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Abstract. We use constructions of surfaces as abelian covers to
write down exceptional collections of line bundles of maximal length
for every surface X in certain families of surfaces of general type with
pg = 0 and K2

X = 3, 4, 5, 6, 8. We also compute the algebra of derived
endomorphisms for an appropriately chosen exceptional collection,
and the Hochschild cohomology of the corresponding quasiphantom
category. As a consequence, we see that the subcategory generated by
the exceptional collection does not vary in the family of surfaces. Fi-
nally, we describe the semigroup of effective divisors on each surface,
answering a question of Alexeev.
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1 Introduction

Exceptional collections of maximal length on surfaces of general type with pg =
0 have been constructed for Godeaux surfaces [13, 15], primary Burniat surfaces
[2], and Beauville surfaces [24, 39]. Recently, progress has also been made for
some fake projective planes [25, 23]. In this article, we present a method which
can be applied uniformly to produce exceptional collections of line bundles on
several surfaces with pg = 0, including Burniat surfaces with K2 = 6 (cf. [2]),
5, 4, 3, Kulikov surfaces with K2 = 6 and some Beauville surfaces with K2 = 8
[24, 39]. In fact we do more: we enumerate all exceptional collections of line
bundles corresponding to any choice of numerical exceptional collection. We
can use this enumeration process to find those exceptional collections that are
particularly well-suited to studying the surface itself, and possibly its moduli
space.
Both [2] and [24] hinted that it should be possible to produce exceptional
collections of line bundles on a wide range of surfaces of general type with
pg = 0. This inspired us to build the approaches of [2, 24] into the larger
framework of abelian covers (see especially Section 2), an important part of
which is a new formula for the pushforward of certain line bundles on any
abelian cover, generalising formulas of Pardini [43]. We believe that this work
is a step in the right direction, even though there remain many families of
surfaces which require further study (see Section 3.1 for more details).
Let X be a surface of general type with pg = 0, and let Y be a del Pezzo surface
with K2

Y = K2
X . The lattices PicX/TorsX and PicY are both isomorphic to

Z1,N , where N = 9−K2
X , and moreover, the cohomology groups H2(X,Z) and

H2(Y,Z) are completely algebraic. By exploiting this relationship between X
and Y , we can study exceptional collections of line bundles on X . Indeed,
exceptional collections on del Pezzo surfaces are well understood after [42],
[33], and we sometimes refer to X as a fake del Pezzo surface, to emphasise
this analogy.
Suppose now thatX is a fake del Pezzo surface that is constructed as a branched
Galois abelian cover ϕ : X → Y , where Y is a (weak) del Pezzo surface with
K2
Y = K2

X . Many fake del Pezzo surfaces can be constructed in this way [10],
but we require certain additional assumptions on the branch locus and Galois
group (see Section 3.1). These assumptions ensure that there is an appropriate
choice of lattice isometry PicY → PicX/TorsX . This isometry is combined
with our pushforward formula to calculate the coherent cohomology of any line
bundle on X .

Theorem 1.1 (Theorem 2.1) Let X be a fake del Pezzo surface satisfying
our assumptions, and let L be any line bundle on X. We have an explicit for-
mula for the line bundles Mχ appearing in the pushforward ϕ∗L =

⊕
χ∈G∗ Mχ,

where G is the Galois group of the cover ϕ : X → Y .
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Working modulo torsion, we can use the above lattice isometry to lift any
exceptional collection of line bundles on Y to a numerical exceptional collection
on X . We then incorporate Theorem 1.1 into a systematic computer search, to
find those combinations of torsion twists which correspond to an exceptional
collection on X .
The search for exceptional collections on fake del Pezzo surfaces, leads naturally
to the following question, which was asked by Alexeev [1]:

Can we characterise effective divisors on X in terms of those on Y ?

For example, in [1], Alexeev gives an explicit description of the semigroup of
effective divisors on the Burniat surface with K2 = 6, and proposes similar
descriptions for the other Burniat surfaces. We use our pushforward formula
to prove these characterisations for the Burniat surfaces and other fake del
Pezzo surfaces, cf. Theorems 3.2, 5.1.

Theorem 1.2 Let X be a fake del Pezzo surface satisfying our assumptions.
Then the semigroup of effective divisors on X is generated by the reduced pull-
back of irreducible components of the branch divisor, together with pullbacks of
certain (−1)-curves on Y .

Let E be an exceptional collection on X , and suppose H1(X,Z) is nontrivial.
Then E can not be full, for K-theoretic reasons (see Section 4). Hence we have
a semiorthogonal decomposition of the bounded derived category of coherent
sheaves on X :

Db(X) = 〈E,A〉.

If E is of maximal length, then A is called a quasiphantom category; that is,
K0(A) is torsion and the Hochschild homology HH∗(A) is trivial. Even when
H1(X,Z) vanishes, an exceptional collection of maximal length need not be full
(see [15]), and in this case A is called a phantom category, because K0(A) is
trivial.
On the other hand, the Hochschild cohomology does detect the quasiphantom
category A; in fact, HH∗(A) measures the formal deformations of A. We calcu-
late HH∗(A) by considering the A∞-algebra of endomorphisms of E, together
with the spectral sequence developed in [36]. Indeed, one of the advantages
of our systematic search, is that we can find exceptional collections for which
the higher multiplications in the A∞-algebra of E are as simple as possible.
Theorem 1.3 below serves as a prototype statement of our results for a good
exceptional collection on a fake del Pezzo surface. More precise statements can
be found for the Kulikov surface in Section 4.7.

Theorem 1.3 Let X → T be a family of fake del Pezzo surfaces satisfying
our assumptions. Then for any t in T , there is an exceptional collection E of
line bundles on X = Xt which has maximal length 12 − K2

X . Moreover, the
subcategory of Db(X) generated by E does not vary with t, and the Hochschild
cohomology of X agrees with that of the quasi-phantom category A in degrees
less than or equal to two.
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The significance of Theorem 1.3 is amplified by the reconstruction theorem
of [17]: if X and X ′ are smooth, ±KX is ample, and Db(X) and Db(X ′)
are equivalent bounded derived categories, then X ∼= X ′. In conjunction with
Theorem 1.3, we see that if KX is ample, then X can be reconstructed from the
quasi-phantom category A. The gluing between A and E does not vary with X ,
because the statement about Hochschild cohomology implies that the formal
deformation spaces of X are isomorphic to the formal deformation spaces of
A. Currently, it is not clear whether there is any practical way to extract
information about X from A, although some interesting ideas are discussed in
[2]. It would be interesting to know whether this “rigidity” of E is a general
phenomenon, or just a coincidence for good choices of exceptional collection.
In Section 2 we review abelian covers, and prove our result on pushforwards of
line bundles, which is valid for any abelian cover, and is used throughout. In
Section 3.1, we explain our assumptions on the fake del Pezzo surface X and its
Galois covering structure ϕ : X → Y , and describe our approach to enumerating
exceptional collections on the surface of general type. Section 3.2 is an extended
treatment of the Kulikov surface with K2 = 6, which is an example of a fake del
Pezzo surface. We give a cursory review of dg-categories and A∞-algebras in
Section 4, as background to our discussion of quasi-phantom categories and the
theory of heights from [36]. We then show how to compute the A∞-algebra and
height of an exceptional collection on the Kulikov surface. In Section 5 we prove
Theorem 1.2 for the secondary nodal Burniat surface with K2 = 4. Appendix
A lists certain data relevant to the Kulikov surface example of Section 3.2, and
Appendix B applies similarly to the secondary nodal Burniat surface of Section
5.
With appropriate amendments, Theorems 1.2 and 1.3 hold for the Burniat
surfaces with K2 = 6, 5, 4, 3 and some Beauville surfaces with K2 = 8. The
arguments used are similar to those appearing in Sections 3.2 and 5.1, and we
refer to [20] for details. We have exceptional collections of maximal length on
the tertiary Burniat surface with K2 = 3. In this case it is necessary to use the
Weyl group action on the Picard group to find exceptional collections. We can
show that the A∞-category is formal, but we do not yet know how to compute
the Hochschild cohomology of the quasiphantom category.
In order to use results on deformations of each fake del Pezzo surface, we work
over C.

Remark 1.1 The calculation of ϕ∗L according to Theorem 1.1 is elementary
but repetitive; we include a few sample calculations to illustrate how to do it
by hand, but when the torsion group becomes large, it is more practical to use
computer algebra. Our enumerations of exceptional collections are obtained by
simple exhaustive computer searches. We use Magma [12], and the annotated
scripts are available from [20].

Acknowledgements I would like to thank Valery Alexeev, Ingrid Bauer,
Gavin Brown, Fabrizio Catanese, Paul Hacking, Al Kasprzyk, Anna Kazanova,
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Alexander Kuznetsov, Miles Reid and Jenia Tevelev for helpful conversations
or comments about this work. I thank the DFG for support during part of this
work through grant Hu 337-6/2.

2 Preliminaries

We collect together the relevant material on abelian covers. See especially [43],
[7] or [34] for details. Unless stated otherwise, X and Y are normal projective
varieties, with Y nonsingular. Let G be a finite abelian group acting faithfully
on X with quotient ϕ : X → Y . Write ∆ =

∑
∆i for the branch locus of ϕ,

where each ∆i is a reduced, irreducible effective divisor on Y . The cover ϕ is
determined by the group homomorphism

Φ: π1(Y −∆)→ H1(Y −∆,Z)→ G,

which assigns an element of G to the class of a loop around each irreducible
component ∆i of ∆. If Φ is surjective, then X is irreducible. The factorisation
through H1(Y −∆,Z) arises because G is assumed to be abelian, so we only
need to consider the map Φ: H1(Y −∆,Z) → G. For brevity, we refer to the
loop around ∆i by the same symbol, ∆i.

Let Ỹ be the blow up of Y at a point P where several branch components
∆i1 , . . . ,∆ik intersect. Then there is an induced cover of Ỹ , and the image of
the exceptional curve E under Φ is given by

Φ(E) =

k∑

j=1

Φ(∆ij ). (1)

Fix an irreducible reduced component Γ of ∆ and denote Φ(Γ) by γ. Then the
inertia group of Γ is the cyclic group H ⊂ G generated by γ. Choosing the
generator ofH∗ = Hom(H,C∗) to be the dual character γ∗, we may identify H∗

with Z/n, where n is the order of γ. Composing the restriction map res : G∗ →
H∗ with this identification gives

G∗ → Z/n, χ 7→ k,

where χ|H = (γ∗)k for some 0 ≤ k ≤ n− 1. On the other hand, given χ in G∗

of order d, the evaluation map χ : G→ Z/d satisfies

χ(γ) = d
n
χ|H(γ) = dk

n

as a residue class in Z/d (or as an integer between 0 and d− 1).

The pushforward of ϕ∗OX breaks into a direct sum of eigensheaves

ϕ∗OX =
⊕

χ∈G∗

L−1
χ . (2)
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Moreover, the Lχ are line bundles on Y and by Pardini [43], their associated
(integral) divisors Lχ are given by the formula

dLχ =
∑

i

χ ◦ Φ(∆i)∆i. (3)

The line bundles Lχ play a pivotal role in the sequel, and we refer to them as
the character sheaves of the cover ϕ : X → Y .

2.1 Line bundles on X

We develop tools for calculating with torsion line bundles on X . Let π′ : A′ →
X be the maximal abelian cover of X ; that is, the étale cover of X associated
to the subgroup π1(X)ab = H1(X,Z) of π1(X). Now let ψ′ be the composite
map ϕ ◦ π′ : A′ → Y . It is not always true that ψ′ is Galois and ramified
over the same branch divisor ∆ as ϕ : X → Y (see for example [45], [9]).
So choose a maximal subgroup T of the torsion subgroup TorsX in PicX
whose associated cover ψ : A→ Y is Galois and ramified over ∆. We have the
following commutative diagram

A

π

~~⑦⑦
⑦⑦
⑦⑦
⑦

ψ

��
❅❅

❅❅
❅❅

❅

X
ϕ

// Y

Let the Galois group of ψ be G̃. Then the original group G is the quotient
G̃/T , so we get short exact sequences

0→ T → G̃→ G→ 0 (4)

and
0← T ∗ ← G̃∗ ← G∗ ← 0 (5)

where G∗ = Hom(G,C∗), etc. In fact, for each surface that we consider, these
exact sequences are split, so that

G̃ = G⊕ T, G̃∗ = G∗ ⊕ T ∗. (6)

Let Γ be a reduced irreducible component of the branch locus ∆ of an abelian
cover ϕ : X → Y and suppose the inertia group of Γ is cyclic of order n. Then

Definition 2.1 (cf. [2]) The reduced pullback Γ of Γ is the (integral) divisor
Γ = 1

n
ϕ∗(Γ) on X.

Remark 2.1 The reduced pullback extends to arbitrary linear combinations∑
i ki∆i in the obvious way. We use a bar to denote divisors on Y and remove

the bar when taking the reduced pullback. In other situations, it is convenient
to use Di to denote the reduced pullback of a branch divisor ∆i.
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The remainder of this section is dedicated to calculating the pushforward
ϕ∗(L⊗τ), where L = OX(

∑
i kiDi) is the line bundle associated to the reduced

pullback of
∑
i ki∆i, and τ is any torsion line bundle contained in T ⊂ TorsX .

We do this by exploiting the association of the free part L with ϕ : X → Y , and
the torsion part τ with π : A→ X . The formulae that we obtain are a natural
extension of results in [43]. It may be helpful to skip ahead to Examples 2.2.1
and 2.4.1 before reading this section in detail.

2.2 Free case

Until further notice, we write Γ ⊂ Y for an irreducible component of the branch
divisor ∆ of ϕ : X → Y . By Pardini [43], the inertia groupH ⊂ G of Γ is cyclic,
and H is generated by Φ(Γ) of order n. Let Γ ⊂ X be the reduced pullback of
Γ, so that nΓ = ϕ∗(Γ). We start with cyclic covers.

Lemma 2.1 Let α : X → Y be a cyclic cover with group H ∼= Z/n, and suppose
that Γ is an irreducible reduced component of the branch divisor. Let Γ be the
reduced pullback of Γ, and suppose 0 ≤ k ≤ n− 1. Then

α∗OX(kΓ) =
⊕

i∈H∗−S

M−1
i ⊕

⊕

i∈S

M−1
i (Γ),

where Mi is the character sheaf associated to α with character i ∈ H∗, and

S = {n− k, . . . , n− 1} ⊂ H∗ ∼= Z/n.

Remark 2.2 If k is a multiple of n, say k = pn, the projection formula gives

α∗OX(kΓ) = α∗(α
∗OY (pΓ)) = α∗OX ⊗OY (pΓ) =

⊕

i∈H∗

M−1
i (pΓ).

Thus the lemma extends to any integer multiple of Γ.

Proof After removing a finite number of points from Γ, we may choose
a neighbourhood U of Γ such that U does not intersect any other irreducible
components of ∆. Then since X and Y are normal we may calculate α∗OX(kΓ)
locally on α−1(U) and U . In what follows, we do not distinguish U (respectively
α−1(U)) from Y (resp. X).
Let g = Φ(Γ) so that H = 〈g〉 ∼= Z/n, and identify H∗ with Z/n via g∗ = 1.
Locally, write α : α−1(U)→ U as zn = b where b = 0 defines Γ in U . Then

α∗OX =

n−1⊕

i=0

OY z
i =

n−1⊕

i=0

OY (−
i
n
Γ) =

n−1⊕

i=0

M−1
i ,

where the last equality is given by (3). Thus α∗OX is generated by
1, z, . . . , zn−1 as an OY -module, and the OY -algebra structure on α∗OX is
induced by the equation zn = b.
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The calculation for OX(kΓ) is similar,

α∗OX(kΓ) = α∗OX
1

zk
=
n−k−1⊕

i=−k

OY z
i =

n−k−1⊕

i=0

OY z
i ⊕

−1⊕

i=−k

OY
zn+i

b

where we use zn = b to remove negative powers of z. Thus

α∗OX(kΓ) =

n−k−1⊕

i=0

OY (−
i
n
Γ)⊕

n−1⊕

i=n−k

OY (−
i
n
Γ)(Γ)

=
⊕

i∈H∗−S

M−1
i ⊕

⊕

i∈S

M−1
i (Γ),

where S = {n− k, . . . , n− 1}. �

The lemma can be extended to any abelian group using arguments inspired by
Pardini [43] Sections 2 and 4.

Proposition 2.1 Let ϕ : X → Y be an abelian cover with group G, and let
k = np+ k, where 0 ≤ k ≤ n− 1. Then

ϕ∗OX(kΓ) =
⊕

χ∈G∗−SkΓ

L−1
χ (pΓ)⊕

⊕

χ∈SkΓ

L−1
χ ((p+ 1)Γ),

where

SkΓ = {χ ∈ G∗ : n− k ≤ χ|H ≤ n− 1}.

Proof By the projection formula, we only need to consider the case k = k
(cf. Remark 2.2). As in the proof of Lemma 2.1, after removing a finite number
of points, we may take a neighbourhood U of Γ which does not intersect any
other components of ∆. We work on U and its preimages ϕ−1(U), β−1(U).
Factor ϕ : X → Y as

X
α
−→ Z

β
−→ Y,

where α is a cyclic cover ramified over Γ with group H = 〈g〉 ∼= Z/n, and β
is unramified by our assumptions. As in Lemma 2.1 we denote the character
sheaves of α byMi, and those of the composite map ϕ = β ◦ α by Lχ. Now

β∗Mi =
⊕

χ∈[i]

Lχ (7)

where the notation [i] means the preimage of i in H∗ under the restriction map
res : G∗ → H∗. That is,

[i] = {χ ∈ G∗ : χ|H = i},
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where d is the order of χ. Since β is not ramified we combine Lemma 2.1 and
(7) to get

ϕ∗OX(kΓ) =
⊕

χ∈G∗−SkΓ

L−1
χ ⊕

⊕

χ∈SkΓ

L−1
χ (Γ)

where
SkΓ = {χ ∈ G∗ : n− k ≤ χ|H ≤ n− 1}

is the preimage of S = {n− k, . . . , n− 1} ⊂ H∗ under res : G∗ → H∗. �

2.2.1 Example (Campedelli surface)

Let ϕ : X → P2 be a G = (Z/2)3-cover branched over seven lines in general
position. We label the lines ∆1, . . . ,∆7, and define Φ to induce a set-theoretic
bijection between {∆i} and (Z/2)3 − {0}. We make the definition of Φ more
precise later (see Example 2.4.1). It is well known ([34, §4]) that X is a surface
of general type with pg = 0, K2 = 2 and π1 = (Z/2)3.
Choose generators g1, g2, g3 for (Z/2)3 so that Φ(∆1) = g1. There are eight
character sheaves for the cover, which we calculate using formula (3),

L(0,0,0) = OP2 , Lχ = OP2(2) for χ 6= (0, 0, 0).

Write D1 for the reduced pullback of ∆1, so that ϕ∗(∆1) = 2D1. Then

S∆1
= {χ : χ|〈g1〉 = 1} = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1)},

so that by Proposition 2.1, we have

ϕ∗OX(D1) = OP2 ⊕ 4OP2(−1)⊕ 3OP2(−2).

2.3 Torsion case

In this section we use the maximal abelian cover A to calculate the pushfor-
ward of a torsion line bundle on X . To simplify notation, we assume that the
composite cover A→ X → Y is Galois with group G̃, so that T = TorsX .

Proposition 2.2 Let τ be a torsion line bundle on X. Then

ϕ∗OX(−τ) =
⊕

χ∈G∗

L−1
χ+τ .

where addition χ+ τ takes place in G̃∗ = G∗ ⊕ T ∗.

Remark 2.3 Note that Lχ+τ is a character sheaf for the G̃-cover ϕ : A→ Y ,
and the proposition allows us to interpret Lχ+τ as a character sheaf for the
G-cover ϕ : X → Y . Unfortunately, there is still some ambiguity, because we
do not determine which character in G∗ is associated to each Lχ+τ under the
splitting of exact sequence (5). On the other hand, the special case τ = 0 gives

ϕ∗OX =
⊕

χ∈G∗

L−1
χ .
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Proof The structure sheaf OA decomposes into a direct sum of the torsion
line bundles when pushed forward to X

π∗OA =
⊕

τ∈TorsX

OX(−τ).

Thus OX(τ) is the character sheaf with character τ under the identification
T ∗ ∼= TorsX . The composite ϕ∗π∗OA breaks into character sheaves according
to (2), and the image of OX(−τ) is the direct sum of those character sheaves

with character contained in the coset G∗ + τ of τ in G̃∗ under (6). �

2.4 General case

Now we combine Propositions 2.1 and 2.2 to give our formula for pushforward
of line bundles OX(

∑
iDi) ⊗ τ . The formula looks complicated, but most of

the difficulty is in the notation.

Definition 2.2 Let ni be the order of Ψ(∆i) in G̃, and write ki = nipi + ki,
where 0 ≤ ki ≤ ni − 1. Then given any subset I ⊂ {1, . . . ,m}, we define

SI [τ ] =
⋂

i∈I

Ski∆i
[τ ] ∩

⋂

j∈Ic

Skj∆j
[τ ]c,

where
SkΓ[τ ] = {χ ∈ G

∗ : n− k ≤ n
d
(χ+ τ)(Ψ(Γ)) ≤ n− 1}

for any reduced irreducible component Γ of the branch locus ∆. Note that for
fixed τ in T ∗, the collection of all SI [τ ] partitions G

∗.

Theorem 2.1 Let D =
∑m
i=1 kiDi be the reduced pullback of the linear combi-

nation of branch divisors
∑m
i=1 ki∆i on Y . Then

ϕ∗OX(D − τ) =
⊕

I

⊕

χ∈SI [τ ]

L−1
χ+τ (∆I),

where I is any subset of {1, . . . ,m} and ∆I =
∑

i∈I ∆i.

Remark 2.4 For simplicity, we have assumed that ki = ki for all i in the state-
ment and proof of the theorem. When this is not the case, by the projection
formula (cf. Remark 2.2) we twist by OY (

∑m
i=1 pi∆i).

Proof Fix i and let Di be the reduced pullback of an irreducible component
∆i of the branch divisor. Choose a neighbourhood of ∆i which does not inter-
sect any other ∆j . This may also require us to remove a finite number of points
from Di. We work locally in this neighbourhood and its preimages under ϕ, π.
Now by the projection formula,

π∗π
∗OX(kiDi) = π∗OA ⊗OX(kiDi),
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and thus
ψ∗π

∗OX(kiDi) =
⊕

τ∈T

ϕ∗OX(kiDi − τ).

Then we combine Propositions 2.1 and 2.2 to obtain

ϕ∗OX(kiDi − τ) =
⊕

χ∈G∗−Ski∆i
[τ ]

L−1
χ+τ ⊕

⊕

χ∈Ski∆i
[τ ]

L−1
χ+τ (∆i),

where the indexing is explained in Definition 2.2.
To extend to the global setting and linear combinations

∑
kiDi, we just need

to keep track of which components of ∆ should appear as a twist of each L−1
χ+τ

in the direct sum. This book-keeping is precisely the purpose of Definition 2.2.
�

Using the formula

KX = ϕ∗
(
KY +

∑

i

ni−1
ni

∆i

)
(8)

and the Theorem, we give an alternative proof of the decomposition of
ϕ∗OX(KX).

Corollary 2.1 [43, Proposition 4.1] We have

ϕ∗OX(KX) =
⊕

χ∈G∗

Lχ−1(KY ).

Proof Let Di be the reduced pullback of ∆i. Then by (8) and the projection
formula, we have

ϕ∗(OX(KX)) = ϕ∗

(
ϕ∗OY (KY )⊗OX

(∑

i

(ni − 1)Di

))

= OY (KY )⊗ ϕ∗OX

(∑

i

(ni − 1)Di

)
.

Now by definition,

S(ni−1)∆i
= {χ ∈ G∗ : 1 ≤ ni

d
χ(Φ(∆i)) ≤ ni − 1} = {χ ∈ G∗ : χ(Φ(∆i)) 6= 0}.

Thus in the decomposition of ϕ∗OX
(∑

i(ni − 1)Di

)
given by Theorem 2.1,

the summand L−1
χ is twisted by

∑
j∈J ∆j , where J is the set of indices j with

χ(Φ(∆j)) 6= 0. Then by (3),

L−1
χ

(∑

i∈J

∆i

)
=

∑

i

(1 − 1
d
)χ(Φ(∆i))∆i = Lχ−1 ,

where the last equality is because χ−1(g) = −χ(g) = d − χ(g) for any g in G.
Thus we obtain

ϕ∗

(
OX

(∑

i

(ni − 1)Di

))
=

⊕

χ∈G∗

Lχ−1 ,

and the Corollary follows. �
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2.4.1 Example 2.2.1 continued

We resume our discussion of the Campedelli surface. The fundamental group
of X is (Z/2)3, and so the maximal abelian cover π : A→ X is a (Z/2)6-cover
ψ : A → P

2 branched over ∆. Choose generators g1, . . . , g6 of (Z/2)6. As
promised in Example 2.2.1, we now fix Φ and Ψ:

∆i ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7

Φ(∆i) g1 g2 g3 g1 + g2 g1 + g3 g2 + g3 g1 + g2 + g3

Ψ(∆i)− Φ(∆i) 0 0 0 g4 g5 g6 g4 + g5 + g6

For clarity, the table displays the difference between Ψ(∆i) and Φ(∆i). In
order that A be the maximal abelian cover, Ψ is defined so that each Ψ(∆i)
generates a distinct summand of (Z/2)6, excepting Ψ(∆7), which is chosen so
that

∑
iΨ(∆i) = 0. This last equality is induced by the relation

∑
i∆i = 0 in

H1(P
2 −∆,Z).

The torsion group TorsX is generated by g∗4 , g
∗
5 , g

∗
6 . As an illustration of

Theorem 2.1, we calculate ϕ∗OX(D1)⊗τ , where τ is the torsion line bundle on
X associated to g∗4 . Suppose ϕ∗OX(D1)⊗ τ =

⊕
χ∈G∗Mχ, whereMχ are the

line bundles to be calculated. In the table below, we collect the data relevant
to Theorem 2.1.

χ L−1
χ+τ (χ+ τ) ◦Ψ(D1) Twist by ∆1? Mχ

(0, 0, 0) OP2(−1) 0 No OP2(−1)

(1, 0, 0) OP2(−1) 1 Yes OP2

(0, 1, 0) OP2(−1) 0 No OP2(−1)

(0, 0, 1) OP2(−2) 0 No OP2(−2)

(1, 1, 0) OP2(−3) 1 Yes OP2(−2)

(1, 0, 1) OP2(−2) 1 Yes OP2(−1)

(0, 1, 1) OP2(−2) 0 No OP2(−2)

(1, 1, 1) OP2(−2) 1 Yes OP2(−1)

Summing the last column of the table, we get

ϕ∗OX(D1)⊗ τ = OP2 ⊕ 4OP2(−1)⊕ 3OP2(−2).

In particular, we see that the linear system on X associated to the line bundle
OX(D1)⊗ τ contains a single effective divisor.

3 Exceptional collections of line bundles on surfaces

3.1 Overview and definitions

We outline our method for producing exceptional collections, starting with
some definitions and fundamental observations. A good reference for semi-
orthogonal decompositions is [37], and Proposition 3.1 is proved in [26].
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Definition 3.1 An object E in Db(X) is called exceptional if

Extk(E,E) =

{
C if k = 0,
0 otherwise.

An exceptional collection E ⊂ Db(X) is a sequence of exceptional objects E =
(E0, . . . , En) such that if 0 ≤ i < j ≤ n then

Extk(Ej , Ei) = 0 for all k.

Remark 3.1 Some authors prefer the term exceptional sequence rather than
exceptional collection.

It follows from Definition 3.1 that a line bundle on a surface is exceptional if
and only if pg = q = 0. Moreover, if E is an exceptional collection of line
bundles, and L is any line bundle, then E⊗ L = (E0 ⊗ L, . . . , En ⊗L) is again
an exceptional collection, so we always normalise E so that E0 = OX .
Let E = 〈E〉 denote the smallest full triangulated subcategory of Db(X) con-
taining all objects in E. Then E is an admissible subcategory of Db(X), and
so we have a semiorthogonal decomposition

Db(X) = 〈E ,A〉,

where A is the left orthogonal to E . That is, A consists of all objects F in
Db(X) such that Extk(F,E) = 0 for all k and for all E in E . We say that the
exceptional collection E is full if Db(X) = E . The K-theory is additive across
semiorthogonal decompositions:

Proposition 3.1 If Db(X) = 〈A,B〉 is a semiorthogonal decomposition, then

K0(X) = K0(A)⊕K0(B).

Moreover, if E is an exceptional collection of length n, then K0(E) = Zn. Thus
if K0(X) is not free, then X can never have a full exceptional collection. The
maximal length of an exceptional collection on X is less than or equal to the
rank of K(X).

3.1.1 Exceptional collections on del Pezzo surfaces

Let Y be the blow up of P2 in n points, and write H for the pullback of the
hyperplane section, Ei for the ith exceptional curve. Then by work of Kuleshov
and Orlov [42], [33] there is an exceptional collection of sheaves on Y

OE1
(−1), . . . ,OEn

(−1),OY ,OY (H),OY (2H).

Note that the blown up points do not need to be in general position, and can
even be infinitely near. We prefer an exceptional collection of line bundles on
Y , so we mutate past OY to get

OY , OY (E1), . . . ,OY (En), OY (H), OY (2H). (9)
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In fact, we only use the numerical properties of a given exceptional collection
of line bundles on Y . Choose a basis e0, . . . , en for the lattice PicY ∼= Z1,n

with intersection form diag(1,−1n). Then we write equation (9) numerically
as

0, e1, . . . , en, e0, 2e0.

3.1.2 From del Pezzo to general type

Let X be a surface of general type with pg = 0 which admits an abelian cover
ϕ : X → Y of a del Pezzo surface Y with K2

Y = K2
X . In addition, we suppose

that the maximal abelian cover A→ X → Y is also Galois. Otherwise choose
a maximal subgroup T ⊂ TorsX for which the associated cover is Galois, and
replace A, as in Section 2. The branch divisor is ∆ =

∑
i∆i and we assume

that ∆ is sufficiently reducible so that

(A1) PicY is generated by integral linear combinations of ∆i.

Now the Picard lattices of X and Y are isomorphic. Thus if G is not too
complicated, e.g. of the form Z/p× Z/q, we might hope to have:

(A2) The reduced pullbacks Di of ∆i (see Definition 2.1) generate
PicX/TorsX.

In very good cases, reduced pullback actually induces an isometry of lattices

(A3) f : PicY → PicX/TorsX, such that f(KY ) = −KX modulo TorsX .

We say that a surface satisfies assumption (A) if (A1), (A2) and (A3) hold.
These conditions are quite strong, and are not strictly necessary for our meth-
ods. For example, we could replace (A3) with an isometry of lattices from the
abstract lattice Z1,n to PicX/TorsX.

Definition 3.2 A sequence E = (E0, . . . , En) of line bundles on X is called
numerically exceptional if χ(Ej , Ei) = 0 whenever 0 ≤ i < j ≤ n.

AssumeX satisfies (A), and let (Λi) = (Λ0, . . . ,Λn) be an exceptional collection
on Y . Now define (Li) = (L0, . . . , Ln) by Li = f(Λi)

−1. A calculation with the
Riemann–Roch formula shows that (Li) is a numerically exceptional collection
on X . This is explained in [2].

Given a numerically exceptional collection (Li) of line bundles on X , the re-
maining obstacle is to determine whether (Li) is genuinely exceptional rather
than just numerically so. Indeed, most numerically exceptional collections on
X are not exceptional. The standard trick (see [13]) is to choose torsion line
bundles τi in such a way that the twisted sequence (Li ⊗ τi) is an exceptional
collection. We examine these choices of τi more carefully in what follows.
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3.1.3 Acyclic line bundles

We discuss acyclic line bundles following [24].

Definition 3.3 Let L be a line bundle on X. If Hi(X,L) = 0 for all i, then
we call L an acyclic line bundle. We define the acyclic set associated to L to
be

A(L) = {τ ∈ TorsX : L⊗ τ is acyclic} .

We call L numerically acyclic if χ(X,L) = 0. Clearly, an acyclic line bundle
must be numerically acyclic.

Remark 3.2 In the notation of [24], τ = −χ.

Lemma 3.1 ([24], Lemma 3.4) A numerically exceptional collection L0 =
OX , L1 ⊗ τ1, . . . , Ln ⊗ τn on X is exceptional if and only if

−τi ∈ A(L
−1
i ) for all i, and

τi − τj ∈ A(L
−1
j ⊗ Li) for all j > i.

(10)

Thus to enumerate all exceptional collections on X of a particular numerical
type, it suffices to calculate the relevant acyclic sets, and systematically test
the above conditions (10) on all possible combinations of τi.

3.1.4 Calculating cohomology of line bundles

Given a torsion twist L⊗ τ , Theorem 2.1 gives a decomposition

ϕ∗(L⊗ τ) =
⊕

χ∈G∗

Mχ,

for some line bundlesMχ on Y , which may be computed explicitly. Since ϕ is
finite, we have

hp(L⊗ τ) =
∑

χ∈G∗

hp(Mχ)

for all p.

Thus L⊗ τ is acyclic if and only if each summandMχ is acyclic on Y . Now if
χ(Y,Mχ) = 0 and h0(Mχ) = h2(Mχ) = 0, we see that h1(Mχ) = 0. Thus by
Serre duality and the Riemann–Roch theorem, we are reduced to calculating
Euler characteristics and determining effectivity for (lots of) divisor classes on
the del Pezzo surface Y .

3.1.5 Coordinates on PicX/TorsX

Under assumption (A), we make the following definition.
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Definition 3.4 Choose a basis B1, . . . , Bn for PicX/TorsX consisting of lin-
ear combinations of reduced pullbacks. Then any line bundle L on X may be
written uniquely as

L = OX(d1, . . . , dn)⊗ τ

so that L = OX
(∑n

i=1 diBi
)
⊗ τ . We call d (respectively τ) the multidegree

(resp. torsion twist) of L with respect to the chosen basis.

The torsion twist associated to any line bundle on X may be calculated us-
ing Theorem 2.1 and the following immediate lemma. See Lemma 3.4 for an
example.

Lemma 3.2 If τ is a torsion line bundle, then h0(τ) 6= 0 implies τ = 0.

Remark 3.3 Definition 3.4 fixes a basis for PicY = Z1,9−K2

via the isometry
with PicX/TorsX. This basis corresponds to a geometric marking on the del
Pezzo surface Y , and the multidegree d of L is just the image of L in PicY
under the isometry. In fixing our basis, we break some of the symmetry of
the coordinates. This is necessary in order to use the computer to search for
exceptional collections. We can recover the symmetry later using the Weyl
group action (see Section 3.1.7).

3.1.6 Determining effectivity of divisor classes

For each fake del Pezzo surface, we have the following theorem.

Theorem 3.1 Suppose X is a fake del Pezzo surface satisfying assumption
(A) and with T = TorsX. Let E denote the semigroup generated by the reduced
pullbacks Di of the irreducible branch components ∆i, and pullbacks of the other
(−1)- and (−2)-curves on Y . Then E is the semigroup of all effective divisors
on X.

We prove this theorem for the secondary nodal Burniat surface with K2 = 4
in Section 5 (cf. [1] for the Burniat surface with K2 = 6). The other fake del
Pezzo surfaces work in the same way, see [20].
Moreover, E is graded by multidegree, and we define a homomorphism

t : E→ TorsX

sending Di to its torsion twist under Definition 3.4. The image under t of the
graded summand Ed of multidegree d is the set of torsion twists τ for which
OX(

∑
diBi)⊗ τ is effective.

3.1.7 Group actions on the set of exceptional collections

We consider a dihedral group action and the Weyl group action on the set of
exceptional collections on X . Mutations are not considered systematically in
this article, since a mutation of a line bundle need not be a line bundle.
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Let E = (E1, . . . , En) be an exceptional collection of line bundles on X . If we
normalise the first line bundle of any exceptional collection to be OX , then
there is an obvious dihedral group action on the set of exceptional collections
of length n on X , generated by E 7→ (E2, . . . , En, E1(−KX)) and E 7→ E−1 =
(E−1

n , . . . , E−1
1 ).

The Weyl group of PicY is generated by reflections in (−2)-classes. That is,
suppose α is a class in PicY with KY · α = 0 and α2 = −2. Then

rα : L 7→ L+ (L · α)α

is a reflection on PicY which fixes KY . Any reflection sends an exceptional
collection on Y to another exceptional collection. Thus the Weyl group action
on numerical exceptional collections on Y induces an action on numerical ex-
ceptional collections on X under assumption (A). This action accounts for the
choices made in giving Y a geometric marking (see Definition 3.4).

3.2 The Kulikov surface with K2 = 6

For details on the Kulikov surface (first described in [34]), its torsion group and
moduli space, see [19]. The Kulikov surfaceX is a (Z/3)2-cover of the del Pezzo
surface Y of degree 6. Figure 1 shows the associated cover of P2 branched over
six lines in special position. The configuration has just one free parameter,
and in fact, the Kulikov surfaces form a 1-dimensional, irreducible, connected
component of the moduli space of surfaces of general type with pg = 0 and
K2 = 6.

❏
❏

❏
❏

❏
❏❏

✡
✡
✡
✡
✡
✡✡

✧
✧

✧
✧
✧
✧✧

❛❛❛❛❛❛❛

❊
❊
❊
❊
❊
❊
❊

t t

t

∆1

∆2

∆3

∆4

∆5

∆6

P1

P2 P3

Figure 1: The Kulikov configuration

To obtain a nonsingular cover, we blow up the plane at three points P1, P2, P3,
giving a (Z/3)2-cover of a del Pezzo surface of degree 6. The exceptional curves
are denoted Ei. By results of [19], the torsion group TorsX is isomorphic to

(Z/3)3, so the maximal abelian cover ψ : A→ Y has group G̃ ∼= (Z/3)5. Let gi
generate G̃, and write g∗i for the dual generators of G̃∗. As explained in Section
2, the covers are determined by Φ: H1(P

2−∆,Z)→ G and Ψ: H1(P
2−∆,Z)→

G̃, which are defined in the table below.

D ∆1 ∆2 ∆3 ∆4 ∆5 ∆6

Φ(D) g1 g1 g1 g2 g1 + g2 2g1 + g2

Ψ(D)− Φ(D) 0 g3 2g3 + g4 2g4 g5 2g5
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The images of the exceptional curves Ei under Φ and Ψ are computed using
formula (1):

Φ(E1) = 2g1 + g2, Φ(E2) = g2, Φ(E3) = g1 + g2, etc.

Lemma 3.3 The Kulikov surface satisfies assumptions (A1) and (A2). That
is, the free part of PicX is generated by the reduced pullbacks of ∆1+E2+E3,
E1, E2, E3, and the intersection pairing diag(1,−1,−1,−1) is inherited from
Y .

Proof Define e0 = D1+E2+E3, e1 = E1, e2 = E2, e3 = E3 in PicX . These
are integral divisors, since they are reduced pullbacks, and the intersection
pairing is diag(1,−1,−1,−1), which is unimodular. For example, by definition
of reduced pullback, 3e0 = ϕ∗(∆1 + E2 + E3), and so

(3e0)
2 = ϕ∗(∆1 + E2 + E3)

2 = 9 · 1,

or e20 = 1. Hence we have an isomorphism of lattices. �

Using the basis chosen in this lemma, we compute the coordinates (Definition
3.4) of the reduced pullback Di of each irreducible branch component ∆i.

Lemma 3.4 We have

OX(D1) = OX(1, 0,−1,−1), OX(D4) = OX(1,−1, 0, 0)[2, 1, 2],

OX(D2) = OX(1,−1, 0,−1)[1, 0, 2], OX(D5) = OX(1, 0,−1, 0)[2, 1, 0],

OX(D3) = OX(1,−1,−1, 0)[2, 0, 2], OX(D6) = OX(1, 0, 0,−1)[2, 1, 1],

where [a, b, c] in (Z/3)3 denotes a torsion line bundle on X.

Proof We prove that OX(D2) = OX(1,−1, 0,−1)[1, 0, 2]. The other cases
are similar. It is clear that ∆2 ∼ ∆1 − E1 + E2 on Y , so the multidegree is
correct. It remains to check the torsion twist, by showing that F = OX(D2 −
D1 +E1−E2− τ) has a global section when τ = [1, 0, 2]. Then by Lemma 3.2,
we have the desired equality.

The pushforward ϕ∗F splits into a direct sum of line bundles
⊕
Mχ, one for

each character χ = (a, b) in G∗. The following table collects the data required
to calculate eachMχ via Theorem 2.1. The second column is calculated using
equation (3), and the next four columns evaluate χ+ τ on each Ψ(Γ), where Γ
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is any one of ∆1, ∆2, E1 and E2. The final column is explained below.

(χ+ τ) ◦Ψ(Γ)

χ L−1
χ+τ ∆1 ∆2 E1 E2 Mχ

(0, 0) OY (−2, 1, 1, 0) 0 1 0 1 OY (−3, 1, 2, 1)

(1, 0) OY (−1, 0, 0, 1) 1 2 2 1 OY

(0, 1) OY (−2, 1, 0, 1) 0 1 1 2 OY (−3, 1, 1, 2)

(2, 0) OY (−2, 0, 1, 1) 2 0 1 1 OY (−2, 0, 1, 1)

(1, 1) OY (−2, 1, 0, 1) 1 2 0 2 OY (−1, 0, 0, 0)

(0, 2) OY (−2, 1, 1, 0) 0 1 2 0 OY (−3, 2, 1, 1)

(2, 1) OY (−2, 0, 1, 0) 2 0 2 2 OY (−2, 1, 1, 0)

(1, 2) OY (−3, 1, 1, 1) 1 2 1 0 OY (−2, 0, 0, 0)

(2, 2) OY (−2, 1, 1, 1) 2 0 0 0 OY (−2, 1, 0, 1)

Now by the projection formula (cf. Remark 2.2),

ϕ∗F = ϕ∗OX(2D1 +D2 + E1 + 2E2 − τ)⊗OY (−∆1 − E2).

So according to Theorem 2.1 and the remark following it, eachMχ is a twist
of L−1

χ+τ (−∆1 − E2) by a certain combination of ∆1, ∆2, E1 and E2. By
Definition 2.2, the rules governing the twists are:

twist by ∆1 ⇐⇒ (χ+ τ) ◦Ψ(∆1) = 1 or 2

twist by ∆2 ⇐⇒ (χ+ τ) ◦Ψ(∆2) = 2

twist by E1 ⇐⇒ (χ+ τ) ◦Ψ(E1) = 2

twist by E2 ⇐⇒ (χ+ τ) ◦Ψ(E2) = 1 or 2.

Thus ϕ∗F is given by the direct sum of the line bundlesMχ listed in the final
column. Note thatM(1,0) = OY , so h

0(ϕ∗F) = 1. Hence D2−D1+E1−E2−
τ ∼ 0. �

Corollary 3.1 By formula (8), we have

OX(KX) = OX(3,−1,−1,−1)[0, 0, 2].

Thus the Kulikov surface satisfies (A3).

Proof The multidegree is clear by (8), but the torsion twist requires some
care. Since KX is the pullback of an integral divisor on Y , it should be torsion-
neutral with respect to our coordinate system on PicX . Thus by Lemma 3.4,
we see that the required twist is [0, 0, 2]. �
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Theorem 3.2 The semigroup E of effective divisors on the Kulikov surface is
generated by the nine reduced pullbacks of components of the branch divisor
D1, . . . , D6, E1, E2, E3. �

This Theorem is proved using an easier variant of the proof of Theorem 5.1.
The situation here is easier, because all of the (−1)-curves on Y are branch
divisors, and there are no (−2)-curves.
Thus we have a homomorphism of semigroups t : E → TorsX , which sends
an effective divisor to its associated torsion twist (see Lemma 3.3), under the
choice of basis (from Lemma 3.4).

3.2.1 Acyclic line bundles on the Kulikov surface

Let us start with the following numerical exceptional collection on Y :

Λ: 0, e0 − e1, e0 − e2, e0 − e3, 2e0 −
∑3

i=1ei, e0.

Given assumptions (A), we see that Λ corresponds to the following numerically
exceptional sequence of line bundles on X :

L0 = OX , L1 = OX(−1, 1, 0, 0), L2 = OX(−1, 0, 1, 0),

L3 =OX(−1, 0, 0, 1), L4 = OX(−2, 1, 1, 1), L5 = OX(−1, 0, 0, 0).
(11)

We find all collections of torsion twists Li⊗τi which are exceptional collections
onX . The first step is to find the acyclic sets associated to the various L−1

j ⊗Li.

Proposition 3.2 The acyclic sets A(L−1
j ⊗ Li) for j > i ≥ 0 are listed in

Appendix A.

First Proof By Theorem 3.2, it is an easy exercise to check each entry in
the table. As an illustration, we calculate A(L−1

1 ). The effective divisors on
X of multidegree (1,−1, 0, 0) are D2 + E3, D3 + E2, D4. Thus applying the
homomorphism t to each of these effective divisors, we see that [1, 0, 2], [2, 0, 2],
[2, 1, 2] do not appear in A(L−1

1 ). Next we consider degree two cohomology via
Serre duality. The effective divisors of multidegree (2, 0,−1,−1) are

2D1 + E2 + E3, D1 +D2 + E1 + E3, D1 +D3 + E1 + E2,

D2 +D3 + 2E1, D1 +D4 + E1, D1 +D5 + E2, D1 +D6 + E3,

D2 +D5 + E1, D3 +D6 + E1, D5 +D6.

Again, applying t we find that [0, 0, 2], [2, 0, 0], [1, 0, 0], [0, 0, 1], [1, 2, 0], [1, 2, 2],
[1, 2, 1], [0, 2, 0], [2, 2, 2], [2, 1, 1] can not appear in A(L−1

1 ). The acyclic set is
made up of those elements of TorsX which do not appear in either of the two
lists above. �
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Second Proof As a sanity check, an alternative proof is to use Theorem
2.1 repeatedly, to calculate the cohomology of all possible torsion twists of L1.
�

Both methods are implemented in our computer script [20].

3.2.2 Exceptional collections on the Kulikov surface

We now find all exceptional collections on X which are numerically of the form
(11). Lemma 3.1 reduces us to a simple search, which can be done systemati-
cally [20].

Theorem 3.3 The surface X has nine exceptional collections L0 = OX , L1⊗
τ1, . . . , L5⊗τ5 which are numerically of the form (11). They are given in Table
1 below. Each row lists the required torsion twists τi for i = 1, . . . , 5 as elements
of (Z/3)3.

τ1 τ2 τ3 τ4 τ5

1 [0, 0, 0] [0, 2, 2] [2, 2, 1] [2, 2, 1] [0, 0, 1]

2 [2, 2, 0] [2, 1, 2] [0, 0, 1] [1, 1, 1] [2, 2, 1]

3 [2, 2, 1] [2, 1, 2] [0, 0, 1] [1, 1, 1] [2, 0, 2]

4 [2, 2, 0] [2, 0, 1] [0, 2, 0] [2, 2, 1] [2, 1, 2]

5 [1, 1, 0] [1, 0, 2] [2, 2, 0] [1, 1, 1] [2, 2, 1]

6 [1, 1, 0] [1, 0, 2] [0, 0, 1] [1, 1, 1] [2, 2, 1]

7 [1, 1, 0] [1, 0, 2] [2, 2, 1] [1, 1, 1] [0, 0, 1]

8 [2, 0, 2] [2, 2, 0] [0, 1, 2] [1, 1, 1] [2, 2, 1]

9 [2, 0, 2] [2, 2, 1] [0, 1, 2] [1, 1, 1] [1, 0, 2]

Table 1: Exceptional collections on the Kulikov surface

Remark 3.4 1. The precise number of exceptional collections is not im-
portant. Rather, the fact that we have definitively enumerated all excep-
tional collections of numerical type Λ, means that we can sift through
the list to find one with the most desirable properties.

2. Let Λ′ be any translation of Λ under the Weyl group action of A1 × A2

on PicY . Then Λ′ is another numerical exceptional collection on X
(see Section 3.1.7), so we may enumerate exceptional collections on X
of numerical type Λ′. For the Kulikov surface, each element of the orbit
corresponds to either 9, 14, 18 or 24 exceptional collections on X . Thus,
the Weyl group action does not “lift” to X in a way which is compatible
with the covering X → Y . On occasion, this incompatibility is used to
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our advantage (see [20]). We return to these exceptional collections in
Section 4.

4 Heights of exceptional collections

Let X be a surface of general type with pg = q = 0, TorsX 6= 0 with an
exceptional collection of line bundles E = (E0, . . . , En−1). Write E for the
smallest full triangulated subcategory of Db(X) containing E. In this section
we calculate some invariants of E. The invariants we consider are essentially
determined by the derived category, but we must enhance the derived category
in order to make computations. For completeness, we discuss some background
first.

4.1 Motivation from del Pezzo surfaces

Let Y be a del Pezzo surface and let E be a strong exceptional collection of line
bundles on Y . Recall that E is strong if Extk(Ei, Ej) = 0 for all i, j and for
all k > 0. We define the partial tilting bundle of E to be T =

⊕
iEi. Then the

derived endomorphism ring Ext∗(T, T ) =
⊕

i,j Hom(Ei, Ej) is an associative

algebra, and we have an equivalence of categories E ∼= Db(mod- Ext∗(T, T ))
(see [16]).
From now on, we assume that E is an exceptional collection on a fake del Pezzo
surface X , so that we do not have the luxury of choosing a strong exceptional
collection. Instead, we recover E by studying the higher multiplications coming
from the A∞-algebra structure on Ext∗(T, T ).

4.2 Digression on dg-categories

We sketch the construction of a differential graded (or dg) enhancement D
of Db(X). Objects in D are the same as those in Db(X), but morphisms
Hom•

D(F,G) form a chain complex, with differential d of degree +1. Compo-
sition of maps Hom•

D(F,G) ⊗ Hom•
D(G,H) → Hom•

D(F,H) is a morphism
of complexes (the Leibniz rule), and for any object F in D, we require
d(idF ) = 0. For a precise definition of Hom•

D(F,G), one could use the Čech
complex, and we refer to [36] for details. The main point is that the cohomol-
ogy of Hom•

D(F,G) in degree k is ExtkDb(X)(F,G), so in particular, we have

H0(Hom•
D(F,G)) = HomDb(X)(F,G).

4.3 Hochschild homology

We first compute some additive invariants, only making implicit use of the dg-
structure. The Hochschild homology of X is given by the Hochschild–Kostant–
Rosenberg isomorphism

HHk(X) ∼=
⊕

p

Hp+k(X,ΩpX),
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so HH0(X) = C12−K2

and HHk(X) = 0 in all other degrees. Moreover,
Hochschild homology is additive over semiorthogonal decompositions.

Theorem 4.1 [35] If Db(X) = 〈A,B〉 is a semiorthogonal decomposition, then

HHk(X) = HHk(A)⊕HHk(B).

Assuming the Bloch conjecture on algebraic zero-cycles, we have

K0(X) = Z
12−K2

⊕ TorsX,

and we note that K-theory is also additive over semiorthogonal decompositions
(see Proposition 3.1).
Now for an exceptional collection of length n, K0(E) = Zn and

HHk(E) =

{
Cn if k = 0
0 otherwise.

Thus the maximal length of E is at most 12 − K2
X , and such an exceptional

sequence of maximal length effects a semiorthogonal decomposition Db(X) =
〈E ,A〉 with nontrivial semiorthogonal complement A. We say that A is a
quasiphantom category; by additivity, the Hochschild homology vanishes, but
K0(A) ⊇ TorsX 6= 0, so A can not be trivial.

4.4 Height

The Hochschild cohomology groups of X may be computed via the other
Hochschild–Kostant–Rosenberg isomorphism (cf. [35]):

HHk(X) =
⊕

p+q=k

Hq(X,ΛpTX).

Thus for a surface of general type with pg = 0, we have

HH0(X) ∼= H0(OX) = C, HH1(X) = 0, HH2(X) ∼= H1(TX),

HH3(X) ∼= H2(TX), HH4(X) ∼= H0(2KX) = C
1+K2

.

Recall that the degree two (respectively three) Hochschild cohomology is the
tangent space (resp. obstruction space) to the formal deformations of a category
[32].
In principle, [36] gives an algorithm for computing HH∗(A) using a spectral
sequence and the notion of height of an exceptional collection. Moreover, by
[36, Prop. 6.1], for an exceptional collection to be full, its height must vanish.
Thus the height may be used to prove existence of phantom categories without
reference to the K-theory. We outline the algorithm of [36] below.
Given an exceptional collection E on X , there is a long exact sequence (induced
by a distinguished triangle)

. . .→ NHHk(E, X)→ HHk(X)→ HHk(A)→ NHHk+1(E, X)→ . . .
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where NHH(E, X) is the normal Hochschild cohomology of the exceptional
collection E. The normal Hochschild cohomology can be computed using a
spectral sequence with first page

E1
−p,q =

⊕

0≤a0<···<ap≤n−1
k0+···+kp=q

Extk0(Ea0 , Ea1)⊗ · · ·

· · · ⊗ Extkp−1(Eap−1
, Eap)⊗ Extkp(Eap , S

−1(Ea0)).

The spectral sequence relies on the dg-structure on D; the initial differentials
d′ and d′′ are induced by the differential on D and the composition map respec-
tively, while the higher differentials are related to the A∞-algebra structure on
Ext-groups, (see Section 4.6).
The existing examples of exceptional collections on surfaces of general type with
pg = 0 suggest that NHHk(E, X) vanishes for small k. Thus the height h(E)
of an exceptional collection E = (E0, . . . , En−1) is defined to be the smallest
integer m for which NHHm(E, X) is nonzero. Alternatively, m is the largest
integer such that the canonical restriction morphism HHk(X) → HHk(A) is
an isomorphism for all k ≤ m− 2 and injective for k = m− 1.

4.5 Pseudoheight

The height may be rather difficult to compute in practice, requiring a careful
analysis of the Ext-groups of E and the maps in the spectral sequence. The
pseudoheight is easier to compute and sometimes gives a good lower bound for
the height.

Definition 4.1 The pseudoheight ph(E) of an exceptional collection E =
(E0, . . . , En−1) is

ph(E) = min
0≤a0<···<ap≤n−1

(
e(Ea0 , Ea1) + · · ·

+ e(Eap−1
, Eap) + e(Eap , Ea0(−KX))− p+ 2

)
,

where e(F, F ′) = min{i : Exti(F, F ′) 6= 0}.

The pseudoheight is just the total degree of the first nonzero term in the first
page of the spectral sequence, where the shift by 2 takes care of the Serre
functor.
Consider the length 2n anticanonical extension of the sequence E (see also
Section 3.1.7):

E0, . . . , En−1, En = E0(−KX), . . . , E2n−1 = En−1(−KX). (12)

If the Ei are line bundles, then we have a numerical lower bound for the pseu-
doheight.
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Lemma 4.1 [36, Lem. 4.10, Lem. 5.1] If KX is ample and Ei ·KX ≥ Ej ·KX

for all i < j and for all Ei, Ej in the anticanonically extended sequence (12),
then ph(E) ≥ 3.

The numerical conditions required by the Lemma are not particularly stringent.
For example, all the exceptional collections we have exhibited on the Kulikov
surface in Section 3.2 have pseudoheight at least 3, even before we consider the
Ext-groups more carefully.

Remark 4.1 If L is a line bundle, then dimExtk(L,L(−KX)) = h2−k(2KX)
by Serre duality, which is the case p = 0 in Definition 4.1. Thus any excep-
tional collection of line bundles on a surface of general type with pg = 0 has
pseudoheight at most 4. Moreover, if ph(E) = 4, then h(E) = 4 by [36].

4.6 The A∞-algebra of an exceptional collection

Let E = (E0, . . . , En−1) be an exceptional collection on X , and define T =
⊕n−1
i=0 Ei. Then B = Hom•

D(T, T ) is a differential graded algebra via the dg-
structure on D (see Section 4.2). It can be difficult to compute the dg-algebra
structure on B directly, so we pass to the A∞-algebra H∗B.
We discuss A∞-algebras, referring to [29] for details and further references.
An A∞-algebra is a graded vector space A =

⊕
p∈Z

Ap, together with graded

multiplication maps mn : A
⊗n → A of degree 2 − n, for each n ≥ 1. These

multiplication maps satisfy an infinite sequence of relations, starting with

m1m1 = 0,

m1m2 = m2(m1 ⊗ idA + idA ⊗m1).

These first two relations ensure that m1 is a differential on A, satisfying the
Leibniz rule with respect to m2. The third relation is

m2(idA ⊗m2 −m2 ⊗ idA) =

m1m3 +m3(m1 ⊗ idA ⊗ idA + idA ⊗m1 ⊗ idA + idA ⊗ idA ⊗m1),

which shows that m2 is not associative in general, but if mn = 0 for all n ≥ 3,
then A is an ordinary associative differential graded algebra.
In fact, by the above discussion, we can view B as an A∞-algebra, with m1

being the differential, m2 the multiplication, and mn = 0 for n ≥ 3. By a theo-
rem of Kadeishvili (cf. [29]), the homology H∗B = H∗(B,m1) has a canonical
A∞-algebra structure, for which m1 = 0, m2 is induced by the multiplication
on B, and H∗B and B are quasi-isomorphic as A∞-algebras. This canonical
A∞-structure is unique, and H∗B is called a minimal model for B. We say
that B is formal if it has a minimal model H∗B for which mn = 0 for all n ≥ 3,
so that H∗B is just an associative graded algebra.
The A∞-algebra of E is

H∗B = Ext∗(T, T ) =
⊕

k

⊕

0≤i,j≤n−1

Extk(Ei, Ej),
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and m2 coincides with the Yoneda product on Ext-groups. Clearly, if the ex-
ceptional collection E consists of sheaves, then H∗B has only three nontrivial
graded summands, in degrees 0, 1 and 2. Since mn has degree 2− n, the sum-
mands of degree 0 and 1 are crucial in determining the A∞-algebra structure.

4.6.1 Recovering E from H∗B

According to [16], [30], the subcategory E of D generated by the exceptional col-
lection E is equivalent to the triangulated subcategory Perf(B) ⊂ Db(mod-B)
of perfect objects over the dg-algebra B. A perfect object is a differential
graded B-module that is quasi-isomorphic to a bounded chain complex of pro-
jective and finitely generated modules. As mentioned above, it is preferable
to consider the A∞-algebra H∗B instead, noting that E is in turn equivalent
to the triangulated category of perfect A∞-modules over H∗B. If B is formal,
the equivalence reduces to E ∼= Db(mod-H∗B), which should be compared with
Section 4.1.
We search for exceptional collections whose Hom- and Ext1-groups are mostly
zero. In good cases, this implies that B is formal, and H∗B has no deforma-
tions. It then follows that E is rigid, i.e. constant in families.

4.7 Quasiphantoms on the Kulikov surface

We study some properties of the exceptional collections on the Kulikov surface
from Section 3.2. For the purposes of the discussion, we fix the following
exceptional collection

E : O, L1[2, 2, 0], L2[2, 1, 2], L3[0, 0, 1], L4[1, 1, 1], L5[2, 2, 1],

which can be found in the second row of Table 1 in Section 3.2.
Using Theorem 2.1, we may compute the Ext-groups of the extended sequence
(12). We present the results in Table 2 below. The ijth entry of the table is
the following formal polynomial in q

∑

k∈Z

dimExtk(Ei, Ei+j)q
k,

where 0 ≤ i, j ≤ 5, and the zigzag delineates those entries whose target Ei+j
is in the anticanonically extended part of (12).

Lemma 4.2 The only nonzero Ext1-groups are Ext1(E1, E4) which is 2-
dimensional, and Ext1(E1, E5) which is 1-dimensional. �

Remark 4.2 The lemma shows that E does not have 3-block structure. A 3-
block structure means the exceptional collection can be split into three mutually
orthogonal blocks (cf. [28]). In fact, every exceptional collection in Table 1, and
every exceptional collection in the Weyl group orbit (cf. Section 3.1.7), has some
non-zero Ext1-groups. This is in contrast with the exceptional collections on
the Burniat surface exhibited in [2], which are of the same numerical type, and
have 3-block structure.
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0 1 2 3 4 5

0 1 2q2 2q2 2q2 3q2 3q2

1 1 0 0 2q + 3q2 q + 2q2 4q2

2 1 0 q2 q2 4q2 6q2

3 1 q2 q2 4q2 6q2 6q2

4 1 0 3q2 5q2 5q2 5q2

5 1 3q2 5q2 5q2 5q2 6q2

Table 2: Ext-table of an exceptional collection on the Kulikov surface

Proposition 4.1 The A∞-algebra of E is formal, and the product m2 of any
two elements with strictly positive degree is trivial.

Proof The A∞-algebra H∗B of E, is the direct sum of all Ext-groups ap-
pearing above the zigzag in the table. By [46, Lemma 2.1] or [38, Theorem
3.2.1.1], we may assume that mn(. . . , idEi

, . . . ) = 0 for all Ei and all n > 2.
We show that every productm3 must be zero for degree reasons. By Lemma 4.2,
there are only two nonzero arrows in degree 1, and they can not be composed
with one another, since they have the same source. Thus the product m3 of
any 3 composable elements of H∗B has degree at least degm3 +1+ 2+ 2 = 4,
and is therefore identically zero, because the graded piece H4B is trivial. The
same argument applies for all products mn with n ≥ 3. Thus H∗B is a formal
A∞-algebra. In fact, we see from the table that any productm2 of two elements
of nonzero degree also vanishes for degree reasons. �

Moreover, we calculate the Hochschild cohomology of A using heights.

Proposition 4.2 We have HH0(A) = C, HH1(A) = 0, HH2(A) = C, and
HH3(A) contains a copy of C3.

Proof The pseudoheight of E may also be computed from the table, where
now we also need the portion below the zigzag. The minimal contribution to
the pseudoheight is achieved by incorporating one of the nonzero Ext1-groups.
For example,

e(E1, E4) + e(E4, E1 ⊗ ωX)− 1 + 2 = 1 + 2− 1 + 2 = 4,

so ph(E) = 4. In this case, by [36], the height and pseudoheight are equal.
Hence HHk(A) = HHk(X) for k ≤ 2, and HH3(A) ⊃ HH3(X). By the
Hochschild–Kostant–Rosenberg isomorphism, the dimensions of HHk(X) fol-
low from the infinitesimal deformation theory of the Kulikov surface, which
was studied in [19]: H1(TX) = 1 and H2(TX) = 3. �

In summary, we have
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Theorem 4.2 Every Kulikov surface X has a semiorthogonal decomposition

Db(X) = 〈E ,A〉

where E is generated by the exceptional collection E, and E is rigid, i.e. E
does not vary with X. The semiorthogonal complement A is a quasiphantom
category whose formal deformation space is isomorphic to that of Db(X), and
therefore X may be reconstructed from A.

5 Secondary Burniat surfaces and effective divisors

Burniat surfaces were discovered in [18], and an alternate construction is given
in [27]. There are several cases Xk, with K2 = k for 2 ≤ k ≤ 6. For details
we refer to [44], [4]. Exceptional collections on primary Burniat surfaces X6

with K2 = 6 were first constructed and studied in [2], where two 3-block
exceptional collections are exhibited. Burniat surfaces with K2 = 3, 4, 5, 6 can
be constructed as abelian covers satisfying assumptions (A), and so we are able
to enumerate exceptional collections on all these Burniat surfaces. We do not
reproduce these computations here, but see [20]. Exceptional collections of line
bundles of maximal length on the Burniat–Campedelli surface X2 with K2 = 2
remain elusive, because this surface does not satisfy assumption (A1).
In computing exceptional collections on fake del Pezzo surfaces, it becomes clear
that a characterisation of effective line bundles is very useful. In this section
we prove the following theorem for the secondary nodal Burniat surface.

Theorem 5.1 Let X be a nodal secondary Burniat surface with K2 = 4. Then
the semigroup of effective divisors on X is generated by the reduced pullbacks
of irreducible components of the branch divisor, together with the pullbacks E4,
E5 of two (−1)-curves on Y .

With appropriate changes, the same proof works for the other surfaces satis-
fying assumptions (A). Indeed, Theorem 3.2 above for the Kulikov surface is
an easier case of this result. The additional complexity here arises from two
sources: some of the exceptional curves on Y are not branch divisors, and there
is a (−2)-curve.

5.1 Burniat surfaces revisited

We first describe the nodal secondary Burniat line configuration. Take the three
coordinate points P1, P2, P3 in P2, and label the edges A0 = P1P2, B0 = P2P3,
C0 = P3P1. Then let A1, A2 (respectively Bi, Ci) be two lines passing through
P1 (resp. P2, P3). We require that A1, B1, C2 are concurrent in P4 (respectively
A1, B2, C1 in P5). This gives nine lines in total, four passing through each
of P1, P2, P3 and three passing through each of P4, P5. Moreover, A1 passes
through three triple points. Blow up the five points Pi to obtain a weak del
Pezzo surface Y of degree 4. The strict transforms of these nine lines (for
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which we use the same labels) together with the three exceptional curves Ei
for i = 1, 2, 3, are called the nodal secondary Burniat configuration (see Figure
2).
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Figure 2: The secondary Burniat configurations with K2 = 4 (nodal configu-
ration is on the right)

The nodal secondary Burniat surface X4 with K2
X = 4 is a (Z/2)2-cover of Y

branched in the configuration of Figure 2, and X4 is a surface of general type
with pg = 0, K2 = 4 and TorsX = (Z/2)4. The cover is not ramified in E4,
E5. The weak del Pezzo surface Y has a (−2)-curve, A1 and the canonical
model of X4 is a (Z/2)2-cover of a nodal quartic. Following the description of
[5, 6], the nodal secondary Burniat surfaces form an irreducible closed family,
inside a 3-dimensional irreducible connected component of the moduli space.
This component is given by the union of the family of nodal secondary Burniat
surfaces with the extended secondary Burniat surfaces, which form an open
subset. We do not directly consider extended Burniat surfaces here.

In Appendix B, we show that the secondary Burniat surface satisfies as-
sumptions (A). More precisely, we exhibit an explicit basis e0, . . . , e5 for
PicX/TorsX, in terms of reduced pullbacks of irreducible branch divisors.
The appendix also lists coordinates for the reduced pullback of each irreducible
component of the branch divisor, according to Definition 3.4.

We define E to be the semigroup generated by the reduced pullbacksA0, . . . , C2,
E1, E2, E3 together with ordinary pullbacks E4, E5. There is a multigrading
on E by multidegree in PicX/TorsX, and we write E(d) for graded piece of
multidegree d. Using the coordinates from Appendix B, we define a homomor-
phism t : E → TorsX , sending each generator of E to its associated torsion
twist. Remember that t(E4) = t(E5) = 0 because these are pulled back from
Y .

5.2 Proof of Theorem 5.1.

The stategy of proof is similar to that of Alexeev, [1], but for completeness, we
outline the whole proof. The main differences are the (−2)-curve on Y and the
(−1)-curves which are not branch divisors. These introduce new complications
which are not present in [1]. We are able to resolve these issues because we
can use the pushforward formula and Appendix B to check effectivity in a
systematic manner.

Documenta Mathematica 20 (2015) 1255–1291



1284 Stephen Coughlan

Suppose D is an effective divisor and C is an effective curve class on X for
which D · C < 0. Then C2 < 0 and C is in the base locus of D, so we define
D′ = D−aC where a is the smallest positive integer for which (D−aC)·C ≥ 0.
In this way, we can reduce an effective divisor on X to one which has positive
intersection with all curve classes in E. Such divisor classes form a rational
polyhedral cone P in N1(X,R).
To describe the generators of P in the most geometric way, we first construct
certain divisor classes on X in terms of reduced pullbacks and the birational
transformations the del Pezzo surface Y . Suppose we take a standard Cremona
transformation of P2 centred on any three non-collinear triple points Pi, Pj
and Pk. The numerical class of the hyperplane section of the image P2 is
hijk = 2e0 − ei − ej − ek for any {i, j, k} 6= {1, 4, 5}, or h0 = e0. There are
also natural fibrations on Y which arise from the pencil of hyperplanes passing
through a fixed Pk on some copy of P2. The numerical classes of these fibrations
are denoted fi = e0−ei or fijkl = 2e0−ei−ej−ek−el with {1, 4, 5} 6⊂ {i, j, k, l}.

Lemma 5.1 The polyhedron P is generated by the ten hyperplane classes h0,
hijk and eight fibrations fi, fijkl defined above, together with the four additional
classes

g1 = 3e0 − e1 − 2e2 − e3 − e4 − e5, g2 = 3e0 − e1 − e2 − 2e3 − e4 − e5,

g3 = 3e0 − e1 − 2e2 − e4 − e5, g4 = 3e0 − e1 − 2e3 − e4 − e5.

Proof Any generator D of E determines a linear function ·D, which in turn
defines a collection of hyperplanes supporting the polyhedron P . We use the
computer [20] to calculate the integral generators of the cone.
We examine the additional generators. The class g1 is the hyperplane section
of the copy of P2 obtained by contracting A0, A1, B0, B1 and B2 on Y , and
g3 is the hyperplane section of the quadric cone given by contracting A0, A1,
E3, B1 and B2. There are similar descriptions of g2 and g4. �

Lemma 5.2 Suppose D is an effective divisor on X with KX ·D ≤ 4. Then D
is in E.

Proof We may assume that D is in P . This is a finite (and small) number
of classes to check, and we do this directly using the computer implementation
[20] of our pushforward formula Theorem 2.1. �

Proposition 5.1 Suppose D is an effective divisor on X with KX ·D > 4 and
χ(D) > 0. Then D is in E.

Proof Since KX ·D > 4 we have that (KX −D) ·KX < 0 and so KX −D
can not be effective. By Serre duality, h2(D) = h0(KX −D) = 0, hence D is
effective.
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Choose D̄ in PicY such that the numerical class of KY + D̄ in PicY is the
same as that of D −KX in PicX/TorsX by assumption (A). Then

χ(KY + D̄) = 1 +
1

2
(KY + D̄)D̄ = 1 +

1

2
(D −KX)D = χ(D) > 0.

Moreover, h2(KY + D̄) = h0(−D̄) = 0 because −KY · −D̄ < 0, so by the same
argument as above, we see that KY + D̄ is effective on Y .
Now, any effective divisor on Y is a positive linear combination of branch
divisors A0, . . . , C2, E1, E2, E3 and exceptional curves E4 and E5. So taking
the reduced pullback, we get the following expression for the numerical class
of D in PicX/TorsX:

D = KX + (combination of A0, . . . , E3) +
1
2 (combination of E4, E5).

The coefficient of 1
2 appears because E4 and E5 are not branch divisors. It

remains to show that D+ τ is in E for any τ such that D+ τ is effective. This
is implied by the following lemma:

Lemma 5.3 (1) Let L be any of the following line bundles on X:

OX(KX + γ)⊗ τ, OX(KX + 1
2E4)⊗ τ, OX(KX + 1

2E5)⊗ τ, or

OX(KX + 1
2 (E4 + E5))⊗ τ

where γ is any generator of E and τ is any element of TorsX. Then L
is effective and in E unless L = OX(KX +A1).

(2) The line bundles L = OX(KX + kA1) are not effective for any k > 0.

Proof

(1) Suppose L = OX(KX + A0) ⊗ τ , and take the graded piece of E with
multidegree d = (4,−2,−2,−1,−1,−1). We use the computer [20] to check
that the image of E(d) under t is all of TorsX . This proves that L is effective
and in E for any τ . The same computation works for all multidegrees listed in
the statement, except when L = OX(KX + A1) ⊗ τ , for which we refer to the
proof of part (2).

(2) When L = OX(KX+A1)⊗τ , the same computation as above shows that
the image of E(4,−2,−1,−1,−2,−2) under t is TorsX − {[1, 0, 0, 0]}. Thus
OX(KX +A1) is not in E. Indeed, the pushforward is

ϕ∗L = OY (e2−e1)⊕OY (e3−e2)⊕OY (−2e0+e2+e3)⊕OY (e0−e3−e4−e5),

which is not effective. Moreover, by the projection formula, we have

ϕ∗L(2mA2) = ϕ∗L⊗OY (mA2) = ϕ∗L⊗OY (m(e0 − e1 − e4 − e5)),
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which is not effective for any m, and so OX(KX + kA2) is not effective for any
odd k = 1+2m. For even k, the proof is similar, starting from ϕ∗OX(KX). �

Remark 5.1 Since A2 is a (−2)-curve, we have KX · (KX + kA1) = K2
X = 4

for all k. Thus we do not need part (2) of the above lemma, because KX +kA1

does not satisfy the assumptions of Proposition 5.1.

Finally, we take care of the cases with χ(D) ≤ 0.

Lemma 5.4 Suppose D is an effective divisor on X with numerical class in P
and χ(D) ≤ 0. Then D is in one of the following classes:

(1) h or 2h for any hyperplane generator h;

(2) g or 2g1 or 2g3, where g refers to any of the additional generators de-
scribed in Lemma 5.1;

(3) nf , nf +f ′, nf +h, nf +g for any n ≥ 1 where f is a fibration and f ′ is
another fibration with intersection f · f ′ = 1, h is a hyperplane generator
with f · h = 1, g is an additional generator with f · g = 1.

Proof This is a systematic induction. We note that each generator γ of P has
χ(γ) = 0. Moreover, if D = D1+D2 then χ(D) = χ(D1)+χ(D2)+D1 ·D2−1.
So for example, starting from f1, we choose another fibration generator f ′.
Either f1 · f

′ = 0, in which case f1 = f ′ and χ(2f1) = −1, or f1 · f
′ = 1,

so that χ(f1 + f ′) = 0. Now adding a further generator γ to f1 + f ′ yields
χ(f1+f

′+γ) > 0 by simple consideration of the intersection numbers, unless γ
is one of f1 or f ′. We continue in this way, to produce the list of possibilities.�

Lemma 5.5 Suppose L is an effective line bundle with numerical class one of
the exceptional cases from Lemma 5.4. Then L is in E.

Proof We give a proof for nf1. The other possibilities listed in Lemma
5.4(3) work in the same way, and cases (1) and (2) can be checked by a direct
computation [20]. As in the proof of Lemma 5.3, we split into even and odd
cases and make use of the projection formula.
Let L = OX(2f1)⊗τ for some τ in the image of t(E(2f1)), so that in particular,
L is effective. Since C0+E3 is a section of OX(f1), it follows that OX(nf1)⊗ τ
is effective and in E for any n ≥ 2.
Now suppose τ is any torsion element in TorsX − t(E(2f1)), so that L is not
in E. For example, τ = [0, 0, 0, 1]. Then we compute

ϕ∗L = OY (0,−1, 0, 0, 0, 1)⊕OY (−2, 1, 1, 1, 1, 1)

⊕OY (−1,−1, 1, 1, 1, 0)⊕OY (−2, 0, 1, 1, 1, 1),

which is clearly not effective. Moreover, by the projection formula, we see
that ϕ∗L⊗OX(2mf1) = ϕ∗L⊗OY (mf1) is not effective for any m either, for
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degree reasons. This completes the proof for any even multiple of f1. A similar
computation proves the odd case, starting from 3f1. �

A Appendix: Acyclic bundles on the Kulikov surface

For reference, here are the acyclic line bundles on the Kulikov surface used in
Section 3.2.

L A(L)

L−1
1 [0, 0, 0], [0, 1, 0], [1, 1, 0], [2, 1, 0], [2, 2, 0], [1, 0, 1], [2, 0, 1], [0, 1, 1],

[1, 1, 1], [0, 2, 1], [2, 2, 1], [0, 1, 2], [1, 1, 2], [0, 2, 2]

L−1
2 [0, 1, 0], [1, 1, 0], [2, 2, 0], [2, 0, 1], [0, 1, 1], [1, 1, 1], [2, 1, 1], [1, 2, 1],

[2, 2, 1], [0, 0, 2], [1, 0, 2], [0, 1, 2], [1, 1, 2], [1, 2, 2]

L−1
3 [0, 1, 0], [1, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1], [0, 2, 1], [1, 2, 1], [0, 0, 2],

[2, 0, 2], [0, 1, 2], [1, 1, 2], [2, 1, 2], [0, 2, 2], [1, 2, 2]

L−1
4 [0, 0, 0], [0, 1, 0], [2, 1, 0], [0, 2, 0], [2, 2, 0], [1, 0, 1], [2, 0, 1], [0, 1, 1],

[1, 1, 1], [2, 1, 1], [0, 2, 1], [2, 2, 1], [1, 1, 2], [0, 2, 2], [2, 2, 2]

L−1
5 [0, 1, 0], [1, 1, 0], [2, 2, 0], [1, 0, 1], [2, 0, 1], [0, 1, 1], [1, 1, 1], [0, 2, 1],

[1, 2, 1], [2, 2, 1], [0, 0, 2], [0, 1, 2], [1, 1, 2], [0, 2, 2], [1, 2, 2]

L−1
2 ⊗ L1 [1, 0, 0], [2, 0, 0], [2, 1, 0], [0, 1, 1], [0, 1, 2], [2, 1, 2], [0, 2, 2]

L−1
3 ⊗ L1 [0, 0, 0], [1, 0, 0], [2, 0, 0], [1, 1, 0], [2, 1, 0], [2, 2, 0], [1, 1, 2], [2, 1, 2],

[2, 2, 2]

L−1
4 ⊗ L1 [0, 1, 0], [1, 1, 0], [0, 1, 1], [1, 1, 1], [1, 2, 1], [0, 0, 2], [1, 0, 2], [2, 0, 2],

[0, 1, 2], [1, 1, 2], [1, 2, 2]

L−1
5 ⊗ L1 [1, 0, 0], [2, 0, 0], [1, 1, 0], [2, 1, 0], [2, 2, 0], [0, 1, 1], [0, 0, 2], [0, 1, 2],

[1, 1, 2], [2, 1, 2], [0, 2, 2], [2, 2, 2]

L−1
3 ⊗ L2 [1, 0, 1], [1, 1, 1], [2, 1, 1], [2, 0, 2], [1, 1, 2], [2, 1, 2], [1, 2, 2]

L−1
4 ⊗ L2 [0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1], [0, 2, 1], [2, 0, 2],

[0, 1, 2], [1, 1, 2], [0, 2, 2]

L−1
5 ⊗ L2 [0, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1], [2, 1, 1], [0, 2, 1], [0, 0, 2], [2, 0, 2],

[1, 1, 2], [2, 1, 2], [0, 2, 2], [1, 2, 2]

L−1
4 ⊗ L3 [0, 0, 0], [0, 1, 0], [1, 1, 0], [2, 2, 0], [2, 0, 1], [0, 1, 1], [1, 1, 1], [2, 2, 1],

[1, 0, 2], [0, 1, 2], [1, 1, 2]

L−1
5 ⊗ L3 [0, 1, 0], [1, 1, 0], [2, 1, 0], [2, 2, 0], [2, 0, 1], [1, 1, 1], [2, 1, 1], [1, 2, 1],

[0, 0, 2], [1, 0, 2], [0, 1, 2], [1, 2, 2]

L−1
5 ⊗ L4 [1, 0, 0], [2, 0, 0], [1, 1, 0], [2, 2, 0], [0, 0, 2], [0, 1, 2], [2, 1, 2], [2, 2, 2]

Documenta Mathematica 20 (2015) 1255–1291



1288 Stephen Coughlan

B Appendix: Nodal Secondary Burniat surface with K2 = 4

The maps Ψ4,Ψ
n
4 : H1(Y −∆,Z) → (Z/2)6 determining respectively the non-

nodal and nodal Burniat surfaces, differ from one another slightly. We tabulate
them below.

Γ A0 A1 A2 B0 B1 B2 C0 C1 C2

Ψ4(Γ)− Φ(Γ) 0 g3 g4 0 g5 g6 0 g4 + g6 g3 + g5

Ψn4 (Γ)− Φ(Γ) 0 g3 g4 0 g5 g6 g3 + g4 g3 + g6 g3 + g5

The restriction imposed by P5 is Ψ4(A2 +B2 +C1) = 0 in the non-nodal case,
and Ψn4 (A1 +B2 + C1) = 0 in the nodal case. Either way, g7 is eliminated, so
the torsion group is (Z/2)4, generated by g∗3 , . . . , g

∗
6 .

We extend the basis chosen for the free part of Pic(X5). The basis is the same
for non-nodal and nodal surfaces

e0 = C0 + E1 + E3, e1 = E1, e2 = E2, e3 = E3,

e4 = C0 − C2 + E1, e5 = B0 −B2 + E3.

Coordinates for non-nodal surface:

Multidegree Torsion

OX(A0) 1 −1 −1 0 0 0 [1, 1, 0, 0]

OX(A1) 1 −1 0 0 −1 0 [1, 0, 0, 0]

OX(A2) 1 −1 0 0 0 −1 [0, 1, 1, 0]

OX(B0) 1 0 −1 −1 0 0 [0, 0, 1, 1]

OX(B1) 1 0 −1 0 −1 0 [0, 0, 1, 0]

OX(B2) 1 0 −1 0 0 −1 [0, 0, 1, 1]

OX(C0) 1 −1 0 −1 0 0 0

OX(C1) 1 0 0 −1 0 −1 [0, 0, 1, 0]

OX(C2) 1 0 0 −1 −1 0 0

Coordinates for nodal surface are the same (with same multidegrees) except
for the following:

Multidegree Torsion

OX(A1) 1 −1 0 0 −1 −1 [1, 0, 1, 0]

OX(A2) 1 −1 0 0 0 0 [0, 1, 0, 0]

In both cases, OX(KX) = O(3,−1,−1,−1,−1,−1)[0, 0, 1, 0].
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2008

Former:
Department of Mathematics and
Statistics
Lederle Graduate Research Tower
University of Massachusetts
Amherst, MA 01003-9305
coughlan@math.umass.edu

Current:
Institute of Algebraic Geometry,
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover, Germany
coughlan@math.uni-hannover.de

Documenta Mathematica 20 (2015) 1255–1291



1292

Documenta Mathematica 20 (2015)


	Introduction
	Preliminaries
	Exceptional collections of line bundles on surfaces
	Heights of exceptional collections
	Secondary Burniat surfaces and effective divisors
	Appendix: Acyclic bundles on the Kulikov surface
	Appendix: Nodal Secondary Burniat surface with K2=4

