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Abstract. We generalize in positive characteristics some results of
Bien and Brion on log homogeneous compactifications of a homoge-
neous space under the action of a connected reductive group. We also
construct an explicit smooth log homogeneous compactification of the
general linear group by successive blow-ups starting from a grassman-
nian. By taking fixed points of certain involutions on this compacti-
fication, we obtain smooth log homogeneous compactifications of the
special orthogonal and the symplectic groups.

2010 Mathematics Subject Classification: 14L35, 14M12, 14M17,
14M25

Introduction

Let k be an algebraically closed field and G a connected reductive group defined
over k. Given a homogeneous space Ω under the action of the group G it
is natural to consider equivariant compactifications or partial equivariant
compactifications of it. Embeddings are normal irreducible varieties equipped
with an action of G and containing Ω as a dense orbit, and compactifications
are complete embeddings. Compactifications have shown to be powerful tools
to produce interesting representations of the group G or to solve enumerative
problems. In the influent paper [21], Luna and Vust developed a classification
theory of embeddings of the homogeneous space Ω assuming that the field k
is of characteristic zero. Their theory can be made very explicit and extended
to all characteristics, see for instance [15], in the spherical case, that is,
when a Borel subgroup of G possesses a dense orbit in the homogeneous space
Ω. In this case, the embeddings of Ω are classified by combinatorial objects
called colored fans. If the homogeneous space is a torus acting on itself by
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2 Mathieu Huruguen

multiplication then one recovers the classification of torus embeddings or toric
varieties in terms of fans, see for instance [14].

In the first part of the paper we focus on a certain category of “good” compact-
ifications of the homogeneous space Ω. For example, these compactifications
are smooth and the boundaries are strict normal crossing divisors. There are
several notions of “good” compactifications in the literature. Some of them are
defined by geometric conditions, as for example the toroidal compactifica-
tions of Mumford [14], the regular compactifications of Bifet De Concini and
Procesi [3], the log homogeneous compactifications of Brion [5] and some of
them are defined by conditions from the embedding theory of Luna and Vust,
as for example the colorless compactifications. As it was shown by Bien
and Brion [5], if the base field k is of characteristic zero then the homogeneous
space Ω admits a log homogeneous compactification if and only if it is spherical,
and in that case the four different notions of “good” compactifications men-
tioned above coincide. We generalize their results in positive characteristics
in Section 1. We prove that a homogeneous space admitting a log homoge-
neous compactification is necessarily separably spherical in the sense of
Proposition-Definition 1.7. In that case, we relate the log homogeneous com-
pactifications to the regular and the colorless one, see Theorem 1.8 for a precise
statement. We do not know whether the condition of being separably spherical
is sufficient for a homogeneous space to have a log homogeneous compactifica-
tion. Along the way we prove Theorem 1.4, which is of independent interest,
on the local structure of colorless compactifications of spherical homogeneous
spaces, generalizing a result of Brion, Luna and Vust, see [7].

In Section 2, we focus on the explicit construction of equivariant compactifica-
tions of a connected reductive group. That is, the homogeneous space Ω is a
connected reductive groupG acted upon by G×G by left and right translations.
The construction of “good” compactifications of a reductive group is a very old
problem, with roots in the 19th century in the work of Chasles, Schubert, who
were motivated by questions from enumerative geometry. When the group G is
semi-simple there is a particular compactification G called canonical which
possesses interesting properties, making it particularly convenient to work with.
For example, the boundary is a divisor whose irreducible component intersect
properly and the closure of the G×G-orbits are exactly the partial intersections
of these prime divisors. Also, there is a unique closed orbit of G × G in the
canonical compactification of G. Moreover, every toroidal compactification of
G has a dominant equivariant morphism to G. If the canonical compactification
G is smooth, then it is wonderful in sense of Luna [20]. When the group G
is of adjoint type, its canonical compactification is smooth, and there are many
known constructions of this wonderful compactification, see for example [29],
[17], [18], [19], [30], [27], [26] for the case of the projective linear group PGL(n)
and [8], [24], [4] for the general case. In general the canonical compactification
is not smooth, as it can be seen for example when G is the special orthogonal
group SO(2n).
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Log Homogeneous Compactifications 3

One way to construct a compactification of G is by considering a linear repre-
sentation V of G and taking the closure of G in the projective space P(End(V )).
The compactifications arising in this way are called linear. It was shown by De
Concini and Procesi [8] that the linear compactifications of a semi-simple group
of adjoint type are of particular interest. Recently, Timashev [28], Gandini and
Ruzzi [11], found combinatorial criterions for certain linear compactifications
to be normal, or smooth. In [10], Gandini classifies the linear compactifications
of the odd special orthogonal group having one closed orbit. By a very new
and elegant approach, Martens and Thaddeus [22] recently discovered a general
construction of the toroidal compactifications of a connected reductive group
G as the coarse moduli spaces of certain algebraic stacks parametrizing objects
called “framed principal G-bundles over chain of lines”.

Our approach is much more classical. In Section 2, we construct a log homo-
geneous compactification Gn of the general linear group GL(n) by successive
blow-ups, starting from a grassmannian. The compactification Gn is defined
over an arbitrary base scheme. We then identify the compactifications of the
special orthogonal group or the symplectic group obtained by taking the fixed
points of certain involutions on the compactification Gn. This provides a new
construction of the wonderful compactification of the odd orthogonal group
SO(2n + 1), which is of adjoint type, of the symplectic group Sp(2n), which
is not of adjoint type, and of a toroidal desingularization of the canonical
compactification of the even orthogonal group SO(2n) having only two closed
orbits. This is the minimal number of closed orbits on a smooth log homo-
geneous compactification, as the canonical compactification of SO(2n) is not
smooth.

Our procedure is similar to that used by Vainsencher, see [30], to construct
the wonderful compactification of the projective linear group PGL(n) or that
of Kausz, see [13], to construct his compactification of the general linear group
GL(n). However, unlike Kausz, we are not able to describe the functor of
points of our compactification Gn. In that direction, we obtained a partial
result in [12], where we describe the set Gn(K) for every field K. We decided
not to include this description in the present paper, as it is long and technical.
The functor of points of the wonderful compactification of the projective linear
group is described in [27] and that of the symplectic group is described in [1].
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4 Mathieu Huruguen

1 Log homogeneous compactifications

First we fix some notations. Let k be an algebraically closed field of arbitrary
characteristic p. By a variety over k we mean a separated integral k-scheme of
finite type. If X is a variety over k and x is a point of X , we denote by TX,x

the tangent space of X at x. If Y is a subvariety of X containing x, we denote
by NY/X,x the normal space to Y in X at x.

For an algebraic group G,H, P . . . we denote by the corresponding gothic letter
g, h, p . . . its Lie algebra. Let G be a connected reductive group defined over k.
A G-variety is a variety equipped with an action of G. Let X be a G-variety.
For each point x ∈ X we denote by Gx the isotropy group scheme of x. We
also denote by orbx the morphism

orbx : G→ X, g 7→ g · x.
The orbit of x under the action of G is called separable if the morphism orbx
is, that is, if its differential is surjective, or, equivalently, if the group scheme
Gx is reduced.

We fix a homogeneous space Ω under the action of G. Let X be a smooth
compactification of Ω, that is, a complete smooth G-variety containing Ω as
an open dense orbit. We suppose that the complement D of Ω in X is a strict
normal crossing divisor.

In [3], Bifet, De Concini and Procesi introduce and study the regular compact-
ifications of a homogeneous space over an algebraically closed field of charac-
teristic zero. We generalize their definition in two different ways :

Definition 1.1. The compactification X is regular (resp.
strongly regular) if the orbits of G in X are separable, the partial
intersections of the irreducible components of D are precisely the closures of
the G-orbits in X and, for each point x ∈ X, the isotropy group Gx possesses
an open (resp. open and separable) orbit in the normal space NGx/X,x to the
orbit Gx in X at the point x.

If the characteristic of the base field k is zero, then the notion of regular and
strongly regular coincide with the original notion of [3]. This is no longer true
in positive characteristic, as we shall see at the end of Section 1.2.

In [5], Brion defines the log homogeneous compactifications over an alge-
braically closed field - throughout his paper the base field is also of charac-
teristic zero, but the definition makes sense in arbitrary characteristic. Recall
that the logarithmic tangent bundle TX(− logD) is the vector bundle over X
whose sheaf of section is the subsheaf of the tangent sheaf of X consisting of
the derivations that preserve the ideal sheaf OX(−D) of D. As G acts on X
and D is stable under the action of G, it is easily seen that the infinitesimal
action of the Lie algebra g on X gives rise to a natural vector bundle morphism:

X × g → TX(− logD).
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Log Homogeneous Compactifications 5

We refer the reader to [5] for further details.

Definition 1.2. The compactification X is called log homogeneous if the
morphism of vector bundles on X:

X × g → TX(− logD)

is surjective.

Assuming that the characteristic of the base field is zero, Bien and Brion prove
in [2] that the homogeneous space Ω possesses a log homogeneous compacti-
fication if and only if it is spherical. In this case, they also prove that it is
equivalent for a smooth compactification X of Ω to be log homogeneous, reg-
ular or to have no color - as an embedding of a spherical homogeneous space,
see [15]. Their proof relies heavily on a local structure theorem for spherical
varieties in characteristic zero established by Brion, Luna and Vust in [7].

A generalization of the local structure theorem was obtained by Knop in [16];
essentially, one has to replace in the statement of that theorem an isomorphism
by a finite surjective morphism. In Section 1.1 we shall prove that under a sep-
arability assumption, the finite surjective morphism in Knop’s theorem is an
isomorphism. Then, in Section 1.2 we prove that the smooth compactifica-
tion X of Ω is regular if and only if the homogeneous space Ω is spherical,
the embedding X has no color and each closed orbit of G in X is separable
(Theorem 1.5). We also prove that the smooth compactification X of Ω is
strongly regular if and only if it is log homogeneous (Theorem 1.6). Finally, we
exhibit a class of spherical homogeneous spaces for which the notion of regular
and strongly regular compactifications coincide. In Section 1.3 we show that
log homogeneity is preserved under taking fixed points by an automorphism of
finite order prime to the characteristic of the base field k. In Section 1.4 we
recall the classification of Luna and Vust in the setting of compactification of
reductive groups, as this will be useful in Section 2.

1.1 A local structure theorem

Let X be a smooth G-variety. We assume that there is a unique closed orbit
ω of G in X and that this orbit is complete and separable. We fix a point x
on ω. The isotropy group Gx is a parabolic subgroup of G. We fix a Borel
subgroup B of G such that BGx is open in G. We fix a maximal torus T of G
contained in Gx and B and we denote by P the opposite parabolic subgroup
to Gx containing B. We also denote by L the Levi subgroup of P containing
T and by Ru(P ) the unipotent radical of P . With these notations we have the
following proposition, which relies on a result of Knop [16, Theorem 1.2].

Proposition 1.3. There exists an affine open subvariety Xs of X which is
stable under the action of P and a closed subvariety Z of Xs stable under the
action of T , containing x such that:

Documenta Mathematica 20 (2015) 1–35



6 Mathieu Huruguen

(1) The variety Z is smooth at x and the vector space TZ,x endowed with the
action of T is isomorphic to the vector space Nω/X,x endowed with the
action of T .

(2) The morphism:

µ : Ru(P )× Z → Xs, (p, z) 7→ p · z

is finite, surjective, étale at (e, x), and the fiber µ−1(x) is reduced to the
single point {(e, x)}.

Proof. As the smooth G-variety X has a unique closed orbit, it is quasi-
projective by a famous result of Sumihiro, see [25]. We fix a very ample line
bundle L on X . We fix a G-linearization of this line bundle. By [16, Theorem
2.10], there exists an integer N and a global section s of LN such that the
nonzero locus Xs of s is an affine open subvariety containing the point x and
the stabilizer of the line spanned by s in the vector space H0(X,LN ) is P . The
open subvariety Xs is therefore affine, contains the point x and is stable under
the action of the parabolic subgroup P . Using the line bundle LN , we embed
X into a projective space P(V ) on which G acts linearly. We choose a T -stable
complement S to Tω,x in the tangent space TP(V ),x, such that S is the direct
sum of a T -stable complement of Tω,x in TX,x and a T -stable complement of
TX,x in TP(V ),x. This is possible because T is a linearly reductive group.

We consider now the linear subspace S′ of P(V ) containing x and whose tangent
space at x is S. It is a T -stable subvariety of P(V ). By [16, Theorem 1.2],
there is an irreducible component Z of Xs ∩ S′ containing x and such that the
morphisms

µ : Ru(P )× Z → Xs, (p, z) 7→ p · z
ν : Z → Xs/Ru(P ), z 7→ zRu(P )

are finite and surjective. Moreover, the fiber µ−1(x) is reduced to the single
point (e, x). We observe now that S′ intersects Xs transversally at x. This im-
plies that the subvariety Z is smooth at x. It is also T -stable, as an irreducible
component of Xs ∩ S′. By definition, the parabolic subgroup P contains the
Borel subgroup B, therefore the orbit Px = Ru(P )x is open in ω. Moreover,
we have the direct sum decomposition g = gx ⊕ pu, where pu is the Lie algebra
of the unipotent radical Ru(P ) of P . The morphism

deorbx : g → Tω,x

is surjective and identically zero on gx. This proves that the restriction of this
morphism to pu is an isomorphism. The morphism

µ : Ru(P )× Z → Xs, (p, z) 7→ p · z

is therefore étale at (e, x). Indeed, its differential at this point is:

pu × TZ,x → TX,x, (h, k) 7→ deorbx(h) + k.
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Log Homogeneous Compactifications 7

We also see that the spaces TZ,x and Nω/X,x endowed with their action of the
torus T are isomorphic, completing the proof of the proposition.

We now suppose further that X is an embedding of the homogeneous space Ω.
With this additional assumption we have:

Theorem 1.4. The following three properties are equivalent:

(1) The homogeneous space Ω is spherical and the embedding X has no color.

(2) The torus T possesses an open orbit in the normal space Nω/X,x. Moreo-
ever, the complement D of Ω in X is a strict normal crossing divisor and
the partial intersections of the irreducible components of D are the closure
of the G-orbits in X.

(3) The set X0 = {y ∈ X, x ∈ By} is an affine open subvariety of X which
is stable by P . Moreover, there exists a closed subvariety Z of X0 which is
smooth, stable by L, on which the derived subgroup [L,L] acts trivially and
containing an open orbit of the torus L/[L,L], such that the morphism:

Ru(P )× Z → X0, (p, z) 7→ p · z

is an isomorphism. Finally, each orbit of G in X intersects Z along a
unique orbit of T .

Proof. (3) ⇒ (1) As T possesses an open orbit in Z, we see that the Borel
subgroup B has an open orbit in X , and the homogeneous space Ω is spherical.
Moreover, let D be a B-stable prime divisor on X containing ω. Using the
isomorphism in (3) we can write

D ∩X0 = Ru(P )× (D ∩ Z).

As D ∩ Z is a closed irreducible T -stable subvariety of Z, it is the closure of
a T -orbit in Z. As the T -orbits in Z correponds bijectively to the G-orbits in
X , we see that D is the closure of a G-orbit in X and is therefore stable under
the action of G. This proves that the embedding X of Ω has no color.

(3) ⇒ (2) The isomorphism in (3) proves that the spaces TZ,x and Nω/X,x

endowed with their actions of the torus T are isomorphic. As T possesses an
open dense orbit in the first one, it also has an open dense orbit in the latter.
As Z is smooth toric variety, we see that the complement of the open orbit of T
in Z is a strict normal crossing divisor whose associated strata are the T -orbits
in Z. Using the isomorphism given by (3), we see that the complement of the
open orbit of the parabolic subgroup P in X0 is a strict normal crossing divisor
whose associated strata are the products Ru(P ) × Ω′, where Ω′ runs over the
set of T -orbits in Z. To complete the proof that property (2) is satisfied, we
translate the open subvariety X0 by elements of G and we use the fact that
each G-orbit in X intersects Z along a unique T -orbit.

Documenta Mathematica 20 (2015) 1–35
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(1) ⇒ (3) We use the notations of Proposition 1.3. By [15, Lemma 6.5] the
fact that the embedding X has no color implies that the parabolic subgroup P
is the stabilizer of the open B-orbit Ω in X . Using this fact and [16, Theorem
2.8] we obtain that the derived subgroup of P , and therefore the derived group
of L, acts trivially on Xs/Ru(P ). Moreover, as the homogeneous space Ω is
spherical, the Levi subgroup L has an open orbit inXs/Ru(P ). The torus T has
therefore an open orbit in Xs/Ru(P ), as the derived group of L acts trivially.
Using the finite surjective morphism ν appearing in the proof of Proposition
1.3, we see that T has an open orbit in Z. Z is therefore a smooth affine toric
variety with a fixed point under the action of a quotient of T . Moreover, as the
subvariety Z is left stable under the action of T and the derived group [L,L]
acts trivially on Z, we see that the Levi subgroup L leaves the subvariety Z
invariant.

We observe now that the locus of points of Ru(P )× Z where µ is not étale is
closed and stable under the actions of Ru(P ) and T . The unique closed orbit
of Ru(P ) ⋊ T in Ru(P ) × Z is Ru(P )x and µ is étale at (e, x), therefore we
obtain that µ is an étale morphism. As the morphism µ is also finite of degree
1 (the fiber of {x} being reduced to a single point), it is an isomorphism.

We prove now that each G-orbit in X intersects Z along a unique T -orbit.
First, we observe that, as ω is the unique closed orbit of G in X , the open
subvariety Xs intersects every G-orbit. We shall prove that the closures of the
G-orbits in X corresponds bijectively to the closures of the T -orbits in Z. Let
X ′ be the closure of a G-orbit in X . As X ′ is the closure of X ′ ∩Xs, it is also
equal, using the isomorphism µ, to the closure of Ru(P )(X

′ ∩ Z). The closed
subvariety X ′∩Z of Z is therefore a closed irreducible T -stable subvariety. We
can conclude that it is the closure of a T -orbit in Z. Conversely let Z ′ be the
closure of a T -orbit in Z. As Z is a smooth toric variety, we can write

Z ′ = D′
1 ∩D′

2 ∩ ... ∩D′
r,

where the D′
is are T -stable prime divisors on Z. We observe that the prime

divisors
Ru(P )D′

1, ..., Ru(P )D′
r

on X are stable under the action of P . Indeed, the orbits of P in Xs are
exactly the orbits of Ru(P )⋊ T in Xs. As X has no color, the fact that these
divisors contain the closed orbit ω proves that they are stable under the action
of G. Their intersection Ru(P )Z is also G-stable. As it is irreducible, we can
conclude that it is the closure of a G-orbit in X .

In order to complete the proof that (1) ⇒ (3), it remains to show that

Xs = {y ∈ X, x ∈ By}.

Let y be a point on X such that x belongs to By. The intersection Xs∩By is a
non empty open subset of By which is stable under the action of B. Therefore
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Log Homogeneous Compactifications 9

it contains y, that is, y belongs to Xs. Now let y be a point on Xs. The closed
subvariety By contains a closed B-orbit in Xs. As the unique closed orbit of B
in Xs is the orbit of x, we see that x belongs to By, completing the argument.

(2 ⇒ 3) We use the notations introduced in Proposition 1.3. By assumption,
the torus T possesses an open orbit in the normal space Nω/X,x. Moreover, by
Proposition 1.3, the spaces TZ,x and Nω/X,x endowed with their actions of T
are isomorphic. Therefore, the torus T possesses an open dense orbit in TZ,x.
It is then an easy exercise left to the reader to prove that the variety Z is a
smooth toric variety for a quotient of T . The same arguments as above prove
that the morphism µ is an isomorphism.

We prove now that each G-orbit in X intersects Z along a unique orbit of T .
Let D be the complement of Ω in X . By assumption, it is a strict normal
crossing divisor whose associated strata are the G-orbits in X . We denote by
D1, . . . , Dr the irreducible component of D. As there is a unique closed orbit
of G on X each partial intersection

⋂

i∈I Di is non empty and irreducible or,
in other words, it is a stratum of D. The integer r is the codimension of the
closed orbit ω in X , and there are exactly 2r G-orbits in X . As the variety Z
is a smooth affine toric variety of dimension r with a fixed point, we see that
there are exactly 2r orbits of T on Z. As each orbit of G in X intersect Z we
see that the intersection of a G-orbit with Z is a single T -orbit.

Finally, we prove that the open subvariety Xs is equal to X0 by the same
argument as in the proof of (1) ⇒ (3), completing the proof of the theorem.

1.2 Regular, strongly regular and log homogeneous compactifi-
cations

In this section we use the following notation. Let X be a G-variety with a finite
number of orbits (for example, a spherical variety). Let ω be an orbit of G in
X . We denote by

Xω,G = {y ∈ X,ω ⊆ Gy}.
It is an open G-stable subvariety of X in which ω is the unique closed orbit.

Theorem 1.5. Let X be a smooth compactification of the homogeneous space
Ω. The following two properties are equivalent:

(1) X is regular.

(2) The homogeneous space Ω is spherical, the embedding X has no color and
the orbits of G in X are separable.

Proof. Suppose that X is regular. Let D be the complement of Ω in X . It is
a strict normal crossing divisor. Let ω be a closed, and therefore complete and
separable, orbit of G in X . We use the notations introduced at the beginning
of Section 1.4 with Xω,G in place of X . The normal space Nω/X,x is the normal
space to a stratum of the divisor D and therefore possesses a natural direct
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10 Mathieu Huruguen

sum decomposition into a sum of lines, each of them being stable under the
action of Gx (which is connected, as it is a parabolic subgroup of G). Therefore
the representation of Gx in Nω/X,x factors through the action of a torus.This
proves that the derived group of L acts trivially in this space, proving that the
torus T has a dense orbit in Nω/X,x. By Theorem 1.4 (applied to Xω,G) the
homogeneous space Ω is spherical and the embedding Xω,G has no color. As
this is true for each closed orbit ω of G in X , we see that the embedding X
has no color.

We assume now that Ω is spherical, X has no color and that each orbit of G in
X is separable. By applying Theorem 1.4 to each open subvariety Xω,G, where
ω runs over the set of closed orbits of X , we see that the complement D of Ω
in X is a strict normal crossing divisor and that, for each point x in X , the
isotropy group Gx has an open orbit in the normal space NGx/X,x. Moreover,
by assumption, the G-orbits in X are separable. To complete the proof of the
theorem, it remains to show that the partial intersections of the irreducible
components of D are irreducible. But this is true on every colorless embedding
of a spherical homogeneous space, due to the combinatorial description of these
embeddings, see [15, Section 3].

Theorem 1.6. Let X be a smooth compactification of Ω. The following two
properties are equivalent:

(1) X is a log homogeneous compactification.

(2) X is strongly regular.

Proof. We suppose first that the compactification X is log homogeneous. We
denote by D the complement of Ω in X . It is a strict normal crossing divisor.
Following the argument given in [5, Proposition 2.1.2] we prove that each stra-
tum of the strict normal crossing divisor D is a single orbit under the action
of G which is separable and that for each point x ∈ X , the isotropy group Gx

possesses an open and separable orbit in the normal space NGx/X,x. In order
to conclude, it remains to prove that the partial intersection of the irreducible
components of D are irreducible. But the same argument as in the proof of
Theorem 1.5 prove that Ω is spherical and X has no color, which is sufficient
to complete the proof.

Conversely, if X is supposed to be strongly regular, the proof of [5, Propo-
sition 2.1.2] adapts without change and shows that X is a log homogeneous
compactification of Ω.

Proposition-Definition 1.7. If the homogeneous space Ω possesses a log
homogeneous compactification, then it satisfies the following equivalent condi-
tions:

(1) The homogeneous space Ω is spherical and there exists a Borel subgroup of
G whose open orbit in Ω is separable.
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(2) The homogeneous space Ω is spherical and the open orbit of each Borel
subgroup of G in Ω is separable.

(3) The homogeneous space Ω is separable under the action of G, and there
exists a point x in X and a Borel subgroup B of G such that : b+ gx = g.

A homogeneous space satisfying one of these properties is said to be separably
spherical.

Proof. We suppose first that the homogeneous space Ω possesses a log homo-
geneous compactification X and we prove that it satisfies the first condition.
By Theorem 1.6 and 1.5, the homogeneous space Ω is spherical. Let ω be a
closed, and therefore complete and separable, orbit of G in X . We apply The-
orem 1.4 to the open subvariety Xω,G. We use the notations introduced for
this theorem. As X is strongly regular, the maximal torus T has an open and
separable orbit in TZ,x = Nω/X,x. As this space endowed with its action of T
is isomorphic to Z endowed with its action of T , because Z is an affine smooth
toric variety with fixed point for a quotient of T , we see that the open orbit of
T in Z is separable. Consequently, the open orbit of Ru(P )⋊ T in Ru(P )×Z
is separable, and the open orbit of B in Ω is separable.

We prove now that the three conditions in the statement of the proposition-
definition are equivalent. As the Borel subgroups ofG are conjugated, condition
(1) and (2) are equivalent. Suppose now that condition (1) is satisfied. Let B
be a Borel subgroup of G and x a point in the open and separable orbit of B
in Ω. The linear map deorbx : b → TBx,x is surjective. As the orbit Bx is open
in Ω we see that the homogeneous space Ω is separable under the action of G
and that

b+ gx = g.

Conversely, we suppose that condition (3) is satisfied. As the homogeneous
space Ω is separable, the linear map

deorbx : g → g/gx

is the natural projection. As we have b+ gx = g, we see that the linear map

deorbx : b → g/gx

is surjective. This means precisely that the orbit Bx is open in Ω and separable.

Here are some example of separably spherical homogeneous spaces: separable
quotients of tori, partial flag varieties, symmetric spaces in characteristic not 2
(Vust proves in [31] that symmetric spaces in characteristic zero are spherical;
his proof extends to characteristic not 2 to show that symmetric spaces are
separably spherical).

Documenta Mathematica 20 (2015) 1–35



12 Mathieu Huruguen

Theorem 1.8. We assume that the homogeneous space Ω is separably spher-
ical. Let X be a smooth compactification of Ω. The following conditions are
equivalent:

(1) X has no color and the closed orbits of G in X are separable.

(2) X is regular.

(3) X is strongly regular.

(4) X is log homogeneous under the action of G.

Proof. In view of Theorem 1.5 and 1.6 it suffices to show that (1) ⇒ (3).
We assume that condition (1) is satisfied. Let ω be a closed, and therefore
separable orbit of G in X . We apply Theorem 1.4 to the open subvariety Xω,G

of X introduced in the proof of Theorem 1.5. We use the notations introduced
for Theorem 1.4. As the open orbit of B in Ω is separable, we see that the
quotient of T acting on Z is separable. As Z is a smooth affine toric variety
with fixed point under this quotient, we see that the orbits of T in Z are all
separable and that for each point z ∈ Z, the stabilizer Tz has an open and
separable orbit in the normal space NTz/Z,z . From this we get readily that
the embedding Xω,G of Ω satisfies the conditions defining a strongly regular
embedding. As this is true for each closed orbit ω, we see that X is a strongly
regular compactification of Ω.

We end this section with an example of a regular compactification of a homo-
geneous space which is not strongly regular. We suppose that the base field k
has characteristic 2. Let G be the group SL(2) acting on X := P1 × P1. There
are two orbits: the open orbit Ω of pairs of distinct points and the closed orbit
ω, the diagonal, which has codimension one in X . These orbits are separable
under the action of G. Moreover, the complement of the open orbit, that is, the
closed orbit ω, is a strict normal crossing divisor and the partial intersections of
its irreducible components are the closure of G-orbits in X . A quick computa-
tion shows that for each point on the closed orbit ω, the isotropy group has an
open non separable orbit in the normal space to the closed orbit at that point.
Therefore the compactification X of Ω is regular and not strongly regular. By
Theorem 1.8 the homogeneous space cannot be separably spherical. This can
be seen directly as follows. The homogeneous space Ω is the quotient of G by a
maximal torus T . A Borel subgroup B of G has an open orbit in Ω if and only
if it does not contain T . But in that case the intersection B ∩ T is the center
of G, which is not reduced because the characteristic of the base field is 2.

1.3 Log homogeneous compactifications and fixed points

Let X be a smooth variety over the field k and σ an automorphism of X which
has finite order r prime to the characteristic p of k. Fogarty proves in [9] that
the fixed point subscheme Xσ is smooth and that, for each fixed point x of σ
in X , the tangent space to Xσ at x is T σ

X,x.
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We suppose now that X is a smooth log homogeneous compactification of the
homogeneous space Ω. We also assume that the automorphism σ leaves Ω
stable and is G-equivariant, in the sense that there exists an automorphism σ
of the group G satisfying

∀g ∈ G, ∀x ∈ X, σ(gx) = σ(g)σ(x).

By [23, Proposition 10.1.5], the neutral component G′ of the group Gσ is a
reductive group. Moreover, each connected component of the variety Ωσ is a
homogeneous space under the action of G′. We let Ω′ be such a component
and X ′ be the connected component of Xσ containing Ω′.

Proposition 1.9. X ′ is a log homogeneous compactification of Ω′ under the
action of G′.

Proof. Let D be the complement of Ω in X . Let x be a point in X ′. Let
D1, . . . , Ds be the irreducible components of D containing x. First we prove
that the intersection D′ := D∩X ′ is a strict normal crossing divisor. For each
index i, the intersection D′

i := Di ∩ X ′ is a divisor on X ′. Indeed, X ′ is not
contained in Di as it contains Ω

′. As x is fixed by the automorphism σ, we can
assume that the components Dis are ordered in such a way that

σ(D2) = D1 . . . σ(Di1) = Di1−1, σ(D1) = Di1

. . .

σ(Dit−1+2) = Dit−1+1 . . . σ(Dit) = σ(Ds) = Dit−1, σ(Dit−1+1) = Dit .

By convention we define i0 = 0. For each integer j from 1 to t, and each
integer i from ij−1+1 to ij we have D

′
i = D′

ij
. Therefore we see that D′

ij
is the

connected component of the smooth variety (Dij−1+1 ∩ · · · ∩Dij )
σ containing

x. Consequently, it is smooth. For the moment, we have proved that D′ is a
divisor on X ′ whose irreducible components are smooth.

We prove now that the divisor D′
i1
, . . . , D′

it
intersect transversally at the point

x. Let Ux be an open neighborhood of x in X which is stable by the
automorphism σ and on which the equation of D is u1 . . . us = 0, where
u1 . . . us ∈ OX(Ux) are part of a regular local parameter system at x and
satisfy:

σ(u2) = u1 . . . σ(ui1) = ui1−1

. . .

σ(uit−1+2) = uit−1+1 . . . σ(uit) = uit−1.

We aim to prove that the images of the differential dxuij by the natural pro-
jection

(TX,x)
∗ → (TX′,x)

∗

are linearly independent, where j run from 1 to t. As the point x is fixed by
σ, σ acts by the differential on the tangent space TX,x and by the dual action
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on (TX,x)
∗. As the order of the automorphism σ is prime to the characteristic

p, we have a direct sum decomposition:

(TX,x)
∗ = ((TX,x)

∗)σ ⊕Ker(id+ σ + · · ·+ σr−1)

where the projection on the first factor is given by

l 7→ 1

r
(l + σ(l) + · · ·+ σr−1(l)).

Moreover, as TX′,x is equal to (TX,x)
σ, the second factor in this decomposition

is easily seen to be (TX′,x)
⊥, so that the natural projection

(TX,x)
∗ → (TX′,x)

∗

gives an isomorphism
((TX,x)

∗)σ → (TX′,x)
∗.

Finally, the images of the differential dxuij in (TX′,x)
∗ are linearly independent,

because the differentials dxui are linearly independent in (TX,x)
∗.

We have proved that the divisor D′ is a strict normal crossing divisor. We
leave it as an exercise to the reader to prove that there exists a natural exact
sequence of vector bundle on X ′

0 → TX′(− logD′) → TX(− logD)|X′ → NX′/X → 0,

and that the space TX′(− logD′)x is the subspace of fixed point by σ in the
space TX(− logD)x. Now, the compactification X is log homogeneous, there-
fore the linear map

g → TX(− logD)x

is surjective. As r and p are relatively prime, this linear map is still surjective
at the level of fixed points. That is, the linear map

gσ → TX(− logD)σx = TX′(− logD′)x

is surjective. This complete the proof of the proposition.

1.4 The example of reductive groups

In this section the homogeneous space Ω is a connected reductive groupG acted
upon by the group G×G by the following formula:

∀(g, h) ∈ G×G, ∀x ∈ G, (g, h) · x = gxh−1

We would like to explain here the classification of smooth log homogeneous
compactifications of G. Observe that the homogeneous space G under the
action of G × G is actually separably spherical. By Theorem 1.8, its smooth
log homogeneous compactifications are the smooth colorless compactifications
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with separable closed orbits. The last condition is actually superfluous : by
[6, Chapter 6], the closed orbits of G ×G in a colorless compactification of G
are isomorphic to G/B × G/B, where B is a Borel subgroup of G. The log
homogeneous compactifications of G are therefore the smooth colorless one.

We now recall the combinatorial description of the smooth colorless compact-
ifications of G. Let T be a maximal torus of G and B a Borel subgroup of
G containing T . We denote by V the Q-vector space spanned by the one-
parameter subgroups of T and by W the Weyl chamber corresponding to B.
Let X be a smooth colorless embedding of G. We let the torus T act “on the
left” on X . For this action, the closure of T in X is a smooth complete toric va-
riety. We associate to X the fan consisting of those cones in the fan of the toric
variety T which are included in −W . This sets a map from the set of smooth
colorless compactifications of G to the set of fans in V with support −W and
which are smooth with respect to the lattice of one parameter subgroups in V .
This map is actually a bijection, see for instance [6, Chapter 6].

2 Explicit compactifications of classical groups

We construct a log homogeneous compactification Gn of the general linear group
GL(n) by successive blow-ups, starting from a grassmannian. The precise pro-
cedure is explained in Section 2.1. The compactification Gn is defined over an
arbitrary base scheme. In Section 2.2 we study the local structure of the action
of GL(n) ×GL(n) on Gn, still over an arbitrary base scheme. This enables us
to compute the colored fan of Gn over an algebraically closed field in Section
2.4. Using this computation, we are able to identify the compactifications of
the special orthogonal group or the symplectic group obtained by taking the
fixed points of certain involutions on the compactification Gn. In the odd or-
thogonal and symplectic case we obtain the wonderful compactification. In the
even orthogonal case we obtain a log homogeneous compactification with two
closed orbits. This is the minimal number of closed orbits on a smooth log
homogeneous compactification, as the canonical compactification of SO(2n) is
not smooth.

2.1 The compactifications Gm

As we mentioned above our construction works over an arbitrary base scheme:
until the end of Section 2.3 we work over a base scheme S. Let V1 and V2 be
two free modules of constant finite rank n on S. We denote by V the direct
sum of V1 and V2. We denote by p1 and p2 the projections respectively on
the first and the second factor of this direct sum. We denote by G the group
scheme GL(V1)×GL(V2) which is a subgroup scheme of GL(V).

Definition 2.1. We denote by Ω := Iso(V2,V1) the scheme over S parametriz-
ing the isomorphisms from V2 to V1.
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There is a natural action of the group schemeG on Ω, via the following formulas

∀(g1, g2) ∈ G, ∀x ∈ Ω, (g1, g2) · x = g1xg
−1
2

For this action, Ω is a homogeneous space under the action of G.

Definition 2.2. We denote by G the grassmannian

π : GrS(n,V) → S

parametrizing the submodules of V which are locally direct summands of rank
n. We denote by T the tautological module on G.

The module T is a submodule of π∗V which is locally a direct summand of
finite constant rank n. There is a natural action of the group scheme GL(V),
and therefore of the group scheme G, on the grassmannian G. Moreover, Ω is
contained in G as a G-stable open subscheme via the graph

Ω → G, x 7→ Graph(x).

Definition 2.3. We denote by p the following morphism of modules on the
grassmannian G :

p = π∗p1 ⊕ π∗p2 : T ⊕2 → π∗V .

Definition 2.4. For d ∈ [[0, n]], we denote by Hd the locally free module

Hom(
n+d∧

(T ⊕2),
n+d∧

(π∗V)).

on the grassmannian G.

Definition 2.5. For d ∈ [[0, n]], the exterior power ∧n+dp is a global section
of Hd. We denote by Zd the zero locus of ∧n+dp on the grassmannian G.

We define in this way a sequence of G-stable closed subschemes on the grass-
mannian G

Z0 ⊂ Z1 ⊂ · · · ⊂ Zn ⊂ G.
Observe that the closed subscheme Z0 is actually empty. Moreover, it is easy
to prove that the open subscheme Ω is the complement of Zn in G.
We will now define a sequence of blow-ups

Gn Gn−1 . . . G1 G0
bn b1

and, for each integer m between 0 and n, a family of closed subschemes Zm,d

of Gm, where d runs from m to n.

Definition 2.6. Let m ∈ [[0, n]] and d ∈ [[m,n]]. The definition is by induction:
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• For m = 0, we set G0 := G and Z0,d := Zd.

• Assuming that the scheme Gm−1 and its subschemes Zm−1,d are defined,
we define

bm : Gm → Gm−1

to be the blow-up centered at Zm−1,m and, for each integer d from m to n,
we define Zm,d to be the strict transform of Zm−1,d that is, the schematic
closure of

b−1
m (Zm−1,d \ Zm−1,m)

in Gm.

Moreover, we denote by Im,d the ideal sheaf on Gm defining Zm,d.

The group scheme G acts on the schemes Gm and leaves the subschemes Zm,d

globally invariant. Modulo Proposition 2.17 below, we prove now:

Theorem 2.7. For each integer m from 0 to n − 1, the S-scheme Gm is a
smooth projective compactification of Ω.

Proof. By Proposition 2.17 the scheme Gm is covered by a collection of open
subschemes isomorphic to affine spaces over S. In particular, the S-scheme
Gm is smooth. It is a classical fact that the grassmannian G is projective over
S. As the blow-up of a projective scheme over S along a closed subscheme
is projective over S, we see that Gm is projective over S. Finally, observe
that the open subscheme Ω of G is disjoint from the closed subscheme Zn and
therefore from each of the closed subscheme Zd. As a consequence, Ω is an
open subscheme of each of the Gm.

2.2 An atlas of affine charts for Gm

Let V be the set [[1, n]]× {1, 2}. We denote by V1 the subset [[1, n]] × {1} and
by V2 the subset [[1, n]]×{2}. We shall refer to elements of V1 as elements of V
of type 1 and elements of V2 as elements of type 2. We fix a basis vi, i ∈ V , of
the free module V . We suppose that vi, i ∈ V1 is a basis for V1 and vi, i ∈ V2
is a basis for V2. Moreover, for each subset I of V , we denote by VI the free
submodule of V spanned by the (vi)i∈I . For every integer m from 1 to n, we
denote by V >m the set [[m+ 1, n]]×{1, 2}. We define the sets V >m, V <m and
V 6m similarly. We also have, with obvious notations, the sets V >m

1 , V >m
2 ,

V >m
1 , V >m

2 . . . If I is a subset of V we denote by I1 the set I ∩ V1 and by I2
the set I ∩ V2.
One word on terminology. If X is an S-scheme, by a point x of X we mean
an S-scheme S′ and a point x of the set X(S′). However, as it is usually
unnecessary, we do not mention the S-scheme S′ and simply write: let x be a
point of X .
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Definition 2.8. We denote by R the set of permutations f of V such that,
for each integer m from 1 to n, the elements f(m, 1) and f(m, 2) of V have
different types.

Definition 2.9. Let f ∈ R. We denote by Uf the affine space

Spec(OS [xi,j , (i, j) ∈ f(V1)× f(V2)])

over S. It is equipped with a structural morphism πf to S. Denote by Ff the
closed subscheme

Spec(OS [xi,j , (i, j) ∈ (f(V1)1 × f(V2)2) ⊔ (f(V1)2 × f(V2)1)])

We think of a point x of Uf as a matrix indexed by the set f(V1)× f(V2). For
a subset I1 of f(V1) and I2 of f(V2), we denote by xI1,I2 the submatrix of x
indexed by I1 × I2. For example, the closed subscheme Ff is defined by the
vanishing of the two matrices xf(V1)1×f(V2)1 and xf(V1)2×f(V2)2 .

Proposition-Definition 2.10. Let f ∈ R. There exists a unique morphism

ιf : Uf → G

such that Tf := ι∗fT is the submodule of π∗
fV spanned by

π∗
fvj +

∑

i∈f(V1)

xi,jπ
∗
fvi

where j runs over the set f(V2). The morphism ιf is an open immersion. We
denote by Gf the image of the open immersion ιf . The open subschemes Gf

cover the grassmannian G as f runs over the set R.

Proof. This is classical. The open subscheme Gf of the grassmannian
parametrizes the complementary submodules of Vf(V1) in V .

Definition 2.11. Let f ∈ R. We denote by Pf,0 the subgroup scheme

StabG(Vf(V1))

of G. It is a parabolic subgroup. We also denote by Lf,0 its Levi subgroup

Lf,0 := StabG(Vf(V1),Vf(V2)) =
∏

i,j∈{1,2}
GL(Vf(Vi)j )

In the next proposition we describe the local structure of the action of the
group scheme G on G. This is analogous to Proposition 1.3.

Proposition 2.12. Let f ∈ R. The open subscheme Gf of G is left stable
under the action of Pf,0. For the corresponding action of Pf,0 on Uf through
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the isomorphism ιf , the closed subscheme Ff is left stable under the action of
Lf,0 and we have the following formulas

∀g ∈ Lf,0, ∀x ∈ Ff ,

x′ = g · x where

{

x′f(V1)1,f(V2)2
= gf(V1)1xf(V1)1,f(V2)2g

−1
f(V2)2

x′f(V1)2,f(V2)1
= gf(V1)2xf(V1)2,f(V2)1g

−1
f(V2)1

Finally, the natural morphism

mf,0 : Ru(Pf,0)×Ff → Uf , (r, x) 7→ r · x
is an isomorphism.

Proof. The open subscheme Gf of the grassmannian parametrizes the comple-
mentary submodules of Vf(V1) in V . It follows that it is stable under the action
of the stabilizer P of Vf(V1) in GL(V) and therefore under the action of its
subgroup Pf,0.

Let x be a point of Uf and g a point of P . By definition, the point ιf (x) is the
graph of x. Therefore, the point g · ιf (x) is the module consisting of elements
of type

g(v + xv) = gf(V2)v + (gf(V1),f(V2) + gf(V1)x)v, v ∈ Vf(V2).

It is thus equal to the point

ιf ((gf(V1),f(V2) + gf(V1)x)g
−1
f(V2)

).

In other words, the action of P on Uf is given by

P × Uf → Uf , (g, x) 7→ (gf(V1),f(V2) + gf(V1)x)g
−1
f(V2)

.

By specializing this action to the subgroup Pf,0 of P , we immediately see that
Ff is left stable under the action of Lf,0 we obtain the formulas in the statement
of the proposition.

Moreover, still using the description of the action of P on Uf found above, we
see that if g is a point of Ru(Pf,0) and x a point of Ff , then the point x′ = g ·x
of Uf is given by :







x′f(V1)1,f(V2)1
= gf(V1)1,f(V2)1

x′f(V1)1,f(V2)2
= xf(V1)1,f(V2)2

x′f(V1)2,f(V2)1
= xf(V1)2,f(V2)1

x′f(V1)2,f(V2)2
= gf(V1)2,f(V2)2 .

This proves that the natural Pf,0-equivariant morphism :

mf,0 : Ru(Pf,0)×Ff → Uf

is indeed an isomorphism.
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Definition 2.13. Let f ∈ R and d ∈ [[0, n]]. We denote by If,0,d the ideal
sheaf on Ff spanned by the minors of size d of the matrix

(
0 xf(V1)1,f(V2)2

xf(V1)2,f(V2)1 0

)

.

We denote by Zf,0,d the closed subscheme of Ff defined by the ideal sheaf If,0,d.
Proposition 2.14. Let f ∈ R and d ∈ [[0, n− 1]]. Through the isomorphism

mf,0 : Ru(Pf,0)×Ff → Uf

of Proposition 2.12 the closed subscheme ι−1
f (Z0,d) is equal to Ru(Pf,0)×Zf,0,d.

Proof. Due to the formula in the proof of Proposition 2.12, it suffices to show
that the defining ideal of ι−1

f (Z0,d) on Uf is spanned by the minors of size d of
the matrix (

0 xf(V1)1,f(V2)2

xf(V1)2,f(V2)1 0

)

.

To prove this, we express the matrix of the homomorphism

ι∗fp : T ⊕2
f → π∗

fV
in appropriate basis. We choose the basis of Tf described in Proposition-
Definition 2.10. This basis is indexed by the set f(V2), which is the disjoint
union of f(V2)1 and f(V2)2. We also choose the basis

π∗
f (vi), i ∈ f(V1)1, π∗

f (vj) +
∑

i∈f(V1)1

xi,jπ
∗
f (vi), j ∈ f(V2)1

for π∗
fV1 and

π∗
f (vi), i ∈ f(V1)2, π∗

f (vj) +
∑

i∈f(V1)2

xi,jπ
∗
f (vi), j ∈ f(V2)2

for π∗
fV2. The matrix of ι∗fp in these basis can be expressed in blocks as follows:







0 xf(V1)1,f(V2)2 0 0
Id 0 0 0
0 0 xf(V1)2,f(V2)1 0
0 0 0 Id






.

By definition, the defining ideal of ι−1
f (Z0,d) is generated by the minors of size

n + d of this matrix. By reordering the vector in the basis, we get the block
diagonal square matrix with blocks In and

(
0 xf(V1)1,f(V2)2

xf(V1)2,f(V2)1 0

)

.

We see therefore that the defining ideal of ι−1
f (Z0,d) is generated by the minors

of size d of the last matrix, as we wanted.
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Definition 2.15. Let f ∈ R, m ∈ [[0, n]] and d ∈ [[m,n]].

• We define a parabolic subgroup scheme Pf,m of G by induction m. For
m equals 0, we have already defined Pf,0. Then, assuming that Pf,m−1

has been defined, we set

Pf,m =







StabPf,m−1
(Vf(V >m

1
)∩V1

,V{f(m,2)})

if f(m, 1) ∈ V1 and f(m, 2) ∈ V2

StabPf,m−1
(Vf(V >m

1
)∩V2

,V{f(m,2)})

if f(m, 1) ∈ V2 and f(m, 2) ∈ V1.

• We denote by Lf,m the following Levi subgroup of Pf,m:

m∏

i=1

(GL(Vf(i,1))×GL(Vf(i,2)))×
∏

i,j∈{1,2}
GL(Vf(V >m

i )∩Vj
)

• We denote by Ff,m the affine space over S on the indeterminates xi,j
where (i, j) runs over the union of the sets

{(f(1, 1), f(1, 2)), . . . , (f(m, 1), f(m, 2))}

and

((f(V >m
1 )1)× (f(V >m

2 )2)) ∪ ((f(V >m
1 )2)× (f(V >m

2 )1)).

• We let the group scheme Lf,m act on Ff,m by the following formulas







x′

f(1,1),f(1,2) = gf(1,1)g
−1
f(1,2)

xf(1,1),f(1,2)

x′

f(i,1),f(i,2) = gf(i,1)gf(i−1,2)g
−1
f(i−1,1)g

−1
f(i,2)xf(i,1),f(i,2) for i ∈ [[2, m]]

x′

f(V >m
1

)1,f(V
>m
2

)2
= g−1

f(m,1)gf(m,2)gf(V >m
1

)1
xf(V >m

1
)1,f(V

>m
2

)2
g−1

f(V >m
2

)2

x′

f(V >m
1

)2,f(V
>m
2

)1
= g−1

f(m,1)
gf(m,2)gf(V >m

1
)2
xf(V >m

1
)2,f(V

>m
2

)1
g−1

f(V >m
2

)1

where g is a point of Lf,m, x a point of Ff,m and x′ := g · x.
• We denote by Uf,m the product

Ru(Pf,m)×Ff,m

acted upon by the group scheme Pf,m = Ru(Pf,m)⋊Lf,m via the formula

∀(r, l) ∈ Pf,m, ∀(r′, x) ∈ Uf,m, (r, l) · (r′, x) = (rlr′l−1, l · x).

• We denote by If,m,d the ideal sheaf on Ff,m spanned by the minors of
size d−m of the matrix

(
0 xf(V >m

1
)1,f(V

>m
2

)2

xf(V >m
1

)2,f(V
>m
2

)1 0

)

.
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• We denote by Z ′
f,m,d the closed subscheme of Ff,m defined by the ideal

sheaf If,m,d and by Zf,m,d the closed subscheme Ru(Pf,m,d) × Z ′
f,m,d of

Uf,m.

• We denote by Bf,m the blow-up of Uf,m along the closed subscheme
Zf,m,m+1.

Let f ∈ R, m ∈ [[1, n]] and d ∈ [[m,n]]. The blow-up Bf,m−1 is the closed
subscheme of

Uf,m−1×Proj(OS [Xi,j , (i, j) ∈ (f(V >m
1 )1×f(V >m

2 )2)⊔(f(V >m
1 )2×f(V >m

2 )1)])

defined by the equations

∀(i, j), (i′, j′) ∈ (f(V >m
1 )1 × f(V >m

2 )2) ⊔ (f(V >m
1 )2 × f(V >m

2 )1)

xi,jXi′,j′ −Xi,jxi′,j′ = 0.

Proposition 2.16. With these notations, the open subscheme
{Xf(m,1),f(m,2) 6= 0} of Bf,m−1 is left stable under the action of Pf,m and is
isomorphic, as a Pf,m-scheme, to Uf,m. Moreover, via this isomorphism, the
strict transform of Zf,m−1,d in Uf,m is Zf,m,d.

Proof. We prove analogous statement for the the blow-up B′
f,m−1 of Ff,m−1

along the closed subscheme Z ′
f,m−1,m from which the proposition is easily de-

rived.

The scheme B′
f,m−1 is the closed subscheme of

Ff,m−1×Proj(OS [Xi,j , (i, j) ∈ (f(V >m
1 )1×f(V >m

2 )2)⊔(f(V >m
1 )2×f(V >m

2 )1)])

defined by the equations

∀(i, j), (i′, j′) ∈ (f(V >m
1 )1 × f(V >m

2 )2) ⊔ (f(V >m
1 )2 × f(V >m

2 )1)

xi,jXi′,j′ −Xi,jxi′,j′ = 0.

Observe that the open subscheme U ′
f,m of B′

f,m−1 defined by Xf(m,1),f(m,2) 6= 0
is isomorphic, as a scheme over Ff,m−1 to

b : Ff,m−1 → Ff,m−1, xi,j 7→







xf(m,1),f(m,2)xi,j

if (i, j) ∈ f(V >m
1 )× f(V >m

2 )

and i and j have different types

xi,j otherwise.

In the following we shall make use of this remark and use the coordinates xi,j
to describe the points of U ′

f,m.
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Observe that the center of the blow-up B′
f,m−1 → Ff,m−1 is stable under the

action of Lf,m−1 and therefore the group scheme Lf,m−1 acts on B′
f,m−1. This

action can be described as follows.

∀g ∈ Lf,m−1, ∀(x,X) ∈ B′
f,m, (x′, X ′) = g · (x,X) where x′ = g · x and







X ′
f(V >m

1
)1,f(V

>m
2

)2
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)1
X

f(V >m
1

)1,f(V
>m
2

)2
g−1

f(V >m

2
)2

X ′
f(V >m

1
)2,f(V

>m
2

)1
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)2
X

f(V >m
1

)2,f(V
>m
2

)1
g−1

f(V >m
2

)1

where we denote by X the matrix formed by the Xi,j . Observe now that
the open subscheme U ′

f,m is the locus of points (x,X) of B′
f,m−1 such that

Xf(m,1),f(m,2) does not vanish. Therefore, it is left stable under the action of
the parabolic subgroup of Lf,m−1

P =







StabLf,m−1
(Vf(V >m

1
),Vf(m,2))

if f(m, 1) belongs to V1 and f(m, 2) to V2

StabLf,m−1
(Vf(V >m

2
),Vf(m,2))

if f(m, 1) belongs to V2 and f(m, 2) to V1

The group scheme Lf,m is a Levi subgroup scheme of P . Let g be a point of
Lf,m and x a point of Ff,m. The point x corresponds to the couple (b(x), X)
in B′

f,m−1, where

Xi,j =

{

xi,j if (i, j) 6= (f(m, 1), f(m, 2))

1 if (i, j) = (f(m, 1), f(m, 2)).

Let (x′, X ′) = g · (x,X). By a quick computation we get







x′f(m,1),f(m,2) = g−1
f(m−1,1)gf(m−1,2)gf(m,1)g

−1
f(m,2)xf(m,1),f(m,2)

X ′
f(m,1),f(m,2) = g−1

f(m−1,1)gf(m−1,2)gf(m,1)g
−1
f(m,2)

X ′
f(V >m

1
)1,f(V

>m
2

)2
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)1Xf(V >m
1

)1,f(V
>m
2

)2g
−1
f(V >m

2
)2

X ′
f(V >m

1
)2,f(V

>m
2

)1
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)2Xf(V >m
1

)2,f(V
>m
2

)1g
−1
f(V >m

2
)1

X ′
i,j = 0 otherwise

Therefore we see that the closed subscheme Ff,m of U ′
f,m is left stable under

the action of the Levi subgroup Lf,m and, moreover, the action of Lf,m on
Ff,m is given by the formulas in Definition 2.15. In a similar way, we prove
that the natural morphism

Ru(P )×Ff,m → U ′
f,m, (g, x) 7→ g · x = x′
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is an isomorphism, given by the following formulas







x′f(l,1),f(l,2) = xf(l,1),f(l,2) for all l ∈ [[1,m]]

x′
f(V >m

1
)1,f(m,2)

= gf(V >m
1

)1,f(m,1)

x′
f(m,1),f(V >m

2
)2

= −gf(m,2),f(V >m
2

)2

x′
f(V >m

1
)1,f(V

>m
2

)2
= xf(V >m

1
)1,f(V

>m
2

)2 − gf(V >m
1

)1,f(m,1)gf(m,2),f(V >m
2

)2

x′
f(V >m

1
)2,f(V

>m
2

)1
= xf(V >m

1
)2,f(V

>m
2

)1

Now we compute the strict transform of Z ′
f,m,d in U ′

f,m. By definition, the
strict transform of Z ′

f,m,d is the schematic closure of

Z := b−1(Z ′
f,m−1,d ∩ {xf(m,1),f(m,2) 6= 0})

in U ′
f,m. Let x be a point of U ′

f,m. We denote (r, y) its components through
the isomorphism

Ru(P )×Ff,m → U ′
f,m.

By definition, the point x belongs to Z if and only xf(m,1),f(m,2) is invertible
and all the square d−m+ 1 minors extracted from the following matrix

(

0 b(x
f(V >m

1
)1,f(V

>m
2

)2
)

b(x
f(V >m

1
)2,f(V

>m
2

)1
) 0

)

are zero. By definition of the morphism b, each coefficient in this matrix is
a multiple of xf(m,1),f(m,2) and the coefficient in place (f(m, 1), f(m, 2)) is
exactly xf(m,1),f(m,2). As this indeterminate is invertible on the open sub-
scheme {xf(m,1),f(m,2) 6= 0} we see that the point x belongs to Z if and only
xf(m,1),f(m,2) is invertible and all the minors of size d−m+ 1 extracted from
the matrix (

0 x′
f(V >m

1
)1,f(V

>m
2

)2

x′
f(V >m

1
)2,f(V

>m
2

)1
0

)

are zero, where x′f(m,1),f(m,2) = 1 and x′i,j = xi,j otherwise. By operating
standard row and column operations on this matrix we see now that x belongs
to Z if and only if xf(m,1),f(m,2) is invertible and all the minors of size d −m
extracted from the matrix

(
0 xf(V >m

1
)1,f(V

>m
2

)2

xf(V >m
1

)2,f(V
>m
2

)1 0

)

are zero. This proves that Z is the intersection of Ru(P ) × Z ′
f,m,d with the

open subscheme {xf(m,1),f(m,2) 6= 0}.
In order to complete the proof, we now show that the schematic closure of Z
in U ′

f,m is equal to Ru(P ) × Z ′
f,m,d. We can check this Zariski locally on the
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base S and therefore assume that S is affine. First of all, it is obvious that
the closure of Z is contained in Ru(P )×Z ′

f,m,d. Conversely, let ϕ be a global
function on U ′

f,m which vanishes on Z. This means that there exists an integer

q such that xqf(m,1),f(m,2)ϕ belongs to the ideal spanned by the minors of size

d−m of the following matrix:

(
0 xf(V >m

1
)1,f(V

>m
2

)2

xf(V >m
1

)2,f(V
>m
2

)1 0

)

.

As the indeterminate xf(m,1),f(m,2) does not appear in this matrix, we can
conclude that ϕ itself belongs to this ideal, completing the proof of the propo-
sition.

Proposition 2.17. Let f ∈ R. There exists a unique collection of open im-
mersions ιf,m, for m from 1 to n such that each of the squares below are
commutative :

G0

Uf,0

G1

Uf,1

Gn−1

Uf,n−1

Gn

Uf,n

...

...

ιf,0 ιf,1 ιf,n−1 ιf,n

bf,1

b1

bf,n

bn

The open immersion ιf,m is equivariant for the action of Pf,m. We denote by
Gf,m the image of the open immersion ιf,m. The open subschemes Gf,m cover
Gm as f run over R.

Proof. The existence and Pf,m-equivariance of the ιf,m follows directly from
Proposition 2.16. The uniqueness comes from the fact that for each index m,
the intersection Ω ∩ Gf,m is dense in Gf,m. The last assertion is proved as
follows. By Proposition 2.10, the open subschemes Gf,0 cover the scheme G0.
Moreover, it follows from Proposition 2.16 that the blow-up Bf,m−1 is covered
by the open subschemes Uf ′,m where f ′ runs over the elements of R having
the same restriction as f to [[1, k]] × {1, 2} and satisfying f(V1) = f ′(V1) and
f(V2) = f ′(V2).

2.3 An alternative construction

In this section we provide an alternative construction for the schemes Gm.
Recall from Section 2.1 that the section ∧n+dp of the locally free module Hd

does not vanish on Ω. Therefore it defines an invertible submodule of Hd on Ω
that is locally a direct summand. In other words, it defines a morphism from
Ω to the projective bundle P(Hd) over Ω.
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Definition 2.18. Let d ∈ [[0, n]]. We denote by ϕd the morphism

ϕd : Ω → P(Hd).

defined by the global section ∧n+dp of Hd.

Proposition 2.19. Let d ∈ [[0, n]] and m ∈ [[d, n]]. The morphism ϕd extends
to Gm in a unique way.

Proof. We first observe that Ω is dense in each of the schemes Gm. If the
morphism ϕd extends to Gm it is therefore in a unique way. Moreover, it
suffices to show that ϕd extends to Gd, because then the composite

Gm
bm−→ Gm−1 −→ . . . −→ Gd

ϕd−→ P(Hd)

is an extension of ϕd to Gm.

By the same density argument as above it suffices to show that the morphism
ϕd extends from Ω ∩ Gf,d to Gf,d for each element f of the set R. We identify
the scheme Gf,d with Uf,d via the isomorphism ιf,d. Observe that the scheme
P(Hd) is equipped with an action of the group scheme G and the morphism ϕd

is equivariant with respect to this action. By using this remark, we see that it
suffices to extend the morphism ϕd from Ω ∩ Ff,d to Ff,d.

We denote by c the composite bf,1◦· · ·◦bf,d. We use the trivialization of Hd on
Gf,0 as in the proof of Proposition 2.14. For this trivialization, the coordinates
are indexed by the product (V2 ⊔ V2) × V . The morphism ϕd is given over
Ω ∩ Ff,d in this coordinates by the n+ d minors of the matrix







0 c(x)f(V1)1,f(V2)2 0 0
Id 0 0 0
0 0 c(x)f(V1)2,f(V2)1 0
0 0 0 Id






.

It follows from the definition of c that all these minors are multiples of

xdf(1,1),f(1,2)x
d−1
f(1,2),f(2,2) . . . xf(d,1),f(d,2)

and that one of them, namely the one indexed by the product of

f(V1)2 ⊔ f(V 6d
2 )2 ⊔ (f(V 6d

1 )2) ⊔ f(V2)2
and

f(V 6d
1 )1 ⊔ f(V2)1 ⊔ f(V 6d

1 )2 ⊔ f(V2)2
is exactly equal to this product or its opposite. By dividing each coordinate by
this product we therefore extend the morphism ϕd to Ff,d.

Proposition 2.20. Let m ∈ [[0, n]]. The morphism

ψm := ϕ0 × ϕ1 × ...× ϕm : Gm → P(H0)×G P(H1)×G ...×G P(Hm)

is a closed immersion.
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Proof. We prove this by induction on m. For m = 0 the morphism ϕ0 is
defined by the nowhere vanishing section ∧np of H0 and is therefore a closed
immersion. We suppose now that ψm−1 is a closed immersion and prove that
ψm is also a closed immersion. As this morphism is proper, it suffices to check
that it is a monomorphism in order to prove that it is a closed immersion. Let
q1 and q2 be two points of Gm which are mapped to the same point by ψm. We
want to show that they are equal.

First, we suppose that q1 and q2 are points of Gf,m, where f is an element of
R. We identify Gf,m and Uf,m via the isomorphism ιf,m. We use the notations
introduced in the proof of Proposition 2.16. The scheme Uf,m is isomorphic
to the product Ru(Pf,m−1) × U ′

f,m. Using the induction hypothesis, we can
assume that q1 and q2 are actually points of U ′

f,m. Viewed as points of U ′
f,m

(which is isomorphic to Ff,m−1 via the morphism b) we denote the coordinates
of q1 by (xi,j,1) and and the coordinates of q2 by (xi,j,2). Still by the induction
hypothesis, we have xi,j,1 = xi,j,2 for (i, j) in the following set

{(f(1, 1), f(1, 2)), . . . , (f(m, 1), f(m, 2))}

as it follows from the definition of the morphism b. Observe now that the
morphism ϕm is defined over U ′

f,m by exactly the same process as explained in
the proof of Proposition 2.19. By this we mean that the coordinates of ϕd are
obtained by computing the n+ d minors of the matrix







0 c(x)f(V1)1,f(V2)2 0 0
Id 0 0 0
0 0 c(x)f(V1)2,f(V2)1 0
0 0 0 Id







and dividing by the product

xmf(1,1),f(1,2)x
m−1
f(1,2),f(2,2) . . . xf(m,1),f(m,2).

Indeed this process makes sense over U ′
f,m and extend ϕd over Ω∩U ′

f,m. More-
over, such an extension is unique. Let (i, j) be an element of

(f(V >m
1 )1 × f(V >m

2 )2) ⊔ (f(V >m
1 )2 × f(V >m

2 )1)

different from (f(m, 1), f(m, 2)). We suppose that i is of type 1 and j of type
2, the other case being entirely similar. The coordinate of ϕm corresponding
to the minor indexed by the product of

f(V1)2 ⊔ f(V <d
2 )2 ⊔ {j} ⊔ (f(V 6d

1 )2) ⊔ f(V2)2
and

f(V 6d
1 )1 ⊔ f(V2)1 ⊔ f(V <d

1 )2 ⊔ {i} ⊔ f(V2)2.
is xi,j or its opposite. We can therefore conclude that xi,j,1 = xi,j,2. Finally
we have proved that q1 = q2.
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We go back to the general case. Let f be an element of R. We prove now that
the open subschemes q−1

1 (Gf,m) and q−1
2 (Gf,m) are equal. This is sufficient to

complete the proof of the proposition. By the induction hypothesis, we already
know that the open subschemes q−1

1 (Gf,m−1) and q
−1
2 (Gf,m−1) are equal. Ob-

serve now that the computations above actually prove the following: through
ϕm, the non zero locus on Bf,m of the coordinate of P(Hm) corresponding to
the minor indexed by the product of

f(V1)2 ⊔ f(V 6m
2 )2 ⊔ (f(V 6m

1 )2) ⊔ f(V2)2

and
f(V 6m

1 )1 ⊔ f(V2)1 ⊔ f(V 6m
1 )2 ⊔ f(V2)2

is Uf,m. This implies the result.

2.4 The colored fan of Gn

In this section we assume that the base scheme S is the spectrum of an al-
gebraically closed field k of arbitrary characteristic. The scheme Gn is an
equivariant compactification of the homogeneous space Iso(V2,V1) under the
action of the group GL(V1)×GL(V2). Through the fixed trivializations of the
free modules V1 and V2 we see that Gn is an equivariant compactification of
the general linear group GL(n) under the action of GL(n)×GL(n). The aim of
this section is to compute the colored fan of this compactification, as explained
in Section 1.4.

But first, we say a word about the blow-up procedure explained in Section
2.1 in this setting. By definition, the set Zd(k) is the set of n-dimensional
subspaces of V(k) such that the sum of the ranks of p1(k) and p2(k) is strictly
less than n + d at every point. Another way to state this is that Zd(k) is the
set

{F ∈ G(k), dim(F ∩ V1(k)) + dim(F ∩ V2(k)) > n− d}.
For example, the set Z1(k) is the set of n-dimensional subspaces of V(k) which
are direct sum of a subspace of V1(k) and a subspace of V2(k). Using this
description, it is not difficult to prove that Z1(k) is the union of the closed
orbits of G(k) in G(k). We leave it as an exercise to the reader to prove that,
for d from 1 to n − 1, an orbit ω of G(k) in G(k) is contained in Zd(k) if and
only if its closure is the union of ω and some orbits contained in Zd−1(k).

We use the notations introduced in Section 1.4. We choose for T the diagonal
torus in GL(n) and for B the Borel subgroup of upper triangular matrices.
The torus T is naturally isomorphic to the torus Gn

m. The vector space V is
therefore naturally isomorphic to Qn. The Weyl chamber W corresponding to
the chosen Borel subgroup B of GL(n) is given by

W = {(a1, . . . , an) ∈ V, a1 > a2 > . . . > an}.
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Proposition-Definition 2.21. We denote by Q the set of permutations g of
[[1, n]] such that

∃m ∈ [[0, n]], g|g−1([[1,m]]) is decreasing and g|g−1([[m,n]]) is increasing.

If such an integer m exists, it is unique. We call it the integer associated to g
and denote it by mg. Also, we denote by εg the function

εg : [[1, n]] → {+1,−1}, x 7→







−1 if g(x) ∈ [[1,mg]]

1 if g(x) ∈ [[mg + 1, n]]

Finally, we denote by Cg the following cone in V :

Cg := {(a1, . . . , an) ∈ V, 0 6 εg(1)ag(1) 6 · · · 6 εg(n)ag(n)}

Proposition 2.22. The compactification Gn of GL(n) is log homogeneous and
its colored fan consists of the cones Cg and their faces, where g runs over the
set Q.

Proof. Let us first prove that the compactification Gn is log homogeneous. Let
f be an element ofR. We claim that the complement of Ω in Ff,n is the union of
the coordinate hyperplanes xf(d,1),f(d,2) = 0, where d runs from 1 to n. Indeed,
a point x of Ff,n belongs to Ω if and only if the point x′ = (bf,n ◦ · · · ◦ bf,1)(x)
belongs to Ω. Moreover, we have

{

x′f(d,1),f(d,2) = xf(1,1),f(1,2) . . . xf(d,1),f(d,2) for all d ∈ [[1, n]]

x′i,j = 0 if (i, j) /∈ {(f(1, 1), f(1, 2)), . . . , (f(n, 1), f(n, 2))}.

By Proposition 2.14, the point x′ belongs to Ω if and only if the product

x′f(1,1),f(1,2) . . . x
′
f(n,1),f(n,2) = xnf(1,1),f(1,2)x

n−1
f(2,1),f(2,2) . . . xf(n,1),f(n,2)

does not vanish, that is, if and only if each of the xf(d,1),f(d,2) does not vanish.
This proves the claim. In particular, the complement of Ω in Gn is a strict
normal crossing divisor. By Definition 2.15, the variety Ff,n is a smooth toric
variety for a quotient of the torus T ×T = Lf,n. From this we see that it is log
homogeneous. It is now straightforward to check that the Pf,n-variety Uf,n is
log homogeneous. It readily follows that the G-variety Gn is log homogeneous.

We let T acts on Gn on the left. By Section 1.4, the closure T of T in Gn

is a toric variety under the action of T and we can use the fan of this toric
variety to compute the colored fan of Gn. We shall now identify some of the
cones in the fan of T . Let g be an element of Q. We fix an element f of
R such that, for each integer d from 1 to n, f(d, 1) = (g(d), 1) if εg(d) = 1
and f(d, 2) = (g(d), 1) if εg(d) = −1 The variety Ff,n is an open affine toric
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subvariety of T . It corresponds to a cone in the fan of T , namely the cone
spanned by the one-parameter subgroups having a limit in Ff,n at 0. Let

λ : Gm → T, t→ (ta1 , . . . , tan)

be a one-parameter subgroup of T . By the formulas in Definition 2.15, we see
that the one-parameter subgroup λ has a limit in Ff,n at 0 if and only if

0 6 εg(1)ag(1) 6 . . . 6 εg(n)ag(n)

that is, if and only if λ belongs to Cg. This proves that, for each element g of
Q, the cone Cg belongs to the fan of the toric variety T .

To complete the proof, we show now that the cone −W is equal to the union
of the cones Cg, where g runs over the set Q. Let g be an element of Q and let
(a1, . . . , an) be a point in Cg. Let also i be an integer between 1 and n− 1. If
i < mg, then there are two integers j > j′ such that g(j) = i and g(j′) = i+1.
These integers satisfy ε(j) = −1 and ε(j′) = −1. By definition of the cone Cg,
we have ε(j′)ag(j′) 6 ε(j)ag(j), that is, ai 6 ai+1. The same kind of argument
prove that ai 6 ai+1 for i = mg and for i > mg. This proves that the cone Cg

is contained in the cone −W . We consider now an element (a1, . . . , an) of −W .
By definition it satisfies a1 6 a2 6 . . . 6 an. Let m be an integer such that
am 6 0 and am+1 > 0. The rational numbers −a1, . . . ,−am and am+1, . . . , an
are nonnegative. By ordering them in increasing order, we construct an element
g of Q such that the point (a1, . . . , an) belongs to Cg.

2.5 Fixed points

In this section, the scheme S is the spectrum of an algebraically closed field k
of characteristic not 2. We apply the results obtained in Section 1.3 for some
involutions on the log homogeneous compactification Gn of GL(n). We denote
by Jr the antidiagonal square matrix of size r with all coefficients equal to one
on the antidiagonal.

Let b be a nondegenerate symmetric or antisymmetric bilinear form on kn. Via
the fixed trivializations of V1 and V2 we obtain nondegenerate symmetric or
antisymmetric bilinear forms b1 and b2 on the k-vector spaces V1(k) and V2(k).
We equip the direct sum V(k) of V1(k) and V2(k) with the nondegenerate
symmetric or antisymmetric bilinear form b1 ⊕ b2. We let σ be the involution
of G mapping a n-dimensional k-vector subspace F of V(k) to its orthogonal.
It is an easy exercise to check that

dim(F⊥ ∩ V1(k)) = dim(F ∩ V2(k)) and dim(F⊥ ∩ V2(k)) = dim(F ∩ V1(k)).

By the description of Zd given in Section 2.4, we see that the involution σ
leaves each of the closed subvarieties Zd of G invariant. Therefore it extends to
an involution, still denoted σ, of each of the varieties Gm. To prove that we are
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in the setting of Section 1.3, it remains to observe that there is an involution
σ of GL(n), namely the one associated to b, such that

∀g ∈ GL(n)×GL(n), ∀x ∈ Gm, σ((g1, g2) · x) = σ(g1) · σ(x) · σ(g2)−1.

As in Section 1.3, we denote by G′ the neutral component of Gσ and by G′
n the

connected component of Gσ
n containing G′.

The odd orthogonal case. We suppose that n = 2r+1 is odd. We let b be
the scalar product with respect to the matrix J2r+1. We have G′ := SO(2r+1).
We let T ′ be the intersection of T with G′ and B′ the intersection of B with
G′. The maximal torus T ′ is naturally isomorphic to the split torus Gr

m via
the following morphism

Gr
m → T ′, (t1, . . . , tr) 7→ diag(t1, . . . , tr, 1, t

−1
r , . . . , t−1

1 ).

The space V ′ is therefore naturally isomorphic to Qr. It is contained in V via
the following linear map

V ′ → V, (a′1, . . . , a
′
r, 0,−a′r, . . . ,−a′1).

The Weyl chamber with respect to B′ is given by

W ′ = {(a′1, . . . , a′r) ∈ V, a′1 > a′2 > . . . > a′r > 0}.

Proposition 2.23. The compactification G′
n of G′ is the wonderful compacti-

fication.

Proof. First of all, by Proposition 1.9, the compactification G′
n is log homoge-

neous. As explained in Section 1.4, we use the closure of T ′ in G′
n to compute

the colored fan of G′
n. Observe that T ′ is a subtorus of T and therefore the fan

of the toric variety T ′ is the trace on V ′ of the fan of the toric variety T . By
Proposition 2.22, the cone

{(a1, . . . , a2r+1) ∈ V, 0 6 ar+1 6 −ar 6 ar+2 6 · · · 6 −a1 6 a2r+1}

belongs to the fan of T . The trace of this cone on V ′ is −W ′, proving that
the cone −W ′ belongs to the colored fan of G′

n. But the only fan in V ′ with
support −W ′ containing −W ′ is the fan formed by −W ′ and its faces. This
completes the proof.

The even orthogonal case. We suppose that n = 2r is odd. We let b be
the scalar product with respect to the matrix J2r. We have G′ := SO(2r). We
let T ′ be the intersection of T with G′ and B′ the intersection of B with G′.
The maximal torus T ′ is naturally isomorphic to the split torus Gr

m via the
following morphism

Gr
m → T ′, (t1, . . . , tr) 7→ diag(t1, . . . , tr, t

−1
r , . . . , t−1

1 ).
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The space V ′ is therefore naturally isomorphic to Qr. It is contained in V via
the following linear map

V ′ → V, (a′1, . . . , a
′
r,−a′r, . . . ,−a′1).

The Weyl chamber with respect to B′ is given by

W ′ = {(a′1, . . . , a′r) ∈ V, a′1 > a′2 > . . . > a′r−1 > |a′r|}.
Proposition 2.24. The compactification G′

n of G′ is log homogeneous and its
fan consists of the cones

C+ := {(a′1, . . . , a′r) ∈ V, a′1 6 a′2 6 . . . 6 a′r−1 6 a′r 6 0}
and

C− := {(a′1, . . . , a′r) ∈ V, a′1 6 a′2 6 . . . 6 a′r−1 6 −a′r 6 0}
and their faces.

Proof. The proof is similar to that of Proposition 2.23. With the arguments
given in this proof it suffices to observe that the trace of the following cone in
V :

{(a1, . . . , a2r) ∈ V, 0 6 −ar 6 ar+1 6 · · · 6 −a1 6 a2r}
on V ′ is C+, the trace of

{(a1, . . . , a2r) ∈ V, 0 6 ar 6 −ar+1 6 −ar−1 6 ar+2 6 · · · 6 −a1 6 a2r}
is C− and that −W ′ is the union of C+ and C−.

Observe that the Weyl chamber W ′ is not smooth with respect to the lattice
of one-parameter subgroups of T ′. Therefore the canonical compactification of
G′ is not smooth, and the compactification G′

n is a minimal log homogeneous
compactification, in the sense that it has a minimal number of closed orbits.

The symplectic case. We suppose that n = 2r is even. We let b be the
scalar product with respect to the block antidiagonal matrix

(
0 −Jr
Jr 0

)

.

We have G′ := Sp(2r). We let T ′ be the intersection of T with G′ and B′ the
intersection of B with G′. The maximal torus T ′ is naturally isomorphic to the
split torus Gr

m via the following morphism

Gr
m → T ′, (t1, . . . , tr) 7→ diag(t1, . . . , tr, t

−1
r , . . . , t−1

1 ).

The space V ′ is therefore naturally isomorphic to Qr. It is contained in V via
the following linear map

V ′ → V, (a′1, . . . , a
′
r,−a′r, . . . ,−a′1).

The Weyl chamber with respect to B′ is given by

W ′ = {(a′1, . . . , a′r) ∈ V, a′1 > a′2 > . . . > a′r > 0}.
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Proposition 2.25. The compactification G′
n of G′ is the wonderful compacti-

fication.

Proof. The proof is similar to that of Proposition 2.23. With the arguments
given in this proof it suffices to observe that the trace of the following cone in
V :

{(a1, . . . , a2r) ∈ V, 0 6 −ar 6 ar+1 · · · 6 −a1 6 a2r}
on V ′ is −W ′.
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Abstract. A simple global condition on the potential is given which
excludes zero modes of the massless Dirac operator. As far as local
conditions at infinity are concerned, it is shown that at energy zero the
Dirac equation without mass term has no non-trivial L2-solutions at
infinity for potentials which are either very slowly varying or decaying
at most like r−s with s ∈ (0, 1). When a mass term is present, it is
proved that at the thresholds there are again no such solutions when
the potential decays at most like r−s with s ∈ (0, 2). In both situations
the decay rate is optimal.
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1 Introduction

In their 1986 study of the stability of matter in the relativistic setting of the
Pauli operator J. Fröhlich, E.H. Lieb and M. Loss recognised that there was
a restriction on the nuclear charge if and only if the three-dimensional Dirac
operator with mass zero has a non-trivial kernel (see [LS], Chapters 8, 9 and
the references there). An example of such a zero mode was first given by M.
Loss and H.T. Yau [LY]; for many more examples see [LS], p.167. Later, the
Loss-Yau example was used in a completely different setting, viz. to show the
necessity of certain restrictions in analogues of Hardy and Sobolev inequalities
[BEU].
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An observation with remarkable technological consequences is that in certain
situations of non-relativistic quantum mechanics the dynamics of wave packets
in crystals can be modelled by the two-dimensional massless Dirac operator (see
[FW] and the references there). When the potential is spherically symmetric,
a detailed spectral analysis of the Dirac operator with mass zero was given in
two and three dimensions by K.M. Schmidt [S]. In particular he showed that
a variety of potentials with compact support can give rise to zero modes.
In Theorem 2.1 of the present paper we give a simple global condition on
the potential which rules out zero modes of the massless Dirac operator in
any dimension. Theorem 2.7 deals with a fairly large class of massless Dirac
operators under conditions on the potential solely at infinity. It is shown,
for example, that for energy zero there is no non-trivial solution of integrable
square at infinity if the potential is very slowly varying or decaying like r−s

with s ∈ (0, 1). This decay rate is in a certain sense the best possible one (see
Appendix B). To rule out non-trivial L2-solutions at infinity for the threshold
energies ±m0 turns out to be more complicated. Here the asymptotic analysis
of Appendix B suggests 1/r2-behaviour as the borderline case and Theorem
2.10 indeed permits potentials which tend to zero with a rate at most like r−s

with s ∈ (0, 2). Theorem 2.10 relies on a transformation of the solutions which
is intimately connected with the block-structure that can be given to the Dirac
matrices. In connection with this theorem we should like to draw attention to
the very interesting paper [BG] where global conditions are used.
In broad outline the proof of our Theorems 2.7 and 2.10 follows from the
virial technique which was developed by Vogelsang [V] for the Dirac operator
and later extended in [KOY], but basic differences in the assumptions on the
potential are required in the situations considered here. At the beginning of
§4 the general strategy of proof is outlined and comparison with [KOY] made,
but the present paper is self-contained.

Acknowledgements. H.K. and O.Y. are indebted to Malcolm Brown, Maria
Esteban, Karl Michael Schmidt and Heinz Siedentop for the invitation to the
programme ’Spectral Theory of Relativistic Operators” at the Isaac Newton
Institute in the summer of 2012. H.K. also gratefully acknowledges the hos-
pitality given to him at Kyoto University and Ritsumeikan University in the
autumn of 2013. T.Ō and O.Y. are partially supported by JSPS Grant-in-Aid
No.22540185 and No.230540226, respectively.

2 Results and Examples

Given n ≥ 2 and N := 2 [(n+1)/2], there exist n+ 1 anti-commuting Hermitian
N × N matrices α1, α2, ..., αn, β := αn+1 with square one. No specific
representation of these matrices will be needed except in Appendix B. Using
the notation

α · p =
n∑

j=1

αj(−i∂j),
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we start by considering the differential expression

τ := α · p+Q

in L2(Rn)N . Here Q : Rn → C
N×N is a matrix-valued function with measur-

able entries.
Let φ ∈ C

N . Then

u(x) :=
1 + iα · x

(1 + |x|2)n/2 φ

satisfies
τu = 0 with Q(x) = − n

1 + r2
. (2.1)

This is the example of Loss and Yau [LY] mentioned in the Introduction. (Note
that u is in L2 iff n ≥ 3.) For n = 3 the potential in (2.1) is in fact the first
in a hierarchy of potentials with constants larger than 3, all giving rise to zero
modes; see [SU].
In contrast, we have the following result.

Theorem 2.1. Let Q : R
n → C

N×N be measurable with

sup
x∈Rn

|x||Q(x)| ≤ C for some 0 < C <
n− 1

2
.

Then any solution u ∈ H1
loc(R

n)N ∩ L2(Rn, r−1dx)N of τu = 0 is identically
zero.

Remark 2.2. a) In case Q is Hermitian, Theorem 2.1 can be rephrased as
follows: The self-adjoint realisation H of τ with

∫ |u|2
r

dx <∞ (u ∈ D(H)) (2.2)

does not have the eigenvalue zero. (For the existence of such a self-adjoint
realisation see [Ar] and the references therein.)
b) Suppose that V is a real-valued scalar potential with supx∈Rn |x||V (x)| <
n−1
2 . Then it needs but a small additional assumption to show by means of the

virial theorem that the self-adjoint realisation H of α · p+ V +m0β (m0 6= 0)
with property (2.2) does not have the eigenvalues ±m0 (see, e.g., [L], Theorem
2.4 in conjunction with [We], p.335).
c) It seems to be difficult to compare our C with the size of the compactly
supported potentials in [S] which produce zero modes for n ≥ 2.

Now we replace the whole space with the exterior domain

ER := {x ∈ R
n | |x| > R},

where R > 0 can be arbitrarily large. On ER we consider the Dirac equation

(α ·D +Q)u = 0 with D := p− b. (2.3)
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We assume for simplicity that the vector potential b is in C1(ER,R
n). Further

conditions will not be imposed on b but on the magnetic field

B := (∂ibk − ∂kbi).

Note that B can be identified with the scalar function ∂1b2 − ∂2b1 if n = 2 and
the vector-valued function curl b if n = 3. Solutions of (2.3) will be functions
in H1

loc(ER)
N which satisfy (2.3), if Q is locally bounded in ER.

The following result and its remark are essentially contained in [KOY], Example
6.1 and final remark on p.40.

Theorem 2.3. Let m0 ≥ 0, λ ∈ R and Q := V +m0β − λ+W , where

(I) V = V ∗ ∈ C1(ER,C
N×N),

(II) W is a measurable and bounded matrix function (not necessarily Hermi-
tian).

Suppose V , W and the magnetic field B satisfy the following conditions:

a) r1/2V = o(1) = r∂rV uniformly with respect to directions;

b) there exist numbers K ∈ (0, 1/2) and M > 0 such that

r|W | ≤ K, |Bx| ≤M on ER.

Assertion: If u ∈ L2(ER)
N is a solution of (2.3) for

|λ| >
√

m2
0 +M2/(1− 2K),

then u = 0 on ER1
for some R1 > R. If r|W | = o(1) or |Bx| = o(1) uniformly

w.r.t. directions, then K = 0 or M = 0 is permitted.

Remark 2.4. If V ∈ C2(R,∞) is a real-valued (scalar) function, condition a)
can be replaced by

V (r) = o(1) = rV ′(r), rV ′′(r) = o(1) as r → ∞.

Remark 2.5. Using a unique continuation result, e.g., the simple one [HP] or
the more sophisticated one in [DO], one can conclude that u = 0 on R

n.

Remark 2.6. It follows immediately from Theorem 2.3 and Remark 2.5 that
the potential in (2.1) cannot create a non-zero eigenvalue.

Theorem 2.3 will now be supplemented by Theorems 2.7 and 2.10.

Theorem 2.7. Let m0 = 0, λ ≤ 0 and V , W as in (I), (II) of Theorem 2.3.
Let q ∈ C2(R,∞) be a positive bounded function with the properties

(i) [r(q − λ)]′ ≥ δ0(q − λ) for some δ0 ∈ (0, 1),
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(ii)
q′

q2
= o(1) = r

q′′

q2
.

Suppose V , W and B satisfy the following conditions:

(H.1) r(V − q) = O(1), ∂rV − q′ = o
(q

r

)

;

(H.2) r|W | ≤ K for some K ∈ [0, δ0/2);

(H.3) there is a function a(r) with |Bx| ≤ a(r) and
a

q
= o(1).

Assertion: Any solution u ∈ L2(ER)
N of (2.3) with Q = V +W − λ vanishes

identically on ER1
for some R1 > R.

Remark 2.8. a) To prove Theorem 2.7, it will be important to observe that
condition (i) implies

r(q − λ) ≥ const. rδ0 (r > R).

b) If q is a negative bounded function with property (ii) and which satisfies
[r(λ − q)]′ ≥ δ0(λ− q) for some δ0 ∈ (0, 1), then Theorem 2.7 holds for λ ≥ 0.
c) In case V decays at infinity, hypothesis (H.3) demands a corresponding
stronger decay of B to prevent the existence of eigenvalues. (The contrasting
situation that V and B become large at infinity is considered in [MS].)

Examples. For simplicity we assume V = q and W = 0. Let q0 be a positive
number. Then the functions

q = q0 [2 + sin (log log r)], (2.4)

q = q0 (log r)
−s (s > 0), (2.5)

q = q0 r
−s (0 < s < 1), (2.6)

have the required properties (i), (ii). In addition, a magnetic field with the
decay property (H.3) is allowed. As far as (2.5) and (2.6) are concerned, Re-
marks 2.4–2.5 already rule out any eigenvalue λ 6= 0. In case there is no vector
potential, it follows from [S], Corollary 1 that the self-adjoint operator associ-
ated with τ = α · p+ q in L2(Rn)N has purely absolutely continuous spectrum
outside [q0, 3q0].

Remark 2.9. More realistic potentials than (2.4) will have the property

lim
r→∞

q(r) =: q∞ 6= 0.

In such situations, however, it may be possible to use Theorem 2.3 or Remark
2.4 to show that

(α ·D +Q− q∞)u = λu

has no non-trivial solution of integrable square at infinity if λ = −q∞. A case
in point is the potential

q =
r

1 + r
,
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which does not obey condition (i). Assuming |Bx| = o(1) uniformly w.r.t.
directions, it follows from Theorem 2.3 that

(α ·D + q − 1)u = λu

has no solution u 6= 0 in L2 at infinity if λ 6= 0. In particular, α ·D+ q has no
zero mode.

For the equation

(α ·D + V +m0β)u = −m0u, D := p− b (2.7)

our result is as follows.

Theorem 2.10. Let m0 > 0 and µ :=
√

q(q + 2m0). Let q ∈ C2(R,∞) be a
positive function with q = o(1) and the following properties:

(i)
(rµ)′

µ
≥ δ0 for some δ0 ∈ (0, 1);

(ii) r
q′

q
= O(1), r

q′′

q3/2
= o(1).

Suppose V ∈ C1(ER,R) and B satisfy the following conditions:

(H.1) r2(V − q) = O(1), ∂rV − q′ = o
(q

r

)

;

(H.2) there is a function a(r) with |Bx| ≤ a(r) and
a√
q
= o(1).

Assertion: Any solution u ∈ L2(ER)
N of (2.7) vanishes identically on ER1

for
some R1 > R.

Remark 2.11. a) The function µ originates from a transformation in Ap-
pendix A (see (A.13)–(A.18)). Theorem 2.10 holds good for solutions of

(α ·D + V +m0β)u = m0u,

if q = o(1) is a negative function and µ :=
√

q(q − 2m0).
b) Since

(rµ)′

µ
= 1 +

rq′

2q
+ o(1),

q may decay like r−s with 0 < s < 2.

3 Proof of Theorem 2.1

Since ∫

r|α · pu|2 =
∫

r|Qu|2 ≤ C2

∫ |u|2
r

<∞,

we can find a sequence of functions {uj} in C∞
0 (Rn)N with

r−1/2uj → r−1/2u,
√
r (α · p)uj →

√
r (α · p)u
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in L2(Rn)N . Let Uj = r(n−1)/2uj. We write ‖Uj‖ rather than ‖Uj(r·)‖ for
the norm in L2(Sn−1)N and similarly for the scalar product. We use the
decomposition in (A.3) of Appendix A and note that the symmetric operator
S with b = 0 has a purely discrete spectrum with

−
(

N0 +
n− 1

2

)

∪
(

N0 +
n− 1

2

)

as eigenvalues. Hence
∫

r|α · puj|2 =

∫ ∞

0

r

∥
∥
∥
∥
αr

(

−i∂rUj +
i

r
SUj

)∥
∥
∥
∥

2

=

∫ ∞

0

r

〈

−i∂rUj +
i

r
SUj,−i∂rUj +

i

r
SUj

〉

=

∫ ∞

0

r

(

‖∂rUj‖2 +
1

r2
‖SUj‖2

)

+

∫ ∞

0

∂r〈−Uj , SUj〉

=

∫ ∞

0

r

(

‖∂rUj‖2 +
1

r2
‖SUj‖2

)

≥
(
n− 1

2

)2 ∫ ∞

0

‖Uj‖2
r

,

and the assertion follows in the limit j → ∞. �

4 Preliminaries to the proof of Theorem 2.7

To explain the general strategy of the proof of Theorem 2.7, let u be a solution
of (2.3). We multiply U := r(n−1)/2u by functions eϕ, ϕ = ϕ(| · |) real-valued,
and χ = χ(| · |) with support in ER and

0 ≤ χ ≤ 1, χ = 1 on [s, tk], χ = 0 outside [s− 1, tk+1],

where {tk} is a sequence tending to infinity as k → ∞. Then ξ := χeϕU
satisfies [

−iαrDr + iαr

(
S

r
+ ϕ′

)

+Q

]

ξ = g := −iαrχ
′eϕU, (4.1)

where Dr = ∂r − i(x/r) · b. As in proofs of unique continuation results by
means of Carleman inequalities, the idea is (as it was in the earlier papers ([V],
[KOY]) to prove the existence of a constant C > 0 such that for large s and in
the limit tk → ∞ the inequality

∫ ∞

s

e2ϕ‖U‖2 ≤ C

∫ s

s−1

e2ϕ‖U‖2 (4.2)

holds. (For the precise inequality see (5.3) below.) If, for example ϕ = (ℓ/2)rb

is permitted for some b > 0, (4.2) implies

eℓ(s+1)b
∫ ∞

s+1

‖U‖2 ≤ Ceℓs
b

∫ s

s−1

‖U‖2, (4.3)
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and in the limit ℓ→ ∞ the desired conclusion U = 0 on Es+1 follows.
The present paper differs from [KOY] in three important respects. Firstly, the
function q in Theorem 2.7 and 2.10 is allowed to tend to zero at infinity, while
it was absolutely necessary to require ±q ≥ const. > 0 in [KOY]. Secondly, in
contrast to [KOY], Proposition 3.1, the virial relation (A.8) from which we set
out here

∫

〈[∂rr(V − λ)]ξ, ξ〉

= −
∫

〈(α · Bx)ξ, ξ〉
︸ ︷︷ ︸

I1

+

∫

2Re〈rWξ,Drξ〉
︸ ︷︷ ︸

I2

+

∫

2rϕ′Re〈−iαrDrξ, ξ〉
︸ ︷︷ ︸

I3

−
∫

2rRe〈g,Drξ〉
︸ ︷︷ ︸

T1

, (4.4)

does not contain a term involving q′/q. Such a term arose in [KOY] as it
was necessary to divide ξ by (±q)1/2 in order to cope with the case that the
potential (and possibly a variable mass) became large at infinity. Thirdly, we
use a more refined cutoff function.
Given tk := 2k and s < tk, there exists a function χ ∈ C∞(0,∞) with

χ(r) = 1 for s ≤ r ≤ tk and χ(r) = 0 for r ≥ tk+1

such that

0 ≤ −rχ′(r) ≤ const.
r

tk+1 − tk
≤ const.

2k+1

2k

for r ∈ [tk, tk+1] and all k ∈ N . Moreover,

rℓ|χ(ℓ)(r)| ≤ const. (r ∈ [tk, tk+1], k ∈ N)

for ℓ = 2 and ℓ = 3.
Estimates of the five terms in (4.4) will lead us to inequality (5.1) below, from
which an inequality of type (4.3) will eventually emerge with the help of a
bootstrap argument.
We start with the left-hand side of (4.4) and write

∂r[r(V − λ)] = V − q + r(∂rV − q′) + [r(q − λ)]′

≥
[
O(1/r)

q − λ
+ o(1)

q

q − λ
+ δ0

]

(q − λ)

by means of (i) and (H.1) in Theorem 2.7. Since 0 < q/(q − λ) ≤ 1 and
(q − λ)−1 ≤ O(r1−δ0 ) at infinity in view of Remark 2.8, we have

∫

〈[∂rr(V − λ)]ξ, ξ〉 ≥
∫

[δ0 + o(1)](q − λ)‖ξ‖2. (4.5)

The four terms I1, I2, I3 and T1 on the right-hand side of (4.4) are estimated
as follows.
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Lemma 4.1.

a) I1 := −
∫

〈(α ·Bx)ξ, ξ〉 ≤
∫

o(1)(q − λ)‖ξ‖2,

b) I2 :=

∫

2Re〈rWξ,Drξ〉

≤
∫ [

2K − K

(q − λ)2

(
ϕ′

r
+ ϕ′′

)

+ o(1)

]

(q − λ)‖ξ‖2 + T2,

where

T2 := K

∫ {
(χ′)2

q − λ
+ |χ′|

[
const.

r(q − λ)
+ o(1)

]}

‖eϕU‖2 (4.6)

≤ const.

{∫ s

s−1

r‖eϕU‖2 +
∫ tk+1

tk

r−δ0(q − λ)‖eϕU‖2
}

. (4.7)

Proof. a) follows immediately from assumption (H.3) since α ·Bx is an Hermi-

tian matrix with square |Bx|2.
To prove b), we observe

I2 =

∫

2Re〈rWξ,Drξ〉 ≤ K

(∫

(q − λ)‖ξ‖2 +
∫

1

q − λ
‖Drξ‖2

)

and use relations (A.9), (A.11) with

h =
1

q − λ
, j = r

(
h

r

)′
= h′ − h

r
.

Then
∫

1

q − λ
‖Drξ‖2 ≤

∫
1

q − λ
‖g −Qξ‖2 −

∫
1

r(q − λ)
〈Aξ, ξ〉

+

∫

j Im〈Qξ, αrξ〉+
∫ [

j′

2
− h

(
ϕ′

r
+ ϕ′′

)]

‖ξ‖2

+

∫

jχχ′ ‖eϕU‖2, (4.8)

where Q = V +W − λ, A = −αr(α · Bx). Before turning to the first term on
the right-hand side of (4.8) we note

Im〈Qξ, αrξ〉 = Im 〈(V − q)ξ, αrξ〉+ Im 〈Wξ, αrξ〉

and

|Im 〈(V − q)ξ, αrξ〉| ≤
const.

r(q − λ)
(q − λ)‖ξ‖2 ≤ const.

rδ0
(q − λ)‖ξ‖2 (4.9)
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as well as

|Im 〈Wξ, αrξ〉| ≤
const.

r(q − λ)
(q − λ)‖ξ‖2 ≤ const.

rδ0
(q − λ)‖ξ‖2 (4.10)

(see hypotheses (H.1), (H.2) and Remark 2.8 a). Similarly, the term

−2rRe〈g,Qξ〉 = 2rRe 〈iαrχ
′eϕU,QχeϕU〉

= 2rRe 〈iαrχ
′eϕU, (V − q +W )χeϕU〉

can be estimated by

| − 2rRe〈g,Qξ〉| ≤ const.|χ′|‖eϕU‖2.

Next,

‖g −Qξ‖2 = ‖(q − λ+ V − q +W )ξ‖2 + ‖g‖2 − 2Re 〈g,Qξ〉
= (q − λ)2‖ξ‖2 + ‖(V − q +W )ξ‖2 + 2(q − λ)Re 〈ξ, (V − q +W )ξ〉
+‖g‖2 − 2Re 〈g,Qξ〉

≤ [1 + o(1)](q − λ)2‖ξ‖2 +
[

(χ′)2 +
const.

r
|χ′||

]

‖eϕU‖2. (4.11)

Using Remark 2.8 a) again, the second term in (4.8) can be majorised by

const.

∫
a

rδ0
‖ξ‖2.

With hypothesis (H.2) we see that it is

∫

o(1)(q − λ)‖ξ‖2.

The same is true of the third term in (4.8), since (4.9) and (4.10) hold and
j = o(1) by Remark 2.8 a) and the first part of assumption (ii). This leaves us
with

j′

q − λ
=

1

r2(q − λ)2
+

q′

r(q − λ)3
− q′′

(q − λ)3
+

2(q′)2

(q − λ)4
,

which, by assumptions (ii) and Remark 2.8 a), is again o(1). Collecting terms,
we finally obtain (4.6) from which (4.7) follows, employing the properties of
our cutoff function and Remark 2.8 a). �

Lemma 4.2. Let ϕ′ ≥ 0 and

kϕ := −rϕ′ϕ′′ − (ϕ′)2 +
1

2
(rϕ′′)′, (4.12)

c :=
a

q − λ
+

const.

r(q − λ)
+

1

2

q′

(q − λ)2
+

1

2

rq′′

(q − λ)2
(4.13)
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Then,

I3 :=

∫

2rϕ′Re〈−iαrDrξ, ξ〉

≤
∫ [

kϕ
(q − λ)2

+
ϕ′

q − λ
c+ const.

|ϕ′′|
(q − λ)2

]

(q − λ)‖ξ‖2 (4.14)

+T3,

where

T3 :=

∫
r

q − λ
[ϕ′(χ′)2 + |ϕ′′||χ′′| ] ‖eϕU‖2

≤ const.

{∫ s

s−1

r2(ϕ′ + |ϕ′′|) ‖eϕU‖2 (4.15)

+

∫ tk+1

tk

r2−2δ0

(
ϕ′

r
+ |ϕ′′|

)

(q − λ)‖eϕU‖2
}

.

Proof. By setting ξ =
√
q − λw, I3 can be written as

I3 =

∫

2rϕ′Re〈−iαrDrξ, ξ〉 =
∫

2rϕ′Re〈−iαrDrw, (q − λ)w〉

=

∫

2rϕ′Re〈−iαrDrw,Qw〉 −
∫

2rϕ′Re〈−iαrDrw, (V − q +W )w〉.

Using (A.10), (A.12) with h = rϕ′, j = rϕ′′, we obtain

I3 =

∫

rϕ′(‖f‖2 − ‖Drw‖2 − ‖f + iαrDrw‖2)−
∫

ϕ′〈Aw,w〉

+

∫
[

rϕ′ϕ′′ +
1

2
(rϕ′′)′ − [r(ϕ′)2]′ +

1

2

(
rϕ′

q − λ
q′
)′

− rϕ′′

2(q − λ)
q′
]

‖w‖2

+

∫

rϕ′′Im〈Qw,αrw〉+
∫

rϕ′′

q − λ
χχ′‖eϕU‖2

−
∫

2rϕ′Re〈−iαrDrw, (V − q +W )w〉. (4.16)

The last term can simply be estimated by
∫

rϕ′
(

‖Drw‖2 +
const.

r2
‖w‖2

)

.

Replacing ξ by w in (4.9) and (4.10), we have

I3 ≤
∫
{

kϕ + ϕ′
[

a+
const.

r
+

1

2

(
rq′

q − λ

)′]

+ const.|ϕ′′|
}

‖w‖2

+

∫
r

q − λ
[ϕ′(χ′)2 + |ϕ′′||χ′|] ‖eϕU‖2,
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which leads to (4.12)–(4.14). The estimate (4.15) is again a consequence of the
properties of χ and of Remark 2.8 a). �

Lemma 4.3. Let ϕ′ ≥ 0. Then

T1 := −
∫

2rRe〈g,Drξ〉

≤ const.

{∫ s

s−1

r
[
(1 + ϕ′)‖eϕU‖2 + e2ϕ‖DrU‖2

]
(4.17)

+

∫ tk+1

tk

r1−δ0 (1 + |ϕ′′|) (q − λ)‖eϕU‖2
}

.

Proof. Let η := eϕU . Since

Re〈−iαrχ
′η, ∂r(χη)〉 = χχ′ Re〈−iαrη, ∂rη〉,

we have

T1 = −
∫

2rRe〈g,Drξ〉 =
∫

2rRe〈iαrχ
′eϕU,Drξ〉

=

∫

2rχχ′Re〈iαrη,Drη〉.

On the interval [s− 1, s] the integral can simply be estimated by
∫ s

s−1

2rχ′‖η‖‖Drη‖ ≤
∫ s

s−1

re2ϕ‖U‖‖DrU + ϕ′U‖.

On [tk, tk+1] we use the estimate
∫ s

s−1

r(−χ′)(‖η‖2 + ‖Drη‖2)

and observe that (A.9) and (A.11) hold with χ = 1 (i.e., g = 0) and ξ = η,
provided h and j have compact support. Hence, with h = r(−χ′), j = r(h/r)′ =
−rχ′′ we have

∫

r(−χ′)

[

‖Drη‖2 + ‖
(
S

r
+ ϕ′

)

η‖2
]

=

∫

r(−χ′)‖Qη‖2 +
∫

χ′〈Aη, η〉 −
∫

rχ′′Im〈(V − q +W )η, αrη〉

+

∫ [

−1

2
(χ′′ + rχ′′′) + χ′ϕ′ + rχ′ϕ′′

]

‖η‖2.

The integration extends over [tk, tk+1] only where χ′ϕ′ ≤ 0. Using Remark 2.8
a) and the estimates of the derivatives of χ, the assertion follows. �

Remark 4.4. The constant in (4.6), (4.13), and (4.14) is the sum of the con-
stants which occur in assumptions (H.1) and (H.2). In view of the hypotheses
of Theorem 2.7 the function c in (4.13) is o(1) at infinity. It is important that
the constants in (4.7), (4.15) and (4.17) are independent of ϕ and tk := 2k.
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5 Proof of Theorem 2.7

Before proving Theorem 2.7 we prepare the following

Proposition 5.1. Suppose f > 0, g ≥ 0 are functions on (0,∞) with

∫ ∞ 1

f
= ∞,

∫ ∞
g <∞,

and f is continuous and non-decreasing. Let tk := 2k (k ∈ N). Then we have

lim inf
k→∞

∫ tk+1

tk

fg = 0

Proof. Assume to the contrary that there are numbers ε0 > 0 and N ∈ N such
that

∫ tk+1

tk

fg ≥ ε0

for N ≤ k ∈ N . Then

∫ ∞

tN

g =

∞∑

k=N+1

∫ tk

tk−1

(fg)
1

f
≥ ε0

∞∑

k=N+1

1

f(tk)
≥ ε0

∫ ∞

tN+1

1

f
= ∞

gives the desired contradiction.

Proof of Theorem 2.7

From (4.4) and (4.5) and Lemma 4.1–4.3 we see

∫

[δ0 − 2K + o(1)](q − λ)e2ϕ‖χU‖2 (5.1)

≤
∫ [

kϕ
(q − λ)2

+
ϕ′

q − λ
c+ const.

|ϕ′′|
(q − λ)2

− K

(q − λ)2

(
ϕ′

r
+ ϕ′′

)]

(q − λ)e2ϕ‖χU‖2

+const.

∫ s

s−1

r2e2ϕ[(1 + ϕ′ + |ϕ′′|)‖U‖2 + ‖DrU‖2]

+const.

∫ tk+1

tk

r1−δ0e2ϕ(1 + ϕ′ + r|ϕ′′|)|(q − λ)‖U‖2,

where tk := 2k.

a) We claim
∫ ∞

s

rℓ(q − λ)‖U‖2 <∞
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for all s > R and ℓ > 0. Let j ∈ N . We choose ϕ = (j/2) log log r in (5.1) and
note

ϕ′ =
j

2r log r
, ϕ′′ = − j

4r2 log r

(

1 +
1

log r

)

,

kϕ =
j

4r2 log r

[

1 +
2

log r
+

j + 2

(log r)2

]

≤ j(j − 1)

4r2(log r)3
+

2j

4r2 log r

for r > R0 if R0 is sufficiently large. Using Remark 2.8 a), the first integral on
the right-hand side of (5.1) can be majorised by

const.

∫ {
1

r2δ0

[
j(j − 1)

(log r)3
+

j

(log r)2
+

j

(log r)

]

+
1

rδ0
j

(log r)
o(1)

}

(log r)j(q − λ)‖χU‖2.

The last integral on the right-hand side of (5.1) can be estimated by

∫ tk+1

tk

r1−δ0(1 + const. j)(log r)j(q − λ)‖U‖2. (5.2)

With (q − λ) being bounded, (q − λ)‖U‖2 is in L1(R0,∞). Thus there is a
sub-sequence {tkℓ

}∞ℓ=1 on which (5.2) tends to zero in view of Proposition 5.1.
This proves

∫ ∞

R0

(log r)j(q − λ)‖U‖2 <∞.

Moreover, for some c0 > 0 the inequality (5.1) implies

c0

∫ ∞

R0

L∑

j=0

(ℓ log r)j

j!
(q − λ)‖U‖2

≤ const.

∫ ∞

s−1




ℓ2

r2δ0 log r

L∑

j=2

(ℓ log r)j−2

(j − 2)!
+

ℓ

rδ0

L∑

j=1

(ℓ log r)j−1

(j − 1)!





·(q − λ)‖U‖2 + const.

∫ s

s−1

r2
L∑

j=0

(ℓ log r)j

j!
[(1 + j)‖U‖2 + ‖DrU‖2].

Since we can let L→ ∞, this establishes the claim.

b) Next we assert
∫ ∞

s

eℓr
b

(q − λ)‖U‖2 <∞

for all s > R, ℓ > 0 and b ∈ (0, δ0).
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We insert ϕ = (jb/2) log r into (5.1) and observe

ϕ′ =
jb

2r
, ϕ′′ = − jb

2r2
, kϕ =

jb

4r2
.

In view of Part a) there is a sub-sequence {tkℓ
} with

lim
ℓ→∞

∫ tkℓ+1

tkℓ

r1−δ0(1 + jb)rjb(q − λ)‖U‖2 = 0.

Using Remark 2.8 a) again, we see that (5.1) implies

c0

∫ ∞

s

rjb(q − λ)‖U‖2 ≤ const.

∫ ∞

s−1

(
1

r2δ0
+

1

rδ0

)

jbrjb(q − λ)‖U‖2

+const.

∫ s

s−1

r2+jb[(1 + jb)‖U‖2 + ‖DrU‖2]

or

c0

∫ ∞

s

L∑

j=0

(ℓrb)j

j!
(q − λ)‖U‖2

≤ const.

∫ ∞

s−1

ℓb

rδ0−b

L∑

j=1

(ℓrb)j−1

(j − 1)!
(q − λ)‖U‖2

+const.

∫ s

s−1

r2
L∑

j=0

(ℓrb)j

j!
[(1 + jb)‖U‖2 + ‖DrU‖2].

For b ∈ (0, δ0) we can again move the first term of the right-hand side to the
left and let L→ ∞.

c) In order to show that U vanishes a.e. on ER1
for some R1 > R, we choose

ϕ = (ℓ/2)rb where ℓ > 0 and b ∈ (0, δ0). From

ϕ′ =
ℓb

2
rb−1, ϕ′′ = − ℓb

2
(1 − b)rb−2

we observe (ϕ′/r) + ϕ′′ > 0, so that the last part of the first integral on the
right-hand side of (5.1) can be discarded. On account of Part b) there is a
sequence {tkℓ

} on which the last integral vanishes. Finally we note

kϕ = − ℓb
4

[

ℓb2 − (1− b)2

rb

]

r2(b−1).

With

X :=
ℓb

2(q − λ)
rb−1
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we therefore have

− kϕ
(q − λ)2

− ϕ′

q − λ
c(r) − const.

|ϕ′′|
(q − λ)2

= bX2 − d(r)X,

where

d(r) :=
1− b

r(q − λ)

(
1− b

2
+ const.

)

+ c(r) = o(1).

Hence

∫ ∞

s

[

δ0 − 2K + o(1)− d(r)2

4b

]

(q − λ)eℓr
b‖U‖2

≤ const.

∫ s

s−1

r2eℓr
b

[(1 + ℓbrb)‖U‖2 + ‖DrU‖2]. (5.3)

Now there is an R1 > R with the property that the left-hand side of (5.3) can
be estimated from below by

const. eℓ(s+1)b
∫ ∞

s+1

‖U‖2

for s > R1. The assertion therefore follows in the limit ℓ→ ∞.

6 Proof of Theorem 2.10

From (A.16)-(A.17) with λ = −m0 we see

µ := [(q +m0)
2 −m2

0]
1/2 =

√
q
√

q + 2m0, F :=

(
q + 2m0

q

)1/4

, (6.1)

and
√
µF =

√

q + 2m0,

√
µ

F
=

√
q.

As a consequence

ξ := χeϕ
(

FU1

(1/F )U2

)

= µ−1/2χeϕζ with ζ :=

(√
q + 2m0U1√

q U2

)

solves
[

−iαrDr + iαr

(
S

r
+ ϕ′

)

+Q

]

ξ = g := −µ−1/2(iαr)χ
′eϕζ,

where

Q = µIN + (V − q)

(
F−2IN/2 0

0 F 2IN/2

)

− m0q
′

2q(q + 2m0)
(iαrβ).
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So our virial relation (A.8) now reads
∫

{〈[∂r(rQ)]ξ, ξ〉 + 〈(α · Bx)ξ, ξ〉}

=

∫

2rϕ′Re〈−iαrDrξ, ξ〉 −
∫

2rRe〈g,Drξ〉. (6.2)

Before beginning our estimates we observe that the assumption (i) implies

rµ ≥ const. rδ0 or q−1/2 ≤ const. r1−δ0 . (6.3)

In view of (6.1) and our assumptions (ii), (H.1) we therefore have

1

µ
(rF−2)′(V − q) =

1

µF 2

[

1− m0rq
′

q(q + 2m0)

]

(V − q)

= o(1)
V − q

q
= o(1),

1

µ
(rF 2)′(V − q) =

F 2

µ

[

1 +
m0rq

′

q(q + 2m0)

]

(V − q)

= O(1)
V − q

q
= o(1),

and from

[
rq′

q(q + 2m0)

]′
=

1

q + 2m0

[

q′

q
+
rq′′

q
− r

(
q′

q

)2

− r(q′)2

q(q + 2m0)

]

we find
1

µ

[
rq′

q(q + 2m0)

]′
= o(1),

taking advantage of (6.3) again. Since
∫

〈(α ·Bx)ξ, ξ〉 ≥ −
∫

a

µ
µ ‖ξ‖2 = −

∫

o(1)µ ‖ξ‖2,

the left-hand side of (6.2) can be estimated from below by
∫

[δ0 + o(1)]µ‖ξ‖2.

Lemma 6.1. Let ϕ′ ≥ 0 and

kϕ := −rϕ′ϕ′′ − (ϕ′)2 +
1

2
(rϕ′′)′,

c :=
a

µ
+
r(V − q)2

µq
+

1

2µ

[(

r
µ′

µ

)′
+m0

∣
∣
∣
∣
∣

(

r
q′

µ2

)′
∣
∣
∣
∣
∣

]

.
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Then

I :=

∫

2rϕ′Re〈−iαrDrξ, ξ〉

≤
∫ (

kϕ
µ2

+
ϕ′

µ
c+ const.

|ϕ′′|
µ2

)

µ‖ξ‖2 + J,

where

J :=

∫
r

µ2
[ϕ′(χ′)2 + |ϕ′′||χ′′|] ‖eϕζ‖2

≤ const.

{∫ s

s−1

r3(ϕ′ + |ϕ′′|) ‖eϕζ‖2

+

∫ tk+1

tk

r2−2δ0

(
ϕ′

r
+ |ϕ′′|

)

‖eϕζ‖2
}

with a constant which is independent of ϕ and tk := 2k. (Note that the as-
sumptions of Theorem 2.10 imply c = o(1).)

Proof. Since w := µ−1/2ξ satisfies
[

−iαrDr + iαr

(
S

r
+ ϕ′

)

+Q− i
µ′

2µ
αr

]

w = f := µ−1/2g,

we have
∫

j

〈(
S

r
+ ϕ′

)

w,w

〉

+
1

2

∫ (

j′ − j
µ′

µ

)

‖w‖2

+

∫

j Im〈Qw,αrw〉 +
∫

j

µ2
χχ′‖eϕζ‖2 = 0

as a substitute for identity (A.12).
Let

I1 :=

∫

2rϕ′ Re

〈

−iαrDrw,
m0q

′

2q(q + 2m0)
(iαrβ)w

〉

,

I2 :=

∫

2rϕ′ Re

〈

−iαrDrw, (V − q)

(
F−2w1

F 2w2

)〉

.

Replacing q by µ in (A.10), we can write

I =

∫

2rϕ′ Re 〈−iαrDrw, µw〉 =
∫

2rϕ′ Re 〈−iαrDrw,Qw〉 + I1 + I2

=

∫

rϕ′(‖f‖2 − ‖Drw‖2 − ‖f + iαrDrw‖2)−
∫

ϕ′〈Aw,w〉

+

∫
[

kϕ +
1

2

(

rϕ′ µ
′

µ

)′
− 1

2
rϕ′′ µ

′

µ

]

‖w‖2 +
∫
rϕ′′

µ2
χχ′‖eϕζ‖2

+

∫

rϕ′′ Im〈Qw,αrw〉+ I1 + I2.
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Integrating by parts in I1, we obtain

I1 = −
∫

2rϕ′ Re

〈

∂rw,
q′

2q(q + 2m0)
(m0β)w

〉

(6.4)

=
1

2

∫
〈

w,

{

rϕ′′ q′

q(q + 2m0)
(m0β) + ϕ′

[
rq′

q(q + 2m0)

]′
(m0β)

}

w

〉

and note that the first term in (6.4) cancels

∫

rϕ′′ Im〈Qw,αrw〉 = −1

2

∫

rϕ′′
〈

q′

q(q + 2m0)
(m0β)w,w

〉

.

Furthermore, since

F−4|w1|2 + F 4|w2|2 =
q

q + 2m0
|w1|2 +

q + 2m0

q
|w2|2,

we have

I2 ≤
∫

rϕ′‖Drw‖2 + const.

∫

rϕ′ (V − q)2

q
‖w‖2.

Collecting terms, the assertion follows. �

Lemma 6.2. Let ϕ′ ≥ 0. Then

T := −
∫

2rRe〈g,Drξ〉

≤
{

const.

∫ s

s−1

r2
[
(1 + ϕ′)‖eϕζ‖2 + e2ϕ‖Drζ‖2

]

+

∫ tk+1

tk

r1−δ0 (1 + |ϕ′′|)‖eϕζ‖2
}

with a constant which is independent of ϕ and tk.

Proof. Abbreviating φ := eϕζ, we have

T = −
∫

2rRe〈g,Drξ〉 =
∫

2r
χχ′

µ
Re〈iαrφ,Drφ〉.

On the interval [s− 1, s] the integral can be estimated by

∫ s

s−1

2r
χ′

µ
‖φ‖ ‖Drφ‖ ≤ const.

∫ s

s−1

r2−δ0e2ϕ‖ζ‖ ‖Drζ + ϕ′ζ‖,

using (6.3). On [tk, tk+1] we majorise the integral by

∫ tk+1

tk

r

µ
(−χ′)(‖φ‖2 + ‖Drφ‖2) (6.5)
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and note that it is permitted to use (A.9), (A.11) with χ = 1 (i.e., g = 0) and
ξ = φ, since

h =
r

µ
(−χ′), j = r

(
h

r

)′
= h′ − h

r

have compact support. Hence on [tk, tk+1]

∫
r

µ
(−χ′)

[

‖Drφ‖2 +
∥
∥
∥
∥

(
S

r
+ ϕ′

)

φ

∥
∥
∥
∥

2
]

=

∫
r

µ
(−χ′)‖Qφ‖2 +

∫
χ′

µ
〈Aφ, φ〉 +

∫ [
j′

2
−
(
ϕ′

r
+ ϕ′′

)

h

]

‖φ‖2

+

∫

j Im〈Qφ, αrφ〉.

Now, −ϕ′′h ≤ const.|ϕ′′|r1−δ0 by (6.3), while −(ϕ′/r)h ≤ 0 on [tk, tk+1]. From
h′ = o(1) = h′′ we conclude j = o(1) = j′. The integral (6.5) can therefore be
estimated by

const.

∫ tk+1

tk

r1−δ0 (1 + |ϕ′′|)‖φ‖2,

which concludes the proof. �

Summing up, we have

∫

[δ0 + o(1)]‖χeϕζ‖2 ≤
∫ (

kϕ
µ2

+
ϕ′

µ
c+ const.

|ϕ′′|
µ2

)

‖χeϕζ‖2

+const.

{∫ s

s−1

r3e2ϕ[(1 + ϕ′ + |ϕ′′|)‖ζ‖2 + ‖Drζ‖2]

+

∫ tk+1

tk

r1−δ0(1 + ϕ′ + r|ϕ′′|)e2ϕ‖ζ‖2
}

,

which does not differ from (5.1) in any essential way. The previous bootstrap
argument can therefore be repeated almost verbatim, proving ζ = 0 and so
u = 0 a.e. on ER1

for some R1 > R. �

Appendix

A Identities in Connection with the Virial Theorem

A.1 Algebraic Relations

The principal part in

(α ·D +Q)u = 0, D := p− b, p = −i∇ (A.1)
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can be decomposed with the operators

Dr := ∂r − i
x

r
· b, αr := α · x

r
,

S :=
n− 1

2
−

∑

1≤j<k≤n

iαjαk(xjDk − xkDj) (A.2)

as follows:

α ·D = αr

(

−ir(1−n)/2 Drr
(n−1)/2 +

i

r
S

)

. (A.3)

S is a symmetric operator in L2(Sn−1)N which commutes with every operator
which solely depends on the radial variable r; it anticommutes with αr. In two
dimensions we have

S =
1

2
− iσ1σ2(x1D2 − x2D1) =

1

2
+ σ3(x1D2 − x2D1),

where σ1, σ2, σ3 are the Pauli matrices. For n = 3 it is convenient to define
σ := (−iα2α3,−iα3α1,−iα1α2). Then

S = 1 + σ · L with L := x×D,

but the operator K := βS is also used instead of S.
We notice that α · Bx anticommutes with αr, since B is skew-symmetric. A
longer but completely elementary calculation shows

A := [Dr, S] = −iαr(α ·Bx).
Since α2

r = 1, this implies A2 = |Bx|2 and

[Dr, iαrS] = α · Bx. (A.4)

Furthermore,
T := (β + η α ·Bx)(1 + ζ iαr)

is an Hermitian N ×N matrix with square

T 2 = (1 + η2|Bx|2)(1 + ζ2),

if η, ζ ∈ R.
Finally we note that the (n+1) Dirac matrices can be given the following block
structure :

αj =

(
0 aj
a∗j 0

)

(j = 1, 2, · · · , n), β =

(
IN/2 0
0 IN/2

)

. (A.5)

The aj are (N/2) × (N/2) matrices (Hermitian if n is odd) which satisfy the
following commutation relations :

aja
∗
k + aka

∗
j = 2δjkIN/2, a∗jak + a∗kaj = 2δjkIN/2.

For n = 2, 3 this is of course well-known; the Pauli matrices take the role of
the αj if n = 2 and of the aj if n = 3. For general n see [KY].
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A.2 Analytic Tools

Let ϕ, χ, q, h and j be smooth real-valued functions which depend only on r;
we assume that χ has compact support and q is positive. When u is a solution
of (A.1), then (A.3) implies that

ξ := χeϕU with U := r(n−1)/2u

and

w := q−(1/2)ξ

are solutions of

[

−iαrDr + iαr

(
S

r
+ ϕ′

)

+Q

]

ξ = g := −iαrχ
′eϕU, (A.6)

[

−iαrDr + iαr

(
S

r
+ ϕ′

)

+Q− iαr
q′

2q

]

w = f := q−(1/2)g. (A.7)

Splitting Q into an Hermitian part Q1 and Q2 := Q −Q1, the following virial
relation holds :

∫

〈[∂r(rQ1]ξ, ξ〉 = −
∫

〈(α ·Bx)ξ, ξ〉 (A.8)

+

∫

2Re〈r Q2ξ,Drξ〉+
∫

2rϕ′ Re〈−iαrDrξ, ξ〉 −
∫

2rRe〈g,Drξ〉.

Norm and scalar product in L2(Sn−1)N are denoted by ‖ · ‖ and 〈·, ·〉, respec-
tively. We write ‖ξ‖ rather than ‖ξ(r·)‖ and similarly for the scalar product.
Integration is over (0,∞).

Starting from
∫

2rRe〈g,Drξ〉

(A.8) can immediately be verified, using (A.6) and (A.4) as well as an integra-
tion by parts in the term containing Q1 (see [KOY], Proposition 3.1 and the
remark on p. 40). In case χ can be replaced by 1, the virial theorem in its
familiar form follows from (A.8) by setting ϕ = 0, Q2 = 0 and observing that
g is zero.

As a consequence of (A.6) – (A.7) we note the following energy relations:

∫

h

[

‖Drξ‖2 +
∥
∥
∥
∥

(
S

r
+ ϕ′

)

ξ

∥
∥
∥
∥

2
]

=

∫

h‖g −Qξ‖2 (A.9)

−
∫
h

r
〈Aξ, ξ〉 −

∫

r

(
h

r

)′〈
S

r
ξ, ξ

〉

−
∫

(hϕ′)′‖ξ‖2,
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∫

2hRe〈−iαrDrw,Qw〉 (A.10)

=

∫

h(‖f‖2 − ‖Drw‖2 − ‖f + iαrDrw‖2)−
∫
h

r
〈Aw,w〉

−
∫

r

(
h

r

)′ 〈
S

r
w,w

〉

+

∫
[(

h
q′

2q

)′
− (hϕ′)′

]

‖w‖2.

(A.9) follows from

∫

h‖iαr(g −Qξ)‖2 =
∫

h

∥
∥
∥
∥
Drξ −

(
S

r
+ ϕ′

)

ξ

∥
∥
∥
∥

2

by undoing the square on the right-hand side and integrating by parts (cf.
[KOY], Proposition 3.3 and the remark on p.40). Similarly, (A.10) can be
proved by inserting into the left-hand side the expression for Qw which arises
from (A.7) (cf. [KOY], Proposition 3.2 and the remark on p.40).

Since S is unbounded from above and from below, the corresponding term on
the right-hand side of (A.9)–(A.10) has to be eliminated. This can be done
with the help of the auxiliary identities

∫

j

〈(
S

r
+ ϕ′

)

ξ, ξ

〉

+
1

2

∫

j′‖ξ‖2 +
∫

j Im〈Qξ, αrξ〉

+

∫

jχχ′‖eϕU‖2 = 0, (A.11)

∫

j

〈(
S

r
+ ϕ′

)

w,w

〉

+
1

2

∫ (

j′ − j
q′

q

)

‖w‖2 +
∫

j Im〈Qw,αrw〉

+

∫
j

q
χχ′‖eϕU‖2 = 0. (A.12)

(A.11), for example, results at once from

∫

Im

〈

iαr

(
S

r
+ ϕ′

)

ξ, jαrξ

〉

,

inserting (A.6) and integrating by parts (cf. [KOY], p.23).

Let F = F (r) > 0 be a smooth function, m0 > 0 and λ ∈ R. When V is
a scalar function and Q = V + m0β − λ, it may be advantageous to split a
solution u of (A.1) into two vectors u1, u2 with N/2 components and use the
block structure (A.5) of the Dirac matrices jointly with the transformation

ζ :=

(
F U1

(1/F )U2

)

, Uj = r(n−1)/2uj (A.13)
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(cf. [KOY], p.37). Then αr =

(
0 ar
a∗r 0

)

where ar :=
∑n

j=1(xj/r)aj . With a

smooth function q = q(r) and

P :=
F ′

F
iαrβ + (A.14)

(
(1/F 2) (V − q + q +m0 − λ)IN/2 0

0 F 2(V − q + q −m0 − λ)IN/2

)

,

we then have
(

−αrDr +
i

r
αrS + P

)

ζ = 0. (A.15)

If, for example, q −m0 − λ > 0, requiring

1

F 2
(q +m0 − λ) = µ = F 2(q −m0 − λ), (A.16)

leads to

µ = [(q − λ)2 −m2
0]

1/2, F =

(
q +m0 − λ

q −m0 − λ

)1/4

(A.17)

Since
F ′

F
= −m0

2

q′

µ2
,

the potential (A.14) becomes

P = µIN + (V − q)

(
F−2IN/2 0

0 F 2IN/2

)

− m0

2

q′

µ2
iαrβ. (A.18)

B Asymptotic Behaviour of Solutions

In case Q in

(−iα · ∇+Q)u = 0 (B.1)

is Q = m0β+λ− q and q is a rotationally symmetric scalar function, it suffices
to discuss the ordinary differential equation

u′ =

(
−(k/r) −q +m0 + λ

q +m0 − λ (k/r)

)

u, (B.2)

where k is an eigenvalue of the angular momentum operator S in (A.2) with
b = 0. k is an integer or half-integer such that |k| ≥ (n− 1)/2. (For general n,
the reduction of (B.1) to (B.2) can be found in [KY].)
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B.1 Case m0 = 0 = λ

In the new variables
t = log r, v(t) = u(et) (B.3)

(B.2) reads

v′ =

{(
−k 0
0 k

)

+

(
0 −et q(et)

et q(et) 0

)}

v. (B.4)

If et q(et) → 0 as t→ ∞, then (B.4) has a fundamental system of solutions v±
with the property

lim
t→∞

1

t
log |v±(t)| = ±k.

(We refer to the references in [AKS] for this theorem which goes back to Perron,
Lettenmeyer and Hartman-Wintner.) Hence (B.2) has a solution which is in
L2 at infinity if rq(r) → 0 as r → ∞ and 2|k| > 1. Note that (B.4) has a
fundamental system of solutions

v±(t) = e±
√
k2−c2 tv0±

if q = c/r. Hence (B.2) has an L2-solution at infinity if |k| > [(1/2) + c2]1/2.

B.2 Case λ = −m0 < 0

In this case (B.2) reads

u′ =

{(
0 0

2m0 0

)

+

(
−(k/r) −q
q (k/r)

)}

u =: (J +R)u. (B.5)

The Jordan matrix J can be removed by observing that

φ :=

(
1 0
σ 1

)

with σ := 2m0 r

has the properties φ′ = J = Jφ. Hence z := φ−1u satisfies

φ′z + φz′ = (J +R)φz or z′ = φ−1Rφz

(see [Ea], p.43 for this trick). Since the asymptotically leading term in φ−1Rφ
still has the double eigenvalue zero, a second transformation is required. With

D :=

(
1 0
0 σ

)

, w := D−1z

we obtain

w′ = [(D−1)′D + (φD)−1RφD]w (B.6)

=

{(
−k 0
2k k − 1

)

+

(
−σrq −σrq

σrq + rq/σ −σrq

)}
1

r
w.

Documenta Mathematica 20 (2015) 37–64



62 Kalf, Okaji, and Yamada

The constant matrix in (B.6) has the eigenvalues

µ± := −1

2
±
√

1

4
+ k(k − 1).

So, if k 6= 0, 1, and if r2 q → 0 r → ∞, (B.6) has a fundamental system of
solutions w± with

|w±(r)| = r µ±+o(1) as r → ∞.

Since u = φDw and |φD| ≤ const.r, (B.5) has a solution which is of integrable
square at infinity if 2µ− + 3 < 0, i.e., |k − (1/2)| > 1.
For q = c/r2 system (B.6) reads

w′ =

{

A+

(
0 0
c

2m0
0

)
1

r2

}
1

r
w, (B.7)

where

A :=

(
−(k + σ0) −σ0
2k + σ0 k − 1− σ0

)

and σ0 := 2mc. Introducing new variables as in (B.3), (B.7) becomes

w̃′(t) =

{

A+ e−2t

(
0 0
c

2m0
0

)}

w̃(t). (B.8)

Since the eigenvalues of A are

µ± := −1

2
(1 + 2σ0)±

[
1

4
+ k(k − 1− 2σ0)− σ2

0

]1/2

,

it follows from the Levinson theorem ([Ea], Theorem 1.8.1) that (B.8) has a
solution which is in L2 at infinity if |k| is sufficiently large. The same is therefore
true of (B.5)

References

[Ar] Arai, M., On essential selfadjointness, distinguished selfadjoint exten-
sion and essential spectrum of Dirac operators with matrix valued
potentials, Publ. RIMS, Kyoto Univ., 19 (1983), 33–57.

[AKS] Arnold, V., Kalf, H. and Schneider, A., Separated Dirac operators and
asymptotically constant linear systems, Math. Proc. Camb. Phil. Soc.,
121 (1997), 141–146.

[BEU] Balinsky, A., Evans, W.D. and Umeda, T., The Dirac-Hardy and
Dirac-Sobolev inequalities in L1, Publ. RIMS, Kyoto Univ., 47 (2011),
791–801.

Documenta Mathematica 20 (2015) 37–64



The Dirac Operator 63

[BG] Boussaid N. and Golénia, S., Limiting absorption principle for some
long range perturbations of Dirac systems at threshold energies,
Comm. Math. Phys., 299 (2010), 677-708.

[DO] De Carli, L. and Okaji, T., Strong unique continuation property for
the Dirac equation. Publ. RIMS, Kyoto Univ., 35 (1999), 825–846.

[Ea] Eastham, M.S.P., The asymptotic solution of linear differential sys-
tems, Oxford: Clarendon Press, 1989.

[FW] Fefferman, C.L. and Weinstein, M.I., Honeycomb lattice potentials
and Dirac points, J. Amer. Math. Soc., 25 (2012), 1169–1220.

[HP] Hile, G.N. and Protter, M.H., Unique continuation and the Cauchy
problem for first order systems of partial differential equations, Comm.
Partial Differential Equations, 1 (1976), 437–465.

[KOY] Kalf, H., Okaji, T. and Yamada, O., Absence of eigenvalues of Dirac
operators with potentials diverging at infinity, Math. Nachr., 259
(2003), 19–41.

[KY] Kalf, H. and Yamada, O., Essential self-adjointness of n–dimensional
Dirac operators with a variable mass term J. Math. Phys., 42 (2001),
2667–2676.

[L] Leinfelder, H., On the virial theorem in quantum mechanics, Integral
Equations Operator Theory, 4 (1981), 226–244.

[LS] Lieb, E.H. and Seiringer, R., The stability of matter in quantum me-
chanics, Cambridge University Press 2010.

[LY] Loss, M. and Yau, H.T., Stability of Coulomb systems with magnetic
fields III. Zero energy bound states of the Pauli operators, Comm.
Math. Phys. 104(1986), 283–290.

[MS] Mehringer and Stockmeyer, E., Confinement-deconfinement transi-
tions for two-dimensional Dirac particles, J. Func. Anal., 266(2014),
2225–2350.
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Abstract. In this article we study smooth families of stratified bun-
dles in positive characteristic and the variation of their monodromy
group. Our aim is, in particular, to strengthen the weak form of the
positive equicharacteristic p-curvature conjecture stated and proved
by Esnault and Langer in [9]. The main result is that if the ground
field is uncountable then the strong form holds. In the case where the
ground field is countable we provide positive and negative answers to
possible generalizations.
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14H30, 13N10

1. Introduction

Let (E,∇) be a vector bundle endowed with a flat connection on a smooth
complex variety X . Then, there exists a smooth scheme S over (some open
subscheme of) SpecZ such that (E,∇) = (ES ,∇S) ⊗S C and X = XS ⊗S C
with XS smooth over S and (ES ,∇S) flat connection on XS relative to S. The
p-curvature conjecture of Grothendieck and Katz predicts (see [2, Conj. 3.3.3])
that if for all closed points s of a dense open subscheme S̃ ⊂ S we have that
ES ×S s is spanned by its horizontal sections, then (E,∇) must be trivialized
by an étale finite cover of X .
An analogue problem can be studied in equicharacteristic zero, and in fact it
reduces the p-curvature conjecture to the number field case. Y. André in [2,
Prop. 7.1.1] and E. Hrushovski in [14, 116] stated and proved the following
equicharacteristic zero version of the p-curvature conjecture: let X → S be a
smooth morphism of varieties over a field K of characteristic zero; let (E,∇)
be a flat connection on X relative to S such that, for every closed point s in a
dense open S̃ ⊂ S, the flat connection (E,∇)×S s is trivialized by a finite étale
cover. Then, there exists a finite étale cover of the generic geometric fiber over
η̄ that trivializes (E,∇) ×S η̄, where η̄ is a geometric generic point of S.
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The theorem of André and Hrushovsky translates naturally in positive char-
acteristic, providing a positive equicharacteristic analogue to the p-curvature
conjecture. Here, the role of relative flat connections is played by relative strat-
ified bundles. A stratified bundle on X relative to S is a vector bundle of finite
rank with an action of the ring of differential operators DX/S on X relative to
S.
In [9, Cor. 4.3, Rmk. 5.4.1] H. Esnault and A. Langer proved, using an ex-
ample of Y. Laszlo (see [18]), that there exists X → S a projective smooth
morphism of varieties over F̄2 and a stratified bundle over X relative to S
which is trivialized by a finite étale cover on every closed fiber but not on the
geometric generic one. In particular, this provides a counterexample to the
positive equicharacteristic version of André and Hrushovsky’s theorem.
Nevertheless, they were able to prove what they call a weak form of the theorem
(see [9, Thm. 7.2]): let X → S be a projective smooth morphism and let
E = (E,∇) be a stratified bundle on X relative to S such that, for all closed
points of a dense open S̃ ⊂ S, the stratified bundle E ×S s is trivialized by a
finite étale cover of order prime to p. Then, if K 6= F̄p, there exists a finite
étale cover of order prime to p of the generic geometric fiber that trivializes
E ×S η̄. In case K = F̄p, there exists a finite étale cover of order prime to p
such that the pullback of E×S η̄ is a direct sum of stratified line bundles.

In this article we answer two natural questions aiming at generalizing this last
theorem: the first one is whether we can relax the assumption of coprimality
to p of the order of the trivializing covers of the E ×S s, while keeping the
assumption that X is proper over S. The second one is if we can drop this last
assumption as well. Our main result, in particular, is that if K is uncountable
then the positive equicharacteristic version of André and Hrushovsky’s theorem
holds.
Let assume from now on that K has positive characteristic p. Bearing in mind
the counterexample of Esnault and Langer ([9, Cor. 4.3]) we cannot hope in
general to completely eliminate the assumption of coprimality to p of the order
of the trivializing covers of the E×S s. Still, we can answer positively the first
question proving that it suffices to impose to the power of p dividing the order
of such trivializing covers to be bounded:

Theorem 1 (See Theorem 4.3). Let K be an algebraically closed field, X → S
a smooth proper morphism of K-varieties and E = (E,∇) a stratified bundle
on X relative to S. Assume that for every closed point s in a dense open S̃ ⊂ S
the stratified bundle Es = E ×S s is trivialized by a finite étale cover whose
order is not divisible by pN for some fixed N ≥ 0. Then, if K 6= F̄p, there exists
a finite étale cover of the generic geometric fiber that trivializes Eη̄ = E ×S η̄.
In case K = F̄p, there exists a finite étale cover such that the pullback of Eη̄ is
the direct sum of stratified line bundles.
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The second question has a more involved answer. The assumption on X being
proper over S is more delicate to eliminate; the order of the trivializing covers
does not play any role while the cardinality of K becomes the main obstruction:

Counterexample (See Proposition 5.1). If K is a countable field, then there
exists a stratified bundle on A2

K relative to A1
K which is trivial on every closed

fiber but is not trivialized by any finite étale cover on the generic geometric
fiber.

On the other hand the main result of this article is that in caseK is uncountable
the strong version of the theorem holds, namely:

Theorem 2 (See Theorem 6.1). Let K be an uncountable algebraically closed
field, X → S a smooth morphism of K-varieties and E = (E,∇) a stratified
bundle onX relative to S such that, for every closed point s in a dense open S̃ ⊂
S, the stratified bundle Es = E×S s is trivialized by a finite étale cover. Then,
there exists a finite étale cover of the generic geometric fiber that trivializes
Eη̄ = E×S η̄.

In the case where K is countable and X is not proper over S there is still room
for improvement, using the theory of regular singular stratified bundles (intro-
duced in [11]). Roughly speaking, a stratified bundle is regular singular if it
has only mild (that is logarithmic) singularities along the divisor at infinity. In
characteristic zero there is a parallel notion of regular singular flat connections,
and one of the first steps in the proof of André’s theorem is to show that if a
relative flat connection (E,∇) on X over S is regular singular on the fiber over
all closed points of a dense subset of S then it is regular singular on the generic
fiber (see [2, Lemma 8.1.1]). In positive characteristic this is no longer true, as
our counterexample shows. The converse still holds (see the proof of Lemma
7.4): if X admits a good compactification over S and E = (E,∇) is a stratified
bundle on X relative to S such that Eη̄ is regular singular then for every closed
point s of some dense open S̃ ⊂ S the stratified bundle Es is regular singular as
well. Moreover, assuming Eη̄ to be regular singular we obtain the same results
than in the proper case:

Theorem 3 (See Theorem 7.7). Let K be an algebraically closed field of any
cardinality and X → S a smooth morphism of K-varieties. Let E = (E,∇) be
a stratified bundle on X relative to S such that, for every closed point s in a
dense open S̃ ⊂ S, the stratified bundle Es = E ×S s is trivialized by a finite
étale cover whose order is not divisible by pN for some fixed N ≥ 0. Assume
moreover that Eη̄ = E ×S η̄ is regular singular. Then, if K 6= F̄p, there exists
a finite étale cover of the generic geometric fiber that trivializes Eη̄. In case
K = F̄p, there exists a finite étale cover such that the pullback of Eη̄ is the
direct sum of stratified line bundles.

The proofs of these generalizations are of two different kinds. The ones of The-
orem 1 and Theorem 3 rely on a reduction to Esnault and Langer’s result ([9,
Thm. 7.2]). Theorem 3 is reduced to Theorem 1 using the theory of exponents
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for regular singular stratified bundles ([11],[16]) and an adaptation of Kawa-
mata coverings ([15, Thm. 17]) to positive characteristic (see Theorem 7.6).
Theorem 1 is then proved by reduction to [9, Thm. 7.2] constructing a suitable
finite étale cover of X that kills the p-powers in the orders of the trivializing
covers on the closed fibers.
The proof of Theorem 2 is of another flavour: it relies on the invariance of the
Tannakian monodromy group under algebraically closed extension of fields for
finite stratified bundles (Lemma 3.4), and on the easy but fundamental fact
that a (relative) stratified bundle is defined by countably many data.

Acknowledgments. The results contained in this article are part of my PhD
work under the supervision of Hélène Esnault. I would like to thank her for in-
troducing me to the subject, and for her great patience and support. Moreover,
I would like to thank Lars Kindler for many useful and pleasant discussions, in
particular regarding Lemma 3.2.

Notation. If S is an integral scheme k(S) will denote its field of fractions,
η its generic point and η̄ a geometric generic point given by the choice of an
algebraically closure k(S) of k(S). If K is a field a variety overK is a separated
integral scheme of finite type over K.

2. The category of stratified bundles

Throughout the whole article K will denote an algebraically closed field of
positive characteristic p and u : X → S a smooth morphism of varieties over
K, of relative dimension d. Let DX/S be the quasi-coherent OX -module of
relative differential operators as defined in [12, §16]; recall that if U is an open
subscheme of X admitting global coordinates x1, . . . , xd relative to S, then for
every k ∈ N there are OS-linear maps ∂(k)xi : OU → OU given by

∂(k)xi
(xhj ) = δij

(
h

k

)

(xh−k
j )

where δij is the Kronecker delta. These maps are differential operators of order
k and generate locally the ring of differential operators:

DX/S|U = OU
[
∂(k)xi

| i ∈ {1, . . . , d}, k ∈ N>0

]
.

For higher differential operators we have an extension of the Leibniz rule,
namely if f, g ∈ OU then

(1) ∂(k)xi
(fg) =

∑

a+b=k
a,b≥0

∂(a)xi
(f)∂(b)xi

(g).

Definition 2.1. A stratified bundle E (relative to S) is a OX -locally free mod-
ule E of finite rank r endowed with a DX/S-action extending the OX -module
structure via the inclusion OX ⊂ DX/S . A morphism of stratified bundles is a
morphism of DX/S-modules. We denote by Strat(X/S) the category of strati-
fied bundles on X relative to S; if S = SpecK we use the notation Strat(X/K)

Documenta Mathematica 20 (2015) 65–87



The Variation of the Monodromy Group in Families . . . 69

for Strat(X/ SpecK). The structure sheaf OX together with the natural DX/S-
action is denoted by IX/S ; if S = SpecK we use the notation IX/K for IX/ SpecK .
A stratified bundle is trivial if it is isomorphic to I⊕r

X/S for some r ∈ N.

If h : Y → X is a morphism of smooth S-varieties then the pullback along h
induces a functor h∗ : Strat(X/S) → Strat(Y/S) and if h is finite and étale
then the pushforward along h induces a functor h∗ : Strat(Y/S) → Strat(X/S).
For E,F ∈ Strat(X/S) we can construct the dual E∨, the tensor product E⊗F
and the direct sum E⊕ F, all of which are objects of Strat(X/S).

3. The monodromy group

If X is a smooth connected K-variety, Strat(X/K) is an abelian tensor rigid
K-linear category and the choice of a rational point x ∈ X(K) defines a fiber
functor to the category of finite dimensional K-vector spaces by:

ωx : Strat(X/S) → VecfK

E 7→ Ex

where E is the vector bundle underlying E ([21, §VI.1]). Hence (Strat(X/S), ωx)
is a neutral Tannakian category and by Tannakian duality ([7, Thm. 2.11]) there
exists an affine group scheme πStrat

1 (X, x)
.
= π(Strat(X/S), ωx) = Aut⊗K(ωx)

over K such that Strat(X/K) is equivalent via ωx to the category of finite
dimensional representations of πStrat

1 (X, x) over K. For every E ∈ Strat(X/K)
we denote by 〈E〉⊗ ⊂ Strat(X/K) the full Tannakian subcategory spanned by
E with fiber functor ωx defined as above. The affine group scheme π(E, x)

.
=

π(〈E〉⊗, ωx) is called the monodromy group of E. If U ⊂ X is an open dense
subscheme of X then by [16, Lemma 2.5(a)] the restriction functor ρU : 〈E〉⊗ →
〈E|U 〉⊗ is an equivalence; hence, in particular, the monodromy group of E
is invariant under restriction to dense open subschemes. Moreover, as K is
algebraically closed, the monodromy group does not depend on the choice of x,
up to non-unique isomorphism (this can be deduced from [7, Thm. 3.2]). We
will hence sometimes use the notation π(E) instead of π(E, x).

Definition 3.1. We say that E ∈ Strat(X/K) is finite if its monodromy group
is finite. By what we have just remarked, this property is independent of the
choice of x. We say that E is isotrivial if it is étale trivializable; that is, there
exists h : Y → X finite étale cover such that h∗E is trivial in Strat(Y/K).

These two properties are equivalent:

Lemma 3.2. For a stratified bundle E ∈ Strat(X/K) the following are equiva-
lent:

i) E is isotrivial;
ii) E is finite.

Moreover, if E is finite, then there exists an étale π(E, x)-torsor hE,x : YE,x →
X, called the Picard–Vessiot torsor of E such that, for any E′ ∈ Strat(X/K),
the pullback h∗

E,xE
′ is trivial if and only if E′ ∈ 〈E〉⊗.
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Finally, for a finite étale cover h : Y → X such that h∗E is trivial, the following
conditions are equivalent:

i) h : Y → X is the Picard–Vessiot torsor for E;
ii) every finite étale cover trivializing E factors (non-uniquely) through

h : Y → X;
iii) h : Y → X is Galois and 〈E〉⊗ = 〈h∗IY/K〉⊗;
iv) h : Y → X is Galois of Galois group π(E, x)(K).

Proof. The first part of the lemma is [9, Lemma 1.1]. As for the second part,
first notice that point (b) and (f) of [16, Prop. 2.15], together with [16, Cor. 2.16]
imply that if h : Y → X is a finite étale cover trivializing E then 〈E〉⊗ ⊂
〈h∗IY/K〉⊗ and that 〈E〉⊗ = 〈hE,x∗IYE,x/K〉⊗. Moreover, if h : Y → X is Galois
of Galois group G, then π(h∗IY/K , x) is the finite constant group G and if
h̃ : Ỹ → X is an étale cover factoring through h then 〈h∗IY/K〉⊗ ⊂ 〈h̃∗IỸ /K〉⊗.
We are now ready to prove the rest of the lemma.

(i)⇒(ii) Because 〈E〉⊗ = 〈hE,x∗IYE,x/K〉⊗, a cover h̃ : Ỹ → X trivializes E if

and only if it trivializes hE,x∗IYE,x/K . Let Z = Ỹ ×X YE,x, and let
p1 and p2 be the projections on the first and second factor. Then
by flat base change (notice that the flat base change morphism is
compatible with the DỸ /K-action) there is an isomorphism of DỸ /K-

modules h̃∗hE,x∗IYE,x/K ≃ p1∗IZ/K ; hence, the latter is also a trivial
stratified bundle. This, together with [16, Cor. 2.17], implies that
p1 : Z → Ỹ is a trivial covering. In particular, it admits a section
s; hence, h̃ = s ◦ p2 ◦ hE,x and h̃ factors through h.

(ii)⇒(iii) Because h trivializes E, we have the inclusion 〈E〉⊗ ⊂ 〈h∗IY/K〉⊗. On
the other side, by assumption, hE,x : YE,x → X factors through h :
Y → X ; hence, 〈h∗IY/K〉⊗ ⊂ 〈hE,x∗IYE,x/K〉⊗ = 〈E〉⊗.

(iii)⇒(iv) As 〈E〉⊗ = 〈h∗IY/K〉⊗, then we have the equality π(E, x) =
π(h∗IY/K , x) and as h : Y → X is Galois, then its Galois group is
π(h∗IY/K)(K) = π(E, x)(K).

(iv)⇒ (i) By what we already proved there must be a factorization f : Y → YE,x
such that h = hE,x ◦ f . Hence, if G is the Galois group of h : Y → X
then hE : YE → X corresponds to a normal subgroup H of G. But by
assumption G = π(E, x)(K) = H ; hence, h = hE. �

Corollary 3.3. If E ∈ Strat(X/K) is finite then the set of finite étale covers
of X trivializing E has a minimal element which is Galois of Galois group
π(E, x)(K).

By [8, Cor. 12] for every E ∈ Strat(X/K) the group scheme π(E, x) is smooth
(which is equivalent to being reduced). In particular, as K is algebraically
closed, if E is finite we are allowed to identify the abstract group π(E, x)(K) and
the algebraic group π(E, x). Given a finite stratified bundle E ∈ Strat(X/K)
it is straightforward to see that for every L ⊃ K algebraically closed field
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extension EL = E⊗K L ∈ Strat(XL/L) is finite as well. In fact, the following
stronger statement holds:

Lemma 3.4. Let E ∈ Strat(X/K) and let L ⊃ K be an algebraically closed field
extension such that EL is finite. Then for every L′ ⊃ K algebraically closed
such that trdegK L′ ≥ trdegK L (or, if both are infinite, such that there exists
an immersion L →֒ L′ which is the identity on K) we have that EL′ is finite.
Moreover for any x ∈ X(K)

π(EL, x)(L) ≃ π(EL′ , x)(L′),

where we consider x ∈ XL(L) via K ⊂ L and similarly for L′.

Proof. Let L and L′ as in the hypothesis, then we can construct an immersion
L →֒ L′ which is the identity on K, just by sending any transcendence basis
of L to a algebraically independent set in L′ over K and using the fact that
L′ is algebraically closed to see that this extends to an immersion L →֒ L′.
Hence, we have reduced the problem to proving that if E is finite and L ⊃ K
is an algebraically closed field extension then EL is finite and has the same
monodromy group of E as abstract groups. In order to do so we need first to
establish a result on Galois covers:

Claim. Let h : Y → X be a Galois cover of Galois group G and let hL : YL →
XL the extension of scalars of h : Y → X to L, then hL is a Galois cover of
Galois group G.

Proof. Certainly hL : YL → XL is a finite étale morphism as these properties
are stable under base change. We are left to check that (i) YL is connected,
(ii) Aut(YL/XL) acts transitively on the fiber over some geometric point of XL

and finally (iii) Aut(YL/XL) ≃ Aut(Y/X).

i) AsK is algebraically closed (hence, in particular, separably closed) Y is
connected if and only if YL is connected for any field extension L ⊃ K.
In particular, YL is connected.

ii) Let x ∈ XL(L) be any closed (in particular, geometric) point of
XL, then the composition x̄ : Spec(L) → XL → X is a geomet-
ric point for X . As h : Y → X is Galois, Aut(Y/X) acts tran-
sitively on Yx̄ = Y ×X x̄ = YL ×XL

x = YL,x. Now, the action
of Aut(Y/X) on YL,x factors through Aut(YL/XL) via the inclusion
Aut(Y/X) ⊂ Aut(YL/XL) defined by φ 7→ φL. Hence, the action of
Aut(YL/XL) on YL,x is transitive as well; therefore, hL : YL → XL is
Galois.

iii) As Yx̄ = YL,x and both h and hL are Galois, it follows that the order of
their Galois group is the same, as it is the cardinality of the respective
geometric fibers over x̄ and over x. Moreover we have a natural inclu-
sion Aut(Y/X) ⊂ Aut(YL/XL) so as they have the same cardinality
they must be equal; hence, Aut(YL/XL) = G. �

Until the end of the proof let us denote by hE,x : Y → X the Picard–Vessiot tor-
sor of E (see Lemma 3.2), then hE,x⊗KL : YL → XL is a Galois cover trivializing

Documenta Mathematica 20 (2015) 65–87



72 Giulia Battiston

EL which is then finite, by Lemma 3.2. Recall that 〈(hE,x)∗IY/K〉⊗ = 〈E〉⊗. But
then in particular, 〈(hE,x)∗IY/K ⊗K L〉⊗ = 〈EL〉⊗ and as (hE,x)∗IY/K ⊗K L =
(hE,x ⊗K L)∗IYL/L, it follows that 〈(hE,x ⊗K L)∗YL〉⊗ = 〈EL〉⊗. Hence, by
Lemma 3.2, we have that hE,x ⊗K L : YL → XL is the minimal trivial-
izing cover for EL. Now, the Galois group of hE,x is the same as that of
hE,x ⊗K L by the previous claim; hence, again by Lemma 3.2, we have that
π(EL, x)(L) = π(E, x)(K). �

Finite stratified bundle have an additional propriety that will turn out to be
very useful to prove that some stratified bundle cannot be isotrivial:

Lemma 3.5. Let E ∈ Strat(X/K) be a finite stratified bundle. Then there exists
a subfield K ′ ⊂ K of finite type over Fp over which X and E are defined; that
is, there exists X ′ smooth variety over K ′ and E′ ∈ Strat(X ′/K ′) such that
X = X ′ ×SpecK′ SpecK and E = E′ ⊗K′ K.

Proof. Let hE,x : YE,x → X be the Picard–Vessiot torsor of E (see Lemma 3.2),
and let H = (hE,x)∗IYE,x/K , then (see Lemma 3.2) E ∈ 〈H〉⊗. Certainly there
exists K ′′ of finite type over Fp on which hE,x : YE,x → X is defined; hence, H
is also defined over K ′′. Notice that E is a subquotient of P where P ∈ Z[H,H∨]
(see e.g. [16, def. 2.4]); that is, E ≃ P̃/P̄ with P̄ ⊂ P̃ ⊂ P. It is clear that P̃
and P̄ are defined over some extension K ′ of finite type of K ′′ (thus over Fp).
Therefore, so does E ≃ P̃/P̄. �

In particular, we have the following:

Corollary 3.6. Let E ∈ Strat(X/K) with K algebraically closed, such that
for some algebraically closed field extension L ⊃ K the stratified bundle EL

is finite. Assume that K has infinite transcendence degree over Fp, then E is
finite as well.

Proof. As EL is finite then by Lemma 3.5 there exists K ′ ⊂ L algebraically
closed of finite transcendence degree over Fp over which EL and is defined. But
then E is defined over K ′ as well, hence we can assume that K ′ ⊂ K. Let
hEL

: Y → XL be the Picard–Vessiot torsor of EL, then it is defined over
some algebraically closed field K ′′ of finite transcendence degree over K ′. In
particular EK′′ is finite and as ∞ = trdegK′ K ≥ trdegK′ K ′′ by Lemma 3.2
E = EK′ ⊗K′ K is finite. �

4. Families of finite stratified bundles

We can view a relative stratified bundle E ∈ Strat(X/S) as a family of stratified
bundles parametrized by the points of S. In particular, for every s ∈ S(K), let
Es ∈ Strat(Xs/k(s)) denote the restriction of E onXs and Eη̄ ∈ Strat(Xη̄/k(η̄))
its restriction on the geometric generic fiber given by a choice of an algebraic
closure k(S) of k(S). It is natural then to ask how the property of being
isotrivial behaves in families: the main question we want to study is whether
it is true that if Es is finite for every s ∈ S(K) then so is Eη. André proved
in [2, Prop. 7.1.1] that the analogous result in characteristic zero holds. In
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positive characteristic, following an idea of Laszlo, in [9, Cor. 4.3, Rmk. 5.4.1]
the authors proved that there exists X → S a projective smooth morphism of
varieties over F̄2 and a stratified bundle on X relative to S which is finite on
every closed fiber but not on the geometric generic one. Nevertheless, assuming
X to be projective over S and imposing a coprimality to p condition on the
order of the monodromy group on the closed fibers, they proved the following:

Theorem 4.1. [9, Thm. 7.2] Let X → S be a smooth projective morphism of K-
varieties with geometrically connected fibers and let E ∈ Strat(X/S). Assume
that there exists a dense subset S̃ ⊂ S(K) such that, for every s ∈ S̃, the
stratified bundle Es has finite monodromy of order prime to p. Then

i) there exists fη̄ : Yη̄ → Xη̄ a finite étale cover of order prime to p such
that f∗Eη̄ decomposes as direct sum of stratified line bundles;

ii) if K 6= F̄p then Eη̄ is trivialized by a finite étale cover of order prime
to p.

Note that the cover of order prime to p in the second point of the theorem
factors through the Picard–Vessiot torsor of Eη̄ by its minimality (see Lemma
3.2). In particular, this implies that the order of the monodromy group of Eη̄

is prime to p.
This article is devoted to determine how the assumptions of X being projective
over S and of the order of the monodromy groups to be prime to p can or
cannot be relaxed in order to get similar results. A first strengthening of the
theorem comes rather directly from the ideas in the proof of Theorem 4.1. In
order to prove it we need first to establish the following

Lemma 4.2. Let h : X → S be a proper flat separable morphism of connected
varieties with geometrically connected fibers over an algebraically closed field K
and suppose it has a section σ : S → X. Let S̃ ⊂ S(K) be any subset of the
closed points of S, let N ∈ N and let us fix for every s ∈ S̃ a finite étale cover
gs : Zs → Xs of degree less than N . Then there exists an open subscheme
U ⊂ S and a finite étale cover f : W → X ×S U dominating all the gs for
s ∈ S̃ ∩ U ; that is, for every s ∈ S̃ ∩ U the finite étale cover fs : Ws → Xs

factors through gs : Zs → Xs.

Proof. The proof of this lemma is a generalization of the construction that one
can find in the beginning of the proof of [9, Thm. 5.1].
First notice that if the order of the gs : Zs → Xs is bounded by N then the
order of their Galois closures is bounded by N !, hence we can assume all the
gs : Zs → Xs to be Galois. Moreover if S′ is connected and S′ → S is étale and
generically finite then there is a non-trivial open U over which S′ ×S U → U is
finite and étale. As X → S is smooth its image is open; hence, by shrinking S,
we can assume that X → S is surjective.
Let S′ → S be finite étale, then so is X ′ = X ×S S

′ → X . Let s ∈ S̃ and
s′ ∈ S′(K) lying over s. Assume that we have found f ′ : W → X ′ such that
f ′
s : Ws → X ′

s factors through gs′ : Zs′ = Zs ×k(s) k(s
′) → X ′

s′ then the
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composition f : W → X ′ → X is a finite étale cover of X and fs : Ws → Xs

factors through gs.
As h : X → S has geometrically connected fibers so does h′ : X ′ → S′ as if
s′ ∈ S lies over s ∈ S then X ′

s′ = Xs ⊗k(s) k(s
′). Therefore, h′ : X ′ → S′

is proper, flat, separable and has geometrically connected fibers. So if S′ is
connected the morphism h′ : X ′ → S′ together with the section σ′ : S′ → X ′

induced by σ : S → X satisfy the assumptions of the theorem.

For any s ∈ S̃ let Gs ⊂ πét
1 (Xs, σ(s)) be the open normal subgroup corre-

sponding via Galois duality to the cover gs : Zs → Xs. Let η̄ be a generic
geometric point of S given by the choice of an algebraic closure k(S) of k(S).
The fibers of X → S are geometrically connected and the morphism is proper,
flat and separable; hence, the specialization map πét

1 (Xη̄, σ(η̄)) ։ πét
1 (Xs, σ(s))

is surjective. Composing it with the quotient of πét
1 (Xs, σ(s)) by Gs we get

ρs : π
ét
1 (Xη̄, σ(η̄)) ։ πét

1 (Xs, σ(s)) ։ πét
1 (Xs, σ(s))/Gs.

Notice that the index of ker(ρs) in πét
1 (Xη̄, σ(η̄)) is bounded by N . Let

τ : S′ → S be any finite étale cover and let s′ ∈ S lying over s. As K is
algebraically closed, then k(s′) ≃ k(s) and hence X ′

s′ ≃ Xs. In particular,
the natural morphism πét

1 (X ′
s′ , σ

′(s′)) → πét
1 (Xs, σ(s)) is an isomorphism. Let

Gs′ ⊂ πét
1 (X ′

s′ , σ
′(s′)) be the open subgroup corresponding to gs′ : Zs′ → X ′

s′ ,
that is, the preimage of Gs under this isomorphism and let us denote by

ρs′ : π
ét
1 (Xη̄, σ(η̄)) ։ πét

1 (X ′
s′ , σ

′(s′)) ։ πét
1 (X ′

s′ , σ
′(s′))/Gs′ ,

then ker(ρs′) = ker(ρs) ⊂ πét
1 (Xη̄, σ(η̄)).

As Xη̄ is a projective k(S)-variety, then πét
1 (Xη̄, σ(η̄)) is topologically finitely

generated and hence has finitely many subgroups of index less than N , which
are all opens by Nikolov–Segal theorem ([19, Thm 1.1]), the intersection of
which we denote by G: It is a normal open subgroup and it has finite index.
Moreover

G ⊂
⋂

s∈S̃

ker(ρs) =
⋂

s′∈τ−1(S̃)

ker(ρs′ ).

At this point, we need an additional step before concluding similarly than in
the proof of [9, Thm. 5.1]. By Galois duality G corresponds to a finite étale
cover Zη̄ → Xη̄. Let k(S)sep be the separable closure of k(S) in k(S). The
base change functor from the category of finite étale covers over X ⊗S k(S)

sep

to the one of finite étale covers over Xη̄ is an equivalence. Hence, Zη̄ is defined
over some separable extension of k(S). In particular, there exists an étale
generically finite cover S′ → S such that Zη̄ descends to a finite étale cover of
X ′ = X ×S S

′.
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Let η̄′ be the geometric generic point of S′ given by k(S) ⊂ k(S′) ⊂ k(S). Then
X ′

η̄′ = Xη̄ and σ(η̄) = σ′(η̄′). Hence, the following diagram commutes:

πét
1 (X ′

η̄, σ
′(η̄′)) // πét

1 (X ′, σ′(η̄′))

��
πét
1 (Xη̄, σ(η̄)) // πét

1 (X, σ(η̄)).

LetK ′ be the kernel of πét
1 (Xη̄, σ(η̄)) → πét

1 (X ′, σ′(η̄′)). AsX → S is projective
we have the following exact sequence:

πét
1 (Xη̄, σ(η̄))

q

��

α

((R

R

R

R

R

R

R

R

R

R

R

R

R

{1} // πét
1 (Xη̄, σ(η̄))/K

′ i // πét
1 (X ′, σ′(η̄′)) // πét

1 (S′, η̄′) //
σ′
∗pp

{1}.

By [1, V Cor 6.7] we have the inclusion G ⊃ K ′. Moreover if we denote by
ΠK′ = πét

1 (Xη̄, σ(η̄))/K
′, then the section σ′

∗ induces a splitting

πét
1 (X ′, σ′(η̄′)) ≃ ΠK′ ⋊ σ′

∗(π
ét
1 (S′, η̄′))

as abstract groups. It is also a splitting of topological groups (see for example
[4, §2.10 Prop. 28] and following discussion). In particular, the topology on
πét
1 (X ′, σ′(η̄′)) is the product topology. Note that G = q(G) is invariant by the

action of σ′
∗(π

ét
1 (S′, η̄′)); hence, we can define

H = G⋊ σ′
∗(π

ét
1 (S′, η̄′)).

By definition α−1(H) = G, and H has finite index in πét
1 (X ′, σ′(η̄′)). It is

also open: πét
1 (X ′, σ′(η̄′)) is endowed with the product topology, and G is open

because G = q−1(G) is open as well. Hence, H corresponds to a finite étale
cover W → X ′ and as the composition H ⊂ πét

1 (X ′, σ′(η̄′)) ։ πét
1 (S′, η̄′) is

surjective, then W has geometrically connected fibers over S′. In particular,
the specialization map is again surjective. Let z ∈ W be a closed point lying
over s′ and let ζ̄ be a geometric generic point lying over σ(η̄), then we have the
following commutative diagram

πét
1 (Wη̄, ζ̄)

0
--

//

����

πét
1 (Xη̄, σ(η̄)) //

����

πét
1 (Xη̄, σ(η̄))/G

��
πét
1 (Ws, z) // πét

1 (X ′
s′ , σ

′(s′)) // πét
1 (X ′

s′ , σ
′(s′))/Gs′ .

Using the surjectivity of the specialization map on W it follows that the com-
position of the morphisms on the second line is zero as well; hence, if G̃s′ ⊂
πét
1 (X ′

s′ , σ
′(s′)) is the open normal subgroup corresponding to fs′ : Ws′ → X ′

s′

then G̃s ⊂ Gs′ . Therefore, fs′ factors through gs′ . �
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We can summarize the previous lemma by saying that with the assumptions of
the theorem, up to shrinking S every family of finite étale covers of the closed
fibers with bounded order can be dominated by a finite étale cover of X (notice
that the existence of the section σ : X → S is not essential for the proof).

Theorem 4.3. Let X → S be a smooth proper morphism of K-varieties with
geometrically connected fibers and E ∈ Strat(X/S) of rank r. Assume that
there exists a dense subset S̃ ⊂ S(K) such that, for every s ∈ S̃, the stratified
bundle Es has finite monodromy and that the highest power of p dividing |π(Es)|
is bounded over S̃. Then

i) there exists fη̄ : Yη̄ → Xη̄ a finite étale cover such that f∗Eη̄ decomposes
as direct sum of stratified line bundles;

ii) if K 6= F̄p then Eη̄ is finite.

Proof. We will reduce this theorem to Theorem 4.1. By the invariance of the
monodromy group it suffices to prove the theorem for f∗E where f : Y → X is
a morphism of smooth S-varieties which is generically finite étale. By Chow’s
lemma and using de Jong alterations ([6]) there exists f : Y → X projective
and generically finite étale, hence we can assume X to be projective. Up to
taking an étale open of S we can assume that there exists a section σ : S → X .
For any s ∈ S̃ let Γs = π(E, σ(s)) and hs : Ys → Xs the Picard–Vessiot torsor
of Es (see Lemma 3.2). Let Gs ⊂ πét

1 (Xs, σ(s)) be the normal open subgroup
corresponding via Galois duality to the cover hs. By Tannakian duality Es

corresponds to the image of an r-dimensional representation of πStrat
1 (Xs, σ(s))

([7, Prop. 2.21]) and as Es is finite by [8, Prop. 13] this representation factors
through the étale fundamental group, considered as a constant group scheme

πStrat
1 (Xs, σ(s)) ։ πét

1 (Xs, σ(s)) ։ πét
1 (Xs, σ(s))

/
Gs = Γs ⊂ GLr(K)

where r is the rank of E. By Brauer–Feit generalization of Jordan’s theorem [5,
Theorem], as the orders of the Sylow-p-subgroups of every Gs are bounded by
pN , there exists an integer M = f(r,N) and, for every s ∈ S̃, a normal abelian
subgroup As such that |Γs : As| < M . This gives for every s ∈ S(K) a Galois
cover gs : Zs → Xs of order bounded by M and a factorization

Ys → Zs → Xs

where Ys → Zs is Galois of Galois group As. Therefore, by Lemma 4.2, up to
shrinking S there exists a cover g′ : Z ′ → X such that g′s : Z ′

s → Xs factors
through gs : Zs → Xs. In particular, if E′ is the pullback of E via g′ then π(E′

s)
is abelian for every s. Up to taking an étale open of S the section σ : S → X
extends to a section σ′ : S → Z ′. Let Γ′

s = π(E′, σ′(s)), as we just noticed for
every s ∈ S̃ we have that Γ′

s is abelian; hence, we can write it as the direct
product of its p part with its prime to p part:

Γ′
s = Γp

s × Γp′

s

and Γp′

s corresponds to a Galois cover over Z ′
s whose index is by assumption

bounded by pN for some N ∈ N. Applying Lemma 4.2 and up to shrinking S
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we get a Galois cover g′′ : Z ′′ → Z ′ dominating all such covers. Let E′′ be the
pullback of E′ along g′′, then π(E′′

s ) is (abelian) of order prime to p for every
s ∈ S̃. Therefore, we have reduced the problem to Theorem 4.1. �

5. A counterexample over countable fields

Our next aim is to drop the assumption of X being projective over S. How-
ever, before getting to the positive results, let us present a counterexample to
understand what we can reasonably expect to hold without this assumption.
Assume for the rest of this section K to be an algebraically closed countable
field. Let X = A2

K , S = A1
K and let X → S be given by K[y] → K[x, y]. The

main result of this section is the following:

Proposition 5.1. There exists E ∈ Strat(X/S) such that Es is trivial for every
point s ∈ S(K) but Eη̄ is not isotrivial.

The rest of the section will be spent constructing such a stratified bundle and
proving it satisfies the proposition.
As x is a global coordinate of X relative to S, it is clear that

DX/S = OX [∂(k)x | k ∈ N>0].

Moreover any vector bundle is free over X . If E is a vector bundle on X , then
a DX/S-module structure on E is a OS-linear morphism

φ : DX/S → EndOS
(E)

extending the OX -module structure on E; hence, the image of OX ⊂ DX/S

under φ is always fixed. Therefore, to determine the action of the whole DX/S

it is enough to consider the image of the generators ∂(k)x under φ.
Let e1, . . . , er be a basis for E, and let Ak = (akij) be given by ∂(k)x (ei) =

∑
akijej .

Then the Ak, for k ∈ N>0, determine the DX/S-action: If s =
∑r

i=1 fi · ei is a
section of E, with fi ∈ OX , then using (1) we have

(2) ∂(k)xi
(s) =

r∑

i=1

∑

a+b=k
a,b≥0

∂(a)x (fi)Ab · ei.

Note that if e′1, . . . , e
′
r is an other basis of E and U = (uij) ∈ H0(X,GLr) is

given by e′i =
∑
uijej then by (1) it follows that in this new basis the matrices

A′
k = (a

′k
ij ) describing the action of ∂(k)x are given by

(3) A′
k =

[ ∑

a+b=k
a,b≥0

∂(a)x (U)Ab

]

U−1.

In order to construct our example, let us fix a bijection n 7→ an between the
natural numbers and K = S(K). Let E ∈ Strat(X/S) be the rank-two relative

stratified bundle E = OX · e1 ⊕Ox · e2 with DX/S-action given by ∂(k)x (e1) = 0
and

Documenta Mathematica 20 (2015) 65–87



78 Giulia Battiston

(4) ∂(k)x (e2) =

{∏h
i=0(y − ai) · e1 if k = ph,

0 else.

In order to prove Proposition 5.1 we need to show that this actually defines an
action of DX/S over E and that E satisfies the two properties of the proposition,
namely that it is trivial on every closed fiber and not isotrivial on the geometric
generic fiber.

Lemma 5.2. The formulae in (4) define a DX/S-module structure on E.

Proof. As we fixed the action of the generators of DX/S , for it to extend to a
DX/S-action we only need to check that the relations of the generators in the
ring of differential operators are satisfied by their images in EndOX

(E). By [3,
Cor. 2.5] the only relations are

[∂(l)x , ∂(k)x ] = 0

∂(k)x ◦ ∂(l)x =

(
k + l

k

)

∂(k+l)
x

[∂(k)x , x] = ∂(k−1)
x .

Let us begin with the second relation: for k, l > 0

∂(k)x ◦ ∂(l)x (e1) = 0

∂(k)x ◦ ∂(l)x (e2) =

{

∂
(k)
x (
∏h

i=0(y − ai) · e1) = 0 if l = ph

0 else

Hence, we just need to verify that if k + l = ph then
(
k+l
k

)
= 0 but this holds

by Lucas’s theorem and the first relation follows immediately. Moreover by (2)
we have

∂(k)x · x(ei) = ∂(k)x (x · ei) =
∑

a+b=k
a,b≥0

∂(a)x (x)∂(b)x (ei) = x∂(k)x (ei) + ∂(k−1)
x (ei);

hence, the third relation trivially holds. �

In order to prove that Es is trivial for every closed fiber, let us fix n ∈ N and
let s = an ∈ S(K), that is, Xs = {y = an} ⊂ X . Let us consider the basis
change on OXs

· e1 ⊕ OXs
· e2 = Es given by e′1 = e1 and

e′2 = e2 −
[

(y − a0)x+ (y − a0)(y − a1)x
p + · · ·+

[
n−1∏

i=0

(y − ai)
]
xp

n−1
]

· e1

then by (3) in this new basis the action of DXs/k(s) is given by ∂
(k)
x (e′1) =

∂
(k)
x (e′2) = 0 hence is the trivial action.

We are now left to prove that Eη̄ is not isotrivial:

Lemma 5.3. Let E ∈ Strat(X/S) be the stratified bundle defined by (4), then
Eη̄ is not isotrivial.
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Proof. In order to prove that Eη̄ is not isotrivial it suffices by Lemma 3.5 to
show that it cannot be defined over any K ′ of finite type over Fp. Remark
that Eη̄ is defined over A1

η̄ which descends to A1
K′ for any K ′ ⊂ K. By way

of contradiction assume there exists such a K ′ and let E′ be the descent of Eη̄

over A1
K′ . This means that there is a basis e′1, e

′
2 of Eη̄ such that the matrices

A′
k in this new basis take values in K ′[x].

Let U be the basis change matrix between ei and e′i, then U is defined over some
K ′′ of finite type over K ′, hence over Fp, so by (3) we have that

∏h
i=0(y−ai) ∈

K ′′[x]. In particular, if we denote by A = Fp[
∏h

i=0(y − ai) | h ∈ N], our
assumption implies that A ⊂ K ′′[x].
To see that this leads to a contradiction it suffices to show that K * K ′′(x)
where K is the quotient field of A. Note that K ⊂ K; therefore, it is enough to
prove that for every K ′ of finite type over Fp we have that K * K ′(x) and as
F̄p ⊂ K it is sufficient to show F̄p * K ′(x), which follows from the following:

Claim. Let Fq be a finite field with q = pn for some n ∈ N and let K ⊃ Fq an
algebraic extension such that [K : Fq] = +∞. Then for every m ∈ N and every
ε1, . . . , εm non-algebraic over Fq we have that

K * Fq(ε1, . . . , εm).

Proof. By induction on m, the case m = 0 being evident. Let m = 1, and γ ∈
K − Fq and let µγ(t) its minimal polynomial over Fq. By way of contradiction
assume γ ∈ Fq(ε1); then γ = f(ε1)/g(ε1) and

g(ε1)
degµγ · µγ

(f(ε1)

g(ε1)

)
= 0

gives an algebraic dependence of ε1 over Fq which is a contradiction with our
assumption that ε1 is not algebraic over Fq. Let now m ≥ 1, by induction step
we know that for every n ∈ N, q = pn, then no infinite algebraic extension of
Fq is contained in Fq(ε1, . . . , εm−1); hence, there exists an r such that Fqr =
Fq(ε1, . . . , εm−1) ∩K. Then

Fq(ε1, . . . , εm−1)(εm) ∩K ⊂ Fqr (εm) 6= K

by the m = 1 step applied to q = prn. In particular, K * Fq(ε1, . . . , εm). �

Note that if K ′ is of finite type over Fp then K ′ can be always be written as
Fq(ε1, . . . , εm) for some q = pn and εi non-algebraic over Fq; hence, F̄p * K ′(x).
Therefore, E cannot be defined over anyK ′ of finite type over Fp and by Lemma
3.5 it cannot be finite. �

Remark 5.4. Let us observe that if K is uncountable the same construction
provides an example of a relative stratified bundle E ∈ Strat(A2

K/A
1
K) and a

dense subset S̃ ⊂ A1
K(K) such that Es is trivial for every s ∈ S̃ but Eη̄ is

not isotrivial. Therefore, the density condition on S̃ of Theorem 4.1 will not
be sufficient for our purposes, in parallel with the similar problem that one
encounters in the equicharacteristic zero case (see [2, Rmk. 7.2.3]).
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6. The main theorem

From the example in previous section it appears that in the case where X
is not projective over S the situation is significantly different from the one in
Theorem 4.1. In the latter one big obstruction for the theorem to hold is related
to p dividing the order of the monodromy group on the closed fibers. In the
counterexample of Section 5 these are trivial and the obstruction seems more
related to the cardinality of K. As noticed in Section 3, the monodromy group
does not depend (up to a non-unique isomorphism) on the choice of x ∈ X .
Therefore, in this section we will denote the monodromy group of a stratified
bundle E simply by π(E).
In order to phrase the statement of the main theorem let us introduce the follow-
ing notation: we will denote by (X,S;E) (and call it a triple over K) any triple
consisting of X → S smooth morphism of K-varieties with geometrically con-
nected fibers and E ∈ Strat(X/S). We denote furthermore byK ′ = K ′(X,S;E)
a (minimal) algebraically closed subfield of K such that (X,S;E) is defined over
K ′, and by (X ′, S′;E′) the descent of the triple (X,S;E) to K ′. Then the fol-
lowing result holds

Theorem 6.1. Let (X,S;E) be a triple over K, let K ′ = K ′(X,S;E) ⊂ K and
(X ′, S′;E′) the descended triple to K ′. Let k(S′) be the function field of S′. Let
us assume:

∃ i : k(S′) →֒ K extending K ′ ⊂ K. (∗)
Assume that there exists a dense open S̃ ⊂ S such that Es is finite for every
s ∈ S̃(K), then so is Eη̄. Moreover there exists s ∈ S̃(K) such that π(Es)(K) ≃
π(Eη̄)(k(S)), in particular

i) |π(Es)| is bounded over S̃(K);
ii) if p ∤ |π(Es)| for every s ∈ S̃(K) then p ∤ |π(Eη̄)|;
iii) any group property holding for π(Es) for every s ∈ S̃(K) holds for

π(Eη̄).

Proof. Up to shrinking S, we can assume S̃ = S. Let ∆ : S′ → S′ ×SpecK′ S′

be the diagonal morphism and i : k(S′) →֒ K be an immersion as in (∗). Then
the base change along

SpecK
i // Spec k(S′) // SpecS′

induces (s : SpecK → S) ∈ S(K) such that X ′ ⊗k(S′) K ≃ Xs and

i∗E′ = Es,

where we are considering i : k(S′) →֒ K as a geometric generic point of S′. In
particular, π(i∗E′) = π(Es). Therefore, i∗E′ is finite; hence, by Lemma 3.4, Eη̄

is finite as well, moreover their monodromy group are isomorphic as constant
groups. �

Corollary 6.2. If K is uncountable then the assumption (∗), hence the theo-
rem, always holds.
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Proof. It suffices to show that if K is uncountable, then for any triple (X,S;E)
over K there exists K ′ = K ′(X,S;E) and an inclusion k(S′) ⊂ K extending
K ′ ⊂ K. But it is easy to check that a triple (X,S;E) is defined by countably
many data; hence, we can choose K ′ such that it has countable transcendence
degree over Fp. As K is uncountable, it has infinite transcendence degree over
K ′; hence, there always exists k(S′) ⊂ K as in (∗). �

Remark 6.3. Notice that if the smooth morphism X → S does not have geo-
metrically connected fibers then we lose the notion of monodromy group on the
closed and geometric generic fibers: if X is a K-variety which is not connected
and IX/K is the trivial stratified bundle on X then End(IX/K) 6= K, hence
Strat(X/K) is not a Tannakian category. Nevertheless, if we do not assume
X → S to have geometrically connected fibers, the same proof shows that if Es

is finite when restricted to every connected component of Xs, then the same
holds for Eη̄ on every connected component of Xη̄.

7. Regular singularity and a refinement of the theorem

Regardless of the example in Section 5, there is a way to broaden Theorem 4.1
in the case where K is countable, making the additional assumption that the
stratified bundle is regular singular on the geometric generic fiber.
Let X be a smooth variety over K and let (X,X) be a good partial compact-
ification of X ; that is: X is a smooth variety over K such that X ⊂ X is
an open subscheme and D = X\X is a strict normal crossing divisor. Let
DX/K(logD) ⊂ DX/K the subalgebra generated by the differential operators

that locally fix all powers of the ideal of definition of D. If U ⊂ X admits
global coordinates x1, . . . , xd and D is smooth and given by {x1 = 0} then

DX/K(logD)|U = OU
[
xk1∂

(k)
x1
, ∂(k)xi

| i ∈ {2, . . . , d}, k ∈ N>0

]
.

Definition 7.1. A stratified bundle E ∈ Strat(X/K) is called (X,X)-regular
singular if it extends to a locally free OX -coherent DX/k(logD)-module E on

X. It is regular singular if it is (X,X)-regular singular for every partial good
compactification (X,X).

Remark 7.2. There is a parallel notion of regular singularities in characteristic
zero. Despite the fact that isotrivial implies regular singular over the complex
numbers, this is not longer true in positive characteristic, due to the existence
of wild coverings (for a more precise statement, see [16, Thm. 1.1]).

For a (X,X)-regular singular stratified bundle E we have a theory of exponents
(see [11, §3]) of E along D: it is a finite subset ExpD(E) ⊂ Zp/Z given by the
following:

Proposition 7.3. [11, Lemma 3.8],[16, Prop. 4.12] Let X = SpecA be a smooth
variety over K = K̄ with global coordinates x1, . . . , xd and let D be the smooth
divisor defined by {x1 = 0}. Let E ∈ Strat(X/K) a (X,X)-regular singular
stratified bundle and E a locally free DX/K(logD)-module extending E . Then
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there exists a decomposition of E|D =
⊕
Kα with α ∈ Zp such that xk1∂

(k)
x1 acts

on Kα by multiplication by
(
α
k

)
. The image in Zp/Z of the α ∈ Zp such that

Kα 6= 0 are called the exponents of E along D and do not depend on the choice
of E.

If D is not smooth ExpD(E) is defined to be the union of the exponents along
all the irreducible components of D. By [16, Cor. 5.4] E extends to a strat-
ified bundle E on X if and only if its exponents are zero. In particular, [16,
Prop. 4.11] implies that if E is finite then its exponents are torsion. Moreover:

Lemma 7.4. Let E be a DX/S-module such that Es is finite for every s ∈ S̃ a
dense subset of S(K). If Eη̄ is regular singular then the exponents of Eη̄ with
respect to any partial good compactification of Xη̄ are torsion.

Proof. Let us fix (Xη̄, X η̄) a partial good compactification and letDη̄ = X η̄\Xη̄.
As the exponents can be checked locally, we can shrink X η̄ around the generic
point of one of the irreducible components of Dη̄ at a time. Moreover in order
to prove the lemma we are allowed to take a generically finite étale open S′

of S and substitute X by X ×S S
′ (and S̃ by its preimage) as the geometric

generic fiber is the same. Finally for every s ∈ S(K) we have that X ′
s is either

empty or a finite union of copies of Xs; hence, we will still denote by s any
point s′ ∈ S′ lying over it.
Hence, without loss of generality, we can assume that we are in the following
situation: the partial good compactification (Xη̄, X η̄) is the restriction of a
relative good partial compactification (X,X) defined on the whole S, X is the
spectrum of a ring A, with global relative coordinates x1, . . . , xd over S and
finally D = X\X is defined by {x1 = 0}. Moreover we can assume that E is
globally free and that on the geometric generic fiber Eη̄ extends to a globally
free DX̄η̄/k(S)(logDη̄)-module Eη̄.

Let s ∈ S̃ be any point such that Xs ∩D 6= ∅, and let us consider the globally
free OX -module Ē = OX ē1 ⊕ · · · ⊕ OX ēr. Then the ēi induce a basis on the
restriction of E to the closed fiber over s (as well as to the geometric generic
one) and to the boundary divisor (as well as to its complement) as in the
following commutative diagram:

Es =
⊕r

i=1 OXs
esi E =

⊕r
i=1 OXei

⊗k(s)oo ⊗k(S) // Eη̄ =
⊕r

i=1 OXη̄
εi

Es =
⊕r

i=1 OXs
ēsi

|Xs

OO

|Ds

��

E =
⊕r

i=1 OX ēi
⊗k(s)oo ⊗k(S) //

|X

OO

|D
��

Eη̄ =
⊕r

i=1 OXη̄
ε̄i

|Xη̄

OO

|Dη̄

��
E|Ds

=
⊕r

i=1 ODs
ẽsi E|D =

⊕r
i=1 ODẽi

⊗k(s)oo ⊗k(S)// E|Dη̄
=
⊕r

i=1 ODη̄
ε̃i.

Consider the first line of the diagram: on the first (respectively second and
third) column there is an action of DXs/k(s) (respectively DX/S and DXη̄/k(S)),
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compatible with each other. On the last column this action extends to a loga-
rithmic action on Eη̄ that we want to extend compatibly to E.
Similarly as in Section 5, let Ai,k be the matrices describing the action of

∂
(k)
xi ∈ DX/S in the basis ei, then the same ones describe the action of ∂(k)xi ∈

DXη̄/k(S) in the basis εi. By regular singularity of Eη̄ this action extends to

a DX η̄/k(S)(logDη̄)-action. Therefore, there is a second basis ε′1, . . . , ε
′
d on the

geometric generic fiber such that in the new basis the matrices A′
i,k have no

poles in x1 for i 6= 1 and logarithmic poles for i = 1. Let U ∈ H0(Xη̄,GLr) the
basis change matrix from εi to ε′i. Taking a generically finite étale open of S
we can assume that U is defined on the whole S; hence, the A′

i,k are defined
over the whole S as well and this defines an action of

DX/S(logD)
.
= OX

[
xk1∂

(k)
x1
, ∂(k)xi

| i ∈ {2, . . . , d}, k ∈ N>0]

on E, compatible with the logarithmic action on the fibers over η̄. In particular,
this induces a DXs

(logDs)-action on Es; hence, Es is (Xs, Xs)-regular singular
(notice that if S′ is an étale open of S then for s ∈ S(K) the fiber X ′

s of
X ′ = X ×S S

′ is either empty or the disjoint union of finitely many copies of
Xs).
We want now to compare ExpDη̄

(Eη̄) and ExpDs
(Es). By Proposition 7.3 we

have that Eη̄|Dη̄
= ⊕Fα; hence, there exists ε̃i a basis of E|Dη̄

such that the

matrices B̃k defining the action of xk1∂(k),x1
are diagonal with values

(
α
k

)
∈ Fp.

Let ε̄i be a lift of ε̃i, then up to taking an étale generically finite open of S
we can assume that ε̄i is a restriction of a basis ēi of E over X. In particular,
the decomposition extends as well and E|D = ⊕Fα induces a decomposition on
Es|Ds

. This decomposition must coincide with the one given by Proposition 7.3;
hence, the exponents must be the same of the ones of Eη̄. As Es is isotrivial,
its exponents are torsion; hence, so must be the ones of Eη̄. �

Remark 7.5. While the previous proof shows that if Eη̄ is regular singular so are
the Es for every s ∈ S(K), the example in Section 5, together with Theorem 7.7,
shows that the converse does not hold in general (however, one can prove it
is the case when K is uncountable). On the contrary, in characteristic zero it
is always true that if a relative flat connection is regular with respect to some
smooth good compactification on the fibers over a dense set of points of S, then
it is regular on the geometric generic fiber, as proven in [2, Lemma 8.1.1].

Before stating and proving the main theorem of this section we need to prove
the existence of Kawamata coverings in positive characteristic. Analogously
to the original construction in characteristic zero ([15, Thm. 17]) we have the
following

Theorem 7.6. Let X be a projective smooth variety of dimension d over an
algebraically closed field K of characteristic p and let D be a simple normal
crossing divisor on X. Let m ∈ N prime to p, then there exist a projective
smooth variety Y and a finite surjective mapping f : Y → X such that (f∗D)red
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is a simple normal crossing divisor on Y and if f∗D =
∑
miD̃i is the decom-

position in irreducible components with D̃i 6= D̃j for i 6= j then m | mi for all
i and mi are all prime to p.

Proof. The proof follows the one of the original theorem ([15, Thm. 17], see
also [10, Lemma 3.17]). One does the construction one irreducible component
D′ of D at a time, choosing an ample line bundle M on X and N ≫ 0 such
that NM−D′ is very ample. The only additional care that needs to be taken,
is to choose N so that m | N and (N, p) = 1, which is possible as m is prime to
p (this will be enough to prove that Y is smooth in the very same way by [13,
Lemma 1.8.6]). One needs moreover to use [17, Cor. 12] instead of the classical
smoothness theorem for general members of a very ample linear system. �

We can now state and prove the following

Theorem 7.7. Let X → S be a smooth morphism of K-varieties with geomet-
rical connected fibers and let E ∈ Strat(X/S). Assume that there exists a dense
subset S̃ ⊂ S(K) such that, for every s ∈ S̃, the stratified bundle Es has finite
monodromy and that the highest power of p dividing |π(Es)| is bounded over S̃.
Assume moreover that Eη̄ is regular singular, then

i) there exists fη̄ : Yη̄ → Xη̄ a finite étale cover such that f∗Eη̄ decomposes
as direct sum of stratified line bundles;

ii) if K 6= F̄p then Eη̄ is finite.

Proof. Let U ⊂ X be a dense open, then by invariance of the monodromy
group it is enough to show the theorem for E|U moreover it is enough to prove
finiteness for its pullback along any finite étale cover. Therefore, we can always
work up to generically finite étale covers. Using [6] we can find an alteration
generically finite étale f : X ′ → X such that X ′ admits a good projective
compactification relative to S. By [16, Prop. 4.4] the pullback of a regular
singular stratified bundle is again regular singular. Hence, without loss of
generality, we can assume that X admits a good projective compactification X
relative to S. We will denote by D = X\X the divisor at infinity.
Let ExpD(Eη̄) ⊂ Zp/Z be the finite set of exponents of Eη̄ along Dη̄ (as defined
in Lemma 7.3). As Eη̄ is regular singular then by Lemma 7.4 the exponents of
Eη̄ are torsion; let m ∈ N an integer prime to p killing the torsion of ExpD(Eη̄)

and let f : Y η̄ → X η̄ be the Kawamata covering constructed in Theorem 7.6:
it ramifies on a simple normal crossing divisor D̃η̄ containing the divisor at
infinity Dη̄ = X η̄ − Xη̄ and it is Kummer on X η̄ − D̃η̄. As m divides the
ramification order along Dη̄ by [16, Prop. 4.11] the exponents of the pullback
of Eη̄ along (f∗Dη̄)red are zero; hence, it extends to the whole Yη̄. Up to taking
an étale open of S and using a similar argument as in the proof of Lemma 7.4
we can assume that this extension is defined on the whole S. Therefore, we
have reduced the problem to Theorem 4.3. �
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8. Finite vector bundles

The notion of isotriviality has as well relevance in the category of vector bundles
over a proper smooth K-variety, even though it is not equivalent to the notion
of finiteness (see [20, Lemma 3.1] and following definition) for vector bundles,
at least in positive characteristic. In the same spirit of Theorem 4.1, Esnault
and Langer proved in the same paper the following:

Theorem 8.1. [9, Thm. 5.1] Let X → S be a smooth projective morphism of
K-varieties with geometrically connected fibers and let E be a locally free sheaf
over X. Assume that there exists a dense subset S̃ ⊂ S(K) such that, for every
s ∈ S̃, there is a finite étale Galois cover hs : Ys → Xs of order prime to p such
that h∗s(Es) is trivial. Then

i) there exists fη̄ : Yη̄ → Xη̄ a finite étale cover of order prime to p such
that f∗Eη̄ decomposes as direct sum of stratified line bundles;

ii) if K 6= F̄p then Eη̄ is trivialized by a finite étale cover of order prime
to p.

Then, a reasoning similar to the proof of Theorem 4.3 proves the following:

Theorem 8.2. Let X → S be a smooth projective morphism of K-varieties
with geometrically connected fibers and let E be a locally free sheaf over X.
Assume that there exists a dense subset S̃ ⊂ S(K) such that, for every s ∈ S̃,
there is a finite étale Galois cover hs : Ys → Xs such that h∗s(Es) is trivial and
that the highest power of p dividing the order of such covers is bounded over S̃.
Then

i) there exists fη̄ : Yη̄ → Xη̄ a finite étale cover such that f∗Eη̄ decomposes
as direct sum of stratified line bundles;

ii) if K 6= F̄p then Eη̄ is trivialized by a finite étale cover.

Proof. We will reduce this theorem to Theorem 8.1. By taking an étale open
of S we can assume there exists a section σ : S → X . Let r be the rank of
E and fix s a closed point in S. As Xs is a smooth k(s)-variety, then (see [9,
Definition 3.2] and following discussion) every étale trivializable vector bundle
is Nori semistable. In particular, the Galois cover hs : Ys → Xs corresponds to
a representation of rank r of the Nori fundamental group scheme πN

1 (Xs, σs)
(for the definition of the Nori group scheme see [20]) that factors through the
étale fundamental group:

πN
1 (Xs, σ(s)) ։ πét

1 (Xs, σ(s)) ։ Γs ⊂ GLr(K),

where Γs is the Galois group of hs : Ys → Xs. The rest of the proof follows
exactly as in Theorem 4.3. �

If the morphism X → S is not projective but only smooth we get a similar
result to Corollary 6.2:

Theorem 8.3. Let K be an algebraically closed field of positive characteristic
with infinite transcendental degree over Fp. Let X → S be a smooth morphism
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of varieties over K and E a vector bundle over X. Assume that there exists a
dense open S̃ ⊂ S such that Es is isotrivial for every s ∈ S̃(K), then so is Eη̄.

Proof. There exists K ′ a subfield of K of finite type over Fp such that X → S
and E descend to X ′ → S′ and E′. Moreover as K has infinite transcendence
degree over Fp there exists an immersion k(S′) →֒ K over K ′ and a point s ∈
S(K), like in the proof of Theorem 6.1, such that the morphism i : SpecK →
Spec k(S′) given by k(S′) ⊂ K is a geometric generic point of S′, and on
X ′ ⊗k(S′) K ≃ Xs

i∗E′ = Es.

Note that there exists an immersion ι : K →֒ k(S) (which is not the natural
one given by the fact that S is a K-variety) that is the identity on k(S′),
hence via ι we have that Xη̄ ≃ X ′ ⊗k(S′) k(S) ≃ Xs ⊗K k(S). In particular,

if we continue to consider K as a subfield of k(S) via the immersion ι, then
hs ⊗K k(S) : Ys ×SpecK Spec k(S) → Xη̄ trivializes Eη̄. �
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