

The appealing feature of this theorem is that it provides a canonical over-ring,
namely D(K[G]) of K[G] which should be a skew field, provided G is torsion
free. Observe that this implies in particular that K[G] has no non-trivial zero-
divisors. For more information on this, see [23, Remark 4.11].
Part of the motivation for the work at hand was the question of how to gener-
alize Theorem 1.7 if lcm(G) > 1. It turns out that one expects that D(K[G])
is semisimple Artinian. In the situation at hand this means that D(K[G]) is a
finite direct sum of matrix rings over skew fields. This is proved in many cases
e.g. in [17].
The present paper gives a very precise (conjectural) description of D(K[G]),
and if it is satisfied we call D(K[G]) Atiyah-expected Artinian: the lattice of
finite subgroups and theirK-linear representations give a precise prediction into
which matrix summandsD(K[G]) decomposes and the size of the corresponding
matrices. The precise formula is a bit cumbersome, so we don’t give it here
but refer to Definition 3.6.
One of our main theorems is the precise generalization of Theorem 1.7.

1.8 Theorem. Let G be a discrete group with lcm(G) < ∞ and let K be a
subfield of C closed under complex conjugation. Then K[G] satisfies the center-
valued Atiyah conjecture if and only if D(K[G]) is Atiyah-expected Artinian.

Indeed, we show in Theorem 3.7 that these two properties are also equivalent
to the property that K0(D(K[G])) is generated by the images of K0(K[H ]) as
H runs over the finite subgroups of G.

1.9 Definition. Given a discrete group G with lcm(G) < ∞, let ∆+(G)
denote the maximal finite normal subgroup, and let ∆(G) denote the finite
conjugacy center, i.e. the set of those elements of G which have only a finite
number of conjugates.
Indeed, by [25, §1], ∆(G) is a normal subgroup of G. Recall that the product of
two normal subgroups is a normal subgroup, therefore, as lcm(G) < ∞, ∆+(G)
makes sense. Note that ∆+(G) ⊂ ∆(G), indeed, using [25, Lemma 19.3] it is
exactly the subset of all elements of finite order in ∆(G).

In the special case ∆+(G) = {1}, we have that D(K[G]) is Atiyah-expected
Artinian if and only if it is an lcm(G) × lcm(G)-matrix ring over a skew field,
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and by Theorem 3.7 this is equivalent to the center-valued Atiyah conjecture
(which in this case is implied by the usual Atiyah conjecture, as the relevant
part of Z(N (G)) is C[∆+(G)]). This special case (and slightly more general
situations) have already been covered in [20], but without the use of the center-
valued trace. It turns out that the general case requires this more refined
dimension function. However, much of our arguments for Theorem 3.7 follow
closely the arguments of [20].
In [20], a variant of the division closure, namely the ring E(K[G]) is introduced
and used (compare Definition 2.2). It is closed under adding central idempo-
tents in U(G) which generated the same submodules as elements already in the
ring. We expect that this actually coincides with D(K[G]).

1.10 Theorem. If lcm(G) < ∞, K is a subfield of C which is closed under
complex conjugation and K[G] satisfies the center-valued Atiyah conjecture,
then E(K[G]) = D(K[G]).

As the second main result of the paper we establish the center-valued Atiyah
conjecture for certain classes of groups (namely almost all for which the original
Atiyah conjecture is known). The algebraic closure of Q will be denoted Q.

1.11 Theorem. Let K be a subfield of C which is closed under complex con-
jugation. The center-valued Atiyah conjecture over K is true for the following
groups G:

1. all groups G which belong to Linnell’s class of groups C of Definition 2.7,
in particular all free by elementary amenable groups G.

2. if K is contained in Q, all elementary amenable extensions of

• pure braid groups

• right-angled Artin groups

• primitive link groups

• virtually cocompact special groups, where a “cocompact special
groups” is a fundamental group of a compact special cube complex
—this class of groups contains Gromov hyperbolic groups which act
cocompactly and properly on CAT(0) cube complexes, fundamen-
tal groups of compact hyperbolic 3-manifolds with empty or toroidal
boundary, and Coxeter groups without a Euclidean triangle Coxeter
subgroup,

• or of products of the above.

1.12 Question. Missing in the above list are congruence subgroups of SLn(Z)
and finite extensions thereof. Note that the usual Atiyah conjecture for these
groups, as long as they are torsion free, is proved in [11]. For torsion-free
groups, the center-valued Atiyah conjecture is not stronger than the usual
Atiyah conjecture. However, it would be interesting to generalize the work of
[11] to certain extensions which are not torsion free, and then (or along the
way) to deal with the center-valued Atiyah conjecture for these.
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Recall that the center-valued Atiyah conjecture for a group G only makes an
assertion when lcm(G) < ∞. For the proof of 1 of Theorem 1.11 we closely
follow the method of [17], making use of the equivalent algebraic formulations
of the Atiyah conjecture of Theorem 3.7. Indeed, we show that the conjecture
is stable under extensions by torsion-free elementary amenable groups. We
actually show (and use) slightly more refined stability properties.

For 2 of Theorem 1.11 we use the approximation theorem for the center-valued
L2-Betti numbers, [15, Theorem 3.2]. Because of the discreteness of the possible
center-valued L2-Betti numbers, the Atiyah conjecture for a suitable sequence
of quotients implies the Atiyah conjecture for the group itself. We follow here
the general idea as already applied in [29] and for more general coefficient rings
in [9]. That this idea can be used for the class of groups listed in 2 was shown
for the pure braid groups in [19], for primitive link groups in [8] and for right-
angled Coxeter and Artin groups in [18], and for cocompact special groups by
Schreve in [30] (who uses fundamentally the geometric insights of Haglund-Wise
[13], and develops further the methods of [18]). Agol [1] shows in breakthrough
work that Gromov hyperbolic cocompact CAT(0) cube groups are virtually
cocompact special; with Bergeron-Wise’ construction of a cocompact action of
a hyperbolic 3-manifold group on a CAT(0) cube complex [5] this implies that
hyperbolic 3-manifold groups are virtually cocompact special.

2 Preliminaries on rings associated to groups

U(G), D(K[G]) and traces on these

2.1 Definition. Let G be a discrete group. The center-valued trace is the
uniquely defined C-linear map

truG : N (G) → Z(N (G))

such that for a, b ∈ N (G) and c ∈ Z(N (G)), we have

• truG(ab) = truG(ba);

• truG(c) = c;

• truG(a) ∈ (Z(N (G)))+ if a ∈ (N (G))+.

The trace can be extended to Md(N (G)) by taking truG := truG ⊗ trMd(C) (by
abuse of notation), with trMd(C) the non-normalized trace on Md(C).

If P ∈ Md(N (G)) is a projector with image the (Hilbert N (G)-module) V , set
dimu

G(V ) := truG(P ).

That a unique such trace exists is established e.g. in [14, Chapter 8].
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Later, we want to apply the trace also for the division closure. Recall that we
have (by definition) the following diagram of inclusions of rings

K[G] −−−−→ N (G)




y





y

D(K[G]) −−−−→ U(G).

Given a finitely presented K[G]-module M , represented by A ∈ Mk×l(K[G]),

i.e. with exact sequence K[G]l
A
−→ K[G]k → M → 0, the induced modules

M⊗K[G]N (G), M⊗K[G]U(G), M⊗K[G]D(K[G]) are also finitely presented with
the same presenting matrix A. The standard theory of Hilbert N (G)-modules
gives a center-valued dimension for each finitely presented N (G)-module, in
particular for M ⊗K[G] N (G), and dimu

G(M ⊗K[G] N (G)) = k − dimu
G(ker(A))

in the above situation (compare [21]). In [27], this dimension is extended to
finitely presented U(G)-modules, of course in such a way that the value is
unchanged if we induce up from N (G) to U(G). More precisely, [27] describes
the extension of dimensions based on arbitrary C-valued traces on N (G), this
implies easily the corresponding extension for dimu

G.

The central idempotent division closure E(K[G])

2.2 Definition. Let R be a subring of the ring S and let C = {e ∈ S | e is a
central idempotent of S and eS = rS for some r ∈ R}. Then we define

C(R,S) =
∑

e∈C

eR,

a subring of S. In the case S = U(G), we write C(R) for C(R,U(G)). For each
ordinal α, define Eα(R,S) as follows:

• E0(R,S) = R;

• Eα+1(R,S) = D(C(Eα(R,S), S), S);

• Eα(R,S) =
⋃

β<α Eβ(R,S) if α is a limit ordinal.

Then E(R,S) =
⋃

α Eα(R,S). Also in the case R = K[G] where G is a group
and K is a subfield of C, we write E(K[G]) for E(K[G],U(G)).

2.3 Conjecture. Let G be a discrete group and K ⊂ C a subfield. Then
D(K[G]) = E(K[G]), at least if lcm(G) < ∞.

We cite some properties of E(K[G]) from [20] which will be useful later. Indeed,
we generalize from the canonical trace to the center-valued trace, but the proofs
literally also cover this more general situation.
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2.4 Lemma. (cf. [20, Lemma 2.4]) The following additive subgroups of
Z(N (G)) coincide:

〈dimu
G(xU(G)n) | x ∈ Mn(K[G]), n ∈ N〉

= 〈dimu
G(xU(G)n) | x ∈ Mn(E(K[G])), n ∈ N〉

This has as an immediate corollary that E(K[G]) = D(K[G]) if K[G] satisfies
the center-valued Atiyah conjecture:

Proof of Theorem 1.10. Let e ∈ E(K[G]) be a central idempotent of U(G).
Then all the spectral projections of e lie in Z(N (G)), therefore e is af-
filiated to Z(N (G)). Being an idempotent, even e ∈ Z(N (G)). There-
fore, on the one hand, truG(e) = e while, on the other hand by Lemma 2.4,
truG(e) = dimu

G(eU(G)) ∈ LK(G), in particular e ∈ Z(K[∆+]) ⊂ K[∆+].

2.5 Remark. The proof just given didn’t need the full force of the center-
valued Atiyah conjecture, only the statement that dimu

G(xU(G)n) ∈ Z(N (G))
is supported only on elements of finite order, i.e. lies in Z(K[∆+]).

Approximation of the center-valued trace

The following is a special case of [15, Theorem 3.2] which will be used in the
next section.

2.6 Theorem. Let G be a discrete group with a sequence G = G0 ≥ G1 ≥ · · ·
of normal subgroups with

⋂

i∈N
Gi = {1}.

Let A ∈ Md(Q[G]) and g ∈ ∆(G). Let A[i] ∈ Md(Q[G/Gi]) be the image of A
under the map induced by the projection pri : G → G/Gi.

Assume that all G/Gi satisfy the determinant bound property [9, Definition
3.1], e.g. are elementary amenable (or more generally belong to the class G of
groups introduced in [9, Definition 1.8] and corrected in the errata to [28] at
arXiv:math/9807032, or are sofic, compare [10] and [15, Theorem 4.1]). Then

lim
i→∞

〈dimu
N (G/Gi)(ker(A[i])), pri(g)〉l2(G/Gi) = 〈dimu

G ker(A), g〉l2(G).

Linnell’s class C

2.7 Definition. Let C denote the smallest class of groups which

1. contains all free groups,

2. is closed under directed unions,

3. satisfiesG ∈ C wheneverH✁G , H ∈ C and G/H is elementary amenable.
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3 Reformulation of the center-valued Atiyah conjecture

Let G be a group with lcm(G) < ∞. We shall assume that K is a subfield of C
which is closed under complex conjugation. Many of the arguments given below
don’t require this assumption; however if K is a subfield closed under complex
conjugation and e is a central idempotent in K[G], then e is a projection
[6, Lemma 9.2(i)]. Furthermore if G is a finite group and A ∈ Mn(K[G]), then
prkerA ∈ Mn(K[G]) (use [6, Proposition 9.3]); it is here where we are using the
property that K is closed under complex conjugation.

Recall that ∆+ is the (finite) normal subgroup consisting of all elements of
finite order and having only finitely many conjugates.

3.1 Lemma. Let K ⊂ C be a subfield which contains all |∆+|-th roots of 1, and
let cG denote the number of finite conjugacy classes of elements of finite order in
G, i.e. the dimension of Z(N (G))∩Z (K[∆+]). There is a finite set of primitive
central projections {U1, . . . , U cG} of Z(N (G)) ∩ Z(K[∆+]) ⊂ Z(K[G]), given
by

U i :=
∑

k s.t. ∃g∈G:guig−1=uk

uk,

where ui are the primitive central idempotents of the semisimple Artinian ring
K[∆+]. Furthermore ui =

ni

|∆+|

∑

s∈G χi(s
−1)s, with ni the dimensions of the

irreducible representations (over C) of ∆+ and χi the corresponding characters
(extended by 0 to all of G). Moreover the U j form an orthogonal basis of the
vector space Z(N (G)) ∩ Z(C[∆+]).

Proof. By Maschke’s theorem of standard representation theory, the algebra
K[∆+] is semisimple Artinian, compare [16, XVIII, Theorem 1.2]. Therefore
it has finitely many primitive central idempotents ui.

Any algebra automorphism must permute the ui, in particular the conjugation
action of G. An element of Z(K[∆+]) belongs to the center of K[G] (and then
also of N (G)) if and only if it is invariant under conjugation by elements of
G. It follows immediately that the U i are the primitive central idempotents
of Z(N (G)) ∩ Z(K[∆+]), and furthermore they form an orthogonal basis for
Z(N (G)) ∩ Z(C[∆+]).

The formula for the ui is also standard, [16, XVIII, Proposition 4.4 and Theo-
rem 11.4].

3.2 Lemma. Let K be a subfield of C and let L/K be a finite Galois extension
of K with Galois group F . Let G be a finite group, let {e1, . . . , en} denote
the primitive central idempotents of K[G], and let {u1, . . . , um} denote the
primitive central idempotents of L[G]. Then F acts as automorphisms on L[G]
according to the rule θ

∑

g∈G agg =
∑

g∈G θ(ag)g for θ ∈ F . The ui form an
orthogonal set and 〈ui, 1〉 = 〈θui, 1〉 for all i. For each i, define Ni = {j ∈ N |
eiuj = uj}. Then F acts transitively on {uj | j ∈ Ni} and ei =

∑

j∈Ni
uj.
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Proof. This is well-known, and follows from Galois descent. Note that uiej is
a central idempotent in L[G] and ui = uiej + (1 − ej)ui. It follows for all i, j,
either uiej = 0 or uiej = ui, because ui is primitive. It follows easily that
ei =

∑

j∈Ni
uj. Also F acts on {uj | j ∈ Ni}, and the sum of the uj in an

orbit is fixed by F and is therefore in K[G]. Since ei is primitive, it follows
that this orbit must be the whole of Ni. Finally if e =

∑

g∈G egg ∈ L[G] is an
idempotent, then e1 ∈ Q (by the character formula of Lemma 3.1) and we see
that 〈ui, 1〉 = 〈θui, 1〉 for all i.

3.3 Lemma. Let K ⊂ C be a subfield, let ω be a primitive |∆+|-root of 1 and set
L = K(ω). Let F denote the Galois group of L over K, and let U1, . . . , U cL[G]

be the primitive central projections of Z(N (G)) ∩ Z(L[∆+]) ⊂ Z(L[G]) as de-
scribed above in Lemma 3.1. There is a finite set of primitive central projections
{P 1, . . . , PCK[G]} of Z(N (G)) ∩ Z(K[∆+]) ⊂ Z(K[G]), given by

P i :=
∑

k s.t. ∃g∈G:gpig−1=pk

pk,

where pi are the primitive central idempotents of the semisimple Artinian ring
K[∆+]. Set Ni = {j ∈ N | P iU j = U j}. Then

P i =
∑

j∈Ni

U j

and F acts transitively on {U j | j ∈ Ni}.

Proof. This follows from Lemmas 3.1 and 3.2.

3.4 Lemma. Let H be a finite subgroup of G which contains ∆+. For an irre-
ducible projection Q ∈ K[H ] (in the sense that if Q = Q1+Q2 with projections
in Q1, Q2 ∈ K[H ] satisfying Q1Q2 = 0 then either Q1 = 0 or Q2 = 0) we have
truG(Q) ∈ Z(N (G))∩Z(K[∆+]) ⊂ Z(N (G)). More precisely, using the central
projections P i of Lemma 3.3 we have

truG(Q) =
dimC(Q · C[H ]) · |∆+|

|H | · dimC(P i · C[∆+])
P i =

dimN (G)(Q · l2(G))

dimN (G)(P i · l2(G))
P i (1)

where P i is characterized by the property QP i = Q.

Proof. Let ω be a primitive |∆+|-th root of 1, let L = K(ω) and let F denote
the Galois group of L/K. The center-valued trace is obtained by orthogonal
projection from l2(G) to the subspace of l2(∆) spanned by functions which are
constant on G-conjugacy classes, using the standard embedding of N (G) into
l2(G). For Q, which is supported on group elements of finite order, therefore
truG(Q) ∈ C[∆+]. Let U1, . . . , U cG and P 1, . . . , PCK[G] be the primitive central
projections as described in Lemma 3.3. Using the standard inner product on
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C[H ] we obtain, using that (U1, . . . , U cG) is an orthogonal basis of Z(N (G))∩
Z(L[H ]) = Z(N (G)) ∩ Z(L[∆+])

truG(Q) =
∑

j

〈Q,U j〉

〈U j , U j〉
U j. (2)

Moreover, we have for each j that QP j+Q(1−P j) = Q and QP jQ(1−P j) = 0,
the latter because P j is central. Since Q is irreducible, we get either QP j = Q
or QP j = 0. If QP i = Q we have Q

∑

j∈Ni
U j = Q and QU j = 0 for j /∈ Ni.

Also if j1, j2 ∈ Ni, then θ(QU j1) = QU j2 for some θ ∈ F and we see that
〈QU j1 , 1〉 = 〈QU j2 , 1〉, consequently 〈Q,U j〉 is independent of j for j ∈ Ni.
Similarly 〈U j , U j〉 is independent of j for j ∈ Ni. Thus 〈Q,P i〉 = |Ni|〈Q,U j〉,
〈P i, P i〉 = |Ni|〈U j , U j〉 for j ∈ Ni, hence

〈Q,U j〉

〈U j , U j〉
=

〈Q,P i〉

〈P i, P i〉
.

Substitute this in equation (2) together with

〈Q,P j〉 = 〈QP j , 1〉 = 〈Q, 1〉 =
dimC(Q · C[H ])

|H |

〈P j , P j〉 = 〈P j , 1〉 =
dimC(P

j · C[∆+])

|∆+|
.

These formulas follow from the character formula for projections or are directly
obtained as follows: for a projection P ∈ C[E] and a finite group E we have
〈P, 1〉l2(E) = 〈Ph, h〉l2(E) for all h ∈ E, therefore dimC(P · C[E]) = tr(P ) =
∑

h∈E〈Ph, h〉 = |E| · 〈P, 1〉.

Note, finally, that dimC(Q·C[H])
|H| = dimN (H)(Q · l2(H)) = dimN (G)(Q · l2(G)) by

the induction rule for von Neumann dimensions.

3.5 Corollary. The additive subgroup LK(G) of Z(N (G)) of Definition 1.2
is discrete.

Proof. Recall that F denotes the relevant subfield of C in the setup of Definition
1.2, namely F is the field of fractions of K. Given a finite subgroup H of G
and a projection P ∈ F [H ], truG(P ) is a positive integral linear combination
of truG(Qα) where Qα ∈ F [H ] are irreducible projections, corresponding to the
decomposition of im(P ) into irreducible F [H ]-modules.
It therefore suffices to check that the additive subgroup of Z(N (G)) generated
by truG(Q) is discrete, where Q runs through the irreducible projections in
F [H ] and H runs through the finite subgroups of G. Increasing the field and
increasing the finite subgroup has the only potential effect that an irreducible
projection breaks up as a sum of new irreducible projections and therefore
the subgroup generated by their center-valued traces increases. Therefore we
may assume that these subgroups contain ∆+ and that F = C. By Lemma

Documenta Mathematica 22 (2017) 659–677



670 Anselm Knebusch, Peter Linnell, Thomas Schick

3.4, these are all integer multiples of lcm(G)−1P i with the orthogonal basis
(P 1, . . . , P cG), therefore span a discrete subgroup of Z(N (G)).

3.6 Definition. Assume that G is a discrete group with lcm(G) < ∞ and
that K is a subfield of C which is closed under complex conjugation.
We say that D(K[G]) is Atiyah-expected Artinian if it is a semisimple Artinian
ring such that its primitive central idempotents are the central idempotents
P 1, . . . , PCK[G] ∈ K[Z(K[∆+])] of Lemma 3.3, and if each direct summand
P jD(K[G])P j is an Lj × Lj matrix ring over a skew field.
Here, Lj is determined as follows: consider all irreducible sub-projections Qα ∈
K[Hα] of P

j (i.e. those satisfying QαP
j = Qα), where Hα runs through all

finite subgroups of G containing ∆+. By Lemma 3.4, truG(Qα) = qαP
j for

some rational number qα. Because there are only finitely many isomorphism
classes of finite subgroups of G, formula (1) shows that the collection of these
rational numbers is finite. Lj is the smallest integer such that each qα is an
integer multiple of 1

Lj
. Explicitly,

Lj =
dimC(P

j · C[∆+]) lcm(G)

gcd
(

dimC(P j · C[∆+]) lcm(G), dimC(Qα · C[Hα])
lcm(G)
|Hα| |∆+| | α

) ∈ Z.

Proof. We have to show that the two descriptions of Lj coincide, using Equation
(1), i.e. we have to find the smallest common denominator of all these fractions.
We expand the denominators to the common value lcm(G) · dimC(P

j ·C[∆+]),
then we have to divide this by the greatest common divisor of this number and
of all the new numerators.

3.7 Theorem. Let G be a discrete group, with lcm(G) < ∞ and let K ⊂ C

be a subfield closed under complex conjugation. The following statements are
equivalent.

1. D(K[G]) is Atiyah-expected Artinian as in Definition 3.6.

2. φ :
⊕

E≤G : |E|<∞ K0(K[E]) → K0(D(K[G])) is surjective and D(K[G])
is semisimple Artinian.

3. φ :
⊕

E≤G ; |E|<∞ G0(K[E]) → G0(D(K[G])) is surjective.

4. KG satisfies the center-valued Atiyah conjecture.

Recall here that, for a ring R, K0(R) is the Grothendieck group of finitely
generated projective R-modules, whereas G0(R) is the Grothendieck group of
arbitrary finitely generated R-modules.

Proof of Theorem 3.7. 1 =⇒ 2: We use the notation of Definition 3.6. Us-
ing the row projectors of matrix rings, there are projections x1, . . . , xCK[G]

∈
D(K[G]) which represent a Z-basis of the free abelian group K0(D(K[G])),
and [P i] = Li[xi] in K0(D(K[G])). We have to show that each xi is an inte-
ger linear combination of images of elements of K0(K[Hα]) with Hα finite. If
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Qα ∈ K[Hα] is an irreducible sub-projection of P i, then φ([Qα]) is a multiple of
[xi] in K0(D(K[G])), namely (comparing the center-valued dimensions which
are defined for finitely generated projectiveD(K[G])-modules by the discussion
of Section 2) φ([Qα]) = qα[P

i] if truG(Qα) = qαP
i. By the Chinese remainder

theorem and the definition of Li as the smallest integers such that all the qα
are integer multiples of L−1

i , also [xi] = L−1
i [P i] belongs to the image of φ.

2 =⇒ 3: For a semisimple Artinian ring every finitely generated module is
projective, therefore G0 = K0 under the assumptions we make.
3 =⇒ 4: Let M be a finitely presented K[G]-module with presentation

K[G]l
A
−→ K[G]n → M → 0, A ∈ Mn×l(K[G]). Then M ⊗K[G] D(K[G]) is

finitely generated, therefore by the assumption stably isomorphic to an inte-
ger linear combination

⊕

aixiD(K[G]) with xi projectors defined over finite
subgroups E of G — note that G0(K[E]) = K0(K[E]) for any finite group
E, as K[E] is semisimple Artinian. Inducing further to U(G) and using that
the dimension function extends to finitely presented U(G)-modules (which is
additive, so that we can leave out the stabilization summands), we read off
that

dimu
G(M) = dimu

G(
⊕

aixiU(G)) =
∑

ai dim
u
G(xiU(G)) ∈ LK(G)

by definition of LK(G). Finally, by additivity of the von Neumann dimension
dimu

G(ker(A)) = n− dimu
G(M) ∈ LK(G).

4 =⇒ 1: Here, we follow closely the argument of the proof of [20, Proposition
2.14]. Our assumption implies by Theorem 1.10 that E(K[G]) = D(K[G]).
Because the center-valued Atiyah conjecture implies that the ordinary L2-Betti
numbers are contained in a finitely generated subgroup of Q (generated by
trG(P

j)/Lj), by [20, Theorem 2.7] D(K[G]) is a semisimple Artinian ring.
The P j are central idempotents in D(K[G]). We have to show that they
are primitive central idempotents, and that each is the sum of exactly Lj

orthogonal sub-idempotents which are themselves irreducible. The structure
theory of rings then implies that each P jD(K[G])P j is simple Artinian and an
Lj × Lj-matrix ring over a skew field.
Fix, as in Definition 3.6, the (finite) collection of sub-projections Qα of P j ,
where the Qα are irreducible projections supported on K[Hα] and Hα runs
through the (isomorphism classes of) finite extensions of ∆+(G) inside G. Then
truG(Qα) =

nα

Lj
P j with integers nα, and by definition of Lj we have gcdα(nα) =

1. Set d := lcmα(nα).
Consider now P jU(G)d. Because

dimu
G(P

jU(G)d) = dP j = dimu
G(QαU(G)Ljd/nα)

by [22, Theorem 9.13(1)] then P jU(G)d ∼= QαU(G)Ljd/nα , so we find Ljd/nα

mutually orthogonal projections in Md(U(G)) corresponding to the copies of
Qα. Because the center-valued trace of each of those equals nα

Lj
P j = truG(Qα),

by [7, Exercise 13.15A], there exist Ljd/nα similarities (i.e. self-adjoint uni-
taries) ui ∈ U(G) with u1 = 1 such that these projections can be written
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as uiP
′
αui (where P ′

α is the diagonal matrix with first entry Pα and all other
entries 0).
Then, exactly as in the proof of [20, Proposition 2.14] we can replace the ui

by ũi ∈ Md(D(K[G])) which are invertible and such that we still have a direct
sum decomposition

P jD(K[G])d =

Ljd/nα
⊕

i=1

ũiP
′
αD(K[G])d. (3)

This uses the Kaplansky density theorem, the quantization of the center-valued
trace and [20, Lemma 2.12].
Let us now take a central idempotent ǫ in D(K[G]) which is a sub-projection
of P j (i.e. ǫP j = ǫ). We have to show that ǫ = 0 or ǫ = P j . To do this,
we compute truG(ǫ). Note that all the modules ǫũiP

′
αU(G)d are isomorphic,

therefore by Equation (3)

d truG(ǫ) = dimu
G(ǫU(G)d) =

Ljd

nα
dimu

G(ǫP
′
αU(G)d). (4)

By Lemma 2.4 and the assumption 4, Lj ·dim
u
G(ǫP

′
αU(G)d) is an integer multiple

of P j . Therefore, rearranging Equation (4)

nα truG(ǫ) ∈ ZP j .

As this holds for all α, even

ǫ = truG(ǫ) = lcmα(nα) tr
u
G(ǫ) ∈ ZP j .

So we can indeed conclude that P j is a primitive central idempotent and there-
fore P jD(K[G]) is an l × l matrix ring over a skew field. It follows that
P jD(K[G])nαd is the direct sum of nαdl copies of an irreducible submodule.
On the other hand, P jD(K[G])nαd is the direct sum of Ljd isomorphic sum-
mands for every α. As lcmα(nα) = 1 we conclude that Lj | l. On the other
hand, by the assumption 4 and Lemma 2.4, the center-valued dimension of the
irreducible submodule (which is generated by one projector as P jD(K[G]) is
Artinian) is an integer multiple of L−1

j P j and therefore Lj | l. It follows that
l = Lj as claimed.

4 Special cases and inheritance properties of the center-valued

Atiyah conjecture

Throughout this section, we assume that K is a subfield of C which is closed
under complex conjugation.

4.1 Lemma. The center-valued Atiyah conjecture is true for finitely generated
virtually free groups.
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Proof. This follows from the proof of [17, Proposition 5.1(i) and Lemma 5.2(ii)]
(in which C can be replaced by any subfield of C) and Theorem 3.72.

4.2 Lemma. If G is a directed union of groups Gi and the center-valued Atiyah
conjecture over K is true for all groups Gi, then it is also true for G.

Proof. By [17, Lemma 5.3], D(K[G]) is the directed union of the D(K[Gi]).
Any matrix A over D(K[G]) is therefore already a matrix over D(K[Gi]) for
some i, with dimu

Gi
(ker(A)) ∈ LK(Gi). Composition with the center-valued

trace for G gives (by the induction formula for von Neumann dimensions)
dimu

G(ker(A)) ∈ truG(LK(Gi)) ⊂ LK(G).

4.3 Proposition. Assume that we have an extension 1 → H → G
π
−→ E → 1

where E is elementary amenable and for each finite subgroup F ≤ E, π−1(F ) ≤
G satisfies the center-valued Atiyah conjecture over K . Then also K[G] satis-
fies the center-valued Atiyah conjecture.

Proof. By transfinite induction, the statement is a formal consequence of the
same assertion where E is finitely generated virtually abelian, as explained
e.g. in the proof of [29, Proposition 3.1] or in [17].
If E is finitely generated virtually abelian then in the proof of [17, Lemma 5.3]
it is shown that

⊕

F≤E finite

G0(D(K[π−1(F )])) → G0(D(K[G]))

is onto, using Moody’s induction theorem [24, Theorem 1]. Since by assumption
⊕

U≤π−1(F ) finiteG0(K[U ]) → G0(D(K[π−1(F )])) is onto for each such F and
the composition of surjective maps is surjective we conclude that

⊕

F∈F(G)

G0(K[F ]) → G0(D(K[G]))

is onto and 3 of Theorem 3.7 is established.

4.4 Proposition. Let K be a subfield of Q which is closed under complex
conjugation. Assume that G is a group with a sequence G ≥ G1 ≥ · · · of
normal subgroups such that

⋂

i∈N
Gi = {1}. Assume moreover that for each

i ∈ N and each finite subgroup F ≤ G/Gi there is a finite subgroup F ′ ≤ G
which is mapped isomorphically to F by the projection G → G/Gi.
Finally, assume that each G/Gi satisfies the determinant bound conjecture and
the center-valued Atiyah conjecture over K. Then K[G] satisfies the center-
valued Atiyah conjecture.

Proof. As the statement is empty if lcm(G) = ∞, we assume that lcm(G) < ∞.
We first show that, if i is large enough, πi induces an isomorphism πi : ∆

+(G) →
∆+(G/Gi). Dropping finitely many terms in the sequence we can then assume
that this is the case for all i ∈ N. To prove the assertion, choose a finite
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subgroup M of G with maximal order (possible since lcm(G) < ∞). Note that
the product ∆+M is also a finite subgroup, therefore by maximality equal to
M , consequently ∆+ ≤ M . Then choose finitely many g1, . . . , gn ∈ G such
that ∆+(G) =

⋂n
k=1 M

gk (where Mg denotes the conjugate gMg−1), which is
possible by the descending chain condition for finite sets.
Finally, choose r > 0 such that πr : G → G/Gr is injective when restricted to
⋃n

k=1 M
gk , which is possible because

⋂

iGi = {1}.
Because πr is surjective, πr(∆

+(G)) is a finite normal subgroup of G/Gi and
therefore πr(∆

+(G)) ≤ ∆+(G/Gr). On the other hand, πr(M) is a finite sub-
group with maximal order in G/Gr (because πr|M is injective and every finite
subgroup of G/Gr is an isomorphic image of a finite subgroup of G), therefore
∆+(G/Gr) ≤ πr(M), by normality even ∆+(G/Gr) ≤

⋂n
k=1 πr(M)πr(g). As

⋂n
k=1 M

g = ∆+(G) and by injectivity of πr on
⋃n

k=1 M
g we finally get

∆+(G/Gr) ≤
n
⋂

k=1

πr(M)πr(g) = πr(∆
+(G)) ≤ ∆+(G/Gr).

This implies the statement for all i ≥ r.
Secondly, given g ∈ G of infinite order, for all sufficiently large i, the restriction
of πi to {1, g, g2, . . . , glcm(G)} is injective and therefore, as by assumption the
orders of finite subgroups of G/Gi are bounded by lcm(G), πi(g) also has
infinite order.
Fix now A ∈ Md(K[G]) and denote by Qi the projection onto the kernel of
A[i] := pi(A). Recall that

truG(Qi) = dimu
G(ker(A)) =

∑

g∈G

〈dimu
G(ker(A)), g〉l2(G)g,

and we denote by 〈dimu
G(ker(A)), g〉 the coefficient of g in dimu

G(ker(A)), and
correspondingly for truG(Qi).
The center-valued Atiyah conjecture for K[G/Gi] implies in particular that
truG(Qi) is contained in K[∆+(G/Gi)], therefore supported only on elements of
finite order. Consequently, if g ∈ G has infinite order, then 〈truG(Qi), pri(g)〉 =
0 for sufficiently large i and, by Theorem 2.6, 〈dimu

G(ker(A)), g〉 = 0. This
implies that dimu

G(ker(A)) is supported on elements of finite order, i.e. is con-
tained in Z(N (G)) ∩K[∆+(G)].
As explained above, we can use πi to identify ∆+(G) and ∆+(G/Gi) and
consider truG(Qi) as an element of K[∆+(G)]. By Theorem 2.6, for each g ∈
∆+(G),

〈dimu
G(ker(A)), g〉 = lim

i→∞
〈truG(Qi), g〉.

Since all the (finitely many) coefficients converge, we even have

lim
i→∞

truG(Qi) = dimu
G(ker(A)) ∈ Z(N (G)) ∩K[∆+(G)].

Because the sets of isomorphism classes of finite subgroups of G/Gi and of G
are identified by πi, we get exactly the same relevant irreducible projections
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defined over finite subgroups and the same central idempotents in the formulas
of Lemma 3.1 and Lemma 3.4 for LK(G) and LK(G/Gi). Consequently, πi

identifies LK(G) and LK(G/Gi). Finally, observe that by assumption about
the Atiyah conjecture for G/Gi we have truG(Qi) ∈ LK(G). As the latter is a
discrete subset of Z(N (G)), we finally observe that dimu

G(ker(A)) ∈ LK(G),
i.e. K[G] satisfies the center-valued Atiyah conjecture.

4.5 Theorem. The center-valued Atiyah conjecture is true for all groups G ∈
C.

Proof. In the proof of [17, Lemma 4.9] it is shown that the assertion follows
(by transfinite induction) directly from Lemma 4.1, Lemma 4.2 and Proposition
4.3.

4.6 Corollary. Let K be a subfield of Q which is closed under complex con-
jugation. Then the center-valued Atiyah conjecture is true for all elementary
amenable extensions of pure braid groups, of right-angled Artin groups, of prim-
itive link groups, of cocompact special groups, or of products of such.

Proof. Each of the groups in the list has a sequence of normal subgroups with
trivial intersection and with elementary amenable quotients such that in addi-
tion the condition of Proposition 4.4 is met. This is shown for the extensions
of pure braid groups in [19], for primitive link groups in [8] and for right-angled
Coxeter and Artin groups in [18], and combining [30] with [18] it also follows
for special cocompact groups. Combining Theorem 4.5 and Proposition 4.4,
the assertion follows.
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