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Abstract. Let K be an algebraically closed field of characteristic
zero, Gm = (K \ {0},×) be its multiplicative group, and Ga = (K,+)
be its additive group. Consider a commutative linear algebraic group
G = (Gm)r × Ga. We study equivariant G-embeddings, i.e. normal
G-varieties X containing G as an open orbit. We prove that X is a
toric variety and all such actions of G on X correspond to Demazure
roots of the fan of X . In these terms, the orbit structure of a G-variety
X is described.
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1. Introduction

Let K be an algebraically closed field of characteristic zero, Gm = (K \ {0},×)
be its multiplicative group, and Ga = (K,+) be its additive group. It is well
known that any connected commutative linear algebraic group G over K is
isomorphic to (Gm)r × (Ga)

s with some non-negative integers r and s, see [20,
Theorem 15.5]. We say that r is the rank of the group G and s is the corank
of G.
The aim of this paper is to study equivariant embeddings of commutative linear
algebraic groups. Let us recall that an equivariant embedding of an algebraic
group G is a pair (X, x), where X is an algebraic variety equipped with a
regular action G × X → X and x ∈ X is a point with the trivial stabilizer
such that the orbit Gx is open and dense in X . We assume that the variety
X is normal. If X is supposed to be complete, we speak about equivariant
compactifications of G. For the study of compactifications of reductive groups,
see e.g. [26]. More generally, equivariant embeddings of homogeneous spaces of
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reductive groups is a popular object starting from early 1970th. Recent survey
of results in this field may be found in [27].
Let us return to the case G = (Gm)r × (Ga)

s. If s = 0 then G is a torus
and we come to the famous theory of toric varieties, see [13], [23], [18], [12].
Another extreme r = 0 corresponds to embeddings of a commutative unipotent
(=vector) group. This case is also studied actively during last decades, see [19],
[8], [3], [16], [14]. The next natural step is to study the mixed case r > 0 and
s > 0 and to combine advantages of both torus and additive group actions.
The present paper deals with the case s = 1, i.e. from now on G is a con-
nected commutative linear algebraic group of corank one. In other words,
G = (Gm)n−1 ×Ga, where n = dimX .
Let X be a toric variety with the acting torus T. Consider an action Ga×X →
X normalized by T. Then T acts on Ga by conjugation with some character
e. Such a character is called a Demazure root of X . If T = Ker(e), then the
group G := T ×Ga acts on X with an open orbit, and X is a G-embedding, see
Proposition 6. Our main result (Theorem 2) states that all G-embeddings can
be realized this way. To this end we prove that for any G-embedding X the
(Gm)n−1-action on X can be extended to an action of a bigger torus T which
normalizes the Ga-action and X is toric with respect to T.
This result can not be generalized to groups of corank two; examples of non-
toric surfaces which are equivariant compactifications ofG2

a can be found in [14].
Similar examples are constructed in [14], [15] for semidirect products Gm⋌Ga.
Such groups can be considered as non-commutative groups of corank one.
If two toric varieties are isomorphic as abstract varieties, then they are isomor-
phic as toric varieties [10, Theorem 4.1]. This shows that the structure of a
torus embedding on a toric variety is unique up to isomorphism. A structure
of a G-embedding on a given variety may be non-unique, see Examples 2, 4.
Such structures are given by Demazure roots and thus the number of struc-
tures is finite if X is complete, and it is at most countable for arbitrary X . At
the same time, G6

a-embeddings into P6 admit a non-trivial moduli space [19,
Example 3.6].
The paper is organized as follows. Section 2 contains preliminaries on torus
actions on affine varieties. We recall basic facts on affine toric varieties and
introduce a description of affine T -varieties in terms of proper polyhedral di-
visors due to Altmann and Hausen [1]. A correspondence between Ga-actions
on X normalized by T and homogeneous locally nilpotent derivations (LNDs)
of the algebra K[X ] is explained. We define Demazure roots of a cone and use
them to describe homogeneous LNDs on K[X ], where X is toric. Also we give a
description of homogeneous LNDs of horizontal type on algebras with grading
of complexity one obtained by Liendo [22].
In Section 3 we show that if X is a normal affine T -variety of complexity one
and the algebra K[X ] admits a homogeneous LND of degree zero, then X is
toric with an acting torus T, T is a subtorus of T, and T normalizes the corre-
sponding Ga-action. This gives the result for affine G-embeddings. Moreover,
Proposition 3 provides an explicit description of affine G-embeddings.

Documenta Mathematica 20 (2015) 1039–1053



Embeddings of Commutative Algebraic Groups 1041

Section 4 deals with compactifications of G. Here we use the Cox construction
and a lifting of the action of G to the total coordinate space X of X to deduce
the result from the affine case.
In Section 5 we recall basic facts on toric varieties and introduce the notion of
a Demazure root of a fan following Demazure [13]. The action of the corre-
sponding one-parameter subgroup on the toric variety is also described there.
Let Σ be a fan and e be a Demazure root of Σ. In Section 6 we define a G-
embedding associated to the pair (Σ, e) and study the G-orbit structure of X .
It turns out that the number of G-orbits on X is finite.
Finally, in Section 7 we prove that any G-embedding is associated with some
pair (Σ, e). The idea is to reduce the general case to the complete one via equi-
variant compactification. At the end several explicit examples of G-embeddings
are given.
Some results of this paper appeared in preprint [5]. They form a part of the
Ph.D. thesis of the second author [21].
The authors are grateful to the referee for careful reading of the paper and
valuable suggestions.

2. Ga-actions on affine T -varieties

Let X be an irreducible affine variety with an effective action of an algebraic
torus T , M be the character lattice of T , N be the lattice of one-parameter
subgroups of T , and A = K[X ] be the algebra of regular functions on X . It is
well known that there is a bijective correspondence between effective T -actions
on X and effective M -gradings on A. In fact, the algebra A is graded by a
semigroup of lattice points in some convex polyhedral cone ω ⊆ MQ = M⊗ZQ.
So we have

A =
⊕

m∈ωM

Amχm,

where ωM = ω ∩M and χm is the character corresponding to m.
A derivation ∂ on an algebra A is said to be locally nilpotent (LND) if for each
f ∈ A there exists n ∈ N such that ∂n(f) = 0. For any LND ∂ on A the map
ϕ∂ : Ga ×A → A, ϕ∂(s, f) = exp(s∂)(f), defines a structure of a rational Ga-
algebra on A. This induces a regular action Ga ×X → X , where X = SpecA.
In fact, any regular Ga-action on X arises this way, see [17, Section 1.5]. A
derivation ∂ on A is said to be homogeneous if it respects the M -grading. If
f, h ∈ A\ ker ∂ are homogeneous, then ∂(fh) = f∂(h) + ∂(f)h is homogeneous
too and deg ∂(f)− deg f = deg ∂(h)− deg h. So any homogeneous derivation ∂
has a well defined degree given as deg ∂ = deg ∂(f)−deg f for any homogeneous
f ∈ A\ ker ∂. It is easy to see that an LND on A is homogeneous if and only if
the corresponding Ga-action is normalized by the torus T in the automorphism
group Aut(X), cf. [17, Section 3.7].
Any derivation on K[X ] extends to a derivation on the field of fractions K(X)
by the Leibniz rule. A homogeneous LND ∂ on K[X ] is said to be of fiber
type if ∂(K(X)T ) = 0 and of horizontal type otherwise. In other words, ∂ is of
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fiber type if and only if the general orbits of corresponding Ga-action on X are
contained in the closures of T -orbits.
Let X be an affine toric variety, i. e. a normal affine variety with a generically
transitive action of a torus T . In this case

A =
⊕

m∈ωM

Kχm = K[ωM ]

is the semigroup algebra. Recall that for given cone ω ⊂ MQ, its dual cone is
defined by

σ = {n ∈ NQ | 〈n, p〉 > 0 ∀p ∈ ω},

where 〈, 〉 is the pairing between dual lattices N and M . Let σ(1) be the set
of rays of a cone σ and nρ be the primitive lattice vector on the ray ρ. For
ρ ∈ σ(1) we set

Sρ := {e ∈ M | 〈nρ, e〉 = −1 and 〈nρ′ , e〉 > 0 ∀ ρ′ ∈ σ(1), ρ′ 6= ρ}.

One easily checks that the set Sρ is infinite for each ρ ∈ σ(1). The elements
of the set R :=

⊔
ρ
Sρ are called the Demazure roots of σ. Let e ∈ Sρ. Then ρ

is called the distinguished ray of the root e. One can define the homogeneous
LND on the algebra A by the rule

∂e(χ
m) = 〈nρ,m〉χm+e.

In fact, every homogeneous LND on A has a form α∂e for some α ∈ K, e ∈ R,
see [22, Theorem 2.7]. In other words, Ga-actions on X normalized by the
acting torus are in bijection with Demazure roots of the cone σ.
Clearly, all homogeneous LNDs on a toric variety are of fiber type.

Example 1. Consider X = Ak with the standard action of the torus
(K×)k. It is a toric variety with the cone σ = Qk

>0 having rays ρ1 =

〈(1, 0, . . . , 0)〉Q>0
, . . . , ρk = 〈(0, 0, . . . , 0, 1)〉Q>0

. The dual cone ω is Qk
>0 as

well. In this case

Sρi
= {(c1, . . . , ci−1,−1, ci+1, . . . , ck) | cj ∈ Z>0}.

r r r r r

r

r

r

r

✲

✻Sρ1

Sρ2

MQ = Q2

Denote x1 = χ(1,0,...,0), . . . , xk = χ(0,...,0,1). Then K[X ] = K[x1, . . . , xk]. It
is easy to see that the homogeneous LND corresponding to the root e =
(c1, . . . , ck) ∈ Sρi

is

∂e = xc1
1 . . . x

ci−1

i−1 x
ci+1

i+1 . . . xck
k

∂

∂xi
.
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This LND gives rise to the Ga-action

xi 7→ xi + sxc1
1 . . . x

ci−1

i−1 x
ci+1

i+1 . . . xck
k , xj 7→ xj , j 6= i, s ∈ Ga.

Let us recall that the complexity of an action of a torus T on an irreducible
variety X is the codimension of a general T -orbit on X , or, equivalently, the
transcendence degree of the field of rational invariants K(X)T over K. In
particular, actions of complexity zero are precisely actions with an open T -
orbit.
Now we recall a description of normal affine T -varieties of complexity one in
terms of proper polyhedral divisors. Let N and M be two mutually dual
lattices with the pairing denoted by 〈, 〉, σ be a strongly convex cone in NQ, and
ω ⊆ MQ be the dual cone. A polyhedron ∆ ⊆ NQ, which can be decomposed
as Minkowski sum of a bounded polyhedron and the cone σ, is called σ-tailed.
Let C be a smooth curve. A σ-polyhedral divisor on C is a formal sum

D =
∑

z∈C

∆z · z,

where ∆z are the σ-tailed polyhedra and only finite number of them are not
equal to σ. The divisor D is trivial, if ∆z = σ for all z ∈ C.
The finite set SuppD := {z ∈ C | ∆z 6= σ} is called the support of D. For every
m ∈ ωM we can obtain the Q-divisor D(m) =

∑
z∈C

hz(m) · z, where hz(m) :=

min
p∈∆z

〈p,m〉. So a σ-polyhedral divisor is just a piecewise-linear function from

ωM to the group of Q-divisors on C. One can define the M -graded algebra

A[C,D] =
⊕

m∈ωM

Amχm,

where

Am = H0(C,D(m)) := {f ∈ K(X) | div f +D(m) > 0},

where the multiplication of homogeneous elements is given as in K(X).
A σ-polyhedral divisor on smooth curve C is called proper if either C is affine,
or C is projective and the polyhedron degD :=

∑
z∈C

∆z is a proper subset of σ.

The next theorem expresses the main results of [1] specialized to the case of
torus actions of complexity one.

Theorem 1. (1) Let C be a smooth curve and D a proper σ-polyhedral divi-
sor on C. Then the M -graded algebra A[C,D] is a normal finitely generated
effectively graded (rkM + 1)-dimensional domain. Conversely, for each nor-
mal finitely generated domain A with a grading of complexity one there exist
a smooth curve C and a proper σ-polyhedral divisor D on C such that A is
isomorphic to A[C,D].
(2) The M -graded domains SpecA[C,D] and SpecA[C,D′] are isomorphic if
and only if for every z ∈ C there exists a lattice vector vz ∈ N such that

D = D
′ +

∑

z

(vz + σ) · z,
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and for all m ∈ ωM the divisor
∑
z
〈vz ,m〉 · z is principal.

The following result is obtained in [1, Section 11].

Proposition 1. Let D be a proper σ-polyhedral divisor on a smooth curve C,
X = SpecA[C,D], and T ×X → X be the corresponding torus action. Then
this action can be realized as a subtorus action an a toric variety if and only if
either C = A1 and D can be chosen supported in at most one point, or C = P1

and D can be chosen supported in at most two points.

Also we need a description of homogeneous LNDs of horizontal type for a T -
variety X of complexity one from [22]. Below we follow the approach given
in [7]. We have K[X ] = A[C,D] for some C and D. It turns out that C is
isomorphic to A1 or P1 whenever there exists a homogeneous LND of horizontal
type on A[C,D], see [22, Lemma 3.15].
Let C be A1 or P1, D =

∑
z∈C

∆z · z a σ-polyhedral divisor on C, z0 ∈ C,

z∞ ∈ C\{z0}, and vz a vertex of ∆z for every z ∈ C. Put C′ = C if C = A1

and C′ = C\{z∞} if C = P1. A collection D̃ = {D, z0; vz, ∀z ∈ C} if C = A1

and D̃ = {D, z0, z∞; vz , ∀z ∈ C′} if C = P1 is called a colored σ-polyhedral
divisor on C if the following conditions hold:

(∗) vdeg :=
∑

z∈C′

vz is a vertex of degD|C′ :=
∑

z∈C′

∆z ;

(∗∗) vz ∈ N for all z ∈ C′, z 6= z0.

Let D̃ be a colored σ-polyhedral divisor on C and δ ⊆ NQ be the cone generated
by degD|C′ −vdeg. Denote by σ̃ ⊆ (N ⊕ Z)Q the cone generated by (δ, 0) and
(vz0 , 1) if C = A1, and by (δ, 0), (vz0 , 1) and (∆z∞ + vdeg − vz0 + δ,−1) if
C = P1. By definition, put d the minimal positive integer such that d ·vz0 ∈ N .

A pair (D̃, e), where e ∈ M , is said to be coherent if

(i) there exists s ∈ Z such that ẽ = (e, s) ∈ M ⊕ Z is a Demazure root of
the cone σ̃ with distinguished ray ρ̃ = (d · vz0 , d);

(ii) 〈v, e〉 > 1 + 〈vz , e〉 for all z ∈ C′\{z0} and all vertices v 6= vz of the
polyhedron ∆z;

(iii) d · 〈v, e〉 > 1 + 〈vz0 , e〉 for all vertices v 6= vz0 of the polyhedron ∆z0 ;

(iv) if Y = P1, then d · 〈v, e〉 > −1− d ·
∑

z∈Y ′

〈vz , e〉 for all vertices v of the

polyhedron ∆z∞ .

It follows from [7, Theorem 1.10] that homogeneous LNDs of horizontal type

on A[C,D] are in bijection with the coherent pairs (D̃, e). Namely, let (D̃, e)
be a coherent pair. Without loss of generality we may assume that z0 = 0,
z∞ = ∞ if C = P1, and vz = 0 ∈ N for all z ∈ C′\{z0}. Let K(C) = K(t).

Then the homogeneous LND of horizontal type corresponding to (D̃, e) is given
by

(1) ∂(χm · tr) = d(〈v0,m〉+ r)χm+e · tr+s for all m ∈ M, r ∈ Z.
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In particular, the vector e is the degree of the derivation ∂.

3. The affine case

Let (X, x) be an equivariant embedding of the group G = (Gm)n−1 × Ga,
where n = dimX . In this section we assume that X is normal and affine. Let
us denote the subgroup (Gm)n−1 of G by T . Since the action of T on X is
effective, it has complexity one and defines an effective grading of the algebra
K[X ] by the lattice M . In particular, the graded algebra K[X ] has the form
A[C,D] for some smooth curve C and some proper σ-polyhedral divisor on C,
where σ is a cone in NQ.
Since the action of the subgroup Ga commutes with T -action on X , the cor-
responding homogeneous LND on K[X ] has degree zero. Moreover, the group
G acts on X with an open orbit. It implies that the Ga-action on X is of
horizontal type, and hence either C = A1 or C = P1.

Proposition 2. Let X = SpecA[C,D] be a T -variety of complexity one. Sup-
pose that there exists a homogeneous LND of horizontal type and of degree zero
on A[C,D]. Then

(1) if C = A1, then one can assume (via Theorem 1) that D is a trivial
σ-polyhedral divisor;

(2) if C = P1, then one can choose D = ∆∞ · [∞], where ∆∞  σ is some
σ-tailed polyhedron.

Proof. Let (D̃, 0) be the coherent pair corresponding to the homogeneous LND
of horizontal type. Without loss of generality we may assume that z0 = 0 and
z∞ = ∞ if C = P1. By definition of a coherent pair, there exists s ∈ Z such
that (0, s) is a Demazure root of the cone σ̃ with distinguished ray (dv0, d).
It implies that s = −1, d = 1, and hence v0 ∈ N . Further, the inequality
〈v, 0〉 > 1 + 〈vz , 0〉 should be satisfied for every z ∈ C′ and every vertex v 6= vz
of ∆z. It means that each polyhedron ∆z, where z ∈ C′, has only one vertex
vz . Replacing σ-polyhedral divisor D with D

′ = D+
∑

z∈C′(−vz + σ) · z and
using Theorem 1, we obtain the assertion. The condition ∆∞  σ follows from
the fact that D is a proper σ-polyhedral divisor. �

Corollary 1. Under the conditions of Proposition 2 the variety X is toric
with T being a subtorus of the acting torus T.

Proof. It follows immediately from Propositions 1 and 2. �

The next proposition is a specification of Corollary 1. In particular, it shows
that the Ga-action on X is normalized by the acting torus T.

Proposition 3. Under the conditions of Proposition 2,

(1) if C = A1, then X ∼= Y ×A1, where Y is the toric variety corresponding
to the cone σ and Ga acts on A1 by translations;

(2) if C = P1, then X is the toric variety with the cone σ̃ ⊂ N ⊕ Z

generated by (σ, 0), (∆∞,−1) and (0, 1). The Ga-action on X is given
by Demazure root ẽ = (0,−1) ∈ M ⊕ Z of the cone σ̃.
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Proof. Let K(C) = K(t). If C = A1 then D is trivial and

A[C,D] =
⊕

m∈ωM

K[t] · χm = K[ωM ]⊗K[t] = K[Y ]⊗K[t].

Hence X ∼= Y × A1. Applying formula (1), we obtain that the homogeneous
LND is given by

(2) ∂(χm · tr) = rχm · tr−1

for all m ∈ ωM and r ∈ Z>0. Thus Ga acts on Y × A1 as (y, t) 7→ (y, t+ s).

If C = P1 then D = ∆∞ · [∞] and we obtain

A[C,D] =
⊕

m∈ωM

h∞(m)⊕

r=0

Kχm · tr =
⊕

(m,r)∈ω̃
M̃

Kχm · tr = K[ω̃
M̃
],

where M̃ = M ⊕ Z and ω̃ ⊂ M̃Q is the cone dual to σ̃. So we see that A[C,D]
is a semigroup algebra and X is a toric variety with the cone σ̃. In this case
formula (2) gives the LND corresponding to the Demazure root ẽ = (0,−1). �

4. The complete case

In this section we study equivariant compactifications of the group G. First we
briefly recall the main ingredients of the Cox construction, see [4, Chapter 1]
for more details.
Let X be a normal variety with finitely generated divisor class group Cl(X)
and only constant invertible regular functions.
Suppose that Cl(X) is free. Denote by WDiv(X) the group of Weil divisors on
X and fix a subgroup K ⊆ WDiv(X) which maps onto Cl(X) isomorphically.
The Cox ring of the variety X is defined as

R(X) =
⊕

D∈K

H0(X,D),

where H0(X,D) = {f ∈ K(X) | div f +D > 0} and multiplication on homoge-
neous components coincides with multiplication in K(X) and extends to R(X)
by linearity.
If Cl(X) has torsion, we choose a finitely generated subgroup K ⊆ WDiv(X)
that projects to Cl(X) surjectively. Denote by K0 ⊂ K the kernel of this
projection. Take compatible bases D1, . . . , Ds and D0

1 = d1D1, . . . , D
0
r = drDr

inK andK0 respectively. Let us choose the set of rational functions F = {FD ∈
K(X)× : D ∈ K0} such that div(FD) = D and FD+D′ = FDFD′ . Suppose
that D,D′ ∈ K and D −D′ ∈ K0. The map f 7→ FD−D′f is an isomorphism
of the vector spaces H0(X,D) and H0(X,D′). The linear span of the elements
f −FD−D′f over all D,D′ with D−D′ ∈ K0 and all f ∈ H0(X,D) is an ideal
I(K,F) of the graded ring TK(X) :=

⊕
D∈K H0(X,D). The Cox ring of the

variety X is given by

R(X) = TK(X)/I(K,F).
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This construction does not depend on the choice of K and F, see [2, Lemma 3.1
and Proposition 3.2] and [4, Proposition 1.4.2.2].
Suppose that the Cox ring R(X) is finitely generated. Then X := SpecR(X) is
a normal affine variety with an action of the quasitorus HX := SpecK[Cl(X)].

There is an open HX -invariant subset X̂ ⊆ X such that the complement

X\X̂ is of codimension at least two in X , there exists a good quotient

pX : X̂ → X̂//HX , and the quotient space X̂//HX is isomorphic to X , see
[4, Construction 1.6.3.1]. So we have the following diagram

X̂
i

−−−−→ X = SpecR(X)
y//HX

X
Let us return to equivariant compactifications of G.

Proposition 4. Let G = T × Ga and X be a normal compactification of G.
Then the T -action on X can be extended to an action of a bigger torus T such
that T normalizes Ga and X is a toric variety with the acting torus T.

Proof. The variety X is rational with torus action of complexity one. By [4,
Theorem 4.3.1.5], the divisor class group Cl(X) and the Cox ring R(X) are
finitely generated.
There exists a finite epimorphism ǫ : G′ → G of connected linear algebraic

groups and an action G′ × X̂ → X̂ which commutes with the quasitorus HX

and pX(g′ · x̂) = ǫ(g′) ·pX(x̂) for all g′ ∈ G′ and x̂ ∈ X̂, see [4, Theorem 4.2.3.1].
The group G′ has a form T ′ ×Ga, where ǫ defines a finite epimorphism of tori
T ′ → T and is identical on Ga.
Since X = SpecK[X̂], the action of G′ extends to the affine variety X. This
variety is an embedding of the group (T ′H0

X)×Ga. By Proposition 3, it is toric

with an acting torus T normalizing the Ga-action and T ′H0
X is a subtorus of T.

Since X is complete, [25, Corollary 2.5] implies that the subset X̂ is invariant
under the torus T. By [4, Lemma 4.2.1.3], the action of T descends to an action
of the torus T := T/H0

X on X . Here T normalizes Ga, its action extends the
action of T on X , and X is toric with respect to T. �

5. Toric varieties and Demazure roots

We keep notations of Section 2. Let X be a toric variety of dimension n with
an acting torus T and Σ be the corresponding fan of convex polyhedral cones
in the space NQ, see [18] or [12] for details.
As before, let Σ(1) be the set of rays of the fan Σ and nρ be the primitive
lattice vector on the ray ρ. For ρ ∈ Σ(1) we consider the set Sρ of all vectors
e ∈ M such that

(1) 〈nρ, e〉 = −1 and 〈nρ′ , e〉 > 0 ∀ ρ′ ∈ σ(1), ρ′ 6= ρ;

(2) if σ is a cone of Σ and 〈v, e〉 = 0 for all v ∈ σ, then the cone generated
by σ and ρ is in Σ as well.
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Note that condition (1) implies condition (2) if Σ is a maximal fan with support
|Σ|. This is the case if X is affine or complete.
The elements of the set R :=

⊔
ρ
Sρ are called the Demazure roots of the fan Σ,

cf. [13, Définition 4] and [23, Section 3.4]. Again elements e ∈ R are in bijection
with Ga-actions on X normalized by the acting torus, see [13, Théoreme 3]
and [23, Proposition 3.14]. If X is affine, the Ga-action given by a Demazure
root e coincides with the action given by the locally nilpotent derivation ∂e
of the algebra K[X ] as defined in Section 2. Let us denote the image under
this action of the group Ga in Aut(X) by He. Thus He is a one-parameter
unipotent subgroup normalized by T in Aut(X).
We recall basic facts from toric geometry. There is a bijection between cones
σ ∈ Σ and T-orbits Oσ on X such that σ1 ⊆ σ2 if and only if Oσ2

⊆ Oσ1
.

Here dimOσ = n− dim〈σ〉. Moreover, each cone σ ∈ Σ defines an open affine
T-invariant subset Uσ on X such that Oσ is a unique closed T-orbit on Uσ and
σ1 ⊆ σ2 if and only if Uσ1

⊆ Uσ2
.

Let ρe be the distinguished ray corresponding to a root e, ne be the primitive
lattice vector on ρe, and Re be the one-parameter subgroup of T corresponding
to ne.

Our aim is to describe the action of He on X .

Proposition 5. For every point x ∈ X \ XHe the orbit Hex meets exactly
two T-orbits O1 and O2 on X, where dimO1 = dimO2 + 1. The intersection
O2 ∩Hex consists of a single point, while

O1 ∩Hex = Rey for any y ∈ O1 ∩Hex.

Proof. It follows from the proof of [23, Proposition 3.14] that the affine charts
Uσ, where σ ∈ Σ is a cone containing ρe, are He-invariant, and the complement
of their union is contained in XHe , cf. [9, Lemma 2.4]. This reduces the proof
to the case X is affine. Then the assertion is proved in [6, Proposition 2.1]. �

A pair of T-orbits (O1,O2) on X is said to be He-connected if Hex ⊆ O1 ∪O2

for some x ∈ X \ XHe . By Proposition 5, O2 ⊆ O1 for such a pair (up
to permutation) and dimO1 = dimO2 + 1. Since the torus normalizes the
subgroup He, any point of O1 ∪ O2 can actually serve as a point x.

Lemma 1. A pair of T-orbits (Oσ1
,Oσ2

) is He-connected if and only if e|σ2
≤ 0

and σ1 is a facet of σ2 given by the equation 〈v, e〉 = 0.

Proof. The proof again reduces to the affine case, where the assertion is [6,
Lemma 2.2]. �

6. The orbit structure

We keep notations of the previous section. Let us begin with a construction
mentioned in the Introduction. Let X be a toric variety with the acting torus
T. Consider a non-trivial action Ga × X → X normalized by T and thus
represented by a Demazure root e of the fan Σ of X . Then T acts on Ga by
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conjugation with the character e and the semidirect product T⋌Ga acts on X
as well. Let T = Ker(e) ⊆ T and consider the group G := T ×Ga.

Proposition 6. The variety X is an embedding of G.

Proof. Take a point x ∈ X whose stabilizers in T and Ga are trivial. It suffices
to show that the stabilizer of x in G is trivial. To this end, note that by the
Jordan decomposition [20, Theorem 15.3] any subgroup of T ×Ga is a product
of subgroups in T and Ga respectively. �

Remark 1. The G-embedding of Proposition 6 is defined by the pair (Σ, e).

Since 〈ne, e〉 = −1, we have T = T ×Re.

Lemma 2. Any (T ×Ga)-invariant subset in X is also T-invariant.

Proof. Note that an orbit Tx does not coincide with the orbit Tx if and only if
the stabilizer of x in T is contained in T . For x ∈ Oσ this condition is equivalent
to e|σ = 0. It shows that for every x ∈ XGa we have Tx = Tx. If x ∈ X \XGa,
then by Proposition 5 the orbit Gax is invariant under Re. This proves that
any orbit of (T ×Ga) is Re- and T -invariant, thus the assertion. �

Proposition 7. Let X be a G-embedding given by a pair (Σ, e). Then any G-
orbit on X is either a union O1∪O2 of two T-orbits on X or a unique T-orbit;
the first possibility occurs if and only if the pair (O1,O2) is He-connected. In
particular, the number of G-orbits on X is finite.

Proof. The assertion follows directly from Lemma 2 and Proposition 5. �

Proposition 8. Let X be a G-embedding given by a pair (Σ, e). Then the
stabilizer of any point x ∈ X in G is connected and the closure of any G-orbit
on X is a (normal) toric variety. If X is smooth, then the closure of any
G-orbit is smooth.

Proof. The stabilizer of a point x in G is the direct product of stabilizers in
T and in Ga. An algebraic subgroup of Ga is either {0} or Ga itself, while
the stabilizer in T is the kernel of the (primitive) character e restricted to the
(connected) stabilizer of x in T. Thus the stabilizer of x in G is connected.
Proposition 7 shows that any G-orbit on X contains an open T-orbit, and thus
the closure of a G-orbit coincides with the closure of some T-orbit. Now the
last two assertions follow from [18, Section 3.1]. �

Remark 2. If X contains l torus invariant prime divisors, then the number of
G-invariant prime divisors on X is l− 1. On a toric variety, the closure of any
torus orbit is an intersection of torus invariant prime divisors. In contrast, not
every G-orbit closure on X is an intersection of G-invariant prime divisors, see
Example 3.
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7. The general case

We are going to show that every G-embedding can be realized as in Proposi-
tion 6.

Theorem 2. Let G = T × Ga and X be a normal equivariant G-embedding.
Then the T -action on X can be extended to an action of a bigger torus T such
that T normalizes Ga and X is a toric variety with the acting torus T. In
particular, every G-embedding comes from a pair (Σ, e), where Σ is a fan and
e is a Demazure root of Σ.

Proof. We begin with a classical result of Sumihiro. Let X be a normal variety
with a regular action G × X → X of a linear algebraic group G. By [24,
Theorem 3], there exists a normal complete G-variety X such that X can be
embedded equivariantly as an open subset of X. In other words, X is an
equivariant compactification of X .
Let X be a normal embedding of G and X be an equivariant compactification
of X . By Proposition 4, the T -action on X can be extended to an action of
a bigger torus T such that T normalizes Ga and X is a toric variety with the
acting torus T. Since the subset X ⊆ X is (T × Ga)-invariant, it is invariant
under T, see Lemma 2. This provides the desired structure of a toric variety
on X . �

Proposition 9. A complete toric variety X admits a structure of a G-
embedding if and only if Aut(X)0 6= T.

Proof. The variety X admits a structure of a G-embedding if and only if
Aut(X)0 contains at least one root subgroup. It is well known that the group
Aut(X)0 is generated by T and root subgroups [13, Proposition 11], [23, Sec-
tion 3.4], [11, Corollary 4.7]. �

Consider two structures of a G-embedding on a variety X . We say that such
structures are equivalent, if there is an automorphism of X sending one struc-
ture to the other. Since the structure of a toric variety on X is unique up to
automorphism, we may assume that our two structures share the same acting
torus T and the same fan Σ, and are given by two roots e, e′ of Σ. Then the
structures are equivalent if and only if e can be sent to e′ by an automorphism
of the torus T. This leads to the following result.

Proposition 10. Two structures of a G-embedding given by pairs (Σ, e) and
(Σ, e′) are equivalent if and only if there is an automorphism φ of the lattice N
which preserves the fan Σ and such that the induced automorphism φ∗ of the
dual lattice M sends e to e′.

Let us finish with explicit examples of G-embeddings into a given variety.

Example 2. We find all structures of G-embeddings on A2. The cone of A2

as a toric variety is Q2
>0. The set of Demazure roots of Q2

>0 is

R = {(−1, k) | k ∈ Z>0} ⊔ {(k,−1) | k ∈ Z>0},
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see Example 1. The G-action on A2 corresponding to the root (−1, k) is given
by

(3) (t, s) ◦ (x1, x2) = (tkx1 + stkxk
2 , tx2),

where (x1, x2) ∈ A2, s ∈ Ga, and t ∈ K×. If k 6= 0, then there is a line of
Ga-fixed points and the stabilizer of a non-zero point on this line is a cyclic
group of order k. If k = 0, then there is no Ga-fixed point. So formula (3) gives
non-equivalent G-actions for different k. With k 6= 0 we have three G-orbits
on A2, while for k = 0 there are two G-orbits.
Note that G-actions defined by the roots (k,−1) and (−1, k) are equivalent via
the automorphism x1 ↔ x2 of A2.

Example 3. Let X = P2. It is a complete toric variety with a fan Σ generated
by the vectors (1, 0), (0, 1) and (−1,−1):

✲
✻

��✠

NQ MQ

�
��

e4

s

e1
s

e5
s

e2
s

e6
s

e3
s

✲

✻

The set of Demazure roots is

R = {e1 = (1, 0), e2 = (1,−1), e3 = (0,−1),

e4 = (−1, 0), e5 = (−1, 1), e6 = (0, 1)}.

We see that for any i and j there exists isomorphism of the fan Σ sending ei
to ej. So any G-embedding into P2 is equivalent to

(t, s) ◦ [z0 : z1 : z2] = [tz0 + stz1 : tz1 : z2].

This time seven T-orbits glue to five G-orbits.

Example 4. Consider the Hirzebruch surface F1. The corresponding complete
fan Σ is generated by the vectors (1, 0), (0, 1), (0,−1), and (−1, 1):

NQ MQ

✲
✻

❅❅■

❄

❅
❅❅

s s

ss

✲

✻

e2 e1

e3 e4

The set of Demazure roots is

R = {e1 = (1, 0), e2 = (−1, 0), e3 = (0, 1), e4 = (1, 1)}.

By an automorphism, we can send e1 to e2 and e3 to e4. For the first equivalence
class we have six G-orbits, while in the second one the number of G-orbits is
seven.
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