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Abstract. We generalize Drinfeld’s notion of the center of a tensor
category to bicategories. In this generality, we present a spectral se-
quence to compute the basic invariants of Drinfeld centers: the abelian
monoid of isomorphism classes of objects, and the abelian automor-
phism group of its identity object. There is an associated obstruction
theory that explains the difference between the Drinfeld center and
the center of the classifying category. For examples, we discuss bicat-
egories of groups and bands, rings and bimodules, as well as fusion
categories.
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Introduction

If M is a monoid, then its center Z(M) is the abelian submonoid of elements
that commute with all elements. Monoids are just the (small) categories with
only one object. It has therefore been natural to ask for a generalization of the
center construction to categories C. The resulting notion is often referred to as
the Bernstein center Z(C) of C, see [Bas68, II §2], [Mac71, II.5, Exercise 8] as
well as [Ber84, 1.9], for example. It is the abelian monoid of natural transforma-
tions Id(C)→ Id(C), so that its elements are the families (p(x) : x→ x |x ∈ C)
of self-maps that commute with all morphisms in C. Centers in this generality
have applications far beyond those provided by monoids alone. As an example
which is at least as important as elementary, for every prime number p the cen-
ter of the category of commutative rings in characteristic p is freely generated
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by Frobenius, exhibiting Frobenius as a universal symmetry of commutative
algebra in prime characteristic.
Drinfeld, Joyal, Majid, Street, and possibly others have generalized the notion
of center in a different direction, from monoids to (small) monoidal (or tensor)
categories, see [JS91a, Definition 3] and [Maj91, Example 3.4]. The resulting
notion is often referred to as the Drinfeld center. Since tensor categories are
just the bicategories with only one object, it is therefore natural to ask for a
generalization of the Drinfeld center construction to bicategories. This will be
the first achievement in the present paper.
After we have set up our conventions and notation for bicategories in Section 1,
Section 2 contains our definition and the main properties of the Drinfeld center
of bicategories: The center is a braided tensor category that is invariant under
equivalences. In the central Section 3, we will explain a systematic method (a
spectral sequence) to compute the two primary invariants of the Drinfeld cen-
ter of every bicategory as a braided tensor category: the abelian monoid of
isomorphism classes of objects, and the abelian group of automorphisms of its
unit object.
We will also explain the relation of the Drinfeld center with a more primitive
construction: the center of the classifying category. These are connected by a
characteristic homomorphism (3.1) that, in general, need not be either injec-
tive or surjective. As an explanation of this phenomenon, we will see that the
characteristic homomorphism can be interpreted as a fringe homomorphism
of our spectral sequence. The word ‘fringe’ here refers to the fact that spec-
tral sequences in non-linear contexts only rarely have a well-defined edge. As
in [Bou89], this will lead us into an associated obstruction theory that will also
be explained in detail.
The final Sections 4, 5, and 6 discuss important examples where our spectral se-
quence can be computed and where it sheds light on less systematic approaches
to computations of centers: the 2-category of groups, where the 2-morphisms
are given by conjugations, fusion categories in the sense of [ENO05], where
Drinfeld centers have been in the focus from the beginning of the theory on,
and the bicategory that underlies Morita theory: the bicategory of rings and
bimodules .

1 A review of bicategories

To fix notation, we review the definitions and some basic examples of 2-
categories and bicategories in this section. Some useful references for this
material are [Ben67], [KS74], [KV94], [Str96], [Lac10], and of course [Mac71,
Chapter XII]. For clarity of exposition, we will use different font faces for ordi-
nary categories and 2-categories/bicategories.
Ordinary categories will be denoted by boldface letters such as C,D, . . . . and
their objects will be denoted by x, y, . . . . The set of morphisms in C from x
to y will be denoted by MorC(x, y), or sometimes C(x, y) for short. We will
write x ∈ C to indicate that x is an object of C. If C is a small ordinary
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category, then Iso(C) will be the set of isomorphism classes of objects. If x ∈ C

is any object, then AutC(x) will be its automorphism group in C.

Definition 1.1. A 2-category (or sometimes: strict 2-category) is a category
enriched in small categories. This is a category B in which for every two
objects (or 0-morphisms) x, y in B the morphism set is the underlying object
set of a given small category MorB(x, y); there are identity objects, and a
composition functor that satisfy the evident axioms.

Example 1.2. A basic example of a (large) 2-category can be described as
follows: It has as objects the (small) categories, and the categories of mor-
phisms are the functor categories Fun(C,D) with natural transformations as
morphisms. We will write End(C) = Fun(C,C) for short.

Bicategories (or sometimes: lax/weak 2-categories) are similar to 2-categories,
except that the associativity and identity properties are not given by equalities,
but by natural isomorphisms. More precisely, we have the following definition.

Definition 1.3. A bicategory B consists of

• objects (the 0-morphisms) x, y, ...,

• a categoryMorB(x, y) of morphisms (the 1-morphisms) for every ordered
pair of objects x, y of B,

• a functor, the horizontal composition,

MorB(y, z)×MorB(x, y) −→MorB(x, z),

(M,N) 7−→M ⊗N,

• and an identity object Id(x) ∈MorB(x, x) for every object x.

We also require natural transformations α, λ and ρ of functors that make the
canonical associativity and identity diagrams commute.

Example 1.4. A basic example of a (large) bicategory has as objects
the (small) categories, and the categories of morphisms are the bimodules (or
pro-functors or distributors), see [Bor94, Proposition 7.8.2].

Bicategories will be denoted by blackboard bold letters such as B,C, . . . .
The objects (that is, the 0-morphisms) of a bicategory will be denoted
by small letters x, y, .... Objects in MorB(x, y) (that is, the 1-morphisms
in B) will be denoted by capital letters M,N, . . ., and we will sometimes
write B(x, y) = MorB(x, y) for short.

Every category of the form MorB(x, x) is a tensor category with respect to ⊗
and Id(x):
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Example 1.5. We refer to [Mac71, Chapter VII] and [JS91b] for introduc-
tions to tensor (or monoidal) categories. Every tensor category M defines a
bicategory B(M) with one just object, which will be denoted by ⋆:

MorB(M)(⋆, ⋆) = M.

Conversely, every bicategory with precisely one object is of this form. Examples
of the form End(C) = Fun(C,C) for small categories C should be thought
of as typical in the sense that the product need not be symmetric. Weaker
notions, such as braidings [JS93], will be described later when needed.

Example 1.6. On the one hand, every category C defines a (‘discrete’) bicat-
egory D(C), where the morphism sets MorC(x, y) from C are interpreted as
categories MorD(C)(x, y) with only identity arrows. These examples are in fact
always 2-categories.

Definition 1.7. Every bicategory B determines an ordinary category Ho(B),
its classifying category, as follows [Ben67, Section 7]: The objects of Ho(B)
and B are the same; the morphism set from x to y in the classifying cat-
egory Ho(B) is the set of isomorphism classes of objects in the morphism
category MorB(x, y). In the notation introduced before,

MorHo(B)(x, y) = Iso(MorB(x, y)).

The associativity and identity constraints for B prove that horizontal compo-
sition provides Ho(B) with a the structure of an ordinary category such that
the isomorphism classes of the Id(x) become the identities.

Remark 1.8. The classifying category of a bicategory is not to be confused
with the Poincaré category of a bicategory, see [Ben67, Section 7] again.

Example 1.9. If M is a tensor category, and B = B(M) is the associated
bicategory with one object, then Ho(B) is the monoid Iso(M) of isomorphism
classes of objects in M, thought of as an ordinary category with one object.

Example 1.10. If B = D(C) is a discrete bicategory defined by an ordinary
category C, then the classifying category Ho(B) = C gives back the ordinary
category C.

Example 1.11. There is a bicategory T that has as objects the topological
spaces, as 1-morphisms the continuous maps, and as 2-morphisms the homo-
topy classes of homotopies between them. In other words, one may think
ofMorT(X,Y ) as the fundamental groupoid of the space of mapsX → Y (with
respect to a suitable topology). The bicategory T is actually a 2-category. Its
classifying category Ho(T) is the homotopy category of topological spaces with
respect to the (strong) homotopy equivalences.

The preceding example explains our choice of notation Ho(B) for general bi-
categories B.
We will not recall the appropriate notions of functors and natural transforma-
tions for bicategories here, but we note that every bicategory is equivalent to
a 2-category, see [MP85].
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2 Drinfeld centers for bicategories

Drinfeld centers for tensor categories were introduced independently by Drin-
feld, Majid [Maj91, Example 3.4], and Joyal-Street [JS91a, Definition 3]. In
this section, we extend their definition and basic properties to bicategories.

2.1 Definition

Drinfeld centers for bicategories are defined as follows.

Definition 2.1. Let B be a (small) bicategory. Its Drinfeld center Z(B) is the
following ordinary category. The objects in Z(B) are pairs (P, p) where

P = (P (x) ∈MorB(x, x) |x ∈ B)

is a family of objects in the endomorphism (tensor) categories MorB(x, x), one
for each object x ∈ B, and

p = (p(M) : P (y)⊗M
∼=
−→M ⊗ P (x) |x, y ∈ B,M ∈MorB(x, y))

is a family of natural isomorphisms in the category MorB(x, y), one for each
object M ∈MorB(x, y). These pairs of families have to satisfy two conditions:
Firstly, the isomorphism

p(Id(x)) : P (x)⊗ Id(x)→ Id(x) ⊗ P (x)

is the composition of the identity constraints λ and ρ. Secondly, ignoring the
obvious associativity constraints, there is an equality

p(M ⊗N) = (id(M)⊗ p(N))(p(M)⊗ id(N)) (2.1)

that has to hold between morphisms in the category MorB(x, z) for all ob-
jects M ∈MorB(y, z) and N ∈MorB(x, y) that are horizontally composeable.
A morphism from (P, p) to (Q, q) in the category Z(B) is a family of morphisms

f(x) : P (x)→ Q(x)

in the categories MorB(x, x) such that the diagram

P (y)⊗M

f(y)⊗id(M)

��

p(M)
// M ⊗ P (x)

id(M)⊗f(x)

��
Q(y)⊗M

q(M)
// M ⊗Q(x)

commutes for all objects M ∈ MorB(x, y). Identities and composition in the
category Z(B) are defined so that there is a faithful functor

Z(B) −→
∏

x∈B

MorB(x, x)

to the product of the endomorphism categories which is forgetful on objects.
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Remark 2.2. Equation (2.1) means that the triangles

M ⊗ P (y)⊗N

id(M)⊗p(N)

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼

P (z)⊗M ⊗N

p(M)⊗id(N)

88qqqqqqqqqqqqq

p(M⊗N)
// M ⊗N ⊗ P (x)

in the category MorB(x, z) commute on the nose, again ignoring the given
associativity constraints. This means that the bottom arrow is equal to the
composition of the other two. For bicategories as defined here, there is no
other notion of equivalence between morphisms in MorB(x, z), so this is the
appropriate definition in our situation. Further generalization–with even higher
order structure (P 0, P 1, P 2, . . . ) instead of just (P, p)–is called for in higher
categories. This has been developed for the context of simplicial categories
in [Szy]. A detailed comparison, while clearly desirable, is not within the scope
of the present text, and apart from some occasional hints such as in Remark 3.2,
we will focus entirely on the categorical situation here.

Example 2.3. By inspection, if B = B(M) is a tensor category, thought of as a
bicategory with one object as in Example 1.5, then our definition recovers the
Drinfeld center as defined in [Maj91, Example 3.4] and [JS91a, Definition 3].

Other examples related to categories of groups, bands, and fusion categories
will be discussed later, see Section 4 and Section 5, respectively.

2.2 Basic properties

We now list the most basic properties of Drinfeld centers for bicategories: They
are invariant under equivalences, and carry canonical structures of braided
tensor categories. All of these are straightforward generalizations from the
one-object case of tensor categories.

Proposition 2.4. For every (small) bicategory B, its Drinfeld center Z(B) has
a canonical structure of a tensor category. The tensor product

(P, p)⊗ (Q, q) = (P ⊗Q, p⊗ q)

is defined by

(P ⊗Q)(x) = P (x)⊗Q(x)

and

(p⊗ q)(M) = (p(M)⊗ id(Q(x)))(id(P (y)) ⊗ q(M))

as morphisms

P (y)⊗Q(y)⊗M −→ P (y)⊗M ⊗Q(x) −→M ⊗ P (x) ⊗Q(x)
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for M ∈MorB(x, y). The tensor unit is (E, e) with

E(x) = Id(x)

and
e(M) : Id(y)⊗M ∼= M ∼= M ⊗ Id(x)

is given by the constraints of the tensor structure.

Proof. See [Kas95, XIII.4.2] for the case of tensor categories.

Corollary 2.5. The group AutZ(B)(E, e) is abelian.

Proof. In every (small) tensor category, the endomorphismmonoid of the tensor
unit is abelian. See [Kas95, XI.2.4], for example.

Proposition 2.6. For every (small) bicategory B, its Drinfeld center Z(B) has
a canonical structure of a braided tensor category. The braiding

(P, p)⊗ (Q, q) −→ (Q, q)⊗ (P, p)

is defined by the morphisms

p(Q(x)) : P (x)⊗Q(x) −→ Q(x) ⊗ P (x)

for objects x ∈ B.

Proof. See again [Kas95, XIII.4.2] or [JS91a, Proposition 4] for the case of
tensor categories.

Corollary 2.7. The monoid Iso(Z(B)) is abelian.

Proof. In every (small) braided tensor category, the monoid of isomorphism
classes of objects is abelian.

Remark 2.8. The Drinfeld center is invariant under equivalences of bicate-
gories. This is shown for tensor categories in [Müg03], even under the more
general hypothesis that the tensor categories are weakly monoidal Morita equiv-
alent. This will not be needed in the following.

3 Symmetries, deformations, and obstructions

In this section, we will explain a systematic method how to compute the two pri-
mary invariants of the Drinfeld center Z(B) of every bicategory B as a braided
tensor category: The abelian monoid Iso(Z(B)) of isomorphism classes of ob-
jects under ⊗, and the abelian group AutZ(B)(E, e) of automorphisms of its
unit of object. We will also explain the relation of the Drinfeld center to a
more primitive construction: the center of the classifying category. These are
connected by the homomorphism

Iso(Z(B)) −→ Z(Ho(B)) (3.1)
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that sends the isomorphism class of an object (P, p), where P is the fam-
ily P = (P (x) ∈MorB(x, x) |x ∈ B), to the family [P ] of isomorphism classes,
that is [P ] = ([P (x) ] ∈ IsoMorB(x, x) |x ∈ B).

Definition 3.1. The canonical homomorphism (3.1) is called the characteristic
homomorphsim.

In general, the characteristic homomorphism need not be either injective or
surjective. As an explanation of this phenomenon, we will see that the charac-
teristic homomorphism can be interpreted as a fringe homomorphism of a spec-
tral sequence (Es,t

r | r > 1) with an associated obstruction theory. This spectral
sequence will compute the abelian monoid Iso(Z(B)) from Es,t

∞ with t− s = 0
and the abelian group AutZ(B)(E, e) from Es,t

∞ with t− s = 1.

Remark 3.2. The spectral sequence that we are about to construct can be mo-
tivated by the spectral sequence one of us has constructed to compute the ho-
motopy groups of homotopy coherent centers of simplicial categories, see [Szy]
and compare Remark 2.2. For the purposes of this discussion, let us begin by
ignoring all non-invertible objects and morphisms. Then the groups Iso(Z(B))
and AutZ(B)(E, e) that we are trying to compute are the (only) non-zero ho-
motopy groups of the nerve (or classifying space) of the Drinfeld center. On
the other hand, the nerve construction can also be used to produce a simpli-
cial category from any bicategory, and it seems plausible that the homotopy
coherent center of that simplicial category, which is a space, is equivalent to
the nerve of the Drinfeld center of the bicategory that we started with. Then
the theory in [Szy] can be applied. See also Remarks 3.3 and 5.7. It should be
noted that our deductions in here will be entirely elementary, and do not make
use of algebraic topology.

The non-zero part of the E1 page of our spectral sequence is not very popu-
lated. There are only five terms Es,t

1 that can be non-zero, and only three d1
differentials between them. The situation can be illustrated as follows.

s

0

1

2

t− s

−1 0 1

E0,0
1

E1,0
1

E0,1
1

E1,1
1

E2,1
1

Then d2 is the last differential that may be non-zero, and working through the
spectral sequence is only a two-stage process. However, we note in advance
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that our terms will not necessarily carry the structure of abelian groups, as one
might be used to in spectral sequences.

Remark 3.3. The range where our spectral sequence is non-trivial can be also
motivated along the lines of Remark 3.2: Since for the nerve of a groupoid
only π0 (the set of isomorphism classes of objects) and π1 (their automorphism
groups) can be non-trivial, the spectral sequence in [Szy] for the homotopy
coherent center of the corresponding simplicial category will have non-zero
entries in at most five places: those with 0 6 t 6 1 and −1 6 t− s 6 1.

We will now describe the terms and the differentials on the E1 page, so as to
obtain a description of the E2 page.

3.1 The terms with t = 0

Let us first look at the two terms with t = 0.

Definition 3.4. We define

E0,0
1 =

∏

x∈B

IsoB(x, x), (3.2)

which is a monoid, and

E1,0
1 =

∏

y,z∈B

IsoFun(B(y, z),B(y, z)), (3.3)

which is a monoid as well.

Remark 3.5. Let us point out a common source of confusion: Each func-
tor F : B(y, z)→ B(y, z) induces a map Iso(B(y, z))→ Iso(B(y, z)) between the
sets of isomorphism classes, and this map only depends on the isomorphism
class of the functor F . This gives us a (tautological) homomorphism

τ(y, z) : IsoFun(B(y, z),B(y, z)) −→ Map(IsoB(y, z), IsoB(y, z))

of monoids, but this homomorphism is neither injective nor surjective in gen-
eral. It is the source that is relevant in (3.3), not the less useful target.

There are two natural homomorphisms d′1, d
′′
1 : E0,0

1 → E1,0
1 of monoids, given

by sending a family ([P (x) ] |x ∈ B) of isomorphism classes of objects to either
the equivalence class [M 7→ P (z)⊗M ] of the endo-functor M 7→ P (z)⊗M
or to the equivalence class of the endo-functor [M 7→M ⊗ P (y) ] respectively.
The differential d1 : E

0,0
1 → E1,0

1 should be thought of as the difference of them:

Definition 3.6. The monoid E0,0
2 is defined as the equalizer of d′1 and d′′1 .

Proposition 3.7. There are injections

E0,0
2 6 Z(Ho(B)) 6 E0,0

1

of monoids.
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Proof. On the one hand, an element in E0,0
2 is an element E0,0

1 that lies in
the equalizer of d′1 and d′′1 . These are the families ([P (x) ] |x ∈ B) of isomor-
phism classes of objects such that the two endo-functors M 7→ P (z) ⊗ M
and M 7→ P (z)⊗M are naturally isomorphic. On the other hand, an el-
ement in the center Z(Ho(B)) of the classifying category is just a fam-
ily ([P (x) ] |x ∈ B) such that the objects P (z) ⊗ M and P (z)⊗M are iso-
morphic (perhaps not naturally) for all M .
Finally, notice that the center Z(Ho(B)) of the classifying category can be
considered as the equalizer of the maps

∏
y,z τ(y, z)d

′
1 and

∏
y,z τ(y, z)d

′′
1 , where

the maps τ(y, z) are the tautological maps defined in Remark 3.5.

3.2 The terms with t = 1

Let us now look at the three terms with t = 1.

Definition 3.8. We define

E0,1
1 =

∏

x∈B

AutB(x,x)(Id(x)) (3.4)

and

E1,1
1 =

∏

y,z∈B

AutEnd(B(y,z))(id), (3.5)

which are both abelian groups.

Again, there are two distinguished homomorphisms d′1, d
′′
1 : E

0,1
1 → E1,1

1 , this
time of abelian groups. One can be described as sending a family

u = (u(x) : Id(x)→ Id(x) |x ∈ B)

of automorphisms to the natural transformation (u(z) ⊗ id(M) |M) and the
other sends it to (id(M)⊗u(y) |M). Actually the targets are slightly different,
but the tensor structure can be used to compare the two, using the diagram

Id(z)⊗M

u(z)⊗id(M)

��

oo
∼= // M

��

oo
∼= // M ⊗ Id(y)

id(M)⊗u(y)

��
Id(z)⊗M oo

∼=
// M oo

∼=
// M ⊗ Id(y).

The differential d1 : E
0,1
1 → E1,1

1 is the difference of d′1 and d′′1 .

Definition 3.9. We define E0,1
2 to be the equalizer of the two homomor-

phisms d′1 and d′′1 , this is the kernel of the difference d1 = d′1 − d′′1 .

Direct inspection gives the following result.
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Proposition 3.10. There is an isomorphism

E0,1
2
∼= AutZ(B)(E, e)

of abelian groups.

This already finishes the calculation of one of the basic invariants of Z(B) as a
braided tensor category, the (abelian) automorphism group of its tensor unit.

3.3 Measuring the failure of injectivity

We will now proceed to calculate the (abelian) monoid Iso(Z(B)) of isomor-
phism classes of objects as well. In order to do so, we need to describe the
remaining group on the E1 page.
Given three objects x, y, z of B, it will be useful to write

F(x, y, z) = Fun(B(y, z)× B(x, y),B(x, z))

as an abbreviation for the functor category.

Definition 3.11. For any family P = (P (x) |x ∈ B) we define

E2,1
1 (P ) =

∏

x,y,z∈B

AutF(x,y,z)(P⊗?⊗??), (3.6)

where P⊗?⊗?? : B(y, z)× B(x, y)→ B(x, z) denotes the functor

(M,N) 7−→ P (z)⊗M ⊗N.

This is a group that may not be abelian.

It is clear that any isomorphism P ∼= Q of families also determines an isomor-
phism E2,1

1 (P ) ∼= E2,1
1 (Q) of groups. For P = E, the group

E2,1
1 (E) ∼=

∏

x,y,z∈B

AutF(x,y,z)(⊗)

receives three homomorphisms from the abelian group E1,1
1 : One sends a family

f = (f(M) : M −→M | y, z ∈ B,M ∈ B(y, z)) ∈ E1,1
1

of natural automorphisms of the identity to the family

(f(M)⊗ id(N) |x, y, z ∈ B,M ∈ B(y, z), N ∈ B(x, y)),

and the other ones are given similarly by

(id(M)⊗ f(N) |x, y, z ∈ B,M ∈ B(y, z), N ∈ B(x, y))

and
(f(M ⊗N) |x, y, z ∈ B,M ∈ B(y, z), N ∈ B(x, y)),

respectively.
Lead by Equation (2.1), we define a subgroup of the abelian group E1,1

1 by what
should be thought of as the alternating sum of these three homomorphisms:
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Definition 3.12.

Z1,1
1 = {f ∈ E1,1

1 | f(M ⊗N) = (id(M)⊗ f(N))(f(M)⊗ id(N))} (3.7)

Note that
(id(M)⊗ f(N))(f(M)⊗ id(N)) = f(M)⊗ f(N),

so that we can rewrite this definition as

Z1,1
1 = {f ∈ E1,1

1 | f(M ⊗N) = f(M)⊗ f(N)}. (3.8)

Definition 3.13. We define

B1,1
1 = {(u⊗ id(N))(id(M)⊗ u−1) |u ∈ E0,1

1 } (3.9)

to be the image of the differential d1 : E
0,1
1 → E1,1

1 .

Recall that both of the groups E0,1
1 and E1,1

1 are abelian, so that taking the
difference makes sense, and the image is a subgroup. It is then clear that we
have B1,1

1 6 Z1,1
1 .

Definition 3.14. We define

E1,1
2 = Z1,1

1 /B1,1
1 , (3.10)

which is also an abelian group.

Proposition 3.15. There is an isomorphism

E1,1
2
∼= Ker(Iso(Z(B))→ Z(Ho(B)))

of abelian groups.

Remark 3.16. Notice that Iso(Z(B)) and Z(Ho(B)) are abelian monoids, and
are not necessarily groups. However, each element from Iso(Z(B)) which maps
into the identity element in Z(Ho(B)) is invertible.

Proof. The kernel displayed above contains all isomorphism classes of ob-
jects (P (x) |x ∈ B ) in the Drinfeld center Z(B) such that there exists an iso-
morphism P (x) ∼= Id(x) for every object x of B. We define

Z1,1
1 −→ Iso(Z(B))

f 7−→ (Pf , pf )

as follows: Every element f ∈ Z1,1
1 is a family of natural isomorphisms from the

identity of B(y, z) to itself that is compatible with the tensor product as in (3.8).
We define the image (Pf , pf ) of the element f to be the following central object:
For every object x ∈ B, we choose Pf (x) = Id(x) to be the identity, and for
every M ∈ B(x, y), the isomorphism pf : M ∼= M ⊗ Pf (x)→ Pf (y)⊗M ∼= M
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is given by f(M) : M →M . The fact that the family f is compatible with the
tensor products ensures that this construction produces a central object.
The image (Pf , pf ) of the element f lies in the kernel of the homomor-
phism under consideration, and in fact, every element in the kernel is of
this form. If the object (Pf , pf ) is isomorphic to the identity object, then
there is a family of isomorphisms u(x) : Pf (x) = Id(x)→ Id(x) such that pf is
given by (u(y)⊗ id(M))(id(M)⊗ u(x)−1), where we have used the identifica-
tions Id(y)⊗M ∼= M ∼= M ⊗ Id(x) again. This just means that the element f
lies in B1,1

1 .

The preceding proposition explains the potential failure of the injectivity of the
characteristic homomorphism (3.1): If an element Z(Ho(B)) can be lifted to
an element in Z(B), then the abelian group E1,1

2 acts on the different represen-
tatives in Iso(Z(B)). However, in monoids, this action need neither be free nor
transitive.

3.4 The E2 page

The part of the E2 page of the spectral sequence that can be non-trivial looks
as follows.

s

0

1

2

t− s

−1 0 1

E0,0
2 E0,1

2

E1,1
2

E2,1
2 (?)

The three terms that have already been calculated are

E0,1
2
∼= AutZ(B)(E, e)

in the column t− s = 1 and

E0,0
2 6 Z(Ho(B))

E1,1
2
∼= Ker(Iso(Z(B))→ Z(Ho(B)))

in the column t− s = 0, so that there is an exact sequence

0 −→ E1,1
2 −→ Iso(Z(B)) −→ Z(Ho(B))

that describes Iso(Z(B)), except for the image of the characteristic homomor-
phism.
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One may guess that the image of the characteristic homomorphism would be
the kernel of a differential

d2 : E
0,0
2 −→ E2,1

2 , (3.11)

but the situation is more complicated: The question mark in E2,1
2 (?) in the

figure indicates that we do not have a single group E2,1
2 as the target of a

differential (3.11), but rather an entire family E2,1
2 (P ) of groups, one as the

target of a tailored differential that acts on [P ] ∈ E0,0
2 . This will now be

explained in detail.

3.5 Obstructions to surjectivity

We now address the following question: When can an element in the cen-
ter Z(Ho(B)) of the classifying category be lifted to an element in Iso(Z(B))
and hence in Z(B)? Our proof of Proposition 3.7 already gives one con-
dition: That element should lie in the submonoid E0,0

2 that is cut out as
the ‘kernel of d1.’ We may therefore right away start with an element
in the monoid E0,0

2 . Recall from our Definition 3.6 that an element in
the monoid E0,0

2 is given by a family (P (x) |x ∈ B ) of objects for which
the two functors RP (x),LP (y) : B(x, y)→ B(x, y) that are given on objects
by M 7→M ⊗ P (x) and M 7→ P (y)⊗M , respectively, are naturally isomor-
phic. The family can be lifted to an object in the Drinfeld center Z(B) if and
only if we can choose a family p = ( px,y : RP (x) → LP (y) |x, y ∈ B ) of (natural)
isomorphisms of functors such that we have a natural isomorphism

px,z(M ⊗N) = (id(M)⊗ px,y(N))(py,z(M)⊗ id(N))

for every pair of objects M ∈ B(y, z) and N ∈ B(x, y). To measure the failure
of a given p to comply to these needs, we may consider the composition

d2(p)x,y,z(M,N) = (id(M)⊗ px,y(N))(py,z(M)⊗ id(N))p−1
x,z(M ⊗N), (3.12)

which is an automorphism of the functor (M,N) 7→ P (z) ⊗ M ⊗ N . If we
let x, y, and z vary, then the family of the d2(p)x,y,z defines an element d2(p)

of the group E2,1
1 (P ) of our Definition 3.11. The automorphisms (3.12) is the

identity automorphism if and only if (P, p) lies in the Drinfeld center Z(B).
This leads us to regard the automorphisms (3.12) as the obstructions for (P, p)
to be an object of the Drinfeld center.
Of course, it is possible that (P, p) will not be an object of the Drinfeld center,
but (P, p′) will be, for some other family p′ = ( p′x,y ) of isomorphisms. Since
the group of automorphisms of the functor (M,N) 7→ P (z) ⊗M ⊗ N is not
abelian in general, we proceed as follows.

Definition 3.17. We define the obstruction differential d2 on P by

d2(P ) = { d2(p) | p = ( px,y : RP (x) → LP (y) |x, y ∈ B ) } ⊆ E2,1
1 (P ),

where p runs over all possible isomorphisms of functors. We will say that d2(P )
vanishes on P if it contains the identity automorphism.
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The discussion preceding the definition proves the following result.

Proposition 3.18. The obstruction differential d2 vanishes on P if for some
choice of p the object (P, p) lies in the Drinfeld center Z(B).

4 Groups and the category of bands

In this section, we present a detailed discussion of the various notions of cen-
ters, and in particular the Drinfeld center, in a situation that is genuinely
different from tensor categories: categories and bicategories where the objects
are (discrete) groups.

A size limitation needs to be chosen, and we can and will assume that all groups
under consideration are finite. Therefore, let G denote the category of all finite
groups. Definition 2.1 requires a small category, so that it will be clear that
the result is a set. However, our calculations will reveal that the result is a
set anyway. We could also choose to work with a skeleton, and then note that
the choice of skeleton does not affect the calculation, since any two skeleta are
equivalent.

The category G is the underlying category of a 2-category G, where the cat-
egory MorG(G,H) is the groupoid of homomorphisms G → H , which are
the 1-morphisms of G, and the 2-morphisms h : α→ β between two homomor-
phisms α, β : G → H are the elements h in H that conjugate one into the
other:

{ h ∈ H |hα(g)h−1 = β(g) for all g ∈ G }.

Remark 4.1. The classifying category B = Ho(G) is sometimes called the
category of bands in accordance with its use in non-abelian cohomology and
the theory of gerbes, see [Gir71, IV.1]. It is customary to denote the conjugacy
classes of homomorphisms G→ H by

Rep(G,H) = IsoMorG(G,H) = MorB(G,H).

These are the sets of morphisms in the classifying category B = Ho(G). Note
that Giraud used the notation Hex(G,H) instead of our Rep(G,H).

The automorphism group of any given homomorphism α : G→ H in the cate-
gory G(G,H) = MorG(G,H) of homomorphisms is the centralizer

AutG(G,H)(α) = { h ∈ H |hα(g)h−1 = α(g) for all g ∈ G } = C(α) (4.1)

of the image of α. This is a subgroup of the group H . We remark that the
centralizers need not be abelian. For example, the centralizer of the constant
homomorphismG→ G is the entire groupG, whereas the center ofG reappears
as the centralizer of the identity G→ G. These observations will be useful when
we will determine the Drinfeld center of G.
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4.1 Some ordinary centers

Before we turn our attention towards the Drinfeld center, let us first describe
the centers of the ordinary categories G and B = Ho(G).

Proposition 4.2. The centers of the categories G and B = Ho(G) are iso-
morphic to the abelian monoid {0, 1} under multiplication.

Proof. This is straightforward for the category G of groups and homomor-
phisms. An element in the center thereof is a family P = (PG : G → G) of
homomorphisms that are natural in G. We can evaluate P on the full sub-
category of cyclic groups, and since Mor(Z/k,Z/k) ∼= Z/k, we see that P is

determined by a profinite integer n in Ẑ: we must have PG(g) = gn for all
groups G and all of their elements g. But, if n is not 0 or 1, then there are
clearly groups for which that map is not a homomorphism. In fact, we can take
symmetric or alternating groups, as we will see in the course of the rest of the
proof.

Let us move on to the center of the classifying category B = Ho(G). Again,
the homomorphisms g 7→ g0 and g 7→ g1 are in the center, and they still
represent different elements, since they are not conjugate. In the classifying
category, if [P ] = ([PG ] : G→ G) is an element in the center, testing against
the cyclic groups only shows that there is a profinite integer n such that PG(g)
is conjugate to gn for each group G and each of its elements g. We will argue
that no such family of homomorphisms PG exists unless n is 0 or 1.

Let us call an endomorphisms α : G→ G on some group G of conjugacy type n
if α(g) is conjugate to gn for all g in G. We need to show that for all n
different from 0 and 1 there exists at least one group G that does not admit
an endomorphism of conjugacy type n.

If |n| > 2, then we choose m > max{n, 5} and consider the subgroup G of the
symmetric group S(m) generated by the elements of order n. Since the set of
generators is invariant under conjugation, this subgroup is normal, and it fol-
lows that G = A(m) (the subgroup of alternating permutations) or G = S(m).
An endomorphism α : G → G of conjugacy type n would have to be trivial
because it vanishes on the generators. But then gn would be trivial for all
elements g in A(m) 6 G, which is absurd.

If n = −1, then we first note that an endomorphism α : G → G of conjugacy
type −1 is automatically injective. Hence, if G is finite, then it is an automor-
phism. Therefore we choose a nontrivial finite group G of odd order such that
its outer automorphism group is trivial. (Such groups exist, see [Hor74], [Dar75]
or [Hei96] for examples that also have trivial centers.) If α : G → G were an
endomorphism of conjugacy type −1, then this would be an inner automor-
phism by the assumption on G. Then id: G → G, which represents the same
class, would also be an endomorphism of conjugacy type −1. In other words,
every element g would be conjugate to its inverse g−1, a contradiction since
the order of G is odd.
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4.2 The Drinfeld center

Now that we have evaluated the centers of the ordinary categories of groups
and bands, we are ready to apply the obstruction theory and spectral sequence
introduced in Section 3 in order to determine the Drinfeld center Z(G) of the 2-
category G of groups. The following result describes the two basic invariants
of Z(G).

Proposition 4.3. The maps

Z(G) −→ IsoZ(G) −→ Z(B = Ho(G))

are both isomorphisms, and the automorphism group of the identity object
in Z(G) is trivial.

Proof. Let us start with the one entry in the spectral sequence that has t = 0.
We already know that there is an upper bound E0,0

2 6 Z(B = Ho(G)) by Propo-
sition 3.7. The center of the classifying category has been determined in the
preceding Proposition 4.2. That result also makes it clear that all elements in
the center of the classifying category lift to the Drinfeld center of G; they even
lift to the center of the underlying categoryG. We deduce that the obstructions
vanish.
Let us now deal with the two entries in the spectral sequence that have t = 1
and that determine the kernel of the map IsoZ(G)→ Z(B = Ho(G)) and the
automorphism group of the identity object in Z(G). We have

E0,1
1 =

∏

F

AutG(F,F )(id) ∼=
∏

F

Z(F )

by (4.1), and we record that this is an abelian group.
In order to determine the entry E1,1

1 , we start with the definition:

E1,1
1 =

∏

G,H

AutEnd(G(G,H))(id).

We know that the category G(G,H) = MorG(G,H) is a groupoid, and as such
it is equivalent to the sum of the groups C(α), where α runs through a sys-
tem of representatives of Rep(G,H) in MorG(G,H). Since we are considering
automorphisms of the identity object, we get

AutEnd(G(G,H))(id) ∼=
∏

[α ]∈Rep(G,H)

ZC(α),

the product of the centers of the centralizers. We note again that this is an
abelian group. This leaves us with

E1,1
1
∼=

∏

G,H

∏

[α ]∈Rep(G,H)

ZC(α).
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The differential d1 : E
0,1
1 → E1,1

1 is the difference of the two coface ho-
momorphisms. Therefore, up to an irrelevant sign, it is given on a fam-
ily P = (P (F ) ∈ Z(F ) |F ) by

(d1P )(α) = P (H)− α(P (G)) ∈ ZC(α) (4.2)

in the factor of α : G → H . It follows that the E0,1
2 entry in the spectral

sequence consists of those families P such that P (H) = α(P (G)) for all G, H ,
and α : G → H . Taking α to be constant, we see that P (F ) has to be trivial
for all F . This shows E0,1

2 = 0. Therefore, by Proposition 3.10, we deduce
that AutZ(G)(E, e) is indeed trivial.
It remains to be shown that there are no more components than we already
know. Proposition 3.15 says that these are indexed by the group E1,1

2 . This
group can be calculated as follows. Its elements are represented by elements
in the subgroup Z1,1

1 6 E1,1
1 , the subgroup of elements Q = (Q(α) ∈ ZC(α) |α)

such that
Q(γβ) = Q(γ) + γ(Q(β)), (4.3)

again up to an irrelevant sign. We claim that each family with that prop-
erty is already in the distinguished subgroup B1,1

1 , so that Z1,1
1 = B1,1

1

and E1,1
2 = Z1,1

1 /B1,1
1 = 0.

That subgroup B1,1
1 is the image of the differential d1. Therefore, to prove the

claim, let us be given a family Q = (Q(α) ∈ ZC(α) |α) such that (4.3) holds.
We can then evaluate this family at the unique homomorphisms α = ǫF from
the trivial group to F , for each finite group F , to obtain a family P (F ) = Q(ǫF ),
and that family is our candidate for an element P to hit the element Q under
the differential d1. And indeed, equation (4.3) for α = γ and β = ǫG gives

Q(ǫH) = Q(αǫG) = Q(α) + α(Q(ǫG)).

Rearranging this yields the identity

Q(α) = Q(ǫH)− α(Q(ǫG)) = P (H)− α(P (G)) = (d1P )(α),

and this shows that Q is indeed in the image. We have proved the claim.

It seems reasonable to expect that similar arguments will determine the Drin-
feld centers of related bicategories such as the ones coming from groupoids or
topological spaces, etc. This will not be pursued further here. Instead, we will
now turn our attention towards a class of examples that indicates the wealth
of obstructions and nontrivial differentials that one can expect in general.

5 Applications to fusion categories

Fusion categories are tensor categories with particularly nice properties. They
arise in many areas of mathematics and mathematical physics, such as operator
algebras, conformal field theory, and Hopf algebras. A general theory of such
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categories has been developed in [ENO05]. In this section, we use the theory
developed so far in order to explain some constructions related to the centers of
fusion categories that otherwise may seem to appear ad hoc. For completeness,
let us start with the definition.

Definition 5.1. A fusion category is a semisimple abelian tensor cate-
gory (F,⊗, I) over a field K of characteristic zero, usually assumed to be al-
gebraically closed, with finitely many simple objects, such that ⊗ is bilinear,
each object has a dual object, and the distinguished object I is simple.

We are here interested in the bicategory B(F) with one object that is associated
with such a fusion category F as explained in Example 1.5, and its Drinfeld cen-
ter. Since fusion categories are special cases of tensor categories, this refers to
the usual notion of a Drinfeld center of a tensor category, and as such it has been
studied in other places. For example, the papers [Müg03], [Ost03], [GNN09],
and [BV13] contain various results on the centers of fusion categories and re-
lated categories.

We will show that the spectral sequence introduced in Section 3 offers a sys-
tematic approach to the computation of the basic invariants of the Drinfeld
center, by interpreting the different terms and differentials in the language of
fusion categories.

5.1 The first page

We start by identifying the terms on the first page of the spectral sequence.

Proposition 5.2. If a fusion category F has n isomorphism classes of simple
objects, then the monoid E0,0

1 can be identified as a set with Nn, the n-fold
product of the monoid N of non-negative integers. The multiplication is given
by the fusion coefficients.

Proof. The monoid E0,0
1 is the set of isomorphism classes of objects in our

category. If the different simple objects of F are X1, . . . , Xn, then there is a
canonical identification of E0,0

1 with Nn, given by

(a1, . . . , an)←→ X⊕a1

1 ⊕ · · · ⊕X⊕an
n .

Notice that the direct sum on F and the tensor product are two different
operations.

An element of the monoid E1,0
1 is just an isomorphism class of endofunc-

tors F→ F.

Proposition 5.3. If a fusion category F over a field K has n isomorphism
classes of simple objects, with representatives X1, . . . , Xn, then there are iso-
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morphisms

E0,1
1
∼= K

×

E1,1
1
∼= (K×)n

E2,1
1
∼=

∏

i,j

Aut(Xi ⊗Xj).

Remark 5.4. In every fusion category with simple objects X1, . . . , Xn, the
automorphism group of the objectX⊕a1

1 ⊕ · · · ⊕X⊕an
n is the group

∏
iGLai

(K).
All of the groups in the preceding proposition have this form.

Proof. The group E0,1
1 is the automorphism group of the tensor identity I of F.

In a fusion category, the tensor identity is simple, and the endomorphism ring
of each simple object is K. Therefore this group is isomorphic to K

×.
The group E1,1

1 is the automorphism group of the identity functor idF : F→ F.
In the case of a fusion category, such an automorphism α is specified by giv-
ing αi : Xi → Xi for each i = 1, . . . , n. In other words, such an automorphism
is given by a set of n invertible scalars, and the group is isomorphic with (K×)n.
Now, the two maps we have E0,1

1 → E1,1
1 are the same. They are given by the

diagonal embedding K
× → (K×)n.

The group E2,1
1 is the automorphism group of the tensor product func-

tor ⊗ : F× F→ F. Any such automorphism is given by a set of n2 invertible
morphisms βi,j : Xi ⊗Xj → Xi ⊗Xj . We can thus identify this group with the
product

∏
i,j Aut(Xi ⊗Xj).

5.2 The first differentials and the center of the classifying cat-

egory

The following result computes the first differential and the center of the classi-
fying category.

Proposition 5.5. The abelian monoid E0,0
2 is isomorphic to Z(Ho(B(F))), the

center of the classifying category.

Proof. The first differential E0,0
1 → E1,0

1 is given by two maps, one which sends
an object X to the functor LX : Y 7→ X ⊗ Y and the other one maps X
to the functor RX : Y 7→ Y ⊗ X . We are interested in the equalizer. This
consists of all the (isomorphism classes of) objects X for which there exists
an isomorphism (of functors) between LX and RX . For fusion categories, this
is the same as the center of the classifying category. Indeed, since a fusion
category F is semi-simple, an additive functor F → F is determined by its
restriction to simple objects, and the tensor product with a given object is an
additive functor.

5.3 The universal grading group

For each fusion category F, we define Fad to be the fusion subcategory of F
consisting of all the direct summands of all objects of the form Xi⊗X∗

i . Notice
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that we take only the products of simple objects with their duals. Then F has a
faithful grading by a group U(F), the universal grading group of F such that Fad

is exactly the trivially graded component. Moreover, each other faithful grading
of F is a quotient of this grading. See [GN08] for more details.

Proposition 5.6. There are isomorphisms

E0,1
2
∼= K

×

E1,1
2
∼= Û(F),

where Û(F) denotes the character group of the universal grading group of F.

Proof. The first claim follows from the fact that the differential from E0,1
1

to E1,1
1 is zero. This fact also implies that the group B1,1

1 is the trivial group.
As for the second one, the three maps E1,1

1 → E2,1
1 are the following. The first

is given by sending a family (αi) to the family (αi)i,j . The second sends a
family (αi) to the family (αj)i,j . The third is more complicated: It sends a
family (αi) to (βi,j)i,j , where βi,j acts by the scalar αk on the Xk component
inside Xi ⊗Xj . We can now offer two proofs, based on Proposition 3.15.

First, we can identify Z1,1
1 and Û(F): For each i = 1, . . . , n, let gi ∈ U(F) be

the degree of Xi by the universal grading. Then the element in Z1,1
1 which

corresponds to ϕ ∈ Û(F) is (ϕ(gi)). We thus get an isomorphism E1,1
2
∼= Û(F).

Second, we can also identify Û(F) directly with the kernel of the characteris-
tic homomorphism Iso(Z(B(F))) → Z(Ho(B(F))): Characters of the universal
grading group U(F) are in one to one correspondence with objects of the Drin-
feld center whose underlying object is the tensor unit. The central object
corresponding to a character ϕ is (I, ϕ), the tensor unit I, together with the
isomorphism I ⊗ Xi → Xi ⊗ I given by the scalar ϕ(gi). Here we identify
both objects with Xi in the canonical way, and the endomorphism ring of Xi

is K.

In conclusion, we have the following exact sequence:

0 −→ Û(F) −→ Iso(Z(B(F))) −→ Z(Ho(B(F))) (5.1)

for any fusion category F. It identifies the character group of the universal
grading group as the measure of the failure of the center of the classifying
category to detect information that is contained in the richer Drinfeld center.

Remark 5.7. The exact sequence (5.1) has been established (independently)
in the work of Grossman, Jordan, and Snyder. Their preprint [GJS] gives two
proofs: One is elementary and ad hoc; the other shows that the sequence can
be embedded into the long exact sequence associated to a fibration of spaces.
It would be interesting to relate that fibration to the tower of fibrations that
is the origin of the spectral sequence in [Szy], compare Remark 3.2.
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5.4 The obstruction differential

The last part which we need to understand in the spectral sequence is the
obstruction differential on the second page, that is d2 : E

0,0
2 → E2,1

2 (?). We
have seen in Section 3.5 that the target E2,1

2 (?) depends on the argument. Let
us explain the obstruction that the differential encodes.
The monoid E0,0

2 contains all objects X of F for which the functors LX and RX

are isomorphic. We will furnish a structure of a central object on X if we can
find an isomorphism of functors α : LX → RX such that the following diagram
will be commutative for every Y, Z ∈ F.

X ⊗ (Y ⊗ Z)
αY ⊗Z

// (Y ⊗ Z)⊗X

((PP
PP

PP
PP

PP
PP

(X ⊗ Y )⊗ Z

αY ⊗idZ ((PP
PP

PP
PP

PP
PP

66♥♥♥♥♥♥♥♥♥♥♥♥
Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z // Y ⊗ (X ⊗ Z)

idY ⊗αZ

66♥♥♥♥♥♥♥♥♥♥♥♥

(5.2)
In other words, if for all choices of α, the identity is in the set of loops of
diagram (5.2).
Of course, different choices of α might furnish different central structures on X .
If we take X to be the tensor unit, this obstruction indeed lies in E2,1

2 (I).

5.5 Vector spaces graded by groups

Let G be a finite group, and assume that our fusion category F is Vec
ω
G, that is,

the category of G-graded vector spaces, in which the associativity constraint
is deformed by the class [ω ] ∈ H3(G,K×) of a 3-cocycle ω, as in [ENO05,
Section 2]. Briefly, the simple objectsXg inVec

ω
G are indexed by the elements g

of the group G. The tensor product is given by Xg ⊗ Xh = Xgh and the
associativity constraint

Xghk = (Xg ⊗Xh)⊗Xk −→ Xg ⊗ (Xh ⊗Xk) = Xghk

is given by the scalar ω(g, h, k). We can think of this category as the category
of vector bundles over the set G, with deformed associativity constraints.
The automorphism group of the neutral object in the Drinfeld center is given
by K

×, as for every fusion category.
The abelian monoid of isomorphism classes of objects is more interesting in
this case: We can view E0,0

1 as the multiplicative monoid underlying the group
semi-ring NG, and then the elements of E0,0

2 are exactly the central elements.
The universal grading group U(Vec

ω
G) is given by the group G. This shows

that the characteristic homomorphism is not injective as soon as the group G
admits a non-trivial character.
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These observations determine the E2-page of the spectral sequence except for
the obstruction differential.
Let us begin by understanding the obstruction differential d2 in case we are
taking a central element z ∈ G, and ask if the corresponding simple object Xz

has a structure of a central object. By inspecting the diagram (5.2) above, we
get that z and ω together furnish a 2-cocycle γω,z on G, given by

γω,z(g, h) = ω(g, h, z)ω−1(g, z, h)ω(z, g, h).

Assume that an object Xz has a structure of a central object. We can then
choose isomorphisms ϕg : Xg ⊗Xz → Xz ⊗Xg for every element g in G, such
that diagram (5.2) is commutative, with X = Xg, Y = Xh and Z = Xz. We
have Xz ⊗Xg = Xzg = Xgz = Xg ⊗Xz. This means that the isomorphism ϕg

can be given by a scalar. By inspecting the diagram (5.2) again, we see that
its commutativity boils down to the equation ∂(ϕ) = γω,z. In other words, the
object Xz will have a central structure if and only if the class of γω,z vanishes
in H2(G,K×). In that case, the different central structures on Xz are in one to
one correspondence with characters of G, as in the case when z is the neutral
element of our group G.
More generally, we can ask when the direct sum X⊕m

z of m copies of Xz will
have a central structure. For this, we need the twisted group algebra K

γω,zG.
This K-algebra has a K-basis { ug | g ∈ G } and the multiplication is given by

uguh = γω,z(g, h)ugh.

The 2-cocycle condition ensures that this algebra is associative. The au-
tomorphism group of the object X⊕m

z is isomorphic to the general linear
group GLm(K). The commutativity of the diagram (5.2) with Z = X⊕m

z will
mean that we can choose elements vg ∈ GLm(K) such that vgvh = γω,z(g, h)vgh.
In other words, the algebra K

γω,zG has an m dimensional representation, and
the different structures of central objects on X⊕m

z correspond to the differ-
ent isomorphism classes of those representations of the twisted group alge-
bra K

γω,zG that have dimension m. Since K
γω,zG is finite-dimensional and

semi-simple when char(K) = 0, there are only finitely many such isomorphism
classes.
The general obstructions can be understood now in a similar way: If g1, . . . , gr
are representatives of the conjugacy classes of G, then we denote by Yi the
direct sum of all Xg such that g is conjugate to gi. We denote by yi the cor-
responding sum in NG. Then any central element in NG can be written as a
sum

∑
i aiyi for ai ∈ N. The possible central structures on the object ⊕iY

⊕ai

i

are given by tuples ([Vi ])i where [Vi ] is an isomorphism class of a representa-
tion of Kγω,giCG(gi) of dimension ai.

Proposition 5.8. For every group G, class ω ∈ H3(G,K×), and central el-
ement z ∈ Z(G) such that γω,z is non trivial, the isomorphism class of the
object Xz is not in the image of the characteristic homomorphism.
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Example 5.9. Let n > 2 be any integer, and setG = (Z/n)3. We denote a Z/n-
basis of the abelian group G by {e1, e2, e3}, and we write ζ for a primitive n-th
root of unity in our field K. We consider the 3-cocycle ω defined by

ω(ea11

1 ea12

2 ea13

3 , ea21

1 ea22

2 ea23

3 , ea31

1 ea32

2 ea33

3 ) = ζa11a22a33 .

in H3(G,K×). It arises as the cup product of three Z/n-linearly independent
elements in the group H1(G,K×) ∼= (Z/n)⊕3. Since the group G is abelian,
every element is central; we choose z = e1. A direct calculation shows that

γω,z(e
a11

1 ea12

2 ea13

3 , ea21

1 ea22

2 ea23

3 ) = ζa12a23+a11a22 ,

which is non-trivial. Furthermore, the Wedderburn decomposition of the alge-
bra K

γω,zG is given by

K
γω,zG ∼=

n⊕

i=1

Mn(K)

Thus, the class of the m-fold direct sum X⊕m
z will be in the image of the

characteristic homomorphism if and only if m is a multiple of n.

6 The bicategory of rings and bimodules

In this section, we discuss another important example of a bicategory, this time
one that has several objects, and that is not a (strict) 2-category, the bicate-
goryM of rings and bimodules, see [Ben67, 2.5] and [Mac71, XII.7]. The objects
in M are the (associative) rings A,B,C, . . . (with unit). The category M(A,B)
is the category of (B,A)-bimodules M and their homomorphism. (As before
in Section 4, some size limitation on the rings and bimodules is needed to keep
the categories and their centers relatively small. We will not further comment
on this, since it is again inessential to our calculations.) Composition in M is
given by the tensor product of bimodules, and the (A,A)-bimodule A is the
identity object in the categoryM(A,A). Every morphism f : A→ B in the (or-
dinary) category of rings gives rise to a (B,A)-bimodule Bf , where A acts via f .
The identity object corresponds to the identity idA in the category M(A,A).
The (ordinary) category of rings has the ring Z as an initial object, and we use
this observation repeatedly in this section.
We can now begin to study our spectral sequence for the bicategory M. As in
Section 4, we start with the (ordinary) center of the classifying category.

Proposition 6.1. The center Z(Ho(M)) of the classifying category Ho(M) of
the bicategory M is the abelian monoid of isomorphism classes of abelian groups
under the multiplication induced by the tensor product, with the isomorphism
class of the infinite cyclic group as unit.

Proof. Consider the monoid

E0,0
1 =

∏

A∈M

IsoM(A,A).
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An element in this monoid is given by a family of isomorphism classes of (A,A)-
bimodules (P (A) |A ∈M ). The monoid

E1,0
1 =

∏

A,B∈M

IsoFun(M(A,B),M(A,B))

contains families of isomorphism classes of endofunctors of the category
of (B,A)-bimodules, one such for every two rings A and B in M. The first
differential vanishes on the isomorphism class of the family (P (A) |A ∈ M )
if and only if the two functors N 7→ N ⊗A P (A) and N 7→ P (B) ⊗B N are
isomorphic on the category of (B,A)-bimodules.
Consider in particular the case where B = Z is the initial ring, and the (Z, A)-
bimodule N is A itself. In this particular case, we see that the two (Z, A)-
bimodules A⊗A P (A) and P (Z) ⊗ A are isomorphic to each other and hence
to P (A). (Here and in the following we write ⊗ = ⊗Z for readability.) We
see that, up to isomorphism, the entire family is determined by the abelian
group P (Z). Conversely, given any abelian group M , then the family of
the P (A) = M ⊗ A admits the structure of a central object. In other words,
the submonoid E0,0

2 consists of all isomorphism class of families of the form

(P (A) |A ∈ M ) = (P (Z)⊗A |A ∈M ),

where P (Z) is an arbitrary abelian group. We thus have E0,0
2 = Z(Ho(M)). It

is clear from the definition of M that the composition is given by the tensor
product and the isomorphism class of the abelian group Z, which corresponds
to the family of isomorphism class of the (A,A)-bimodules A, is the unit.

We remark that we have seen in the course of the proof that the usual sym-
metry will furnish a central structure on any family of bimodules of the
form (P (A) = M ⊗A |A ∈ M ). In particular, this holds for the unit given
by the family E = (E(A) = A ) of (A,A)-bimodules A.
We can now direct our attention to the Drinfeld center of M itself. We start
by determining the automorphism group of its tensor unit.

Proposition 6.2. The automorphism group AutZ(M)(E, e) of the tensor
unit (E, e) in the Drinfeld center Z(M) of the bicategory M is cyclic of or-
der 2.

Proof. It is well known (and easy to prove) fact that the automorphism group
of A as an (A,A)-bimodule is canonically isomorphic to the group Z(A)× of
invertible elements in the center of the ring A. So

E0,1
1
∼=

∏

A∈M

Z(A)×

follows. Similarly, any automorphism of the identity functor on the category
of (B,A)-bimodules, which is isomorphic to the category of B ⊗Aop-modules,
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is determined by its action on the generator, so that it will be given as multi-
plication by an invertible element of the center of the ring B ⊗ Aop. We thus
have

E1,1
1 =

∏

A,B∈M

Z(B ⊗Aop)×.

Using these isomorphisms as identifications, the differential d1 : E
0,1
1 → E1,1

1

then sends a family ( zA |A ∈ M ) to the family ( zB ⊗ z−1
A |A,B ∈ M ). It

follows that, if the differential on the family ( zA |A ∈ M ) vanishes, then each
element zA must be the image in A of some invertible element in (the cen-
ter of) Z. Because the only such elements in Z are ±1, we conclude that
the only families in E0,1

2 are ( 1A |A ∈ M ) and (−1A |A ∈ M ), and thus we
have AutZ(M)(E, e) ∼= E0,1

2
∼= Z/2.

It remains for us to describe the isomorphism classes of objects in the cen-
ter Z(M) of M. We will do this now by showing that the characteristic homo-
morphism is bijective, so that Proposition 6.1 gives the desired result.

Proposition 6.3. For the bicategory M of rings and bimodules, the character-
istic homomorphism Iso(Z(M))→ Z(Ho(M)) is an isomorphism.

Proof. We have already explained the fact that an element in the cen-
ter Z(Ho(M)) of the classifying categoryHo(M) admits a structure of a central
object that lives in Z(M). Therefore, all obstructions must vanish and the char-
acteristic homomorphism is surjective.
The group Z1,1

1 is the subgroup that consists of all families of invertible central
elements zA,B ∈ Z(B ⊗ Aop)× that satisfy the following condition: For every
three rings A,B and C, the element

(idC ⊗mB ⊗ idA)(zB,C ⊗ zA,B) ∈ C ⊗B ⊗ Aop

is equal to zA,B ⊗ 1, where we identify C ⊗ B ⊗ Aop with C ⊗ Aop ⊗ B using
the symmetry, and where we denote the multiplication B ⊗B → B by mB.
Similarly to before, by studying this equation for the special case B = Z we
learn that each such family must be of the form zA,B = zB ⊗ z−1

A for some in-
vertible central elements zA ∈ Z(A)×: Set zA = zA,Z and note that zZ,A = z−1

A .

In other words, a family in the group Z1,1
1 will automatically be in the image of

the differential d1, which is the subgroup B1,1
1 . We conclude that the group E1,1

2

is trivial, and therefore the characteristic homomorphism is also injective in this
case.

The following statement summarizes the results of this section.

Theorem 6.4. The Drinfeld center Z(M) of the bicategory M of rings and
bimodules is isomorphic to the category of abelian groups with the monoidal
structure given by the usual tensor product of abelian groups, and the unit
given by the group of integers.
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Remark 6.5. The obvious generalization from the bicategory of rings (that
is Z-algebras) to the bicategory ofR-algebras (over a given commutative ringR)
can be proven with the same techniques; this only requires a more ornamented
notation.
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