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Abstract. Using the minors in Hessian matrices, we introduce new
graded algebras associated to a homogeneous polynomial. When the
associated projective hypersurface has isolated singularities, these al-
gebras are related to some new local algebras associated to isolated hy-
persurface singularities, which generalize their Tjurina algebras. One
consequence of our results is a new very rapid way to determine the
number of weighted homogeneous singularities of such a hypersurface.
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1. Introduction and statement of results

Let S = ⊕kSk = C[x0, ..., xn] be the graded polynomial ring in n+1 indetermi-
nates with complex coefficients, where Sk denotes the vector space of degree k
homogeneous polynomials. Consider for a polynomial f ∈ Sd, the correspond-
ing Jacobian ideal Jf generated by the partial derivatives fj of f with respect
to xj for j = 0, ..., n, the graded Milnor algebra M(f) = ⊕kM(f)k = S/Jf and
its Hilbert series

(1.1) HP (M(f); t) =
∑

k

dimM(f)kt
k.

Assume in this note that the projective hypersurface V = V (f) : f = 0 in
Pn is reduced with (at most) isolated singularities at the points a1, ..., ap. Let
Hess(f) be the Hessian matrix (fij) of the second order partial derivatives of

1 Partially supported by Institut Universitaire de France and IAS Princeton.
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f and h(f) be the Hessian of f , i.e. the determinant of this matrix Hess(f).
This Hessian h(f) is a homogeneous polynomial in S of degree

T = (n+ 1)(d− 2).

More generally, for each k satisfying 1 ≤ k ≤ n + 1 we denote by hk(f) the
ideal in S generated by all k × k-minors in the matrix Hess(f). In particular,
the ideal hn+1(f) = (h(f)) is a principal ideal. For each k as above, consider
the graded k-th Hessian algebra of the polynomial f defined by

(1.2) Hk(f) = S/(Jf + hk(f)),

whose isomorphism class is clearly a GL(n + 1,C)-invariant of f . Clearly we
have a sequence of epimorphisms of graded C-algebras

M(f) → Hn+1(f) → Hn(f) → · · · → H1(f).

On the other hand, we introduce for any isolated hypersurface singularity (V, 0)
at the origin of Cn, given by an analytic germ g = 0, the k-th Hessian ideal
hk(g) to be the ideal generated by all the k-th minors in the Hessian (n× n)-
matrix Hess(g) = (gij). By convention, we set hn+1(g) = 0. It is easy to
check that the isomorphism class of the local k-th Hessian algebra of the germ
g defined by

(1.3) Hk(g) = On/((g) + Jg + hk(g)),

is a K-invariant of g, i.e. depends only on the isomorphism class of the germ
(V, 0), see Lemma 2.1. Clearly we have now a sequence of epimorphisms of
local Artinian C-algebras

T (g) = Hn+1(g) → Hn(g) → · · · → H1(g),

starting with the Tjurina algebra T (g) of g. Hence one can consider the
Hessian algebras Hk(g) as a generalization of the Tjurina algebra T (g). For
k = 1, ..., n+ 1 we introduce the k-th Hessian number of g to be

(1.4) χk(g) = dimHk(g).

In view of the above remark, we can also write χk(g) = χk(V, 0) and use any
normal form of g to compute these new invariants. Note that χn+1(V, 0) =
τ(V, 0), the usual Tjurina number of (V, 0) and one has the inequalities

0 ≤ χ1(V, 0) ≤ ... ≤ χn(V, 0) ≤ χn+1(V, 0) = τ(V, 0).

Our first main result is the following.

Theorem 1.1. Assume that V (f) is a hypersurface in Pn with isolated singu-
larities at the points a1, ..., ap. Then for k = 1, 2, ..., n + 1 and any m large
enough one has

dimHk(f)m =
∑

i=1,p

χk(V (f), ai).

The following result estimates how large m should be in order to have such
stabilization results. First we recall some definitions, see [12].
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Definition 1.2. For a hypersurface V : f = 0 with isolated singularities we
introduce three integers, as follows.
(i) the coincidence threshold

ct(V ) = max{q : dimM(f)k = dimM(fs)k for all k ≤ q},

with fs a homogeneous polynomial in S of degree d such that Vs : fs = 0 is a
smooth hypersurface in Pn.
(ii) the stability threshold st(V ) = min{q : dimM(f)k = τ(V ) for all k ≥ q},
where τ(V ) is the total Tjurina number of V , that is τ(V ) =

∑
i=1,p τ(V (f), ai).

(iii) the minimal degree of a syzygy mdr(V ) = min{q : Hn(K∗(f))q+n 6= 0},
where K∗(f) is the Koszul complex of f0, ..., fn with the natural grading.

It is known that one has

(1.5) ct(V ) = mdr(V ) + d− 2,

and precise estimates on mdr(V ) are given in [8], [9], [10], [13]. Our second
main result is the following.

Theorem 1.3. Assume that the hypersurface V (f) in Pn has only isolated
singularities. Then one has the following stabilization property:

dimHn(f)m = τ(V (f))− |Singwh(V (f))|

for any m large, where |Singwh(V (f))| is the number of weighted homogeneous
singularities the hypersurface V (f) has. Moreover, for any integer k, 1 ≤ k ≤
n, the dimension of Hk(f)m is constant for any

m ≥ Tk := max(T − ct(V ) + k(d− 2), st(V )).

We also have the following result, expressing HP (Hn+1(f); t) in term of the
series HP (M(f); t), which was already studied in [9], [10], [12].

Proposition 1.4. (i) Assume the hypersurface V (f) is smooth. Then

HP (Hn+1(f); t) = HP (M(f); t)− 1 =
(1− td−1)n+1

(1 − t)n+1
− 1.

(ii) Assume the hypersurface V (f) has isolated singularities (and it is not
smooth). Then

HP (Hn+1(f); t) = HP (M(f); t).

A consequence of these results is the following (possibly the fastest) way to
compute the total number of singularities of a projective hypersurface in cases
when it is known a priori that these singularities are all weighted homogeneous.

Corollary 1.5. Assume that the hypersurface V (f) in Pn has only isolated
singularities (and it is not smooth). Then the total number of weighted homo-
geneous singularities of V (f) is given by

|Singwh(V (f))| = dimM(f)m − dimHn(f)m

for any m ≥ T̃n = (2n+ 1)(d− 2).
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In the second section we prove these results, give some Corollaries and a number
of Examples. In the final section we offer a discussion on the constructible
partitions induced on the space of homogeneous polynomials of a fixed degree
d by the values of the Hilbert-Poincaré series of the Milnor algebra M(f) and
of the Hessian algebras Hk(f). The only results here are of an experimental
computational nature. The computations of various invariants given in this
paper were made using two computer algebra systems, namely CoCoA [3] and
Singular [5]. The corresponding codes are available on request.
We would like to thank the referee for the careful reading of our manuscript
and his useful remarks.

2. Hessian matrix and Hessian ideals

Lemma 2.1. The isomorphism class of the local k-th Hessian algebra

Hk(g) = On/((g) + Jg + hk(g)),

of the isolated hypersurface germ (V, 0) : g = 0 is a K-invariant of g for any
integer k = 1, 2, ..., n.

Proof. We have to show that if u ∈ On is a unit and φ : (Cn, 0) → (Cn, 0) an
isomorphism germ, and if we set g′(y) = u(y) ·g(φ(y)), then the algebra Hk(g

′)
is isomorphic to the algebraHk(g) for any k. Note first that the quotientsOV =
On/(g) and OV ′ = On/(g

′) are isomorphic C-algebras, since the isomorphism
φ∗ : On → On given by a(y) 7→ a(φ(y)) sends the ideal (g) injectively onto the
ideal (g′). Computing the partial derivatives of g′ with respect to y1, ..., yn, we
see that the isomorphism φ∗ sends also the ideal (g)+Jg into the ideal (g

′)+Jg′ .
The inclusion φ∗((g) + Jg) ⊂ (g′) + Jg′ implies τ(g) ≥ τ(g′). Since the relation
between g and g′ is symmetrical, we get in the same way τ(g′) ≥ τ(g), and
hence in fact we have equalities everywhere. Now compute the second order
partial derivatives of g′ and note that, modulo the ideal (g′) + Jg′ , the Hessian
matrix Hess(g′) is a product of 3 matrices A(y)tHess(g)(φ(y))A(y), where
A(y) = dφ(y) is the Jacobian matrix of φ and A(y)t denotes its transpose.
From this relation it follows that

φ∗((g) + Jg + hk(g)) ⊂ (g′) + Jg′ +mk(g
′)

for any k. The equality is established exactly as above, using the symmetry
between g and g′.

�

2.2. Proof of Theorem 1.1. For any k, it is clear that the ideal Jf + hk(f)
defines a 0-dimensional subscheme in Pn whose support is contained in the
singular locus V (f)sing = {a1, ..., ap}. Hence one has for large m the following
equality

(2.1) dimHk(f)m =
∑

i=1,p

dimHk(f)ai
,

where Hk(f)ai
denotes the analytic localization of the graded S-module Hk(f)

at the point ai, exactly as in the proof of Corollary 9 in [2].
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To study such a localization, assume that the coordinates have been chosen
such that the singular point a = a1 is located at (1 : 0 : ... : 0). Then the
isolated hypersurface singularity (V (f), a) has a local equation

g(y1, ..., yn) = f(1, y1, ..., yn) = 0.

It follows that gj = fj(1, y1, ..., yn) for any j = 1, ..., n, where gj denotes the
partial derivative of g with respect to yj . Using the Euler relation for f exactly
as in the proof of Corollary 9 in [2], we also get

(2.2) d · g = f0(1, y1, ..., yn) + y1f1(1, y1, ..., yn) + ...+ ynfn(1, y1, ..., yn).

This implies that the localization of the Jacobian ideal Jf at the point a coin-
cides with the ideal spanned by g, g1, ..., gn, i.e. the Tjurina ideal of the isolated
hypersurface singularity (V (f), a). Let’s look now at the second order deriva-
tives. One clearly has gij = fij(1, y1, ..., yn) for all 1 ≤ i, j ≤ n. If we take the
partial derivative with respect to yj for some j > 0 of the polynomials entering
into the equality (2.2), we get

(2.3) d · gj = f0j(1, y1, ..., yn) + y1f1j(1, y1, ..., yn) + ...+

+(fj(1, y1, ..., yn) + yjfjj(1, y1, ..., yn)) + ...+ ynfnj(1, y1, ..., yn).

Similarly, starting with the Euler relation for f0, taking the partial derivative
with respect to x0 and then setting x0 = 1 and xj = yj for j > 0 we get

(2.4) (d− 1) · f0(1, y1, ..., yn) =

= (f0(1, y1, ..., yn) + f00(1, y1, ..., yn)) +
∑

j>0

yjf0j(1, y1, ..., yn).

The formulas (2.3) and (2.4) give a proof of the following result.

Proposition 2.3. The localization of the ideal Jf +hk(f) at the singular point
a = (1 : 0 : ... : 0) coincides with the ideal in the corresponding local ring On

spanned by the local equation g(y) = f(1, y1, ..., yn), its partial derivatives gj
with respect to yj for j = 1, ..., n and all k×k minors in the local n×n Hessian
matrix Hess(g) = (gij).

Proof. Indeed, modulo the Tjurina ideal, the matrix Hess(f)(1, y1, ..., yn) can
be transformed using the above formulas by obvious line and column operations
into a matrix obtained from the local Hessian matrix Hess(g) by adding a first
line and a first column formed by zeros only.

�

Combining this definition with Proposition 2.3 and the equality (2.1) clearly
completes the proof of Theorem 1.1.

Example 2.4. Assume that (V, 0) is an A1-singularity, hence a node. Then
we can choose an equation of the form g = y21 + ... + y2n and it is clear that
χk(V, 0) = 0 for k = 1, 2, ..., , n and χn+1(V, 0) = 1. In particular, if V (f) is a
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nodal hypersurface then Hk(f)m = 0 for 1 ≤ k ≤ n and m large. Hence the
corresponding Hilbert-Poincaré series

HP (Hk(f); t) =
∑

m

dimHk(f)mtm

is a polynomial for 1 ≤ k ≤ n.

Example 2.5. Assume that n = 2 and (V, 0) is an Aq-singularity. Then we can

choose an equation of the form g = y21 + yq+1

2 and it is clear that χ1(V, 0) = 0,
χ2(V, 0) = q − 1 and χ3(V, 0) = q. In particular, if V (f) is a cuspidal curve
then dimHk(f)m = (k − 1)κ for m large, where κ is the number of cusps A2.
To have a numerical example, let f = x2y2 + y2z2 + x2z2 − 2xyz(x + y + z).
Then f = 0 has κ = 3 cusps and no other singularities, see also [6], p.129 for
more on this quartic curve. Numerical computations show that

HP (H1(f); t) = 1 + 3t = 1 + 3t+ 0(t2 + t3 + ...)

HP (H2(f); t) = 1 + 3t+ 6t2 + 7t3 + 3(t4 + t5 + ...)

HP (H3(f); t) = 1 + 3t+ 6t2 + 7t3 + 6(t4 + t5 + ...).

In particular
dimHk(f)m = 3(k − 1)

for k = 1, 2, 3 and m ≥ 4.

Example 2.6. Assume that n = 2 and (V, 0) is an Dq-singularity, q ≥ 4. Then

we can choose an equation of the form g = y21y2 + yq−1

2 and it is clear that
χ1(V, 0) = 1, χ2(V, 0) = q − 1 and χ3(V, 0) = q. Moreover, it clear that for
a plane curve singularity (V, 0), one has χ1(V, 0) = 1, if and only if (V, 0) has
type Dq for some q ≥ 4.

Using Theorem 1.1 and Example 2.5 we get the following.

Example 2.7. The curve V (f) in P2 has only Aq singularities for various q’s
(i.e. V (f) has only corank 1 singularities) if and only if H1(f)m = 0 for m
large. If this holds, then the total number of singularities of V (f) is given by

|Sing(V (f))| = dimH3(f)m − dimH2(f)m

for m large.

2.8. Proof of Theorem 1.3. Consider the local case of an isolated weighted
homogeneous singularity (V, 0) given by g = 0. Then g ∈ Jg and in the local
Gorenstein ring M(g) = On/Jg, the Hessian h(g) of g spans the socle which is
one dimensional, see [15]. Clearly we have Hn(g) = M(g)/(h(g)), and hence
χn(g) = τ(g)− 1 = χn+1(g)− 1. Next, if g is not weighted homogeneous, then
the ideal (g) in M(g) is nonzero, and hence contains the minimal ideal (h(g)).
It follows that in such a case χn(g) = τ(g). The result then follows for large m
using Theorem 1.1 .
Let I be the saturation of the Jacobian ideal Jf . Then Prop. 2. in [7] tells us
that

(2.5) dimSq/Iq = τ(V (f))
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for any q ≥ T − ct(D). In other words, for such q’s, the evaluation map

(2.6) evq : Sq/Iq → ⊕On/((g) + Jg)

is a bijection, where the sum is taken over all singularities (V, a) : g = 0
of the hypersurface V = V (f). In particular, for any fixed singularity a ∈
Vsing there is a polynomial ha ∈ Sq such that the class of ha in the summand
T (g) = On/((g) + Jg) corresponding to a is 1 and its classes in all the other
summands are 0. The k-minors in the matrix Hess(f) have degree k(d − 2)
and the computation done in Proposition 2.3 shows that for any singular point
a ∈ Vsing there are linear combinations ms of such minors (arising from a
change of coordinates on Pn) such that the classes of ms in the corresponding
local ring T (g) generate the ideal hk(g). Corollary 2 in [7] tells us that

(2.7) Iq = Jf,q

for all q ≥ q1 = max(T − ct(V (f)), st(V (f))).
Consider the bijection evq for q ≥ Tk := max(T − ct(V )+k(d−2), st(V )) ≥ q1.
Since all the products hams ∈ hk(f)q, it follows that

evq((Jf,q + hk(f)q)/Jf,q) = ⊕((g) + Jg + hk(g)/((g) + Jg).

This gives the following bijection for q ≥ Tk

evq : Hk(f)q → ⊕On/((g) + Jg + hk(g))

which completes the proof of Theorem 1.3.

Remark 2.9. Note that Tk ≤ T̃k = T + k(d − 2) = (n+ k + 1)(d− 2) for any
k. So one can use this larger bound when there is no information on ct(V ) and

st(V ), i.e. we always have stabilization for dimHk(f)m when m ≥ T̃k. When
we have information on ct(V ) but not on st(V ), as it is often the case, one can
use the better general bound

T̂k = T +max(k(d− 1)− ct(V ), 0).

Corollary 2.10. (i) The hypersurface V (f) in Pn is nodal if and only if

Hn(f)m = 0 for m ≥ T̂n = 3n(d − 2)/2. In particular, for n = 2, we have

H2(f)m = 0 for m ≥ T = T̂2 = 3d− 6.
(ii) Assume the hypersurface V (f) in P

n is nodal and n ≥ 4. Then Hn−1(f)m =

0 for m ≥ T̂n−1 = (3n− 2)(d− 2)/2.

Proof. For a nodal hypersurface, it is known that ct(V (f)) ≥ (n+2)(d− 2)/2,
see [9]. It follows that

T − ct(V (f)) + n(d− 2) ≤ T + (n− 2)(d− 2)/2 = 3n(d− 2)/2 ≥ T,

which proves the result (i). The second claim (ii) follows along the same lines.

The condition n ≥ 4 is necessary to insure that T̂n−1 ≥ T .
�
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Example 2.11. For the nodal curves f = xyzd−2 + xd + yd = 0, a direct
computation shows that the stabilization H2(f)m = 0 occurs for m ≥ 3d −
7 for low values of d, so only one unit better than our prediction. For the
Chebyshev curves considered in [11] or in [22], a direct computation shows
that the stabilization H2(f)m = 0 occurs for m ≥ 3d− 8 for low values of d, so
just 2 units better than our general prediction in Corollary 2.10.

Example 2.12. Let V : f = 0 be the Chebyshev 4-fold of degree d in P5

considered in [10] or in [22]. A direct computation shows that the stabilization
H4(f)k = 0 occurs for k ≥ 13m − 10 for low values of d = 2m + 1, and for
k ≥ 13m − 17 for low values of d = 2m. The corresponding (integral) values
given by T ′

4 in these cases are 13m−7 for low values of d = 2m+1 and 13m−13
for low values of d = 2m, so the difference between the theoretical bound and
the real value of k is less than 4 for any degree d. Similarly, the stabilization
H5(f)k = 0 occurs for k ≥ 15m − 10 for low values of d = 2m + 1, and for
k ≥ 15m − 17 for low values of d = 2m. The corresponding (integral) values
given by T ′

5 in these cases are 15m−8 for low values of d = 2m+1 and 15m−15
for low values of d = 2m, so the difference between the theoretical bound and
the real value of k is less than 2 for any degree d.

Corollary 2.13. Assume the curve V (f) in P2 has ν nodes and κ cusps as
singularities. Then dimH2(f)m = κ and dimM(f)m = dimH3(f)m = ν + 2κ
for m ≥ T + d/6. In other words, the asymptotic behavior of dimHk(f)m for
k = 2, 3 determines the number of nodes and cusps.

Proof. For a plane curve with nodes and cusps, it is known that ct(V (f)) ≥
11d/6− 4, see [13]. It follows that T1 ≤ T + d/6, which proves the result.

�

The stabilization value ofHn−1(f)m is not easy to describe gemetrically beyond
Theorem 1.1, as the following example shows.

Example 2.14. Let V : f = 0 be a plane curve having only simple singularities,
hence singularities of type Ak, Dk, E6, E7 and E8. A direct computation shows
that χ1(g) = 2 for g of type E6 and E7, and χ1(g) = 3 for g of type E8. Using

now Example 2.6, it follows that, for m ≥ T̃1 = 4d− 8, one has

dimH1(f)m =
∑

k

♯Dk + 2(♯E6 + ♯E7) + 3♯E8.

Example 2.15. Consider the line arrangement in P2 given by the following
equation

f = (x2 − y2)(y2 − z2)(x2 − z2).

Then the curve V (f) : f = 0 is a union of 6 lines and it has 3 nodes A1

and 4 triple points D4. In this case ct(V ) = 6 as shown by HP (H3(f); t) =
HP (M(f); t), and hence T2 = max(12− 6+ 8, st(V )) = 14 and T1 = T2 − (d−
2) = 10. Numerical computations give the following.

HP (H1(f); t) = 1 + 3t+ 6t2 + 10t3 + 10t4 + 7t5 + 5t6 + 4(t7 + t8 + ...)
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(hence again a stabilization 3 units before T1)

HP (H2(f); t) = 1+3t+6t2+10t3+15t4+18t5+19t6+19t7+13t8+12(t9+t10+...)

(hence again a stabilization 2 units before T2) and

HP (H3(f); t) = HP (M(f); t) = 1+3t+6t2+10t3+15t4+18t5+19(t6+t7+...),

as predicted by Proposition 1.4.

The following consequence of the proof of Theorem 1.3 might be useful some-
times.

Corollary 2.16. An isolated hypersurface singularity g = 0 is weighted ho-
mogeneous if and only if χn(g) = τ(g)− 1. Otherwise χn(g) = τ(g).

2.17. Proof of Proposition 1.4. In the case (i), it is enough to note that
M(f) is an Artinian Gorenstein ring whose 1-dimensional socle is spanned by
the Hessian polynomial h(f) which has degree T , see for instance [15].

In the case (ii), the class of the Hessian h(f) will now vanish in the local Tjurina
ring T (g) attached to any singularity of V (f) by Proposition 2.3. Indeed, recall
that the first row and first column are zero in the Hessian matrix Hess(f) (in
suitable coordinates) modulo the Tjurina ideal (g) + Jg. Moreover, as in the
proof of Theorem 1.3, the evaluation map

(2.8) evT : ST /Jf,T → ⊕On/((g) + Jg)

is an isomorphism. It follows that h(f) ∈ Jf and hence HP (Hn+1(f); t) =
HP (M(f); t) in this case.

The Hilbert-Poincaré series of the Hessian rings Hk(f) for 1 ≤ k ≤ n are quite
mysterious, as the following example shows.

Example 2.18. Consider the Fermat curve V (f) : f = x6 + y6 + z6 = 0 and
its ”deformation” V (f ′) : f ′ = f + 2xyz4 + 3xzy4 + 5yzx4 = 0. One obtains
the following results by direct computation.

(2.9) HP (M(f); t) = HP (M(f ′); t) =

= 1+3t+6t2+10t3+15t4+18t5+19t6+18t7+15t8+10t9+6t10+3t11+t12.

In particular, V (f ′) is smooth as well and HP (H3(f); t) = HP (H3(f
′); t) can

be computed using Proposition 1.4. For k = 2 we get the following results.

HP (H2(f); t) = 1+3t+6t2+10t3+15t4+18t5+19t6+18t7+12t8+7t9+3t10

and

HP (H2(f
′); t) = 1 + 3t+ 6t2 + 10t3 + 15t4 + 18t5 + 19t6 + 18t7 + 9t8.

Note that the 2-minors have degree 8, which explains the fact that the mono-
mials containing tm for m < 8 are unchanged. For f there are only 3 such
minors, which explain the drop from 15 to 12 in the coefficient of t8. For f ′,
there are 6 distinct minors (due to the symmetry of the Hessian matrix) and
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these 2-minors span a 6-dimensional vector space modulo Jf ′,8 in this case.
Finally, for k = 1 we get

HP (H1(f); t) = 1 + 3t+ 6t2 + 10t3 + 12t4 + 12t5 + 10t6 + 6t7 + 3t8 + t9

and

HP (H1(f
′); t) = 1 + 3t+ 6t2 + 10t3 + 9t4 + 3t5.

Note that the 1-minors have degree 4, which explains the fact that the mono-
mials containing tm for m < 3 are unchanged. For f there are only 3 such
minors, which explain the drop from 15 to 12 in the coefficient of t4. For f ′,
there are 6 distinct 1-minors (due to the symmetry of the Hessian matrix) and
these 1-minors are linearly independent in this case as seen by looking at the
coefficient of t4. Moreover, if we look at the coefficient of t5 in HP (H1(f

′); t), it
says that the only relations among the 18 polynomials xmf ′

ij with i ≤ j and the
3 partial derivatives f ′

0, f
′

1, f
′

3 are the obvious 3 relations given by the Euler’s
formulas

(d− 1)f ′

q = x0f
′

q0 + x1f
′

q1 + x2f
′

q2,

for q = 0, 1, 2. This accounts for the drop 18 − 15 = 3 when we pass from
M(f ′) to H1(f

′).
The symmetry of the polynomial HP (H1(f); t) is easy to explain in general.
Indeed, if we denote by F (d) the Fermat polynomial in n+1 variables of degree
d, then it is clear that

H1(F (d)) = M(F (d− 1)).

3. Constructible partitions for the space of homogeneous

polynomials

Consider the projective space P(Sd) of non-zero homogeneous polynomials of
degree d and let G = PGLn(C) act on P(Sd) in the usual way, i.e. by linear
changes of coordinates. Then there is a Zariski open and dense, G-invariant
subset Us(n, d) in P(Sd), parametrizing the smooth hypersurfaces of degree d
in P

n. There is a larger G-invariant Zariski open subset Uiso(n, d) such that
f ∈ Uiso(n, d) if and only if the hypersurface V (f) : f = 0 in Pn has only iso-
lated singularities. Moreover, for each list of (distinct or not) simple isolated hy-
persurface singularities (Y1, Y2, ..., Yp) we can consider the constructible subset
S(Y1, Y2, ..., Yp) ⊂ Uiso(n, d) defined by the condition that f ∈ S(Y1, Y2, ..., Yp)
if and only if the hypersurface V (f) has exactly p singularities of types Y1, ..., Yp.
It is known that if this stratum is non-empty, then

codimS(Y1, Y2, ..., Yp) ≤
∑

i=1,p

τ(Yi)

with equality if the degree d is large, e.g. if

(3.1) d ≥
∑

i=1,p

si + p− 1,
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where si is the K-determinacy order of Yi, see Prop. 1.3.9 in [6], p.18. Moreover
in this case the stratum S(Y1, Y2, ..., Yp) is smooth and connected. For more
precise and more general results, see Theorem 1 and Theorem 5 in [16].
When all of the singularities Yi are nodes and n = 2, then the corresponding
stratum S0(Y1, Y2, ..., Yp) consisting of all reduced irreducible curves with p
nodes is connected. This is the famous Severi problem solved by J. Harris
[18]. However, in general, the strata S(Y1, Y2, ..., Yp) are not connected even in
this case, see Example 3.1 below. For more general and precise results in this
direction, as well as for an extensive bibliography on the subject, we refer to
the excellent survey [16].
Since dimM(f)k = τ(V (f)), for k > T = (n+1)(d− 2), see [2], it follows that
there is a finite constructible Jacobian partition SY (M(f)) of each stratum
S(Y ) = S(Y1, Y2, ..., Yp), such that f, g ∈ S(Y ) are in the same stratum of SY

if and only if HP (M(f); t) = HP (M(g); t). It is known that fs ∈ Us(n, d) if
and only if

(3.2) HP (M(fs); t) =
(1− td−1)n+1

(1− t)n+1
,

and hence the Jacobian partition on Us(n, d) consists of just one stratum.
However, for a nodal hypersurface V (f) with 3 nodes, the value ofHP (M(f); t)
depends on whether the nodes are collinear or not, see Example 4.3 (iii) in [12].
It follows that the Jacobian stratification on the stratum S(3A1) is not trivial
in general.

Example 3.1. Consider the case n = 2, d = 4 and the stratum S(3A1). It is
known that this stratum S(A3) has two irreducible components, X = S0(3A1)
containing the irreducible quartics with 3 nodes (necessarily non-collinear) and
Y , containing the reduced quartics with 3 collinear nodes obtained from a
smooth cubic and a trisecant line, see Remark 4.7.21 in [21]. Then one has
codimX = codimY = 3, as follows from Theorem 4.7.18 in [21].
Example 4.3 (iii) in [12] tells us that there are two possibilities for H(M(f); t)
on the stratum S(3A1), namely the minimal value (coefficient by coefficient) is

HP (M(f); t) = 1 + 3t+ 6t2 + 7t3 + 6t4 + 3t5 + 3t6 + ...

and this is attained exactly on X and the other possible value is

HP (M(g); t) = 1 + 3t+ 6t2 + 7t3 + 6t4 + 4t5 + 3t6 + ...

and which is attained precisely on Y . In other words, in this case the Jacobian
partition separates the irreducible components of the stratum S(3A1).
Consider now the case n = 2, but d ≥ 8. Since the K-determinacy order of a
node is si = 2, it follows from (3.1) that the stratum S(3A1) is smooth and
connected in this case. The minimal value of HP (M(f); t), which is

(3.3)
(1− td−1)3

(1− t)3
+ 2tT + 3tT+1(1 + t+ t2 + ...),
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by Example 4.3 (iii) in [12], is attained on a Zariski open dense subset S′ of
the stratum S(3A1), while the larger value

(3.4)
(1− td−1)3

(1 − t)3
+ tT−1 + 2tT + 3tT+1(1 + t+ t2 + ...),

is attained on the closed subset S′′ = S(3A1) \ S
′ in S(3A1).

Example 3.2. Consider the case n = 2, d = 6 and the stratum S(6A2). It is
known by the classical work of Zariski that this stratum has two irreducible
components, X containing the irreducible sextics with 6 cusps on a conic and
Y , containing the irreducible sextics with 6 cusps not on a conic. As an example
of a sextic in X one can take

V (f) : f = (x2 + y2)3 + (y3 + z3)2 = 0

and then a direct computation yields

(3.5) HP (M(f); t) =

= 1+3t+6t2+10t3+15t4+18t5+19t6+18t7+16t8+13t9+12(t10+ · · · .

As an example of a sextic in Y one can take

V (g) : g = 27(x+y)3(x+y−z)2(x+y+2z)−27(x+y)2(x+y−z)2((x−y)2−z2)+

+9((x+ y)2 − z2)((x− y)2 − z2)2 − ((x− y)2 − z2)3 = 0,

see [20], formula (5.7), and again a direct computation yields

HP (M(g); t) = 1+3t+6t2+10t3+15t4+18t5+19t6+18t7+15t8+12(t9+ ....

We do not know whether the Hilbert-Poincaré series is constant on X and/or
Y , but it seems that again it can separate distinct irreducible components in a
stratum.

We have seen above, especially in Example 2.18, that though one can also
define the Hessian partition by looking at the strata inside a given S(Y1, ..., Yp)
where the corresponding Hilbert-Poincaré series HP (Hk(f); t) are constant for
k = 1, 2, ..., n+1, the behavior of these partitions is rather mysterious. Indeed,
Example 2.18 shows that already the Hessian partition on the stratum Us(n, d)
can be quite subtle.
To investigate the possibilities for the Hilbert series for HP (M(f); t) as well
as for HP (Hk(f); t) for various k’s, in the neighborhood of a given point g ∈
P(Sd), one can proceed as follows. It is known that the tangent space to
the G-orbit of g (where all the invariants are clearly preserved) is given by
(Jg)d. Let h1, ..., hq be a (monomial) basis of M(g)d and consider the family
of polynomials

(3.6) f = g + a1h1 + ...+ aqhq,

with aj ∈ C, which is exactly a transversal to the G-orbit of g. If we
choose the aj small enough, the values obtained for HP (M(f); t) as well as
for HP (Hk(f); t) for various k’s, will cover all the possibilities that occur in
a neighborhood of g (in the strong topology). If we allow any values for aj ,
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they will give sometimes interesting values, even though not related to the fixed
polynomial g (but covering this time a Zariski open neighborhood of g).

Remark 3.3. Consider the case of smooth plane curves of increasing degree d.
(i) When d = 2, then Us(2, 2) is a single G-orbit, hence all the invariants
HP (Hk(f)) are constant on Us(2, 2), i.e. the Hessian partition is trivial. This
fact clearly holds for any n ≥ 2 as well.
(ii) When d = 3, it is known that any polynomial in Us(2, 3) is G-equivalent to
a Hesse normal form

f = x3 + y3 + z3 + 3axyz,

with a3 6= −1. This comes essentially from the fact that if g = x3 + y3 + z3 is
the corresponding Fermat polynomial, then xyz is a basis for the 1-dimensional
vector space M(g)3.
(iii) When d = 4, if we take g = x4 + y4 + z4, then a basis for M(g)4 is given
by the following 6 monomials

x2y2, x2z2, y2z2, x2yz, xy2z, xyz2.

But doing computation with 6 parameter families seems too complicated for
the moment. That is why in the following examples we take h1, ..., hq just a
family of independent elements of M(g)d, i.e. we explore what happens only in
a fixed direction in the normal space to the orbit of g.

Example 3.4. Consider the case n = 2, d = 6, g = x6 + y6 + z6 and the
3-parameter family

E : f = g + ax4yz + bxy4z + cxyz4,

which is a partial transversal as explained above. We will describe all the
possibilities for the series HP (H1(f); t) when f has this form and f ∈ Us(2, 6).
By direct computation one gets the following Hessian strata in E, where for
each strata we list the corresponding series HP (H1(f); t) and the conditions
on a, b, c to get such a series, up to the action of the permutation group on
x, y, z.

S1 : 1 + 3t+ 6t2 + 10t3 + 9t4 + 3t5 with a, b, c generic .

This is the largest stratum, a Zariski open dense subset in E = C3.

S2 : 1 + 3t+ 6t2 + 10t3 + 9t4 + 4t5 with a = b 6= 0 and c generic .

S3 : 1 + 3t+ 6t2 + 10t3 + 9t4 + 6t5 with a = b = c generic .

S4 : 1 + 3t+ 6t2 + 10t3 + 9t4 + 4t5 + t6 with a = b 6= 0 and c = 0.

S5 : 1+3t+6t2+10t3+9t4+6t5+2t6 with a, b, c a collection of finite nonzero
values, for instance a = b = c = 2.

S6 : 1 + 3t+ 6t2 + 10t3 + 9t4 + 7t5 + 3t6 + t7 with a = b = 0 and c generic .

S7 : 1+ 3t+6t2 +10t3+12t4 +12t5 +10t6+6t7 +3t8 + t9 with a = b = c = 0.
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In the next picture (a Hasse diagram as in the theory of hyperplane arrange-
ments) we draw a line between Si and Sj with Si above Sj if the inequal-
ity HP (H1(f

i); t) ≥ HP (H1(f
j); t) (coefficient by coefficient) holds for some

f i ∈ Si and f j ∈ Sj and we call the resulting poset a Hessian poset. This
inequality is a necessary condition such that the closure of the stratum Sj in-
tersects the stratum Si, by obvious semicontinuity properties. This condition is
not sufficient, since for instance the stratum S5 consists of finitely many points,
hence its closure coincides with S5, and has empty intersection with the strata
S6 and S7. However, all the other strata Sj contain g in their closure. Note
also that if, instead of looking at strata Sj inside E ∩Us(2, 6), we consider the
corresponding strata S′

j in Us(2, 6) defined by the same series HP (H1(f); t),

the above claim that S5 is finite it is no longer valid for S′

5, and hence it is pos-
sible that the closure of S′

5 in Us(2, 6) contains g. To decide such a question by
this approach would involve computation with a family having dimM(g)6 = 19
parameters. On the positive side, the above computation shows that the strata
S′

1, S
′

2, S
′

3, S
′

4 and S′

6 contain g in their closure.

S1

S2

S3 S4

S5

S6

S7

❄❄❄❄
⑧⑧⑧⑧

⑧⑧⑧⑧ ❄❄
❄❄

Figure 1. The Hasse diagram of a Hessian poset in the case n = 2, d = 6

Here is an example for the smooth curves of degree 6, which can be regarded as
a continuation of Example 2.18 and where we consider both seriesHP (H1(f); t)
and HP (H2(f); t).

Example 3.5. Consider the case n = 2, d = 6. Let g = f ′′ = x6 + y6 + z6 +
3x2y2z2. Then the curve V (f ′′) : f ′′ = 0 is smooth and we have

HP (H2(f
′′); t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 18t5 + 19t6 + 18t7 + 9t8, hence

the same series as for the polynomial f ′ in Example 2.18 and

HP (H1(f
′′); t) = 1 + 3t+ 6t2 + 10t3 + 9t4 + 6t5, hence a strictly larger series

than for the polynomial f ′ since the coefficients of t5 satisfy 3 < 6.
Consider now the 1-parameter deformation f ′′

a = f ′′ + axyz4 of f ′′. For small
values of a we get
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HP (H2(f
′′

a ); t) = 1 + 3t + 6t2 + 10t3 + 15t4 + 18t5 + 19t6 + 18t7 + 9t8, hence
the same series as for the polynomials f ′ and f ′′. Moreover

HP (H1(f
′′

a ); t) = 1+3t+6t2+10t3+9t4+4t5, hence a series between that of the
polynomial f ′ and that of polynomial f ′′, since the corresponding coefficients
of t5 satisfy 3 < 4 < 6. However, for the value a = 3 we get different results,
namely

HP (H2(f
′′

3 ); t) = 1+3t+6t2+10t3+15t4+18t5+19t6+18t7+9t8+2t9, and

HP (H1(f
′′

3 ); t) = 1 + 3t + 6t2 + 10t3 + 9t4 + 4t5, hence this polynomial has
both series distinct from the minimal values given by the polynomial f ′ in
Example 2.18. Note that the series HP (H2(f

′′

3 ); t) is strictly bigger than the
series HP (H2(f

′′); t), while the series HP (H1(f
′′

3 ); t) is stricly smaller than
HP (H1(f

′′); t). The conclusion is that the strata of the Hessian partition to
which belong f ′′

3 and respectively f ′′ are not adjacent, i.e. their closures are
disjoint.

Remark 3.6. It is not at all clear what the series HP (Hk(f); t)) tells us about
the geometry of the smooth hypersurface V (f) : f = 0.

(i) In the curve case, when n = 2, the equations f = h(f) = 0 define the
inflection points of the curve V (f), and by Bezout Theorem, their number is
at most d(3d− 6), with equality for a generic curve, see for instance [1]. This
number is lower for some curves, e.g. for the Fermat curve xd + yd + zd = 0
we have only 3d inflection points (counted without multiplicities). However,
the series HP (Hk(f); t)) do not seem to be related to such differences. Indeed,
the two smooth curves V (f ′) and V (f ′′

3 ) of degree 6 in Example 3.5 have each
72 inflection points (by direct computation), but the corresponding series are
different.

(ii) The subvariety of V (f) ⊂ Pn given by the vanishing of the ideal hn+2−k(f)
corresponds to the closure of the Thom-Boardman singularity set Sk(φf ) of the
dual mapping φf : V (f) → Pn associated to f . For a generic f , the stratum
Sk(φf ) is smooth, of codimension k(k+ 1)/2 in V (f) (in particular empty if if
n− 1 < k(k + 1)/2) and connected if n− 1 > k(k + 1)/2, see [1].

(iii) When d = 3, there is a graded Artinian Gorenstein algebra R(f) with
socle degree 3 associated to f via the so-called Macaulay inverse systems, see
[4], [17], [19]. By results in classical algebraic geometry in [14], the variety given
by the vanishing of the ideal hk(f) corresponds to the linear forms ℓ ∈ R(f)1
such that the multiplication by ℓ gives a linear map R(f)1 → R(f)2 of rank
< k, see Lemma 6.1 in [4]. In this way relations to the Lefschetz properties
of Artinian graded rings are established. For such properties, and a definition
of generalized Hessians playing a key role in this theory, see [17], in particular
Definition 3.75.
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