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Abstract. We discuss an Abel-Jacobi invariant for algebraic cobor-
dism cycles whose image in topological cobordism vanishes. The
existence of this invariant follows by abstract arguments from the
construction of Hodge filtered cohomology theories in joint work of
Michael J. Hopkins and the author. In this paper, we give a concrete
description of the Abel-Jacobi map and Hodge filtered cohomology
groups for projective smooth complex varieties.
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1. Introduction

The Abel-Jacobi map Φ is a fundamental invariant which appears in various
forms in algebraic geometry. Let us mention three important examples. For
an elliptic curve E over the complex numbers, Φ is the map that identifies the
group of complex valued points E(C) with a complex torus C/Λ, where Λ is
a lattice defined by the periods of E. For general smooth projective complex
varieties, Φ is a fundamental tool in Lefschetz’ proof of the Hodge conjecture
for (1, 1)-classes. In his seminal work [9], Griffiths showed that the Abel-Jacobi
map can be used to detect cycles which may have codimension bigger than
one and are homologous to zero. According to Deligne, one way to define the
Abel-Jacobi map is the following. Let H2p

D (X ;Z(p)) denote the 2pth Deligne

cohomology ofX with coefficients in Z(p), let Hdg2p(X) be the group of integral
Hodge classes inH2p(X ;Z), and let CHp(X) be the pth Chow group of cycles of
codimension p modulo rational equivalence. Let CHp

hom(X) be the subgroup of

1The author was supported in part by the German Research Foundation under QU 317/1-
2 and RO 4754/1-1.
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CHp(X) of cycles which are homologous to zero. Then there is a commutative
diagram

(1) CHp
hom(X)

Φ

��

// CHp(X)

clD
��

cl

''❖❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

0 // J2p−1(X) // H2p
D (X ;Z(p)) // Hdg2p(X) // 0.

The bottom row of this diagram is an exact sequence, and the homomorphism
Φ is induced by the Deligne-cycle map clD and the fact that CHp

hom(X) is
the kernel of the cycle map cl. The group J2p−1(X) is the pth intermediate
Jacobian of Griffiths defined by

J2p−1(X) = H2p−1(X ;C)/
(

F pH2p−1(X ;C) +H2p−1(X ;Z)
)

.

The purpose of this paper is to study an analog of the Abel-Jacobi map when
we replace the role of Chow groups and cohomology with algebraic and com-
plex cobordism, respectively. In [19], Levine and Morel constructed algebraic
cobordism as the universal oriented cohomology theory on the category Smk

of smooth quasi-projective schemes over a field k of characteristic zero. For
X ∈ Smk, the algebraic cobordism ring of X is denoted by Ω∗(X). For a given
p ≥ 0, Ωp(X) is generated by prime cycles of the form f : Y → X where Y is
a smooth scheme over k and f is a projective k-morphism. In the case k = C,
taking complex points induces a natural homomorphism of rings

ϕMU : Ω∗(X)→MU2∗(X) := MU2∗(X(C))

to the complex cobordism, represented by the Thom spectrum MU , of the
space of complex points X(C).
More recently, Michael J.Hopkins and the author [12] constructed natural gen-
eralizations of Deligne-Beilinson cohomology on SmC for any topological spec-
trum E. We remark that a version of Hodge filtered complex K-theory had
already been defined and studied by Karoubi in [16] and [17].
For E = MU , we obtain logarithmic Hodge filtered complex bordism groups.
For n, p ∈ Z and X ∈ SmC, they are denoted by MUn

log(p)(X). Taking the sum
over all n and p, MUlog is equipped with a ring structure. Moreover, it was
shown in [12, §7.2] that MU2∗

log(∗)(−) defines an oriented cohomology theory on

SmC. The universality of Ω∗(−) (proven in [19]) then implies that, for every
X ∈ SmC, there is a natural ring homomorphism

ϕMUlog
: Ω∗(X)→MU2∗

log(∗)(X).

Furthermore, we can generalize diagram (1) in the following way. For a given p,
let Ωp

top(X) be the kernel of the map ϕMU . Then for every smooth projective
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complex variety X , there is a natural commutative diagram

(2) Ωp
top(X)

ΦMU

��

// Ωp(X)

ϕMUlog

��

ϕMU

''❖❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

0 // J2p−1
MU (X) // MU2p

log(p)(X) // Hdg2pMU (X) // 0.

The bottom row of this diagram is again exact. The group Hdg2pMU (X) is
the subgroup of elements in MU2p(X) which are mapped to Hodge classes

in cohomology. The group J2p−1
MU (X) is a complex torus which is determined

by the Hodge structure of the cohomology and the complex cobordism of X .
We consider J2p−1

MU (X) as a natural generalization of Griffiths’ intermediate
Jacobian. The map ΦMU is induced by ϕMUlog

and can be considered as an
analog of the Abel-Jacobi map.
By its definition via diagram (2), ΦMU can be used to detect algebraic cobor-
dism cycles which are topologically cobordant. The main goal of this paper
is to describe how one can associate to an element in Ωp

top(X) an element in

J2p−1
MU (X). We will achieve this goal by providing a concrete description of the

elements in Hodge filtered cohomology groups for projective smooth complex
varieties.
We would like to add a few more words on the relationship between diagrams
(1) and (2). By [19] and [12], there is a natural commutative diagram

(3) Ωp(X)

θ

��

// MU2p
log(p)(X)

ϑlog

��

// MUp(X)

ϑ

��
CHp(X) // H2p

D (X ;Z(p)) // H2p(X ;Z)

The composite Ωp(X) → H2p(X ;Z) is the canonical homomorphism induced
by the transformation of oriented cohomology theories. Let Ωp

hom(X) be the
subgroup of elements in Ωp(X) which are mapped to zero under the map
Ωp(X) → H2p(X ;Z). It is clear from diagram (3) that we have a natural
inclusion

Ωp
top(X) ⊂ Ωp

hom(X).

We also have an induced map θhom : Ωp
hom(X)→ CHp

hom(X). An Abel-Jacobi
map for Ωp(X) which would correspond to Ωp(X) → H2p(X ;Z) would factor
through θhom. But θhom has a huge kernel to which such a map would be
insensitive. The map ΦMU however is a much finer invariant for algebraic
cobordism.
In fact, ΦMU is able to detect at least some elements in the kernel of θ. In [12,
§7.3], we considered simple examples of algebraic cobordism classes in Ω∗

top(X)
which lie in the kernel of θ. These classes can be obtained from the cycles which
Griffiths constructed in [9] to show that the Griffiths group can be infinite. We
hope that this paper will help finding new types of examples.
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1648 Gereon Quick

Now let E be another complex oriented cohomology theory and let E∗
log(∗) be

the associated logarithmic Hodge filtered cohomology theory. Let us assume
that E is equipped with maps MU → E → HZ. This data induces an inter-
mediate row in diagram (3). The natural map Ωp(X) → E2p

log(p)(X) factors

through a quotient of Ωp(X) which is determined by the formal group law of E.
This yields the subgroup Ωp

E,top(X) of those elements in Ωp(X) which vanish
under the natural map

Ωp(X)→ E2p(X) = E2p(X(C)).

This subgroup satisfies

Ωp
top(X) ⊆ Ωp

E,top(X) ⊆ Ωp
hom(X).

We do not discuss the difference of these groups in the present paper. However,
we would like to remark that there is another interesting subgroup of Ωp(X)
which is given by algebraic cobordism cycles which are algebraically equivalent
to zero in the sense of the work of Krishna and Park in [18]. This group sits
between Ωp

top(X) and Ωp
hom(X). Moreover, we expect the topological triviality

relation we consider in this paper to be strictly coarser than the one in [18]. It
would be very interesting to understand the difference between these relations
in more detail.

We will now give a brief overview of the organization of the paper. In order to
understand the map ΦMU we provide a concrete representation of elements in
logarithmic Hodge filtered cohomology theories which may be of independent
interest. An element in MUn

log(p)(X) can be represented by pairs of elements
consisting of holomorphic forms and cobordism elements which are connected
by a homotopy. This resembles the way one can view elements in Deligne
cohomology for complex manifolds (see e.g. [8] or [24]) and elements in differ-
ential cohomology theories for smooth manifolds as in [13]. In order to obtain
this representation we first discuss some facts about homotopy pullbacks for
simplicial presheaves. Then we define logarithmic Hodge filtered spaces and
study their global sections for smooth projective varieties. The above men-
tioned representation is then an immediate consequence of the construction.
In the fourth section we use this representation to describe the Abel-Jacobi
invariant for topologically trivial algebraic cobordism cycles.

Acknowledgements. We are very grateful to Aravind Asok, Dustin Clausen,
Mike Hopkins, Marc Levine and Kirsten Wickelgren for many helpful discus-
sions. We would also like to thank the anonymous referee for very helpful
suggestions and comments.

2. Homotopy pullbacks of simplicial presheaves

We briefly recall some basic facts about simplicial presheaves. Then we will
discuss the construction of homotopy pullbacks of simplicial presheaves which
will be needed in the next section.
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An Abel-Jacobi Invariant for Cobordant Cycles 1649

2.1. Simplicial presheaves. Let T be an essentially small site with enough
points. The following two examples of such sites will occur in this paper:

• The category ManC of complex manifolds and holomorphic maps
which we consider as a site with the Grothendieck topology defined
by open coverings.
• The category SmC,Nis = Sm of smooth complex algebraic varieties
(separated schemes of finite type over C) with the Nisnevich topology.
We recall that a distinguished square in SmC,Nis is a cartesian square
of the form

(4) U ×X V //

��

V

p

��
U

j
// X

such that p is an étale morphism, j is an open embedding and the
induced morphism p−1(X − U) → X − U is an isomorphism, where
the closed subsets are equipped with the reduced induced structure.
The Nisnevich topology is the Grothendieck topology generated by
coverings of the form (4) (see [21, §3.1]).

We denote by sPre = sPre(T) the category of simplicial presheaves on T, i.e.,
contravariant functors from T to the category sS of simplicial sets. Objects in
sPre will also be called spaces. There are several important model structures
on the category sPre (see [14], [2], [5]).
We start with the projective model structure on sPre. A map F → G in sPre

is called

• an objectwise weak equivalence if F(X)→ G(X) is a weak equivalence
in sS (equipped with the standard model structure) for every X ∈ T;
• a projective fibration if F(X) → G(X) is a Kan fibration in sS for
every X ∈ T;
• a projective cofibration if it has the left lifting property with respect
to all acyclic fibrations.

In order to obtain a local model structure, i.e., one which respects the topology
on the site T, we can localize the projective model structure at the hypercovers
in T (see [14], [2], [5]). We briefly recall the most important notions. A map
f : F → G of presheaves on T is called a generalized cover if for any map
X → F from a representable presheaf X to F there is a covering sieve R →֒ X
such that for every element U → X in R the composite U → X → F lifts
through f .
Dugger and Isaksen [7, §7] give the following characterization of local acyclic
fibrations and hypercovers. A map f : F → G of simplicial presheaves on T is
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a local acyclic fibration if for every X ∈ T and every commutative diagram

∂∆n ⊗X //

��

F

��
∆n ⊗X // G

there exists a covering sieve R →֒ X such that for every U → X in R, the
diagram one obtains from restricting from X to U

∂∆n ⊗ U //

��

F

��
∆n ⊗ U

::

// G

has a lifting ∆n ⊗ U → F . Note that this implies in particular that the map
F0 → G0 of presheaves is a generalized cover.

Definition 2.1. Let X be an object of T and let U be a simplicial presheaf on
T with an augmentation map U → X in sPre. This map is called a hypercover

ofX if it is a local acyclic fibration and each Un is a coproduct of representables.

If U → X is a hypercover, then the map U0 → X is a cover in the topology on
T. Moreover, the map U1 → U0 ×X U0 is a generalized cover. In general, for
each n, the face maps combine such that Un is a generalized cover of a finite
fiber product of different Uk with k < n.
Since the projective model structure on sPre is cellular, proper and simplicial,
it admits a left Bousfield localization with respect to all maps

{hocolimU∗ → X}

where X runs through all objects in T and U runs through the hypercovers
of X . The resulting model structure is the local projective model structure on
sPre (see [2] and [5]). The weak equivalences, fibrations and cofibrations in
the local projective model structure are called local weak equivalences, local

projective fibrations and local projective cofibrations, respectively. We denote
the corresponding homotopy category by hosPre. Note that the local weak
equivalences are precisely those maps F → G in sPre such that the induced
map of stalks Fx → Gx is a weak equivalence in sS for every point x in T.
Dugger, Hollander and Isaksen showed that the fibrations in the local projective
model structure on sPre have a nice characterization (see [6, §§3+7]). Let
U → X be a hypercover in sPre and let F be a projective fibrant simplicial
presheaf. Since each Un is a coproduct of representables, we can form a product
of simplicial sets

∏

a F((Un)
a) where a ranges over the representable summands

of Un. The simplicial structure of U defines a cosimplicial diagram in sS

∏

a

F(Ua
0 ) ⇒

∏

a

F(Ua
1 )

−→
−→
−→
· · ·

The homotopy limit of this diagram is denoted by holim∆F(U).
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An Abel-Jacobi Invariant for Cobordant Cycles 1651

Following [6, Definition 4.3] we say that a simplicial presheaf F satisfies descent
for a hypercover U → X if there is a projective fibrant replacement F → F ′

such that the natural map

(5) F ′(X)→ holim
∆
F ′(U)

is a weak equivalence. It is easy to see that if F satisfies descent for a hypercover
U → X , then the map (5) is a weak equivalence for every projective fibrant
replacement F → F ′. By [6, Corollary 7.1], the local projective fibrant objects
in sPre are exactly those simplicial presheaves which are projective fibrant
and satisfy descent with respect to all hypercovers U → X . For our final
applications we will need the following facts whose proofs can be found in [23].

Lemma 2.2. Let F be a simplicial presheaf that satisfies descent with respect to

all hypercovers. Then every fibrant replacement F → Ff in the local projective

model structure is an objectwise weak equivalence, i.e., for every object X ∈ T

the map

F(X)→ Ff(X)

is a weak equivalence of simplicial sets.

Proposition 2.3. Let F be a simplicial presheaf that satisfies descent with

respect to all hypercovers and let X be an object of T. Then, for every projective

fibrant replacement g : F → F ′, the natural map

HomhosPre(X,F)→ π0(F
′(X))

is a bijection.

2.2. Homotopy pullbacks of simplicial presheaves. We briefly recall
the construction of homotopy pullbacks in sPre (see [11, §13.3] for more details)
and will then show that its local and global versions are homotopy equivalent.
Let sPre be equipped with any of the above model structures. We fix a func-
torial factorization E of every map f : X → Y into

X
if
−→ E(f)

pf
−→ Y

where if is an acyclic cofibration and pf is a fibration. The homotopy pullback

of the diagram X
f
−→ Z

g
←− Y is the pullback of E(f)

pf
−→ Z

pg

←− E(g). The
homotopy pullback satisfies the following invariance. If we have a diagram

X

��

f
// Z

��

Y
g

oo

��
X ′

f ′

// Z ′ Y ′
g′

oo

in which the three vertical maps are weak equivalences, then the induced map
of homotopy pullbacks

E(f)×Z E(g)→ E(f
′)×Z′ E ′(g′)

is a weak equivalence as well.
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We will need the following fact about pulling back local weak equivalences along
maps which are merely projective fibrations.

Lemma 2.4. Let f : X → Z be a projective fibration and g : Y → Z be a local

weak equivalence in sPre. Then the induced map f ′ : X ×Z Y → X is a local

weak equivalence as well.

Proof. For a point x of sPre and a map h : V → W of simplicial presheaves,
let hx : Vx → Wx denote the induced map of stalks at x. With the notation
of the lemma, we need to show that f ′

x is a weak equivalence in sS for every
point x in T. Since x preserves finite limits, we have (X ×Z Y)x = Xx ×Zx

Yx
and f ′

x equals the induced map in the corresponding pullback diagram in sS.
Since the standard model structure on sS is right proper, it thus suffices to
show that gx is a Kan fibration. But every map in sPre which is an objectwise
Kan fibration is also a stalkwise Kan fibration. We will provide a proof of this
fact for completeness. Given a point x of T, we need to check that the map of
sets induced by g

(6) HomsS(∆[n],Yx)→ HomsS(Λk[n],Yx)×HomsS(Λk[n],Zx) HomsS(∆[n],Zx)

is surjective for all n ≥ 1 and 0 ≤ k ≤ n. Now for a simplicial presheaf W and
a finite simplicial set K, we can consider the functor X 7→ HomsS(K,W(X))
as a presheaf of sets on T. We denote this presheaf by Hom(K,W). The stalk
of this presheaf at x is exactly the set HomsS(K,Wx). Hence the map (6) is
surjective if and only if the map of presheaves of sets

(7) Hom(∆[n],Y)→ Hom(Λk[n],Y)×Hom(Λk[n],Z) Hom(∆[n],Z)

induces a surjective map of stalks at x. But, since g is a projective fibration,
g(X) is a Kan fibration for every object X ∈ T. Hence, by the definition of
Hom(−,−), the induced map
(8)
Hom(∆[n],Y)(X)→ Hom(Λk[n],Y)(X)×Hom(Λk[n],Z)(X) Hom(∆[n],Z)(X)

is surjective. Since forming stalks preserves objectwise epimorphisms, this im-
plies that gx is a Kan fibration. �

The following result is probably a well-known fact. We include its proof for
completeness and lack of a reference.

Lemma 2.5. The homotopy pullback of a diagram in sPre in the projective

model structure is stalkwise weakly equivalent to the homotopy pullback of the

diagram in the local projective model structure.
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Proof. Let X
f
−→ Z

g
←− Y be a diagram in sPre. Consider the diagram

(9) X

i
proj

f

��

f
// Z Y

g
oo

iprojg

��
Eproj(f)

��

p
proj

f
// Z Eproj(g)

pproj
g

oo

��
E loc(pprojf ) // Z E loc(pprojg )oo

where the superscripts proj and loc indicate whether we take functorial re-
placements in the projective and local projective model structure, respec-
tively. We denote the projective homotopy pullback of the initial diagram

by Pproj = Eproj(f) ×Z E
proj(g). The vertical maps iprojf and iprojg are pro-

jective acyclic cofibrations. Since left Bousfield localization does not change
cofibrations and since objectwise weak equivalences are in particular local
weak equivalences, iprojf and iprojg are local acyclic cofibrations as well. Hence

the composition of the vertical maps in (9) are local acyclic cofibrations.

Thus, E loc(pprojf ) ×Z E
loc(pprojg ) computes the local homotopy pullback P loc

of X
f
−→ Z

g
←− Y. Hence we need to show that the induced map

(10) Eproj(f)×Z E
proj(g)→ E loc(pprojf )×Z E

loc(pprojg )

is a local weak equivalence. This map equals the composition
(11)

Eproj(f)×Z E
proj(g)→ E loc(pprojf )×Z E

proj(g)→ E loc(pprojf )×Z E
loc(pprojg ).

Hence in order to show that (10) is a local weak equivalence, it suffices to
show that the two maps in (11) are both local weak equivalences. For this, it
suffices to show that the pullback of a local weak equivalence along a projective
fibration is again a local weak equivalence which has been checked in Lemma
2.4. �

Remark 2.6. The result of Lemma 2.5 does not depend on the fact that we use
the projective model structure. The same proof (after replacing the superscript
proj with inj ) would also work if we used the injective model structure on sPre.
More precisely, the homotopy pullback of a diagram in sPre in the injective
model structure is stalkwise weakly equivalent to the homotopy pullback of the
diagram in the local injective model structure.

The lemma shows that we can calculate the set of homotopy classes of maps
into a homotopy pullback via global sections in the following way.

Proposition 2.7. Let X
f
−→ Z

g
←− Y be a diagram in sPre, and let P denote

the homotopy pullback of this diagram in the local projective model structure.

We assume that all three simplicial presheaves X , Y and Z satisfy descent for

all hypercovers. For an object X ∈ T, let Q(X) denote the homotopy pullback
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in sS of the diagram of simplicial sets X (X)
f(X)
−−−→ Z(X)

g(X)
←−−− Y(X). Then

there is a natural bijection for every X ∈ T

HomhosPre(X,P) ∼= π0(Q(X)).

Proof. Let X 7→ X ′ be a functorial projective fibrant replacement in sPre.
The invariance property of homotopy pullbacks implies that the homotopy

pullback of X
f
−→ Z

g
←− Y is stalkwise equivalent to the homotopy pullback

of the induced diagram X ′ f ′

−→ Z ′ g′

←− Y ′. It also implies that, for every
X ∈ T, Q(X) is equivalent to the homotopy pullback Q′(X) of the diagram

X ′(X)
f ′(X)
−−−−→ Z ′(X)

g′(X)
←−−− Y ′(X) in sS. Hence we can assume from now on

that X , Y and Z are also projective fibrant. Now consider the diagram

(12) X

��

f
// Z Y

g
oo

��
Eproj(f)

p
proj

f
// Z Eproj(g)

pproj
g

oo

where Eproj is a functorial replacement in the projective model structure as
before. Let Pproj = Eproj(f) ×Z E

proj(g) denote the homotopy pullback of

X
f
−→ Z

g
←− Y calculated in the projective model structure. By definition

of pullbacks in sPre, we have Pproj(X) = Eproj(f)(X) ×Z(X) E
proj(g)(X)

for every X ∈ T. The invariance property of homotopy pullbacks implies
that Pproj(X) is equivalent to the homotopy pullback Q(X) of the diagram

X (X)
f(X)
−−−→ Z(X)

g(X)
←−−− Y(X) in sS. (In fact, we could compute Q(X) as

Pproj(X).) Moreover, since X , Y and Z satisfy descent for all hypercovers and
since homotopy pullbacks commute with homotopy limits in sS, we see that
Pproj satisfies descent for all hypercovers as well. By Lemma 2.2, this implies
that Pproj is local projective fibrant. Finally, by Lemma 2.5, Pproj is equivalent
to the homotopy pullback in the local projective model structure. Hence, by
Proposition 2.3, for every X ∈ T, there are natural bijections

HomhosPre(X,P) ∼= HomhosPre(X,Pproj) ∼= π0(P
proj(X)) ∼= π0(Q(X)).

�

3. Logarithmic Hodge filtered function spaces

We construct spaces which represent logarithmic Hodge filtered cohomology
groups. In particular, we will show that we can represent elements in logarith-
mic Hodge filtered complex bordism groups as triples consisting of a class in
complex bordism, a holomorphic form with suitable coefficients and a homo-
topy that connects both in an appropriate sense.
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3.1. Hodge filtration on forms and Eilenberg-MacLane spaces. Let
C∗ be a cochain complex of presheaves of abelian groups on T. For any given
n, we denote by C∗[n] the cochain complex given in degree q by Cq[n] := Cq+n.
The differential on C∗[n] is the one of C∗ multiplied by (−1)n. The hyperco-
homology H∗(U, C∗) of an object U of T with coefficients in C∗ is the graded
group of morphisms Hom(ZU , aC

∗) in the derived category of cochain complexes
of sheaves on T, where aC∗ denotes the complex of associated sheaves of C∗.
We will denote by K(C∗, n) the Eilenberg-MacLane simplicial presheaf corre-
sponding to C∗[−n]. The following result is a version of Verdier’s hypercovering
theorem due to Ken Brown.

Proposition 3.1. ([3, Theorem 2], see also [21], [15]) Let C∗ be a cochain

complex of presheaves of abelian groups on T. Then for any integer n and any

object U of T, one has a canonical isomorphism

Hn(U ; C∗) ∼= HomhosPre(T)(U,K(C∗, n)).

Now let T be the site Sm of smooth complex varieties with the Nisnevich
topology. We would like to find a simplicial presheaf which represents Hodge
filtered complex cohomology. To have a good filtration on holomorphic forms
requires a compact variety. By the work of Hironaka, we know that every
smooth complex variety does have a nice compactification. Following Deligne
[4] and Beilinson [1], we will use this fact to construct simplicial presheaves
on Sm whose global sections are isomorphic to the Hodge filtered cohomology
groups of X .
Let Sm be the category whose objects are smooth compactifications, i.e., pairs
(X,X) = (X ⊂ X) consisting of a smooth variety X embedded as an open
subset of a projective variety X and having the property that X − X is a
normal crossing divisor which is the union of smooth divisors. A map from
(X,X) to (Y, Y ) is a commutative diagram

X //

��

X

��

Y // Y .

By Hironaka’s theorem [10], every smooth variety over C admits a smooth
compactification. Moreover, for a given smooth variety X , the category C(X)
of all smooth compactifications of X is filtered (see [4]).
The forgetful functor

u : Sm→ Sm

(X,X) 7→ X

induces a pair of adjoint functors on the categories of simplicial presheaves

u∗ : sPre(Sm)↔ sPre(Sm) : u∗.
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The left adjoint u∗ is given by sending a simplicial presheaf F on Sm to the
simplicial presheaf

X 7→ u∗F(X) = colim
C(X)

F(X).

For a smooth complex variety X , let Ωp
X denote the sheaf of holomorphic p-

forms on X . Let X be a smooth compactification of X and let D := X − X
denote the complement of X . Let Ω1

X
〈D〉 be the locally free sub-module of

j∗Ω
1
X generated by Ω1

X and by dzi
zi

where zi is a local equation for an irreducible

local component of D. The sheaf Ωp

X
〈D〉 of meromorphic p-forms on X with

at most logarithmic poles along D is defined to be the locally free subsheaf
∧p

Ω1
X
〈D〉 of j∗Ω

p

X
. The Hodge filtration on the complex cohomology of X

can be defined as the image

(13) F pHn(X ;C) := Im (Hn(X; Ω∗≥p

X
〈D〉)→ Hn(X ;C)).

This definition is independent of the compactification X (see [4]).

We denote by Ω
∗
the presheaf of differential graded C-algebras on Sm that

sends a pair X ⊂ X with D := X − X to Ω∗

X
〈D〉(X). For any given integer

p ≥ 0, we denote by Ω
∗≥p

the presheaf on Sm that sends a pair X ⊂ X to

Ω∗≥p

X
〈D〉(X).

Let

Ω∗≥p

X
〈D〉 → A∗≥p

X
〈D〉

be any resolution by cohomologically trivial sheaves which is functorial in the
pair X ⊂ X and which induces a commutative diagram

Ω∗≥p

X
〈D〉(X) //

��

Ω∗≥p
X (X)

��

A∗≥p

X
〈D〉(X) // A∗≥p

X (X)

where A∗≥p
X denotes a functorial resolution by cohomologically trivial sheaves

of Ω∗≥p
X . For example, A∗≥p

X
〈D〉 and A∗≥p

X could be the Godemont resolutions

([4, §3.2.3]) or the logarithmic Dolbeault resolution ([22, §8]). Even though A∗
X

and A∗≥p

X
〈D〉 are double complexes, we will only consider their total complexes.

We denote the presheaf of complexes on Sm that sends a pair (X,X) to

A∗≥p

X
〈D〉(X) by F pĀ∗, and let

Ω
∗≥p
→ F pĀ∗

be the associated map of complexes of presheaves on Sm.
Now let V∗ be an evenly graded C-algebra such that each V2j is a finite dimen-
sional complex vector space. We will write

F pHn(X ;V∗) :=
⊕

j

F p+jHn+2j(X ;V2j)
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for the graded Hodge filtered cohomology groups.
The functor X 7→ F pHn(X ;V∗) is representable in hosPre(Sm) in the follow-
ing way. For (X,X) ∈ Sm and j ∈ Z, let F p+jĀ∗(X;V2j)[−2j] denote the
corresponding complex with coefficients in V2j shifted by degree 2j. We write

(14) F pĀ∗(X;V∗) =
⊕

j

F p+jĀ∗(X ;V2j)[−2j].

Let F pĀ∗(V∗) denote the corresponding presheaf on Sm. Let K(F pĀ∗(V∗), n)
be the associated Eilenberg-MacLane simplicial presheaf. Note that (14) in-
duces an isomorphism

(15) K(F pĀ∗(V∗), n) ∼=
∨

j

K(F p+jĀ∗(V2j), n+ 2j).

For every smooth complex variety X , [23, Theorem 3.5] shows that there is a
natural isomorphism

HomhosPre(Sm)(X,u∗K(F pĀ∗(V∗), n)) ∼= F pHn(X ;V∗).

A crucial fact for the proof of [23, Theorem 3.5] is that the simplicial presheaf
u∗K(F pĀ∗(V∗), n) satisfies Nisnevich descent. This implies that any projective
fibrant replacement of u∗K(F pĀ∗(V∗), n) is already local projective fibrant. As
a consequence we obtain that, for every smooth complex variety X , there is a
natural isomorphism

(16) π0(u
∗K(F pĀ∗(V∗), n)(X)) ∼= F pHn(X ;V∗).

Finally, we point out that, for every n and p, the map of presheaves of complexes

F pĀ∗(V∗)[−n]→ A∗(V∗)[−n]

induces a morphism of simplicial presheaves

(17) u∗K(F pĀ∗(V∗), n)→ K(A∗(V∗), n).

3.2. The singular functor for complex manifolds. As a short digres-
sion, we need to consider simplicial presheaves on complex manifolds as well. In
this subsection, we let T be the site ManC. Let ∆

n be the standard topological
n-simplex

∆n = {(t0, . . . , tn) ∈ Rn+1|0 ≤ tj ≤ 1,
∑

tj = 1}.

For topological spaces Y and Z, the singular function complex Sing∗(Z, Y ) is
the simplicial set whose n-simplices are continuous maps

f : Z ×∆n → Y.

We denote the simplicial presheaf

M 7→ Sing∗(M,Y ) =: Sing∗Y (M)

on ManC by Sing∗Y . Since, for any CW -complex Y , Sing∗Y satisfies descent,
the criterion of [6] implies that Sing∗Y is a fibrant object in the local projective
model structure on sPre (see also [12, Lemma 2.3]).
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Let V∗ be an evenly graded complex vector space, and let K(V∗, n) be an
associated Eilenberg-MacLane space in the category of CW -complexes. Then
the simplicial presheaf Sing∗K(V∗, n) represents the functor of cocycles with
coefficients in V∗, i.e., for every M ∈ManC, there is a natural isomorphism of
abelian groups

Zn(M ;V∗) ∼= HomsPre(M, Sing∗K(V∗, n)).

Since M is a representable presheaf, we have a natural bijection of sets

HomsPre(M, Sing∗K(V∗, n)) = Sing0K(V∗, n)(M).

Moreover, M is a cofibrant object in the local projective model structure on
sPre. Hence there is a natural bijection

(18) HomhosPre(M, Sing∗K(V∗, n)) = π0(Sing∗K(V∗, n)(M)).

3.3. Logarithmic Hodge filtered function spaces. In this subsection
we will work with both sites, SmC and ManC. For X ∈ SmC, we denote by
Xan ∈ManC the associated complex manifold whose underlying set is X(C).
This defines a functor

ρ−1 : SmC →ManC, X 7→ ρ−1(X) := Xan.

Composition with ρ−1 induces a functor

ρ∗ : sPre(ManC)→ sPre(SmC).

Note that ρ∗ is the right adjoint in a Quillen pair of functors between the
corresponding local projective model structures.
We can now construct logarithmic Hodge filtered spaces whose global sections
yield generalized Hodge filtered cohomology groups. The idea to define Hodge
filtered spaces is similar to the way that differential function spaces were defined
for presheaves on the category of smooth manifolds in [13].
Let n, p be integers and V∗ an evenly-graded complex vector space. Let Y be a
CW-complex and let ι ∈ Zn(Y ;V∗) by a cocycle on Y . A cocycle corresponds
to a map of CW-complexes

Y → K(V∗, n)

and induces a map of simplicial presheaves on ManC

Sing∗Y → Sing∗K(V∗, n).

Let | · | denote the geometric realization of simplicial sets. Using the canon-
ical map K(V∗, n) → |K(A∗(V∗), n)| we can form the following diagram in
sPre(SmC)

(19) ρ∗Sing∗Y

ι∗

��
u∗K(F pĀ∗(V∗), n) // ρ∗Sing∗|K(A∗(V∗), n)|.

Definition 3.2. We define the logarithmic Hodge filtered function space

(Y (p), ι, n) to be the homotopy pullback of (19) in sPre(SmC).
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Note that (Y (p), ι, n) depends on ι only up to homotopy, i.e., if ι′ is another
cocycle which represents the same cohomology class as ι then (Y (p), ι, n) and
(Y (p), ι′, n) are equivalent.

Remark 3.3. Let us contemplate a little more on diagram (19). For a complex
manifold M , let Zn(M ×∆•;V∗) be the simplicial abelian group whose group
of k-simplices is given by C∞-n-cocycles on M × ∆k with coefficients in V∗.
We denote the corresponding simplicial presheaf

M 7→ Zn(M ×∆•;V∗)

on ManC by Zn(− × ∆•;V∗). Our chosen cocycle ι determines a map of
simplicial presheaves

Sing∗Y → Zn(−×∆•;V∗), f 7→ ι∗f,

given by taking the pullback along ι. Let I denote the map given by integration
of forms

I : F p+jAn+2j(X ;V2j)→ Cn+2j(X ;V2j), η 7→ (σ 7→

∫

∆n+2j

σ∗η).

We can form a diagram of simplicial presheaves

(20) ρ∗Sing∗Y

ι∗

��
u∗K(F pĀ∗(V∗), n)

I
// ρ∗Z

n(− ×∆•;V∗).

The map
Sing∗K(V∗, n)(M)→ Zn(M ×∆•;V∗)

given by pulling back a fundamental cocycle in Zn(K(V∗, n);V∗) is a simplicial
homotopy equivalence (see e.g. [13, Proposition A.12]). Hence the homotopy
pullback of (20) is homotopy equivalent to the homotopy pullback of (19).

Remark 3.4. For Y = K(Z, n), we recover Deligne-Beilinson cohomology
in the following way. Let ι : K(Z, n) → K(C, n) be the map that is in-
duced by the (2πi)p-multiple of the inclusion Z ⊂ C. Then the space
K(Z, n)(p) := (K(Z, n)(p), ι, n) represents Deligne-Beilinson cohomology in the
homotopy category of sPre(SmC) in the sense that there is a natural isomor-
phism

Hn
D(X ;Z(p)) ∼= HomhosPre(SmC)(X,K(Z, n)(p)).

3.4. Hodge filtered spaces and spectra. Of particular interest is the case
when Y is a space in a spectrum. We refer the reader to [12] for a more detailed
discussion of the maps of spectra involved. We can reinterpret the construction
of [12] on the level of spaces as follows.
Let E be a topological Ω-spectrum and let En be its nth space. We assume
that E is rationally even, i.e., π∗E⊗Q is concentrated in even degrees. Let V∗
be the evenly graded C-vector space π∗E ⊗ C. Let

τ : E → E ∧HC =: EC
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be a map of spectra which induces for every n the map

π2n(E)
(2πi)n

−−−−→ π2n(EC)

defined by multiplication by (2πi)n on homotopy groups. The choice of such a
map is unique up to homotopy. For a given integer p, multiplication by (2πi)p

on homotopy groups determines a map

E
(2πi)pτ
−−−−−→ E ∧HC.

Let
E ∧HC→ H(π∗E ⊗ C)

be a map that induces the isomorphism

π∗(E ∧HC) ∼= π∗E ⊗ C = V∗.

The composite with (2πi)pτ defines a map of spectra

ι : E → H(V∗).

The inclusion V∗ →֒ A∗(V∗) induces a map of spectra H(V∗) → H(A∗(V∗)).
Composition with E → H(V∗) defines a map

(21) ι : E → H(A∗(V∗))

which we also denote by ι. We call ι a p-twisted fundamental cocycle of E.
This map corresponds to a family of maps of spaces which, for each n, are of
the form

ιn : En → K(A∗(V∗), n)

and which are compatible with the structure maps of the spectrum E.
For given p and ι and each n, we can form the diagram in sPre(SmC)

(22) ρ∗Sing∗En

ι∗n

��
u∗K(F pĀ∗(V∗), n) // ρ∗Sing∗|K(A∗(V∗), n)|.

We will write (En(p), ι) for the homotopy pullback of (22) in sPre(SmC).
Note that a different choice ι′ of a p-twisted fundamental cocycle of E yields
a homotopy equivalent simplicial presheaf (En(p), ι

′). Therefore, we will often
drop ι from the notation and write En(p) for (En(p), ι).

Definition 3.5. According to our previous terminology, we call En(p) the nth
logarithmic Hodge filtered function space of E (even though it is only unique
up to homotopy equivalence).

Remark 3.6. For X ∈ SmC, let En
log(p)(X) denote the logarithmic Hodge

filtered E-cohomology groups of X as defined in [12, Definition 6.4]. It follows
from the definition of En(p) as a homotopy pullback of (22) that the groups
HomhosPre(X,En(p)), for varying n, sit in long exact sequences analog to the
one of [12, Proposition 6.5]. This shows that we have a natural isomorphism

En
log(p)(X) ∼= HomhosPre(X,En(p)).
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Alternatively, we could have remarked that En(p) is the nth space of the fibrant
spectrum Elog(p) of [12, §6].

3.5. The case of smooth projective varieties. If X is a projective

smooth complex varieties, we obtain a more concrete description of the global
sections of a Hodge filtered space. For, in this case, X is an initial object in
the filtered category C(X) of all smooth compactifications of X . Hence the
colimit that computes the value of u∗K(F pĀ∗(V∗), n) at X reduces to

u∗K(F pĀ∗(V∗), n)(X) = K(F pA∗(V∗), n)(X).

Thus, for X projective, we have

(23) HomsPre(SmC)(X,u∗K(F pĀ∗(V∗), n)) ∼= K(F pA∗(X ;V∗), n).

In terms of homotopy classes of maps, isomorphism (16) just states the fact

π0K(F pA∗(X ;V∗), n) ∼= F pHn(X ;V∗).

Now let E be a rationally even topological Ω-spectrum together with the choice
of a p-twisted fundamental cocycle ι. Let V∗ again denote π∗E⊗C. By Propo-
sition 2.7, we can calculate the homotopy pullback of (22) objectwise. This
implies that the space En(p)(X) is homotopy equivalent to the homotopy pull-
back of the following diagram of simplicial sets

(24) Sing∗En(X)

ι∗n

��
K(F pA∗(X ;V∗), n) // Sing∗|K(A∗(V∗), n)|(X).

By Remark 3.6, this implies that the logarithmic Hodge filtered E-cohomology
group En

log(p)(X) is isomorphic to the group of connected components of the

space En(p)(X), i.e.,

En
log(p)(X) = π0(En(p)(X)).

We can now read off from diagram (24) the following characterization of ele-
ments of En

log(p)(X).

Proposition 3.7. For rationally even spectrum E and a smooth projective

variety, an element of En
log(p)(X) is given by a triple

(25) q : X → En, ω ∈ F pAn(X ;V∗)cl, ξ ∈ An−1(X ;V∗)

such that dξ = ι∗nq−ω, where q is a continuous map, d denotes the differential

in A∗(X ;V∗), and ω is a closed form.

Remark 3.8. In view of Remark 3.3, we can rewrite diagram (24) as follows.
Let I denote again the map given by integration of forms. Following the ar-
gument in Remark 3.3, we see that En(p)(X) fits into the following homotopy
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cartesian square of simplicial sets

En(p)(X) //

��

Sing∗En(X)

ι∗n

��
K(F pA∗(X ;V∗), n)

I
// Zn(X ×∆•;V∗).

Hence we can represent an element in En
log(p)(X) also as a triple

q : X → En, ω ∈ F pAn(X ;V∗)cl, h ∈ Cn−1(X ;V∗)

such that δh = ι∗nq − I(ω), where δ denotes the differential in C∗(X ;V∗).

Remark 3.9. Recall from Remark 3.4 that for E = HZ, i.e., En = K(Z, n),
K(Z, n)(p) represents Deligne-Beilinson cohomology in hosPre(SmC). Then
Remark 3.8 just rephrases the well-known fact (see e.g. [24, §12.3.2] or [8])
that an element in Hn

D(X ;Z(p)) can be represented (in the notation of [24]) by

a triple (an
Z
, bnF , c

n−1
C

) where an
Z
is an integral singular cochain of degree n, bnF

is a form in F pAn(X), and cn−1
C

is a complex singular cochain of degree n− 1

such that δcn−1
C

= an
Z
− bnF .

4. A generalized Abel-Jacobi invariant

In this section, we will always assume that X is a projective smooth complex
variety. Let p be a fixed integer. Let MU be the Thom spectrum representing
complex cobordism. Recall that the homotopy groups of MU vanish in all odd
and in all negative degrees. Moreover, for j ≥ 0, π2jMU is a finitely generated
free abelian group. To shorten the notation we will again write

V∗ := π∗MU ⊗Z C.

Let ι be a p-twisted fundamental cocycle ofMU . The reader may find a detailed
discussion of fundamental cocycles for MU in [12, §5]. Here we just recall that
ι comes equipped with an isomorphism

(26) MU∗(X)C := MU∗(X)⊗Z C ∼= H∗(X ;V∗) =
⊕

j≥0

H∗+2j(X ;V2j).

4.1. Cobordism, Jacobians, and Hodge structures. We first define the
generalized Jacobian we mentioned in the introduction. By the construction of
the space MUn(p) as a homotopy pullback and by using isomorphism (15), we
deduce that the groups MUn

log(p)(X) sit in a long exact sequence of the form

(see also [12, §4.2])

. . .→ Hn−1(X ;V∗) →MUn
log(p)(X)→

→MUn(X)⊕ F pHn(X ;V∗) → Hn(X ;V∗)→ . . .

For n = 2p, we can split this long exact sequence into the following short exact
sequence

0→ J2p−1
MU (X)→MU2p

log(p)(X)→ Hdg2pMU (X)→ 0

Documenta Mathematica 21 (2016) 1645–1668



An Abel-Jacobi Invariant for Cobordant Cycles 1663

which is the bottom row of diagram (2). The group on the left hand side is
defined as

J2p−1
MU (X) := MU2p−1(X)C/(F

pH2p−1(X ;V∗) +MU2p−1(X)).

The group Hdg2pMU (X) is defined as the subgroup of MU2p(X) that is given as
the pullback

(27) Hdg2pMU (X)

��

// MU2p(X)

��
F pH2p(X ;V∗) // H2p(X ;V∗).

The space X(C) has the homotopy type of a finite complex. This implies
that each group MUk(X) is finitely generated over Z. Hence we may consider
MUk(X) as a Hodge structure with the following filtration on MUk(X)C.
Using isomorphism (26) we set

F iMUk(X)C :=
⊕

j≥0

F i+jHk+2j(X ;C)⊗Z π2jMU.

We can then interpret J2p−1
MU (X) as the Jacobian associated to the Hodge struc-

ture of weight 2p− 1 on MU2p−1(X):

(28) J2p−1
MU (X) = MU2p−1(X)⊗Z C/(F pMU2p−1(X)C ⊕MU2p−1(X)).

Moreover, the canonical map MU → HZ induces a map of Hodge structures

(MU2p−1(X), F ∗MU2p−1(X)C)→ (H2p−1(X ;Z), F ∗H2p−1(X ;C))

which induces the natural map

J2p−1
MU (X)→ J2p−1(X).

4.2. A cycle map for algebraic cobordism. Our goal in this subsection
is to describe the vertical maps in diagram (2). Let Ω∗(X) be the algebraic
cobordism ring of X of Levine and Morel. By [19], Ω∗(−) is the universal
oriented cohomology theory on Sm. Moreover, in [12, Theorem 7.10], Michael
J. Hopkins and the author showed that MU2∗

log(∗)(−) is an oriented cohomology

theory on Sm, and hence the universality of Ω∗(−) induces a natural transfor-
mation

τ : Ω∗(−)→MU2∗
log(∗)(−).

Following [19], for given X ∈ Sm, τ is defined as follows. Recall that Ωp(X)
is generated by elements [f : Y → X ] with f a projective morphism in Sm of
relative codimension p. Let pY : Y → SpecC be the structure map of Y . The
class [f ] is equal to f∗(p

∗
Y (1Ω)) where f∗ denotes the pushforward along f , p∗Y

is the pullback along pY in Ω∗(−), and 1Ω is the unit in Ω0(C). The image of

[f : Y → X ] under τ : Ωp(X)→MU2p
log(p)(X) is then defined as

τ([f : Y → X ]) := f∗(p
∗
Y (1MUlog

))
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where now f∗ and p∗Y denote the pushforward and pullback in MU2∗
log(∗)(−),

respectively, and 1MUlog
is the unit in MU0

log(0)(C). The natural map

ϕMUlog
: Ω∗(X)→MU2∗

log(∗)(X)

is defined by ϕMUlog
([f ]) := τ([f ]). We remark that this is in fact a ring

homomorphism for every X ∈ Sm (see [12, Theorem 7.10]).

In order to further describe the element ϕMUlog
([f ]) in MU2p

log(p)(X), we will

first look at the image of [f ] under the natural map

ϕMU : Ωp(X)→MU2p(X).

We know that the image of ϕMU lies in the subgroup Hdg2pMU (X). Therefore, we

need a better understanding of the group Hdg2pMU (X). Using isomorphism (26)
and the Hodge decomposition of complex cohomology, we can define subgroups
of MUk(X)C

(29) MUp,q(X)C :=
⊕

j≥0

Hp+j,q+j(X ;C)⊗Z π2jMU.

Then MUk(X)C splits into a direct sum

MUk(X)C =
⊕

p+q=k

MUp,q(X)C.

Lemma 4.1. Let γ be an element of Hdg2pMU (X), and let c ∈ H2p(X ;V∗) be

the image of γ under isomorphism (26). Then c is given by a family of real

cohomology classes (cj)j≥0 with

cj ∈ Hp+j,p+j(X ;C)⊗ π2jMU.

Proof. This follows immediately from diagram (27) and the fact that the image
of MU2p(X) in H2p(X ;π∗MU ⊗ C) factors through H2p(X ;π∗MU ⊗ R). �

Remark 4.2. In view of our notation (29), we see that the group Hdg2pMU (X)
can be identified with the elements in MU2p(X) whose image in MU2p(X)C
lies in the subgroup MUp,p(X)C.

Lemma 4.3. With the notation of the previous lemma, the class c can be repre-

sented by a family of closed forms ω = (ωj) in F pA2p(X ;V∗)cl such that each

ωj is a real form of type (p+ j, p+ j).

Proof. This follows from Lemma 4.1, Hodge symmetry and the uniqueness of
the Hodge decomposition of complex cohomology. �

Remark 4.4. Note that in both families (cj) and (ωj) there are only finitely
many nonzero elements. This is due to the fact that Xan is a compact complex
manifold.

This allows us to describe the image of ϕMU as follows.
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Proposition 4.5. Let [f : Y → X ] be a generator in Ωp(X). The image

of ϕMU (f) under isomorphism (26) is represented by a family of closed forms

ω = (ωj) in F pA2p(X ;V∗)cl such that each ωj is a real form of type (p+j, p+j).

As a consequence, we can also say more about the image of

ϕMUlog
: Ωp(X)→MU2p

log(p)(X).

Proposition 4.6. Let [f : Y → X ] be a generator in Ωp(X). The class

ϕMUlog
(f) can be represented by a triple

(30) fan : Yan → Xan, ω ∈ F pA2p(X ;V∗)cl, ξ ∈ A2p−1(X ;V∗)

such that dξ = ι∗(fan) − ω and the image of fan in A2p(X ;V∗) is a family of

real forms of type (p+ j, p+ j).

Proof. Via the Pontryagin-Thom construction, the image [fan] of f in
MU2p(X) corresponds to a continuous map q : X → MU2p. The assertion
then follows from Propositions 3.7 and 4.5. �

Remark 4.7. The proposition shows to what extend the class of Y → X
in MU2p

log(p)(X) contains more information than the corresponding images in

MU2p(X) and F pH2p(X ;V∗): For, ϕMUlog
(f) remembers the homotopy that

connects the images in MU2p(X)C. We are going to exploit this fact in the
construction of the Abel-Jacobi map in the next section.

4.3. The generalized Abel-Jacobi map. Our final goal is to describe the
Abel-Jacobi map

ΦMU : Ωp
top(X)→ J2p−1

MU (X)

in diagram (2).
Let α = [Y → X ] be a generator in Ωp(X). By Remark 3.8, the image of α in

MU2p
log(p)(X) is given by a triple

(31) q : X →MU2p, ω ∈ F pA2p(X ;V∗)cl, c ∈ C2p−1(X ;V∗)

such that δc = I(ω) − ι∗nq, where δ denotes the differential in C∗(X ;V∗), q is
obtained via the Pontryagin-Thom construction and represents the class of Y
in MU2p(X), and ω represents the image of [Y ] in H2p(X ;V∗).
Now we assume that the image of α in MU2p(X) vanishes. This implies that
both the cohomology class of ω and the homotopy class of q are trivial. Hence
there is a form η ∈ F pA2p−1(X ;V∗) such that dη = ω, and there is a homotopy
H from q to the constant map which sends all of X to the base point of MU2p.
We consider this homotopy as a map H : X → PMU2p from X to the path
space PMU2p of MU2p. After composition with ι : MU2p → K(V∗, 2p), H
defines a map

ι∗H : X → PK(V∗, 2p).

This map, in turn, defines a cochain ι∗H in C2p−1(X ;V∗) which we, by abuse
of notation, also denote by ι∗H . By construction, the boundary of this cochain
is δ(ι∗H) = ι∗q, where we also write ι∗q for the cocycle corresponding to the
map ι∗q : X → K(V∗, 2p).
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Hence the triple (q, ω, c) is homotopic to the triple (0, 0, ι∗H − I(η) + c), or,
more precisely, they are path connected in the space MU2p(p)(X) and define
the same element in π0(MU2p(p)(X)). Thus we can assume that ϕMUlog

(α) is
represented by the triple (0, 0, h) with

(32) h := ι∗H − I(η) + c ∈ C2p−1(X ;V∗) and δh = 0.

In particular, h is a cocycle in C2p−1(X ;V∗) and represents an element [h] in
H2p−1(X ;V∗) ∼= MU2p−1(X)C.
In constructing [h], we chose a form η and a homotopy H . The class of [h]
depends on these choices in the following way. First, let η′ be another form in
F pA2p−1(X ;V∗) such that dη′ = ω. The difference η− η′ is then a closed form.
Hence I(η − η′) is a cocycle and defines a class in F pH2p−1(X ;V∗).
Second, let H ′ be another homotopy from q to the constant map. Considering
H and H ′ as maps X → PMU2p, we can compose H and H ′ as paths by
first walking with doubled speed along H and then with doubled speed in
reversed direction of H ′. Hence the two homotopies H and H ′ define a map
H ∗ (−H ′) : X → Ω(MU2p) from X to the loop space of MU2p. Since MU is
an Ω-spectrum, Ω(MU2p) is homeomorphic to MU2p−1. Thus H and H ′ define
a map H ∗ (−H ′) : X → MU2p−1. After taking homotopy classes, we obtain
an element [H ∗ (−H ′)] ∈MU2p−1(X).
If we set h = ι∗H−I(η)+c and h′ = ι∗H ′−I(η′)+c, we see that the difference
of [h] and [h′] in H2p−1(X ;V∗) is the class of ι∗[H ∗ (−H ′)]− I(η − η′), where
we also write ι for the map MU2p−1 → K(V∗, 2p− 1). We thus obtain that the
class [h] ∈ H2p−1(X ;V∗) is well-defined modulo the images of the subgroups
MU2p−1(X) and F pH2p−1(X ;V∗). The following theorem is the summary of
this discussion.

Theorem 4.8. Let α be an element in Ωp(X) and h be the cocycle defined in

(32). Then the image of [h] in the quotient

J2p−1
MU (X) = MU2p−1(X)C/(F

pH2p−1(X ;V∗) +MU2p−1(X))

is the image of α under ΦMU .

Remark 4.9. We can interpret the class of h also in the following way. Recall
that, since the underlying complex manifold of X is a Kähler manifold, the
natural map H2p−1(X ;R)→ H2p−1(X ;C)/F pH2p−1(X ;C) is an isomorphism
of R-vector spaces. Because of our convention on the Hodge filtration and
gradings, this implies that the natural map

H2p−1(X ;π∗MU ⊗ R)→ H2p−1(X ;π∗MU ⊗ C)/F pH2p−1(X ;π∗MU ⊗ C)

is an isomorphism of R-vector spaces, too. For h as in (32), this implies that we
can assume that h defines a real class in H2p−1(X ;π∗MU⊗R) ∼= MU2p−1(X)R
which depends only on the image of MU2p−1(X). In other words, h defines a
unique element in

MU2p−1(X)R/MU2p−1(X) ∼= MU2p−1(X)⊗ R/Z
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which equals the image of α under the isomorphism

J2p−1
MU (X) ∼= MU2p−1(X)⊗ R/Z.

Remark 4.10. We see that ΦMU (α) depends on how α vanishes in MU2p(X)
and F pH2p(X ;V∗). Hence calculating ΦMU (α) is in general a difficult task.
But this is not different from the classical Abel-Jacobi map. For example,
the calculations for Griffiths’ famous examples are not done by just evaluating
an integral of a form over some given chain, but use use more sophisticated
arguments (see [9] or [25]).

Remark 4.11. Using known examples of non-trivial elements in the Griffiths
group, we can produce examples of elements in Ωp

top(X) which lie in the kernel
of θ : Ωp(X)→ CHp(X) (see [12, §7.3]). This shows that the new Abel-Jacobi
invariant is able to detect certain elements in Ω∗

top(X) which the classical in-
variant Φ would not see. Nevertheless, we do not yet have an example of the
following type: an element in Ω∗

top(X) which maps to the kernel of Φ, but
is neither in the kernel of θ nor in the kernel of ΦMU . This is a much more
difficult task which requires a better understanding of the kernel of the map

MU2p−1(X)⊗ R/Z→ H2p−1(X ;R/Z).
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K-Theory 4 (1990), no. 1, 55-87.

[17] M.Karoubi, Classes caractéristiques de fibrés feuilletés, holomorphes
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