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1. Introduction

In this paper, we study the poset obtained by ordering the partitions of the set
n ..= {1, . . . , n} by coarsening. The partition of n into one-element sets is called
the discrete, or trivial partition. The partition consisting of the set n itself is
called indiscrete, and partitions of n that are not indiscrete are called proper .
With this terminology, let Pn denote the nerve of the poset of proper nontrivial
partitions of n, and let P⋄

n denote its unreduced suspension. This space, with
its natural action of the symmetric group Σn, arises in various contexts, and
in particular it plays a role in the calculus of functors. We study the Bredon
homology and cohomology of P⋄

n as a Σn-space.
For the moment, we focus on homology. Let G be a finite group and let X be
a G-space, or a simplicial G-set. We denote the Borel construction on X by
XhG

..= (EG×X)/G. If X has a pointed G-action, i.e., X has a basepoint that
is fixed by the G-action, we denote the reduced Borel construction by Xh̃G

..=
(EG+ ∧X) /G. One type of equivariant homology forX is the ordinary twisted
homology of the Borel construction XhG with coefficients in a G-module M
or, if X has a pointed action, the ordinary twisted homology of Xh̃G. The
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Bredon homology ofX is a finer invariant, which takes coefficients in an additive
functor γ from finite G-sets to abelian groups. Our goal in this paper, in rough
terms, is to sharpen the results of [1] about the mod p homology of the Borel
construction on P⋄

n by proving similar results about the Bredon homology of P⋄
n

with somewhat general coefficients.
To carry out this program, we need a rather detailed analysis of the fixed point
spaces of various p-subgroups of Σn acting on Pn. In particular, we completely
classify the p-subgroups whose fixed point spaces on Pn are not contractible
(Proposition 6.2). We also need to study equivariant approximations that in-
duce an isomorphism on Bredon homology. Here we build on earlier work of
several people, in particular Webb and the second author of the present paper
[19, 20, 8, 9, 1].
We introduce some further terminology and then describe the results about
Pn in more detail. A Mackey functor M for G is a pair of additive functors
(γ, γ♮) from finite G-sets to abelian groups, where γ is covariant and γ♮ is
contravariant, and γ and γ♮ take common values and satisfy certain conditions
(Definition 3.1). Hence γ can serve as a coefficient system for Bredon homology
of G-spaces, and γ♮ as a coefficient system for Bredon cohomology. We denote
the resulting homology and cohomology groups of a G-space X by HG

∗ (X ;M)
and H∗

G (X ;M). There are also reduced versions of Bredon homology and
cohomology, defined for spaces with pointed G-actions. They are denoted by
H̃G

∗ (X ;M) and H̃∗
G (X ;M), respectively (Section 2).

The notion of a Mackey functor that is projective relative to p-subgroups is
important for our main theorem, and it is reviewed in Section 3. In brief, it
amounts to the following. Let M be a Mackey functor for G and let P ⊂ G
be a p-Sylow subgroup. There is a natural transformation of Mackey functors
M(G/P ×−) −→M(−) induced by projection. We say M is projective relative
to p-subgroups if this transformation is a split epimorphism.
We mentioned earlier that we use an approximation of Pn to compute Bredon
homology and cohomology, which we refer to jointly as Bredon (co)homology,
for brevity. In [1], the authors approximate the Σn-space Pn when n is a prime
power by inducing up from a Tits building. We adapt that procedure for this
work, as described in the next two paragraphs. Let p be a prime and suppose
that n = pk for some positive integer k. Let Bk be the nerve of the poset of

proper, nontrivial subgroups of the group ∆k
..= (Z/pZ)

k
, ordered by inclusion.

The complex Bk is the Tits building for GLk
..= GLk (Fp). Since n = pk, we can

identify the underlying set of ∆k, which has pk elements, with n = {1, . . . , pk}.
We can then construct a map Bk −→ Pn by assigning to a subgroup V ⊆ ∆k,
the partition of n given by the cosets of V in ∆k. Writing B⋄

k for the unreduced
suspension of Bk, we obtain a map B⋄

k → P
⋄
n.

The action of ∆k on its underlying set by left translation, and the identification
∆k ↔ n, allow us to identify ∆k as a subgroup of Σn. The normalizer of ∆k in
Σn is isomorphic to the affine group Affk

∼= ∆k ⋊GLk, which then acts on Bk

(with ∆k acting trivially). The Affk-equivariant map B⋄
k → P

⋄
n extends to a

Σn-equivariant map Σn+ ∧Affk
(EGLk + ∧B⋄

k) −→ P
⋄
n, which turns out to be
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a good enough approximation to P⋄
n to compute Bredon homology, as stated

in Theorem 1.1, below.
The following is our main theorem. If H is a subgroup of G, then CG(H)
denotes the centralizer of H in G. Note that CG(H) acts on G/H by G-
equivariant maps, so if M is a Mackey functor for G, there is an action of
CG(H) on M(G/H).

Theorem 1.1. Fix a prime p. Let M be a Mackey functor for Σn that takes
values in Z(p)-modules. Assume the following.

(1) The Mackey functor M is projective relative to the collection of p-
subgroups of Σn.

(2) For every elementary abelian p-subgroup D ⊂ Σn that acts freely
and non-transitively on {1, . . . , n}, the kernel of the homomorphism
CΣn

(D)→ π0CGLn R(D) acts trivially on M(Σn/D).
(3) If p is odd and D is as above, then every odd involution in CΣn

(D) acts
on M(Σn/D) by multiplication by −1.

Then if n is not a power of p, the groups H̃Σn
∗ (P⋄

n;M) and H̃∗
Σn

(P⋄
n;M) vanish.

If n = pk, then the map

Σn+ ∧Affk
(EGLk + ∧B⋄

k) −→ P
⋄
n

induces an isomorphism on H̃Σn
∗ (−;M) and on H̃∗

Σn
(−;M).

The proof is found in Section 10. We will explain the assumptions and why
they are needed near the end of the introduction, where we outline the proof
of the main theorem.
In the case n = pk, Theorem 1.1 leads to an algebraic formula for the Bredon
homology and cohomology of P⋄

n. Let Stk denote H̃k−1 (B
⋄
k;Z), which is the

Steinberg module for GLk (Fp). The group GLk (Fp) acts on M (Σn/∆k). Let
R denote the ring Z [GLk (Fp)]. The following is a consequence of Theorem 1.1.

Corollary 1.2. In the setting of Theorem 1.1, suppose that n = pk. Then
there are isomorphisms

H̃Σn

j (P⋄
n;M) ∼=

{

0 j 6= k − 1
M(Σn/∆k)⊗R Stk j = k − 1

Moreover, there are isomorphisms for all j between Bredon homology and co-
homology groups: H̃Σn

j (P⋄
n;M) ∼= H̃j

Σn
(P⋄

n;M) for all j ≥ 0.

Example 1.3. To see an example of a Mackey functor for which Theorem 1.1
applies, recall that Σn acts on the one-point compactification Sn of Rn by

permuting coordinates, and hence on the j-fold smash product (Sn)
∧j

= Snj .
Fix a prime p and an integer j, where j is required to be odd if p 6= 2. Let
E∗ be a non-equivariant generalized homology theory that takes values in Z(p)-
modules. There is a graded Mackey functor ME for Σn that assigns to a finite
Σn-set T the graded abelian group

ME(T )∗ = Ẽ∗

(

Σ∞T+ ∧ Snj
)

h̃Σn
.
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The graded constituents of ME satisfy the hypotheses of Theorem 1.1. This is
discussed in detail in Section 11, and in fact a more general statement is proved
there.

Example 1.3 ties Theorem 1.1 and Corollary 1.2 to previous work. If X is a
pointed Σn-space, then filtering X by its skeleta gives the “isotropy spectral
sequences”

H̃Σn
a (X ; (ME)b)⇒ Ẽb+a

(

X ∧ Σ∞Snj
)

h̃Σn

H̃a
Σn

(X ; (ME)b)⇒ Ẽb−a map∗
(

X,Σ∞Snj
)

h̃Σn

where the second is guaranteed to converge only if X has a finite number of Σn-
cells. These spectral sequences can be used to obtain the main theorem of [1]
from Theorem 1.1. In effect, [1] calculates the abutments of these spectral
sequences for X = P⋄

n and E = HZ/p, while Theorem 1.1 and Corollary 1.2
calculate the E2-pages in a form that implies a collapse result.
In fact, for E∗ = H∗(−;Fp), the groups H̃∗

Σn
(P⋄

n;ME) were first calculated
in [2] by brute force, using detailed knowledge of the homology of symmetric
groups. This paper gives a new, more conceptual approach to those calcula-
tions.

Intended applications. We are particularly interested in the graded Mackey
functors ME as in Example 1.3 when E is the p-local sphere spectrum. As
discussed in Section 11, this application of Theorem 1.1 leads to new proofs of
some theorems of Behrens and Kuhn on the relationship between the Goodwillie
tower of the identity and the symmetric power filtration of HZ, as well as
another approach to Kuhn’s proof of the Whitehead Conjecture. We will pursue
this in another paper.
Theorem 1.1 can also be applied to the Mackey functor

M(T )∗ = π∗LK

(

(

E ∧Σ∞T+ ∧ Snj
)

h̃Σn

)

.

Here E is one of Morava’s E-theories and LK denotes localization with respect
to the corresponding Morava K-theory. In this case Theorem 1.1 seems to offer
an alternative approach to some recent calculations of Behrens and Rezk, and
again we hope to discuss this elsewhere.

Connection with other work. There is a connection between this paper and the
work of Grodal [11]. Grodal’s paper concerns the Bredon cohomology of spaces
of the form |C|, where C is a poset of p-subgroups of a group G. Our space
Pn is of a similar nature: it is Σn-equivariantly equivalent to the nerve of the
poset of nontrivial non-transitive subgroups (not just p-subgroups) of Σn. The
(generalized) Steinberg module also plays a central role in [11].

We devote the remainder of this introduction to outlining the proof of Theo-
rem 1.1. Let G be a finite group and C a collection of subgroups of G (i.e., a
set of subgroups closed under conjugation). Given a G-space X , one can asso-
ciate with it a G-space XC , together with a natural map XC → X , called the
C-approximation to X . The approximation is characterized up to homotopy by
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the fact that XC has isotropy only in C and XC → X induces an equivalence
on K-fixed points for K ∈ C. The construction of C-approximations is re-
viewed in Section 4. A typical example of interest is the collection of nontrivial
p-subgroups of a finite group G, which we denote Sp (G), following Quillen [16].
The relevance of C-approximation is that XC → X may induce an isomorphism
on Bredon homology without being an equivalence of G-spaces. To state a first
result along these lines, recall that a family of subgroups of G is a collection that
is closed under taking subgroups as well as under conjugation. The following
is a variant of the main result of Webb [19].

Proposition 4.6. Let F be a family of subgroups of G, let X be a G-space,
and let M be a Mackey functor for G that is projective relative to F . Then
XF → X induces an isomorphism on HG

∗ (−;M) and H∗
G (−;M).

If we add the trivial subgroup to the collection Sp (G), we obtain the family

of all p-subgroups of G, which we denote Sp (G). (We suppress the group and

write Sp or Sp if the group is clear from context.) We will apply Proposition 4.6

with X = P⋄
n and F = Sp (Σn), the family of all p-subgroups of Σn. In this

way we obtain a starting approximation (P⋄
n)Sp(Σn)

→ P⋄
n that induces an

isomorphism on Bredon homology and cohomology.
To analyze the approximation (P⋄

n)Sp(Σn)
→ P⋄

n, we need to reduce the size of

the approximating collection. Our key criterion for eliminating (or “discard-
ing”) elements of a collection C without affecting the Bredon homology of the
C-approximation is Lemma 5.1 below. (The lemma will be promoted from a
statement about ∗ to a statement about a G-space X in Section 5.) We need
a little more terminology to explain the criterion. If W is a finite group, then
W acts on Sp (W ) (by conjugation), and there is a natural map of spaces

(1.4) |Sp (W )|hW → ∗hW = BW .

If M is a W -module, Sp (W ) is called homologically (resp. cohomologically)
M -ample if (1.4) induces an isomorphism on ordinary twisted homology (resp.
cohomology) with coefficients in M .
For notation in the following lemma, suppose that D is a subgroup of G, let
NG(D) denote the normalizer of D in G, and let WG(D) = NG(D)/D be the
Weyl group of D in G. Notice that WG(D) acts on G/D by G-equivariant
maps.

Lemma 5.1. Let µ be a homological (or cohomological) coefficient system for G.
Let D be a subgroup of G, and let D denote the set of conjugates of D in G. Let
C be a collection of p-subgroups of G for which D is a minimal element, and such
that C contains all p-supergroups of D. Let W = WG(D). Then (∗)C\D → (∗)C
gives isomorphisms on Bredon homology (resp. cohomology) with coefficients in
µ if and only if Sp (W ) is homologically (resp. cohomologically) µ(G/D)-ample.

To apply Lemma 5.1, a criterion for ampleness is needed. It is known that if
M is a Z(p)-module, and W has an element of order p that acts trivially on M ,
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then Sp (W ) is M -ample (Proposition 5.5). Typically, such elements come from
the centralizer of D, which is why condition (2) is present in Theorem 1.1.
If we start from a Bredon (co)homology isomorphism (P⋄

n)Sp(Σn)
→ P⋄

n, we

would like to know how many subgroups must be eliminated from Sp (Σn)
before we obtain an identifiable calculation of the Bredon (co)homology of P⋄

n.
In particular, how many subgroups must be eliminated before we can conclude
that P⋄

n has the Bredon (co)homology of a point? Suppose that X is a G-
space and that C is a collection of subgroups of G such that XC → X is an
isomorphism on Bredon (co)homology. If it happens thatXH ≃ ∗ for allH ∈ C,
then XC has the same Bredon (co)homology as a point. Hence so does X , and
X⋄ has trivial reduced Bredon (co)homology.
The preceding paragraph suggests that if we start from a Bredon (co)homology
isomorphism (P⋄

n)Sp(Σn)
→ P⋄

n, it would be nice to discard from Sp(Σn) the

subgroups whose fixed point spaces are not contractible. We hope that there
are not too many of them, and that they can be discarded from Sp (Σn) without
damaging the starting Bredon (co)homology isomorphism

We call a subgroup H ⊆ Σn problematic if (P⋄
n)

H is not contractible.

Proposition 6.2. Let H be a problematic p-subgroup of Σn. Then H is an
elementary abelian p-group, and the action of H on n is free.

This proposition tells us that in fact there are very few problematic subgroups.
The proof of Theorem 1.1 then goes by using Lemma 5.1 to eliminate these few
subgroups from the collection Sp (Σn). We can usually establish the ampleness
required in the hypothesis of Lemma 5.1 by using centralizing elements, as dis-
cussed just after the statement of the lemma, above. However, it turns out that
in a few cases, appropriate centralizing elements do not exist. These are cases
in which an isotropy group of Pn contains a p-centric problematic subgroup.
Nonetheless, it turns out that the ampleness hypothesis holds in these cases,
with one exception, because all the relevant homology and cohomology groups
vanish. This is where we need condition (3) of the theorem.
In the end, the only problematic subgroups that cannot be eliminated using
one of the methods we have described are elementary abelian p-subgroups of
Σn that act transitively on n. This occurs only when n = pk, and in this
case the Tits building Bk comes up because it is the fixed point space of the
elementary abelian p-group ∆k of Σpk acting on Pn.

Organization.
In Sections 2 and 3, we give background on Bredon homology and cohomology
and Mackey functors, and we state the key properties that we use and prove
some basic results. Section 4 reviews approximation theory from [1] and proves
Proposition 4.6, the initial approximation result for Bredon homology and co-
homology. Section 5 discusses how to discard subgroups from an approximating
collection.
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Section 6 shows that most p-subgroups of Σn have contractible fixed point
spaces and Proposition 6.2 identifies those that may not (“problematic” sub-
groups). Section 7 collects some elementary results about the isotropy groups
of Pn. Then Section 8 studies centralizers of problematic subgroups inside
isotropy groups of Pn, with a view to acquiring the algebraic input for Propo-
sition 5.5.
Section 9 establishes that the ampleness hypothesis needed to use Proposi-
tion 5.4 holds in the case of the coefficients in Theorem 1.1. This gives the
data needed to prove Theorem 1.1 and Corollary 1.2 in Section 10. Finally,
Section 11 looks at the coefficient functors of Example 1.3.

Notation and Terminology.
Throughout the paper, G is a finite group and p is a fixed prime. We use
“space” to mean a simplicial set, and we often do not distinguish between a
category and its nerve, trusting to context to indicate which is under discussion.
We fix a model for a free, contractible G-space EG, and given a G-space X ,
we write XhG for the unreduced Borel construction (EG × X)/G. If X has
a basepoint and the basepoint is fixed by the G-action, we write Xh̃G for the
reduced Borel construction (EG+ ∧X) /G.
If H is a subgroup of a group G, we write CG(H) for the centralizer of H
in G, we write NG(H) for the normalizer of H in G, and we write WG(H) =
NG(H)/H for the Weyl group of H in G. Following Quillen [16], we denote
the poset of non-identity p-subgroups of G by Sp (G), or just Sp if the group
is clear from context. The poset of all p-subgroups of G, including the trivial
group, is denoted by Sp(G) or Sp. If X is a G-space, we write Iso(X) to denote
the collection of subgroups of G that appear as isotropy groups of X .
We regard a partition λ of n as corresponding to equivalence classes of an equiv-
alence relation, where x ∼λ y means that x and y are in the same component
of λ. (We write simply x ∼ y if the partition is clear from context.) We write
cl (λ) to denote the set of components, or equivalence classes, of a partition λ.

Acknowledgement. We thank Jesper Grodal for pointing us toward helpful ref-
erences, and for making comments that helped to improve the paper. In par-
ticular, Grodal’s promptings led us to formulate Proposition 4.6 in terms of
Mackey functors that are projective relative to a family.

2. Bredon homology and cohomology

Let G be a finite group. In this section, we give general background on G-spaces
and on their Bredon homology and cohomology [6].
We work simplicially. Thus, by a G-space X we mean a simplicial set with
a G-action. A G-map f : X → Y is called a G-equivalence if it induces
an equivalence XK → Y K of fixed point spaces for each subgroup K of G.
The geometric realization and the singular set functors preserve fixed points.
It follows that if f : X → Y is a G-equivalence of simplicial sets, then the
geometric realization of f is an equivalence in the category of G-topological
spaces.
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Given a G-space X , let Iso(X) denote the set of all subgroups of G that appear
as isotropy subgroups of simplices of X . The following lemma gives an eco-
nomical criterion for recognizing G-equivalences. A proof can be found in [8,
4.1], but it is older than this.

Lemma 2.1. If f : X → Y is a map of G-spaces that induces equivalences
XK → Y K for each K ∈ Iso(X) ∪ Iso(Y ), then f is a G-equivalence.

We next describe the Bredon chain and cochain complexes; to minimize re-
dundancy, we handle both simultaneously, with the terms for cohomology in
parentheses. Let µ be an additive, covariant (resp. contravariant) functor from
finite G-sets to abelian groups, i.e., a functor taking coproducts of G-sets to
sums (resp. products) of abelian groups. Such a functor will be called a ho-
mological (resp. cohomological) coefficient system for G. The functor µ can be
extended to all G-sets by the formula

µ(T ) ..= colim
Tα

µ (Tα)

(resp. µ(T ) ..= lim
Tα

µ (Tα)), where Tα ranges over the poset of finite G-subsets

of T . The Bredon chains (resp. cochains) on X with coefficients in µ are
obtained by applying µ degreewise to X to obtain a simplicial (resp. cosimpli-
cial) abelian group, and then applying Dold-Kan’s normalized chains functor,
to obtain a chain (resp. cochain) complex. The Bredon homology (resp. coho-
mology) of X with coefficients in µ, denoted HG

∗ (X ;µ) (resp. H∗
G (X ;µ)), is

the homology (resp. cohomology) of this chain (resp. cochain) complex.
Let O(G) be the orbit category of G, namely the category of transitive G-sets
and G-equivariant maps. If µ is any functor from O(G) to abelian groups then
it can be extended to an additive functor on all finite G-sets in a unique way.
Thus, one may define Bredon homology (resp. cohomology) with coefficients
in an arbitrary functor from O(G) to abelian groups.

Remark 2.2. One may view an additive covariant functor µ from G-sets to
abelian groups as a functor from O(G) to chain complexes that takes values
in complexes concentrated in degree zero. Then the Bredon chain functor is
the homotopy left Kan extension of γ from O(G) to the category of simplicial
G-sets. In the contravariant case, the Bredon cochain functor is the homotopy
right Kan extension of µ from the opposite category of O(G) to the opposite
category of simplicial G-sets.

The following example will come up later in the paper, in the proofs of
Lemma 4.4 and, implicitly, Lemma 5.1.

Example 2.3. Let G be a group, and D ⊂ G a subgroup. Note that the Weyl
group WG(D) acts on G/D by G-equivariant maps. If X is a space with an
action ofWG(D), then G×NG(D)(X × EWG(D)) is a space with an action of G.
Let µ be a (homological or cohomological) coefficient system for G. There is
an isomorphism

(2.4) HG
∗

(

G×NG(D) (X × EWG(D)) ;µ
)

∼= H∗

(

XhWG(D);µ(G/D)
)
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or, in the cohomological case

(2.5) H∗
G

(

G×NG(D) (X × EWG(D)) ;µ
)

∼= H∗
(

XhWG(D);µ(G/D)
)

.

Here the groups on the left are Bredon homology or cohomology groups, while
the groups on the right are ordinary homology or cohomology with twisted
coefficients in the W -module µ(G/D). To see where these isomorphisms come
from, let µ be a homological coefficient system for G, and let S be a set with
a free W -action. There is an isomorphism µ (G×N S) ∼= µ(G/D) ⊗Z[W ] Z[S],
which is natural in S. If µ is cohomological, then there is a natural isomorphism
µ (G×N S) ∼= HomZ[W ] (Z[S], µ(G/D)). It follows that there is an isomorphism
of simplicial abelian groups

µ (G×N (X × EW )) ∼= µ(G/D)⊗Z[W ] Z[X × EW ].

This isomorphism implies the isomorphism in (2.4). The cohomological version
of (2.5) is proved similarly.

Homotopy properties. Bredon homology has good formal properties. Proofs of
the homological cases of the following two well-known lemmas are given in [9,
4.8] and [9, 4.11]. The cohomological versions can be proved similarly. The
first one also follows from Remark 2.2.

Lemma 2.6. If f : X → Y is a G-equivalence, then f induces isomorphisms
on Bredon homology and cohomology (with any coefficients).

Lemma 2.7. A homotopy pushout square

X ′ −−−−→ X




y





y

Y ′ −−−−→ Y

of G-spaces gives long exact sequences in Bredon homology and cohomology
(with any coefficients).

Remark. A homotopy pushout square of G-spaces is a square that, upon tak-
ing fixed points (−)K for any subgroup K ⊂ G, becomes a homotopy pushout
square of spaces.

Restriction of coefficients. We recall that Bredon homology and cohomology
have restriction of coefficients. If µ is a covariant or contravariant functor and
K is a subgroup of G, we can define a coefficient functor µ|K from K-sets to
abelian groups given by

µ|K(S) = µ(G×K S) .

Then for any K-space Y , depending on the variance of µ, we have

(2.8)
HK

∗ (Y ;µ|K) = HG
∗ (G×K Y ;µ)

H∗
K (Y ;µ|K) = H∗

G (G×K Y ;µ) .
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Reduced Bredon homology. For a pointed G-space (X, ∗) and a covariant coef-
ficient system µ, there is a split monomorphism from the Bredon chains on ∗
to the Bredon chains on X . The homology groups of the quotient complex are
the reduced Bredon homology groups of X with coefficients in µ. They are de-
noted by H̃G

∗ (X ;µ). Similarly, if µ is a contravariant coefficient system, there
is a split epimorphism from the cochains on X to the cochains on ∗, and the
cohomology groups of the kernel are the reduced Bredon cohomology groups of
X , denoted H̃∗

G (X ;µ).
There is an isomorphism of Bredon homology groups

HG
∗ (X ;µ) ∼= H̃G

∗ (X ;µ)⊕HG
∗ (∗;µ)

and a similar one for cohomology groups. There are analogues of Lemmas 2.6
and 2.7 for reduced Bredon homology and cohomology. It follows that if X is
equivariantly contractible, then the reduced Bredon homology and cohomology
groups of X vanish with any coefficients.

3. Mackey functors

To obtain our results, we need to work with Bredon homology theories that be-
have well with respect to approximation by p-subgroups. It turns out that the
key property required is the presence of transfers for finite covers of G-spaces.
To obtain well-behaved transfers, we use coefficient functors that extend to
Mackey functors. The first part of this section collects background on Mackey
functors; the second part discusses projectivity relative to a collection of sub-
groups, a key hypothesis for Theorem 1.1.
There are several equivalent definitions of Mackey functors in the literature.
We will follow the treatments of Dress [7] and Webb [19, 20].

Definition 3.1. A Mackey functor (for G) is a pair of additive functors
M = (γ, γ♮) from the category of finite G-sets to abelian groups, satisfying
the following conditions.

(1) The functor γ is covariant and the functor γ♮ is contravariant.
(2) The functors γ and γ♮ agree on objects. Thus for every finite G-set S,

we write M(S) ..= γ(S) = γ♮(S).
(3) If the diagram on the left below is a pullback diagram of G-sets, then

the diagram on the right commutes.

X
a

−−−−→ U

f





y

g





y

Y
b

−−−−→ V

M(X)
γ(a)
−−−−→ M(U)

γ♮(f)

x




γ♮(g)

x





M(Y )
γ(b)
−−−−→ M(V )

Because a Mackey functor has both a covariant and a contravariant part, it
provides coefficient systems for both Bredon homology and Bredon cohomology.
We denote the resulting homology and cohomology groups by HG

∗ (−;M) and
H∗

G (−;M).
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The following remark concerns extending a Mackey functor from finite G-sets
to arbitrary G-sets. Although we will only be interested in Bredon homology
of simplicial sets of finite type, we include the remark for completeness.

Remark 3.2. There are two ways to extend a Mackey functor M = (γ, γ♮)
from finite set to arbitrary sets. The first is to define

γ♮(T ) = γ(T ) ..= colim
Tα

γ(Tα)

where Tα ranges over finite subsets of T . With this definition, it is clear that
γ is functorial with respect to all G-maps between G-sets. The contravariant
functor γ♮ is also functorial, but with respect to finite covers of G-sets. Indeed,
suppose f : X → Y is a finite cover of G-sets. Then f−1(−) defines a poset
map from finite subsets of Y to finite subsets of X . One uses this to define a
map γ♮(Y )→ γ♮(X). With this definition, condition (3) of Definition 3.1 holds
for an arbitrary square diagram of G-sets, provided f and g are finite covers.
The other way to extend M is by the formula

γ(T ) = γ♮(T ) ..= lim
Tα

γ♮(Tα).

With this definition, γ♮ remains contravariantly functorial with respect to ar-
bitrary G-maps, but γ is only functorial with respect to finite covers. Con-
dition (3) of Definition 3.1 holds for an arbitrary square diagram of G-sets,
provided a and b (rather than f and g) are finite covers.

For the remainder of this section we discuss projectivity of a Mackey functor
with respect to a collection of subgroups. Let M = (γ, γ♮) be a Mackey functor
for G and let Z be a finite G-set. Then one may define a new Mackey functor
MZ by the formula MZ(T ) = M(Z × T ). Moreover, if f : Z → Y is an
equivariant map of finite G-sets, then γ and γ♮ induce natural transformations
of Mackey functors MZ → MY and MY → MZ , respectively. In particular,
taking Y = ∗ we obtain natural transformations of Mackey functors θZ : MZ →
M and θZ : M →MZ .

Definition 3.3. A Mackey functor M is projective relative to Z if θZ is a split
surjection of Mackey functors.

Recall that a collection is a (necessarily finite) set of subgroups of G that is
closed under conjugation.

Definition 3.4. Let G be a finite group, let C be a collection of subgroups of
G, and let M be a Mackey functor for G. We say that M is projective relative
to C if M is projective relative to Z =

∐

G/H , where H ranges over a set of
representatives of conjugacy classes of elements of C.

The following routine lemma and corollary allow easier verification that a
Mackey functor is projective relative to a collection C, in particular relative
to Sp (G), the collection of all p-subgroups of G. (See Lemma 3.2 of [20].)

Lemma 3.5. A Mackey functor is projective relative to C if and only if it is
projective relative to the collection of maximal elements of C.
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Corollary 3.6. Let G be a finite group and let P be a p-Sylow subgroup of
G. A Mackey functor is projective relative to Sp (G) if and only if the natural
map θG/P : MG/P →M is a split surjection of Mackey functors.

The following definition and lemma allow us to recognize Mackey functors that
are projective relative to Sp (G). In practice, all of our examples satisfy this
condition.

Definition 3.7. Suppose that M is a Mackey functor for G. We say that M
has the p-transfer property if for every G-set Z whose cardinality is prime to
p, the composition

θZ ◦ θ
Z : M→MZ→M

is an isomorphism from M to itself.

Lemma 3.8. If a Mackey functor M has the p-transfer property, then it takes
values in Z(p)-modules, and it is projective relative to Sp.

Proof. For the first assertion, let Z be a set with trivial G-action. The com-
posed map θZ ◦θ

Z : M −→MZ −→M is multiplication by the cardinality of Z.
If we assume that the composition is an isomorphism for every Z of cardinality
prime to p, it means exactly that M takes values in Z(p)-modules.
For the second assertion, take Z = G/P , where P is a p-Sylow subgroup of G.
Then θG/P ◦θ

G/P : M −→MG/P −→M is an isomorphism of Mackey functors,
which implies that θG/P is a split surjection of Mackey functors. Hence M is
projective relative to p-groups. �

4. Approximations

In this section we develop general tools for approximating a G-space X by
other G-spaces whose Bredon homology or cohomology may be easier to cal-
culate. First, we recall the notion of C-approximation used in [1] and give a
sufficient condition for this approximation to induce an isomorphism on Bre-
don homology and cohomology (Definition 4.1, Lemma 4.2). Second, we give
an explicit model for an approximation that involves only one conjugacy class
of subgroups (Lemma 4.4). Lastly, we observe that if M is a Mackey functor
that is projective relative to a family F , then F -approximation induces an iso-
morphism on Bredon homology and cohomology with coefficients in M . This
allows us to use the family of all p-subgroups of G as a canonical jumping-off
point for approximations. In Section 5, we build on this beginning and set
up an inductive process to reduce the size of the controlling collection from
the family of all p-subgroups to a manageable collection, without changing the
Bredon homology or cohomology.
Recall that for a G-space X , we write Iso(X) for the collection of subgroups
of G that appear as isotropy groups of X . Let C be a collection of subgroups
of G. A G-space X is said to have C-isotropy if Iso(X) ⊆ C. A G-map X → Y
is a C-equivalence if fK : XK → Y K is an equivalence for each K ∈ C.

Definition 4.1. Given aG-spaceX , a C-approximation toX is a C-equivalence
XC → X such that XC has C-isotropy.
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We review the construction of a functorial C-approximation, which goes back
to Elmendorf [10]. Let OC be the full subcategory of transitive G-sets and G-
equivariant maps whose objects have isotropy groups only in C, and let i denote
the inclusion functor from OC to G-spaces. The C-approximation functor is the
endofunctor of G-spaces obtained by taking the identity functor, restricting it
to OC , and then taking homotopy left Kan extension back to the category of
G-spaces. In more concrete terms, XC can be constructed as the homotopy
coend i⊗OC

mapG(−, X). Here mapG(−, X) is the contravariant functor from
OC to spaces given by S 7→ mapG(S,X). For more detail, see [8, 4.8] and [1,
Section 3].
It follows from the construction of XC that if X has finite type, then XC does
too. The functoriality of the construction, together with Lemma 2.1, implies
that C-approximations are unique up to a canonical zigzag of G-equivalences.
Further, C-approximation commutes with homotopy pushouts of G-spaces. The
Mayer-Vietoris property (Lemma 2.7) thus implies that in order to determine
whether XC → X induces an isomorphism on Bredon homology or cohomology,
it is enough to check this condition for the orbits used in building X .

Lemma 4.2. [1, 3.2 and 3.3] Suppose that X is a G-space. If, for all K ∈
Iso(X), the map (G/K)C → G/K gives an isomorphism on Bredon homology
with coefficients in γ (resp. cohomology with coefficients in γ♮), then XC → X
gives such an isomorphism as well.

Since G/K ∼= G×K ∗, Lemma 4.2 involves approximating a space induced up
from a subgroup. There is a general lemma available for this purpose. If K is
a subgroup of G, consider the collection

C ↓ K ..= {H |H ∈ C and H ⊆ K} .

The following elementary lemma, used with Y = ∗, is helpful in applying
Lemma 4.2.

Lemma 4.3. [1, 2.12] Let K be a subgroup of G and let Y be a K-space. Then
there is a canonical G-equivalence G×K (YC↓K) ≃ (G×K Y )C.

Next, we give an explicit description of the approximation for a collection
consisting of a single subgroup of G together with its conjugates. We also
record the Bredon homology and cohomology of the approximation. Let D be
a subgroup of G, and let D be the collection consisting of all conjugates of D
in G. Recall that the normalizer NG(D) acts on the fixed point space XD, and
also on the free contractible WG(D)-space EWG(D)

Lemma 4.4. With the above notation, let F = XD. Then for any G-space X,
the natural map

Y .

.= G×NG(D) (EWG(D)× F )→ X
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is a D-approximation XD → X. For any Bredon coefficient systems γ and γ♮,
there are natural isomorphisms

(4.5)
HG

∗ (XD; γ) ∼= H∗(FhWG(D); γ(G/D))

H∗
G

(

XD; γ
♮
)

∼= H∗(FhWG(D); γ
♮(G/D))

The (co)homology groups on the right side of (4.5) are the ordinary local co-
efficient (co)homology groups associated to the natural action of W on the
coefficients through the action of W on G/D.

Proof of Lemma 4.4. The verification that Y ≃ XD proceeds by checking the
two conditions that characterizeXD. First, the orbit types: all isotropy groups
of Y are indeed conjugate to D. Second, the fixed point spaces: Y D is
EWG(D) × F , which is homotopy equivalent to XD, as required of XD. The
homology and cohomology calculations then follow by Example 2.3. �

To close this section, we establish a canonical starting point for approximation
calculations when the Bredon coefficient system is projective relative to a fam-
ily. The case X = ∗ of the following proposition can be read off as a special
case of [19, Theorem A]. The case when F is the family of all p-subgroups of G
is essentially [9, 6.4].

Proposition 4.6. Let F be a family of subgroups of G, let X be a G-space,
and let M be a Mackey functor for G that is projective relative to F . Then
XF → X induces an isomorphism on HG

∗ (−;M) and H∗
G (−;M).

Proof. We first assert that if H ∈ F , then

G/H ×XF → G/H ×X

is actually a G-equivalence by Lemma 2.1. This is because if K is an isotropy
group of either the source or the target, then K is conjugate to a subgroup ofH .

Hence K ∈ F , and (XF)
K
→ XK is a homotopy equivalence by definition

of XF .
Let Z =

∐

G/H , where H ranges over a set of representatives of conjugacy
classes in F . Since our Mackey functor M = (γ, γ♮) is projective relative
to Z, the homomorphisms induced on Bredon chains and cochains by the map
XF → X are retracts of the corresponding homomorphisms induced by the
map Z × XF → Z × X . However, the latter map is a G-equivalence, and so
induces isomorphisms on Bredon homology and cohomology. �

5. Approximations controlled by smaller collections

Recall that Sp (G) is the family of all p-subgroups of a fixed group G. Let X
be a G-space. It follows from Proposition 4.6 that if M is a Mackey functor
projective relative to Sp (G), then the approximation map XSp(G) → X induces

isomorphisms on Bredon (co)homology with coefficients in M .
For a subcollection C ⊆ Sp (G), there is a natural factoring XC → XSp(G) → X .

We can ask if XC → XSp(G) induces isomorphisms on Bredon homology and

Documenta Mathematica 21 (2016) 1227–1268



Bredon Homology of Partition Complexes 1241

cohomology with coefficients in M , in which case the map XC → X induces
such isomorphisms as well. Our main result along these lines is Proposition 5.4
below, which is an essential ingredient in the proof of Theorem 1.1.
Let W be a group. Recall that Sp (W ) is the poset of non-identity p-subgroups
of W . Let |Sp (W )| be the nerve of this poset. Let M be a W -module. Recall
that Sp (W ) is said to be homologically M -ample if the map |Sp (W )| → ∗
induces an isomorphism on homology with twisted coefficients in M :

H∗(|Sp (W )|hW ;M)
∼=
−−→ H∗(BW ;M).

Similarly, we say that Sp (W ) is cohomologically M -ample if we have an iso-
morphism on cohomology with twisted coefficients in M :

H∗(|Sp (W )|hW ;M)
∼=
←−− H∗(BW ;M).

The following lemma gives a useful criterion for when a group can be removed
from a collection without affecting Bredon homology. It is similar to [9, Propo-
sition 9.3]. Note that for a subgroup D of G, the Weyl group WG(D) acts by
G-maps on the set G/D, so γ(G/D) is a WG(D)-module.

Lemma 5.1. Let µ be a homological (or cohomological) coefficient system for G.
Let D be a subgroup of G, and let D denote the set of conjugates of D in G. Let
C be a collection of p-subgroups of G for which D is a minimal element, and such
that C contains all p-supergroups of D. Let W = WG(D). Then (∗)C\D → (∗)C
gives isomorphisms on Bredon homology (resp. cohomology) with coefficients in
µ if and only if Sp (W ) is homologically (resp. cohomologically) µ(G/D)-ample.

The proof will appear after an auxiliary lemma. If C is a collection of subgroups
of G, a subcollection D ⊂ C is initial if wheneverD ∈ D and C ∈ C with C ⊂ D,
then C ∈ D. Note that the union of two collections is a collection.

Lemma 5.2. Let C be a collection and let D ⊂ C be an initial subcollection. Let
Y → Z be a map of G-spaces that induces an equivalence YC\D → ZC\D. Then
there is a homotopy pushout diagram of G-spaces

YD −−−−→ YC




y





y

ZD −−−−→ ZC

.

Proof. It is only necessary to check that for each subgroupH ∈ C, the indicated
diagram becomes an ordinary homotopy pushout diagram upon taking H-fixed
points, which is clear. (Note that the spaces on the left have empty H-fixed
sets for H ∈ C \ D, because D is initial.) �
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Proof of Lemma 5.1. The diagram of Lemma 5.2 with Y = (∗)C\D and Z = ∗

gives the homotopy pushout diagram
(

∗C\D
)

D
−−−−→

(

∗C\D
)

C




y





y

(∗)D −−−−→ (∗)C

.

In the upper right corner,
(

∗C\D
)

C
is G-equivalent to (∗)C\D (Lemma 2.1).

Further, D consists of just one conjugacy class, allowing us to use Lemma 4.4
to obtain explicit formulas for

(

∗C\D
)

D
and (∗)D. The result is the homotopy

pushout diagram of G-spaces

G×N

(

EW ×
(

∗C\D
)D

)

−−−−→ (∗)C\D




y





y

G×N EW −−−−→ (∗)C

.

In view of the Mayer-Vietoris property (Lemma 2.7), the right vertical map
is an isomorphism on Bredon homology or cohomology if and only if the left
map is. By the second part of Lemma 4.4, the Bredon (co)homology of spaces
on the left reduces to ordinary (co)homology with twisted coefficients. The
only remaining point to note is that the fixed point set ((∗)C\D)

D is homotopy
equivalent to |Sp (W )| via a W -equivariant map. This is proved in the third
paragraph of [8, Pf. of 8.3]. �

Corollary 5.3. Let µ be a homological or cohomological coefficient system
for G. Let C be a collection of p-subgroups of G that is closed under passage
to p-supergroups. Suppose that for each p-subgroup D of G with D /∈ C, the
collection Sp (WG(D)) is µ(G/D)-ample. Then the map ∗C → ∗Sp(G) induces

an isomorphism on Bredon homology or cohomology with coefficients in µ.

Proof. Use Lemma 5.1 repeatedly to eliminate the conjugacy classes of elements
of Sp (WG(D)) \ C one by one, in such a way that smaller groups are removed
before larger ones. In this way, all intermediate collections are closed under
passage to p-supergroups, and at each step one removes a minimal element of
the collection. Thus Lemma 5.1 applies at each step. �

The following proposition is the main result of this section. Note that if D ⊂
K ⊂ G then WK(D) acts on G/D = G×K K/D by G-equivariant maps.

Proposition 5.4. Let µ be a homological (or cohomological) coefficient system
for G. Let C be a collection of p-subgroups of G that is closed under passage to
p-supergroups. Suppose that for each K ∈ Iso(X) and each p-subgroup D ⊂ K
with D /∈ C, the collection of non-identity p-subgroups of WK(D) is homolog-
ically (or cohomologically) µ(G/D)-ample. Then the map XC → XSp

induces

an isomorphism on Bredon homology (or cohomology) with coefficients in µ.
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Proof. By Lemma 4.2, it is enough to check that for each K ∈ Iso(X) the map
(G/K)C → (G/K)Sp

gives an isomorphism on Bredon homology (or cohomol-

ogy). By Lemma 4.3, we need for G×K (∗)C↓K → G×K (∗)Sp↓K
to induce an

isomorphism. By definition of restriction of coefficients (2.8), this amounts to
showing that (∗)C↓K → (∗)Sp↓K

induces an isomorphism on Bredon homology

or cohomology with coefficients in µ|K . This follows by Corollary 5.3 with K
playing the role of G. �

There remains the question of how to establish ampleness. The following cri-
terion is more or less standard and well known.

Proposition 5.5. Assume that W is a finite group and that M is a Z(p)[W ]-
module, and suppose that there exists an element of order p in W that acts
trivially on M . Then Sp (W ) is homologically and cohomologically M -ample.

Proof. The homology case when M is an Fp-module is [8, 6.3]. The cohomology
case follows from Grodal [11, Corollary 5.4 and Theorem 9.1]. It is clear that
Grodal’s methods can be adapted to include the homological case as well. We
will give a direct proof starting from the Fp-module case.
Let J be the kernel of the action map W → Aut(M). By [8, 6.3], the natural
twisted coefficient homology map

H∗ (|Sp (W )|hW ;Fp[W/J ])→ H∗ (BW ;Fp[W/J ])

is an isomorphism. By Shapiro’s lemma, this is the same as the natural map

H∗(|Sp (W )|hJ ;Fp)→ H∗(BJ ;Fp) .

Since |Sp (W )|hJ and BJ are of finite type, we conclude that the map
|Sp (W )| → ∗ induces an isomorphism on homology

(5.6) H∗(|Sp (W )|hJ ;Z(p))
∼=
−→ H∗(BJ ;Z(p))

and a similar isomorphism on cohomology. The proof is finished by comparing
the Serre spectral sequences for the following diagram, whose rows are fibra-
tions:

|Sp (W )|hJ −−−−→ |Sp (W )|hW −−−−→ B(W/J)




y





y





y

BJ −−−−→ BW −−−−→ B(W/J)

.

The abutments of these two spectral sequences are the homology or cohomology
of the total spaces with twisted coefficients inM , and by (5.6), the vertical maps
induce isomorphisms on the E2-pages. The proposition follows. �

6. Fixed point spaces of Pn

In this section, we study the fixed point spaces of p-subgroups of Σn acting
on Pn. To motivate this problem in the current context, suppose that X is
a G-space and that C is a collection of subgroups of G for which XC → X
is known to be an isomorphism on Bredon (co)homology. If it happens that
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XH ≃ ∗ for all H ∈ C, then XC has the G-equivariant homotopy type of a
point. A Bredon (co)homology isomorphism XC → X would say that X has
the Bredon (co)homology of a point as well. Hence elements of C that have
non-contractible fixed point spaces on X can be considered obstructions to X
having the same Bredon (co)homology as a point.
To apply this idea, recall that Sp (Σn) denotes the family of all p-subgroups
of Σn, and suppose M is a Mackey functor for Σn that is projective relative
to Sp (Σn). By Proposition 4.6,

(Pn)Sp(Σn)
→ Pn

induces an isomorphism on Bredon (co)homology with coefficients in M . Our
goal in this section is to show that very few p-subgroups of Σn have non-
contractible fixed point spaces on Pn. There are therefore very few obstructions
to Pn having the Bredon (co)homology of a point.

Definition 6.1. If H ⊆ Σn, we say that H is problematic if (Pn)
H

is not
contractible.

Our main result in this section is the following proposition. The proof appears
at the end of the section.

Proposition 6.2. Let H be a problematic p-subgroup of Σn. Then H is an
elementary abelian p-group, and the action of H on n is free.

As a result, we conclude that very few subgroups of Σn are problematic. In
fact, if pi | n, then there is a unique (up to conjugacy) elementary abelian
p-subgroup of rank i in Σn that acts freely on n. We study the centralizers of
these few problematic subgroups inside isotropy groups of Pn in Section 8, for
the purpose of eliminating them from the approximating collection.
For the proof of the key lemma below, we need a little more notation. If
V ⊆ Σn, let (Pn)V−orb

denote the poset of proper nontrivial partitions of n
whose classes are unions of V -orbits. Given a partition λ that is stabilized by
the action of V , let λ/V denote the coarsening of λ obtained by merging classes
of λ that contain elements in the same orbit of V . Explicitly, x ∼λ/V y if there
exists v ∈ V such that x ∼λ vy. As a result, note that the equivalence classes
of λ/V are unions of orbits of V .

Lemma 6.3. Let H be a p-subgroup of Σn. Suppose that there exists a nontrivial
subgroup V of the center of H with the property that for all proper partitions

λ that are fixed by H, the partition λ/V is proper. Then the nerve of (Pn)
H

is
contractible.

Proof. Consider the inclusion into (Pn)
H

of the subposet whose objects are
unions of V -orbits:

(6.4) (Pn)V−orb
∩ (Pn)

H
−→ (Pn)

H
.

We assert that this inclusion has a left adjoint. Indeed, if V is central in H ,
then any partition λ that is stabilized by H has the property that λ/V is also
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stabilized by H . Provided that λ/V is always proper, a routine check shows
that the functor λ 7→ λ/V is left adjoint to the inclusion (6.4). Hence (6.4)
induces an equivalence on nerves. However, the left side has an initial object,
namely the partition of n by the orbits of V , which is fixed by H because V

is central in H . Therefore (Pn)V−orb
∩ (Pn)

H
has contractible nerve, which

finishes the proof. �

Remark. Interpreting Lemma 6.3 in the case n = p is slightly pedantic. The
only p-subgroup of Σp is H = Z/p, and the available candidate for V is H itself.
One proper partition is fixed by V , namely the discrete partition, but V acts
transitively on its classes. Hence the hypothesis of Lemma 6.3 is not satisfied,

and we do not conclude that (Pp)
H

is contractible. And, indeed, (Pp)
H

is the
empty set.

To prove that H is elementary abelian in Proposition 6.2, we need a little group
theory. Given a p-group H , let Φ(H) be the Frattini subgroup of H , i.e., Φ(H)
is the normal subgroup generated by commutators and p-th powers. Note that
any homomorphism from H to an elementary abelian p-group factors through
the quotient group H/Φ(H). The following lemma is standard.

Lemma 6.5. If H is a p-group and is not elementary abelian, then there exists
a subgroup V ⊆ Φ(H) such that V has order p and is contained in the center
of H.

Proof. If H is not elementary abelian, then Φ(H) is a nontrivial normal sub-
group of H , which necessarily has nontrivial intersection with the center be-
cause H is a p-group. We can then pick out an element of order p to gener-
ate V . �

The following proposition now gives the group-theoretic structure in Proposi-
tion 6.2.

Proposition 6.6. If H is a problematic p-subgroup of Σn, then H is elemen-
tary abelian.

Proof. We prove the contrapositive. Suppose that H is not elementary abelian,
and let V ⊆ Φ(H) be the subgroup provided by Lemma 6.5. We want to apply
Lemma 6.3 to show that H is not problematic.

Suppose λ ∈ (Pn)
H
; we need to show that λ/V is proper. If λ/V fails to be

proper, then V acts transitively on the equivalence classes of λ. In this case,
since λ has more than one equivalence class, it must have exactly p equivalence
classes. The action of H permutes the equivalence classes of λ, giving a homo-
morphism H → Σp. However, H → Σp necessarily factors through H/Φ(H),
because H is a p-group and the only p-subgroups of Σp are elementary abelian.
Since V ⊆ Φ(H), this says that V acts trivially on the classes of λ, a contra-
diction.
We have established that for any λ ∈ (Pn)

H
, the partition λ/V is proper. By

Lemma 6.3, (Pn)
H is contractible. �
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Proof of Proposition 6.2. If H is problematic, then we already know from
Proposition 6.6 that H is an elementary abelian p-group. We need to show
that any element h ∈ H acts freely on n. Let V ∼= Z/p be the subgroup gen-
erated by h. Because H is problematic, the contrapositive of Lemma 6.3 tells

us that there exists a partition λ in (Pn)
H

such that V acts transitively on the
equivalence classes of λ. Since λ is not the indiscrete partition, λ must have
exactly p equivalence classes, freely permuted by V , which therefore acts freely
on n. �

7. Isotropy in Pn

In this section we collect some elementary results about the isotropy groups of
the Σn-space Pn. These results will be used to produce centralizing elements
of problematic subgroups of isotropy groups.
We begin by setting our conventions regarding wreath products, because these
groups figure prominently in the isotropy groups of Pn. Suppose that G is a
group acting (on the left) on the set s and that H is any group. The wreath
product H ≀G is the semi-direct product Hs ⋊G:

1 −→ Hs −→ H ≀G −→ G −→ 1.

We denote a general element of this group by (h1, . . . , hs; g), and the group law
is given by the formula

(h1, . . . , hs; g) · (h
′
1, . . . , h

′
s; g

′) =
(

h1h
′
g−1(1), . . . , hsh

′
g−1(s); gg

′
)

.

Accordingly, the formula for the inverse of an element is:

(h1, . . . , hs; g)
−1 =

(

h−1
g(1), . . . , h

−1
g(s); g

−1
)

.

There is a natural group monomorphism

(7.1)
H ×G −→ H ≀G
(h, g) 7→ (h, . . . , h; g).

Definition 7.2. We write Diag(H) for the image ofH×{e} inH ≀G under (7.1).

If T is a subgroup of G, we write T̃ for the subgroup of H ≀ G given by the
image of {e} × T under (7.1).

In particular, G̃ is the image of {e} × G under (7.1). Note that Diag(H) and

G̃ centralize each other in H ≀G.
From Section 5, we know that eliminating a subgroup from an approximating
collection requires thinking about normalizers, and we begin with an elementary
calculation for a special case of a normalizer in a wreath product.

Lemma 7.3. Suppose that a subgroup T ⊆ G acts transitively on s, and let
N = NG(T ). Then the normalizer of T̃ in H ≀G is Diag(H)× Ñ .

Proof. An element (h1, . . . , hs; g) ∈ H ≀G normalizes T̃ if and only if for every
t ∈ T there exists t′ ∈ T such that

(h1, . . . , hs; g)
−1
· (e, . . . , e; t) · (h1, . . . , hs; g) = (e, . . . , e; t′).
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Evaluating the left-hand side, we obtain
(

h−1
g(1), . . . , h

−1
g(s) ; g−1

)

· (e, . . . , e ; t) · (h1, . . . , hs ; g)

=
(

h−1
g(1), . . . , h

−1
g(s) ; g

−1t
)

· (h1, . . . , hs ; g)

=
(

h−1
g(1) ht−1g(1), . . . , h

−1
g(s) ht−1g(s) ; g

−1tg
)

.

This calculation allows us to verify that elements of Diag(H)× Ñ normalize T̃
in H ≀ G, because if (h1, . . . , hs; g) = (h, . . . , h; g) where g ∈ NG(T ), then the
last line reduces to

(

e, . . . , e ; g−1tg
)

with g−1tg ∈ T .

To see that a normalizing element of T̃ must be in Diag(H)× Ñ , observe that

the calculation above implies that (h1, . . . , hs; g) normalizes T̃ only if g−1tg ∈ T
for all t ∈ T , so we must have g ∈ NG(T ). Further, (h1, . . . , hs; g) normalizes
T only if for every i ∈ s and t ∈ T , we have hg(i) = ht−1g(i). Since the
action of T on s is transitive, it follows that if (h1, . . . , hs; g) normalizes T ,
then h1 = h2 = · · · = hs, so (h1, . . . , hs) ∈ Diag(H). The lemma follows. �

Next we review the standard action of the wreath product on a product set. As
above, suppose that G acts on the set s, and suppose also that H acts on the
set r. Then the wreath product H ≀G acts on r× s as follows. If (i, j) ∈ r× s,
then

(h1, . . . , hs; g)(i, j) = (hg(j)(i), g(j)).

If we visualize r× s as s columns, each containing the set r, then (h1, . . . , hs; g)
acts by first letting g permute the set of columns, and then (for each i ∈ s)
acting by hi on the i-th column. This action preserves the partition of r × s

defined by the columns, that is, by pre-images of points of s under the projection
map

(7.4) p : r× s→ s,

and in fact Σr ≀ Σs is the full isotropy group of this partition.
With these preliminaries in hand, we turn to the isotropy subgroups of simplices
of Pn under the action of Σn. The zero-simplices are partitions of n. If λ is
such a partition, we denote its isotropy group Kλ. By definition, elements of
Kλ are bijective maps σ : n → n such that x ∼λ y if and only if σx ∼λ σy for
all x, y ∈ n. The action of Kλ ⊆ Σn on n induces an action of Kλ on cl (λ),
the set of equivalence classes (or “components”) of λ.
There is a special type of partition that will play an important role.

Definition 7.5. We say that a partition λ of n is regular if the elements of
cl (λ) all have the same cardinality.

Suppose λ is a regular partition of n, with classes of cardinality r. We fix a class
c ∈ cl (λ), and we choose bijections between c and each of the other elements
of cl (λ). These choices define a (non-canonical) bijection and corresponding
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isomorphism:

n←→ c× cl (λ)(7.6)

Kλ
∼= Σc ≀ Σcl(λ).(7.7)

The composition of (7.6) with projection to cl (λ) gives a map that is Kλ-
equivariant:

n
∼=
−−→ c× cl (λ)

p
−−→ cl (λ) .

Generalizing to partitions that are not regular, suppose that λ has classes of
various cardinalities r1 . . . , rl, where r1 . . . , rl are pairwise distinct. If there are
si classes of cardinality ri, then n = r1s1+· · ·+rlsl, andKλ is (non-canonically)
isomorphic to the following product of wreath products:

(Σr1 ≀ Σs1)× · · · × (Σrl ≀ Σsl) .

From this formula, we get the following lemma.

Lemma 7.8. The action of Kλ on cl (λ) is transitive if and only if λ is regular.

Proof. If λ has si classes of cardinality ri, as above, then the action of Kλ on
cl (λ) factors through Σs1 ×· · ·×Σsl . The action of the latter is only transitive
if and only if l = 1, i.e., λ is regular. �

Moving on to isotropy groups of higher-dimensional simplices of Pn, a typical
non-degenerate simplex is a chain

Λ = (λ0 < · · · < λj)

where λ0, . . . , λj are partitions of n. We write KΛ for the subgroup of Σn that
stabilizes all of the partitions λ0, . . . , λj , that is, KΛ is the isotropy group of Λ
as a simplex of the Σn-space Pn. For each i, we know KΛ ⊆ Kλi

, so there is
an action of KΛ on cl (λi) for each i.
We need a few elementary notions for chains. First, the evident notions of
restriction and isomorphism.

Definition 7.9.

(1) If λ is a partition of A and X ⊆ A, we define λ|X , the restriction of λ
to X , as the partition of X obtained by intersecting each equivalence
class of λ with X .

(2) If Λ = (λ0 ≤ · · · ≤ λj) is a chain of partitions of A, we write Λ|X for
the chain Λ|X = (λ0|X ≤ · · · ≤ λj |X) .

(3) Suppose given sets A and A′, and suppose that we have chains of
partitions Λ = (λ0 ≤ · · · ≤ λj) and Λ′ =

(

λ′
0 ≤ · · · ≤ λ′

j

)

of A and A′,
respectively. We say that Λ and Λ′ are isomorphic if there exists a
bijection f : A→ A′ such that for all i with 0 ≤ i ≤ j, we have x ∼λi

y
⇐⇒ f(x) ∼λ′

i
f(y).

Note that the restriction of a partition λ can be discrete or indiscrete even if λ
itself is neither. Likewise, the restriction of a strict inequality of partitions can
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be an equality, so a nondegenerate chain (all strict inequalities) may become
degenerate upon restriction.
In Section 8, subgroups of Σn that have transitive actions on the set of classes
of a partition are of particular interest. To state the next lemma, which is the
first step to understanding such situations, we need a little more notation. If
Λ = (λ0 < λ1 < ... < λj) and i ≤ j, we define the shorter chain of partitions
Λ<i = (λ0 < λ1 < ... < λi−1). If c ∈ cl (λi), then we write (Λ<i)| c for the
restriction of Λ<i to c, and we write K(c) for the subgroup of the symmetric
group on c that stabilizes (Λ<i)| c.

Lemma 7.10. Let Λ = (λ0 < λ1 < ... < λj) be a chain of partitions of n and
let KΛ ⊆ Σn be its isotropy group. Let i be an integer with 0 ≤ i ≤ j. Then the
action of KΛ on cl (λi) is transitive if and only if the following two conditions
hold:

(1) The partitions λi, λi+1, . . . , λj are all regular.
(2) For any c, c′ ∈ cl (λi), the chains (Λ<i)| c and (Λ<i)| c′ are isomorphic.

Example 7.11. Let n = 18. Consider Λ = (λ0 < λ1 < λ2) defined as follows:

λ2 : {1, 2, 3, 4, 5, 6} {7, 8, 9, 10, 11, 12} {13, 14, 15, 16, 17, 18}

λ1 : {1, 2, 3} {4, 5, 6} {7, 8, 9} {10, 11, 12} {13, 14, 15} {16, 17, 18}

λ0 : {1, 2}{3} {4, 5}{6} {7, 8}{9} {10, 11}{12} {13, 14}{15} {16, 17}{18}

We verify assumptions (1) and (2) of Lemma 7.10 for i = 1. First, the partitions
λ2 and λ1 are regular, so (1) is satisfied for i = 1. Second, Λ< 1 is just λ0, and
the restriction of λ0 to any class c ∈ cl (λ1) consists of a singleton and a
two-element set. Hence restricting Λ< 1 to elements of cl (λ1) gives pairwise
isomorphic partitions. According to Lemma 7.10, the action of KΛ on cl (λ1)
is transitive.
And indeed, by inspection we have KΛ

∼= (Σ2 × Σ1) ≀ (Σ2 ≀ Σ3). The action
of KΛ on cl (λ1) is given by (Σ2 ≀ Σ3) ⊆ Σ6

∼= Σcl(λ1), which is transitive. (See
also Example 7.16.)

Proof of Lemma 7.10. Suppose KΛ acts transitively on cl (λi). Then KΛ also
acts transitively on the set of classes of λi+1, . . . , λj , and hence these partitions
are regular by Lemma 7.8. Further, suppose that c, c′ ∈ cl (λi). The transitive
action of KΛ on cl (λi) gives an element σ ∈ KΛ taking c to c

′; then σ induces
the required isomorphism from (Λ<i)| c to (Λ<i)| c′ .
Now let us prove the converse. First, we assert that for any t with i ≤ t ≤ j and
for any c, c′ ∈ cl (λt), we have isomorphic chains (Λ<t)| c and (Λ<t)| c′ . The
point is that while assumption (2) only gives us such an isomorphism for t = i,
we can reach the same conclusion inductively for t > i by using regularity of
λi, λi+1,. . . ,λj (assumption (1)).
To simplify notation for isotropy groups in what follows, we write Kt for the
isotropy group of the chain (λ0 < λ1 < ... < λt). We know Ki ⊃ Ki+1 · · · ⊃
Kj = KΛ, and our goal is to prove that KΛ acts transitively on cl (λi). Our
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strategy is to first prove that Ki acts transitively on cl (λi), and then we prove
by induction on t that Kt likewise acts transitively on cl (λi) for i ≤ t ≤ j.
For the inductive hypothesis, we need to assume more about Kt−1 (for t >
i) than simply a transitive action on cl (λi) (so we will need to verify the
assumption explicitly for Ki to get the base case). To state the hypothesis
for Kt−1, let c, c′ be arbitrary elements of cl (λi), and let C,C′ ∈ cl (λt−1)
be the unique classes such that c ⊆ C and c

′ ⊆ C′. We assume for the
inductive hypothesis onKt−1 that for any choice of c, c′, there exists an element
σt−1(c, c

′) ∈ Kt−1 that is a bijection from c to c
′, is a bijection from C to C′,

and is the identity on the complement of C ⊔ C′ in n.
To construct σi(c, c

′) ∈ Ki, the base case, recall that by assumption (2), the
chains (Λ<i)| c and (Λ<i)| c′ are isomorphic. This means there is a bijection
f : c → c

′ that induces an isomorphism of (Λ<i)| c to (Λ<i)| c′ . We define
σi(c, c

′) ∈ Ki as f on c, as f−1 on c
′, and as the identity map on the comple-

ment of c ⊔ c
′.

For the inductive step, we need to construct σt(c, c
′) ∈ Kt. Let D,D′ ∈

cl (λt) be the classes containing c, c′, respectively. Because λt−1 and λt are
both regular, D and D′ are both constructed by merging the same number of
classes of λt−1, say D = C1 ⊔ · · · ⊔ Ck and D′ = C′

1 ⊔ · · · ⊔ C′
k for classes

C1, . . . , Ck, C
′
1, . . . , C

′
k of λt−1. We know from what was proved above that the

restrictions of Λ<t to any of the classes C1, . . . , Ck, C
′
1, . . . , C

′
k are isomorphic.

Now suppose that c ⊆ C1 and c
′ ⊆ C′

1. We construct σt(c, c
′) ∈ Kt as follows.

On the complement of D ⊔D′ in n, the element σt(c, c
′) acts by the identity.

On C1 ⊆ D, use the bijection to C′
1 ⊆ D′ given by the inductive hypothesis.

On the other classes, C2,. . . ,Ck, use bijections to C′
2,. . . , C

′
k, respectively, that

are isomorphisms of the restrictions of Λ<t to each class. Likewise, on C′
1,. . . ,

C′
k use the inverses of those isomorphisms. This completes the inductive step

and finishes the proof. �

If, as in Lemma 7.10, the isotropy subgroup of a chain Λ acts transitively on the
equivalence classes of some λi in the chain, then there is an explicit expression
for the isotropy group KΛ as a wreath product. To describe this, we need
another definition.

Definition 7.12. Let µ and λ be partitions of a set, with µ ≤ λ. We define
the partition of cl (µ) induced by λ, denoted λµ, or simply λ if µ is clear from
context, by following equivalance relation: if c, c′ are equivalence classes of µ,
then

c ∼λµ
c
′ ⇐⇒ c ⊔ c

′ is contained in a single equivalence class of λ.

For instance, in Example 7.11, we could consider λ1 < λ2. Then λ2, the
partition of cl (λ1) induced by λ2, is a partition of a six-element set into three
subsets, each containing two elements:

λ2 =







{{1, 2, 3}, {4, 5, 6}}
{{7, 8, 9}, {10, 11, 12}}

{{13, 14, 15}, {16, 17, 18}}.
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In the following lemma, and also in Section 8, we need a convention regarding
the extremes in a chain of partitions Λ = (λ0 < λ1 < ... < λj). We adopt
the convention that λ−1 is the partition into singleton subsets (the discrete
partition). Similarly, we interpret λj+1 as the partition containing just one
equivalence class (the indiscrete partition).

Lemma 7.13. Suppose that Λ = (λ0 < λ1 < ... < λj), and suppose that KΛ acts

transitively on cl (λi) for some 0 ≤ i ≤ j. Let Λ>i =
(

λi+1 < · · · < λj

)

be the

induced chain of partitions of cl (λi), and let K
(

Λ>i

)

be the isotropy subgroup

of Λ>i in Σcl(λi). Fix a class c ∈ cl (λi) and let K(c) ⊆ Σc denote the isotropy
group of (Λ<i)| c. Then there is an isomorphism

(7.14) KΛ
∼= K(c) ≀K

(

Λ>i

)

.

Proof. We have a fixed class c ∈ cl (λi). By Lemma 7.10, we know that for all
c
′ ∈ cl (λi), the chains (Λ<i)| c and (Λ<i)| c′ are isomorphic. Hence for each

c
′ ∈ cl (λi), we can choose a bijection c→ c

′ that respects the finer partitions
λ0, . . . , λi−1. Assembling these bijections gives a bijection

(7.15) n −→ c× cl (λi) .

Under (7.15), the chain Λ of partitions of n corresponds to a chain of partitions
of c×cl (λi) as described below. The lemma will follow by identifying bijections
from c× cl (λi) to itself that preserve the chain of partitions.
We start in the middle of the chain. Subsets of n that are equivalence classes
of λi correspond under (7.15) precisely to the columns of c× cl (λi). Explicitly,
if c′ ⊆ n is an equivalence class of λi, then the bijection c→ c

′ used to define
(7.15) provides the correspondence between the column {(x, c′) : x ∈ c} and
c
′ ⊆ n. As indicated by (7.7), the isotropy group of λi as a partition of c×cl (λi)

is then identified by (7.15) with Σc ≀ Σcl(λi).
Partitions finer than λi take place within the columns of c × cl (λi). To be
specific, if t < i, we have (x, c′) ∼λt

(y, c′′) if and only if c′ = c
′′ and x ∼λt

y.
We know that for any c

′ ∈ cl (λi), the bijection c→ c
′ induces an isomorphism

from (Λ<i)| c′ to (Λ<i)| c, and hence an isomorphism K(c)
∼=
−→ K(c′). As a

consequence, the isotropy group of Λ<i+1 regarded as a chain of partitions of
c× cl (λi) is isomorphic to K(c) ≀ Σcl(λi).
Finally, we note that coarsenings of λi are in one-to-one correspondence with
partitions of cl (λi). The coarsenings λi+1 < ... < λj of λi are stabilized by an

element σ ∈ Σn if and only if the image of σ in Σcl(λi) stabilizes Λ>i.
We conclude that under (7.15), the isotropy subgroup KΛ ⊆ Σn corresponds
to KΛ

∼= K(c) ≀K
(

Λ>i

)

. �

Example 7.16. We continue with the setup of Example 7.11. The action of
KΛ on cl (λ1) is transitive, so we consider Lemma 7.13 applied with i = 1. The
chain Λ>1 consists simply of λ2, which, as mentioned just before Lemma 7.13,
partitions the six-element set cl (λ1) into three two-element subsets. Therefore

K
(

Λ>1

)

∼= Σ2 ≀ Σ3.
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Choose c = {1, 2, 3} ∈ cl (λ1). Then λ1 restricted to c is a singleton and a
two-element set, so K(c) = Σ1 × Σ2. Thus the result of the Lemma 7.13 is
what we found before by inspection:

KΛ
∼= K(c) ≀K

(

Λ>1

)

∼= (Σ2 × Σ1) ≀ (Σ2 ≀ Σ3) .

Once again we note that the isomorphism of Lemma 7.13 is not canonical. It
depends on a choice of a particular class c ∈ cl (λi) and of an isomorphism

n ∼= c× cl (λi) .

A situation of particular interest comes about when a subgroup D ⊆ KΛ acts
transitively and freely on cl (λi).

Lemma 7.17. With the notation of Lemma 7.13, suppose that a subgroup
D ⊆ KΛ acts freely and transitively on cl (λi). Then the isomorphism (7.14)
identifies D with a transitive subgroup of K

(

Λ>i

)

. If N = NK(Λ)(D), then

the normalizer of D in KΛ is identified by (7.14) with the group

Diag(K(c))× Ñ .

In particular, KΛ contains a subgroup isomorphic to K(c) that centralizes D.

Proof. The free and transitive action of D on cl (λi) allows us to choose a
bijection between cl (λi) and the underlying set of D such that the given ac-
tion of D on cl (λi) corresponds to the action of D on its underlying set by
left translation. This choice identifies D with a transitive subgroup of K

(

Λ
)

.
The lemma’s statement about the normalizer of D is now a consequence of
Lemma 7.3. �

The situation described in this lemma is illustrated in Example 8.1 below.
We need another result, in a similar spirit, that will be applied in Section 8
to subgroups whose action on some cl (λi) in Λ is transitive but not free. Let
D be an abelian group acting freely on n, and let n/D be the set of orbits of
that action. Then the action of D on n extends canonically along the diagonal
inclusion D →֒ Dn/D to an action of Dn/D on n. Further, because D acts
freely on n, the action of Dn/D on n is faithful, that is, Dn/D → Σn is a
monomorphism. Similarly, if n/D ։ µ is a surjective function of sets, then we
obtain an inclusion Dµ →֒ Dn/D that identifies Dµ as a subgroup of Dn/D via
a diagonal inclusion, giving us Dµ ⊆ Dn/D ⊆ Σn. Note that it is necessary
for the action of D on n to be free in order for Dn/D to include into Σn as a
subgroup.
Continuing to assume that D is an abelian group acting freely on n, suppose
that S ⊆ D is a subgroup. Then Sn/D ⊆ Dn/D, so in particular Sn/D com-
mutes with D ⊆ Dn/D. Hence if n/D ։ µ is an epimorphism, we can define
D ⊕S Sµ to be the pushout in the category of abelian groups of the diagram
D ← S → Sµ. Then D ⊕S Sµ is an abelian group with

D ⊆ D ⊕S Sµ ⊆ Dµ ⊆ Σn.
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Note that if S is a nontrivial subgroup and |µ| > 1 then D⊕S Sµ ⊆ Σn strictly
contains D. In particular, suppose that λ is a partition stabilized by D, and
recall that λ/D denotes the minimal coarsening of λ whose classes are unions of
D-orbits. (See Section 6.) There is an evident epimorphism n/D ։ cl (λ/D),
and we use it to define the pushout D ⊕S Scl(λ/D).
With these preliminaries in place, we can state our next result.

Lemma 7.18. Let D ⊆ Σn be an abelian group acting freely on n, let S be a
subgroup of D, and let λ be a partition of n that is stabilized by D. Then:

(1) If µ is a refinement of λ (or λ itself) and is stabilized by D then µ is
stabilized by D ⊕S Scl(λ/D).

(2) If µ is a coarsening of λ/S that is stabilized by D, then µ is stabilized
by D ⊕S Scl(λ/D).

Proof. In both cases µ is assumed to be stabilized by D, so it is sufficient to
prove that µ is stabilized by Scl(λ/D) in order to conclude that µ is stabilized by
D⊕S S

cl(λ/D). In fact, because λ/S ։ λ/D, we know that Scl(λ/D) ⊆ Scl(λ/S),
so it is sufficient to prove that µ is stabilized by Scl(λ/S).
Suppose that µ is a refinement of λ, and that µ is stabilized by D. If x ∼µ y,
then x ∼λ y also, and hence x ∼λ/S y, say x, y ∈ z where z ∈ cl (λ/S).

But the action of Scl(λ/S) on z factors through projection to the factor of S
corresponding to z. Since S ⊆ D itself stabilizes µ by assumption, we know
that σx ∼µ σy for any σ ∈ S, proving that Scl(λ/S) stabilizes µ.

Now suppose that µ is a coarsening of λ/S. We know that Scl(λ/S) not only sta-
bilizes λ/S, but actually acts trivially on the set of equivalence classes of λ/S.
Hence Scl(λ/S) stabilizes any coarsening of λ/S, and in particular, stabilizes µ.
This finishes what is needed for the second statement of the lemma. �

Example 7.19. Consider the following partition

λ : {1, 2}{3, 4}{5}{6} {7, 8}{9, 10}{11}{12}.

Let D ∼= Z/4 be the subgroup of Σ12 generated by the following product of
cycles:

ρ = (1, 7, 3, 9)(2, 8, 4, 10)(5, 11, 6, 12).

Then D acts freely on the set {1, . . . , 12}, and D preserves λ. The partition
λ/D is given by merging classes of λ that contain elements of the same orbit
of D, so we have

λ/D : {1, 2, 3, 4, 7, 8, 9, 10}, {5, 6, 11, 12}.

Let S ⊂ D be the subgroup isomorphic to Z/2. The group S is generated by
ρ2, which is the following product of transpositions

(1, 3)(7, 9)(2, 4)(8, 10)(5, 6)(11, 12).

Accordingly, D ⊕S Scl(λ/D) is the subgroup of Σn generated by D and the
elements (1, 3)(7, 9)(2, 4)(8, 10) and (5, 6)(11, 12).
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The partition λ/S is given by merging classes of λ that contain elements of the
same orbit of S, so we have

λ/S : {1, 2, 3, 4}, {5, 6}, {7, 8, 9, 10}, {11, 12}.

The reader is invited to check that D ⊕S Sλ/D is an abelian group containing
D that preserves λ and λ/S, as well as any D-invariant refinement of λ or
coarsening of λ/S.

8. Centralizers and involutions

Fix a prime p. In Section 4, we showed that under some hypotheses the Bredon
homology of a G-space X can be calculated using the approximation XSp

of X .

Our next goal is to further reduce the size of the approximating collection in the
special case G = Σn and X = Pn. More specifically, we would like to use the
methods of Section 5 to eliminate, as much as possible, subgroups in Sp (Σn)
whose fixed points on Pn are not contractible (the “problematic” subgroups).
According to Proposition 6.2, these are elementary abelian p-subgroups of Σn

that act freely on n.
In this section, we build on the group theory developed in Section 7 to study
the centralizers of problematic subgroups inside of isotropy groups of Pn. The
main result is Proposition 8.2, which gives us the algebraic data needed to
eliminate problematic subgroups of Σn that act non-transitively on n. Thus
we will conclude in Section 9 that the only problematic subgroups that must
be included in the approximating collection are the transitive ones.
Throughout this section, let D be an abelian p-group that acts freely and non-
transitively on n. (It is not necessary to assume that D is elementary.) Let
Λ = (λ0 < λ1 < ... < λj) be a simplex of Pn, and let K = KΛ ⊆ Σn be the
isotropy group of Λ. Assume that D ⊆ K (so D stabilizes Λ). As usual, let
CK(D), NK(D), and WK(D) = NK(D)/D denote the centralizer, normalizer,
and Weyl group of D in K, respectively. Let M be a coefficient system for Σn

that takes values in Z(p)-modules. By Proposition 5.4, in order to eliminate D
we need to show that the collection Sp (WK(D)) is M(Σn/D)-ample.
The usual strategy is to use Proposition 5.5, for which we need to show that
WK(D) has an element of order p that acts trivially on M(Σn/D). Typically
such elements are found in CK(D)/D, and therefore we would like to know
that CK(D)/D has elements of order p. Subgroups that do not satisfy this
condition are called p-centric. It turns out that in “most” cases D is not p-
centric in K (so it can be eliminated using Proposition 5.5). This is the first
case of Proposition 8.2. However, in some important cases D is p-centric in K,
as in the following example.

Example 8.1. Let p = 3 and n = 18. Recall that a transitive elementary
abelian 3-group ∆2

∼= (Z/3)2 of Σ9 is given by the action of (Z/3)2 on its own
elements by translation. Let Λ consist of a single partition λ0, which partitions
n by the nine two-element sets {2i − 1, 2i}. Let D ∼= (Z/3)2 be the diagonal
embedding of ∆2 in Σ18 as permutations of odd integers and even integers.
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That is, D acts transtively on {1, 3, . . . , 17} and on {2, 4, . . . , 18} and satisfies
d(2i− 1) + 1 = d(2i), so D stabilizes λ0 and acts transitively on its classes.

The isotropy group K = KΛ is Σ2 ≀ Σ9 ⊆ Σ18, and D = ∆̃2 (see Definition 7.2
for the notation). By Lemma 7.3, we know that the normalizer of D in K is

NK(D) = Σ2 × Ñ , where N = NΣ9
(∆2), and by inspection the centralizer is

CK(D) = Σ2× C̃, where C = CΣ9
(∆2). However, ∆2 is self-centralizing in Σ9.

Hence CK(D)/D ∼= Σ2 and has no elements of order 3, and D is 3-centric in K.
Even worse, the Weyl group of D in K is WK(D) = Σ2 × GL2(F3). This
means that D is also “3-radical” in K, i.e., the Weyl group has no nontrivial
normal 3-subgroups. As a consequence, it is difficult to eliminateD by standard
methods.

We will show in Proposition 8.2 that p-radical situations like Example 8.1 can
occur only when the prime p is odd, and that in this case the Weyl group
WK(D) has an odd involution that acts trivially on the poset Sp (WK(D)). (In
Example 8.1, the involution comes from the factor Σ2 of Σ2 × GL2(F3).) By
assumption (3) in Theorem 1.1, such an involution will act by −1 onM(Σn/D).
It will turn out that the presence of this involution implies that Sp (W ) is ample
for the trivial reason that all the relevant homology and cohomology groups
vanish. (We learned from the referee that this type of argument is sometimes
referred to as “center kills.”)
The following proposition is the main result of this section. It says that either
D is not p-centric in K, or the centralizer of D has an odd involution that
acts trivially on the poset Sp (W ). The proof of the proposition occupies the
remainder of this section. By an “odd involution” we mean a permutation of
order 2 that can be written as a product of an odd number of transpositions.

Proposition 8.2. Let K ∈ Iso (Pn) ∪ {Σn}, and let D ⊆ K be an abelian
p-subgroup of Σn that acts freely and non-transitively on n. Let CK(D) be the
centralizer of D in K. Then either

(1) p | [CK(D) : D], or
(2) p is odd, and there is an odd involution in CK(D) that acts trivially on

the poset of p-subgroups of the normalizer of D in K.

Proof. Recall the following construction from the end of Section 7. Suppose
that S is a subgroup of D ⊆ Σn and that λ is a partition of n. We define
D⊕S Scl(λ/D) as the pushout in the category of abelian groups of the diagram
D ← S → Scl(λ/D). This pushout is an abelian subgroup of Σn that containsD.
By Lemma 7.18, D ⊕S Scl(λ/D) stabilizes any D-invariant refinement of λ and
any D-invariant coarsening of λ/S.
To prove the proposition, first suppose that K = Σn, and let µ be the par-
tition of n by the orbits of D. Because D does not act transitively on n,
the partition µ has more than one equivalence class. Then CK(D) contains
the subgroup Dcl(µ) ∼= D ⊕D Dcl(µ/D), which is a p-subgroup of Σn strictly
containing D. Hence p | [CK(D) : D].
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Now suppose K ∈ Iso (Pn) is the isotropy group of a nondegenerate chain of
proper, nontrivial partitions, say

Λ = (λ0 < λ1 < ... < λj) .

By assumption, D ⊆ K so D stabilizes Λ. For each i, the group K acts on the
set cl (λi), and therefore so does D. Let i be the smallest number for which
the action of D on the set of classes of λi is transitive. (If D does not act
transitively even on cl (λj), then we interpret the argument that follows with
i = j+1, and we understand λj+1 to be the indiscrete partition of n, consisting
of just one equivalence class. Likewise, if i = 0, we use the convention that λ−1

is the discrete partition of n into singleton sets.)
Let S ⊂ D be the subgroup that acts trivially on the set of classes of λi, i.e.,

S ..= ker
(

D → Σcl(λi)

)

.

There are two cases: (i) S is nontrivial, in which case it turns out that p |
[CK(D) : D]; or (ii) S = {e}, in which case it turns out that sometimes
p | [CK(D) : D], but if not, then p is odd and there is an odd involution in
CK(D) that acts trivially on the poset of p-subgroups of the normalizer of D
in K.
Suppose first that S is a nontrivial group. Let µ = λi−1/D, that is, µ is the
finest mutual coarsening of the partition λi−1 and the partition of n by the
orbits of D. Consider the group D ⊕S Scl(µ). Since D acts non-transitively
on cl (λi−1) by assumption, we know that µ has more than one equivalence
class, so D⊕SS

cl(µ) is an abelian p-group that strictly contains D. Lemma 7.18
implies immediately that D ⊕S Scl(µ) stabilizes λ0 < · · · < λi−1. Further, by
construction S acts trivially on cl (λi), that is, the classes of λi are unions of
orbits of S. Since λi is also a coarsening of λi−1, this means that λi is a D-
invariant coarsening of λi−1/S. Lemma 7.18 now tells us that λi (as well as
λi+1,. . . , λj) is stabilized by D ⊕S Scl(µ). That is, D ⊕S Scl(µ) stabilizes all

of Λ, so D ⊕S Scl(µ) ⊂ K. Therefore p | [CK(D) : D] in this case.
Now suppose that S is trivial. Then D acts freely and transitively on the
classes of λi, and we are in the situation of Lemma 7.17. Let c be a fixed
class of λi, and let K(c) be the isotropy group of the restriction of Λ to c. Let
G = im

(

K →֒ Σcl(λi)

)

. Notice that since D acts freely on cl (λi), we can regard
D as a subgroup ofG. By Lemma 7.17, K ∼= K(c) ≀G. In particular,K contains
a subgroup Diag(K(c)), isomorphic to K(c), that centralizes D and has trivial
intersection with D. Thus CK(D)/D contains a subgroup isomorphic to K(c).
If p divides the order of K(c) then p | [CK(D) : D], and we are done.
Suppose that p does not divide the order of K(c). Since K acts transitively
on the classes of λi, by Lemma 7.10 the restriction of λ0 to any class of λi is
isomorphic to the restriction of λ0 to c. By assumption, the partition λ0 is not
discrete, and therefore the restriction of λ0 to c is not discrete.
It follows that there exist elements x, y ∈ c that belong to the same class
of λ0. The transposition (x y) that interchanges these two elements is an
element of K(c). In particular, the order of K(c) is always divisible by 2, so
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if p ∤ |K(c)|, then p > 2. Now let σ be the image of (x y) under the diagonal
embedding K(c) →֒ K ∼= K(c) ≀ G. The element σ is a product of disjoint
transpositions, as many transpositions as there are elements of D, which is a
power of p. In particular the number of transpositions is odd, so σ is an odd
involution. The element σ is in Diag(K(c)) and therefore it centralizes D.
Moreover, by Lemma 7.3, we have NK(D) ∼= K(c) × NG(D). Since p does
not divide the order of K(c), every p-subgroup of K(c)×NG(D) is contained
in NG(D), and is centralized by K(c). It follows that σ centralizes every p-
subgroup of NK(D), and in particular σ acts trivially on the poset of such
p-subgroups. �

9. Eliminating Problematic Subgroups

We saw in Section 6 that if D is a problematic p-subgroup of Σn (i.e., (Pn)
D

is
not contractible), then D is an elementary abelian p-group that acts freely on n.
In this section, we introduce two conditions on a Mackey functor M for Σn. In
the main result of this section, Proposition 9.4, we show that these conditions
permit the use of Proposition 5.4 to discard the problematic subgroups when
they do not act transitively on n. The conditions hold for the Mackey functors
that we have in mind for applications. (See Section 11.)
The Σn-spaces we need to approximate using the methods of previous sections
are Pn and ∗. Hence throughout this section we assume an ambient isotropy
subgroup K ∈ Iso (Pn) ∪ {Σn}. We must show that for any K containing a
problematic subgroup D, the ampleness condition of Proposition 5.4 is met. To
apply the methods of Section 5, we need centralizing elements that act trivially
on coefficients. We need an appropriate characterization of the coefficients that
will apply in our cases of interest (Section 11) and be sufficient to guarantee
the existence of the needed elements.
Recall from Example 1.3 that our prime examples of Mackey functors for
applications are constructed by means of certain homotopy functors applied
to Sn. Note that a permutation σ ∈ CΣn

(D) induces a D-equivariant map
σ♯ : S

n → Sn. It turns out to be useful to look at what happens when we
pass to the general linear group by embedding Σn →֒ GLn R as permutations
of the standard basis. Let CGLn R(D) denote the centralizer of D in GLn R.
Notice that if σ ∈ ker [CΣn

(D)→ π0CGLn R(D)], then the map σ♯ : S
n → Sn is

actually D-equivariantly homotopic to the identity map, which is a good sign
for trivial action on our coefficients.

Definition 9.1. We say that M satisfies the centralizer condition for D if the
kernel of CΣn

(D)→ π0CGLn R(D) acts trivially on M (Σn/D).

As discussed in Section 11, our primary examples of Mackey functors satisfy the
centralizer condition. The centralizer condition allows us to use Proposition 5.5
to eliminate problematic groups that are not p-centric in the ambient isotropy
group K.
In the following definition, we refer to an odd permutation of order 2 as an
“odd involution.”
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Definition 9.2. Let p be an odd prime. We say that M satisfies the invo-
lution condition for D if any odd involution in CΣn

(D) acts on M (Σn/D) by
multiplication by −1.

The involution condition enables us to eliminate problematic subgroups in the
few cases when they happen to be p-centric.

Definition 9.3. We say that the Mackey functor M satisfies the centralizer
condition (resp. satisfies the involution condition) if it satisfies the correspond-
ing condition in Definition 9.1 (resp. Definition 9.2) for all elementary abelian
p-subgroups of Σn that act freely and non-transitively on n.

Examples of Mackey functors that satisfy both the centralizer and the involu-
tion conditions are given in Section 11.
Our main result in this section is the following proposition. The term “ample”
was defined at the beginning of Section 5.

Proposition 9.4. Let D ⊂ Σn be an elementary abelian p-subgroup that acts
freely and non-transitively on n, and let M be a Mackey functor for Σn taking
values in Z(p)-modules. Assume that

• M satisfies the centralizer condition for D, and
• if p is odd, M satisfies the involution condition for D.

Then for any K ∈ Iso (Pn)∪{Σn} such that D ⊆ K, we have that Sp (WK(D))
is M (Σn/D)-ample.

Before the proof, we need a lemma from representation theory, which follows
immediately from [5, Thm 1.3.4].

Lemma 9.5. If D ⊆ GLn R is finite, then π0CGLn R(D) is an elementary abelian
2-group.

We have everything we need for the odd-primary case, so we handle this first.

Proof of Proposition 9.4 for p odd, p dividing |CK(D)/D|.
Pick x ∈ CK(D)/D of order p. If x̃ ∈ CK(D) is an inverse image of x, it is
clear from Lemma 9.5 that x̃ belongs to the kernel of CK(D)→ π0CGLn R(D).
In view of the centralizer condition, x acts trivially on M(Σn/D). The desired
conclusion follows from Proposition 5.5. �

Proof of Proposition 9.4 for p odd, p not dividing |CK(D)/D|.
We will show that Sp (WK(D)) is M -ample with M = M(Σn/D) by showing
that all of the relevant homology and cohomology groups vanish. To declutter
the notation for quotients, let C = CK(D)/D, let N = NK(D)/CK(D), and
let W = WK(D). The short exact sequence

(9.6) 1→ C →W → N → 1

shows that the map |Sp (W )|hW → BW can be written as

(|Sp (W )|hC)hN →
(

BC
)

hN
.
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The Serre spectral sequence shows that for the homology case, it is enough
to prove that the local coefficient groups H∗(|Sp (W )|hC ;M) and H∗(BC;M)
vanish (respectively, for cohomology, that the groups H∗(|Sp (W )|hC ;M) and

H∗(BC;M) vanish).
We will handle the case H∗(|Sp (W )|hC ;M); the others are similar. By Propo-
sition 8.2, there exists an odd involution τ ∈ CK(D) that acts trivially on poset
of p-subgroups of NK(D), and τ projects to an involution τ ∈ C. The element
τ acts trivially on the space |Sp (W )| and, in view of the involution condition,
acts by −1 on M(Σn/D). Consider the Serre spectral sequence of

|Sp (W )| → |Sp (W )|hC → BC .

Since M is a Z(p)-module and C has order prime to p, we know that E2
i,j = 0

for i > 0, while the group E2
0,j is given by the coinvariants of the action of

C on Hj(|Sp (W )|;M). However, τ ∈ C acts trivially on |Sp (W )| and acts on
M by −1, so τ acts on Hj(|Sp (W )|;M) by −1. Since the coinvariants of this

τ -action vanish, the groups H0

(

C;Hj(|Sp (W )|;M)
)

vanish for all j, and the

Serre spectral sequence collapses to zero at E2. �

The remainder of the proof of Proposition 9.4, for p = 2, requires two known
lemmas. As usual, |Sp (G)| denotes the nerve of the poset of nontrivial p-
subgroups of a finite group G, and the group G acts on Sp (G) by conjugation.
The following lemma is due to Grodal.

Lemma 9.7 ([11], Proposition 5.7). Let G be a finite group with a normal
subgroup H of order prime to p. Then |Sp (G)|/H is isomorphic to |Sp (G/H)|.

The following well-known lemma is due to Quillen. See the proof of Proposi-
tion 2.4 in [16].

Lemma 9.8 ([16]). If G is a finite group with a nontrivial normal p-subgroup,
then |Sp (G)| is contractible.

Let C0 denote the subgroup of CK(D) generated by D and the kernel of the
map CK(D) → π0 GLn R. It is clear from Lemma 9.5 that CK(D)/C0 is an
elementary abelian 2-group.

Proof of Proposition 9.4 for p = 2, p dividing |C0/D|. The same reasoning ap-
plies as in the case p odd, p dividing |CK(D)/D|. �

Proof of Proposition 9.4 for p = 2, p not dividing |C0/D|. By Proposition 8.2,
p divides |CK(D)/D|, so under the assumption p ∤ |C0/D|, it must be the
case that p | |CK(D)/C0| and CK(D)/C0 is nontrivial. Observe that C0 is a
normal subgroup of NK(D), because it is generated by the normal subgroup
D and the normal subgroup obtained by intersecting CK(D) with the kernel
of NK(D) → π0 GLn R. It follows that CK(D)/C0 is a nontrivial normal 2-
subgroup of NK(D)/C0.
Let W = WK(D), and as usual, let |Sp (W )| denote the nerve of the poset
of nontrivial p-subgroups of W . We must show that |Sp (W )|hW → BW
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induces isomorphisms on twisted M -homology and M -cohomology, where
M = M (Σn/D). Let C0 denote C0/D. As in (9.6), we have a short exact
sequence

1→ C0 →W → N/C0 → 1,

and a Serre spectral sequence argument like that following (9.6) establishes that
we need only show that the map |Sp (W )|hC0

→ BC0 induces an isomorphism
on M -homology and M -cohomology. Further, because of the definition of C0

and the assumption that M satisfies the centralizer condition, the action of
C0 on M is trivial, so we have untwisted coefficients. Consider the following
commutative diagram comparing homotopy orbits to strict orbits:

|Sp (W )|hC0
−−−−→ (∗)hC0





y





y

|Sp (W )|/C0 −−−−→ ∗

.

Since M is a Z(p)-module, it is enough to show that all of the maps in this

diagram are p-local equivalences. By Lemma 9.7, the orbit space |Sp (W )|/C0

is isomorphic to the nerve of the poset of nontrivial p-subgroups of NK(C)/C0,
and that poset is weakly contractible (Lemma 9.8), because NK(C)/C0 has the
nontrivial normal p-subgroup CK(D)/C0. Thus the lower horizontal map is an
equivalence. The right vertical map is a p-local equivalence because the order
of C0 is prime to p. In the same way the isotropy groups of the action of C0

on |Sp (W )| are all of order prime to p, and so the isotropy spectral sequence
of this action [9, 2.4] shows that the left vertical map is a p-local equivalence
as well. �

Remark 9.9. Grodal has pointed out to us that [11] can be used for an alter-
native proof of Proposition 9.4. It is shown in [11, Ex. 8.6 and §9] that Sp (W )
is cohomologically M -ample if and only if Hom (St∗(W ),M) is acyclic, where
St∗(W ) is the Steinberg complex of W as defined in [11]. Dually, Sp (W ) is
homologically M -ample if and only if St∗(W )⊗M is acyclic. To show that the
assumptions of Proposition 9.4 imply ampleness, one can use Proposition 8.2
together with the properties of the Steinberg complex from [11, §5] to establish
acyclicity. This essentially representation-theoretic approach could be useful in
other applications and generalizations, where the assumptions on the Mackey
functor might vary.

10. Results of approximating

In this section, we assemble the results from previous sections to establish the
main results announced in the introduction and restated below.

Theorem 1.1. Fix a prime p. Let M be a Mackey functor for Σn that takes
values in Z(p)-modules. Assume the following.

(1) The Mackey functor M is projective relative to the collection of p-
subgroups of Σn.
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(2) For every elementary abelian p-subgroup D ⊂ Σn that acts freely
and non-transitively on {1, . . . , n}, the kernel of the homomorphism
CΣn

(D)→ π0CGLn R(D) acts trivially on M(Σn/D).
(3) If p is odd and D is as above, then every odd involution in CΣn

(D) acts
on M(Σn/D) by multiplication by −1.

Then if n is not a power of p, the groups H̃Σn
∗ (P⋄

n;M) and H̃∗
Σn

(P⋄
n;M) vanish.

If n = pk, then the map

Σn+ ∧Affk
(EGLk + ∧B⋄

k) −→ P
⋄
n

induces an isomorphism on H̃Σn
∗ (−;M) and on H̃∗

Σn
(−;M).

Recall that in the following corollary, Stk denotes H̃k−1(B
⋄
k;Z) and R denotes

the ring Z[GLk(Fp)].

Corollary 1.2. In the setting of Theorem 1.1, suppose that n = pk. Then
there are isomorphisms

H̃Σn

j (P⋄
n;M) ∼=

{

0 j 6= k − 1
M(Σn/∆k)⊗R Stk j = k − 1

Moreover, there are isomorphisms for all j between Bredon homology and co-
homology groups: H̃Σn

j (P⋄
n;M) ∼= H̃j

Σn
(P⋄

n;M) for all j ≥ 0.

First we need a small lemma. Let G be a finite group, and let G denote the
underlying set of G. The group G acts on G by left translation, and hence on
the poset P(G) of nontrivial, proper partitions of G.

Lemma 10.1. The fixed point poset P(G)G is canonically isomorphic to the
poset of proper, nontrivial subgroups of G.

Proof. Let λ be a partition of G that is invariant under the action of G. To
associate a subgroup to the partition, let G(λ) be the equivalence class of the
identity element e ∈ G. We claim that G(λ) is a subgroup of G. Indeed,
let g1, g2 ∈ G(λ). Then e ∼λ g1, and since λ is G-invariant, we find that
g2 = g2e ∼λ g2g1. But g2 ∼λ e also, and so g2g1 ∼λ g2 ∼λ e. Thus G(λ) is
a subgroup of G. If λ is neither the discrete nor the indiscrete partition of n,
then G(λ) is a proper, nontrivial subgroup of G.
Conversely, to associate a partition of G to a subgroup H ⊆ G, we take the
partition of the set G by the cosets of H .
It remains to check that λ 7→ G(λ) and H 7→ {gH}g∈G are inverses. To see
this, observe that

g1 ∼λ g2 ⇐⇒ g−1
2 g1 ∼λ e

⇐⇒ g−1
2 g1 ∈ G(λ)

⇐⇒ g1 and g2 are in the same coset of G(λ).

�
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Proof of Theorem 1.1. Recall that the family of all p-subgroups of Σn is de-
noted by Sp (Σn). Let C consist of all p-subgroups of Σn except the elementary
abelian p-subgroups that act freely on n, and D the collection containing all el-
ementary abelian p-subgroups of Σn that act freely and transitively on n. The
collection D is empty unless n = pk, in which case it consists entirely of conju-
gates of the subgroup ∆k. Certainly C is closed under passage to p-supergroups,
and D is initial in C ∪D. Let X = Pn, and consider the commutative diagram
of Σn-spaces

(10.2)

XC∪D −−−−→ XSp
−−−−→ X





y





y





y

(∗)C∪D −−−−→ (∗)Sp
−−−−→ ∗

.

By Proposition 4.6, the horizontal arrows in the right-hand square induce iso-
morphisms on Bredon homology and cohomology with coefficients in M , be-
cause M is projective relative to Sp (Σn). We are assuming that M takes
values in Z(p)-modules, so Propositions 5.4 and 9.4 imply that the horizontal
arrows in the left-hand square induce isomorphisms in Bredon homology and
cohomology.
If n 6= pk, then D is empty. Meanwhile, Proposition 6.2 tells us that the left
vertical map is an equivalence on fixed point sets of subgroups in C, hence
a Σn-equivalence. It is therefore an isomorphism on Bredon homology and
cohomology. Connecting the isomorphisms around the outside of the diagram
gives Theorem 1.1 for n 6= pk.
Suppose n = pk, so that D consists of conjugates of ∆k. In this case, the
leftmost vertical arrow in (10.2) is not a Bredon (co)homology isomorphism,
but we can still calculate it. Lemma 5.2 gives a homotopy pushout diagram

(10.3)

XD −−−−→ XC∪D




y





y

(∗)D −−−−→ (∗)C∪D

.

We can use the explicit formula of Lemma 4.4 to give a formula for XD once we
know X∆k . As a ∆k-set, n is isomorphic to ∆k acting on itself by left transla-
tion, so by Lemma 10.1, we find that X∆k ∼= Bk. Sticking (10.3) together with
(10.2) and applying Lemma 4.4 to compute XD and (∗)D gives us the diagram

Σn ×Affk
(EGLk×Bk) −−−−→ XC∪D −−−−→ X




y





y





y

Σn ×Affk
(EGLk) −−−−→ (∗)C∪D −−−−→ ∗

.

Here the left square is a homotopy pushout and the horizontal maps are isomor-
phisms in Bredon (co)homology. Taking cofibers vertically gives us the result
for n = pk. �
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Proof of Corollary 1.2. Let G = GLk. Since M(Σn/∆k) is an Z(p)-module, we

may take R = Z(p)[G] and Stk = H̃k−1(B
⋄
k ;Z(p)).

Let Y = Σn+ ∧Affk
(EG+ ∧B⋄

k). All of the isotropy subgroups of Y are conju-
gate to ∆k, so the calculation of Lemma 4.4 tells us that there are isomorphisms

H̃G
∗ (Y ;M) ∼= H̃∗((B

⋄
k)h̃G;M)

H̃∗
G (Y ;M) ∼= H̃∗((B⋄

k)h̃G;M) .

Consider the local coefficient homology Serre spectral sequence

E2
i,j = TorRi (H̃j(B

⋄
k;Z(p)),M)⇒ H̃∗((B

⋄
k)h̃G;M) .

The spectral sequence collapses at E2 to give the desired homology calculation,
because H̃j(B

⋄
k;Z(p)) vanishes for j 6= k − 1 and is well known to give a pro-

jective R-module for j = k − 1. A similar calculation with a local coefficient
cohomology Serre spectral sequence, together with the fact that Stk is self-dual,
completes the proof. �

11. Examples

In this section we describe some particular Mackey functors for Σn, and show
that they satisfy the hypotheses of Theorem 1.1 and Corollary 1.2. The general
construction is described in Definition 11.3 and Proposition 11.4 below.
We will consider Mackey functors with values in categories other than abelian
groups. If C is any additive category, then one defines a Mackey functor with
values in C to be a pair of additive functors (γ, γ♮) from the category of finite
G-sets to C, satisfying the same hypotheses as in Definition 3.1. In particular,
we will consider Mackey functors with values in the category of graded abelian
groups (graded Mackey functors).

Remark 11.1. Note that if M is a Mackey functor with values in C, and
F : C → D is an additive functor between additive categories, then F ◦M is a
Mackey functor with values in D.

Our basic construction of a Mackey functor involves the homotopy category of
spectra with an action of G. This is unsurprising, as the connection between
Mackey functors and equivariant stable homotopy theory is well known. We
will not require the full strength of this theory, and in particular we will only
use a naive version of equivariant stable homotopy theory. By the homotopy
category of spectra with an action of G, we mean the category of spectra with
an action of G, localized with respect to equivariant maps that are weak equiva-
lences of the underlying nonequivariant spectra. Equivalently, this is the stable
homotopy category of G-spaces, or G-simplicial sets. This category of spectra
with an action of G supports a Quillen model structure, where fibrations and
weak equivalences are defined in the underlying category of spectra. (See, for
example [18] or [12, Theorem 11.6.1].) Therefore, its homotopy category is
well-defined. Note also that the homotopy category of spectra with an action
of G is an additive category.
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Define the functor γ from the category of finite G-sets to the homotopy category
of spectra with an action of G by the formula γ(S) = Σ∞S+. The following is
a standard fact.

Lemma 11.2. The functor γ extends naturally to a Mackey functor with values
in the homotopy category of spectra with an action of G.

Proof. The extended functor γ is additive by construction. The contravariant
functor γ♮ is necessarily defined on objects to be the same as γ. To define γ♮

on morphisms, let the superscript ∨ denote the Spanier-Whitehead dual of a
spectrum. Given a finite set S, there is a weak equivalence Σ∞S+ → (Σ∞S+)

∨.
This equivalence is natural with respect to set isomorphisms; in particular, if
S is a G-set, the equivalence is G-equivariant. Let S → T be a G-map between
finite G-sets. We define the map γ♮(T )→ γ♮(S) as the composite

Σ∞T+ → (Σ∞T+)
∨ → (Σ∞S+)

∨ ≃
←− Σ∞S+.

Note that the “wrong way map” is a weak equivalence, and therefore is invert-
ible in the homotopy category of spectra with an action of G.
Consider the diagrams below. That M = (γ, γ♮) is a Mackey functor follows
from the fact that given a pullback diagram on the left of finite G-sets, the
diagram on the right commutes in the homotopy category of spectra with an
action of G:

S
u

−−−−→ T

α





y

β





y

U
v

−−−−→ V

Σ∞S+
γ(u)
−−−−→ Σ∞T+

γ♮(α)

x




γ♮(β)

x





Σ∞U+
γ(v)
−−−−→ Σ∞V+

.

�

We say that a functor from spectra to spectra is additive if it respects equiva-
lences and preserves finite coproducts up to equivalence. Recall that Σn acts on
the one-point compactification Sn of Rn by permuting coordinates, and hence
on the j-fold smash product Snj . The following is the general construction of
Mackey functors that we wish to consider.

Definition 11.3. Suppose that j is a fixed integer, with j odd if p is odd, and
that F is an additive functor from spectra to spectra. For each finite Σn-set
T , define the graded abelian group MF (T ) by

MF (T ) = π∗F
(

(Σ∞T+ ∧ Snj)h̃Σn

)

.

Our main result in this section is Proposition 11.4 below. Let L(p) denote the
functor on spectra given by localization at p.

Proposition 11.4. The assignment T 7→ MF (T ) extends naturally to a
Mackey functor for Σn that satisfies the centralizer condition (see Defini-
tion 9.3). If F → F ◦ L(p) is an equivalence, then MF takes values in Z(p)-
modules, is projective relative to p-subgroups, and (if p is odd) satisfies the
involution condition.
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We give the proof of Proposition 11.4 after a few examples.

Example 11.5. If F (X) = HFp ∧X , then MF (T ) is the Fp-homology of the
relevant reduced Borel construction. In this case Proposition 11.4 and Theo-
rem 1.1, taken together, give a relatively conceptual approach to the homolog-
ical calculations of Arone-Mahowald in [2].

Example 11.6. One advantage of our approach is that it applies in situations
in which explicit calculation is impossible, e.g., when F = L(p) itself. Here
MF (T ) is the p-local stable homotopy of the given Borel construction. The
calculation of Bredon homology in this case provides a key ingredient for a new
proof of some theorems of Kuhn [13] and Kuhn-Priddy [15] on the Whitehead
conjecture (see also [14] for Kuhn’s latest word on the subject). The Bredon
cohomology also leads to a new proof of the collapse of the homotopy spectral
sequence of the Goodwillie tower of the identity functor evaluated at S1. This
was done by Behrens [3] at the prime 2 and then by Kuhn [14] at all primes.
We intend to pursue this in another paper.

Example 11.7. Another interesting example to which our results apply is the
functor

F (X) = (E ∧X)K .

Here E is the Morava E-theory and the subscript K denotes localization with
respect to Morava K theory. This example, and others similar to it, were
considered recently by Rezk [17] and Behrens [4]. It seems that our methods
can be used to recover some of their calculations. For example, Lemma 5.6
of [4] seems to be closely related to our main theorem, applied to the functor
F above.

Proof of Proposition 11.4. We saw in Lemma 11.2 that the functor T 7→ Σ∞T+

extends to a Mackey functor. The functor MF is obtained by composing
the suspension spectrum functor with the following functors: smash product
with Snj , taking Σn-homotopy orbits, F , and π∗. Each of these functors is
additive (on the level of homotopy categories), and therefore MF extends to a
Mackey functor by Remark 11.1.
Next we claim that the Mackey functor T 7→ Lp(Σ

∞T+∧S
nj)h̃Σn

(with values in

the homotopy category of spectra) has the p-transfer property. By this we mean
that for every Σn-set Z of cardinality prime to p, the following composed map
is an equivalence, i.e., an isomorphism in the homotopy category of spectra:

Lp

(

Σ∞T+ ∧ Snj
)

h̃Σn
−→ Lp

(

Σ∞(Z × T )+ ∧ Snj
)

h̃Σn

−→ Lp(Σ
∞T+ ∧ Snj)h̃Σn

.

(See Definition 3.7.) To see this, note that our functor is equivalent to T 7→
(

Lp(Σ
∞T+) ∧ Snj

)

h̃Σn
, so it is enough to prove that Lp(Σ

∞T+) has the p-

transfer property in the same sense:

(11.8) Lp (Σ
∞T+) −→ Lp

(

Σ∞ (Z × T )+
)

−→ Lp (Σ
∞T+)
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should be an equivalence of Σn-spectra for every Σn-set Z of cardinality prime
to p. However, the effect of the composition Σ∞T+ → Σ∞(Z×T )+ → Σ∞T+ on
homology is multiplication by |Z|. Thus it induces an isomorphism on homology
with coefficients in Z(p), and (11.8) is an equivalence. Since F ≃ F ◦ Lp, it
follows that MF has the p-transfer property. By Lemma 3.8, MF takes values
in Z(p)-modules, and is projective relative to p-subgroups.
Next we consider the centralizer condition. To set the stage, consider a general
situation where Z is a space with a pointed action of Σn. Let D be a subgroup
of Σn, with centralizer CΣn

(D). The orbit space of the action of D on Z still
has an action of CΣn

(D), and there is a homeomorphism between two models
of this CΣn

(D)-space given by:

φ : Z/D
∼=
−−→ (Σn/D+ ∧ Z) /Σn

Dz 7→ (eD, z).

The action of c ∈ CΣn
(D) on the domain is given by c(Dz) = D(cz) and on

the codomain is given by c(σD, z) = (σc−1D, z), and φ is CΣn
(D)-equivariant

with respect to these actions.
We will apply the paragraph above with Z = (EΣn)+ ∧ Snj , where CΣn

(D)
acts on Z diagonally. Applying the discussion in the previous paragraph gives
us a CΣn

(D)-equivariant homeomorphism

(11.9) φ :
[

(EΣn)+ ∧ Snj
]

/D
∼=
−−→

[

Σn/D+ ∧ (EΣn)+ ∧ Snj
]

/Σn.

The right-hand side is (Σn/D+∧S
nj)h̃Σn

, and the centralizer condition will be

satisfied if we can show that the kernel of CΣn
(D)→ π0CGLn R(D) acts on this

space via maps that are homotopic to the identity.
We establish what is required by using the left-hand side of (11.9) instead.
Suppose c ∈ ker [CΣn

(D)→ π0CGLn R(D)]. Then the action of c on Snj is
homotopic to the identity through D-equivariant maps. Likewise, translation
by c on EΣn is homotopic to the identity, and because c centralizes D, the
homotopy is through D-equivariant maps. It follows that the action of c on
[

(EΣn)+ ∧ Snj
]

/D is homotopic to the identity, and the same is true of the

action on (Σn/D+∧S
nj)h̃Σn

. We conclude that the action of c on MF (Σn/D)
is trivial, and hence MF satisfies the centralizer condition.
It remains to prove that if F ◦ L(p) ≃ F , and p is odd, then MF satisfies the
involution condition. Suppose in general that τ is an involution of a spectrumX
that has 2 invertible in π∗(X). Then π∗(X) splits as a direct sum of eigenspaces
for 1 and −1. It follows that τ acts by −1 on π∗(X) if and only if the map
τ − 1 is an equivalence.
For our situation, let D and CΣn

(D) be as above, and let τ be an odd in-
volution in CΣn

(D). We need to show that τ acts as multiplication by −1 on
π∗F

(

Σ∞Snj
)

h̃D
. Since F ≃ F ◦Lp, and Lp commutes with homotopy colimits,

it is enough to prove that τ acts by −1 on π∗F
(

Lp

(

Σ∞Snj
)

h̃D

)

. However, the

action of τ is induced by the action of τ on Snj . Since τ is an odd involution,
τ acts by a map of degree −1 on Sn and hence, since j is odd, by a map of
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degree −1 on Snj . It follows that τ acts by −1 on π∗Lp

(

Σ∞Snj
)

. Since p

is odd, 2 is invertible in π∗Lp

(

Σ∞Snj
)

. By the previous paragraph, the map

τ − 1 induces a self-equivalence on Lp(Σ
∞Snj).

Since τ is in the centralizer of D, it acts on Lp(Σ
∞Snj) by a D-equivariant

map. Therefore, the map τ − 1 is D-equivariant. It follows that τ − 1 induces
a self-equivalence of Lp(Σ

∞Snj)h̃D. Since F is an additive functor, it follows
that τ − 1 induces a self-equivalence of F (Lp(Σ

∞Snj)h̃D). Again, by the same
reasoning as above, it follows that τ acts by −1 on π∗F (Lp(Σ

∞Snj)h̃D), which
is what we wanted to prove. �
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