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Abstract. Let A be a completely rational local Möbius covariant
net on S1, which describes a set of chiral observables. We show that
local Möbius covariant nets B2 on 2D Minkowski space which contains
A as chiral left-right symmetry are in one-to-one correspondence with
Morita equivalence classes of Q-systems in the unitary modular tensor
category DHR(A). The Möbius covariant boundary conditions with
symmetry A of such a net B2 are given by the Q-systems in the Morita
equivalence class or by simple objects in the module category mod-
ulo automorphisms of the dual category. We generalize to reducible
boundary conditions.

To establish this result we define the notion of Morita equivalence
for Q-systems (special symmetric ∗-Frobenius algebra objects) and
non-degenerately braided subfactors. We prove a conjecture by Kong
and Runkel, namely that Rehren’s construction (generalized Longo-
Rehren construction, α-induction construction) coincides with the
categorical full center. This gives a new view and new results for
the study of braided subfactors.

2010 Mathematics Subject Classification: 81T40, 18D10, 81R15,
46L37
Keywords and Phrases: Conformal Nets, Boundary Conditions, Q-
system, Full Center, Subfactors, Modular Tensor Categories.

1Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft
(DFG)) by the DFG Research Training Group 1493 “Mathematical Structures in Modern
Quantum Physics” until August 2014.

2Supported by the Grants-in-Aid for Scientific Research, JSPS.

3Supported in part by the ERC Advanced Grant 669240 QUEST “Quantum Algebraic
Structures and Models”, PRIN-MIUR and GNAMPA-INdAM.

1137



1138 Marcel Bischoff, Yasuyuki Kawahigashi, Roberto Longo

Contents

1 Introduction 1138

2 Preliminaries 1141
2.1 Endomorphisms of type III factors and Q-systems . . . . . . . 1141
2.2 UMTCs in End(N) and braided subfactors . . . . . . . . . . . 1146
2.3 Braided subfactors and α-induction . . . . . . . . . . . . . . . . 1148

3 Morita equivalence for braided subfactors 1149
3.1 Module categories, modules and bimodules . . . . . . . . . . . 1149
3.2 The Morita equivalence class of a braided subfactor . . . . . . . 1153

4 α-induction construction and the full center 1154
4.1 The full center and Rehren’s construction coincide . . . . . . . 1154
4.2 The adjoint functor of the full center . . . . . . . . . . . . . . . 1162

5 Modular invariance and Q-systems in NCN ⊠ NCN 1164
5.1 Characterization of modular invariant Q-systems . . . . . . . . 1164
5.2 Permutation modular invariants . . . . . . . . . . . . . . . . . . 1164
5.3 Maximal chiral subalgebras and second cohomology for modular

invariant Q-systems . . . . . . . . . . . . . . . . . . . . . . . . 1166

6 Conformal nets 1168
6.1 Extensions and Q-systems . . . . . . . . . . . . . . . . . . . . . 1171
6.2 Representation theory of local extensions . . . . . . . . . . . . 1173
6.3 Maximal 2D nets with chiral observables A . . . . . . . . . . . 1173
6.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 1175
6.5 Reducible boundary conditions . . . . . . . . . . . . . . . . . . 1178
6.6 Adding the boundary . . . . . . . . . . . . . . . . . . . . . . . . 1180

1 Introduction

The subject of algebraic quantum field theory has led to many structural re-
sults and recently also to interesting constructions and classifications in quan-
tum field theory. Conformal quantum field theory can be conveniently stud-
ied in this approach. In particular there is the notion of a conformal QFT
on Minkowski space and boundary conformal QFT on Minkowski half-plane
x > 0.
One can associate with a boundary conformal QFT (boundary theory) a con-
formal QFT on Minkowski space (bulk theory), but in general several boundary
theories can have the same bulk theory, which correspond to different boundary
conditions of the bulk theory.
In a different framework Fuchs, Runkel and Schweigert gave a general construc-
tion, the so-called TFT construction, of a (euclidean) rational full conformal
field theory (CFT). The construction can be divided into two steps: first one
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2D Conformal Nets and Its Boundary conditions 1139

chooses a certain vertex operator algebra (VOA), whose representation cat-
egory C is a modular tensor category and which specifies chiral fields. This
can be seen as the analytical part. Then with a choice of a special symmetric
Frobenius algebra object A ∈ C one can construct correlators on an arbitrary
Riemann surface. The bulk field content depends on the Morita equivalence
class of A, while A itself fixes a boundary condition.
Carpi, and two of the authors gave a general procedure starting from an al-
gebraic quantum field theory on the Minkowski space, to obtain all locally
isomorphic boundary conformal QFT nets, in other words to find all possible
boundary conditions (with unique vacuum). The main purpose of this paper
is to show that there is a similar classification for the boundary conditions for
maximal (full) (conformal) local nets on Minkowski space and its boundary
conditions as in the afore mentioned TFT construction.
Let us consider more concretely a quantum field theory on Minkowski space.
By introducing new coordinates x± = t ∓ x we identify the two-dimensional
Minkowski space M = {(t, x) ∈ R2} with metric ds2 = dt2 − dx2 with the
product L+×L− of two light rays L± = {(t, x) : t± x = 0} with metric ds2 =
dx+dx−. The densities of conserved quantities (symmetries) are prescribed
by left and right moving chiral fields, i.e. fields just depending on x+ or x−,
respectively.
For example for the stress-energy tensor holds T00,01 = T+(x+) ± T−(x−)
and for the conserved U(1)-current holds j0,1(t, x) = j+(x+) ± j−(x−). In
the algebraic setting such conserved quantities are abstractly given by a net
A2(O) = A+(I)⊗A−(J).
In general, there can be other local observables, so the net of observables is a
local extension B(O) ⊃ A2(O) of A2. We ask this extension to be irreducible
(B(O)∩A2(O)

′ = C·1), which is for example true if we assume that A2 contains
the stress energy tensor of B.
We will also assume that the algebras of left and right moving chiral fields are
isomorphic, in other words A2(O) = A(I)⊗A(J) where O = I ×J ⊂ L+×L−

and A is a local Möbius covariant net on R. So in this case symmetries are
prescribed by the net A.
We further assume A to be completely rational, this is for example true for the
net Virc generated by the stress energy tensor with central charge c < 1, SU(N)
loop group models, or conformal nets associated with even lattices (lattice
compactifications). The category of Doplicher–Haag–Roberts superselection
sectors of a completely rational conformal net is a unitary modular tensor
category [KLM01].
Fixing A we are, as a first step, interested in classifying all nets B “containing
the symmetries described by A”, i.e. to classify all local extensions B2 ⊃ A2.
It turns out that the maximal ones are classified by Morita equivalence classes
of chiral extensions A ⊂ B.
Let us look a moment into nets defined on M+ = {(t, x) ∈ M : x > 0},
i.e. nets with a boundary at x = 0. We are interested to prescribe boundary
conditions of B2 without flow of “charges” associated with A. The vanishing of
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the chargeflow across the boundary of the charges associated with A is encoded
in the algebraic framework via the trivial boundary net A+(O) = A(I)∨A(J)
with I × J ∈ M+. This net is locally isomorphic to A2 restricted to M+. In
other words A+ prescribes the boundary condition of A2 such that there is no
charge flow across the boundary.
Now given a two-dimensional net B2 which contains the given rational symme-
tries described by A, i.e. a local irreducible extension B2 ⊃ A2, we are now
interested in all boundary conditions with no charge flow associated with A as
above. Such a boundary condition is abstractly given [LR04,CKL13] by a net
B+ ⊃ A+ on M+ which is locally isomorphic to B2 such that this isomorphism
restricts to an isomorphism of A+

∼= A2.
A classification gets feasibile by operator algebraic methods. Finite index sub-
factors N ⊂ M are in one-to-one correspondence with algebra objects (Q-
systems) in the unitary tensor category End(N) of endomorphisms of N .
Local irreducible extension B ⊃ A of nets with finite index give rise to nets of
subfactors A(O) ⊂ B(O) and the corresponding Q-system (up to isomorphism)
is independent of O and is in the category of localized DHR endomorphisms.
Conversely, every such Q-system gives a relatively local extension, which is
local if and only if the Q-system is commutative. In particular, one has a
one-to-one correspondence between Q-systems and relatively local extensions.
This situation can be abstracted to the setting of braided subfactors, namely
we fix an interval I, set N = A(I) and denote by NCN the category of localized
DHR endomorphisms which are localized in I. We can start with a type III fac-
tor N and a modular tensor category NCN ⊂ End(I) and look into subfactors
N ⊂ M such that the corresponding Q-system is in NCN . We introduce the
notion of Morita equivalence of such braided subfactors. As a main technical
result we show that a conjecture of Kong and Runkel [KR10] is true. Namely,
we show in Prop. 4.18 that the generalized Longo–Rehren construction [Reh00]
coincides with the full center construction in the categorical literature (e.g.
[FFRS06,KR08]). We give some consequences on the study of braided subfac-
tors and modular invariants. This result opens the possiblity to apply many
results from the categorical literature to the braided subfactor and conformal
net setting. In particular, we make use of the result that Q-systems are Morita
equivalent if and only if they have the same full center [KR08].
Going back to the conformal net setting we get the main result. Namely,
maximal 2D extensions B2 ⊃ A2 are classified by Morita equivalence classes
of Q-systems in Rep(A) (see Prop. 6.7 and irreducible boundary conditions of
B2 are classified by equivalence classes of irreducible Q-systems in the Morita
class (see Prop.6.11). We also treat reducible boundary conditions, which were
not conisidered before in the literature, and show that we get a classification
by reducible Q-systems.
The article is structured as follows.
In Sec. 2 we give some background on the category of endomorphisms of a
type III factor, Q-systems, unitary modular tensor categories (UMTC), braided
subfactors and the α-induction construction.
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In Sec. 3 we give a notion of Morita equivalence for subfactors and Q-systems
in UMTCs. The Morita equivalence class of a subfactor in a UMTC can be
described by irreducible sectors in the module category of the subfactor modulo
automorphisms of some dual category.
In Sec. 4 we show that the α-induction construction in subfactors coincide with
the full center construction in the categorical literature. This is the first main
technical result.
In Sec. 5 we study maximal commutative Q-systems in the category NCN⊠NCN
(the Drinfel’d center of NCN) and give a characterization of them. We give some
application to the study of modular invariants and examples of inequivalent
extensions with same modular invariant, i.e. example of non-vanishing second
cohomology.
In Sec. 6 we apply our former results to the study of conformal field theory
on the Minkowski space in the operator algebraic (Haag–Kastler) framework.
We give a proof of a folk theorem about the representation theory of local
extensions (Prop. 6.4). Given a completely rational conformal net A, as the
main result, we obtain a classification of maximal local CFTs containing the
chiral observables described by A and all its boundary conditions. We also
discuss reducible boundary conditions, i.e. we drop the assumption that the
boundary condition possesses a unique vacuum. Finally, we give a relation to
the construction of adding a boundary in [CKL13], which gives an alternative
proof for the classification of boundary conditions.

2 Preliminaries

2.1 Endomorphisms of type III factors and Q-systems

Let us look into the following strict 2–C∗-category C. Its 0-cells Ob(C) =
{N,M,P, . . .} are given by a (finite) set of type III factors. The 1-cells are
given forM,N ∈ Ob(C) by Mor(M,N), i.e. the set of unital ∗-homomorphisms
(morphism) from ρ : M → N with finite (statistical) dimension dρ ≡ dρ =

[N : ρ(M)]
1
2 , where [N : ρ(M)] denotes the minimal index [Jon83,Kos86]. The

2-cells are intertwiners, i.e. for λ, µ ∈ Mor(M,N) we define Hom(λ, µ) = {t ∈
N : tλ(m) = µ(m)t for all m ∈M}. Then Hom(λ, µ) is a vector space and we
write 〈λ, µ〉 = dimHom(λ, µ) for its dimension. Let ρ ∈ Mor(M,N). We call
ρ irreducible if ρ(M)′ ∩N = C · 1N . A sector is a unitary equivalence class
[ρ] = {AdU ◦ ρ : U ∈ N unitary}. We denote by End(N) = Mor(N,N), which
is a 2–C∗-category with only one 0-cell, so a C∗-tensor category.
Let ρ1, . . . , ρn ∈ Mor(M,N), and let ri ∈ N be generators of the Cuntz algebra
On, i.e.

∑n
i=1 rir

∗
i = 1N and r∗j ri = δij · 1N . The morphism

ρ =
n∑

i=1

Ad ri ◦ ρi ∈Mor(M,N),

is called direct sum of ρ1, . . . , ρn and we have ri ∈ Hom(ρi, ρ). The direct
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sum is unique on sectors and we write it as

[ρ] =: [ρ1]⊕ · · · ⊕ [ρn] =:
n⊕

i=1

[ρi] ,

and for the multiple direct sum we introduce the notation:

n[σ] :=
n⊕

i=1

[σ] , n ∈ N, σ ∈ Mor(M,N) .

We say that a full and replete subcategory C of Mor(M,N) has subobjects,
if every object is a finite direct sum of irreducible sectors in C. Similarly, we
say it has direct sums, if ρ1, . . . , ρn ∈ C implies that also their direct sum is
in C. Let
us assume C has subobjects. If e ∈ Hom(ρ, ρ) is a (not necessarily orthogonal)
projection (idempotent), then there exists a ρ′ ∈ C and s ∈ Hom(ρ′, ρ) and
t ∈ Hom(ρ, ρ′) such that s · t = e and t · s = 1ρ′ ≡ 1N . We note that if we
have e ∈ Hom(θ, θ) we have an orthonormal projection p = e(1 + e − e∗)−1 ∈
Hom(θ, θ) with the same range. If [ρ] =

⊕m
i=1[ρi] and [σ] =

⊕n
j=1[σj ] we can

decompose t ∈ Hom(ρ, σ) as

t =
⊕

ij

tij := si · tij · r∗i , tij ∈ Hom(ρi, σj) ,

where ri ∈ Hom(ρi, ρ) and sj ∈ Hom(σj , σ) are isometries as above. Similarly,
one can decompose t ∈ Hom(ρ, στ) etc.
Let us briefly explain the graphical notation (string diagrams) [JS91,BEK99,
BEK00, Sel11, BDH14] which we will use. The 0-cells N,M, . . . are drawn as
shaded two-dimensional regions, with different shadings for each factor. A 1-
cell ρ ∈ Mor(N,M) is a vertical line (one dimensional) between the region M
and N and composition of 1-cells correspond to horizontal concatenation. The
identity idN ∈ End(N) is not drawn. The 2-cells t ∈ Hom(ρ, σ) are vertices
between two lines. Sometimes we draw also boxes and again the identity 1ρ ≡
1 ∈ Hom(ρ, ρ) is in general not drawn. The composition of intertwiners is
vertical concatenation and the monoidal product horizontal concatenation.
We use a Frobenius rotation invariant convention for trivalent vertices, namely
for an isometry e ∈ Hom(ν, λµ) we introduce the diagram

ν

µ

e

λ

=:
4

√
dλdµ

dν
e .

Let C ⊂ End(N) and D ⊂ End(M) be two full subcategories. We define the
Deligne product C ⊠ D to be the completion of C ⊗C D under subobjects
and direct sums cf. [LR97, Appendix].
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A morphism ρ̄ : N → M is said to be a conjugate to ρ : M → N if there
exist intertwiners R ∈ (idM , ρ̄ρ) and R̄ ∈ (idN , ρρ̄) such that the conjugate
equations hold:

(1ρ ⊗R∗) · (R̄⊗ 1ρ) ≡ ρ(R∗) · R̄ = 1ρ (1)

(1ρ̄ ⊗ R̄∗) · (R⊗ 1ρ̄) ≡ ρ̄(R̄∗) · R = 1ρ̄ . (2)

The 2–morphisms R, R̄ will graphically be represented by

R̄ =

ρ ρ̄

idN

R =

ρ̄ ρ

idM

and the above equations (1), (2) are sometimes called zig-zag identities,
because in diagrams they are given by

ρ

ρ

=

ρ

ρ

,

ρ̄

ρ̄

=

ρ̄

ρ̄

.

If ρ is irreducible we ask the solution R, R̄ to be normalized, i.e. ‖R‖ = ‖R̄‖.
In the case that ρ is not irreducible we further ask that R, R̄ is a standard
solution of the conjugate equation, i.e. R (and similar R̄) is of the form

R =
∑

i

(W̄i ⊗Wi) · Ri ≡
⊕

i

Ri ,

where Ri ∈ (idM , ρ̄iρi) is a normalized solution for an irreducible object ρi ≺ ρ
and Wi ∈ (ρi, ρ) and W̄i ∈ (ρ̄i, ρ) are isometries expressing ρ and ρ̄ as direct
sums of irreducibles. We note that for the dimension dρ ≡ dρ of ρ we have
R∗R = dρ · 1M and dρ = dρ̄. For N 6= M we may always choose R̄ρ = Rρ̄.
If we have a subcategory NCN ⊂ End(N) we may choose a system N∆N of
representants for every sector in NCN and choose Rρ for every ρ ∈ N∆N such
that for [ρ] 6= [ρ̄] we have R̄ρ = Rρ̄. For [ρ̄] = [ρ] the intertwiners Rρ and R̄ρ

are intrinsically related, namely R̄ρ = ±Rρ holds, where the sign ±1 is called
the Frobenius–Schur indicator. In this case the sector [ρ] is called real for +1
and pseudo-real for −1. Although [ρ] and [ρ̄] might be represented by the
same ρ ∈ N∆N we still use ρ̄ in the diagrammatically notation to distinguish
between Rρ and R̄ρ.
A triple Θ = (θ, w, x) with θ ∈ End(N) and isometries w : idN → θ and
x : θ → θ2, which we will graphically display as

4
√
dθ w =

θ

w
4
√
dθ x =

θ θ

θ

x
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is called a Q-sytem (cf. [Lon94,LR97]) if it fulfills

xx = θ(x)x (x⊗ 1θ)x = (1θ ⊗ x)x (associativity)

w∗x = θ(w∗)x = λ1θ (w∗ ⊗ 1θ)x = (1θ ⊗ w∗)x = λ1θ (unit law)

where λ =
√
dθ

−1
. In graphical notation this reads:

θ

θ θ θ

=

θ

θθθ

;

θ

θ

=

θ

θ

=

θ

θ

.

Two Q-systems Θ = (θ, w, x) and Θ̃ = (θ̃, w̃, x̃) in End(N) are called equivalent,
if there is a unitary u ∈ Hom(θ, θ̃), such that

x̃u = (u⊗ u)x ≡ uθ(u)x ; uw̃ = w

hold, or graphically:

θ̃θ̃

θ

x̃

u
=

θ̃θ̃

θ

x

u u
;

θ

u

w̃∗

=

θ

w∗

.

A Q-system in a C∗-tensor category automatically [LR97] fulfills the “Frobenius
law”

(x∗ ⊗ 1θ)(1θ ⊗ x) ≡ x∗θ(x) = xx∗ = (1θ ⊗ x∗)(x⊗ 1θ) ≡ θ(x∗)x

or graphically:

θ

θθ

θ

=

θ θ

θ θ

=

θ

θ θ

θ

.

This means a Q-system is a special symmetric ∗-Frobenius algebra object, but
we prefer to use the name Q-system which is most common in the subfactor
context, (other names would be monoid, algebra object, monoidal algebra). We
say a Q-system Θ = (θ, w, x) is irreducible (called haploid in the Frobenius
algebra context) if 〈idN , θ〉 = 1.
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Definition 2.1. Every irreducible a ∈ Mor(M,N) defines an irreducible Q-
system

Θa = (θa, wa, xa) := (aā, r̄a, a(ra))

in End(N), where ra : idM → āa and r̄a : idN → aā are isometries such that
R̄a =

√
da · r̄a and Ra =

√
da · ra fulfill the conjugate equations (1,2) for a. In

graphical notation:

θa =

a

a

ā

ā

,
√
dawa =

a ā
,

√
da x =

a ā

a ā a ā

.

We remark that up to this point everything can abstractly be defined in a
2–C∗-category.
Consider now a finite index irreducible subfactor N ⊂M with inclusion ι : N →
M then Θ := Θῑ gives dual canonical Q-system of N ⊂ M (and Γ = Θι

the canonical Q-system). The endomorphism θ ≡ ῑι ∈ End(N) is called the
dual canonical endomorphism of N ⊂ M (γ ≡ ιῑ ∈ End(M) is called the
canonical endomorphism).
Conversely, starting from an irreducible Q-system Θ in End(N), there is a
subfactor N1 ⊂ N , where N1 is defined to be the image N1 := E(N) of the
conditional expectation E( · ) = x∗θ( · )x and there is subfactor (extension)
N ⊂ M defined by the Jones basic construction N1 ⊂ N ⊂ M (cf. [LR95]).
One can make the construction of M explicit (cf. [BKLR15]) and obtains this
way a dual morphism ῑ : M → N of the inclusion ι : N →M such that Θ = Θῑ.
The upshot of this discussion is that there is a one-to-one correspondence (cf.
[Lon94]) of

• Q-systems in End(N) up to equivalence.

• Irreducible finite index subfactors N ⊂M up to conjugation.

Remark 2.2. We note that θ alone does not fix N ⊂ M , which can be seen
as a cohomological obstruction. Izumi and Kosaki [IK02] define the second
cohomology H2(N ⊂ M) to be all equivalence classes of Q-systems Θ =
(θ, w, x) with θ the dual canonical endomorphism of N ⊂ M (their definition
uses actually the canonical endomorphism). We say the second cohomology of
N ⊂M vanishes if there up to equivalence is just one Q-system Θ = (θ, x, w),
where θ is the dual canonical endomorphism of N ⊂M .

We finally note that Θ is a Q-system in the full C∗-tensor subcategory with
subobjects generated by θ. The Q-system becomes “trivial”, i.e. is of the form
Θῑ, in the 2–C∗-category formed of 0-cells {N,M} and full and replete subcat-
egories LCP ⊂ Mor(P,L) with subobjects and direct sums, which is generated
by {ι, ῑ}. We remark that this is actually a general feature of Frobenius alge-
bra object in rigid tensor categors, in particular the obtained 2–C∗-category
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together with the 1-morphisms ι : N →M and ῑ : M → N appears in [Müg03a]
under the name Morita context. In the general situation having a special
symmetric Frobenius algebra A in a rigid tensor category C one can find a bi-
category C̃ ⊃ C giving a Morita context in which the Frobenius algebra becomes
trivial, cf. [Müg03a] for details.

2.2 UMTCs in End(N) and braided subfactors

Let us fix a type III factor N and write NCN ⊂ End(N) for a full and replete
subcategory NCN of End(N), such that each object is a finite direct sum of
irreducible objects and NCN is closed under taking finite direct sums. We
use this notation to stress that it is a category of N -N morphisms. We may
choose an endomorphism for each irreducible sector and denote the set of these
endomorphisms by N∆N . Let us assume the following properties:

1. idN ∈ N∆N .

2. There are only finitely many irreducible sectors in NCN , i.e. |N∆N | <∞.

3. If σ ∈ N∆N then also a conjugate (dual) σ̄ ∈ N∆N .

4. If ρ, σ ∈ N∆N , then ρ ◦ σ ∈ NCN , in other words we have that

[µ ◦ ν] =
⊕

Nρ
µν [ρ], Nρ

µν = 〈ρ, µν〉,

where Nρ
µν are called fusion rule coefficients.

This means that NCN is a finite rigid C∗–tensor category [LR97], i.e. a unitary
fusion category. We associated with NCN a finite dimensional vector space
K0(NCN )⊗Z C ∼= C|N∆N |, where |N∆N | denotes the cardinality of the system

N∆N and K0(NCN ) is the Grothendieck group of the monoidal category NCN .
We define the global dimension dimNCN of NCN to be

dimNCN =
∑

ρ∈N∆N

(dρ)2 .

We remark that for convenience we assume NCN to be a subcategory of End(N).
But it turns out that this is not a lost of generality, because every countable
generated rigid C∗–tensor can be embedded in End(N) by the result of [Yam03].
We will need more structure on NCN , in particular we additionally assume:

5. There is a natural family {ε(µ, ν) ∈ Hom(µν, νµ) : µ, ν ∈ NCN} fulfilling:

ε(λ, µν) = (1µ ⊗ ε(λ, ν)) · (ε(λ, µ)⊗ 1ν) ≡ µ(ε(λ, ν)) · ε(λ, µ)
ε(λµ, ν) = (ε(λ, ν)⊗ 1µ) · (1λ ⊗ ε(µ, ν)) ≡ ε(λ, ν) · λ(ε(µ, ν)).

Naturality means, that for s : σ → σ′ and t : τ → τ ′

(t⊗ s) · ε(σ, τ) ≡ t · τ(s) · ε(σ, τ)
= ε(σ′, τ ′) · (s⊗ t) ≡ ε(σ′, τ ′) · s · σ(t).
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We note that this family is determined by {ε(µ, ν) ∈ Hom(µν, νµ) : µ, ν ∈
N∆N}.

That means that NCN is a braided unitary fusion category which has
automatically the structure of a unitary ribbon fusion category. We then
say that NCN ⊂ End(N) is a URFC. The braiding ε+(λ, µ) := ε(λ, µ) always
comes along with an opposite braiding ε−(λ, µ) := ε(µ, λ)∗ which in general is
different from ε+(λ, µ). We will graphically denote the braiding by:

ε+(λ, ν) =

ν

νλ

λ

λ

λ

ε−(λ, ν) =

λ

λ

λ

λν

ν

.

We denote by NCN the braided category obtained by interchanging the braiding
with the opposite braiding.
Finally, most of the time we will also use the following additional assumption:

6. The braiding is non-degenerate, i.e. ε+(λ, µ) = ε−(λ, µ) for all µ ∈ N∆N

implies [λ] = [idN ].

We then say NCN is modular. In other words NCN is a unitary modular
tensor category (UMTC).
We define (see [BEK99]) for λ, µ ∈ N∆N

Yλµ = λ̄ µ̄ ; ωλ · 1λ =

λ

λ

and the following |N∆N | × |N∆N |-matrices

Sλµ = (dimNCN )−
1
2Yλ,µ , Tλµ = e−πic/12δλµωλ , (3)

where

z =
∑

ρ∈N∆N

(dρ)2ωρ ; c = 4 arg(z)/π .

They obey the relations of the partial Verlinde modular algebra:
TSTST = S, CTC = T , and CSC = S, where Cµν = δµ,ν̄ is the charge
conjugation matrix.
The property (6) is equivalent to:

(6’) Z(NCN) ∼= NCN ⊠ NCN , where Z(NCN ) is the Drinfeld center of NCN
[Müg03b, Corollary 7.11] and

(6”) the matrix S = (Sλµ) is unitary.
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In particular, in the modular case we have ([BEK99, Prop. 2.5]):

S∗S = T ∗T = 1 , (ST )3 = S2 = C , CTC = T ,

i.e. S and T define a unitary representation of SL(2,Z) ∼= Z6 ∗Z2
Z4 on C|N∆N |

if and only if NCN is modular.

2.3 Braided subfactors and α-induction

Let N be a type III factor, NCN ⊂ End(N) a URFC and let ι(N) ⊂ M be
an irreducible subfactor such that θ ≡ ῑι ∈ NCN . We call the data (ι(N) ⊂
M,NCN ) a braided subfactor. If NCN ⊂ End(N) happens to be a UMTC
we call the braided subfactor a non-degenerately braided. There is an
obvious one-to-one correspondence between (the equivalence classes of) braided
subfactors in NCN and Q-systems in NCN .

For ρ ∈ NCN we define its α-induction by

α±
λ = ῑ−1 ◦Ad(ε±(λ, θ)) ◦ λ ◦ ῑ ∈ End(M) .

We define the module category NCM to be the full subcategory with sub-
objects and direct sums of Mor(M,N), which is generated by NCN ῑ ≡ {ρῑ : ρ ∈
NCN} and choose a set of representatives of irreducible sectors N∆M . In the
same way we define MCN and the dual category MCM generated by ιNCN
and ιNCN ῑ, respectively. Finally we define MC±M to be generated by α±(NCN),
respectively, and the ambichiral category MC0M = MC+M ∩MC−M . Again we
choose a set of representatives of irreducible sectors M∆N ,M∆M ,M∆±

M ,M∆0
M

in the respective categories.

It turns out that MC±M ⊂ MCM and that MC+M ∪MC−M generates MCM [BEK99,
Thm. 5.10]. It will be convenient to work in the 2-category generated by

NCN ∪ NCM ∪MCN ∪MCM .

As shown in [BEK99, Prop. 3.1], we have for a ∈ NCM , λ ∈ NCN :

ε±(λ, aι) ∈ Hom(λa, aα±
λ ) E±(λ, ā) ∈ Hom(α±

λ ā, āλ) ,

where E±(λ, ā) := T ∗ι(ε±(λ, ν̄))α±
λ (T ) for a ∈ NCM with ā ≺ ῑν for some

ν ∈ NCN and T ∈ (ā, ῑν) an isometry. The definition does not depend on
the choice of ν and T . We set E±(ā, λ) := (E∓(λ, ā))∗. We represent this
graphically—where we use thin lines for morphisms in MCN and NCM , normal
lines for endomorphisms in NCN and thick lines for endomorphisms in MCM—as
follows:

ε+(λ, aι) =

a

aλ

α+
λ

; E+(λ, ā) =

ā

ā λ

α+
λ

.
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The intertwining braided fusion equations (IBFE’s) [BEK99, Prop. 3.3]
hold, namely

ρ(t) ε±(λ, ρ) = ε±(aι, ρ) a(E±(b̄, ρ)) t ,
t ε±(ρ, λ) = a(E±(ρ, b̄)) ε±(ρ, aι) ρ(t) ,

ρ(y) ε±, (aι, ρ) = ε±(λ, ρ)λ(ε±(bι, ρ)) y ,

y ε±(ρ, aι) = λ(ε±(ρ, bι) ε±(ρ, λ)) ρ(y) ,

α∓(Y ) E±(ā, ρ) = E±(b̄, ρ) b̄(ε±(λ, ρ))Y ,

Y E±(ρ, ā) = b̄(ε±(ρ, λ)) E±(ρ, b̄)α±
ρ ρ(Y ) ,

where λ, ρ ∈ NCN , a, b ∈ NCM with conjugates ā, b̄ ∈ MCN ; t ∈ Hom(λ, ab̄),
y ∈ Hom(a, λb) and Y ∈ Hom(ā, b̄λ). The IBFE’s have simple graphical inter-
pretation, e.g. the first and sixth equations are represented by:

λ

b̄

t

a

ρ

ρ

α−
ρ

=

λ

b̄

t

a

ρ

ρ

;

λ

ā

Y

b̄

ρ

α−
ρ

=

λ

ā

Y

b̄

ρ

α−
ρ

.

For details we refer to [BEK99, Sect. 3.3].
There is a relative braiding [BEK00, p. 738]

Er(β+, β−) := S∗αµ(T
∗)ε(λ, µ)α+

λ (S)T ∈ Hom(β+β−, β+β−) , (4)

where for fixed β± ∈ MC±M , we choose λ, µ ∈ NCN , such that β+ ≺ α+
λ , β− ≺

α−
ν and isometries S, T , such that T ∈ Hom(β+, α

+µ) and S ∈ Hom(β−, α
−
µ ).

The definition is independent of the particular choice of λ, µ, S, T .
The relative braidings give a non-degenerate braiding ε( · , · ) := Er( · , · )
on MC0M by [BEK00, Sec. 4], so in particular MC0M becomes a UMTC.
In general for two braided subfactors ιa(N) ⊂Ma and ιb(N) ⊂Mb in NCN we
define Ma

CMb
as a full subcategory of Mor(Mb,Ma) with subobjects and direct

sums generated by ιaNCN ῑb.

3 Morita equivalence for braided subfactors

3.1 Module categories, modules and bimodules

In this section we give the notion of Morita equivalent non-degenerately braided
subfactors.
We adapt the following definitions from [Ost03].

Definition 3.1. A (strict) module category over a tensor category C is
a category M together with an exact bifunctor ⊗ : C × M → M such that
(X ⊗ Y )⊗M = X ⊗ (Y ⊗M) for all X,Y ∈ C and M ∈M.
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Let M1,M2 be two module categories over C. A (strict) module functor
fromM1 toM2 is a functor F :M1 →M2 such that F (X⊗M) = X⊗F (M).
Two module categories M1 and M2 over C are called isomorphic if there
exist a module functor, which is an isomorphism of categories.

Let NCN ⊂ End(N) be a UFC and let Θ = (θ, w, x) be a Q-system in NCN
corresponding to N ⊂M . A (right) Θ-module (cf. [EP03]) is a pair (ρ, r) with
ρ ∈ NCN and r̃ ∈ Hom(ρ ◦ θ, ρ), such that r∗ is an isometry and r̃ = 4

√
dθ r

satisfies

r̃ · (1ρ ⊗m) = r̃ · (ẽ ⊗ 1θ) ⇔ r̃ · ρ(m) = ρ̃(r̃2)

r̃ · (1ρ ⊗ r) = 1ρ ⇔ r̃ · ρ(e) = 1ρ

wherem = 4
√
dθx∗ the multiplication and e = 4

√
dθw the unit of the (Frobenius)

algebra object corresponding to Θ. Graphically this means:

ρ

ρ

θθ

r

x∗ =

ρ

ρ

θθ

r

r ;

ρ

ρ

r

w
=

ρ

ρ

.

A left Θ-module can be defined similarly. We note that because we are working
in C∗-categories and ask r∗ to be an isometry, that a module is also a co-module
by the action r∗. The endomorphism ρθ with ρ ∈ NCN has the structure of a
right Θ-module, where the action is given by r̃ = 1ρ⊗m ≡ ρ(m) ≡ 4

√
dθ·ρ(x∗) ∈

Hom(ρθθ, ρθ) in other words r = ρ(x∗), graphically:

ρθ

ρθ

θ

r :=

ρ

ρ

θθ

θ

x∗ .

It is called the induced module. Any irreducible right Θ-module is equivalent
to a submodule of an induced module cf. [Ost03].
The Θ-modules form a category with HomΘ(ρ, σ) ≡ HomΘ((ρ, r), (σ, s)) = {t ∈
Hom(ρ, σ) : tr = st}, so the arrows are arrows of the objects which intertwine
the actions. There is a correspondence between projections p ∈ HomΘ(ρ, ρ)
and submodules, namely we can choose ρp and t ∈ Hom(ρp, ρ) with t

∗t = 1ρp
,

tt∗ = p and define rp = t∗rt.
Let Θa = (θa, wa, xa) and Θb = (θb, wb, xb) be two Q-systems in NCN . A Θa-
Θb bimodule is a triple (ρ, ra, rb) with ρ ∈ NCN and ρa ∈ Hom(θaρ, ρ) and
ρb ∈ Hom(ρθb, ρ), such that (ρ, ra) is a left Θa-module and (ρ, rb) is a (right)
Θb-module and which commute, i.e.

ra · θa(rb) = rb · ra.
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2D Conformal Nets and Its Boundary conditions 1151

We can define:

r := ra · (1θa ⊗ rb) = rb · (ra ⊗ 1θa) ∈ (θa ◦ ρ ◦ θb, ρ).

Let ρ = (ρ, ra, rb) and σ = (σ, sa, sb) be two Θa–Θb bimodules. An intertwiner
t : ρ → σ is an Θa–Θb bimodule intertwiner, if t intertwines the actions r and
s, i.e.

tr = s(1θa ⊗ t⊗ 1θb) ≡ sθa(t) .

Let us denote by Bim(Θa,Θb) the category of bimodules with HomΘa−Θb
(ρ, σ)

Θa-Θb bimodule intertwiner. We note that one can give Q-systems, bimodules
and intertwiners the structure of a bicategory, by introducing a relative tensor
product between bimodules.
We set Mod(Θ) = Bim(1,Θ) to be the category of (right) Θ-modules.
The category Mod(Θ) has a natural structure of a (strict) left NCN module
category, where the functor NCN × Mod(Θ) is given by (µ, ρ) 7→ µρ where
µρ is a right-module with rµσ = µ(rρ) and HomMod(Θ)(ρ, σ) ∋ T 7→ µ(T ) ∈
HomMod(Θ)(µρ, µσ).

Proposition 3.2 ([EP03, Lemma 3.1.]). Let NCN be a UMTC and Θa,Θb

irreducible Q-systems in NCN . The category of Θa-Θb bimodules is equivalent
to the category Ma

CMb
. The functor Φ maps β ∈ Ma

CMb
to ῑa ◦ β ◦ ιb and

t ∈ Hom(β, β′) to ῑa(t) ∈ HomΘa-Θb
(Φ(β),Φ(β′)).

Proof. In [EP03, Lemma 3.1.] is shown that the functor Φ is fully faithful.
It is also shown that is is essentially surjective, so it gives an equivalence of
categories.

The functor Φ is graphically given as follows, where ρ = Φ(β) r̃ ∈ Hom(θaρθb, ρ)
the action:

Φ:

β

β′

t 7→

β

β′

ῑa

ῑa

ιb

ιb

t , r̃ =

ρ

ρ

θa θb

:=

β

β

ῑa

ῑa

ιb

ιb

ιb ῑbῑaιa

.

Remark 3.3. Let Θ = (θ, w, x) be a Q-system in a UMTC NCN with corre-
sponding subfactor ι(N) ⊂ M . The bimodule Φ(α±

λ ) ≡ ῑα±
λ ι ≡ ῑιλ is the

object θλ with left action the induced action x∗ and right action by x∗ε±(λ, θ),
namely for the +-case:

r̃ =

θ

θ

θ θλ

λ

=

α+
λ

α+
λ

ῑ

ῑ

ι

ι

ι ῑῑι

,

Documenta Mathematica 20 (2015) 1137–1184



1152 Marcel Bischoff, Yasuyuki Kawahigashi, Roberto Longo

where equality can be seen easily using ιλ = α+
λ ι, Θ = Θῑ and the IBFEs

by pulling the λ-string between ῑ and ι. The −-case works analogous using
the opposite braiding. The obtained bimodules coincide with the notion of
α-induction in the categorical literature.

The category Bim(Θ,Θ) becomes a tensor category, where ρ⊗Θ σ is the object
associated to the projection in Pρ⊗Θσ ∈ Hom(ρσ, ρσ) given by:

Pρ⊗Θσ =
1√
dθ

ρ σ

.

and it is easy to check that Φ is a tensor functor. Thus, Bim(Θ,Θ) and MCM
are equivalent as tensor categories. We note that this category is non-strict.
We can define the categories Bim±(Θ,Θ) to be the image of MC±M under Φ and
Bim0(Θ,Θ) = Bim+(Θ,Θ) ∩ Bim−(Θ,Θ).
In the special case Ma = N and Mb = M and θa = θ we have an equivalence
of the category NCM and the category Mod(Θ) of right Θ-modules given by
ā 7→ āι. The category of right Θ-modules Mod(Θ) becomes a module category
over NCN using the monoidal structure inherent from End(N). The same is
true for NCM .
In particular, it follows:

Proposition 3.4. Let NCN ⊂ End(N) be a UMTC and Θ be a Q-system
in NCN with corresponding subfactor N ⊂ M . Then Mod(Θ) and NCM are
equivalent as module categories.

Proof. It follows directly from the properties of the monoidal structure, that
the functor Φ (in the case ofMa = N and Mb =M and θa = θ) in the proof of
Prop. 3.2 is a module functor, so in particular a module isomorphism, between
the two module categories Mod(Θ) and NCM over NCN .

We remark that in general in the definition of module it is not assumed that
r is a (multiple) of an isometry, because the existence of a unitary structure
is not assumed. But since every module in the general sense is equivalent to
a submodule of an induced module and the submodule can chosen to have a
multiple of an isometry as action, we can without lost of generality restrict to
modules where r is a multiple of an isometry. This can also be shown directly
[BKLR15].
Let a ∈ NCM be irreducible and consider the subfactor N ⊂ Ma given by the
Q-system Θa (see Def. 2.1). LetMa be the factor which is given by Jones basic
construction a(M) ⊂ N ⊂ Ma and denote the inclusion map ιa : N →֒ Ma.
Because the subfactors ῑa(Ma) ⊂ N and a(M) ⊂ N have by definition the same
Q-system and thus are conjugated by a unitary in N , we may and do choose
ῑa : Ma → N , such that ῑa(Ma) = a(M). This implies that α = ῑ−1

a ◦ a : M →
Ma is an isomorphism with conjugate α−1 = a−1 ◦ ῑa : Ma →M .
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2D Conformal Nets and Its Boundary conditions 1153

Lemma 3.5 (cf. [LR04,Eva02]). Let NCN ⊂ End(N) be a UMTC and Θ be a
Q-system in NCN with corresponding subfactor N ⊂M .
For a ∈ NCM irreducible let Θa be the canonical Q-system (Θa = aā, wa, xa)
and N ⊂ Ma the corresponding subfactor. Then NCM and NCMa

are iso-
morphic as module categories of NCN . The isomorphism is given by Ψ: b 7→
b ◦ a−1 ◦ ιa and Hom

NCM
(b, c) ∋ t 7→ t ∈ Hom

NCMa
(Ψ(b),Ψ(c)).

Remark 3.6. Given a ∈ NCM we have the Q-systen Θa with θa = aā. Let
β = Φ(a) ∈ Mod(Θ), then β̄ is a Θ left module and there is another way to
construct a Q-system [KR08] denoted by β̄ ⊗Θ β, and it is easy to check that
β̄ ⊗Θ β ∼= āa and that the obtained Q-systems are equivalent.

3.2 The Morita equivalence class of a braided subfactor

In the following we use the definition of Morita equivalence for module cate-
gories as in [Ost03, Def. 3.3]. Let NCN ⊂ End(N) be a UMTC. We remember
that we call a pair (N ⊂M,NCN ) where N ⊂M is a subfactor whose Q-system
Θ is in NCN a non-degenerately braided subfactor.

Definition 3.7. Let NCN ⊂ End(N) be a UMTC. Two irreducible Q-systems
Θa and Θb in NCN are called Morita equivalent if one of the following
equivalent statements hold:

• Mod(Θa) and Mod(Θb) are equivalent as module categories over NCN .

• NCMa
and NCMb

are equivalent as module categories over NCN , where
N ⊂M• is corresponding to Θ•.

We say that the subfactors N ⊂Ma and N ⊂Mb are Morita equivalent if their
Q-systems Θa and Θb, respectively, are Morita equivalent.

Let (ι(N) ⊂ M,NCN ) be a non-degenerately braided subfactor. It follows
directly that for a, b ∈ NCM irreducible Θa and Θb are Morita equivalent and
in particular are Morita equivalent to Θῑ. But it can also happen that Θa and
Θb are equivalent for [a] 6= [b]. If C is a UTFC, we denote by Pic(C) the full and
replete subcategory (2-group) with objects {ρ ∈ C : dρ = 1} (not completed
under direct sums).

Proposition 3.8 ([GS15]). Given two irreducible objects a, b ∈ NCM . Then
the Q-systems Θa and Θb are equivalent if and only if there is an automorphism
β ∈ Pic(MCM ) such that bβ = a.

Now we can give a characterization of the Morita equivalence class of a non-
degenerately braided subfactor.

Proposition 3.9. Let NCN ⊂ End(N) be a UMTC and let Θ be a Q-system
in NCN . Then there is a one-to-one correspondence between

1. equivalence classes [Θa] of irreducible Q-systems Morita equivalent to Θ,
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2. irreducible sectors [a] with a ∈ NCM up the identification: [a] ∼ [b] if
there is an automorphism β ∈ MXM , such that [a] = [βb],

3. elements in N∆M/Pic(MCM ).

Proof. Statement (3) is just a reformulation of (2). Let a ∈ NXM then we
obtain a canonical Q-system Θa in NCN which is Morita equivalent to Θ by
Lemma 3.5. Conversely given a Q-system Θa Morita equivalent to Θ then

NCM is equivalent to NCMa
. The element a ∈ NCM corresponding to ιa ∈ NCMa

under this equivalence is the corresponding element in NCM , cf. [Ost03, Remark
3.5]. The rest follows by Prop. 3.8.

4 α-induction construction and the full center

4.1 The full center and Rehren’s construction coincide

Let N be a type III factor and NCN ⊂ End(N) a UMTC. As before let N∆N =
{idN , ρ1, . . . , ρn} a set of representatives for each sector.
Given ν, λ, µ ∈ N∆N , we can choose a set of isometries B(ν, λµ) :=
{ei}i=1,...,〈ν,λµ〉 with ei ∈ Hom

NCN
(ν, λµ), such that {ei} form an orthonor-

mal basis with respect to the scalar product (e, f) = Φν(e
∗f) defined by the

left inverse Φν of ν [LR97] or equivalently defined by (e, f) · 1ν = e∗f . We
define for an isometry e ∈ Hom

NCN
(ν, λµ) an isometry ē ∈ Hom

NCN
(ν̄, λ̄µ̄) by

ν̄

µ̄

ē

λ̄

:= e∗

λ̄

ν̄

µ̄

.

Definition 4.1 (Longo–Rehren construction). Let NCN ⊂ End(N) a URFC.
There is a Q-system ΘLR = (θLR, wLR, xLR) in NCN ⊠ NCN given by:

[θLR] =
⊕

ρ∈NCN

[ρ⊠ ρ̄], xLR =
1√
dθ

⊕

λµν

∑

e∈B(ν,λµ)

√
dλdµ

dνdθ
e⊠ ē ,

=
⊕

λµν

∑

e∈B(ν,λµ)
ν

µ

e

λ

⊠

ν̄

µ̄

ē

λ̄

.

More general, for an equivalence of braided categories φ : NCN → NC′N , we

define the Q-system Θφ
LR = (θφLR, w

φ
LR, x

φ
LR) in NCN ⊠ NC′N by

[θφLR] =
⊕

ρ∈NCN

[ρ⊠ φ(ρ̄)], xφLR =
⊕

λµν

∑

e∈B(ν,λµ)

√
dλdµ

dνdθ
e ⊠ φ(e) .
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Definition 4.2. Let NCN ⊂ End(N) be a URFC. A Q-system Θ = (θ, w, x)
in NCN is called commutative if ε(θ, θ)x = x. Diagrammatically:

θθ

θ

=

θ θ

θ

θθ

.

Proposition 4.3 ([LR95]). The Q-system obtained by the Longo–Rehren con-
struction is commutative.

Definition 4.4 (Product Q-system). Let Θi = (θi, wi, xi) with i = 1, 2 be
two Q-systems in a URFC category NCN . Then we define two Q-systems
Θ1 ◦± Θ2 = (θ1 ◦ θ2, w1w2, x±) in NCN , where x± = θ1(ε

±(θ1, θ2))x1θ1(x2),
graphically:

θ1θ2 θ1θ2

θ1θ2

x+
=

θ2 θ2

θ2

x2

θ1 θ1

θ1

θ1 θ1

θ1

x1
.

Definition 4.5. For Θ ≡ (θ, w, x) a Q-system in NCN and ρ ∈ NCN , we define

P l
Θ(ρ) =

1√
dθ
·

ρ

ρθ

θ

≡

ρ

ρθ

θ

∈ Hom(θρ, θρ)

and P l
Θ := P l

Θ(idN ). Similarly, we define P r
Θ(ρ) and P r

Θ by interchanging the
braiding with the opposite braiding.

Lemma 4.6. P
l/r
Θ (ρ) is a projection.

Proof. That P l
Θ(ρ)

2 = P l
Θ(ρ) is proven as in [FRS02, Lemma 5.2], see also

[BKLR15]. We just remark that we have a prefactor due to another normal-
ization and that one can check that P l

Θ(ρ) is selfadjoint.

Proposition 4.7 (Sub-Q-system cf. [BKLR15]). Let p ∈ Hom(θ, θ) be an or-
thogonal projection satisfying pθ(p)xp = θ(p)xp = pxp = pθ(p)x and w∗p = w∗.
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Let θp ≺ θ corresponding to p, i.e. there a isometry s ∈ Hom(θp, θ), such that
s∗s = 1θp and ss∗ = p. Then Θp = (θp, wp, xp) with

wp := s∗w, xp :=

√
dθ

dθp
· s∗θ(s∗)xs

is a Q-system.

Graphically, the conditions are given by:

θθ

θ

p

p

p

=

θθ

θ

p

p

=

θθ

θ

p p

=

θθ

θ

p

p

,

θ

p
=

θ

.

Remark 4.8. The notion of sub-Q-system Θp of Θ corresponds to the notion
of intermediate subfactor L with N ⊂ L ⊂ M where Θ is the dual canon-
ical Q-system of N ⊂ M . Namely, the properties of the sub-Q-system are
just a reformulation of [ILP98, Corollary 3.10]. Namely, they consider sub-
spaces Kρ ⊂ Hom(ι, ιρ) for each ρ ∈ N∆N , which correspond to a projection
p ∈ Hom(θ, θ) if we identify the Hilbert spaces Hom(ρ, θ) and Hom(ι, ιρ) by
Frobenius reciprocity.

Remark 4.9 (cf. [BKLR15]). If one drops the condition w∗p = w∗ in Prop. 4.7
then we obtain a more general “sub” Q-system Θp = (θp, wp, xp) with

wp := λ−1 · s∗w, xp := λ ·
√

dθ

dθp
· s∗θ(s∗)xs

where λ =
√
w∗pw.

Definition 4.10. We denote by Cl(Θ) = (Cl(θ), Cl(w), Cl(x)) the left cen-
ter of Θ, which is defined to be the sub-Q-sytem associated with the projection
P l
Θ ∈ Hom(θ, θ). Analogously, the right center Cr(Θ) is defined using P r

Θ.

Remark 4.11 ([FFRS06, Lemma 2.30]). The Q-system Cl/r(Θ) is a maximal
commutative sub-Q-system of Θ.

Remark 4.12. The intermediate factor N ⊂ M+ ⊂ M defined in [BE00] is
given by the Q-system Cl(Θ). Namely, the characterization of P l

Θ in [FFRS06,
Lemma 2.30] is the characterization in [BE00, Lemma 4.1] in terms of subspaces
Hρ ⊂ Hom(ι, ιρ) of “charged intertwiners”. Similarly, N ⊂ M− ⊂ M is given
by Cr(Θ).

Definition 4.13 (cf. [FFRS08]). Let NCN be a UMTC. The full center
of a Q-system Θ is defined to be the Q-system Z(Θ) ≡ (Z(θ), Z(w), Z(x)) =
Cl((Θ ⊠ idN ) ◦+ ΘLR) in NCN ⊠ NCN .
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In particular we have Z(idN ) = ΘLR.

Definition 4.14. Let NCN be a URFC and Θ = (θ, w, x) a Q-system in NCN .
We define

Homloc(θρ, σ) = {t ∈ Hom(θρ, σ) : t · P l
θ(ρ) = t} ,

Homloc(σ, θρ) = {t∗ ∈ Hom(σ, θρ) : P l
θ(ρ) · t∗ = t∗} .

In particular, the spaces Homloc(θρ, σ) and Homloc(σ, θρ) are anti-isomorphic,
due to the self-adjointness of P l

θ(ρ).

Lemma 4.15. The isometry ψ ∈ Hom(Z(θ), (θ ⊠ idN )θLR) with ψψ∗ =
P l
(Θ⊠idN )◦+ΘLR

and ψ∗ψ = 1 is of the form:

ψ =
⊕

λ1,λ2∈N∆N

⊕

m∈B(θλ2,λ1)loc

m∗ ⊠ idλ2
∈ Hom(Z(θ), (θ ⊠ idN )θLR) ,

where the sum over m goes over an ONB of Homloc(θλ2, λ1). In particular:

[Z(θ)] =
⊕

λ1,λ2∈N∆N

〈θλ2, λ1〉loc
[
λ1 ⊠ λ2

]
,

where 〈 · , · 〉loc = dimHomloc( · , · ).

Proof. We first note that u ∈ Hom(R(θ), (θ ⊠ 1)θLR) given by

u :=
⊕

λ1,λ2∈N∆N

⊕

m∈B(θλ2,λ1)

m∗ ⊠ idλ2
∈ Hom(R(θ), (θ ⊠ idN )θLR) ,

R(θ) :=
⊕

λ1,λ2∈N∆N

〈θλ2, λ1〉λ1 ⊠ λ2

is a unitary interwiner. It can be shown that

P l
(Θ⊠idN )◦+ΘLR

· u = P l
Θ⊠idN

(θLR) · u ≡
(
⊕

λ∈N∆N

P l
Θ(λ) ⊠ 1λ

)
· u .

The equality is the statement [FFRS06, Prop. 3.14(i)], namely it is proven
that Cl((Θ⊠ idN ) ◦+ ΘLR) which is associated with P l

(Θ⊠idN )◦+Θ is associated

with the projection P l
Θ⊠idN

(Cl(θLR)) ≡ P l
Θ⊠idN

(θLR). We can conclude by
eventually choosing another basis that a maximal isometry invariant w.r.t.
P l
(Θ⊠idN )◦+ΘLR

is given by summing just over ONB’s of Homloc(θλ2, λ1).

Given a Q-system Θ in NCN and ι(N) ⊂ M its associated subfactor with the
inclusion map ι : N →M , we will constantly use that the Q-system Θ is of the
form Θῑ as in Def. 2.1, in other words the Q-system Θ becomes trivial in the
2–C∗-category generated by NCN , ι, ῑ. This simplifies many graphical proofs.
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Lemma 4.16. Let NCN ⊂ End(N) be a UMTC, Θ a Q-system in NCN and
N ⊂M the corresponding subfactor. Let ρ, σ ∈ NCN be irreducible. The spaces
Homloc(θρ, σ) and Hom(α−

ρ , α
+
σ ) are isomorphic by the map:

Homloc(θρ, σ) −→ Hom(α−
ρ , α

+
σ )

θ

σ

ρ

7−→ 1
4
√
dθ

α−
ρ

α+
σ

1
4
√
dθ

θ

σ

ρ

←−[

α+
σ

α−
ρ

.

In the same way Homloc(ρ, θσ) is isomorphic to Hom(α+
ρ , α

−
σ ). This gives a

unitary equivalence between the Hilbert spaces Homloc(ρ, θσ) with scalar product
(e, f) = Φσ(e

∗f) and Hom(α+
ρ , α

−
σ ) with scalar product (e′, f ′) = Φα+

σ
(e′∗f ′),

where Φσ and Φα+
σ

denote the unique left inverse and unique standard left
inverse, respectively.

Proof. We first check that the map is well defined, namely the image is an
element in Homloc(θρ, σ) and we have (“=” denotes the trivial intertwiner
identifying θ = ῑι)

1√
dθ

ρθ

σ

=

≡ 1√
dθ

θθ ρ

σ

=

θ

σ

ρ

,

where we used in the first equation that Θ is of the form Θῑ and in the second
equation that the closed string can be contracted which cancels the prefactor.
So we conclude that the image is actually in Homloc(θρ, σ).
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We have to show that both maps are inverse to each other:

θ

σ

ρ

7−→

α−
ρ

α+
σ

7−→ 1√
dθ

θ

σ

ρ

=

θ

σ

ρ

α+
σ

α−
ρ

7−→ 1
4
√
dθ

θ

σ

ρ

7−→ 1√
dθ

α−
ρ

α+
σ

=

α+
σ

α−
ρ

,

where the last equation in the first line is exactly the fact that the intertwiner is
in Homloc(θρ, σ), namely the diagram can be deformed to obtain P l

Θ(ρ) which
can be omitted; in the last equation of the second line the closed string can
again be contracted to a dimension cancelling the prefactor.

Finally, unitarity can be seen as follows:

∥∥∥∥∥∥∥∥∥∥∥∥

1
4
√
dθ

θ

σ

ρ
∥∥∥∥∥∥∥∥∥∥∥∥

2

=
1√
dθ dσ

θ

σ

ρ =

∥∥∥∥∥∥∥∥∥∥ α+
σ

α−
ρ

∥∥∥∥∥∥∥∥∥∥

2

,

where in the last equation we use that the string diagram can be deformed to
give the standard left inverse for α+

σ (cf. [Reh00, Lemma 2.2]).

Definition 4.17 (α-induction construction [Reh00]). For a braided subfactor
ι(N) ⊂ M in NCN there is a Q-system ΘM = (θM , wM , xM ) in NCN ⊠ NCN
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given by:

[θM ] =
⊕

ρ,σ∈N∆N

Zµν [µ⊠ ν̄],

Zµν = 〈α+
µ , α

−
ν 〉

xM =
⊕

lmn

∑

e1,e2

√
dλ2dµ2

dθMdν2
Φ1

ν1 [ι(e1
∗)(φ∗l ⊗ φ∗m)ι(e2)φn] · e1 ⊠ ē2,

=
⊕

lmn

∑

e1,e2

1√
dθM

4

√
dλ2dµ2dν1
dλ1dµ1dν2

Φ1
ν1 [· · · ]

ν1

µ1

e1

λ1

⊠

ν̄2

µ̄2

ē2

λ̄2

where l is considered as a multi-index (λ1 ∈ N∆N , λ2 ∈ N∆N , l =
1, · · · , Zλ1,λ2

) and ei stands for an ONB in Hom(νi, λiµi) and φl an ONB
in Hom(α+

λ1
, α−

λ2
) with respect to the induced left inverse Φ1

λ1
.

The following result was conjectured in [KR10]. It can be seen as the main
technical result. It allows to apply a lot of results obtained in the categorical
literature to the braided subfactor and conformal net setting.

Proposition 4.18. Let NCN be a UMTC. The α-induction construction for
(ι(N) ⊂ M,NCN ) coincides with the full center Z(Θ) of the corresponding
Q-system Θ.

Proof. It is already clear that the two constructions give equivalent objects,
namely

[Z(θ)] =
⊕

λ1,λ2∈N∆N

〈θλ2, λ1〉loc[λ1 ⊠ λ̄2] =
⊕

λ1,λ2∈N∆N

〈α+
λ1
, α−

λ2
〉[λ1 ⊠ λ̄2] = [θM ]

follows from Lemma 4.15 and Lemma 4.16. We have to show that the two
intertwiners Z(x) and xM of the two respective constructions are equivalent.
We decompose Z(x) w.r.t. an ONB to show that we obtain the same coefficients
as in the α-induction construction for xM . Using Lemma 4.15 we have:

√
dθLR

√
dθZ(x) =

⊕

lmn

∑

e2

4

√
dλ1
dλ2

dµ1

dµ2

dν1
dν2

e2

µ1

m∗

λ1

l∗

ν1

n

⊠

ν̄2

µ̄2

ē2

λ̄2

, (5)

where l,m, n run over an ONB of Homloc(λ1, θλ2), Homloc(µ1, θµ2) and
Homloc(ν1, θν2), respectively. We use the following expansion of an arbitrary
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intertwiner t ∈ Hom(ν, λµ) with respect to an ONB {e} of

ν

λ µ

t =
∑

e

Φν(e
∗t)e =

1√
dλdµdν

∑

e

e∗

t

ν

µ

e

λ

with respect to an orthonormal basis {e} of Hom(ν, λµ). The rhs of Eq. (5)
becomes

=
⊕

lmn

∑

e1,e2

4

√
dλ1

dλ2

dµ1

dµ2

dν1
dν2√

dλ1dµ1dν1 e2

µ1

m∗
λ1
l∗

ν1
n

e∗1

·

ν1

µ1

e1

λ1

⊠

ν̄2

µ̄2

ē2

λ̄2

.

We calculate:

4

√
dλ1
dλ2

dµ1

dµ2

dν1
dν2 e2

µ1

m∗
λ1

l∗

ν1
n

e∗1

= 4

√
dλ1
dλ2

dµ1

dµ2

dν1
dν2

(dθ)−
3
2

e2

µ1

m∗
λ1

l∗

ν1
n

e∗1

=

=

e2

m∗l∗

n

e∗1

= dν1
√
dθ 4

√
dλ1dλ2dµ1dµ2

dν1dν2
Φ1

ν1 [· · · ] ,

where we first use that the intertwiners l,m, n are in Homloc( · , · ) and then
replace by Lemma 4.16 with an orthonormal basis in Hom(α+

λ1
, α−

λ2
) and in the

second step deform the ι string to obtain the left inverse of α+
nu1

and Φ1
ν1 [· · · ]

is the expression of Def. 4.17. This shows that Z(x) has the same coefficients
as xM from the α-induction construction.
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We need the following general result as a main tool in the following sections.

Proposition 4.19 (cf. [KR08]). Let Θa and Θb be irreducible in a UMTC

NCN . Then Θa and Θb are Morita equivalent if and only if Z(Θa) and Z(Θb)
are equivalent.

4.2 The adjoint functor of the full center

We have a tensor functor T as follows: the map

T

(
⊕

i

λi ⊠ µ̄i

)
=
⊕

i

λi ◦ µ̄i (6)

is an extension of the monoidal product (which by definition is a bifunctor).
We have T (idN ⊠ idN ) = idN and the family of morphisms

µ(ρ1⊠σ̄1),(ρ2⊠σ̄2) : T (ρ1 ⊠ σ̄1) ◦ T (ρ2 ⊠ σ̄2) −→ T (ρ1ρ2 ⊠ σ̄1σ̄2)

µ(ρ1⊠σ̄1),(ρ2⊠σ̄2) := (1ρ1
⊗ ε(ρ2, σ̄1)∗ ⊗ 1σ̄2

) ≡ ρ1(ε(ρ2, σ̄1)∗) (7)

extends to a family

µ(β1),(β2) : T (β1) ◦ T (β2) −→ T (β1 ◦ β2), β1, β2 ∈ NCN ⊠ NCN
and makes the following diagram commute:

T (β1) ◦ T (β2) ◦ T (β3) −→ T (β1) ◦ T (β2 ◦ β3)
↓ ↓

T (β1 ◦ β2) −→ T (β1 ◦ β2 ◦ β3)
.

This means T is a (strict with respect to the unity but in general non-strict for
associativity, i.e. µ•,• 6= 1) strong monoidal functor (tensor functor). It is well
known that strong monoidal functors map monoids into monoids, by this we
can conclude that for Θ2 = (θ2, w2, x2) a Q-system in NCN ⊠NCN we obtain a
(reducible) Q-system T (Θ2) = (T (θ2), wT (Θ2), xT (Θ2)) by

wT (Θ2) = T (w2), xT (Θ2) = µ∗
θ2,θ2 · T (x2)

or explicitely by (tjki ∈ Hom(ρi ⊠ σ̄i, ρjρk ⊠ σ̄j σ̄k))

θ =
⊕

i

ρi ⊠ σ̄i x =
⊕

ijk

tjki

T (θ2) =
⊕

i

ρiσ̄i xT (Θ) =
⊕

ijk

ρj(ε(ρk, σ̄j)) · T (tjki )︸ ︷︷ ︸
∈Hom(ρiσ̄i,ρj σ̄jρkσ̄k)

.

We note that even if Θ is commutative T (Θ) is in general not commutative,
because the functor is not braided.
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We introduce the notion of a direct sum for Q-systems (cf. [EP03, p. 321]).
Let NCN ⊂ End(N) be a URFC and {Θi = (θi, wi, xi)}i=1,...,n be Q-systems in

NCN . The direct sum Q-system Θ = (θ, w, x) with θ =
⊕n

i=1 θi is defined by

θ =

n∑

i=1

Ad Ti ◦ θi , w =
1√
d(θ)

n∑

i=1

di · Ti · wi , x =

n∑

i=1

θ(Ti)TixiT
∗
i ,

where di =
√
d(θi) = d(ιi) and Ti are generators of the Cuntz algebra with

n elements, i.e. T ∗
i Tj = δij · 1 and

∑
i TiT

∗
i = 1. If (θi, wi, xi) corresponds to

the subfactor N ⊂Mi with inclusion map ιi, then (θ, w, x) corresponds to the
inclusion N ⊂ ⊕n

i=1Mi. The pi = TiT
∗
i give a decomposition in the sense of

Remark 4.9.
The following identity has been proven on the level of objects in [Eva02, Prop.
3.3.]. We remark that a priori it is not clear that this “curious identity” holds
also on the level of Q-systems. It is directly related to the adding the boundary
construction in [CKL13] as we discuss in Sect. 6.6.

Proposition 4.20 (cf. [KR08, Prop. 4.3]). Let NCN ⊂ End(N) be a UMTC
and Θ a Q-system in NCN with corresponding subfactor N ⊂ M . Then we
have an equivalence of Q-systems:

T (Z(Θ)) ∼=
⊕

a∈N∆M

Θa.

Our first aim was to prove this identity directly for the α-induction construc-
tion. We had a graphical proof for the trivial Q-system. Because the α-
induction construction coincides with the full center it follows now easily from
the general results of [KR08].

Proof. We note (see Rem. 3.6) that the Q-system Θa for some a ∈ NCM or
equivalently ā ∈ MCN corresponds on the nose with the Q-system Φ(ā)∨ ⊗Θ

Φ(ā) = Φ(a) ⊗Θ Φ(ā) constructed in [KR08], where Φ: MCN → Bim(Θ, id) is
the functor in Prop. 3.2. Then one can directly apply [KR08, Prop. 4.3].

As a corollary this implies the “curious identity” which was proven in [Eva02,
Prop. 3.3.] and shows that behind this identity indeed sits more structure.

Corollary 4.21 (cf. [Eva02, Prop. 3.3.], see also [BEK99, Cor 6.13.]). Let
N ⊂ M be a non-degenerately braided type III subfactor and Zλµ = 〈α+

λ , α
−
µ 〉

for λ, µ ∈ N∆N . Then we have
⊕

a∈N∆M

[aā] =
⊕

ρ,σ∈N∆N

Zρσ[ρσ̄] (8)

and in particular the number of elements in N∆M or M∆N is given by

|N∆M | = |M∆N | =
∑

ρ∈N∆N

Zρρ .

Remark 4.22. The functor T ( · ) gives a (left) adjoint to the full center Z( · ),
namely Θ is a sub-Q-system of T (Z(Θ)).
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5 Modular invariance and Q-systems in NCN ⊠ NCN

5.1 Characterization of modular invariant Q-systems

Let NCN ⊂ End(N) be a UMTC. Given a Q-system Θ and the correspond-
ing extension ι(N) ⊂ M let Zµν = 〈α+

µ , α
−
ν 〉 for µ, ν ∈ N∆N . The matrix

Z = (Zµν)µ,ν∈N∆N
is a modular invariant [BEK99], i.e. it commutes with

S and T from (3). It is called normalized because Z00 = 1 and sufferable
because it comes from an inclusion ι(N) ⊂ M . The α-induction construc-
tion or equivalently the full center gives a Q-system Θ2 in NCN ⊠ NCN with
[θ2] =

⊕
µ,ν∈N∆N

Zµν [µ ⊠ ν̄]. It is sometimes convenient to write the matrix
(Zµν) formally in character form as Z =

∑
µ,ν∈N∆N

Zµ,νχµχ̄ν .

Lemma 5.1 ([BEK00], see also [KO02, Thm 4.5]). Let NCN be a UMTC.
If Θ is an irreducible commutative Q-system in NCN , then dimMC0M =

dimNCN/(dΘ)2. In particular, dΘ ≤ dim(NCN)
1
2 .

Proof. The first statement is a combination of Thm. 4.2 and Prop. 3.1 in
[BEK00]. The second statement follows from the first, using dimMC0M ≥ 1.
Using Remark 3.3 and 5.6, this also follows from [KO02, Thm 4.5].

Proposition 5.2 ([KR09, Thm. 3.4, Prop. 3.22]). Let Θ2 be an irreducible
commutative Q-system in NCN ⊠ NCN , then the following are equivalent:

1. dΘ2 = dim(NCN )

2. Z = (Zµν) is a modular invariant

3. Θ2 ≡ Z(Θ) for some irreducible Q-system Θ in NCN .

Proof. (3) are equivalent (1) by [KR09, Thm. 3.4, Prop. 3.22] (see also [Müg10,
Thm 3.4], [DMNO13]).
The notion of modular invariance in [KR09, Thm. 3.4] is a bit different. But
by [LR04, Appendix C] we obtain that (2) implies (1), namely the argument
shows that if dθ < dim(NCN) then Z cannot be modular invariant. Together
with Lemma 5.1 this gives the statement.
(3) implies (2) is clear by the fact that Zµν = 〈α+

µ , α
−
ν 〉 defines a modular

invariant and that Z(Θ) coincides with the α-induction construction Prop.
4.18.

5.2 Permutation modular invariants

Let NCN ⊂ End(N) be a UMTC. A non-negative integer valued matrix
Z = (Zµν)µ,ν∈N∆N

with ZidN ,idN
= 1 is called a modular invariant if it

commutes with the matrices S and T constructed in Subsect. 2.2. It is called
realizable (sufferable) if there exists a braided subfactor (ι(N) ⊂ M,NCN )
such that Zµν = 〈α+

µ , α
−
ν 〉.
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Proposition 5.3. Let NCN ⊂ End(N) be a UMTC and φ ∈ Aut(N∆N ) which
only fixes the sector [idN ] and which extends to a braided automorphism of

NCN . Then there is a braided subfactor N ⊂Mφ in NCN with

[θφ] =
⊕

ν

nν [ν], nν =
∑

µ

〈µφ(µ̄), ν〉

which realizes the permutation modular invariant Zµν = δν,φ(µ).

Proof. By the Longo–Rehren construction Def. 4.1 there is a Q-system Θφ
LR

with:

[θφLR] =
⊕

µ

[µ⊠ φ(µ̄)] .

We define the Q-system Θφ := T (Θφ
LR) in NCN with

[θφ] :=
⊕

µ

[µφ(µ̄)] =
⊕

ν

nν [ν], nν =
∑

µ

〈µφ(µ̄), ν〉

as above which is irreducible because 0 = 〈µφ(µ̄), idN 〉 for [µ] 6= [idN ] by the
assumption about φ not having non-trivial fixed points. Because T ( · ) is left-
adjoint to Z( · ) the subfactor N ⊂ Mφ given by the Q-system Θφ has the
modular invariant Zµν = δν,φ(µ).

A particular case is, if NCN has no non-trivial self-conjugate sectors besides the
trivial sector, in this case the charge conjugation C might fulfill the assumptions
and the obtained subfactor realizes the charge conjugation modular invariant
Z = C. We therefore can answer a particular case of the question how Z = C
is realized, namely the case that there are no non-trivial self-conjugate charges.

Example 5.4. The UMTC E6,1 for example obtained by positive energy repre-
sentation of loop groups, has 3 sectors {ρ0, ρ1, ρ2} with Z3 fusion rules, i.e.
[ρiρj ] = [ρi+j mod 3] for 0 ≤ i, j ≤ 2, and the charge conjugation trans-
poses the two non-trivial charges. Then Prop. 5.3 yields a Q-system with
[θ] = [ρ0]⊕ [ρ1]⊕ [ρ2] which realizes Z = C, i.e. Z = |χ0|2 + χ1χ̄2 + χ2χ̄1.

If there is fixed point in the permutation the same construction as in the proof
of Prop. 5.3 is possible but we do not know how a dual canonical endomorphism
of an irreducible Q-system giving the modular invariant would look, because
the “adjoint functor” gives a reducible Q-system. Nevertheless, we can con-
clude that for a permutation matrix Z of N∆N which gives rise to a braided
automorphism, there exists a braided subfactor ι(N) ⊂M in NCN which has Z
as a modular invariant, i.e. such permutation modular invariants are realizable.
The category NCN is called pointed if all irreducible objects are invertible, i.e.
have dimension 1 or in other words NCN = Pic(NCN ).

Lemma 5.5. Let NCN ∈ End(N) be a pointed UMTC and let Θ1 and Θ2 be
Q-systems. If Θ1 and Θ2 are Morita equivalent, then they are equivalent.
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Proof. Let Θ1 and Θ2 be irreducible Q-systems in NCN which are Morita equiv-
alent. Without lost of generatlity, we may assume that Θ1 = Θῑ comes from a
subfactor ι(N) ⊂M and Θ2 = Θa with a ∈ NCM irreducible.
Because NCN is pointed the sectors form an abelian (due to the braiding)
group denoted G. The multiplication in G is given by the fusion rules, i.e.

N∆N = {λg : g ∈ G} with [λgλh] = [λgh] for all g, h ∈ G and [λg−1 ] = [λ̄g].
We note that ιλg is irreducible, namely by Frobenius reciprocity 〈ιλg, ιλg〉 =
〈θ, λg λ̄g〉 = 〈θ, idN 〉 = 1. Therefore N∆M ⊂ {λg ῑ : g ∈ G} (because there
can be [λg ῑ] = [λhῑ]). So we may assume that a = λg ῑ and can conclude that
[θa] = [λg ῑιλ̄g] = [θλ̄gλg] = [θ]. It is easy to check that using ε(λg, θ) we can
construct a unitary intertwiner θa → θλgλ̄g → θ, which gives an equivalence of
the two Q-systems.
Alternatively, we can use that ᾱ±

λ
g−1

is an automorphism satisfying aᾱ±
λ
g−1

=

λg ῑα
±
λ
g−1

= λgλg−1 ῑ = ῑ. Then Prop. 3.8 gives an alternative proof of the

statement.

Let NCN ⊂ End(N) be a pointed UMTC and Θ be a Q-system and Zµν =

〈α+
µ , α

−
ν 〉. Then Lemma 5.5 shows that T (Z(Θ)) is equivalent to

⊕trZ
i=1 Θ.

Therefore in this case we obtain an easy formula for θ in terms of its modular
invariant matrix Z = (Zµν):

[θ] =
1

trZ

⊕

ρ∈N∆N

∑

µ,ν∈N∆N

ZµνN
ρ
µν [ρ] ,

see also [Pin07].

5.3 Maximal chiral subalgebras and second cohomology for mod-
ular invariant Q-systems

Let us assume that Θ is a commutative Q-system in NCN and N ⊂ M the
associated subfactor.
The category Mod(Θ) forms a (non-strict) tensor category as follows. Let ρ,
σ be two right Θ-modules. Because Θ is commutative, we obtain a left action
on ρ and σ using the braiding, which makes them bimodules. Then the tensor
product ρ ⊗ σ is defined to be the object ρ ⊗Θ σ as in Remark 3.3, which we
see as right module by forgetting the left action.
Let Mod0(Θ) the subcategory of dyslectic modules (see [Par95, KO02]), i.e.
modules (ρ, r), such that rε(θ, ρ)ε(ρ, θ) = r, graphically:

r

ρ

ρ θ

=

r

ρ

ρ θ

.
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2D Conformal Nets and Its Boundary conditions 1167

It can easily be seen that if we give the induced right Θ-module ρθ the structure
of a bimodule using the braiding that it becomes equivalent to the α-induction
Φ(α±

ρ ) in Remark 3.3, where the sign is depending on the choice of the braiding.

We obtain that Bim±(Θ,Θ) ∼= Mod(Θ) as tensor categories, but we will just
need the following fact.

Remark 5.6. The map obtained by restricting bimodules to right modules

Bim0(Θ,Θ)→ Mod0(Θ)

is an equivalence of categories. Namely, an object in Bim0(Θ,Θ) gives a dyslec-
tic module, because using the fact that it is contained both, in the image of
α+ and α−, we can “unwind” the double braid. Conversely, if a module is
dyslectic, the left action obtained by the both braidings coincide, so it must
come from Bim0(Θ,Θ).

For β ∈ MCM we define the σ-restriction σβ = ῑβι ∈ NCN .
Given Θ± commutative Q-systems corresponding to N ⊂ M± it follows
that M±

C0M±
are again UMTCs. Let us assume there is a braided equiv-

alence φ : M+
C0M+

→ M−
C0M−

. Now we consider the Q-system Θφ
LR in

M+
C0M+

⊠ M−
C0M−

. By composing ιLR with ι1 ⊠ ι2 we obtain a Q-system

Θ(Θ+,Θ−,φ) = Θ(ῑ1⊠ῑ2)◦ῑ
φ

LR

with

[θφLR] =
⊕

α∈M+
∆0

M+
,β∈M−

∆0
M−

Z̃αβ [α⊠ β̄], Z̃αβ = δα,φ(β)

[θ(Θ+,Θ−,φ)] =
⊕

µ,ν∈N∆N

Zµν [µ⊠ ν̄], Zµν =
∑

αβ

Zαβ〈σ+
α , µ〉〈σ−

β̄
, µ̄〉

=
∑

τ

b+τ,µb
−
φ(τ),ν

where b±τ,µ = 〈σ±
τ , µ〉 for τ ∈ M±

C0M±
. All maximal commutative Q-systems in

NCN ⊠ NCN are of this form:

Proposition 5.7 ([DNO13, Prop. 3.7, Cor. 3.8]). There is a one-to-one cor-
respondence between

1. Equivalence classes of commutative irreducible Q-systems Θ2 in NCN ⊠

NCN with dθ2 = dim(NCN ).

2. Isomorphism classes of triples (Θ+,Θ−, φ) where Θ± are commutative
irreducible Q-systems in NCN and φ : M+

C0M+
→ M−

C0M−
is an equivalence

of braided categories.

3. Indecomposable module categories over NCN .
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Proof. This statement is proven in a more general setting in [DNO13, Prop.
3.7, Cor. 3.8]. They call the objects in point 1) Lagrangian algebras. We use
that by Remark 3.3 and 5.6 (see also [Müg10, Thm 3.1]) the category M+

C0M+

is equivalent to the category of dyslectic modules.

We note that there can exist inequivalent φ1, φ2 giving the same modular in-
variant Z = (Zµν). Namely if 〈σφ1(τ), µ〉 = 〈σφ2(τ), µ〉 holds for all τ ∈ M+

C0M+

and µ ∈ NCN for which b+τ,µ 6= 0. Because φ1 and φ2 are inequivalent the

Q-systems Θφ1

LR and Θφ2

LR are inequivalent. This (or using Prop. 5.7) implies
that also Θ(Θ+,Θ−,φ1) and Θ(Θ+,Θ−,φ2) are inequivalent. This means that the
second cohomology (see Rem. 2.2) of Θ(Θ+,Θ−,φ1,2) does not vanish in this case.

Example 5.8. Let us consider for NCN the UMTC obtained by SU(3)9 and Θ+

coming from the conformal inclusion SU(3)9 ⊂ E6,1.
As in Ex. 5.4 the UMTC category E6,1 has three sectors M+

∆0
M+

= {β0, β1, β2}
and we obtain an extension M+ ⊂ M̃ with [θ̃] = [β0]⊕ [β1]⊕ [β2], which gives
the permutation modular invariant interchanging β1 ↔ β2. Now σ+

β1
= σ+

β2
, so

both inclusions N ⊂ M+ and N ⊂ M̃ give by the above discussion the same
modular invariant with respect to SU(3)9, which is Z = |χ0,0 + χ9,0 + χ0,9 +
χ4,1 + χ1,4 + χ4,4|2 + 2|χ2,2 + χ5,2 + χ2,5|2. This example appeared in [BE01],
cf. [EP09,EP11].
So we can conclude that Θ(Θ+,Θ+,id) and Θ(Θ+,Θ+,φ) in NCN ⊠ NCN have iso-
morphic endomorphisms [θ(Θ+,Θ+,id)] = [θ(Θ+,Θ+,φ)] but the Q-systems are not
equivalent. So we have an example where the second cohomology does not
vanish.
The same happens for the inclusion4 G2,3 ⊂ E6,1 where Z = |χ00 + χ11|2 +
2|χ02|2.

6 Conformal nets

We now apply the results to conformal nets.
Let R = R∪{∞} be the one-point compactification of the real line R, which we
can by the Cayley map R ∋ x 7→ z = i−x

i+x ∈ S1 identify with the circle S1 ⊂ C.
We denote by Möb the Möbius group which is isomorphic to both:

• PSL(2,R), which acts naturally on the real line R, and

• PSU(1, 1), which acts naturally on the circle S1 ⊂ C.

The universal covering group ofMöb is denoted by M̃öb. We denote byMöb± =
Möb⋊Z2 where the action of Z2 is given by the reflection r : z 7→ z̄ on S1. The
rotations R(ϑ)z = eiϑz on S1, the dilations δ(s)x = esx on R, and the
translations τ(t)x = x + t on R give three distinguished one-parameter
subgroups of Möb which generate Möb.

4This was told to us by V. Ostrik via mathoverflow
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We denote by I ∈ I the set of all proper intervals on S1, i.e. all open,
connected, non-dense, non-empty intervals I ⊂ S1.

Definition 6.1. A local Möbius covariant net (conformal net) A on S1 is a
family {A(I)}I∈I of von Neumann algebras on a Hilbert space HA, with the
following properties:

A. Isotony. I1 ⊂ I2 implies A(I1) ⊂ A(I2).

B. Locality. I1 ∩ I2 = ∅ implies [A(I1),A(I2)] = {0}.

C. Möbius covariance. There is a unitary representation U of Möb on H
such that U(g)A(I)U(g)∗ = A(gI).

D. Positivity of energy. U is a positive energy representation, i.e. the
generator L0 (conformal Hamiltonian) of the rotation subgroup U(R(θ)) =
eiθL0 has positive spectrum.

E. Vacuum. There is a (up to phase) unique rotation invariant unit vector
Ω ∈ H which is cyclic for the von Neumann algebra

∨
I∈I A(I).

The Reeh–Schlieder property automatically holds [FJ96], i.e. Ω is cyclic
and separating for any A(I) with I ∈ I. Furthermore, we have the
Bisognano–Wichmann property [GF93,BGL93] saying that the modular
operators with respect to Ω have geometric meaning; e.g. the modular oper-
ators for the upper circle I0 are given by the dilation ∆it = U(δ(−2πt)) and
reflection J = U(r), where here U is extended to Möb±. For a general interval
I ∈ I the modular operators are given by a special conformal transformation δI
and a reflection rI both fixing the endpoints of I. The Bisognano–Wichmann
property implies Haag duality

A(I)′ = A(I ′) I ∈ I

and it can be shown (see e.g. [GF93]) that each A(I) is a type III1 factor in
Connes’ classification [Con73]. A conformal net is additive [FJ96], i.e. for
intervals I ∈ I and I1, . . . , In ∈ I we have

I ⊂
⋃

i

Ii =⇒ A(I) ⊂
∨

i

A(Ii) .

A local Möbius covariant net on A on S1 is called completely rational if it

F. fulfills the split property, i.e. for I0, I ∈ I with I0 ⊂ I the inclusion
A(I0) ⊂ A(I) is a split inclusion, namely there exists an intermediate type
I factor M such that A(I0) ⊂M ⊂ A(I).

G. is strongly additive, i.e. for I1, I2 ∈ I two adjacent intervals obtained by
removing a single point from an interval I ∈ I the equality A(I1)∨A(I2) =
A(I) holds.

Documenta Mathematica 20 (2015) 1137–1184



1170 Marcel Bischoff, Yasuyuki Kawahigashi, Roberto Longo

H. for I1, I3 ∈ I two intervals with disjoint closure and I2, I4 ∈ I the two
components of (I1 ∪ I3)′, the µ-index of A

µ(A) := [(A(I2) ∨A(I4))′ : A(I1) ∨ A(I3)] (9)

(which does not depend on the intervals Ii) is finite.

Example 6.2. Examples of completely rational local Möbius covariant nets are:

• Diffeomorphism covariant nets with central charge c < 1 [KL04a].

• The nets AL where L is a positive even lattice [DX06] which contain as
a special case [Bis12] loop group nets AG,1 at level 1 for G a compact
connected, simply connected simply-laced Lie group.

• The loop group nets ASU(n),ℓ for SU(n) at level ℓ. [Xu00].

Further examples of rational conformal nets can be obtained from these as
follows:

• Finite index extensions and subnets of completely rational conformal nets.
Namely, let A ⊂ B be a finite subnet i.e. [B(I) : A(I)] < ∞ for some
(then all) I ∈ I, then A is completely rational iff B is completely rational
[Lon03], in particular orbifolds AG of completely rational nets A with G
a finite group are completely rational.

• Let A ⊂ B be a co-finite subnet , i.e. [B(I),A(I) ∨ Ac(I)] <∞ for some
(then all) I ∈ I, where the coset net Ac is defined by Ac(I) = A′∩B(I)
with A′ = (∨I∈IA(I))′. Then B is completely rational iff A and Ac

are completely rational [Lon03]. This gives many example of completely
rational nets coming from the coset construction.

A separable (non-degenerated) representation of a strongly additive
local Möbius covariant net is a family π = {πI : A(I) → B(Hπ)}I∈I of unital
representations (∗-homomorphisms) πI of A(I) on a common separable Hilbert
space Hπ, which are compatible, i.e.

πI2 ↾ A(I1) = πI1 , I1 ⊂ I2 .

Such a representation is automatically normal, i.e. all πI are strongly continu-
ous. We denote by DHR(A) the category of separable representations, where
morphisms in Hom(π1, π2) are given by intertwiners V ∈ B(Hπ1 ,Hπ2), such
that V π1

I (a) = π2
I (a)V for all I ∈ I and a ∈ A(I). Let us denote by DHR0(A)

the representations π with finite statistical dimension dπ, which is defined to
be

dπ := [πI′(A(I ′))′ : πI(A(I))]
1
2

for some I ∈ I, where [M : N ] is the minimal index. The definition of dπ does
not depend on the choice of I.
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Let us from now on fix a completely rational local Möbius covariant net A on
S1. The category DHR0(A) is a (unitary) modular tensor category [KLM01].
Every π ∈ DHR0(A) is equivalent to a representation localized in a given
I0 ∈ I, i.e. it exists a ρ ∼= π such that Hρ = HA and ρI′

0
= idA(I′

0)
. Namely,

πI′
0
(A(I ′0)) on Hπ is spatially isomorphic to A(I ′0) on HA, by the type III

property. Let U : Hπ → HA be a unitary implementing this isomorphism, then
ρ = {ρI := AdU ◦ πI}I∈I does the job.
This implies that the category DHRI0(A) of representations with finite statis-
tical dimensions which are localized in I0 has the same irreducible sectors as
DHR0(A).
By Haag duality ρ ∈ DHRI0(A) implies ρI(A(I)) ⊂ A(I) for every I ⊃ I0,
that means such a representation is an endomorphism and dρ = [A(I0) :

ρI0(A(I0))]
1
2 equals the dimension of the endomorphism. Together with strong

additivity it follows that all intertwiners are in A(I0). In particular, this means
that DHRI0(A) can naturally be seen as a full subcategory of End(A(I0)) and
that DHRI0(A) is equivalent to DHR0(A). We note that the family {ρI} is
determined by ρI0 by using strong additivity and it is really enough to consider
DHRI0(A) as a full and replete subcategory of End(A(I0)) and we will drop
the index I0. Repleteness is just the fact that for U ∈ A(I0) also AdU ◦ρ is
localized in I0.
The braiding (also called statistics operator) is given by:

ε(ρ1, ρ2) = ρ2(U
∗
1 )U

∗
2U1ρ1(U2) ,

where Ui ∈ Hom(ρi, ρ̃i) and ρ̃i ∈ [ρi] is localized in Ii. Here I1, I2 ⊂ I0 are two
disjoint intervals such that I1 > I2 (I2 sits clockwise after I1 inside I0). We
also write ε+ for ε and define the opposite braiding by ε−(ρ1, ρ2) = ε+(ρ2, ρ1)

∗.
We will interpret A as the chiral observables or as chiral symmetries. For
example A = Virc with c < 1 is the net generated by the chiral stress energy
tensor T (x). We want to look into CFTs on Minkowski space containing the
chiral observables A and boundary conditions on M+ which “preserve” these
observables.

6.1 Extensions and Q-systems

Let M be a spacetime, e.g. Minkowski space and K a set of open spacetime
regions in M , e.g. the set of double cones. Let G be a group acting locally on
M and let G(O) be the set of all g ∈ G, such that there is a continuous path
γ in G from the identity to g such that γ(t)O ∈ K.

Definition 6.3. A local G-covariant net A on M is a family {A(O)}O∈K of
von Neumann algebras on a Hilbert space H, with the following properties:

A. Isotony. O1 ⊂ O2 implies A(O1) ⊂ A(O2).

B. Locality. [A(O1),A(O2)] = {0} for all pairwise spacelike separated
O1, O2 ∈ K.
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C. G-covariance. There is a unitary positive energy representation U of G
on H, such that U(g)A(O)U(g)∗ = A(gO) for all g ∈ G(O)

D. Vacuum. There is a (up to phase) unique G- invariant unit vector Ω ∈ H
which is cyclic and separating for A(O) for all O ∈ K.

A G-covariant DHR representation of A is a compatible family π =
{πO : A(O)→ B(Hπ)}O∈K of representations on a Hilbert space Hπ, such that
for all O ∈ K there exists a unitary V : Hπ → H, such that the representation
ρ := AdV ◦π is localized in O, i.e. ρO0

= idA(O0) for O0 spacelike to O, and that
there is a unitary projective representation Uπ of G, such that AdUπ(g)◦πO =
πgO ◦AdU(g) for all g ∈ G(O).
Given two local G-covariant nets A and B on Hilbert spaces HA and HB,
respectively, an arrow A → B is an isometry V : HA → HB and a compatible
family of embeddings (representation) {πO : A(O) →֒ B(O)} such that for all
O ∈ K we have V a = πO(a)V , V UA(g) = UB(g)V for all g ∈ G and V ΩA = ΩB.

A and B are called unitary equivalent if V is a unitary and πO are isomor-
phisms.

Let us assume that we have a subnet A0 of B, i.e. A0(O) ⊂ B(O) for all O
and U(g)A0(O)U(g)∗ = A0(gO). Then A = A0e with e the Jones projection
on ∨A0(O)Ω is a G-local net on HA := eH, in other words we have an arrow
A → B in the above sense. We say that A is a subnet of B and B is a local
extension of A. By abuse of notation we will not distinguish between the net
A and its representation on the bigger Hilbert space H and write A ⊂ B or
B ⊃ A for an inclusion/extension of nets.

For every connected region we have a subfactor A(O) ⊂ B(O). If the subfactor
is irreducible, we call the extension irreducible and if the index is finite
we call the extension finite. If we have a finite irreducible extension B of A
then the corresponding Q-system of A(O) ⊂ B(O) is a commutative irreducible
Q-system in DHRO(A) and conversely if we have a commutative irreducible Q-
system Θ in DHRO(A) we obtain a finite local extension B of A. In particular
we have a one-to-one correspondence between [LR95]:

• local finite irreducible extensions B ⊃ A up to unitary equivalence and

• commutative irreducible Q-systems Θ in DHRO(A) up to equivalvence.

If we assume Θ to be only irreducible, we still have a relatively local extension,
i.e. [A(O1),B(O2)] = {0} for O1 and O2 spacelike separated. We call such an
extension B ⊃ A also non-local extension to stress the fact that we do not
assume locality of B. There is a one-to-one correspondence between [LR95]:

• finite irreducible extensions B ⊃ A up to unitary equivalence and

• irreducible Q-systems Θ in DHRO(A) up to equivalence.
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6.2 Representation theory of local extensions

The following is well-known to experts [Müg10].

Proposition 6.4. Let A ⊂ B a finite index inclusion of local Möbius covariant
nets on S1 and let either net be completely rational. Then A and B are both
completely rational and the inclusion is irreducible.
Further, let I ∈ I be an interval N := A(I) ⊂ B(I) =: M and NCN =
DHRI(A), and Θ be the Q-system in NCN associated with N ⊂ M . Then
DHRI(B) = MC0M as UMTCs and in particular DHR(B) is equivalent to
Mod0(Θ) and Bim0(Θ,Θ).

Proof. Both MC0M and DHRI(B) being full and replete subcategories of
End(M), the only thing which needs to be checked is that both have the
same irreducible sectors. The braiding on MC0M can be checked to give the
braiding on Rep(B) since the braiding is fixed by the universal property
ε(ρ1, ρ2) = 1 if I2 sits clockwise after I1 inside I. A sector [β] ∈ M∆M is
a DHR sector if and only it is in M∆0

M (see [LR95, BE98]), which implies

MC0M ⊂ DHRI(B). To see equality, we realize that global dimensions coincide,
namely dimDHRI(B) ≡ µ(B) = [M : N ]−2µ(A) ≡ dimNCN/(dθ)2 by [KLM01]
and dimMC0M = dimNCN/(dθ)2 by Lemma 5.1.

Remark 6.5. Commutative Q-systems Θ in a UMTC NCN are also called quan-
tum subgroups, so finding quantum subgroups in a given UMTCs NCN and
finding finite index local extensions of a local Möbius covariant A net with
DHR0(A) ∼= NCN is equivalent. The representation theory of the extensions
can be completely understood on a categorical level.
An analogous statement for inclusions of rational VOAs appeared recently in
[HKL15].

6.3 Maximal 2D nets with chiral observables A
Let A be a local Möbius covariant net on S1 ∼= R. By restriction we can and
will see A as a net on R. Then Haag duality of A on R is equivalent to strong
additivity of A. We will assume that A is completely rational, therefore this
holds automatically.
We denote by M the two-dimensional Minkowski space and by K the set of
double cones O ⊂M. Each double cone is of the form

O = I × J := {(t, x) : t− x ∈ I, t+ x ∈ J},

where I, J ∈ I0 are two intervals on the light-rays L± = {(t, x) : t± x = 0}.
The action of Möb ∼= PSL(2,R) on R gives a local action of M̃öb on R as in

[KL04a]. We define G2 = M̃öb × M̃öb which acts locally on Minkowski space
M.
For O ∈ K we denote by G2(O) all g ∈ G2 such that there is a path γ : [0, 1]→
G2 from the identity element e to g with γ(t)O ⊂M for all t ∈ [0, 1].
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We denote by A2 the net on HA ⊗HA given by

A2(I × J) := A(I)⊗A(J).

It is a local Möbius covariant net on M as in [KL04a]. Every DHR repre-
sentation of A2 with finite index is a direct sum of representations of the
form ρ ⊗ σ where ρ ∈ DHR(A) and σ ∈ DHR(A). The braiding is given
by ε(ρ1 ⊗ σ1, ρ2 ⊗ σ2) = ε+(ρ1, ρ2) ⊗ ε−(σ1, σ2). Therefore the category of
DHR representations of A2 with finite statistical dimensions is equivalent to

DHRI(A)⊠DHRJ (A).
Let us write B2 ⊃ A2 for a local, Möbius covariant, irreducible extension of A2,
i.e. a local Möbius covariant net B2 on Minkowski space M on the Hilbert space
HB2

with irreducible vacuum vector Ω which is extending A2
∼= A ⊗A, more

precisely there is a representation π of A2 onHB2
, such that π(A2(O)) ⊂ B2(O)

is an irreducible inclusion of factors and U(g)π(A(O))U(g)∗ = π(A(gO)) for
all double cones O ∈ K and all g ∈ G(O). By abuse of notation we will omit
the π.
We remember that there is a one-to-one correspondence between local irre-
ducible extensions B2 ⊃ A2 (up to unitary equivalence) and irreducible com-

mutative Q-systems Θ2 in DHRI(A)⊠DHRJ (A) (up to equivalence).

Proposition 6.6. Let B2 ⊃ A2 be a local extension. Then the following state-
ments are equivalent:

1. The net B2 is a maximal local irreducible extension, i.e. if B̃2 ⊃ B2 is a
local irreducible extension, then B2 = B̃2.

2. The index [B2 : A2] = µ2(A) ≡ dim(DHR(A)).

3. The matrix (Zλµ) is a modular invariant.

4. The µ-index of B2 is 1.

5. The net B2 has no non-trivial superselection sectors.

Proof. To show (2)⇒ (1) let Θ2 be a Q-system in DHRI(A)⊠DHRJ(A) giving
the extension A(I) ⊗ A(J) ⊂ B2(I × J) and let us assume that [B2(I × J) :
A(I) ⊗A(J)] = µ2(A). By Lemma 5.1 we have the following inequality:

dΘ2 ≡ [B2 : A2] ≤ dim(DHR(A⊗A)) 1
2 ≡ dim

(
DHR(A)⊠DHR(A)

) 1
2

= dim(DHR(A)) ≡ µ2(A) .

This implies maximality.
For showing (1) ⇒ (2), let us assume that [B2 : A2] < µ2(A). We need
to show that there is an extension B̃2 ) B2. This we obtain by adding the
boundary [CKL13], i.e. from B2 we obtain a possible reducible boundary net
(see Subsec. 6.6) of which we choose an irreducible subnet B+. We claim B+
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cannot be Haag dual, but this follows because [B+ : A+] = [B2 : A2] < µ2(A)
and then [LR04, Prop. 2.13] implies [Bd

+ : B+] > 1. So we have an inclusion

A+ ⊂ B+ ( Bd
+ and a corresponding locally isomorphic inclusionA2 ⊂ B2 ( B̃2

as in [LR04], in particular B2 was not maximal.
The statements (2) and (3) are equivalent by Prop. 5.2 and the implication (5)
⇒ (1) is clear.
(2) ⇒ (4) follows by calculating the µ index [KLM01] and likewise the impli-
cation (4) ⇒ (5) is [KLM01, Corollary 32].

Proposition 6.7. There is a one-to-one correspondence between:

1. maximal local irreducible extensions B2 ⊃ A2 up to unitary equivalence.

2. Θ2 commutative irreducible Q-systems in DHRI(A) ⊠ DHRI(A) with
dθ2 = µ2(A) up to equivalence.

3. (Non-local) irreducible extensions B ⊃ A up to Morita equivalence.

4. Irreducible Q-systems Θ in DHRI(A) up to Morita equivalence.

5. Indecomposable NCN module categories, where N = A(I) and NCN =
DHRI(A).

6. Local chiral extensions AL ⊃ A, AR ⊃ A together with a braided equiva-
lence φ : DHR(AL)→ DHR(AR).

Proof. The correspondence between (1) and (2) is Prop. 6.6, the one between
(3) and (4) [LR95]. Starting with (4) we obtain (2) by applying the full center
and it is well defined on Morita equivalence classes and injective by Prop. 4.19.
It is surjective by Prop. 5.2, so (2) and (4) are equivalent. Equivalently, one can
start with B2 and add the boundary to obtain a Haag dual boundary net (as in
the proof before) which correspond to a non-local extension. The α-induction
construction gives back the original net.
The correspondence between (4), (5) and (6) is just Prop. 5.7, where (6) is (2)
of Prop. 5.7 reformulated in the language of nets, cf. [Müg10].

Remark 6.8. We know how the Morita equivalence looks like, see Subsec. 3.2.

6.4 Boundary conditions

Let A be a completely rational local Möbius covariant net on S1, which we
will see as a net on R by restriction. Let M+ = {(t, x) ∈ M : x > 0} be
Minkowski half-plane and let K+ be the set of double cones O ⋐ M+. Double
cones O ∈ K+ are in one-to-one correspondence with pairs of proper intervals
I, J ⊂ R such that I < J . We write O = I × J .
Let A+ be the net on M+ given by

A+(O) = A(I) ∨A(J) O = I × J
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which is locally covariant w.r.t. G+ the universal covering of Möb, namely

U(g)A+(O)U(g)∗ = A+(gO) g ∈ G+(O)

where G+ acts locally on O = I × J ∈ K+ by gO = gI × gJ and G+(O) is the
set of all g ∈ G+ such that there is a continuous path γ from the identity to g
such that γ(t)O ∈ K+.
By the split property it follows that A+(O) is spatially isomorphic to A2(O) ≡
A(I)⊗A(J). This implies that the net A+ is locally isomorphic to the net A2

restricted to M+.
A boundary net B+ associated with A is a local, (locally) G+-covariant net
B+, which is an irreducible extension B+ ⊃ A+.
Starting with B+ ⊃ A+, we define the generated net Bgen

+ ⊃ A on R by

Bgen
+ (I) =

∨

O∈K+

O⊂WI

B+(O) ⊃ A(I) ,

where WI = {(t, x) : t± x ∈ I} is the left wedge, such that its intersection on
the t-axis is I.
Conversely, given B ⊃ A a (non-local) extension on R, we define

Bind
+ (O) = B(L) ∩ B(K)′ ,

where O = I × J and L ⋐ K, such that L ∩ K ′ = I ∪ J or equivalently
O =WL ∩W ′

K .
The dual net is defined by Bd

+(O) = B+(O′)′ and Bd
+ = B+ if and only if B+ is

Haag dual.
Then (Bind

+ )gen = B and (Bgen
+ )ind+ = Bd

+ = B+ provided B+ was already Haag
dual.
Together we have:

Proposition 6.9 ([LR04, LR95]). There is a one-to-one correspondence be-
tween the equivalence classes of:

1. boundary nets B+ associated with A, such that B+ is Haag dual.

2. boundary nets B+ associated with A, such that A+ ⊂ B+ is maximal.

3. (Non-local) extensions B ⊃ A on R.

4. Q-systems in NCN , where N = A(I) and NCN = DHRI(A).
Definition 6.10. Let B2 ⊃ A2 be local extension, i.e. a CFT on Minkowski
space. A (Möbius covariant) boundary condition of B2 ⊃ A2 with
chiral symmetry A is a unitary equivalence class of boundary nets B+ ⊃ A+,
where B2 ↾ M+ is locally covariantly isomorphic to B+, more precisely there is a
compatible family of isomorphisms ΦO : B+(O) → B2(O) such that it restricts
to an isomorphism A+(O) → A2(O) for all O ∈ K+ and that Φ is covariant
respect to the covariance UB+

of Möb and UB2
of Möb ×Möb (where Möb is

the diagonal subgroup of Möb×Möb).
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Proposition 6.11. Let B2 ⊃ A2 maximal and let A ⊂ B given by Prop. 6.7.
Then there is a one-to-one correspondence between:

1. Boundary conditions of B2 ⊃ A2 with chiral symmetry A.

2. Unitary equivalence classes of Ba ⊃ A Morita equivalent to B ⊃ A.

3. Sectors in

NCM/Pic(MCM ) ,

where N = A(I), M = B(I) and NCN = DHRI(A).

In particular the number of boudary conditions of B2 ⊃ A2 with chiral symmetry
A is less or equal than

|N∆M | ≡
∑

λ∈N∆N

Zλλ .

Proof. The following diagram commutes [LR09, Cor. 2]

{B+ ⊃ A+ maximal}

{B ⊃ A} {B2 ⊃ A2 ≡ A⊗A}

removing the boundary∼

α-induction .

Given a boundary condition, i.e. a boundary net Ba,+ ⊃ A+ let Ba ⊃ A
be the corresponding chiral extension. We note that Ba,+ is Haag dual (cf.
[LR09, App. C]), because B2 is modular invariant. If we remove the boundary
we obtain B2 ⊃ A2, because the extensions are locally isomorphic and therefore
isomorphic, see [LR09].

We conclude by commutativity of the above diagram that B ⊃ A and Ba ⊃ A
are Morita equivalent, namely the α-induction construction gives equivalent
two-dimensional extensions, which means the full centers are equivalent, which
is equivalent to the Morita equivalence of B ⊃ A and Ba ⊃ A.
Conversely, if we have given a chiral extension Bb ⊃ A Morita equivalent to
B ⊃ A, then Bb,+ ⊃ A+ is locally equivalent to Bb,2 ⊃ A2 ↾ M+ obtained by
α-induction. But B2,b ⊃ A2 is isomorphic to B2 ⊃ A2 by Morita equivalence,
so we get a boundary condition (this follows also from [LR04], realizing that
the DHR orbit exhausts the Morita equivalence class).

Choosing N = A(I), M = B(I) and NCN = DHRI(A) the Q-systems Θa

corresponding to Ba ⊃ A which is Morita equivalent to B ⊃ A are in one-to-
one correspondence with NCM/Pic(MCM ) by Prop. 3.9.

Example 6.12. We can give several cases as an example.
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• If A is holomorphic, i.e. DHR(A) just contains the vacuum sector or
equivalently µ(A) = 1, then B2 = A2 is maximal and the only 2D net
and A+ is the only boundary condition. The family of holomorphic nets
contains for example the conformal nets AL associated with even selfdual
lattices [DX06] like the E8 lattice, Leech lattice etc., the Moonshine net
A♮ [KL06] and certain framed nets [KS14].

• For A from the family of conformal nets, for which DHR(A) is pointed, it
follows from Lemma 5.5 that there is always just one boundary condition
for each B2 ⊃ A2. This family for example contains all conformal nets
AL coming from an even lattice L [DX06], which include all loop group
conformal nets AG,1 of compact, connected, simply connected, simply
laced Lie groups G (the simple one being in one-to-one correspondence
with A-D-E Dynkin diagrams) at level 1 [Bis12].

• If A is any completely rational net and B2 = ALR ⊃ A2 given by the
trivial Longo-Rehren extension, then NCM ∼= NCN ∼= DHR(A) and the
boundary conditions are given by DHR sectors of A modulo DHR auto-
morphisms of A. This case is sometimes also called the Cardy case.

• For A = ASU(2),k the two-dimensional extensions are in one-to-one cor-
respondence with Dynkin diagrams of A-D-E type with Coxeter number
k+2. The boundary conditions are given by orbits [ν] of a marked vertex
ν under the automorphism group of the Dynkin diagram cf. [KLPR07].

• ForA = Virc with c < 1, the only possible values for c are c = 1−6/m(m+
1) with m = 2, 3, 4, . . .. The maximal two-dimensional extensions are in
one-to-one correspondence with pairs (G1, G2) of Dynkin diagrams of A-
D-E type with Coxeter number m and m + 1, respectively, cf. [KL04b].
The boundary conditions are given by pairs ([ν1], [ν2]) with [νi] the orbit
of a marked vertex on Gi under the automorphism group of Gi (i = 1, 2).
This result now follows also from [KLPR07].

The invertible objects (automorphisms) in MCM have to do with invertible
defects (see for an interpretation of invertible defects in a different framework
[DKR11]).
The difference between two inequivalent a, b ∈ NCM related by an invertible
β ∈ MCM gets important if we also consider also reducible boundary conditions
in the next section.

6.5 Reducible boundary conditions

With the notation as before, let us assume B2 ⊃ A2 is a maximal extension of
A2. Using Prop. 6.7 we can choose a (non-local) extension B ⊃ A such that B2
is given by the α-induction construction of B ⊃ A.
Let I be an interval, N = A(I), NCN = DHRI(A), M = B(I) and Θ the
Q-system in NCN giving N ⊂ M . Then every a ∈ NCM gives a in general
reducible Q-system Θa and an extension Ba ⊃ A.
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We can define as before

Ba+(O) = Ba(L) ∩ Ba(K)′ .

This net fulfills all the properties of a boundary CFT in [LR04], but the unique-
ness of the vacuum and the joint irreducibility.

Proposition 6.13. Let a ∈ NCM possibly reducible. Then the (reducible)
boundary net Ba,+ ⊃ A+ is a (reducible) boundary condition for B2 ⊃ A2,
which is given by the Q-system Z(Θa).

Proof. If a is irreducible this is already proven.
Let a be reducible and let Θa = ῑι be the Q-system with inclusion ι(A(I)) ⊂
Ba(I). Let {pi}ni=1 be a set of minimal projections in ι(A(I))′ ∩ Ba(I) =
Hom(ι, ι) with

∑n
i=1 pi = 1 with corresponding morphisms ιi ≺ ι. By the

usually Reeh–Schlieder argument, the projection do not depend on the choice
of I. The inclusion ι(A(I)) ⊂ Ba(I) is conjugated to







ι1(a)

. . .

ιn(a)


 : a ∈ A(I)




⊂ Ba(I)⊗Mn(C) ∼= Ba(I) .

With the same notation A+(O) ⊂ Ba,+(O) is conjugated to:







ι1(a)

. . .

ιn(a)


 : a ∈ A+(O)




⊂







b

. . .

b


 : b ∈ Ba,+(O)




.

(10)

Because Θ2 := Z(Θa) and Z(Θῑi) are equivalent (by Prop. 4.19) every Bi,+ ⊃
A+ is a boundary condition for B2 ⊃ A2. But then also the inclusion B2 ⊃ A2

is locally isomorphic to Ba,+ ⊃ A+ by (10) and the isomorphism restricted to
A2 gives a local isomorphism of A2 restricted to M+ and A+.

Note that in the reducible case the vacuum Ω of B+ is neither cyclic nor unique
and that Ω =

∑n
i=1 Ωi with Ωi = piΩ. The restriction of B+ to the subspace

B+(O)Ωi is unitarily equivalent to the boundary condition coming from ιi. In
other words, NCM ∋ a 7→ Ba,+ maps direct sums of sectors to direct sums of
boundary conditions.

Example 6.14. Consider a, b ∈ NCM irreducible and mutually inequivalent but
related by an automorphism β ∈ MCM , or equivalently Θa

∼= Θb. This means
the boundary conditions coming from a and b are the same, but for example
the boundary conditions coming from c := a ⊕ a and d := a ⊕ b are different.
This can be seen for example by regarding the relative commutants of the
subfactors associated with Θc and Θd, namely c̄(N)′ ∩ N ∼= C ⊕ C, while
d̄(N)′ ∩N ∼=M2(C).
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6.6 Adding the boundary

In [CKL13] a purely operator algebraic construction of all boundary conditions
is given. As a result a boundary net is obtained which is the direct sum of all
boundary conditions.
Let us consider the inclusion

A(I)⊗A(J) ⊂ B2(O)

for some fixed O = I × J ⋐ W and let Θ2 be the associated Q-system in

DHRI(A) ⊠ DHRJ(A). Let Ω be the vacuum in HA and let us define the
state ϕ0(x ⊗ y) = (Ω, xyΩ) for x ∈ A(I), y ∈ A(J) and let εO : B2(O) →
A2(O) ∼= A+(O) be the conditional expectation. This gives a state ϕ = ϕ0 ◦ ε0
on B2(O) (which can be extended to a state on A2(W )). Using the GNS
representation one get an inclusion A+(O) ⊂ B+(O) on a bigger Hilbert space
and which is by construction isomorphic to A2(O) ⊂ B2(O). This construction
extends to A2(W ) and gives a (reducible) boundary net {B+(O)}O∈K+

. Let
us define B(I) = ∨K+∋O⊂W (I) B+(O) where W (I) is the left wedge such that
its intersection with the time axis x = 0 is equals I. This gives a non-local
extension B ⊃ A. Let us fix L ⊃ I ∪J , then the Q-system of B(L) ⊃ A(L) can
be chosen to be localized in I ∪J and it can be in particular trivially extended
from the inclusion A+(O) ⊂ B+(O) using strong additivity. Let’s denote its
Q-system by Θ̃.

Proposition 6.15. Let B2 ⊃ A2 be a local irreducible extension with Q-system
Θ2. The Q-system of the inclusion A(I) ⊂ B(I), where B = Bgen

+ and B+ is
obtained by adding the boundary is equivalent to the Q-system T (Θ2).

Proof. We have to show that Θ̃ is equivalent to T (Θ2), where we see Θ2 as a
Q-system by the equivalence NCN ⊠ NCN ∼= DHRO(A2).
An endomorphism ρI ⊠ σ̄J gives an endomorphism ρI σ̄J ∈ End(A(I) ∨ A(J))
and this gives actually an isomorphism of tensor categories

End(A(I)⊗A(J)) ∼= End(A(I) ∨ A(J)) .

Starting from an object in DHRO(A2) the image is a localized endomorphism
of A(I) ∨ A(J) which can by strong additivity be extended to a localized en-
domorphism of End(A(L)), so we get a tensor functor

T̃ : DHRI(A2)→ DHRL(A) ≡ NCN
where we choose N := A(L) and NCN = DHRL(A). We note that the µ from
(7) is trivial as is ε(ρ2, σ̄1) because of the order of localization.
So the functor

NCN ⊠ NCN ∼= DHRO(A2)→ DHRL(A) ≡ NCN
is by construction equivalent to the tensor T from Subsec. 4.2 and, in particular
Θ̃ is equivalent to T (Θ2).
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This gives as an alternative proof of Prop. 6.11. Let us assume B2 was modular
invariant/maximal. All boundary conditions are obtained by the adding the
boundary construction, and by Prop. 4.20 we can conclude:

Corollary 6.16. All boundary conditions of B2 come from an a ∈ N∆M ,
where N = A(I), M = B(I), NCN = DHRI(A) and B ⊂ A is any (non-local)
extension giving B2 by the α-induction construction.

Acknowledgements

The authors would like to thank Karl-Henning Rehren for discussions and re-
marks on the manuscript. We thank Ingo Runkel and Christoph Schweigert
for E-mail correspondence. M.B. would like to thank David E. Evans, Noah
Snyder and Chenchang Zhu for discussions.

References

[BDH14] A. Bartels, C. L. Douglas, and A. Henriques, Dualizability and index of
subfactors, Quantum Topol. 5 (2014), no. 3, 289–345, DOI 10.4171/QT/53.
MR3342166
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