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1 Introduction

In [Hag03], for a wide class of logarithmic varieties over a separably closed
field, we gave an explicit description of their Kummer etale K-groups in terms
of the usual K-groups of the associated stratifications. However, this descrip-
tion is still unsatisfactory in that it disregards λ-ring structures, with which
every Kummer etale K0-group is naturally endowed through exterior product
operations. Since, already in the classical case, these structures play essential
roles, for instance, for a definition of (rational) motivic cohomology, this defect
should be overcome.
So in this paper, for a logarithmic variety satisfying some good conditions, we
construct an isomorphism between its Kummer etale K-group and usual K-
groups associated with its stratification, preserving their λ-ring structures up
to torsion.
More precisely, we consider the following situation. Let k be a field of charac-
teristic p, X a scheme smooth, separated and of finite type over k, D a strictly
normal crossing divisor on X , and {Di}i∈I its irreducible components. We also
denote by X the log scheme associated with (X,D). Then the main theorem
of this article is as follows:
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Theorem 1.1. (= Theorem 3.23) We have an isomorphism of rings

K0(XKet)⊗Z Q
∼=
−→ lim
←−
CI

K0(DJ2)⊗Z Q[(Z(p)/Z)
⊕J1 ],

which is compatible with the actions of Adams operations (For their actions on
the right hand side, see below).

Here, for J = {i1, · · · , ir} ⊂ I, we put DJ = Di1∩· · ·∩Dir (Note thatD∅ = X),
and we set

CI = {(J1, J2)|J1 ⊂ J2 ⊂ I}

and regard it as an ordered set by defining (J1, J2) ≥ (J ′
1, J

′
2) to be J ′

1 ⊂
J1 ⊂ J2 ⊂ J ′

2. The transition morphism in the limit is induced by the natural
closed inclusion DJ2 ⊃ DJ′

2
and a projection (Z(p)/Z)

⊕J1 → (Z(p)/Z)
⊕J′

1 . We

consider Q[(Z(p)/Z)
⊕J ] to be a group ring endowed with ring endomorphisms

{Ψm}m>0, which we call Adams operations, defined by Ψm([α]) = [mα] for
m ∈ N,m > 0 and α ∈ (Z(p)/Z)

⊕J . The actions of Adams operations on the
right hand side are naturally induced from the usual ones on K0(DJ2)Q and
on Q[(Z(p)/Z)

⊕J1 ] (For more details, see Subsection 3.3). By this theorem, we
can determine completely the actions of Adams operations, and accordingly
the λ-ring structure up to torsion, on the left hand side.
We will give some remarks on the proof. As in [Hag03], the fundamental idea
of the proof is a local-global argument, that is, the reduction to the local case
where we can apply various results in equivariant K-theory. However, there
are some differences to be mentioned, between the strategy there and that in
this article.
In [Hag03], we focused only on the (Abelian) group structure of the Kummer
etale K-group, so we could use a “localisation sequence” for K ′-groups and
reduce the theorem to the case where the underlying scheme is of the form
SpecL for a field L. However, this method does not work well in the analysis
of the λ-ring structure. In fact, this difficulty is not so serious because we
have enough tools in simplicial homotopy theory to reduce to the case of the
(Henselian) local ring, where we can apply equivariant K-theory effectively.
The more serious difficulty is the high complexity of the Kummer etaleK-group
of each irreducible component of the divisor. This is already seen in the calcu-
lation of Kummer etale K-group of a log point. Let (SpecC)log be a log scheme
associated with a monoid map from eN (this denotes the free (multiplicative)
monoid with generator e) to C which send every element except the unit to 0.
Then its Kummer etale K-group is isomorphic to a colimit of (usual) equivari-
ant K-groups Ki(SpecC[x]/(xn), µn), which are very complicated because of
the existence of nilpotent elements in C[x]/(xn).
To avoid this difficulty, we introduce the notion of a “pellicular Kummer etale
ringed topos” of an fs log scheme X , which we denote by (XKet,OXKet). This
has the same underlying topos as the usual Kummer etale topos, but its struc-
ture sheaf OX associates with each “open set” a ring Γ(U,OU )

red (not a ring
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Γ(U,OU )). Upon this notion we can develop general theory of OX -modules
and define the corresponding K-(and K ′-)groups, which we denote by K (resp.

K
′
) and call pellicular Kummer etale K-(resp. K ′-)groups.

The advantage of this new K-group is that it is extremely easier to compute
than the usual Kummer etale K-group. For instance, in the case of a log
point above, its pellicular Kummer etale K-group is a colimit of equivariant K-
groupsKi(SpecC, µn), where the action of µn is trivial (The name “pellicular”,
which means “film-like”, is adopted on the ground that OPKet is a “very thin”
quotient of OPKet , for instance, if P is a log point). It is easily checked that
this is isomorphic to Ki(SpecC)⊗ Z[Q/Z].
Fortunately, the totality of the pellicular Kummer etale K-groups of DJ ’s has
sufficient information for the recovery of the Kummer etale K-group of the
ambient log scheme.
Another difficulty is the problem of how we carve the factor which “purely”
corresponds to each DJ out of the Kummer etale K-group of the ambient log
scheme. For instance, let X be a curve with a divisor D consisting of one point,
and i : D → X the natural closed immersion. Then it is (or at least seems)
highly difficult to separate the information corresponding only to X (i.e. the
usual K-group of the underlying scheme ofX) from the Kummer etale K-group
of X without ignoring the λ-ring structure.
In order to get over this difficulty, we prove an “inversion formula”, which
enables us to interpret a Kummer etale K-group as a generalised cohomology
of another Kummer etale topos with coefficients in Kummer etale K. Using
it, we can construct some maps which seem to go in the “opposite” ways, but
which still respect λ-ring structures, up to torsion.
For example, in the above case, we can define a map from the rational Kummer
etale K-groups of X to the usual rational K-group of X compatibly with their
λ-ring structures. The existence of this map already seems very non-trivial
even for K0 of curves. Note that, as careful readers can notice immediately,
such maps appear implicitly in the statement of the structure theorem.
With these tools at hand, the proof (as well as the formulation) of the main
theorem is only an easy exercise of simplicial homotopy theory, equivariant
K-theory and logarithmic geometry.
Finally we give two remarks. First note that, as a result of the above theorem,
for some logarithmic varieties we can define the notion of what we might call
“Kummer etale Chow groups” as eigenspaces of Adams operations and can
describe them in terms of the usual Chow groups. As an application, by using
these objects we can formulate and prove a Riemann-Roch-type theorem for
Kummer etale K-groups. These topics and their arithmetic applications will
be given in the forthcoming paper.
Secondly, as the readers see immediately, most of our results also hold for higher
Kummer etale K-theory. However, in this paper we concentrate on the K0-
case since our motivation comes from its application to number theory via the
aforementioned Riemann-Roch-type theorem for the Kummer etale K0-group
and the Kummer etale Chow groups.
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Now let us mention the organisation of this paper. First, in Section 2, we review
logarithmic geometry and Kummer etale topos, and in Section 3, we introduce
some new notions on logarithmic schemes, especially, those of pellicular Kum-
mer etale ringed topos, and formulate the main theorem in a form suitable
for some local-to-global arguments. In addition, in this section, we reduce the
theorem to some key lemmata. These will be proven in Section 5, after some
consideration on the general theory of pellicular Kummer etale ringed topos in
Section 4.

The author is very grateful to Professors Kazuya Kato and Iku Nakamura for
their ceaseless encouragement and interest in this work, and to the referee
for the useful comments. This work was partially supported by Global COE
Program at University of Tokyo and by JSPS KAKENHI 21674001, 23224001,
23740030. In addition, it was also supported in part by KAKENHI 26247004,
as well as the JSPS Core-to-Core program “Foundation of a Global Research
Cooperative Center in Mathematics focused on Number Theory and Geometry”
and the KiPAS program 2013–2018 of the Faculty of Science and Technology
at Keio University.

2 Preliminaries

For a ring A, we denote by Ared the quotient ring of A by its nilradical.
For a scheme X , we denote by OXZar its structure sheaf, and by Vect(XZar),
Coh(XZar), Qcoh(XZar) and Mod(XZar) the category of coherent locally free
OXZar -modules, coherent sheaves of OXZar -modules, quasi-coherent sheaves of
OXZar -modules and OXZar -modules, respectively.

In the rest of this section, we recall some definitions and propositions in loga-
rithmic geometry. For the notions which are not given in this section and the
proofs of propositions omitted here, see [Kat89], [Kat94], [Nak92], [Nak97] and
[Hag03].

2.1 Logarithmic geometry

2.1.1 Monoid theory

In this paper, a monoid means a commutative one with a unit (unless otherwise
mentioned), and a homomorphism of monoids is always assumed to preserve
the units. The symbol N means the set of integers i such that i ≥ 0 and is
regarded as a monoid by addition, although we write the operations in monoids
multiplicatively very often. When given a monoid P , we call a monoid Q
equipped with a monoid homomorphism P → Q a P -monoid.

A subset I of a monoid P is called an ideal if a ∈ P and x ∈ I implies ax ∈ I.
An ideal is called a prime ideal if its complement is a submonoid of P . A
submonoid of P is called a face if it is the complement of a prime ideal.

We call a monoid isomorphic to Nr for some r a finitely generated free monoid.
As is easily seen, there is a natural bijection between the set of prime ideals in
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Structure Theorem of Kummer etale K-group II 1349

a finitely generated free monoid and the power set of the basis of the monoid.
We often denote the finitely generated free monoid with basis e1, . . . , er by
eN1 · · · e

N
r . When we are given a monoid M and elements m1, . . . ,mr ∈ M , the

notation mN
1 · · ·m

N
r is also used to represent the submonoid of M generated by

m1, . . . ,mr.

For a monoid P , we denote by P× the submonoid of P consisting of invertible
elements, that is, elements that divide the unit. P is called sharp if and only if
P× = {1}. By P gp we mean its group completion, which is naturally defined.
For an Abelian group A, we often use the notation PA instead of P gp⊗Z A. In
particular, PZ means P gp.

A monoid P is called integral if ac = bc always implies a = b for any element
a, b and c in P , or equivalently, if P → P gp is injective. An integral monoid
P is called saturated if any element a ∈ P gp satisfying an ∈ P for some
n ∈ N belongs to P . A finitely generated saturated monoid is also called an fs
monoid. For a monoid P , P sat denotes its saturation, which is defined by the
universality. More precisely, the functor (−)sat is defined to be a functor left
adjoint to the inclusion functor from the category of saturated monoids to that
of monoids. Recall that its existence is assured and we have a natural map
P → P sat. For a saturated monoid P and saturated P -monoids Q and R, we
set Q ⊕sat

P R = (Q ⊕P R)sat, the cofiber product in the category of saturated
monoids.

For a monoid P and a natural number n, P 1/n is defined to be a P -monoid
such that P → P 1/n is isomorphic to the n-th power map (−)n : P → P ,

and for a natural number m we set Pm′−div = colim (n,m)=1P
1/n. If m is

fixed (e.g. m is the characteristic exponent of a fixed scheme) and no risk of
confusion is induced, we also use the notation P div′

. We also set Q′ = Zdiv′

and (Q/Z)′ = Q′/Z.
A monoid homomorphism φ : P → Q from P to Q is called a projection if
there exist a monoid R and an isomorphism f : Q × R → P such that φ ◦ f
equals pr1, the projection to Q.

2.1.2 Logarithmic schemes

A logarithmic scheme (or a log scheme) is a pair of a scheme X and a homo-
morphism of etale sheaves of monoids αX : MX → OX , with OX regarded as
a sheaf of monoids by multiplication, such that α−1

X (O×
X)→ O

×
X is an isomor-

phism. We always regard the sheaf of invertible functions O
×
X as a subsheaf

of MX and set MX = MX/O×
X . We often write X to represent a log scheme

(X,MX), and then, for a log scheme X , |X | denotes its underlying scheme or
its underlying topological space (in the preceding paper [Hag03], the notation
◦
X is used for underlying schemes). The morphism αX is called the log structure
of X .

When there is no risk of confusion, a log scheme X is called Noetherian, quasi-
compact, regular and so on, if its underlying scheme |X | is so. Similarly, we

Documenta Mathematica 21 (2016) 1345–1396



1350 K. Hagihara

often write “x ∈ X” instead of “x ∈ |X |”, and the notation XZar is used to
mean |X |Zar.
A morphism from a log scheme (X,MX) to a log scheme (Y,MY ) is a pair
of a morphism of schemes φ : X → Y and a morphism of monoid sheaves
φ∗MY → MX compatible with the maps to OX (For the definition of the
pullback of the log structure φ∗MY → OX , see [Kat89]). For a morphism f of
log schemes, we denote by |f | the underlying morphism between schemes. We
often say, for example, “f is of finite type” instead of saying “|f | is of finite
type”. A morphism f : X → Y between log schemes is called strict if for
all x ∈ X , MY,f(x) → MX,x is an isomorphism. A strictly closed (or open)

subscheme of a log scheme (X,MX) is a closed (or open) subscheme i : Y →֒ X
with the induced log structure i∗MX .
For a monoid P we denote by (SpecZ[P ], P̃ ), or simply by SpecZ[P ], the log
scheme whose underlying scheme is SpecZ[P ] and which is endowed with the
log structure induced by the natural homomorphism of monoids P → Z[P ].
A log scheme is called fs if etale locally it has a strict morphism to SpecZ[P ]
with P an fs monoid. This strict morphism is called a chart. We denote by ×fs

the fiber product in the category FsLogSch of fs log schemes, to distinguish
it from ×, the one in the category of log schemes or of schemes. Note that, in
general, |X ×fs

S Y | ≇ |X ×S Y | ∼= |X | ×|S| |Y | for log schemes X and Y over S.

2.1.3 Standard coverings

Definition 1. Let X be an fs log scheme, P a sharp fs monoid, X → SpecZ[P ]
a chart and n a natural number.

1. We set Xn = X ×fs
SpecZ[P ] SpecZ[P

1/n].

Note that, since the group In = Hom(P 1/n/P,Z[ζn]×) acts linearly on a
ring Z[ζn][P 1/n] by

ϕ(a[p]) = (ϕ(p)a)[p],

for ϕ ∈ In, a ∈ Z[ζn] and p ∈ P 1/n, if |X | is a scheme over Z[ζn], we
have a natural action of the group on Xn over X.

2. We set X̃n = X ×fs
SpecZ[P ] SpecZ[ζn][P

1/n].

Note that, letting Γn = Gal(Q(ζn)/Q), we have a natural action of the

group In⋊Γn on X̃n over X, where the semi-direct product is constructed
by the action of Γn on In such that γ(ϕ) = γ ◦ ϕ for γ ∈ Γn and ϕ ∈ In.

Proposition 2.1. In the above situation, we have

SpecZ[P 1/n]×fs
SpecZ[P ] SpecZ[P

1/n] ∼= SpecZ[P 1/n ⊕sat
P P 1/n]

∼= SpecZ[P 1/n ⊕ (P 1/n/P )].

Here the second isomorphism is induced by a monoid isomorphism from
P 1/n ⊕sat

P P 1/n to P 1/n ⊕ (P 1/n/P ) characterised by the property that (a, b) ∈
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P 1/n ⊕ P 1/n is mapped to (ab, bmodP ) via the composite with a natural map
P 1/n ⊕ P 1/n → P 1/n ⊕sat

P P 1/n.
In particular,

1. if |X | is a scheme over SpecZ[ζn, 1/n], we have a canonical isomorphism

Xn ×
fs
X Xn

∼=
∐

α∈In

(Xn)α,

where (Xn)α is a copy of Xn, so that the composite of the natural inclu-
sion iα : (Xn)α → Xn ×fs

X Xn and the projection pr1 : Xn ×fs
X Xn → Xn

(resp. pr2) is the identity (resp. the action of α ∈ In), and

2. if |X | is a scheme over SpecZ[1/n], we have a canonical isomorphism

X̃n ×
fs
X X̃n

∼=
∐

α∈In⋊Γn

(X̃n)α,

in the similar way.

Proof. Straightforward.

2.1.4 (weak) Logarithmic regularity

Finally, we recall the notion of log regularity and generalise it slightly (cf.
[Kat94] or [Hag03] Section 2.5).

Definition 2. Let X be a locally Noetherian fs log scheme.

1. We say X is log regular at x ∈ |X | if the following two conditions are
satisfied:

(a) OX,x/I(x,M) is a regular local ring.

(b) dimOX,x = dimOX,x/I(x,M) + rank ZM
gp

X,x.

Here I(x,M) is an ideal of OX,x generated by the image of MX,x \ O
×
X,x

and dim denotes the Krull dimension.

X is said to be log regular if it is log regular at x for all x ∈ X.

2. For a natural number r, we denote by (SpecZ)log the log scheme induced
by a morphism of monoids Nr → Z which maps any element except the
identity to zero. For a log regular log scheme T , consider the log scheme
T ′ = T ×SpecZ (SpecZ)log, where SpecZ is endowed with the trivial log
structure.

X is said to be weakly log regular if it is locally isomorphic to a log scheme
defined as above.
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2.2 Kummer etale morphism

For the definition of logarithmic etale and smooth morphisms, see [Kat89].
Here we restrict ourselves to the review of the definition of a Kummer etale
morphism. For more details see [Nak92] or [Nak97].
A morphism φ : P → Q of integral monoids is said to be of Kummer type if it
is injective and satisfies the following condition: for any element q ∈ Q there
exists a positive integer n such that qn ∈ Imageφ.
A morphism f : X → Y of fs log schemes is said to be of Kummer type if for all
x ∈ X , MY,f(x) →MX,x is of Kummer type. A morphism of fs log schemes is

called Kummer etale, or shortly Ket, if it is logarithmic etale and of Kummer
type.
Recall that a strict morphism is Kummer etale if and only if its underlying
morphism of schemes is etale. So we often call a strict Kummer etale morphism
classically etale, or more simply, etale.
The propositions below, due to Nakayama, play essential roles in the followings.

Proposition 2.2. ( [Nak92] 6.4.2) Let U and X fs log schemes and f :
U −→ X a Kummer etale morphism. Assume U is quasi-compact, X is equi-
characteristic and there exists a chart X −→ SpecZ[P ] with P fs and sharp.
Then there exists a positive integer n, invertible on U , such that the pull-back
of f on Xn,fn : U ×fs

X Xn −→ Xn is classically etale.

Proof. We can take a natural number n invertible in X such that Mgp
U /f∗Mgp

X

becomes zero by multiplication by n. Set Un = U ×fs
X Xn. Then by considering

stalks of M -sheaves at each point and by using Proposition 2.1.1 in [Nak97],
we can reduce this proposition to the next lemma.

Lemma 2.3. Let n be a natural number and R← P → Q a diagram of saturated
sharp monoids. Assume that

1. P → Q is an inclusion and Qn ⊂ P

2. Every element in P becomes n-divisible when mapped to R.

Then we have an isomorphism R
∼=
→ (R ⊕sat

P Q)/(R⊕sat
P Q)×.

Proof. It suffices to note that, in the category of saturated sharp monoids,
P → Q is an epimorphism and that P → R factors through P → Q.

Proposition 2.4. (cf. [Nak92] 4.2.4.1) Let U and X be fs log schemes and
f : U → X a Kummer etale morphism. Take a point u ∈ U and put x = f(u).
Assume that we are given a chart of X, φ : X → SpecZ[P ], such that the
canonical map P → MX,x is an isomorphism. Then we have an fs monoid Q
and a morphism h : P → Q of Kummer type and the following diagram

U ′ −−−−→ V −−−−→ SpecZ[Q]

g

y
y SpecZ[h]

y

U
f

−−−−→ X
φ

−−−−→ SpecZ[P ],
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where

1. the right square is Cartesian,

2. the number of Cokerhgp is invertible on U ′,

3. u belongs to the image of g and

4. U ′ is classically etale over V and over U .

Proof. By the direct application of Theorem 3.5 in [Kat89] we can immediately
construct the diagram satisfying all the conditions but the saturatedness of
Q. In addition, investigating its proof, we also see that Q becomes saturated
automatically when U is assumed to be fs.

Corollary 2.5. Let X be an fs log scheme and {Ui → X}i∈I a Kummer etale
covering of X. Then we have

1. an etale covering {Xj → X}j∈J by affine log schemes Xj over
SpecZ[1/nj, ζnj

] with nj ∈ Z,

2. a map φ : J → I,

and for each j ∈ J ,

3. a chart Xj → SpecZ[Pj ] with Pj an fs and sharp monoid,

4. an etale covering {Vj → (Xj)nj
} (recall that (Xj)nj

= Xj ×fs
SpecZ[Pj ]

SpecZ[Pj
1/nj ]), and

5. an X-morphism Vj → Uφ(j)

such that, for each i ∈ I, a set of morphisms {Vj → Ui}j∈φ−1(i) is a Kummer
etale covering (in particular {Vj → X}j∈J refines {Ui → X}i∈I).

Proof. We can deduce it easily from the above proposition (cf. the proof of
Corollary 2.7 in [Hag03]).

2.3 Kummer etale K-theory

Let X be an fs log scheme.

Definition 3. 1. We define a category Ket/X to be the full subcategory
of FsLogSch/X consisting of fs log schemes X ′ Kummer etale over X.
We endow it with the topology by regarding a family of Kummer etale
morphisms {fi : X ′

i → X ′} such that X ′ =
⋃
fi(X

′
i) as a covering.

Indeed, we can check that this becomes a site ([Nak92], [Nak97]), so we
denote by XKet this site and by (XKet)̃ the associated topos.

2. The ringed topos ((XKet)̃, OXKet) is defined as follows:
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(a) A topos (XKet)̃ is the one defined as above.

(b) A ring object OXKet in (XKet)̃ is the rule which associates to each
X ′, Kummer etale over X, the ring Γ(|X ′|,O|X′|) (This is indeed a
sheaf, as is shown in Proposition 3.1 in [Hag03]).

We also denote it by (XKet,OX) if no confusion occurs. We have the natural
notion of OXKet -modules and define Mod(XKet) to be the category of OXKet -
modules on a ringed topos (XKet,OX). The natural morphism of ringed topoi
from (XKet,OX) to (XZar,O|X|) is denoted by εX , the subscript X being often
omitted.
Now we recall the definitions of Kummer etale K-theory and its variant (cf.
Subsection 3.3 of [Hag03]).

Definition 4. Let X be an fs log scheme. An object F in Mod(XKet) is
called a Kummer etale vector bundle (or a Ket vector bundle, for short) if,
Kummer etale locally, it is isomorphic to a finite direct sum of OXKet . The
OXKet -module F is said to be a Kummer etale coherent sheaf if it is so in the
sense of J. -P. Serre, that is, if F is Ket locally finitely generated and any Ket
locally given morphism On

UKet
→ F |U has a (Kummer etale locally) finitely

generated kernel.
We denote by Vect(XKet) and Coh(XKet) the categories consisting of Ket
vector bundles and Ket coherent sheaves, respectively.

As is seen in Subsections 3.3 and 3.4 of [Hag03], the category Vect(XKet)
becomes an exact category in a natural way, and Coh(XKet) is an Abelian
category if the functor ε∗X : Mod(XZar)→Mod(XKet) is exact (e.g. if MX,x̄

is finitely generated free for all x ∈ |X |), and |X | is Noetherian.

Remark 2.6. In fact, the definition of a Kummer etale coherent sheaf given in
[Hag03] is different from the one given here. However, these two notions coin-
cide for fs log schemes treated in this paper (cf. Corollary 3.10 and Proposition
3.12 of [Hag03]).

Definition 5. Let K(XKet) be the simplicial set associated with the exact
category Vect(XKet) ([Qui73]) and Ki(XKet) its i-th homotopy group. These
are called a Kummer etale K-theory spectrum and a Kummer etale K-group,
respectively. We also define a Kummer etale K ′-theory spectrum K ′(XKet) and
a Kummer etale K ′-group K ′

i(XKet) by using Coh(XKet) in the case where ε∗X
is exact and X is Noetherian.
Also, we denote by Pic (XKet) the group of the isomorphic classes of Ket line
bundles (i.e. Kummer etale vector bundles of rank one).

The aim of this article is to determine the λ-ring structure of K0(XKet) for
suitable fs log schemes up to torsions.

3 The statement of the main theorem

In this section we state the main theorem in Subsection 3.3 after introducing
some notions in logarithmic geometry in Subsections 3.1 and 3.2.
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3.1 Logarithmic schemes with standard frames

Here we recall the notion of F -framed log schemes (introduced in Section
5 of [Hag03]) and some constructions of log schemes associated with them.
Throughout this subsection, fix a finitely generated free monoid F .

Definition 6. 1. An F -framed log scheme is a pair of a log scheme X and
a morphism of monoids θ : F −→ Γ(X,MX) such that for all x ∈ X
the composite F −→ Γ(X,MX) −→ MX,x (which we denote by θx̄) is
isomorphic to a projection Nm → Nn with m ≥ n. Such a morphism θ is
called a frame. We also call the pair (X, θ) a log scheme with a standard
frame if we are not interested in F .

2. Let (X, θ), (Y, θ′) be F -framed log schemes. An F -framed morphism from
(X, θ) to (Y, θ′) is a morphism of log schemes φ : X −→ Y such that

F F

θ′

y θ

y

Γ(Y,MY )
φ∗

−−−−→ Γ(X,MX)

is commutative.

For example, the log scheme SpecZ[F ] can be naturally regarded as F -framed.

Remark 3.1. 1. It is easily checked that if X is F -framed, we have MX,x
∼=

MX,x̄ for each x ∈ X.

2. An F -framed morphism becomes strict automatically.

Mainly we work with the category of F -framed log schemes for a fixed monoid
F . The proposition below is easily checked.

Proposition 3.2. Let (X, θ) be an F -framed log scheme and Y −→ X a strict
morphism of log schemes. Then Y has a canonical F -framed log structure.

In particular, for a subscheme Y of |X | we can define an F -framed log structure
canonically, and if a log scheme X has a chart X → SpecZ[F ] with F finitely
generated free, then X is naturally F -framed.
The next proposition is Proposition 3.12 of [Hag03].

Proposition 3.3. Let (X, θ) be an fs log scheme with a standard frame. Then
for all x ∈ X, OX,x(log) is flat over OX,x.

Next we introduce some definitions concerning the monoid F .

Definition 7. Let F be a finitely generated free monoid and p, q and q′ its
prime ideals.

1. We define F (p) to be the unique face satisfying F (p) ⊕ (F \ p) = F and
put p∨ = F \F (p). For a face N of F , we also put N∨ = F \ ((F \N)∨).
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2. We denote by q ∨ q′ (and q ∧ q′) the minimal prime ideal containing q

and q′ (resp. the maximal prime ideal contained in q and q′). Note that
q∨q′ coincides with the set-theoretic join q∪q′, while q∧q′ does not with
q ∩ q′.

3. For a natural number m, we set F q−m′−div = (F \ q)m
′−div ⊕ F (q). We

also use the notation F q−div′

, omitting m, if there is no risk of confusions.

4. We set

Λ[q] = Z[F (q)gp ⊗Z Q/Z].

As usual, for the characteristic exponent p of a (fixed) scheme, Λ′[q] is
defined similarly by replacing Q/Z by Q′/Z = ⊕l 6=pQl/Zl.

The followings are immediately checked (under the assumption that the ambi-
ent monoid is finitely generated free).

Proposition 3.4. Let F be as above and q and q′ prime ideals.

1. q∨∨ = q.

2. If q ⊂ q′, then q∨ ⊃ q′
∨ and F (q) ⊂ F (q′).

3. F \ q = F (q∨).

4. F (q ∨ q′) = F (q) + F (q′), F (q ∧ q′) = F (q) ∩ F (q′).

5. (q ∨ q′)∨ = q∨ ∧ q′
∨
, (q ∧ q′)∨ = q∨ ∨ q′

∨
.

Remark 3.5. For prime ideals q ⊂ q′, the inclusion F (q) ⊂ F (q′) has a unique
left inverse which is also a projection. This will also play an important role
later.

Now, for a given log scheme with a standard frame, we have two recipes for
constructing other log schemes. First we “remove” the log structure of an
F -framed log scheme “along” a prime ideal of F in the following way.

Definition 8. Let (X, θ) be an F -framed fs log scheme and q a prime ideal of
F . Then we denote by the log scheme Xq the one having the same underlying
scheme as X, endowed with the log structure MXq defined by the Cartesian
diagram

MXq

��

� � // MX

��
θ′((F \ q)X)

� � // MX ,

where θ′((F \ q)X) is the image of the morphism θ′ from the constant monoid
sheaf (F \ q)X to the monoid sheaf MX adjoint to the morphism of monoids
θ : F \ q→ Γ(X,MX).
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The proposition below is easily checked:

Proposition 3.6. 1. We have an isomorphism of log schemes X∅ ∼= X.
On the other hand, if m is the maximal ideal of F , then Xm is the trivial
log scheme with underlying scheme |X |.

2. For q ⊂ q′, we have a natural morphism of log schemes Xq → Xq
′

.

3. The log scheme Xq naturally has an (F \ q)-framed structure. Moreover,
for prime ideals q ⊂ q′ of F , we have a commutative diagram

F \ q′ �
� //

��

F \ q

��
Γ(Xq

′

,MXq′ ) // Γ(Xq,MXq)

of natural monoid homomorphisms.

4. Let q be a prime ideal of F , and q′ one of F \ q, which implies that q∪ q′

is a prime ideal of F and we can define (Xq)q
′

. Then we have a natural
isomorphism (Xq)q

′ ∼= Xq∪q
′

.

5. Let X and Y be F -framed fs log schemes, q a prime ideal of F and
f : X → Y is a strict F -framed morphism. Then the induced morphism
Xq → Y q is also strict.

The next proposition makes the investigations of Xq easier.

Proposition 3.7. Let (X, θ) be an F -framed locally Noetherian fs log scheme,
x ∈ |X | and q a prime ideal of F . Then we have

1. a Zariski neighbourhood U ⊂ |X | of x,

2. an F -framed strict morphism U → SpecZ[F ], and

3. an (F \ q)-framed strict morphism Uq → SpecZ[F \ q]

such that
U −−−−→ SpecZ[F ]
y

y

Uq −−−−→ SpecZ[F \ q]

is commutative, where U , SpecZ[F ], Uq and SpecZ[F\q] are naturally endowed
with an F - or (F \ q)-framed structure, and the vertical maps are natural ones.

In particular, Xq is also an fs log scheme, and X has, Zariski locally, a chart.
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Proof. By the definition of the frame, we have a commutative diagram

F ′ �
� incl1//

))❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚ F ′ ⊕ F ′′
∼= // F

θx̄
��

MX,x̄,

where the oblique morphism (named γx) is an isomorphism, and the composite
γ−1
x ◦θx̄ is a projection. Since the map MX,x →MX,x(∼= MX,x̄) is surjective by

the vanishing of R1εetX∗O
×
Xet

, where εetX : Xet → XZar is the natural morphism
of sites, the map γx can be lifted to a monoid homomorphism γx : F ′ →
MX,x. Moreover, γx can be extended to γU : F ′ → Γ(U,MX) for some Zariski
neighbourhood U ⊂ |X | of x such that

1. (F ′
Uet

)a →MX |Uet , where the domain is the log structure associated with
a pre-log structure F ′

Uet
, and

2. Γ(U,MX)→MX,x

are isomorphisms. Note here that, in particular, the composite

γU : F ′ → Γ(U,MX)→ Γ(U,MX)

is also an isomorphism.
Denoting by f the chart U → SpecZ[F ′] obtained above, we define U ′ to be the
log scheme whose underlying scheme is |U | and whose log structure is induced
from that on SpecZ[F ′ \ (F ′ ∩ q)] via the morphism of schemes

|U |
|f |
−→ |SpecZ[F ′]| −→ |SpecZ[F ′ \ (F ′ ∩ q)]|.

In addition, we define an (F \ q)-frame F \ q→ Γ(U ′,MU ′) by composing the
natural F ′ \ (F ′ ∩ q)-frame of U ′ (induced from that of SpecZ[F ′ \ (F ′ ∩ q)])
with the projection F \ q ∼= F ′ \ (F ′ ∩ q)⊕ F ′′ \ (F ′′ ∩ q)→ F ′ \ (F ′ ∩ q).
Thus we have a commutative diagram of log schemes

U //

��

SpecZ[F ′] //

��

SpecZ[F ]

��
U ′ // SpecZ[F ′ \ (F ′ ∩ q)] // SpecZ[F \ q].

Here the right horizontal maps are induced from projections, so become strict,
and the composite of the lower horizontal morphisms is by definition (F \ q)-
framed.
Moreover, the composite of the upper horizontal morphisms is F -framed, that
is, the given frame θ : F → Γ(U,MX) can be expressed as the composite of
the projection proj : F → F ′ and γU : F ′ → Γ(U,MX). Indeed, the two
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maps γU ◦ proj and θ coincide with θx̄ when composed with the isomorphism
Γ(U,MX) ∼= MX,x̄.
Therefore it suffices to show that there exists an isomorphism U ′ ∼= Uq of (F \q)-
framed log schemes, which is compatible with a natural morphism U → Uq and
U → U ′ defined above.
From the commutative diagram

F ′ \ (F ′ ∩ q) //

��

Γ(U ′,MU ′)

��
F ′ // Γ(U,MU ),

we obtain a commutative diagram of sheaves of monoids on |U |et

(F \ q)|U|
//

��

F ′ \ (F ′ ∩ q)|U|
//

��

MU ′

��
F|U|

// F ′
|U|

// MU .

The upper horizontal morphisms are surjective, so it is sufficient to prove the
injectivity of MU ′ →MU .
For that, it is enough to prove that, for any point y ∈ |U |, defining Q and Q′

so that both squares in the diagram

Q′ �
� //

_�

��

Q //
_�

��

O
×
U,ȳ
_�

��
F ′ \ (F ′ ∩ q) �

� // F ′
γU,ȳ // MU,ȳ

are Cartesian, the natural map (F ′ \ (F ′ ∩ q))/Q′ → F ′/Q is injective. It is
now clear since F ′ is finitely generated free and both F ′ \ (F ′ ∩ q) and Q are
faces of F ′.

Secondly, given an F -framed log scheme, we can “stratify” the log scheme
“along” a prime ideal of F as follows:

Definition 9. Let X be an F -framed log scheme and a ∈ Γ(X,MX). We say
that the element a is pseudo-zero if, for every geometric point x̄ of X and a lift
ã ∈ MX,x̄ of ax̄ ∈ MX,x̄, we have αX,x̄(ã) = 0 as an element of OX,x̄, where
αX : MX → OX is the logarithmic structure of X.

Clearly, if a is pseudo-zero, for any geometric point x̄ and any lift ã ∈MX,x̄ we
have αX,x̄(ã) = 0. Note also that, for an element b ∈ Γ(X,MX), if its image
b̄ ∈ Γ(X,MX) is pseudo-zero, then αX(b) is zero as an element of Γ(X,OX).
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Proposition-Definition 3.8. Let (X, θ) be an F -framed fs log scheme and p

a prime ideal of F . Then there exists the unique strictly closed log subscheme
Y such that, for every log scheme over X, f : T → X, f factors (uniquely)
through Y if and only if, for every element m ∈ p, f∗(θ(m)) ∈ Γ(T,MT ) is
pseudo-zero. We denote this log scheme by X [p].

Proof. Since it suffices to consider etale locally on X , we may assume that X is
affine and has a chart X → SpecZ[F ] that is F -framed (Proposition 3.7). Then
the proposition follows from the following lemma, which is easily proven.

Lemma 3.9. Let (X, θ) be an F -framed fs log scheme with the underlying

scheme SpecA and assume that θ is lifted to θ̃ : F → Γ(X,MX). Then X [p] is

SpecA/I, where I is an ideal generated by αX(θ̃(m)) (m ∈ p), endowed with
the log structure induced from X.

Note that X [p] also becomes an F -framed fs log scheme in the natural way.
The followings are easily checked.

Proposition 3.10. Let X be an F -framed fs log scheme, and q, p and p′ be
prime ideals of F . Then

1. X [∅] = X.

2. If p ⊃ p′, then X [p] ⊂ X [p′].

3. (X [p])[p′] = X [p ∨ p′].

4. Let f : Y → X be a (strict) F -framed morphism between F -framed log
schemes. Then for any prime p of F , we have

X [p]×fs
X Y = Y [p].

In particular, if Y be a strictly closed subscheme of X, then Y [p] =
Y ∩X [p].

5. Assume that p∧ q = ∅. Then the natural morphism X [p]q → Xq induces
an isomorphism X [p]q ∼= (Xq)[p \ q] with p \ q regarded as a prime ideal
of F \ q.

Remark 3.11. As is easily checked by using Lemma 3.9, the logarithmic sub-
scheme VX(p) introduced in Section 5 of [Hag03] is the maximal reduced strictly
closed subscheme of X [p].

The following proposition is now easily checked.

Proposition 3.12. Let X be a weakly log regular and regular fs log scheme,
and assume that X is F -framed. Then, for prime ideals p and q of F , X [p]q is
also weakly log regular and regular. If X is log regular and regular, so is Xq.
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3.2 Pellicular Kummer etale K-theory

In this subsection we introduce the notions of “pellicular Kummer etale ringed
topos” and its K-theory, which play essential roles throughout this paper.

Definition 10. Let X be an fs log scheme.

1. We define a ring object OXKet in the topos (XKet)̃ as follows:

For an object X ′ in Ket/X, OXKet(X
′) = Γ(|X ′|,Ored

|X′|)

(This is indeed a sheaf, as is proven below). We call the pair
((XKet)̃, OXKet) a pellicular Kummer etale (or shortly, pellicular Ket)
ringed topos, and often denote it simply by (XKet, OX). Two natural
morphisms of ringed topoi (XKet, OX)→ (XKet, OX) and (XKet, OX)→
(XZar, OX) are denoted by ε̄redX and by ε̄X , respectively. We denote by
Mod(XKet) the category of OX-modules on a site XKet.

2. An object F in Mod(XKet) is called a pellicular Ket vector bundle (resp.
a pellicular Ket quasi-coherent sheaf) if, Kummer etale locally, it is iso-
morphic to a finite direct sum of OX (resp. to the module of the form
(OX)I → (OX)J → F → 0). The OX-module F is said to be a pellic-
ular Ket coherent sheaf if it is so in the sense of J. -P. Serre, that is, if
F is Kummer etale locally finitely generated and any Ket locally given
morphism O

n

U → F |U has a (Kummer etale locally) finitely generated
kernel.

3. We denote by Vect(XKet), Coh(XKet) and Qcoh(XKet) the full subcate-
gory of Mod(XKet) consisting of pellicular Ket vector bundles, pellicular
Ket coherent sheaves and pellicular Ket quasi-coherent sheaves, respec-
tively.

4. A pellicular Ket line bundle is defined to be a pellicular Ket vector bundle
of rank one and Pic(XKet) denotes the group consisting of isomorphic
classes of pellicular Ket line bundles.

A pellicular Ket (quasi-)coherent sheaf of OX -modules is simply called a (quasi-
)coherent OX -module, too.

Definition 11. Let X be an fs log scheme. We denote by K(XKet) a simplicial
set made from the exact category Vect(XKet) via Quillen’s recipe. Note that
it can be regarded as the 0-th space of a fibrant spectrum (for instance, use
[Wal85] and a “fibrant replacement” in 5.2 in [Tho85]). We also denote this
spectrum by K(XKet), if there is no risk of confusion, and we call it a pellicular
Ket K-theory spectrum.

As is easily seen, if X is log regular, then the categoryVect(XKet) is equivalent
to Vect(XKet), so we have a natural weak equivalence K(XKet) ∼= K(XKet).
Thus we will concentrate on the analysis of pellicular Ket K-theory in the
following.
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3.3 Structure theorem

We begin with introducing and fixing some notations. In the following, we
follow Thomason’s terminology in [Tho85] (See also [Jar97]).
First of all, throughout this section, we will make the following convention:

Convention 3.13. F is a finitely generated free monoid and X is an F -framed
weakly log regular fs log scheme such that |X | is Noetherian, separated, regular
and of finite Krull dimension, equi-characteristic of characteristic exponent p.

Note that, under these assumptions, X [p] also satisfies the same conditions for
any prime ideal p (Proposition 3.12).
Next, we fix a presheaf of fibrant spectra KKet on Ket/X such that KKet(U)
is weakly homotopy equivalent to K(UKet) for each object U of Ket/X ,
and for every morphism f : U → V over X , the restriction map f∗ :
KKet(V ) → KKet(U) is homotopic to the one induced by the exact functor
f∗ : Vect(VKet) → Vect(UKet). It is possible by a suitable rectification (for
example, we can use the procedure in [Jar09]).
Then by the Godement-Thomason construction (i.e. Definition 1.33 in
[Tho85]), we can construct a fibrant spectrum H·(XKet,KKet) and a natural
map of fibrant spectra

K(XKet) −→ H·(XKet,KKet).

Finally, for each fibrant spectrum S, we take a fibrant spectrum SQ and a map
of spectra S → SQ which induce isomorphisms πi(S)Q ∼= πi(SQ) on homotopy
groups. Recall that this construction can be carried out functorially (for in-
stance, it is enough to use the procedure in [BK72] and a fibrant replacement),
so this notation makes sense also for a presheaf of fibrant spectra.
We first state the “inversion formula”, which is one of the most important tools,
not only for the proof of the structure theorem, also for its formulation.
For a prime ideal q of F , we denote (Xq)Ket simply by Xq

Ket, and a natural
morphism of sites from XKet to Xq

Ket by εqX . By a little abuse of notations, we
also denote by εqX (resp. ε̄qX) a morphism of ringed topoi from (XKet,OX) to
(Xq

Ket,OXq) (resp. (XKet,OX) to (Xq

Ket,OXq)). For instance, εqX∗(KKet)Q is a
presheaf of fibrant spectra that associates to U ∈ Ket/Xq a spectrum weakly

equivalent to K((U ×fs
Xq X)Ket)Q. We can also define εqX∗(K

′
Ket)Q similarly.

Now we can construct a map of fibrant spectra

K(Xq

Ket)Q
ε̄q∗
X−→ K(XKet)Q −→ H·(Xq

∨

Ket, ε
q
∨

X∗(KKet)Q).

Theorem 3.14. (= Corollary 5.19) Let F and X be as in Convention 3.13.
Then, for a prime ideal q of F , this is a weak equivalence:

K(Xq

Ket)Q
∼
−→ H·(Xq

∨

Ket, ε
q
∨

X∗(KKet)Q).

As a result of the above theorem, we can define an “extraordinary map” as
follows:
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Definition 12. For a pair of prime ideals q′ ⊃ q and an integer i ≥ 0, we

define a map of fibrant spectra πi(δ
q
′,q

X ) to be the composite of the following
maps:

Ki(X
q

Ket)Q
ε̄q∗
X→ Ki(XKet)Q → πiH

·(Xq
′∨

Ket, ε
q
′∨

X∗(KKet)Q)→ Ki(X
q
′

Ket)Q.

Here the third map is the inverse of the isomorphism between the i-th homotopy

groups in Theorem 3.14. The notation πi(δ
q
′,q

X ) is a little abusive because we

will not consider the map of spectra which should be denoted by “δq
′,q

X ”, but it
causes no confusion. We often omit the subscript X or the superscripts q, q′

if they are unnecessary.

For the next proposition, we introduce some additional notations. Observing

Proposition 3.6 (2), for a pair of prime ideals q′ ⊃ q, we denote by εq,q
′

X a

natural morphism of sites from Xq

Ket to Xq
′

Ket, and also denote by εq,q
′

X (resp.

εq,q
′

X ) a morphism of ringed topoi from (Xq

Ket,OXq) to (Xq
′

Ket,OXq′ ) (resp. from

(Xq

Ket,OXq) to (Xq
′

Ket,OXq′ )).

Clearly they induce maps of fibrant spectra εq,q
′∗

X : K(Xq
′

Ket) → K(Xq

Ket),

H·(Xq
′

Ket, ε
q
′

X∗KKet) −→ H·(Xq

Ket, ε
q

X∗KKet), and moreover

H·(Xq
∨

Ket, ε
q
∨

X∗(KKet)Q) −→ H·(Xq
′∨

Ket, ε
q
′∨

X∗(KKet)Q)

(Note that we have q′
∨ ⊂ q∨).

The following propositions easily follow from the construction:

Proposition 3.15. For a string of prime ideals q′′ ⊃ q′ ⊃ q and an integer
i ≥ 0, we have

1. The composite πi(δ
q
′,q

X ) ◦ πi(ε̄
q,q′∗
X ) is the identity map.

2. The composite πi(δ
q
′′,q′

X ) ◦ πi(δ
q
′,q

X ) and πi(δ
q
′′,q

X ) coincide.

3. If Y also satisfies the assumptions at the beginning of this section and

f : X → Y is F -framed, then πi(δ
q
′,q

X ) ◦ f∗ = f∗ ◦ πi(δ
q
′,q

Y ) as maps from

Ki(Y
q

Ket)Q to Ki(X
q
′

Ket)Q.

Proposition 3.16. The homomorphism π0(δ
q
′,q

X ) : K0(X
q

Ket)Q → K0(X
q
′

Ket)Q
is compatible with λ-ring structures.

Proof. First we note that the statement can be rewritten in the framework of
the theory of simplicial presheaves. Then the proposition follows from the exis-
tence of the construction of product and λ-operations at the level of simplicial
sets. More precisely, it is sufficient to use Gillet-Grayson’s G-construction in
[GG87] (plus [GG03]), and to use [Gra89] for λ-operations, and [Jar09] (for
example) for the product structure.
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Next, we decompose Kummer etale K-groups “according to stratifications” by
introducing an auxiliary category as below.

Definition 13. We define a category IF as follows:

The set of objects consists of the pairs (p, q) of prime ideals of F satisfying
p ⊃ q. For a clarification, we describe these objects like (p ⊃ q).

Each hom-set consists of at most one element, and we have a morphism (p ⊃
q)→ (p′ ⊃ q′) if and only if p ⊃ p′ ⊃ q′ ⊃ q.

By Propositions 3.10 and 3.6 (2), for pairs of prime ideals p ⊃ p′ and q′ ⊃ q,
we have a morphism of sites

X [p]qKet → X [p′]q
′

Ket,

and a map of fibrant spectra

H·(X [p′]q
′

Ket, ε
q
′

X[p′]∗KKet) −→ H·(X [p]qKet, ε
q

X[p]∗KKet).

Taking their i-th homotopy groups (i ≥ 0), we can define a contravariant
functor Πi from IF to the category of Abelian groups, by the rule

Πi((p ⊃ q)) = πiH
·(X [p]qKet, ε

q

X[p]∗KKet).

Noting that Ki(XKet)Q
∼=
−→ πiH·(X [∅]∅

∨

Ket, ε
∅∨

X[∅]∗(KKet)Q)(Theorem 3.14), we

have a morphism of Abelian groups

Ki(XKet)Q −→ lim
p⊃q

πiH
·(X [p]qKet, ε

q

X[p]∗(KKet)Q),

where we use the notation “limp⊃q” to mean a limit with respect to the category
IF .

The next theorem will be proven in Subsection 5.6.

Theorem 3.17. The above map is an isomorphism for each i ≥ 0.

Finally, we describe each piece more explicitly.

As in [Hag03], we can define a Ket line bundle OX(ξ) (more precisely, its
isomorphism class) associated with an element ξ ∈ Γ(X,M

gp

X ) ⊗Z Q′ to be its
image by the homomorphism

Γ(X,M
gp

X )⊗Z Q′ ∼= Γ(XKet,M
gp

XKet
)

∂
−→ H1(XKet,O

×
XKet

) ∼= Pic (XKet),

where Q′ = Z(p) with p the characteristic of |X |.
Here ∂ is induced by the short exact sequence of Abelian sheaves on XKet

0→ O
×
XKet

→Mgp
XKet

→M
gp

XKet
→ 0.
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In addition, we can complete this diagram as follows:

Γ(X,MX)Z
∂ //

��

Pic (XZar)

��
Γ(X,MX)Q′

∂ // Pic (XKet)
ε̄red∗

//

��

Pic (XKet)

��
K0(XKet)

ε̄red∗
// K0(XKet).

Note that all maps are monoid homomorphisms (with K-groups regarded as
monoids by the multiplication).
For ξ ∈ Γ(X,MX)Q′ we denote by OX(ξ) the corresponding element in
Pic (XKet) or K0(XKet). Accordingly, using a frame F → Γ(X,MX), we can
also define a pellicular Ket line bundle OX(ξ) for ξ ∈ FQ′ .
If a prime ideal q of F is given, we can make the above procedure work for Xq

to construct the morphisms

(F \ q)Q′ −→ Γ(Xq

Ket,M
gp

Xq

Ket
)

∂
−→ Pic (Xq

Ket).

Moreover, since the commutative diagram

(F \ q)Q′ // Γ(Xq

Ket,M
gp

Xq

Ket
)

∂ // Pic (Xq

Ket)

(F \ q)Z //
� ?

OO

� _

��

Γ(Xq,M
gp

Xq)

OO

��

∂ // Pic (Xq

Zar)

OO

=

��
FZ

// Γ(X,M
gp

X )
∂ // Pic (XZar)

induces a map
(F q−div′

)gp −→ Pic (Xq

Ket),

we can define objects OXq

Ket
(ξ) ∈ Pic (Xq

Ket) and OXq

Ket
(ξ) ∈ Pic (Xq

Ket) for

ξ ∈ (F q−div′

)gp.
Note that this defines a group endomorphism of Ki(X

q

Ket) for each i ≥ 0 via
“−⊗ OXq

Ket
(ξ)”.

Notice also that, for prime ideals q ⊂ q′ and an element ξ ∈ (F q
′−div′

)gp,

we see (εq,q
′

X )∗OXq′ (ξ) ∼= OXq(ξ) and (εq,q
′

X )∗OXq′ (ξ) ∼= OXq(ξ) under the

identification of (F q
′−div′

)gp with a subgroup of (F q−div′

)gp.

Definition 14. Let q be a prime ideal of F .

1. We denote by J(q) the category such that
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(a) the set of objects is F (q)Q,

(b) for two objects α and β, Hom(α, β) is the set consisting of one
element β − α if β − α ∈ F (q), and the empty set if not, and

(c) the composition is defined by using the addition in F (q).

2. Let C be a category having countable coproducts and A ∈ Ob(C), and
assume that we are given a monoid morphism L : F (q)→ HomC(A,A),
where HomC(A,A) is regarded as a (not necessarily commutative)
monoid by composition.

Then, a covariant functor Gq,A,L from J(q) to C is defined by

(a) Gq,A,L(α) = A, independently of the object α, and

(b) For any pair of objects α and β such that β−α ∈ F (q), Gq,A,L(β−
α) = L(β − α).

We set

A⋊L Λ[q] = colimGq,A,L.

3. For a prime ideal p of F , let C be the category of Abelian groups and A =
Ki(X [p]Zar), and for γ ∈ F (q) we define L(γ) to be the group morphism

Ki(X [p]Zar) −→ Ki(X [p]Zar)

induced by the endofunctor “− ⊗ OX[p](γ)” of Vect(X [p]Zar). Then we
set

Ki(X [p]Zar)⋊ Λ[q] = A⋊L Λ[q].

In practice, we use its variant Ki(X [p]Zar)⋊Λ′[q] which is defined by replacing
Q (in the definition of J(q)) by Q′ = Z(p).

Remark 3.18. 1. This notation is indeed highly abusive, in the sense that
Ki(X [p]Zar)⋊Λ[q] is determined not only by Ki(X [p]Zar) and q, and ac-
tually the Abelian group Λ[q] itself is not used in its definition. However,
the author believes that it does not induce any risk of confusions. Any-
way, the notation “⋊” symbolises the hope that we want to construct the
“twisted” product of K(X [p]Zar) and Λ[q] in a suitable sense.

2. As Abelian groups, we have an isomorphism

Ki(X [p]Zar)⋊ Λ′[q] ∼= Ki(X [p]Zar)⊗Z Λ′[q].

As is already mentioned, with every ξ ∈ F (q)Q′ , we associate a pellicular Ket
line bundle O

X[p]q
∨

Ket

(ξ) via a map

F (q)Q′ →֒ (F q
∨−div′

)gp → Γ(X [p]q
∨

Ket,M
gp

X[p]q
∨

Ket

)
∂
−→ Pic(X [p]q

∨

Ket).
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By using this, for α ∈ F (q)Q′ , we can define a functor from Vect(X [p]Zar) to

Vect(X [p]q
∨

Ket) which send each locally free sheaf of OX[p]Zar
-modules F to a

pellicular Kummer etale vector bundle ε̄∗F ⊗ O
X[p]q

∨

Ket

(−α) on X [p]q
∨

.

It induces a group homomorphismKi(X [p]Zar) toKi(X [p]q
∨

Ket), and a morphism

Ki(X [p]Zar)⋊ Λ′[q] −→ Ki(X [p]q
∨

Ket) by the universality of a colimit.

Theorem 3.19. For prime ideals p and q of F satisfying p ⊃ q and an integer
i ≥ 0, the homomorphism above is an isomorphism, that is, we have

Ki(X [p]Zar)⋊ Λ′[q]
∼=−→ Ki(X [p]q

∨

Ket).

For a simpler description of this isomorphism, we introduce the following no-
tation.

Definition 15. For α ∈ F (q)gp ⊗Z Q′/Z, take a representative a/n ∈ F (q)Q′

for some a ∈ F (q)Z and n ∈ N, and denote by x = [OX(a)] the image of a via
a map F gp → Pic (XZar)→ K0(XZar). Then we set

〈〈α〉〉 = [O
Xq∨

Ket

(a/n)] ε̄∗(exp(−(log x)/n)) ∈ K0(X
q
∨

Ket)Q,

where ε̄∗ is a natural map from K0(XZar)Q to K0(X
q
∨

Ket)Q, and exp(T ) and
log(T ) are formal power series in Q[[T ]] and Q[[T − 1]], respectively.

We can easily check its well-definedness by noticing that x − 1 is nilpotent
in K0(XZar), and clearly we see that 〈〈−〉〉 is a monoid homomophism from

F (q)gp ⊗Z Q′/Z to K0(X
q
∨

Ket)Q (The latter is regarded as a monoid by a mul-
tiplication). Note that these constructions also work for X [p].
The following is only a rewrite of Theorem 3.19.

Corollary 3.20. Let notations and assumptions be as in Theorem 3.19. Then
we have a group isomorphism

Ki(X [p]Zar)⊗Z Λ′[q]Q
∼=
−→ Ki(X [p]q

∨

Ket)Q,

which maps x⊗ [α] to ε̄∗(x)〈〈α〉〉 for x ∈ Ki(X [p]Zar) and α ∈ F (q)gp⊗ZQ′/Z.

This map enables us to make the λ-ring structure of the right hand side explicit.
Here we will describe the action of Adams operations. For that we introduce
that on Λ′[q].

Definition 16. 1. We regard Λ′[q] as a group ring over an Abelian group
F (q)gp ⊗Z Q′/Z. In addition, for each natural number m, we define Ψm

Λ

to be a ring endomorphism on Λ′[q] which sends [α] to [mα] for α ∈
F (q)gp ⊗Z Q′/Z. We call them “Adams operations” on Λ′[q].

2. On K0(X [p]Zar)⊗ZΛ
′[q]Q, we introduce a ring structure as a usual tensor

product and the actions of “Adams operations” as Ψm
Zar⊗Ψm

Λ , where Ψm
Zar

on K0(X [p]Zar)Q are usual Adams operations.
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3. Let Ψm
Ket be Adams operations on K0(XKet)Q constructed by the usual

procedure from its λ-ring structure.

Remark that a priori we only see that the operations Ψm
Ket satisfy additivity,

the usual property for line bundle elements, and the compatibility with pull-
back maps.

Corollary 3.21. In the case of i = 0, the isomorphism in Corollary 3.20
respects ring structures and Adams operations of both hand sides.

Proof. First we check the compatibility with Adams operations. We have only
to check Ψm

Ket(ε̄
∗(x)〈〈α〉〉) = ε̄∗(Ψm

Zar(x))Ψ
m
Λ (〈〈α〉〉) for x ∈ K0(X [p]Zar)Q and

α ∈ F (q)gp ⊗Z Q′/Z.
By the splitting principle (for K0(X [p]Zar)) and Corollary 3.20, we may assume
that x is a line bundle element, and then the claim follows because ε̄∗(x)〈〈α〉〉
can be written by a linear combination of line bundle elements. The preserva-
tion of product structures can be proven similarly.

The compatibility of these maps becomes clear by the theorem below.

Theorem 3.22. For prime ideals p ⊃ p′ ⊃ q′ ⊃ q, we have a commutative
diagram

Ki(X [p′]Zar)⊗Z Λ′[q′]Q //

��

πiH·(X [p′]q
′

Ket, ε
q
′

X[p′]∗(KKet)Q)

��
Ki(X [p]Zar)⊗Z Λ′[q]Q // πiH·(X [p]qKet, ε

q

X[p]∗(KKet)Q).

Here

• the horizontal maps are the composites of isomorphisms given in Corol-
lary 3.20 and Theorem 3.14,

• the right vertical one sheaf-theoretically defined, and

• the left vertical one induced by the inverse image functor with respect to
X [p] → X [p′] and the monoid homomorphism F (q′) → F (q) given in
Remark 3.5.

The proofs of Theorems 3.14, 3.17, 3.19 and 3.22 will be given in Section 5.
Note that, when i = 0, the left vertical map is compatible with product and
the actions of Adams operations defined above.
Recalling that K(XKet) ∼= K(XKet) in our case, we obtain the theorem and
the corollary below, immediately from these theorems.

Theorem 3.23. For each i ≥ 0, we have an isomorphism

Ki(XKet)Q
∼=
−→ lim

p⊃q
Ki(X [p]Zar)⊗Z Λ′[q]Q.
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Moreover, if i = 0, this isomorphism is compatible with Adams operations on
both hand sides.

As a result, we can decompose K0(XKet)Q via Adams operations to define what
should be called “Kummer etale Chow groups”.

Definition 17. An element x in K0(XKet)Q is called of weight i if there exists
a finite set S of prime numbers and a natural number N ≥ 1 such that for every
natural number m prime to all numbers in S, (Ψm

Ket)
N (x) = miNx. We denote

by K0(XKet)
(i) the subgroup of K0(XKet)Q consisting of elements of weight i.

Corollary 3.24. We have an isomorphism

K0(XKet)Q ∼=

dim |X|⊕

i=0

K0(XKet)
(i).

Moreover, for each piece of the right hand side, we have an isomorphism of
Abelian groups

K0(XKet)
(i) ∼= lim

p⊃q
CHi(X [p]Zar)⊗ Λ′[q]Q.

In the rest of this paper we will prove the theorems stated above.

4 General theory of pellicular Kummer etale sheaves

4.1 Pellicular Kummer etale ringed topos

In this subsection, we develop a general theory of pellicular Ket ringed topos
introduced in Subsection 3.2. First we prove a proposition on the Kummer
etale topos.

Proposition 4.1. Let X be an fs log scheme and Xred its strictly closed sub-
scheme with its underlying scheme |X |red. Then the pullback map (in the cat-
egory of fs log schemes) induces an equivalence of categories

(XKet)̃ ∼= ((Xred)Ket)̃.

Proof. First we prove that the functor Ket/X → Ket/Xred is fully faithful.
This can be proven in the similar way to the classical case by using the following
well-known or easily-proven facts;
Let f : X → Y and g : Y → Z be morphisms of fs log schemes. Then

• If g and gf are Kummer etale, so is f .

• If g is Kummer etale and gf is an isomorphism, f is a strict open immer-
sion.

• The schemes |Y ×fs
X Xred| and |Y | have homeomorphic underlying topo-

logical spaces.
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• If g is Kummer etale, f is strict and surjective, and gf is strict radicial,
then g is an isomorphism.

Then the proposition follows from the next lemma and Théorème 4.1 in Exposé
III of [SGA4].

Lemma 4.2. Let X be an fs log scheme, f : U → Xred a Kummer etale mor-
phism, and u ∈ U . Then there exist an fs log scheme V Kummer etale over X
and an etale morphism g : V ×X Xred → U such that

V ×X Xred

g

��

// V

��

U

f

��
Xred

// X

is commutative and u ∈ Image (g).

Proof. We may assume that X has a chart X → SpecZ[P ] with P fs and sharp
such that P ∼= MX,f(u). Then, by Proposition 2.4, we can construct a diagram

W2

f ′

��✌✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌

f ′′

��
W1

//

��

SpecZ[Q]

SpecZ[h]

��
U

f // Xred
// SpecZ[P ],

where h : P → Q is of Kummer type with #Cokerhgp invertible on W2,
u ∈ Image (f ′), and f ′ and f ′′ are classically etale. Here we may also assume
that #Cokerhgp is invertible on X .
If we set V1 = X ×fs

SpecZ[P ] SpecZ[Q], then W1
∼= V1 ×

fs
X Xred. In addition, we

can find V2 classically etale over V1 such that W2
∼= W1 ×V1 V2. This V2 is a

desired log scheme.

Next we investigate some properties of pellicular Ket ringed topos.

Proposition 4.3. Let X be an fs log scheme and F a quasi-coherent sheaf of
OXZar -modules. Then the presheaf on XKet which associates to π : X ′ → X an
Abelian group Γ(X ′,Ored

X′ ⊗O′
X
π∗F ) is a sheaf.

Proof. Note first that the sheaf condition is satisfied for strictly etale morphisms
since, if f : U → V is an etale morphism of schemes, then Ured → Vred is also
etale and (U ×V U)red ∼= Ured ×Vred

Ured. By Corollary 2.5, it suffices to show
the next lemma.
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Lemma 4.4. Assume that we are given a reduced Z[1/n, ζn]-algebra A, an fs
sharp monoid P and a monoid homomorphism P → A. Then, for any A-
module M ,

0 −→M −→ Ared
n ⊗A M −→ (An ⊗

fs
A An)

red ⊗A M

is exact. Here,

An = A⊗Z[P ] Z[P
1/n] and An ⊗

fs
A An = A⊗Z[P ] Z[P

1/n ⊕sat
P P 1/n],

and the middle and right arrows are induced by natural ring homomorphisms
A→ An and An ⇒ An ⊗fs

A An, respectively.

Proof. We first recall that it is already known that

0 −→M −→ An ⊗A M −→ (An ⊗
fs
A An)⊗A M

is exact (Lemma 3.3 in [Hag03]).
Set In = Hom(P 1/n/P,Z [ζn]

×) and let Nn be the nilradical of An. Note that

An is acted by In. By the above fact we obtain that A
∼=
−→ (An)

In (Here,
(−)In is the In-invariant part), which implies (Nn)

In = 0. By the exactness of
the functor (−)In (from the category of In-Z[1/n]-modules to that of Abelian

groups), we also have A
∼=
−→ (Ared

n )In . Since (An ⊗fs
A An)

red ∼=
∏

In
(Ared

n ), the
lemma follows for M = A.
For any A-module M , using a free resolution A⊕X → A⊕Y →M → 0 and the

exactness of (−)In , we see M
∼=
−→ (Ared

n ⊗AM)In , which proves the lemma.

Corollary 4.5. Let X be an fs log scheme.

1. The presheaf OX is indeed a sheaf.

2. For any quasi-coherent sheaf of OXZar -modules F and a Kummer etale
morphism π : X ′ → X, we have

Γ(X ′, ε̄∗XF )
∼=
−→ Γ(X ′,Ored

X′ ⊗OX′ π
∗
F ).

3. For any Zariski quasi-coherent sheaf F on X, we have ε̄∗ε̄
∗F ∼= OXred

⊗
F .

Assume moreover that |X | is reduced. Then

4. For a quasi-coherent sheaf of OXZar -modules F , the canonical morphism
F → ε̄∗ε̄

∗F is an isomorphism.

5. The functor ε̄∗ : Qcoh(XZar)→Mod(XKet) is fully faithful.

The following proposition is easily verified and will be used often.

Proposition 4.6. Let X be an fs log scheme and i : Xred → X the natural
strict morphism. Then
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1. The morphism i induces the two functors i∗ and i∗ which give equivalences
of categories between Mod(XKet) and Mod((Xred)Ket). Similar results
hold for Qcoh, Coh, and Vect.

2. We have an isomorphism of functors

i∗ε̄
∗
Xred
∼= ε̄∗X iZar∗

from Qcoh((Xred)Zar) to Mod(XKet). Here iZar∗ denotes the natural
functor from Mod((Xred)Zar) to Mod(XZar).

Proof. Use Proposition 4.1, Lemma 4.2 and Corollary 4.5. Note also that we
have an isomorphism of endofunctors i∗Zari

Zar
∗
∼= Id of Mod((Xred)Zar), where

i∗Zar denotes the natural functor from Mod(XZar) to Mod((Xred)Zar).

In the following we often identify Mod(XKet) and Mod((Xred)Ket) for sim-
plicity.

Definition 18. An fs log scheme X is said to have the property (EX) if X
satisfies the following condition:
For every Kummer etale morphism X ′ → X, there exist a Kummer etale cov-
ering X ′′ → X ′ of X ′ such that the functor

ε̄∗X′′
red

: Mod((X ′′
red)Zar)→Mod(X ′′

Ket)

is exact.

Clearly, for a Kummer etale morphism f : Y → X , if X has the property (EX),
so does Y . On the other hand, if f is Kummer etale surjective and Y has the
property (EX), so does X .

Remark 4.7. Note that the exactness of ε̄∗X implies that |X | is reduced.

The importance of this condition will be made clear by the proposition below.

Proposition 4.8. Let X be an fs log scheme.

1. The subcategory Vect(XKet) has a structure of exact categories in the
natural way.

2. We assume that |X | is Noetherian and X has the property (EX).

(a) For an object F in Mod(XKet), the followings are equivalent;

i. F is a pellicular Ket coherent sheaf.

ii. There exists a Kummer etale covering {X ′ → X} of X such
that F |X′ belongs to the essential image by ε̄∗X′ of Coh(X ′

Zar).

iii. There exists a Kummer etale covering {X ′ → X} of X such that
F |X′ belongs to the essential image by ε̄∗X′

red
of Coh((X ′

red)Zar),

under the identification of Mod(X ′
Ket) with Mod((X ′

red)Ket) in
Proposition 4.6.
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In particular, the functor ε̄∗X : Mod(XZar) → Mod(XKet) induces
an functor ε̄∗X : Coh(XZar)→ Coh(XKet).

(b) The category Coh(XKet) is Abelian, and the inclusion functor to
Mod(XKet) is exact.

3. The similar statements hold for quasi-coherent sheaves (for any fs log
scheme X).

4. Assume moreover that the functor ε̄∗X : Mod(XZar) → Mod(XKet) is
exact. Then the functors ε̄∗X : Vect(XZar) → Vect(XKet) and ε̄∗X :
Qcoh(XZar)→ Qcoh(XKet), induced by the restriction, are exact. If X
is Noetherian and has the property (EX), the similar statement holds also
for Coh(XKet).

Proof. We begin with the proof of (2-a). To prove (i)⇒(ii), assume F ∈
Coh(XKet). Then we have a Kummer etale covering U of X with U Noetherian

and a morphism f : O
m

U → O
n

U such that F |U ∼= Coker f . Refining the covering
U if necessary, we may assume that Γ(U,OU )→ Γ(U,Ored

U ) is surjective. Then

by Corollary 4.5 (5), we have a morphism f̃ : Om
UZar

→ On
UZar

on UZar which

induces f by ε̄∗U . Then we obtain ε̄∗U (Coker f̃)
∼= Coker f . The implication

(ii)⇒(iii) is trivial.

For the implication (iii)⇒(i), it suffices to show that, for a Noetherian fs log

scheme U such that ε̄∗Ured
is exact, a coherent sheaf of OUred

-modules F̃ on

(Ured)Zar, and a homomorphism f : O
m

U → ε̄∗Ured
F̃ , the kernel Ker f is Ket

locally finitely generated (Here we used the property (EX)).

By Corollary 4.5 (5) and Remark 4.7 we have a homomorphism f̃ : Om
(Ured)Zar

→

F̃ such that f = ε̄∗Ured
(f̃). Since Ker f̃ is Zariski locally finitely generated, we

see that ε̄∗Ured
(Ker f̃) ∼= Ker f is also finitely generated by the exactness of ε̄∗Ured

.

Next we prove (2-b). We have only to check that if f : F → F ′ is a homo-
morphism of pellicular Ket coherent sheaves, then Ker f and Coker f are also
pellicular Ket coherent.

Take a Ket covering U and Zariski coherent sheaves F̃ and F̃ ′ on Ured such

that F |U ∼= ε̄∗Ured
F̃ , F ′|U ∼= ε̄∗Ured

F̃ ′, and ε̄∗Ured
is exact. By Corollary 4.5 (5),

f comes from some f̃ : F̃ → F̃ ′. Then Ker f̃ and Coker f̃ are coherent, which
means that Ker f and Coker f are pellicular Ket coherent.

(3) is verified similarly and more easily. (1) and (4) are obvious.

Definition 19. A pellicular Ket quasi-coherent sheaf (a pellicular Ket vector
bundle, respectively) on X is said to be classical if it belongs to the essential im-
age of Qcoh((Xred)Zar) (Vect((Xred)Zar), respectively) by ε̄∗Xred

. A pellicular
Ket line bundle is defined similarly.

If X is Noetherian and has the property (EX), the notion of classicality of
pellicular Ket coherent sheaves is also defined similarly.
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Remark 4.9. For pellicular Ket (quasi-)coherent sheaves, the notion of clas-
sicality can also be defined by using the essential image of Coh(XZar) (or
Qcoh(XZar)).

Later we will consider some sufficient conditions for fs log schemes to have the
property (EX). Now we introduce a pellicular K ′-theory spectrum.

Definition 20. For a Noetherian fs log scheme X satisfying (EX), we define

a pellicular Ket K ′-theory spectrum K
′
(XKet) to be the spectrum constructed

from the exact category Coh(XKet).

The relation to equivariant sheaf theory is given by the next proposition.

Proposition 4.10. Let n be a positive integer, X a Noetherian fs log scheme
over SpecZ[1/n] and X −→ SpecZ[P ] a chart with P fs and sharp.
Then we have a natural equivalence of categories between the one of pellicular
Ket quasi-coherent sheaves which become classical on X̃n and the one of Zariski
quasi-coherent sheaves of O

(X̃n)red
-modules with an action of In ⋊ Γn (For the

notations, see Subsection 2.1.3).
Similarly for coherent sheaves, vector bundles and line bundles.

Proof. This follows from the argument in the usual sheaf theory via Proposition
2.1 and Corollary 4.5 (5).

Proposition 4.11. For a pellicular Ket quasi-coherent sheaf F on an fs log
scheme X, ε̄∗F is a quasi-coherent sheaf on XZar. The similar statement
holds for pellicular Ket coherent sheaves and (Zariski) coherent sheaves if X is
Noetherian and has the property (EX).

Proof. We can make the same argument as in Proposition 3.14 in [Hag03] work
by using Corollary 4.5 (3) and Proposition 4.8.

Proposition 4.12. Let X be an fs log scheme and π : X ′ → X a strictly
etale surjective morphism and F a pellicular Ket quasi-coherent sheaf. Then

F ∼= ε̄∗XF̃ for some F̃ ∈ Qcoh(XZar) if and only if π∗F ∼= ε̄∗X′F̃
′ for some

F̃ ′ ∈ Qcoh(X ′
Zar).

The similar statement holds for pellicular Ket coherent sheaves if, in addition,
X is Noetherian and has the property (EX).
If the natural functor Vect(XZar) → Vect((Xred)Zar) is essentially surjective
(e.g. |X | is semi-local or reduced), the similar statement holds for pellicular
Ket vector (or line) bundles.

Proof. In the case where X (and X ′) is reduced, it follows from Corollary 4.5
(5) and the usual descent. In general, use Proposition 4.6 (2).

Corollary 4.13. Let X be a Noetherian equi-characteristic fs log scheme and
X → SpecZ[P ] a chart with P fs and sharp. Then, for a pellicular Ket quasi-
coherent sheaf F on X, there exists a positive integer n, invertible on X, and
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a quasi-coherent sheaf F̃ on (Xn)Zar such that ε̄∗Xn
F̃ ∼= F |Xn

. Similarly for
coherent sheaves if, in addition, X has the property (EX).

If, moreover, the natural functor Vect(XZar)→ Vect((Xred)Zar) is essentially
surjective, the similar statements hold for vector bundles and line bundles.

Proof. Use Proposition 2.2 and Proposition 4.12 (cf. [Hag03] Corollary 4.10).

4.2 Regularly stratified log schemes

In this subsection, we consider some interesting sufficient conditions for the
functor ε̄∗ to be exact.

Definition 21. Let X be a locally Noetherian fs log scheme and x a point of
|X | such that MX,x̄ is finitely generated free of rank r. Take a standard basis
{e1, . . . , er} of MX,x̄

∼= Nr and choose their liftings ẽi ∈MX,x̄(1 ≤ i ≤ r).

1. We say that X is weakly regularly stratified at x if, after a suitable per-
mutation of ei’s, {α(ẽ1), . . . , α(ẽs)} becomes a regular sequence of OX,x̄

and that α(ẽs+1) = · · · = α(ẽr) = 0 for some s ≤ r.

2. We say that X is weakly quasi-regularly stratified at x if after a suitable
permutation of ei’s, each α(ẽ1), . . . , α(ẽs) is a non zero-divisor in OX,x̄

and that α(ẽs+1) = · · · = α(ẽr) = 0 for some s ≤ r.

If, in the condition (1)(resp. (2)), we can take s = r, we say that X is regularly
(resp. quasi-regularly) stratified at x. We also call X regularly stratified, weakly
regularly stratified and so on, if X is so at every point.

Of course, these conditions are independent of the choice of liftings, and the
(weakly) regular stratifiedness implies the (weakly) quasi-regular stratifiedness.

The following properties are easily checked:

Proposition 4.14. 1. If X is (weakly) regularly stratified at x and η be a
generalisation of x (i.e. x ∈ {η}), then X is (weakly) regularly stratified
also at η. Similar statements hold for (weakly) quasi-regular stratified-
ness.

2. For a weakly quasi-regularly stratified fs log scheme X, the functor ε∗X :
Mod(XZar)→Mod(XKet) is exact.

3. If X is (weakly) quasi-regularly stratified, so is Xred.

4. Let f : X → Y be a strict morphism of locally Noetherian fs log schemes
such that |f | is flat. Then, if Y is (weakly) quasi-regularly stratified (or
(weakly) regularly stratified), so is X. If |f | is faithfully flat, the converse
also holds.

Documenta Mathematica 21 (2016) 1345–1396



1376 K. Hagihara

5. Assume that X is F -framed. If X is (weakly) (quasi-)regularly strati-
fied, then so is Xq for any prime ideal q of F . If X is weakly regularly
stratified, then so is X [p]q for any prime ideals p and q of F .

Proof. The properties (1), (3) and (4) are immediately checked, and (2) is
proven in Proposition 3.12 in [Hag03]. (5) is easily proven by using Proposition
3.7 and Lemma 3.9.

Example 1. 1. Let A be a Noetherian ring, r a natural number, and
a1, . . . , ar elements of A. Consider a morphism of monoids Nr → A
which maps ei to ai, where {ei} is the standard basis of Nr. If {a1, . . . , ar}
is a regular sequence, then the fs log scheme associated with this pre-log
structure is regularly stratified. Similarly for the other notions.

2. Every regular and (weakly) log regular log scheme (see Subsection 3.2) is
(weakly) regularly stratified.

To check the exactness of ε̄∗X , the next proposition is useful.

Proposition 4.15. Let A be a ring, n a natural number invertible in A and
a ∈ A a non zero-divisor, then we have Ared[T ]/(T

n−a) ∼= (A[T ]/(T n−a))red.
In particular, if A is reduced, then A[T ]/(T n − a) is reduced.

Proof. First we prove the latter part. We may assume that A is Noetherian.
Then by considering localisations Api

at the minimal primes p1, . . . , pr, we have
an embedding of A into a product

∏
Api

of fields such that the image of a is
non-zero in each component. So we can reduce to the case where A is a field,
and in this case the second assertion is trivial.
Now we can easily prove the first part by using an isomorphism (A1⊗A3A2)red ∼=
((A1)red ⊗(A3)red (A2)red)red for any ring A3 and any rings A1 and A2 over
A3.

Corollary 4.16. Let X be an fs log scheme, X → SpecZ[Nr] its chart, n a
natural number invertible in X and s a natural number such that s ≤ r. We
set N ′ = (Ns)1/n ⊕ Nr−s(⊃ Nr) and X ′ = X ×fs

SpecZ[Nr] SpecZ[N
′].

1. If X is weakly quasi-regularly stratified, then X ′
red is also weakly quasi-

regularly stratified, and |X ′|red is flat over |X |red.

2. If X is quasi-regularly stratified and reduced, then so is X ′. In particular,
|X ′| is flat over |X |.

Proof. Note first that we may assume that X be strictly local. We then have
only to use the above proposition and the induction, noting that if a ∈ A is
a non zero-divisor, then it is so also in A[T ]/(f) for any monic polynomial
f ∈ A[T ].

Proposition 4.17. Let X be a weakly quasi-regularly stratified fs log scheme
whose underlying scheme is reduced. Then,
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1. for a log geometric point x(log) over x ∈ |X |, there exists a cofinal subset
{Uλ}λ∈Λ in the category of all Kummer etale neighbourhoods of x(log)
such that, for every λ ∈ Λ,

(a) (Uλ)red is weakly quasi-regularly stratified, and flat over X.

(b) ε̄∗(Uλ)red
is exact.

2. The functor ε̄∗X is exact.

If, moreover, X is quasi-regularly stratified, then we can take a set {Uλ}λ∈Λ so
that each Uλ is quasi-regularly stratified and reduced.

Proof. First we prove the statement (2). Take an arbitrary point x ∈ |X |. We
may assume that X is local whose closed point is x, and that we have a chart
ϕ : X → SpecZ[Nr] such that ϕ∗ : Nr ∼= MX,x̄.
Then, for n ≥ 1, prime to the characteristic of X , (Xn)red is flat over X by
Corollary 4.16, and from this we obtain the exactness of ε̄∗X by Proposition 2.4.
Next we prove (1). We may assume that we have a chart ϕ as above. Then,
by Corollary 4.16, for any fs log scheme V etale over Un, where U ⊂ |X | is
a Zariski open neighbourhood of x, and n is invertible in U , we see that Vred

is again a weakly quasi-regularly stratified and reduced, so that ε̄∗Vred
is also

exact. Now the first result also follows from Proposition 2.4.
The last statement can be proven similarly.

Corollary 4.18. Let X be a weakly quasi-regularly stratified fs log scheme.
Then ε̄∗Xred

is exact and Xred has the property (EX).

Corollary 4.19. For a reduced quasi-regularly stratified fs log scheme X, we
have an isomorphism OXKet

∼= OX .

Proposition 4.20. Let X and Y be Noetherian fs log schemes and f : X → Y
a classically etale morphism. Assume that Y is weakly quasi-regularly stratified.
Then we have an isomorphism

ε̄∗Y f∗
∼= f∗ε̄

∗
X

of functors from Qcoh(XZar) to Qcoh(YKet).

Proof. Let F be an object in Qcoh(XZar). For any y ∈ |Y |, we have

(ε̄∗Y f∗F )y(log) ∼= colim V (ε̄
∗
Y f∗F )(V ),

(f∗ε̄
∗
XF )y(log) ∼= colim V (f∗ε̄

∗
XF )(V ).

Here we may assume that V runs through the essentially small category of
Kummer etale neighbourhoods of y(log) whose maximal reduced closed sub-
scheme is flat over Y , which is cofinal in the category of all Ket neighbourhoods
(Proposition 4.17).
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For such a V we set U = V ×fs
Y X . Then, by the classical etaleness of f we

obtain |U |red ∼= (|V | ×|Y | |X |)
red ∼= |V |red ×|Y | |X |. So, by Corollary 4.5 (2)

and the flatness of V red over Y , we have isomorphisms

Γ(V, ε̄∗Y f∗F ) ∼= Γ(V red,OV red ⊗OY
f∗F )

∼= Γ(U red,OUred ⊗OX
F )

∼= Γ(U, ε̄∗XF )
∼= Γ(V, f∗ε̄

∗
XF ).

Now the proposition follows.

4.3 Some propositions

In this subsection we collect some propositions which play essential roles later.
First we prove some results on pellicular Kummer etale sheaves in the case of
local schemes.

Proposition 4.21. Let X be a Noetherian local equi-characteristic fs log
scheme of characteristic exponent p, equipped with a chart X → SpecZ[P ]
with P fs and sharp. Then

1. For each i ≥ 0 we have an isomorphism

Ki(XKet) ∼= colimn Ki((X̃n)red, In ⋊ Γn),

where the right hand side is a colimit of equivariant (Zariski) K-groups
indexed by natural numbers prime to p. A similar statement holds for
K ′-groups if X is weakly quasi-regularly stratified (For the notations, see
Subsection 2.1.3).

2. For any pellicular Ket coherent module F on X, there exists a surjective
morphism ⊕iLi → F from a finite direct sum of pellicular Ket line
bundles.

Proof. They are only direct consequences to Proposition 4.10 and Corollary
4.13. Indeed, the statement (1) follows immediately from these propositions,
and (2) follows from some simple arguments in equivariant module theory for
semi-local rings.

Proposition 4.22. Let X be a Noetherian local equi-characteristic fs log
scheme of characteristic exponent p. Assume that we are given an F -frame
θ : F → Γ(X,MX), and let F0 ⊂ F be the (unique) direct summand of F such
that θ : F0

∼= MX,x, where x is the closed point of |X |.
Then the frame θ induces a canonical isomorphism

F gp
0 ⊗ (Q/Z)′ ∼= Pic (XKet) ∼= Pic (XKet)

(For the definition of the isomorphism, see the argument after Theorem 3.17).
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Before giving the proof of this proposition, we introduce a notation.

Definition 22. Let P be a finitely generated free monoid, n a positive integer,
T = SpecZ[1/n][P ] and T̃n = SpecZ[1/n, ζn][P 1/n]. Recall that the group

Ĩn = In ⋊ Γn acts on the scheme T̃n (Subsection 2.1.3).
Then, for any element α ∈ P 1/n, we have a map defined by

Ĩn = In ⋊ Γn → Z[1/n, ζn][P
1/n]× ; (ϕ, γ) 7→ ϕ(α).

Since this satisfies the 1-cocycle condition, it induces an Ĩn-equivariant line
bundle on (T̃n)Zar, free of rank one as a line bundle. We denote by O(α) this

line bundle (or its pullback with respect to some morphism to T̃n).

The lemma below is checked by a direct calculation.

Lemma 4.23. Let F be a finitely generated free monoid, X a Noetherian equi-
characteristic fs log scheme of characteristic exponent p, and X → SpecZ[F ]
a chart. We regard X as F -framed naturally by this chart.
Then the diagram

colim (p,n)=1F
1/n //

∼=
��

colim (p,n)=1Pic ((X̃n)Zar, Ĩn)

��
F div′ // Pic (XKet)

is commutative, where

• the upper Picard group is the equivariant one,

• the upper horizontal morphism is induced from α 7→ O(α),

• the lower horizontal one as in the paragraphs after Theorem 3.17, and

• the vertical ones the natural ones (cf. Proposition 3.21 in [Hag03]).

Proof. (of Proposition 4.22) We may assume that F = F0, and that there exists
a chart X → SpecZ[F ] compatible with the frame θ (Proposition 3.7).

Then, since Pic ((X̃n)Zar) is trivial, we have the following commutative diagram:

colim nF
1/n/F //

∼=
��

colim nPic (X̃n, Ĩn) //

��

colim nPic ((X̃n)red, Ĩn)

��
F div′

/F // Pic (XKet) // Pic (XKet),

where the upper colimit is taken with respect to positive integers prime to
p, the Picard groups are equivariant (Zariski) ones, and the morphisms are
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as in Lemma 4.23 or the natural ones (For the right vertical morphism, see
Proposition 4.10).
Now, as is easily seen by the argument in equivariant module theory, the upper
horizontal morphisms are isomorphisms, and by Proposition 4.10 and Corollary
4.13, so are the vertical ones.

The proposition below will be used in the proof of the comparison of K- and
K ′-groups.

Proposition 4.24. Let X be an F -framed Noetherian equi-characteristic divi-
sorial fs log scheme with the property (EX) and x ∈ |X |. Then,

1. For any pellicular Ket coherent sheaves of OX-modules E , F and a mor-
phism of sheaves f : Ex → Fx on (SpecOX,x)Ket, there exist a pellicular
Ket line bundle L and an s ∈ Γ(X,L −1) such that fsx : (E⊗L )x → Fx

is extended to a global morphism φ : E ⊗L → F .

2. For any pellicular Ket coherent sheaf F , there exist a pellicular Ket vector
bundle E and a surjective OX-homomorphism E → F .

Proof. By Proposition 4.11, the claim (1) is proven similarly to [Hag03] Lemma
4.11, and (2) follows from (1), Proposition 4.21 (2) and Proposition 4.22 as in
[Hag03] Proposition 7.2.

Later we will also need the following proposition, which can be proven easily.

Proposition 4.25. Let {Xi}i∈I be a system of Noetherian fs log schemes with
the property (EX), indexed by a filtered category I. Assume that any transition
map πij : Xj → Xi is strict and |πij | is affine and etale. We denote by X a
projective limit lim

←−i∈I
Xi in the category of fs log schemes and assume that X

also has the property (EX).
Then we have

colim i∈IK
′
q((Xi)Ket)

∼=
−→ K

′
q(XKet).

If every Xi and every πij is F -framed, then a similar statement holds for

K
′
(−q

Ket) for any prime q of F .

5 The proof of the main theorem

5.1 Localisation sequence for pellicular Ket K-theory

Definition 23. Let X be a Noetherian fs log scheme, Y a closed subscheme
of |X | and U its complement. We endow them with the induced log structures.
We denote by i the natural closed immersion from Y to X, and by j the natural
open immersion from U to X. Then we define a ring object OY,X in (YKet)̃ to
be ε−1

Y OYZar ⊗ε−1
Y

i−1OXZar
i−1OX .

The followings are easily proven.
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Proposition 5.1. For a log scheme X ′ Kummer etale over X, set Y ′ = X ′×fs
X

Y . Then we have a natural isomorphism OY,X |Y ′ ∼= OY ′,X′ .

Proposition 5.2. 1. The homomorphism i−1OX → OY,X is surjective.

2. The kernel IY of the above homomorphism i−1OX → OY,X is equal to
i−1((ε−1

X IYZar)OX), where IYZar is the ideal sheaf of OXZar defining Y and
(ε−1

X IYZar)OX is the ideal sheaf of OX generated by the image of ε−1
X IYZar .

3. If ε̄∗X is exact, then the homomorphism ε−1
Y OYZar → OY,X is flat.

4. If X has the property (EX), the sheaf OY,X is coherent as a OY,X-module,
and so is i∗OY,X as a OX-module.

Proof. (1), (2) and (3) are obvious, and (4) follows from (2), Proposition 4.8
and the above proposition.

Remark 5.3. In general, OY,X is far from isomorphic to OY (indeed it is so
very often).

Definition 24. 1. An OY,X-module F is said to be coherent if it is coher-
ent with respect to (YKet,OY,X) in the sense of J.-P. Serre. We denote the
full subcategory of Mod(YKet,OY,X) consisting of coherent OY,X-modules
by Coh(YKet;X).

2. For an X with the property (EX), we define K
′
(YKet;X) to be a K-theory

spectrum constructed from this Abelian category.

The next proposition is easily proven by the dévissage theorem ([Qui73]).

Proposition 5.4. We have natural weak equivalences of spectra

K
′
(YKet;X) ∼= K

′
((Yred)Ket;X) ∼= K

′
((Yred)Ket;Xred).

Notice that we have a natural exact functor Coh(YKet;X)→ Coh(XKet). We

denote by i∗ the induced homomorphism K
′
q(YKet;X)→ K

′
q(XKet).

Theorem 5.5. Let X be a Noetherian equi-characteristic weakly quasi-regularly
stratified fs log scheme, Y a strictly closed subscheme and U its open comple-
ment, which we endow with the induced log structure. Then we have a canonical
long exact sequence

· · ·
∂
→ K

′
q(YKet;X)

i∗→ K
′
q(XKet)

j∗

→ K
′
q(UKet)

∂
→ K

′
q−1(YKet;X)

i∗→ · · ·

· · ·
∂
→ K

′
0(YKet;X)

i∗→ K
′
0(XKet)

j∗

→ K
′
0(UKet)→ 0.

Proof. First we may assume that X is reduced because taking (−)red makes the
conditions and the conclusion unchanged (Proposition 4.14 (3) and the above
proposition). Then we see that ε̄∗X is exact by Corollary 4.18. As usual we
have only to show the following three lemmata (cf. the proof of Theorem 4.5
in [Hag03]).
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Lemma 5.6. Let X be a Noetherian fs log scheme, Y a strictly closed subscheme
and F a pellicular Ket coherent sheaf of OX-modules. Assume that MX,x̄ is
finitely generated free for each geometric point x̄ ∈ X. If we have F |U = 0,
then there exists a natural number N such that ((ε−1

X IYZar)OX)NF = 0.

Proof. First note that Fx(log) = 0 for any x /∈ |Y | by assumption.
Take a Kummer etale covering f : X ′ → X and a Zariski coherent OX′ -module

F̃ such that F |X′ ∼= ε̄∗X′F̃ . Here, by assumption on M , we may assume |X ′|
is flat over |X |. Put Y ′ = Y ×X X ′.

Since we have Fx′(log)
∼= OX′,x′(log) ⊗OX′,x′ F̃x′ for every x′ ∈ |X ′|, the set

{x′ ∈ |X ′| |F̃x′ 6= 0} is contained in |Y ′| by the faithful flatness of OX′,x′ →

OX′,x′(log). Thus we have a natural number N such that INY ′
Zar

F̃ = 0.

By the surjectivity of ε̄∗X′IY ′
Zar
→ ((ε−1

X IYZar)OX)|X′ , the lemma now follows.

Lemma 5.7. Let X be a Noetherian equi-characteristic weakly quasi-regularly
stratified fs log scheme, U a strictly open subscheme and j : U → X a natural
open immersion. Then, for any pellicular Ket quasi-coherent module F on U ,
j∗F is pellicular Ket quasi-coherent on X.

Proof. This is proven similarly to the proof of [Hag03] Proposition 4.6, by using
Proposition 4.8 (3), Corollary 4.13 and Proposition 4.20.

Lemma 5.8. Let X be a Noetherian reduced weakly quasi-regularly stratified fs
log scheme and F a pellicular Ket quasi-coherent sheaf. Then we have

F ∼= lim
−→

Fi,

where Fi run through all pellicular Ket coherent sheaves such that Fi ⊂ F .

Proof. (cf. [Hag03] Proposition 4.7.) Take a Kummer etale covering π : X ′ →

X and a Zariski quasi-coherent OX′
red

-module F̃ (not a OX′-module) such that

π∗F ∼= ε̄∗X′
red

F̃ . By Proposition 4.17, we may assume that ε̄∗X′
red

is also exact

and that X ′ is Noetherian. The sheaf F̃ can be written as

F̃ ∼= lim
−→

F̃i,

using all Zariski coherent sub-OX′
red

-modules F̃i ⊂ F̃ . Then we have π∗F ∼=

lim−→ ε̄∗X′
red

F̃i and π∗π
∗F ∼= π∗ lim−→ ε̄∗X′

red
F̃i
∼= lim−→π∗ε̄

∗
X′

red
F̃i (Note that as X

and X ′ are Noetherian and {ε̄∗X′
red

F̃i} forms a direct system, inductive limit

commutes with π∗). If we define Fi by the Cartesian diagram

Fi
//

� _

��

π∗ε̄
∗
X′

red
F̃i

� _

��
F // π∗π

∗F ,
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then we have F ∼= lim
−→

Fi. By the following commutative diagram

π∗Fi
//

x�

**❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

π∗π∗ε̄
∗
X′

red
F̃i

// ε̄∗X′
red

F̃i

��
π∗F ,

we see that π∗Fi is pellicular Ket coherent, as it is a pellicular Ket quasi-

coherent subsheaf of a pellicular Ket coherent sheaf ε̄∗X′
red

F̃i, and X ′ is Noethe-

rian and has the property (EX) (Use Proposition 4.8).

As usual, we see that the presheaf of fibrant spectra εX∗K
′
Ket on Et/|X |(the

category of schemes etale over |X |) defined by

“U 7→ K
′
(UKet)” (where U has the induced log structure)

satisfies “a Nisnevich Brown-Gersten property” (i.e. a cd-excision property in
p.286 of [Jar97]) if X is a Noetherian equi-characteristic weakly quasi-regularly
stratified fs log scheme. The more precise statement is as follows.

Corollary 5.9. Assume that we are given a Cartesian diagram of Noetherian
equi-characteristic weakly quasi-regularly stratified fs log schemes

V ′

f ′

��

� � j′ // U ′

f

��
V � � j // U

with vertical morphisms (classically) etale and horizontal ones strictly open
immersions. We assume that the induced morphism f ′′ : U ′ \ V ′ → U \ V
is isomorphism if both sides are endowed with the induced reduced log scheme
structure. Then the induced square of spectra

K
′
(UKet)

f∗

��

j∗ // K
′
(VKet)

f ′∗

��

K
′
(U ′

Ket)
j′∗ // K

′
(V ′

Ket)

is homotopy Cartesian.
In particular, if X is a weakly quasi-regularly stratified fs log scheme whose
underlying scheme is Noetherian, equi-characteristic, and of finite Krull di-
mension, we have a weak equivalence

K
′
(XKet)

∼=
−→ H·(XNis, εX∗K

′
Ket).

Similar statements hold for K
′
(−q

Ket) and H·(XNis, εX∗K
′
(−q

Ket)) if U or X is
endowed with an F -frame structure.
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Proof. Set W = U \ V and W ′ = U ′ \ V ′. Then we have f ′′−1
OW,U

∼= OW ′,U ′ .
Now Corollary follows easily from the above theorem. The latter part follows
from Corollary 7.68 in [Jar97]. The case for Xq

Ket immediately follows from
that for q = ∅ by noting Proposition 3.6 (5).

5.2 Comparison of pellicular Ket K-theory and pellicular Ket
K ′-theory

Theorem 5.10. Let F and X be as in Convention 3.13. Then we have a
natural weak equivalence

K(XKet) ∼= K
′
(XKet).

A similar proposition holds for X [p]qKet for prime ideals p and q.

Proof. The latter case is reduced to the former (by Proposition 3.12), the proof
of which is completely parallel to the one of Proposition 7.1 in [Hag03]. Indeed,
we have only to use Proposition 4.24 and the following lemma.

Lemma 5.11. Let X be a weakly log regular fs log scheme whose underlying
scheme is Noetherian and regular.
If we are given a chart X → SpecZ[P ] with P fs and sharp, then, for any
positive integer n, (Xn)red is again Noetherian, regular and weakly log regular.
In particular, for any log scheme X ′ Kummer etale over X, there exists a
Kummer etale covering X ′′ → X ′ such that X ′′

red is regular and weakly log
regular.

Proof. The former is straightforward, and the latter follows from the former
by Proposition 2.4.

Combining Theorem 5.10 and Corollary 5.9, we obtain the following corollary:

Corollary 5.12. Let F and X be as in Convention 3.13. Then we have a
weak equivalence

K(XKet)
∼=
−→ H·(XNis, εX∗KKet).

5.3 Inversion formula

We fix a finitely generated free monoid F also in this subsection. Here we prove
Theorem 3.14.

Theorem 5.13. Let X be an F -framed weakly quasi-regularly stratified fs log
scheme such that |X | is finite dimensional, Noetherian, separated and equi-
characteristic of characteristic p. Then, for a prime ideal q of F , we have a
weak equivalence

K
′
(Xq

Ket)Q
∼=
−→ H·(Xq

∨

Ket, ε
q
∨

X∗(K
′
Ket)Q).
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Proof. First we show that we may assume that X is Henselian local.
For a general X , consider the following up-to-homotopy commutative diagram

K
′
(Xq

Ket)Q

��

// H·(XNis,K
′
(−q

Ket)Q)

��

H·(Xq
∨

Ket, ε
q
∨

X∗(K
′
Ket)Q) // H·(XNis,H·(−q

∨

Ket, ε
q
∨

X∗(K
′
Ket)Q)),

where H·(−q
∨

Ket, ε
q
∨

X∗(K
′
Ket)Q) and K

′
(−q

Ket)Q are presheaves of fibrant spectra
on XNis naturally defined.
Here the upper horizontal morphism is a weak equivalence by Corollary 5.9,
the lower horizontal one by the Cartan-Leray-type theorem proven formally
(See Theorem 1. 56 in [Tho85]).
Therefore, the weak equivalence of the left vertical morphism follows from that
of the right vertical one. Thus the theorem is reduced to the Henselian local
case by Proposition 4.25.
From now on we will assume that X be Henselian local. Using the spectral
sequence

Hi(Xq
∨

Ket, ε
q
∨

X∗(K
′
j,Ket)Q) =⇒ πj−iH

·(Xq
∨

Ket, ε
q
∨

X∗(K
′
Ket)Q),

where εq
∨

X∗(K
′
j,Ket)Q is the sheaf on Xq

∨

Ket associated with “U 7→ K
′
j((U ×

fs
Xq∨

X)Ket)Q”, and the vanishing of the higher group cohomology of profinite groups
with Q-vector space coefficients, we have an isomorphism

πjH
·(Xq

∨

Ket, ε
q
∨

X∗(K
′
Ket)Q)

∼=
−→ Γ(Xq

∨

Ket, ε
q
∨

X∗(K
′
j,Ket)Q).

Moreover, as is easily checked, the right hand side can be rewritten as follows:

Γ(Xq
∨

Ket, ε
q
∨

X∗(K
′
j,Ket)Q)

∼=
−→ (lim

−→
X̃

K
′
j((X̃ ×

fs
Xq∨ X)Ket)Q)

π1(X
q∨

Ket),

where X̃ runs through Kummer etale neighbourhoods of Xq
∨

(with respect to a

fixed log geometric point over the closed point), and π1(X
q
∨

Ket) is the projective

limit of their automorphism groups overXq
∨

. The notation (−)π1(X
q∨

Ket) denotes
the invariant part for the natural action.
For a further reduction, we introduce some notations:

Definition 25. Let F be a finitely generated free monoid, and X an F -framed
fs log scheme, and s a prime ideal of F . Assume that we are given a chart
X → SpecZ[F ] which lifts the given frame.
For a positive integer n invertible on X, we set

X̃s
n = Xs ×fs

SpecZ[1/n][F\s] SpecZ[1/n, µn][(F \ s)
1/n],
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Isn = Hom((F \ s)1/n/(F \ s),Z[µn]
×),

and Ĩsn = Isn ⋊ Gal(Q(µn)/Q) (cf. Subsection 2.1.3). We regard X̃s
n as an fs

log scheme by the chart X̃s
n → SpecZ[1/n, µn][(F \ s)1/n].

Note that the log scheme X̃s
n has a natural group action of Ĩsn, and that, for

prime ideals s ⊂ r, the natural morphism X̃s
n → X̃r

n is compatible with the

natural surjective homomorphism Ĩsn → Ĩrn.

The followings are easily checked:

Lemma 5.14. 1. The set

{X̃q∨

m |m ∈ N, (m, p) = 1}

is cofinal in the category of Kummer etale neighbourhoods of Xq
∨

(for a
suitable choice of log geometric points over the closed points).

2. For a positive integer m, the set

{X̃q∨

mr ×
fs
Xm X̃q

n | r, n ∈ N, (r, p) = (n, p) = 1}

is cofinal in the category of Kummer etale neighbourhoods of the log

scheme X̃q∨

m ×fs
Xq∨ X = X̃q∨

m ×fs
Xm Xq, where m is the maximal ideal

of F (for a suitable choice of log geometric points over the closed points).

Therefore it suffices to prove that

K
′
j(X

q

Ket)Q
∼= (lim−→

m

K
′
j((X̃

q∨

m ×
fs
Xq∨ X)Ket)Q)

π1(X
q∨

Ket),

or by using Proposition 4.21 and the above lemma,

lim−→
n

K ′
j(|X̃

q
n|red, Ĩ

q
n)Q ∼= lim−→

m

(
lim−→
n,r

K ′
j(|̃X

q∨

mr ×
fs
Xm X̃q

n|red, Ĩ
q∨

mr,m × Ĩqn)Q

)˜
Iq∨
m

,

where Ĩq
∨

mr,m = Kernel (Ĩq
∨

mr → Ĩq
∨

m ), and r, m and n runs positive integers
prime to p.
Thus, Theorem 5.13 (in the Henselian local case) is reduced to the following
lemma (In (1), we only need the case r = q∨):

Lemma 5.15. Let X and F be as in Theorem 5.13, and assume that |X | is
Henselian local, and that we are given a chart X → SpecZ[F ] lifting the frame.

1. For each positive integers m and n prime to p, and prime ideals r and q

of F such that r ∧ q = ∅, we have a natural isomorphism

K ′
j(|X̃

q
n|red, Ĩ

q
n)Q ∼= K ′

j(|X̃
r
m ×Xm X̃q

n|red, Ĩ
q
n)

Ĩr
m

Q ,

for every j ≥ 0.
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2. For every positive integer n prime to p and a prime ideal q, we have a
natural isomorphism

lim
−→
m

K ′
j(|̃X

q∨

m ×
fs
Xm X̃q

n|red, Ĩ
q
n) ∼= lim

−→
m,r

K ′
j(|̃X

q∨

mr ×
fs
Xm X̃q

n|red, Ĩ
q∨

mr,m × Ĩqn),

for every j ≥ 0.

To prove (2), we set Km,r = K ′
j(|̃X

q∨

mr ×fs
Xm X̃q

n|red, Ĩ
q∨

mr,m × Ĩqn). Then we have
a transition morphism Km,r → Km′,r′ if m|m

′ and mr|m′r′.
In particular, for every (m, r), we have a morphism Km,r → Kmr,1, which
means the set {Km,1} is cofinal. Hence (2) follows.
The claim (1) is reduced to the lemma below by the descending induction on
the number of generators of r.

Lemma 5.16. Let r′ = r∨ 〈e〉, where e is an element of the standard basis of F
such that e /∈ r, and suppose that q ∧ r′ = ∅. Then we have

K ′
j(|X̃

r′
m ×Xm X̃q

n|red, Ĩ
q
n)Q ∼= K ′

j(|X̃
r
m ×Xm X̃q

n|red, Ĩ
q
n)

µn

Q

for every j ≥ 0, and m and n prime to p.

Finally, using the following two facts proven by Proposition 4.15, we can reduce
this lemma to the next proposition.

• The diagram of schemes

|X̃r
m ×Xm X̃q

n| //

��

SpecR[e1/m]

��
|X̃r′

m ×Xm X̃q
n|

f // SpecR[e]

is Cartesian.

• We have one of the followings, depending on whether f∗(e) is zero or a
non-zero divisor.

1. |X̃r
m ×Xm X̃q

n|red ∼= |X̃r′

m ×Xm X̃q
n|red.

2. The diagram of schemes

|X̃r
m ×Xm X̃q

n|red //

��

|X̃r
m ×Xm X̃q

n|

��

|X̃r′
m ×Xm X̃q

n|red // |X̃r′
m ×Xm X̃q

n|

is Cartesian.
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Now the proof of Theorem 5.13 is completed.

Proposition 5.17. Let G be a finite group, Z a Noetherian and equi-
characteristic scheme of characteristic exponent p with the action of G, n a
positive integer prime to p, and R = Z[1/n, µn]. Suppose that we are given a
G-equivariant morphism Z → SpecR[T ] with SpecR[T ] trivially acted by G.
Let Y = Z ×SpecR[T ] SpecR[T 1/n], π : Y → Z the natural map. Note that µn

acts on Y via the natural action “T 1/n 7→ ζ · T 1/n” on R[T 1/n].
Assume, in addition, that π∗OYred

is free as a G-equivariant OZred
-module

(Hence, Yred is flat over Zred). Then we have an isomorphism of equivari-
ant K ′-groups

K ′
j(Zred, G)Q −→ K ′

j(Yred, G)µn

Q

for j ≥ 0.

Proof. Consider the diagram

{0}R →֒ A1
R ←֓ (A1 \ {0})R

and by taking the fiber product with respect to Y → Z → SpecR[T ] construct
the diagram

Y0
iY //

��

Y

��

Y \ Y0

��

jYoo

Z0
iZ // Z Z \ Z0.

jZoo

Then we obtain a morphism between exact sequences ([Tho87])

· · · // K ′
j(Y0, G)µn

Q

iY ∗ // K ′
j(Y,G)µn

Q

j∗Y // K ′
j(Y \ Y0, G)µn

Q
// · · ·

· · · // K ′
j(Z0, G)Q

OO

iZ∗ // K ′
j(Z,G)Q

j∗Z //

OO

K ′
j(Z \ Z0, G)Q //

OO

· · · .

The right vertical homomorphism is an isomorphism since Y \Y0 is Galois etale
over Z \ Z0 with Galois group µn, and so is the left one as is seen by noting
that µn acts on (Y0)red ∼= (Z0)red trivially, and using the next lemma:

Lemma 5.18. Let G be a finite group and W a Noetherian scheme with an
action of G, and set W [ǫ]/(ǫm) = W ×SpecZ SpecZ[ǫ]/(ǫm) and define f :
W [ǫ]/(ǫm)→W to be the natural map . Then the composite

K ′
j(W,G)

f∗

−→ K ′
j(W [ǫ]/(ǫm), G)

f∗
−→ K ′

j(W,G)

is the multiplication by m, and f∗ is an isomorphism for j ≥ 0. In particular,
f∗ is an isomorphism up to torsion.
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Thus we deduce that the middle vertical homomorphism is also an isomorphism.
Since the composites

K ′
j(Z,G)Q → K ′

j(Y,G)µn

Q
∼= (K ′

j(Y,G)Q)µn
→ K ′

j(Z,G)Q

and

K ′
j(Zred, G)Q → K ′

j(Yred, G)µn

Q
∼= (K ′

j(Yred, G)Q)µn
→ K ′

j(Zred, G)Q

are isomorphisms by assumptions, Proposition easily follows.

Corollary 5.19. Let F and X be as in Convention 3.13. Then, for a prime
ideal q of F , we have a weak equivalence

K(Xq

Ket)Q
∼=
−→ H·(Xq

∨

Ket, ε
q
∨

X∗(KKet)Q).

Proof. It follows from Theorems 5.10 and 5.13.

5.4 Explicit description

In this subsection we prove Theorem 3.19.

Definition 26. Let F be a finitely generated free monoid, q and r its prime
ideals, i a natural number, and Y an F -framed Noetherian equi-characteristic
fs log scheme.
Then we define a monoid morphism L : F (q) → EndAb(Ki(Y

r
Ket)) by associ-

ating with each α ∈ F (q) the group homomorphism

L(α) : Ki(Y
r
Ket) −→ Ki(Y

r
Ket)

induced by the endofunctor “−⊗ OY (α)” of Vect(Y r
Ket). Now we set

Ki(Y
r
Ket)⋊ Λ[q] = Ki(Y

r
Ket)⋊

L Λ[q]

(See Definition in Subsection 3.3). Similarly, we can also define Ki(Y
r
Ket) ⋊

Λ′[q] and K(Y r
Ket)⋊ Λ(′)[q].

Let r′ ⊃ r be prime ideals such that q ∧ r = ∅. Then we have a natural map

Pic (Xq
∨

Ket)→ Pic (Xr
Ket). Thus we can construct a homomorphism Ki(Y

r
′

Ket)⋊
Λ[q]→ Ki(Y

r
Ket), as in Subsection 3.3 (See the argument before Theorem 3.19).

Proposition 5.20. Let F be a finitely generated free monoid and (Y, θ) an F -
framed fs log scheme such that |Y | is Noetherian, local and equi-characteristic
of characteristic exponent p. We denote by y its closed point. We assume that
two primes r and q of F satisfy the following conditions:

1. r ∧ q = ∅.

2. For any element m ∈ θȳ(q) ⊂ MY,ȳ, all (any) of its liftings m̃ ∈ MY,ȳ

are mapped to zero by the log-structure map αY : MY → OY .
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Then the natural map

Ki(Y
r∨q

Ket )⋊ Λ′[q] −→ Ki(Y
r
Ket)

is an isomorphism for i ≥ 0.

Proof. Take and fix a chart Y → SpecZ[F ] lifting the given frame (Proposition
3.7).
By Proposition 4.21 and Lemma 4.23, it suffices to show that, for any nat-
ural number n prime to p and any integer i ≥ 0, the morphism below is an
isomorphism

Ki(|Ỹ
r∨q
n |red, Ĩ

r∨q
n )⊗ Z[F (q)1/n/F (q)]→ Ki(|Ỹ r

n |red, Ĩ
r
n)

of (Zariski) equivariant K-groups (For the notation, see Definition before
Lemma 5.14).
Here this morphism maps [F ] ⊗ [α] to [π∗F ⊗ O(α)], where π is the natural
morphism, and O(α) is the pull-back of an equivariant line bundle on the
scheme SpecZ[µn][F (q)1/n] with the action of Hom(F (q)1/n/F (q),Z[µn]

×) ⋊
Γn corresponding to α (See Definition after Proposition 4.22).
Note that

Hom (F (q)1/n/F (q),Z[µn]
×)× Ir∨q

n
∼= Irn

by the assumption (1).

In addition, by the assumption (2), |Ỹ r∨q
n |red ∼= |Ỹ r

n |red and this has a trivial
action of Hom (F (q)1/n/F (q),Z[µn]

×), so the proposition can be deduced easily
from the argument in equivariant module theory.

Corollary 5.21. Let F and Y be as in Proposition 5.20. Then for a prime q

of F satisfying the assumption (2), we have a weak equivalence

K((Yred)Zar)⋊ Λ′[q] −→ K(Y q
∨

Ket).

Taking Corollary 5.12 into consideration, we obtain the following corollary:

Corollary 5.22. Let F and X be as in Convention 3.13, and q a prime ideal
of F . If, for any m ∈ q, θ(m) ∈ Γ(X,MX) is pseudo-zero, then we have a
weak equivalence

K((Xred)Zar)⋊ Λ′[q] −→ K(Xq
∨

Ket).

Since X [p] clearly satisfies the condition in Corollary 5.22, we obtain Theorem
3.19.

5.5 Compatibility

Here we prove Theorem 3.22. First we prove the following compatibilities.

Proposition 5.23. Let F and X be as in Convention 3.13. Then
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1. For prime ideals q and r of F , the diagram

Ki(X
q

Ket)
πi(δ) //

ε̄∗

��

Ki(X
q∨r

Ket )

ε̄∗

��
Ki(X

q∧r

Ket )
πi(δ) // Ki(X

r
Ket)

is commutative.

2. The morphism δ is compatible with the K0-module structure. More pre-
cisely, for prime ideals q ⊂ r of F , we have an equality

πi(δ
r,q
X )(x · y) = πi(δ

r,q
X )(x) · π0(δ

r,q
X )(y)

as elements of Ki(X
r
Ket)Q, for x ∈ Ki(X

q

Ket)Q and y ∈ K0(X
q

Ket)Q.

Proof. (1) We set s = q ∧ r, t = q ∨ r, and u = q ∨ (r∨)(= q ∨ (t∨)). Then we
have (Xq)(t\q)

∨

= Xu. Here recall that Xq is F \ q-framed, and note that t \ q
is a prime ideal of F \ q (Note also that (t \ q)∨ denotes the dual in F \ q, that
is, t∨ \ q). Similarly we have (Xs)(r\s)

∨

= Xu.
Therefore, by using the morphisms of sites

ε
(t\q)∨

Xq : Xq → Xu and ε
(r\s)∨

Xs : Xs → Xu,

we can define presheaves of fibrant spectra ε
(t\q)∨

∗ KKet and ε
(r\s)∨

∗ KKet on
Ket/Xu. More concretely, we have

ε
(t\q)∨

∗ KKet(U) = K((U ×fs
(Xq)(t\q)∨ Xq)Ket) = K((U ×fs

Xu Xq)Ket)

for U ∈ Ket/(Xq)(t\q)
∨

and

ε
(r\s)∨

∗ KKet(U) = K((U ×fs
(Xs)(r\s)∨

Xs)Ket) = K((U ×fs
Xu Xs)Ket)

for U ∈ Ket/(Xs)(r\s)
∨

.
Then we have a morphism of presheaves of spectra

ε
(t\q)∨

∗ KKet → ε
(r\s)∨

∗ KKet,

which induces a commutative diagram

K(Xq

Ket)
//

ε̄∗

��

H·((Xq)
(t\q)∨

Ket , ε
(t\q)∨

∗ (KKet)Q)

ε̄∗

��

K((Xq)
(t\q)
Ket )Q

ε̄∗

��

oo

K(Xs
Ket)

// H·((Xs)
(r\s)∨

Ket , ε
(r\s)∨

∗ (KKet)Q) K((Xs)
(r\s)
Ket )Q.oo

The proposition now follows.
(2) can be proven in the similar way to Proposition 3.16.
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Now, according to Proposition 3.15, Theorem 3.22 is reduced to the next propo-
sition:

Proposition 5.24. Let F and X be as in Convention 3.13, and m its maximal
ideal. Take an element e of the basis of F and set n = F \ eN. Then, by the
composite of the natural maps

(eN)Q′ → Pic (Xn
Ket)→ K0(X

n
Ket)Q

π0(δ
m,n

X
)

−→ K0(X
m
Ket)Q

∼= K0((Xred)Zar)Q,

eα(α ∈ Q′) is mapped to exp(α log[OX(e)]), where [OX(e)] ∈ K0((Xred)Zar) is
the image of e by the composite

eN ⊂ F → Γ(Xred,MXred
)→ Pic ((Xred)Zar)→ K0((Xred)Zar).

Here exp and log are defined by formal power series.

Proof. We may assume that X is connected. Denote by a the image of e1/n

in K0((Xred)Zar)Q. Since δ is compatible with the product structure, an must
be equal to [OX(e)]. Now we can easily deduce the proposition, since the n-th
power map on K0((Xred)Zar)Q is an isomorphism, which follows from the fact
that the map log : K0((Xred)Zar)Q → K0((Xred)Zar)Q is an isomorphism.

5.6 The end of the proof

The rest of this section is devoted to the proof of Theorem 3.17.

Theorem 5.25. Let F and X be as in Convention 3.13, p and q prime ideals
of F , e an element of the basis of F , and 〈e〉 the prime ideal generated by e.
We set p′ = p ∨ 〈e〉 and q′ = q ∨ 〈e〉.
Then the natural commutative diagram

H·(X [p]q
′

Ket, ε
q
′

X[p]∗(KKet)Q) //

��

H·(X [p]qKet, ε
q

X[p]∗(KKet)Q)

��
H·(X [p′]q

′

Ket, ε
q
′

X[p′]∗(KKet)Q) // H·(X [p′]qKet, ε
q

X[p′]∗(KKet)Q)

is homotopy Cartesian.

Proof. By Corollary 5.9 and Proposition 4.25, we may assume that X is local.
By using Corollary 5.19 and noting that πq(δ) is surjective, we have only to
show that the diagram

Kq(X [p]
q
∨∧〈e〉∨

Ket )Q
πq(δ) //

i∗

��

Kq(X [p]q
∨

Ket)Q

i∗

��

Kq(X [p ∨ 〈e〉]
q
∨∧〈e〉∨

Ket )Q
πq(δ) // Kq(X [p ∨ 〈e〉]q

∨

Ket)Q
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is bi-Cartesian (i.e. Cartesian and co-Cartesian), where i is the natural inclu-
sion.
Next we consider the diagram

Kq(X [p]q
∨

Ket)Q

i∗

��

ε̄∗ // Kq(X [p]
q
∨∧〈e〉∨

Ket )Q
πq(δ) //

i∗

��

Kq(X [p]q
∨

Ket)Q

i∗

��

Kq(X [p ∨ 〈e〉]q
∨

Ket)Q
ε̄∗ // Kq(X [p ∨ 〈e〉]

q
∨∧〈e〉∨

Ket )Q
πq(δ) // Kq(X [p ∨ 〈e〉]q

∨

Ket)Q.

Since the outer rectangle is clearly bi-Cartesian (Proposition 3.15), it suffices
to prove that so is the left square. Now we can reduce the theorem to the next
lemma:

Lemma 5.26. Suppose that F and X be as in Convention 3.13, and in addition
that X be local. Let r ⊂ F be a prime and e ∈ F an element of the basis of F .
Then the diagram

Kq(X
r∨〈e〉
Ket )

ε̄∗

��

i∗ // Kq(X [〈e〉]
r∨〈e〉
Ket )

ε̄∗

��
Kq(X

r
Ket)

i∗ // Kq(X [〈e〉]rKet)

is bi-Cartesian for every q ≥ 0.

Proposition 4.21 and the next proposition imply this lemma, thus the theorem
is proven.

Proposition 5.27. Let n be a positive integer, R = Z[1/n, µn], G a finite
group acted by Γn = Gal(Q(µn)/Q), and Z a Noetherian equi-characteristic
semi-local scheme of characteristic exponent p with the action of a finite group
G⋊ Γn.
Suppose that p is prime to n, and that we are given a G ⋊ Γn-equivariant
morphism Z → A1

R = SpecR[e] with G ⋊ Γn naturally acting on A1
R through

Γn.
We let the left square below be the fiber product of the right square with respect
to Z → A1

R:

Wn
i′ //

π′

��

Zn

π

��

{0} ×A1
R
(A1

R)n
//

��

(A1
R)n

��
W

i // Z {0} // A1
R,

where (A1
R)n = SpecR[e1/n] and {0} is the closed subscheme consisting of the

origin. Note that µn acts naturally on Zn and Wn.
Suppose that
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1. Zred, Wred and (Zn)red are regular (Note that Wred →֒ Zred and
(Wn)red →֒ (Zn)red become regular immersions automatically),

2. πred : (Zn)red → Zred is flat, and

3. the natural map Wred →W ×Z Zred is an isomorphism.

Then the diagram consisting of (Zariski) equivariant K-groups

Kq(Zred, G⋊ Γn)
i∗ //

π∗

��

Kq(Wred, G⋊ Γn)

π′∗

��
Kq((Zn)red, (G× µn)⋊ Γn)

i′∗ // Kq((Wn)red, (G× µn)⋊ Γn)

is bi-Cartesian for every q ≥ 0.

Proof. Since (Zn \Wn)red is Galois etale over (Z \W )red with Galois group µn,

K ′
r((Z \W )red, G⋊Γn)

π∗

−→ K ′
r((Zn \Wn)red, (G×µn)⋊Γn) is an isomorphism

for r = q, q + 1, so we see that the diagram

K ′
q(Wred, G⋊ Γn)

pr∗1

��

i∗ // K ′
q(Zred, G⋊ Γn)

π∗

��
K ′

q(V, (G× µn)⋊ Γn)
j∗ // K ′

q((Zn)red, (G× µn)⋊ Γn)

is bi-Cartesian by Thomason’s localisation sequence ([Tho87]), where V =
Wred ×Zred

(Zn)red and j is the natural closed immersion.

Next, by considering the composite of morphisms

K ′
q(Wred, G⋊ Γn)

i∗−→ K ′
q(Zred, G⋊ Γn)

(canonical)−1

−→ Kq(Zred, G⋊ Γn)

i∗
−→ Kq(Wred, G⋊ Γn)

and its counterpart for (Zn)red, we have a commutative diagram

K ′
q(Wred, G⋊ Γn)

i∗◦(can)−1◦i∗ //

pr∗1

��

Kq(Wred, G⋊ Γn)

π∗

��
K ′

q(V, (G× µn)⋊ Γn)
i∗◦(can)−1◦j∗// Kq((Wn)red, (G× µn)⋊ Γn).

It suffices to show that this diagram is bi-Cartesian.
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Now, since Wred
∼= (Wn)red and the action of µn on (Wn)red is trivial, we have

isomorphisms

K ′
q(Wred, G⋊ Γn)⊗Z Z[Z/nZ]

∼=
−→ K ′

q((Wn)red, (G× µn)⋊ Γn)
∼=
−→ K ′

q(V, (G × µn)⋊ Γn), and

Kq(Wred, G⋊ Γn)⊗Z Z[Z/nZ]
∼=
−→ Kq((Wn)red, (G× µn)⋊ Γn).

Here the first isomorphism and the third are defined by the rule x ⊗ [i] 7→
π′∗x · [O(ei/n)], where O(ei/n) is the pull-back of µn ⋊ Γn-equivariant line
bundle on (A1

R)n corresponding to ei/n (See Definition after Proposition 4.22),
with respect to (Wn)red → SpecR[e1/n]/(e1/n) →֒ SpecR[e1/n].
In addition, noting that V (and Wred) is defined by the equation “e = 0” in
(Zn)red (and Zred, respectively), we easily see that the above diagram can be
rewritten as below, via these isomorphisms (The proofs of Proposition 1.6 and
Lemma 1.7 in [Vis91] work also for our situation):

K ′
q(Wred, G⋊ Γn)

��

0 // Kq(Wred, G⋊ Γn)

��
K ′

q(Wred, G⋊ Γn)⊗Z Z[Z/nZ]
can⊗f // Kq(Wred, G⋊ Γn)⊗Z Z[Z/nZ],

where, the right vertical morphism maps x to x ⊗ [0], the left vertical x to

x ⊗
∑n−1

i=0 [i], and f is the multiplication by [0] − [1]. Since this diagram is
clearly bi-Cartesian, Proposition follows.
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