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Abstract. If a finite group A acts coprimely as automorphisms on a

finite group G, then the A-invariant Brauer p-blocks of G are exactly those

that contain A-invariant irreducible characters.
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1. INTRODUCTION

One of the most basic situations in group theory is when a group A acts by automor-

phisms on another group G. If we further assume that A and G are finite of coprime

orders, it is well-known that most of the representation theory ofG admits a version in

which only the A-invariant structure is taken into account. For instance, it is true (and

not trivial) that the number of irreducible complex characters of G which are fixed by

A equals the number of conjugacy classes of G fixed by A.

Although it is fair to say that the ordinaryA-representation theory of G is mostly well

developed, we cannot say the same about A-invariant modular representation theory

(that is, of prime characteristic p). For instance, it is suspected that the number of A-

invariant irreducible p-Brauer characters of G is the number of A-invariant p-regular

classes of G, but this conjecture continues to be open. This, together with some other

problems, was proposed more than 20 years ago in [13].

The extensive research during these years on Brauer p-blocks allows us now to give a

solution to Problem 6 of [13].

Theorem 1.1. Suppose that the finite group A acts by automorphisms on the finite

group G with (|A|, |G|) = 1. Let p be a prime, and let B be a Brauer p-block of G.

Then the following statements are equivalent:

(i) B is A-invariant,

(ii) B contains some A-invariant character χ ∈ Irr(G),
(iii) B contains some A-invariant Brauer character φ ∈ IBr(G).

1The research of the first and third author has been supported by the ERC Advanced Grant 291512
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Of course, (ii) and (iii) easily imply that B is A-invariant, so all the work is concen-

trated in proving that (i) implies (ii) and (iii).

The paper is structured in the following way. In Section 2 a version of the main

theorem is proven in the case where G is quasi-simple. Afterwards in Section 3 we

present a Gallagher type theorem for blocks. In connection with Dade’s ramification

group from [2], revisited in Section 4, we show the existence of character triple iso-

morphisms having crucial properties with respect to coprime action and blocks (see

Section 5). We conclude in the final section with the reductions proving how the

results on quasi-simple groups imply our main statement.

Acknowledgement. We thank the referee for a careful reading of a previous

version.

2. QUASI-SIMPLE GROUPS AND THEIR CENTRAL PRODUCTS

The aim of this section is the proof of a strengthened version of Theorem 1.1 in cases

where the group G/Z(G) is the direct product of r isomorphic non-abelian simple

groups. First we deal with the case where G is the universal covering group of a

simple group and hence G is a quasi-simple group.

In the following we use the standard notation around characters and blocks as intro-

duced in [7] and [14]. Let p be a prime. If A acts on G, we denote by BlA(G) the

set of A-invariant p-blocks of G. If Z⊳G, B ∈ Bl(G) and ν ∈ Irr(Z) we denote

by Irr(B|ν) the set Irr(B) ∩ Irr(G|ν). Also, sometimes we will work in GA, the

semidirect product of G with A.

Theorem 2.1. LetG be the universal covering group of a non-abelian simple group

S, A a group acting on G with (|G|, |A|) = 1, B an A-invariant p-block of G, Z
the Sylow p-subgroup of Z(G) and ν ∈ Irr(Z) A-invariant. Then B contains some

A-invariant character χ ∈ Irr(G|ν).

This theorem is true whenever B is the principal block and Z = 1, since then χ can

be chosen to be the trivial character. On the other hand when B is a block of central

defect, Irr(B|ν) contains exactly one character and hence this one is A-invariant.

Note that neither alternating nor sporadic simple groups possess coprime automor-

phisms, and that for groups of Lie type the only coprime order automorphisms are

field automorphisms (up to conjugation). Thus, for the proof of the theorem, we can

assume that S is simple of Lie type. We consider the following setup. Let G be a

simple algebraic group of simply connected type over an algebraic closure of a finite

field of characteristic r, and let F : G → G be a Steinberg endomorphism, with

group of fixed points G := G
F . It is well known that all finite simple groups of Lie

type occur as G/Z(G) with G as before, except for the Tits group 2F4(2)
′. Since the

latter does not possess coprime automorphisms, we need not consider it here. Fur-

thermore, in all but finitely many cases, the group G is the universal covering group

of S = G/Z(G). None of the exceptions, listed for example in [11, Table 24.3], has

coprime automorphisms, apart from the Suzuki group 2B2(8). But for 22.2B2(8), the

outer automorphism of order three permutes the three non-trivial central characters,

hence our claim holds. For the proof of Theorem 2.1 we may thus assume that G
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and S are as above, and that A induces a (necessarily cyclic) group of coprime field

automorphisms on G.

We first discuss the action of such automorphisms on the Lusztig series E(G, s) ⊆
Irr(G) of irreducible characters ofG, where s runs over semisimple elements of a dual

group G∗ = G
∗F of G. Let G →֒ G̃ be a regular embedding, that is, G̃ is connected

reductive with connected center and with derived subgroup G. Corresponding to this

there exists a surjection G̃
∗ → G

∗ of dual groups. Note that all field automorphisms

of G are induced by those of G̃. Let γ be a field automorphisms of G̃. We denote

the corresponding field automorphism of G̃
∗ also by γ. Let s̃ ∈ G̃∗ := G̃

∗F be

semisimple. Now by [10, Prop. 3.5], γ acts trivially on E(G̃, s̃) whenever it stabilises

E(G̃, s̃). Let s ∈ G∗ with preimage s̃. Then E(G, s) consists of the constituents of the

restrictions of characters in E(G̃, s̃) to G, see e.g. [1, Prop. 15.6(i)].

Lemma 2.2. In the above setting let γ be a coprime (field) automorphism of G. If γ
stabilises E(G, s), then it fixes E(G, s) pointwise.

Proof. According to what we said before, γ can only permute the G-constituents of a

fixed character χ ∈ E(G̃, s̃). We have G̃ = GZ(G̃), so |G̃| = |G| |Z(G̃)| and hence

|G̃ : GZ(G̃)| =
|G̃| |G ∩ Z(G̃)|

|G| |Z(G̃)|
= |G ∩ Z(G̃)| = |Z(G)|.

As irreducible characters of the central product GZ(G̃) restrict irreducibly to G, any

irreducible character of G̃ has at most |Z(G)| irreducible constituents upon restriction

to G. It is easily checked that all primes not larger than |Z(G)| divide |G|, so that all

prime divisors of the order of γ are larger than the number of such constituents. Thus

the action has to be trivial. �

There are two quite different types of behaviour now. Either p is the defining char-

acteristic of G, then coprime field automorphisms fix all p-blocks (but certainly not

all irreducible characters); or p is different from the defining characteristic, in which

case all characters in an invariant block are fixed individually (but not all p-blocks are

invariant):

Proposition 2.3. In the above situation, Theorem 2.1 holds when p is the defining

characteristic of G.

Proof. In this case the p-blocks of positive defect of a group of Lie type G are in

bijection with the characters of Z(G), by a result of Humphreys [5]. Since the claim

is certainly true for the principal block, we may assume that Z(G) 6= 1, and so in

particular G is not a Suzuki or Ree group. For each type of group and each γ-stable

1 6= ν ∈ Z(G) we give in Table 1 a semisimple element s of the dual group G∗ of G
with the following properties: the Lusztig series E(G, s) of irreducible characters lies

in Irr(G|ν), and the class of s is γ-invariant (since s corresponds to the γ-stable central

character ν). It then follows that E(G, s) is stable under all field automorphisms of

G that stabilise ν, and this implies by Lemma 2.2 that the characters in E(G, s) are

individually stable, hence provide characters as claimed. �

Let us now turn to the case where p is not the defining characteristic of G.
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TABLE 1. Semisimple elements

G CG∗(s) o(ν) conditions

SLn(q) GLn−1(q) divides (n, q − 1) (n, q − 1) > 1
SUn(q) GUn−1(q) divides (n, q + 1) (n, q + 1) > 1

Spin2n+1(q) Cn−1 2 q odd

Sp2n(q) GO±
2n(q) 2 q odd

Spin±
2n(q) Bn−1 divides 4 q odd

E6(q) D5 3 q ≡ 1 (mod 3)
2E6(q)

2D5 3 q ≡ 2 (mod 3)
E7(q) E6 2 q ≡ 1 (mod 4)
E7(q)

2E6 2 q ≡ 3 (mod 4)

Proposition 2.4. In the above situation, when p is different from the defining char-

acteristic of G, if B is a γ-invariant p-block of G, then all χ ∈ Irr(B) are fixed by γ.

In particular Theorem 2.1 holds in this case.

Proof. Let B be a p-block of G, Z = Z(G)p and ν ∈ Irr(Z). Let γ be a coprime

(field) automorphism of G fixing B and ν. By a result of Broué and Michel there

exists a semisimple p′-element s ∈ G∗ such that B ⊆ Ep(G, s). Let G →֒ G̃ be a

regular embedding, with corresponding epimorphism G̃∗ → G∗ of dual groups. Let

s̃ ∈ G̃∗ be a preimage of s. Since the class of s is γ-stable, the same argument as in the

proof of Lemma 2.2 shows that the class of s̃ is also γ-stable. Since the centraliser of

s̃ is connected, this means that we may assume without loss of generality that s̃ itself

is γ-stable, and so is CG̃∗(s̃). Now consider H := (G̃∗)γ , the fixed point subgroup

of G̃∗ under γ. This is again a group of Lie type, of the same type as G̃∗. Since p
divides |Z(G)| by assumption, it also divides the order of the Weyl group of G. By

[10, Prop. 3.12], then CH(s̃) = CG̃∗(s̃)γ contains a Sylow p-subgroup of CG̃∗(s̃). In

particular, every semisimple p-element in CG̃∗(s̃) has a γ-stable conjugate t̃ ∈ G̃∗.

Then E(G, s̃t̃) is γ-stable, which implies that E(G, st) is γ-stable, and hence fixed

pointwise by γ, by Lemma 2.2. Thus, all elements of B ∩ Ep(G, s) are fixed by γ, as

claimed. �

We next prove an analogous result for Brauer characters:

Theorem 2.5. LetG be the universal covering group of a non-abelian simple group

S, A a group acting on G with (|G|, |A|) = 1, andB ∈ BlA(G). Then there exists an

A-invariant Brauer character φ ∈ IBr(B).

Proof. As argued in the proof of Theorem 2.1 we may assume that S is of Lie type and

A induces coprime field automorphisms. Moreover,G is not an exceptional covering

group of S. First assume that p is the defining characteristic of G. Let B be an

A-invariant block of G, corresponding to the central character ν of G. Then there

is a faithful irreducible Brauer character φ of G/ ker(ν) corresponding to a suitable

fundamental weight ω of the underlying algebraic group as given in Table 2. Note
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that we only need to consider cases when Z(G) 6= 1, which explains the restrictions

in the last column of the table. If G is untwisted, defined over Fq with q = pf , then

a generator γ of A has order a with f = ka. By Steinberg’s tensor product theorem

(see [11, Thm. 16.12]) then φ′ :=
⊗a−1

i=0 γ
i(φ) is an irreducible Brauer character

of G corresponding to the weight
∑a−1

i=0 p
ikω, which is γ-invariant. It lies over the

character νd of Z(G), with d =
∑a−1

i=0 p
ik. Since |Z(G)| divides pk−1 and a is prime

to |Z(G)|, this is again a faithful character of Z(G). Thus, this construction yields an

invariant Brauer character in the p-block lying above νd. Starting instead with φ in

the p-block above νc, with cd ≡ 1 (mod o(ν)), we find an invariant character in B.

TABLE 2. Faithful Brauer characters

G φ(1) weight conditions

SLn(q), SUn(q)
(
n
i

)
ωi (1 ≤ i ≤ n− 1) (n, q ± 1) > 1

Spin2n+1(q) 2n ωn q odd

Sp2n(q) 2n ω1 q odd

Spin±
2n(q) 2n, 2n−1 ω1, ωn−1, ωn q odd

E6(q),
2E6(q) 27 ω1 3 6 |q
E7(q) 56 ω7 q odd

If G is twisted, we may assume that it is not of type 2B2, 2G2 or 2F4 and that the

twisting has order 2 (since else there is just one p-block of positive defect). So G is

defined over Fq2 , with q = pf and a|f . The same argument as before applies in this

case as well.

Now assume that p is different from the defining characteristic of G, and let B be an

A-invariant p-block. Then B is contained in Ep(G, s) for some semisimple element

s ∈ G∗, and we showed in Proposition 2.4 that all elements inB are fixed byA. Since

any irreducible Brauer character in B is an integral linear combination of ordinary

irreducible characters in B restricted to p′-classes, it follows that IBr(B) is fixed

point-wise by A as well. �

We conclude this section with the analogous result on central products of quasi-simple

groups.

Corollary 2.6. Let G be a finite group and let A act on G with (|G|, |A|) = 1.

Assume that G/Z(G) is the direct product of r isomorphic non-abelian simple groups

that are transitively permuted by A. Let B ∈ Bl(G) be A-invariant.

(a) Let Z ∈ Sylp(Z(G)) and ν ∈ Irr(Z). Then B contains some A-invariant χ ∈
Irr(G|ν).

(b) B contains some A-invariant φ ∈ IBr(G).

Proof. Both parts can be shown analogously. We give here the proof of part (a). Let S
be the simple non-abelian group such that G/Z(G) is isomorphic to the r-fold direct

product of groups isomorphic to S.
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It suffices to prove the statement in the case where G is perfect. Indeed, we have

G = [G,G]Z(G) by the given structure of G. Assume that the statement holds in

the case of perfect groups. Hence the block B′ ∈ Bl([G,G]) covered by B has then

an A-invariant character χ0 lying over νZ(G)∩[G,G]. The character χ0 · ν defined as

in [8, Section 5] as the unique character in Irr(G|χ0) ∩ Irr(G|ν) is then necessarily

A-invariant.

In the following we consider the case where G is perfect. Accordingly G has a uni-

versal covering group, namely

X := Ŝ × · · · × Ŝ = Ŝr (r factors) ,

where Ŝ is the universal covering group of S. Let ǫ : X → G be the associated

canonical epimorphism. Because of [3, 5.1.4] there is a canonical action of A on X
induced by the action of A on G, such that ǫ is A-equivariant. Note that the action of

A on X is coprime, since the prime divisors of |G| and |X | coincide.

For 1 ≤ i ≤ r let Xi := {(1, . . . , 1, x, 1, . . . , 1) | x ∈ Ŝ}, which is canonically

isomorphic to Ŝ via ιi : x 7→ (1, . . . , 1, x, 1, . . . , 1). By assumptionA acts transitively

on the set of groups Xi. So for every 1 ≤ i ≤ r there exists an element ai ∈ A such

that Xai

1 = Xi.

The character ν ∈ Irr(Z) can be uniquely extended to a character ν̃ ∈ Irr(Z(G)) such

that Irr(B|ν̃) 6= ∅. Via ǫ the character ν̃ corresponds to some character ν̂ ∈ Irr(Z(X))
that can be written as

ν̂ = ν̂1 × · · · × ν̂r

for suitable ν̂i ∈ Irr(Z(Ŝ))

The block B corresponds to a unique block B̂ ∈ Bl(X), see [14, (9.9) and (9.10)].

Accordingly B̂ is A-invariant and can be written as B̂ = B̂1 × · · · × B̂r where B̂i ∈

Bl(Ŝ). Let Ai be the stabiliser of Xi in A. The action of Ai on Xi induces via ιi a

coprime action of Ai on Ŝ stabilising B̂i. According to Theorem 2.1 there exists an

A1-invariant character ψ1 ∈ Irr(B̂1|ν̂1).

There exists a unique ψi ∈ Irr(Ŝ) with (ψ1 ◦ ι−1
1 )ai = ψi ◦ ι

−1
i . Since B̂ and

ν̂ are A-invariant the character ψi belongs to Irr(B̂i|ν̂i). Accordingly the character

ψ := ψ1 × · · · × ψr belongs to Irr(B̂|ν̂).
In the next step we prove that ψ is A-invariant. Let φi := ψi ◦ ι

−1
i ∈ Irr(Xi). Then it

is sufficient to prove φai = φj for any a ∈ A and every 1 ≤ i, j ≤ r with Xa
i = Xj .

The equality Xa
i = Xj implies (Xai

1 )a = X
aj

1 , and hence aiaa
−1
j ∈ NA(X1) = A1.

On the other hand by the definition of ψi and φi we have

(φi)
a = (φ1)

aia = (φ1)
aiaa

−1

j
aj = φ

aj

1 ,

since φ1 is A1-invariant. This proves that ψ is A-invariant as required.

Part (b) follows from these considerations by applying Theorem 2.5. �

3. A GALLAGHER TYPE THEOREM FOR BLOCKS

Let G be a finite group and N⊳G. P. X. Gallagher proved that if θ ∈ Irr(N) has an

extension θ̃ ∈ Irr(G), then the map Irr(G/N) → Irr(G|θ) given by η 7→ ηθ̃ is a
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bijection, where η ∈ Irr(G) is the lift of η. (See Corollary (6.17) of [7].) Now we

need a similar theorem for blocks, see Theorem 3.4.

For a character θ of G we denote by bl(θ) the p-block of G containing θ.

Lemma 3.1. Let N⊳G, b ∈ Bl(N) and θ ∈ Irr(b). Assume there exists an extension

θ̃ ∈ Irr(G) of θ. Then the map

υ : Bl(G/N) → Bl(G|b) given by bl(η) 7→ bl(θ̃η)

is surjective, where η ∈ Irr(G) is the lift of η ∈ Irr(G/N) .

Proof. According to [16, Lemma 2.2] we have for every g ∈ G that

λθ̃η(ClG(g)
+) = λθ̃L(ClL(g)

+)λη(ClG/N (g)+),

where L is defined by L/N := CG/N (g) and g = gN . This implies that the blocks

bl(θ̃η) and bl(θ̃η′) coincide for every two characters η, η′ ∈ Irr(G/N) with bl(η) =
bl(η′). Hence υ is well-defined.

On the other hand, every block of Bl(G|b) has a character in Irr(G|θ) (by [14, (9.2)])

and such a character can be written as θ̃η for some η ∈ Irr(G/N), by Gallagher’s

theorem. This proves that υ is surjective. �

In general, the map in Lemma 3.1 is not a bijection. (For instance, if b has a defect

group D such that CG(D) ⊆ N , then it is well-known that there is a unique block

of G covering b, see [17, Lemma 3.1]. On the other hand, G/N might have many

p-blocks. Take, for instance, G = SL2(3), N = Q8, p = 2, and θ ∈ Irr(N) the

irreducible character of degree 2.) Our aim in this section is to find general conditions

which guarantee that the map in Lemma 3.1 is a bijection.

The following statement follows also from Theorem 3.3(d) of [4], where a Morita

equivalence between the involved blocks is proven. For completeness we nevertheless

give here an alternative character theoretic proof.

Lemma 3.2. Let N⊳G and b ∈ Bl(N) with trivial defect group. Let θ ∈ Irr(b).

Assume there exists an extension θ̃ ∈ Irr(G) of θ. Then the map

υ : Bl(G/N) → Bl(G|b) given by bl(η) 7→ bl(θ̃η)

is a bijection.

Proof. By Lemma 3.1, we know that υ is surjective. Let η, η′ ∈ Irr(G/N) with

bl(η) 6= bl(η′). By [14, Exercise (3.3)] there exists some g ∈ (G/N)0 with

λη(ClG/N (g)+) 6= λη′(ClG/N (g)+). Assume there exists some c ∈ G with cN = g
with

λθ̃L(ClL(c)
+)∗ 6= 0,

where L is defined by L/N := CG/N (g). Then bl(θ̃η) 6= bl(θ̃η′), since

λθ̃η(ClG(c)
+) = λθ̃L(ClL(c)

+)λη(ClG/N (g)+).
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Thus, let g ∈ G with gN = g. Note that gN is closed under L-conjugation, and let S
be a representative set of the L-conjugacy classes contained in gN , i.e.

.⋃

s∈S

ClL(s) = gN.

By [7, Lemma (8.14)] we have
∑

c∈gN

θ̃(c)θ̃(c−1) = |N |.

This implies ∑

s∈S

|ClL(s)|θ̃(s)θ̃(s
−1) = |N |.

Dividing by θ(1) we obtain

∑

s∈S

λθ̃L(ClL(s)
+)θ̃(s−1)∗ =

(∑

s∈S

|ClL(s)|θ̃(s)

θ(1)
θ̃(s−1)

)∗

=

(
|N |

θ(1)

)∗

6= 0

since θ is of defect 0. This implies that for some c ∈ S we have λθ̃L(ClL(c)
+)∗ 6= 0

as required. �

Next, we generalise Lemma 3.2. Recall Theorem 2.1 of [15]: for a finite group X ,

a p-subgroup Y ⊳ X and an X-invariant character ν ∈ Irr(Y ) there is a natural

bijection dz(X/Y ) → rdz(X |ν), χ 7→ χν , with
χ(1)p
ν(1)p

=
|X|p
|Y |p

, where dz(X) denotes

the characters lying in a defect zero block and rdz(X |ν) the set of characters χ ∈
Irr(X |ν), see [15] for the definition of this bijection.

Lemma 3.3. Let N⊳G, and suppose that D⊳G is contained in N . Let µ ∈ Irr(D)
be G-invariant. Let θ ∈ dz(N/D). Then θ extends to G/D if θµ extends to G.

Proof. Note that since θµ extends to G, the character µ is G-invariant. The bijection

dz(N/D) → rdz(N |µ), χ 7→ χµ is G-equivariant. Hence θ is G/D-invariant.

Suppose that θµ extends to G. In order to show that θ extends to G it is enough to

prove that θ extends to Q, whenever Q/N is a Sylow q-subgroup of G/N for some

prime q. If Q/N ∈ Sylp(G/N), then θ considered as a character of N/D has defect

zero, and therefore it extends toQ/D in this case (see, for instance, Problem (3.10) of

[14]). So θ as a character of N extends to Q. Now suppose that Q/N is a q-group for

some q 6= p. We know that θµ extends to some η ∈ Irr(Q). According to its degree,

η ∈ rdz(Q|µ). Then η = γµ for some γ ∈ dz(Q/D). By the values of the functions

γµ and using that µ̂(g) 6= 0 whenever gp ∈ D we check that γN = θ. �

Theorem 3.4. LetN⊳G and b ∈ Bl(N) with a defect groupD withDCG(D) = G.

Let θ ∈ Irr(b). Assume there exists an extension θ̃ ∈ Irr(G) of θ. Then the map

υ : Bl(G/N) → Bl(G|b) given by bl(η) 7→ bl(θ̃η)

is a bijection.
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Proof. By Lemma 3.1 it is sufficient to prove that |Bl(G/N)| = |Bl(G|b)|.
Because of DCG(D) = G the defect group D is normal in N . By [14, Thm. (9.12)],

there exists a unique character θ1 ∈ Irr(N) of b with D ⊆ ker θ1 that is a lift of some

θ1 ∈ dz(N/D). By Lemma 3.3 the character θ1 extends to G/D. Write N = N/D
and G = G/D. Then Lemma 3.2 applies to the character θ1 ∈ Irr(N/D) associated

to θ1. Then |Bl(G/N)| = |Bl(G|b)|, where b = bl(θ1). Now by [14, Thm. (9.10)]

there is a canonical bijection between the blocks of G and the blocks of G, given by

covering. Using [14, Thm. (9.2)] with Brauer characters, we easily check that under

this bijection, a block B of G covers b if and only if B covers b. This proves the

statement. �

4. DADE’S RAMIFICATION GROUP

In order to further generalise Theorem 3.4, we need to go deeper and use a subgroup

with remarkable properties introduced by E. C. Dade in 1973, see [2]. This subgroup

is key in the remainder of this paper. We shall use M. Murai’s version of it (see [12]).

Suppose that M⊳T and that θ ∈ Irr(M) is T -invariant. If x, y ∈ T are such that

[x, y] ∈ M , then Dade and Isaacs defined a complex number 〈〈x, y〉〉θ , in the follow-

ing way: since M〈y〉/M is cyclic, it follows that θ extends to some ψ ∈ Irr(M〈y〉).
Now, ψx is some other extension and by Gallagher’s theorem, there exists some

λ ∈ Irr(M〈y〉) such that ψx = λψ. Now 〈〈x, y〉〉θ = λ(y). The properties of

this (well-defined) number are listed in Lemma (2.1) and Theorem (2.3) of [6] which

essentially assert that 〈〈, 〉〉θ is multiplicative (in both arguments). Thus, if H,K are

subgroups of T with [H,K] ⊆M , then we have uniquely defined a subgroup

H⊥ ∩K := {k ∈ K | 〈〈k, h〉〉θ = 1 for all h ∈ H} .

Note that by the definition of 〈〈, 〉〉θ this group always contains M ∩K .

Lemma 4.1. Suppose that M⊳T and that θ ∈ Irr(M) is T -invariant. Suppose that

H,K are subgroups of T with [H,K] ⊆ M , and M ⊆ K . If ρ ∈ Irr(K) extends θ,

then ρH⊥∩K is H-invariant.

Proof. Notice that M ⊆ H⊥ ∩K . Let ν = ρH⊥∩K . We claim that ν is H-invariant.

(Since [H,K] ⊆ M , notice that H normalises every subgroup between M and K .)

Now, let h ∈ H and x ∈ H⊥ ∩ K . We want to show that νh(x) = ν(x). Let J =
M〈m〉, and write (νJ )

h = λνJ , where λ ∈ Irr(J/M). Then λ(x) = 〈〈h, x〉〉θ = 1,

and νh(x) = ν(x). �

For any block b ∈ Bl(N) with defect groupD, we call a character η ∈ Irr(DCN (D))
canonical character of b if D ⊆ ker η and bl(η)N = b, see [14, p. 204].

Theorem 4.2. Let N⊳G, and let b ∈ Bl(N) be G-invariant. Then there exists a

subgroup N ⊆ G[b]⊳G, uniquely determined by G and b, satisfying the following

properties.

(a) Suppose thatD is any defect group of b, and let η ∈ Irr(DCN (D)) be a canonical

character of b. LetK be the stabiliser of η inDCG(D), and letH be the stabiliser

of η in NN (D). Then G[b] = N(H⊥ ∩K).
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(b) If B ∈ Bl(G) covers B′ ∈ Bl(G[b]) and B′ covers b, then B is the only block of

G that covers B′.

Proof. We have that NN (D) and DCG(D) are normal subgroups of NG(D) whose

intersection is DCN (D). In particular, [H,K] ⊆ DCN (D) for every pair of

subgroups H ⊆ NN (D) and K ⊆ DCG(D). Now, part (a) follows from [12,

Thm. 3.13], while part (b) follows from [12, Thm. 3.5]. �

The subgroupG[b] has many further properties, but we restrict ourselves to those that

shall be used in this paper. For our later considerations we mention the following.

Corollary 4.3. Let N⊳G, and let b ∈ Bl(N) be G-invariant. For Z⊳G with

N ∩ Z = 1 let b ∈ Bl(NZ/Z) be the induced block. Then G[b]/Z = G[b] for

G := G/Z .

Proof. ¿From the assumptions we see Z ⊆ CG(N) and so Z ⊆ G[b] by Theo-

rem 4.2(a). Let D be a defect group of b, η a canonical character of b, K the stabiliser

of η in DCG(D) and H the stabiliser of η in NN (D). By Theorem 4.2(a) we have

G[b] = N(H⊥ ∩K).
Now DZ/Z is a defect group of b, η is the canonical character of b induced by η,

K := KZ/Z the stabiliser of η in DCG(D) and H := HZ/Z the stabiliser of η in

NNZ/Z(D). For k ∈ K and h ∈ H we have

〈〈k, h〉〉η = 〈〈kZ, hZ〉〉η.

This leads to H
⊥
∩K = (H⊥ ∩K)Z/Z . Together with Theorem 4.2(a) this implies

the statement. �

The properties of G[b] allow us to generalise Theorem 3.4 to the following situation.

Theorem 4.4. Let N⊳G and b ∈ Bl(N). Let θ ∈ Irr(b). Assume there exists an

extension θ̃ ∈ Irr(G) of θ. If G[b] = G, then the map

υ : Bl(G/N) → Bl(G|b) given by bl(η) 7→ bl(θ̃η)

is a bijection.

Proof. By Lemma 3.1 it is enough to show that |Bl(G|b)| = |Bl(G/N)|. By Theo-

rem 4.2(a), we have that G = NCG(D), where D is any defect group of b. Let b′ be

any block of DCN (D) with defect group D inducing b. By [9, Thm. C(a.2)], there

exists some θ′ ∈ Irr(b′) that extends to K = DCG(D). By Lemma 3.3 the unique

(canonical) character η ∈ Irr(b′) that has D in its kernel extends to some η̃ ∈ Irr(K).
Let T be the stabiliser of η in NG(D), hence DCG(D) = K ⊆ T ⊆ NG(D). Let

H = T ∩N . Accordingly [H,K] ⊆ DCN (D) and T = KH . By Theorem 3.4, we

have that

|Bl(G/N)| = |Bl(DCG(D)/DCN (D))| = |Bl(DCG(D)|b′)|.

By applying Lemma 4.1 (with DCN (D) as the normal subgroupM of T = HK and

the T -invariant character η), we have that η̃ is H-invariant. Hence, we conclude that

T is the stabiliser of every block of H covering b′ (using Gallagher’s theorem). Now,

let b̃ = (b′)NN (D). By the Harris-Knörr correspondence [14, Thm. (9.28)] we have
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|Bl(G|b)| = |Bl(NG(D)|b̃)|. If {e1, . . . , es} are the blocks of DCG(D) covering

b′, then {e
NG(D)
1 , . . . , e

NG(D)
s } are all the blocks of NG(D) covering b̃. Now, if

(ei)
NG(D) = (ej)

NG(D), then it follows that (ei)
x = ej for some x ∈ NG(D). Since

ei and ej only cover the block b′, it follows that (b′)x = b′, and x ∈ T . However ei is

T -invariant, and therefore ei = ej . �

5. CHARACTER TRIPLE ISOMORPHISMS UNDER COPRIME ACTIONS AND BLOCKS

In considerations using character triples the existence of an isomorphic character triple

whose character is linear and faithful plays an important role. We give here an A-

version of this statement that will be used later. Furthermore we analyse how blocks

behave under the bijections of characters. IfA acts onG, then IrrA(G) denotes the set

of the irreducible complex characters of G which are invariant underA. Let IBrA(G)
be defined analogously.

Proposition 5.1. Let A act on G with (|G|, |A|) = 1 and N⊳G be A-stable.

(a) Let θ ∈ IrrGA(N). Then there exists a character triple (G∗, N∗, θ∗), an action of

A on G∗ stabilising N∗ and θ∗ and an isomorphism

(ι, σ) : (G,N, θ) −→ (G∗, N∗, θ∗),

such that N∗ ⊆ Z(G∗) and both ι and σG are A-equivariant.

(b) Let θ ∈ IBrGA(N). Then there exists a modular character triple (G∗, N∗, θ∗),
an action of A on G∗ stabilising N∗ and θ∗ and an isomorphism

(ι, σ) : (G,N, θ) −→ (G∗, N∗, θ∗),

such that N∗ ⊆ Z(G∗) is a p′-group and both ι and σG are A-equivariant.

Proof. Since the proof of both statements is based on the same ideas, we give here

only the proof of (a).

First note that θ extends to NA because of [7, Cor. (8.16)]. By the assumptions it is

clear that (GA,N, θ) is a character triple. Let P be a projective representation of GA
with the following properties:

(i) PNA affords an extension of θ to NA,

(ii) the values of the associated factor set α : GA×GA→ C are roots of unity and

(iii) α is constant on N ×N -cosets.

Let X := GA and E be the finite cyclic group generated by the values of α. For the

construction of (G∗, N∗, θ∗) and the A-action on G∗ we follow the proof of Theo-

rem (8.28) in [14]. Let X̃ be constructed as there using P : the group X̃ consists of

pairs (x, ǫ) with x ∈ X and ǫ ∈ E and multiplication in X̃ is given by

(x1, ǫ1)(x2, ǫ2) = (x1x2, α(x1, x2)ǫ1ǫ2).

The projective representation P lifts to a representation of X̃ . Let τ be the character

afforded by that representation. The groups Ñ := {(n, ǫ) | n ∈ N, ǫ ∈ E} and

G̃ := {(g, ǫ) | g ∈ G, ǫ ∈ E} are normal in X̃ . Since PNA is a representation the set

{(x, 1) | x ∈ NA} forms a group isomorphic to NA. Via this isomorphism A can be

Documenta Mathematica 20 (2015) 491–506



502 Gunter Malle, Gabriel Navarro, Britta Späth

identified with a group of X̃ and acts on G̃ and Ñ . LetE0 := 1×E andN0 := N×1.

IdentifyingN and N0 we set θ̃ = θ × 1E . This character is A-invariant.

Via the epimorphism ι1 : X̃ → X , (x, ǫ) 7→ x, the character triples (X,N, θ) and

(X̃, Ñ , θ̃) are isomorphic.

The map λ̃ ∈ Irr(Ñ) with λ̃(n, ǫ) = ǫ−1 is a linear character with kernel N0. By the

construction of X̃ the character λ̃ is X̃-invariant. We see that τÑ = λ̃−1θ̃.

Now one can argue that (X̃, Ñ , λ̃) and (X̃, Ñ , θ̃) are isomorphic character triples.

Analogously (X̃, Ñ , λ̃) and (X̃/N0, Ñ/N0, λ) are isomorphic character triples,

where λ ∈ Irr(Ñ/N0) is the character induced by λ̃.

With G∗ := G̃/N0, N∗ := Ñ/N0 and θ∗ := λ we obtain the required isomorphism

(ι, σ) : (G,N, θ) −→ (G∗, N∗, θ∗).

Let ι2 : X̃ → X̃/N0 be the canonical epimorphism. Because of ker ι1 = E and

ker ι2 = N0 the isomorphism ι is given by gN 7→ ι2 ◦ ι
−1
1 (gN).

For χ ∈ Irr(G|θ) the character σG(χ) is obtained in the following way: the character

χ lifts to some τG̃µ for some µ ∈ Irr(G̃) with kerµ ≥ N and µ ∈ Irr(G̃|λ̃). Hence

µ ◦ ι−1
2 is a character of Irr(G̃/N0|λ). By its construction θ∗ is A-invariant and the

maps ι and σG are A-equivariant, since τG̃ is A-invariant. �

In order to include blocks in the above result, additional assumptions are required.

Proposition 5.2. Let N⊳G and b ∈ Bl(N). Suppose that A acts on G with

(|G|, |A|) = 1, such that N and b are A-stable. Assume G[b] = G.

(a) Let θ ∈ IrrGA(N) ∩ Irr(b). Let (G∗, N∗, θ∗) and (ι, σ) : (G,N, θ) −→
(G∗, N∗, θ∗) be as in Proposition 5.1(a). Then two characters χ1, χ2 ∈ Irr(G|θ)
satisfy bl(χ1) = bl(χ2) if and only if bl(σG(χ1)) = bl(σG(χ2))

(b) Let θ ∈ IBrGA(N) ∩ IBr(b). Let (G∗, N∗, θ∗) and (ι, σ) : (G,N, θ) −→
(G∗, N∗, θ∗) be as in Proposition 5.1(b). Then two characters φ1, φ2 ∈ IBr(G|θ)
satisfy bl(φ1) = bl(φ2) if and only if bl(σG(φ1)) = bl(σG(φ2)).

Proof. We continue using the notation introduced in the proof of Proposition 5.1. Let

N0 := N ×1 ⊆ X̃ and θ0 := θ×1E ∈ Irr(Ñ). Let b0 := bl(θ0). From Corollary 4.3

we see that G[b] = G̃[b0]/E, where b0 := bl(θ0).

For the proof of (a) let µ1 and µ2 ∈ Irr(G̃) with N0 ⊆ kerµ1 and N0 ⊆ kerµ2 such

that τG̃µ1 is a lift of χ1 and τG̃µ2 is a lift of χ2. Note that E ⊆ Z(G̃). According

to [14, (9.9) and (9.10)] bl(χ1) = bl(χ2) if and only if τG̃µ1 and τG̃µ2 belong to the

same block. According to Theorem 4.4 we see that the characters of G̃/N0 induced

by µ1 and µ2 are in the same block if and only if bl(τG̃µ1) = bl(τG̃µ2). This proves

the statement of (a). Part (b) follows from similar considerations. �

As a corollary that might be of independent interest we conclude the following.

Corollary 5.3. Let N⊳G and b ∈ Bl(N). Assume there exists some G-invariant

θ ∈ IrrA(N) ∩ Irr(b) or θ ∈ IBrA(N) ∩ IBr(b). Let (G∗, N∗, θ∗) and (ι, σ) :
(G,N, θ) −→ (G∗, N∗, θ∗) be as in Proposition 5.1. Let H := G[b] and H∗ the

group with ι(H/N) = H∗/N∗.
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(a) Then Bl(G|b) is in bijection with Bl(H∗|b∗), where b∗ := bl(θ∗).
(b) Two characters χ1, χ2 ∈ Irr(G|θ) satisfy bl(χ1) = bl(χ2) if and only if

bl(σG(χ1)) and bl(σG(χ2)) cover the same block of H∗.

(c) Two characters φ1, φ2 ∈ IBr(G|θ) satisfy bl(φ1) = bl(φ2) if and only if

bl(σG(φ1)) and bl(σG(φ2)) cover the same block of H∗.

Proof. Part (a) follows directly from Proposition 5.2. Parts (b) and (c) are applications

of Proposition 5.2 together with Theorem 4.2(b). �

6. REDUCTION

In this section we show how Theorem 1.1 is implied by the analogous statement for

the central product of quasi-simple groups given in Corollary 2.6. In fact, we will

work with the following slightly more general statement.

Theorem 6.1. Let the group A act on the group G with (|A|, |G|) = 1.

(a) Let Z be an A-invariant central p-subgroup of G, let ν ∈ IrrA(Z) and let B ∈
BlA(G). Then there exists an A-invariant character χ ∈ Irr(B|ν).

(b) Let B ∈ BlA(G). Then there exists an A-invariant character φ ∈ IBr(B).

The following well-known result will be used for part (a).

Theorem 6.2. Let the groupA act on the groupG with (|A|, |G|) = 1 and letN⊳G
beA-stable. Let θ ∈ IrrA(N). Then there exists anA-invariant character in Irr(G|θ).

Proof. This is Theorem (13.28) and Corollary (13.30) of [7]. �

For the proof of Theorem 6.1(b) we need the following analogue for Brauer characters.

Theorem 6.3. Let the group A act on the group G with (|A|, |G|) = 1 and let

N⊳G be A-stable. Let φ ∈ IBrA(N). Then there exists an A-invariant character in

IBr(G|φ).

Proof. We prove this statement by induction on |G : N | and then on |G : Z(G)|. We

can assume that φ is G-invariant, since otherwise some φ′ ∈ IBrA(Gφ|φ) exists by

induction and hence φ′G ∈ IBrA(G|φ).
Assume there exists an A-stable subgroup K⊳G with N � K � G. Then by induc-

tion there exists some A-invariant character φ′ ∈ IBr(K|φ) and one in IBr(G|φ′).
Accordingly we can assume that G/N is a chief factor of GA and hence G/N is the

direct product of isomorphic simple groups, such thatA acts transitively on the factors

of G/N .

Then (G,N, φ) forms a modular character triple that is isomorphic to some

(G∗, N∗, φ∗) according to Proposition 5.1, such that N∗ ⊆ Z(G∗) and p ∤ |N∗|.
Since the isomorphism of the character triples is A-equivariant it is sufficient to prove

the statement for (G∗, N∗, φ∗). For this it suffices to prove that there exists some

A-invariant character in IBr(G∗|θ∗). If G/N is a q-group for p 6= q, the group G∗

is a p′-group and the statement follows immediately from Theorem 6.2. If G/N is a

p-group, the set IBr(G∗|φ∗) is a singleton.

Let ν ∈ Irr(N∗) be the character with ν0 = φ∗. (Note that ν is unique since N∗

is a p′-group.) Since ν is A-invariant there exists some A-invariant χ ∈ Irr(G∗|ν)
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by Theorem 6.2. This character hence belongs to an A-invariant block B ∈ Bl(G∗).
FurtherG∗/N∗ is the direct product of isomorphic non-abelian simple groups that are

permuted transitively by A. According to Corollary 2.6 there exists an A-invariant

Brauer character in IBr(B). �

We start proving Theorem 6.1 in a series of intermediate results, working by in-

duction first on |G/Z(G)| and second on |G|. It is clear that we may assume that

Z ∈ Sylp(Z(G)).

Let N⊳G such that G/N is chief factor of GA. Then by Glauberman’s Lemma, [7,

Lemma (13.8)], there exists b ∈ BlA(N) such that B ∈ Bl(G|b). (Recall that by

[14, Cor. (9.3)], G acts transitively on the set of blocks of N covered by b.) Another

application of Glauberman’s Lemma shows that b has an A-invariant defect group D.

Next, notice that Z ⊆ N in part (a) of Theorem 6.1. Otherwise, we have that NZ =
G, and therefore G/N is a p-group. In particular B is the only block covering b
([14, Cor. (9.6)]). Let ν ∈ IrrA(Z). Since b has an A-invariant character χ1 ∈
Irr(N |νZ∩N ) by induction, the character χ1 · ν defined as in [8, Section 5] has the

required properties and we are done.

Analogously one can argue that Z(G) ⊆ N since there exists a unique µ ∈
Irr(Z(G)|ν) in a block of Z(G) covered by B.

Lemma 6.4. We can assume that Gb = G.

Proof. By the Fong-Reynolds theorem [14, Thm. (9.14)], there exists a unique B̃ ∈

Bl(Gb|b) with B̃G = B. Since b is A-invariant, so is Gb. Also, B̃ is A-invariant by

uniqueness. Notice that Z ⊆ Z(G) ⊆ Gb. If Gb < G, then by inductionGb has anA-

invariant character χ0 ∈ Irr(B̃) ∩ IrrA(Gb|ν) and φ0 ∈ IBr(B̃). Now, the characters

χG
0 and φG0 are irreducible,A-invariant and belong to B. �

Lemma 6.5. We can assume that G[b] = G.

Proof. By Theorem 4.2(b) there exists a unique B′ ∈ Bl(G[b]|b) with (B′)G = B.

Since G[b] is uniquely determined by b, we have that G[b] is A-stable and by

uniqueness that B′ is A-invariant. Note that Z(G) ⊆ G[b] by Theorem 4.2(a).

If G[b] 6= G then we can conclude by induction that there exist some A-fixed

χ0 ∈ Irr(G[b]|ν) ∩ Irr(B′) and φ0 ∈ IBr(B′). By Theorem 6.2 and 6.3 there ex-

ist some χ ∈ Irr(G|χ0) and φ ∈ IBr(G|φ0), respectively that is A-fixed. Those

characters belong to Bl(G|B′) = {B}. �

Lemma 6.6. We can assume that N = Z(G).

Proof. By induction on |G : Z(G)| we see that b contains an A-invariant character

θ ∈ Irr(b|ν), respectively θ ∈ IBr(b). By the above we can assume G[b] = G.

Let (G∗, N∗, θ∗) be the character triple associated to (G,N, θ) and σG the A-

equivariant bijection Irr(G|θ) → Irr(G∗|θ∗) from Proposition 5.1(a), respectively the

A-equivariant bijection IBr(G|θ) → IBr(G∗|θ∗) from Proposition 5.1(b). Accord-

ing to Proposition 5.2(b) there is some block C ∈ Bl(G∗) such that σG(Irr(B|θ)) =
Irr(C|θ∗) or σG(IBr(B|θ)) = IBr(C|θ∗), respectively.
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If N 6= Z(G) then Irr(C|θ∗) and IBr(C|θ∗) both contain A-invariant characters be-

cause |G∗ : Z(G∗)| = |G : N | < |G : Z(G)|. Since σG is A-equivariant this proves

the statement. �

Proof of Theorem 6.1. Now it remains to consider the case where Z(G) = N . Since

N was chosen such that G/N is a chief factor of GA, the quotient G/N is the direct

product of isomorphic simple groups that are transitively permuted by A.

If G/N is non-abelian, Corollary 2.6 applies and proves the statement. Otherwise

G/N is an elementary abelian p-group or a p′-group. In the first case Bl(G|b) is a

singleton and the statement follows from Theorems 6.2 and 6.3. In the latter case B
has a central defect group and the sets Irr(B|ν) and IBr(B) are singletons. �
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