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Abstract. We study the homotopy theory of the classifying space
of the complex projective linear groups to prove that purity fails for
PGLp-torsors on regular noetherian schemes when p is a prime. Ex-
tending our previous work when p = 2, we obtain a negative answer
to a question of Colliot-Thélène and Sansuc, for all PGLp. We also
give a new example of the failure of purity for the cohomological fil-
tration on the Witt group, which is the first example of this kind of a
variety over an algebraically closed field.
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334 Benjamin Antieau and Ben Williams

1. INTRODUCTION

Let X be a regular noetherian integral scheme, let G be a smooth reductive
group scheme over X, and let K be the function field of X. Consider the injec-
tive map

im
(

H1
ét(X, G) → H1

ét(Spec K, G)
)
→(1)

→
⋂

x∈X(1)

im
(

H1
ét(Spec OX,x, G) → H1

ét(Spec K, G)
)

,

where the intersection is over all codimension-1 points of X. Colliot-
Thélène and Sansuc ask in [13, Question 6.4] whether this map is surjective.

When it is, we say that purity holds for H1
ét(X, G).

Purity trivially holds for H1
ét(X, G) when G is special in the sense of Serre, for

example if G = SLn, since H1
ét(Spec K, G) is a single point in this case. It holds

for H1
ét(X, G) where G is a finite type X-group scheme of multiplicative type

by [13, Corollaire 6.9]. It is also known to hold in many cases when X is the
spectrum of a regular local ring containing a field of characteristic 0. With this

assumption, purity was proven for H1
ét(X, G) when G is a split group of type

An, a split orthogonal or special orthogonal group, or a split spin group by
Panin [32] and also when G = G2 by Chernousov and Panin [12]. The local

purity conjecture asserts that purity holds for H1
ét(X, G) whenever X is the

spectrum of a regular noetherian integral semi-local ring and G is a smooth

reductive algebraic X-group scheme. Finally, purity holds for H1
ét(X, G) if the

Krull dimension of X is at most 2 by [13, Theorem 6.13].
Purity is often considered along with another property, the so-called injectivity

property, which is said to hold when H1
ét(X, G) → H1

ét(U, G) has trivial kernel

for all U ⊆ X containing X(1). In fact, Grothendieck and Serre conjectured
that this map is always injective when X is the spectrum of a regular local
ring R and G is a reductive X-group scheme. This has been proved recently
using affine Grassmannians by Fedorov and Panin [19] when R contains an
infinite field following partial progress by many other mathematicians. They

prove more strongly that H1
ét(X, G) → H1

ét(U, G) is injective. The injectivity
property for torsors is usually only sensible when X is in fact the spectrum of
a local ring: otherwise it typically fails, even for G = Gm.
When X is neither local nor low-dimensional and G is a non-special semisim-
ple algebraic group, no results were known about purity for torsors until our
paper [3], which showed that purity fails for PGL2-torsors on smooth affine
complex 6-folds in general. It is the purpose of this paper to use p-local homo-
topy theory to extend our previous result to PGLp for all p.

Theorem 1.1. Let p be a prime. Then, there exists a smooth affine complex variety

X of dimension 2p + 2 such that purity fails for H1
ét(X, PGLp).

We outline the proof. Recall first that PGLp-torsors correspond to degree-p
Azumaya algebras, and write Brtop(X(C)) for the topological Brauer group,
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which classifies topological Azumaya algebras up to Brauer equivalence [25].

Let X be a smooth complex variety such that H2(X(C),Z) = 0. In this
case, by [2, Lemma 6.3], there is an isomorphism Br(X) ∼= Brtop(X(C)) =

H3(X(C),Z)tors. Because H2(X(C),Z) = 0, topological Azumaya algebras of
degree n and exponent m on X(C) are classified by homotopy classes of maps
X(C) → BP(m, n), where P(m, n) = SLn(C)/µm.
In order to prove the theorem, we must construct a complex affine variety, X.
First, following Totaro [35], we take a high dimensional algebraic approxima-
tion, X, to the classifying space BP(p, pq), where q > 1 is prime to p. This
X is equipped with an SLpq /µp-torsor, which induces a PGLpq-torsor and
therefore an Azumaya algebra A. Let α be the Brauer class of A on X. The
exponent of α is p. Comparing the p-local homotopy type of BP(p, pq) to that
of BPGLp(C), we find that there is a non-vanishing topological obstruction in

H2p+2(X(C),Z/p) to the existence of a degree-p Azumaya algebra on X with
the same Brauer class as A. Second, we replace X by a homotopy-equivalent
smooth affine variety using Jouanolou’s device [28]. Third, we use the affine
Lefschetz theorem [24, Introduction, Section 2.2] to cut down to a smooth
affine 2p + 2-dimensional variety where the obstruction in H2p+2(X(C),Z/p)
persists. By using an unpublished preprint of Ekedahl [18], it is possible to
construct smooth projective complex examples of this nature as well, although
we will not emphasize this last point in our paper.
Let K be the function field of the 2p + 2–dimensional affine variety X alluded
to in the previous paragraph. The theorem is deduced from the properties of
X as follows. The Brauer class αK ∈ Br(K) has exponent p and index dividing
pq. Its index is therefore p by a result of Brauer [23, Proposition 4.5.13], and it

is represented by a division algebra D of degree p over K. If P ∈ X(1), then α
restricts to a class αP ∈ Br(OX,p). Since D is unramified along OX,P and since
OX,P is a discrete valuation ring, it follows that any maximal order in D over
OX,P is in fact an Azumaya algebra (see the proof of [7, Proposition 7.4]). Thus,
the class of D is in the target of the map of (1), but by our choice of X, the class
of D is not in the source of that map.
We make the following conjecture.

Conjecture 1.2. Let G be a non-special semisimple k-group scheme. Then there

exists a smooth affine k-variety X such that purity fails for H1
ét(X, G).

Our theorem proves the conjecture for G = PGLp over C, and since the
schemes in question may all be defined over Q, the conjecture is actually set-
tled for PGLp over any field of characteristic 0.
We explore three other points in the paper. First, in Section 3.3 we show that,
in contrast to the global case, purity holds for PGLn-torsors over regular noe-
therian integral semi-local rings R, at least if we restrict our attention to those
torsors whose Brauer class has exponent invertible in R. This is a generaliza-
tion of equivalent results of Ojanguren [30] and Panin [32] in characteristic
0.
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Second, in Section 3.4, we give a topological perspective that explains why we

expect purity to fail for H1
ét(X, PGLn) for all n.

Third, in Section 3.5, we give examples where purity fails for I2(X)/ I3(X)
where I• is the filtration on the Witt group induced by the cohomological fil-
tration on W(C(X)) and X is a certain smooth affine complex 5-fold. Previous
examples of a different, arithmetic nature were produced by Parimala and
Sridharan [33], but these were explained by Auel [5] as failing to take into ac-
count quadratic modules with coefficients in line bundles. Our examples have
Pic(X) = 0.
The authors would like to thank Asher Auel, Eric Brussel, Roman Fedorov,
Henri Gillet, Max Lieblich, and Manuel Ojanguren for conversations related
to the present work. We would also like to thank Burt Totaro for several useful
comments on an early version of this paper.

2. TOPOLOGY

In [3], we used knowledge of both the low-degree singular cohomology of
BPGL2(C) and of the low-degree Postnikov tower of BPGL2(C) to produce
counterexamples to the existence of Azumaya maximal orders in unramified
division algebras. This is equivalent to showing that purity fails for PGL2

over C. At the time we wrote [3], we did not know how to extend our results
to other primes, because our argument relied on the accessibility of the low-
degree Postnikov tower of BPGL2(C). While remarkable calculations have
been made by Vezzosi [38] and Vistoli [39] on the cohomology of BPGLp(C)
for odd primes p, the problem of determining the Postnikov tower up the
necessary level, 2p + 1, was beyond us. By using a p-local version of our
arguments in [3] we bypass our ignorance to prove similar results.
We prove a result in this section about self-maps of τ≤2p+1BPGLp(C), the 2p +
1 stage in the Postnikov tower of BPGLp(C). Our theorem is in some sense
related to the important results of Jackowski, McClure, and Oliver [27] about
maps BG → BH when G and H are compact Lie groups, and especially about
self-maps of BG. For the applications to algebraic geometry we have in mind,
one must use finite approximations to BPGLp(C) ≃ BPUp, where the results
of [27] do not immediately apply. For more on the relationship of our work
to [27], see Section 3.4.
The group PGLp(C) and other classical groups are always equipped with the
classical topology.

2.1. The p-local cohomology of some Eilenberg-MacLane spaces.

We fix a prime number p. The p-local cohomology of a space X is the singular
cohomology of X with coefficients in Z(p). In the next few lemmas, we com-

pute the low-degree p-local cohomology of K(Z, n), up to the first p-torsion.
These results are both straightforward and classical, being corollaries of the
all-encompassing calculations of Cartan [11] for instance. We include proofs
here for the sake of completeness.
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Recall that K(Z, 2) ≃ CP∞ and that H∗(K(Z, 2),Z) ∼= Z[ι2], where deg(ι2) =
2. In general, there is a canonical class ιn ∈ Hn(K(Z, n),Z) representing the
identity map. We will use the Serre spectral sequences for the fiber sequences
K(Z, n) → ∗ → K(Z, n + 1) as well as the multiplicative structure in the spec-
tral sequences.

Lemma 2.1. For 1 ≤ k ≤ 2p + 4, the p-local cohomology of K(Z, 3) is

Hk(K(Z, 3),Z(p))
∼=





Z(p) if k = 3,

Z/p if k = 2p + 2,

0 otherwise.

Proof. We can choose ι3 so that d3(ι2) = ι3 in the Serre spectral sequence for
K(Z, 2) → ∗ → K(Z, 3):

Es,t
2 = Hs(K(Z, 3), Ht(K(Z, 2),Z(p))) ⇒ Hs+t(∗,Z(p)).

Then, d3(ι
n
2) = nιn−1

2 ι3 and it follows that d3(ι
n
2) is a generator of E3,2n−2

3 for

1 ≤ n < p. For 4 ≤ k ≤ 2p + 1 the cohomology group Hk(K(Z, 3),Z(p))
vanishes since there are no possible non-zero differentials hitting it. The first

point on the t-axis where d3 is not surjective is d3 : E
0,2p
3 → E

3,2p−2
3 where

the cokernel is Z/p, see Figure 1. In order for the sequence to converge to

Z(p) · ι
p+1
2

d3

++❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱
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❱

❱

❱

0 0 Z(p) · ι
p+1
2 ι3

0 0 0 0

Z(p) · ι
p
2

d3

++❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

0 0 Z(p) · ι
p
2 ι3

0 0 0 0

Z(p) · ι
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FIGURE 1. The E3-page of the Serre spectral sequence associ-
ated to K(Z, 2) → ∗ → K(Z, 3).

zero, this non-zero cokernel must support a non-zero departing differential;
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since Hk(K(Z, 2),Z(p)) = 0 for 4 ≤ k ≤ 2p + 1, the differential d2p−1 in-

duces an isomorphism Z/p → H2p+2(K(Z, 3),Z(p)). Let jp be a generator of

H2p+2(K(Z, 3),Z(p)). In terms of total degree, the next non-zero term in the

spectral sequence is E
2,2p+2
3 = Z/p · ι2 jp. Thus, the next potentially non-zero

p-local cohomology group of K(Z, 3) is H2p+5(K(Z, 3),Z(p)). �

The next two lemmas have proofs conceptually similar to the preceding proof.

Lemma 2.2. For 0 ≤ k ≤ 2p + 5, the p-local cohomology of K(Z, 4) is

Hk(K(Z, 4),Z(p))
∼=





Z(p) if k = 0 mod 4,

Z/p if k = 2p + 3,

0 otherwise.

Proof. Again, we may assume that d3(ι3) = ι4 in the Serre spectral sequence.

Then, d3(ι3ιn4) = ιn+1
4 . Moreover, the powers of ι4 are non-zero because the

d3 differential leaving E4n,3
3 = Z(p) · ι3ιn4 cannot have a kernel as all cohomol-

ogy of K(Z, 3) in degrees higher than 3 is torsion. For this reason the group

H2p+2(K(Z, 3),Z(p)) survives to the E2p+3-page of the spectral sequence, and

the differential

d2p+3 : Z/p ∼= H2p+2(K(Z, 3),Z(p)) → H2p+3(K(Z, 4),Z(p))

is an isomorphism. The next potential non-zero torsion class in the spectral

sequence is in H2p+5(K(Z, 3),Z(p)), which shows that the other cohomology

groups vanish in the range indicated. �

Lemma 2.3. The cohomology groups Hk(K(Z, n),Z(p)) are torsion-free for 0 ≤ k ≤
2p + 3 and n ≥ 5. In this range they are isomorphic to a polynomial algebra over
Z(p) with a single generator ιn in degree n if n is even or an exterior algebra over Z(p)

with a single generator ιn in degree n if n is odd.

Proof. This follows inductively as in the previous two lemmas. The important
point is that the first p-torsion in H∗(K(Z, n − 1),Z(p)) is in degree 2p + (n −

1)− 1. No differential exiting it can be non-zero until the differential d2p+(n−1),

which produces p-torsion in H2p+n−1(K(Z, n),Z(p)). If n ≥ 5, then 2p + n −
1 ≥ 2p + 4. �

2.2. The p-local homotopy type of BSLp(C). Now we harness the com-
putations of the previous section to study the p-local homotopy type of trunca-
tions of BPGLp(C). If X is a connected topological space, we will write τ≤nX
for the nth stage in the Postnikov tower of a path-connected space X. Thus,
τ≤nX is a topological space such that

πi (τ≤nX) ∼=

{
πi(X) if i ≤ n,

0 otherwise.
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The Postnikov tower is the sequence of natural maps

X

''❖
❖

❖

❖

❖

❖

❖

❖

��
❅

❅

❅

❅

❅

❅

❅

❅

❅

❅

❅

❅

��

  

...

��

τ≤nX

��

τ≤n−1X
��

...

��

τ≤1X

��

τ≤0X = ∗

with the fiber of τ≤nX → τ≤n−1X identified with K(πnX, n). In good cases,
such as when the action of π1X on πnX for n ≥ 1 is trivial, the extension

K(πnX, n) // τ≤nX

��

τ≤n−1X

is classified by the k-invariant

kn−1 : τ≤n−1X → K(πnX, n + 1)

in the sense that τ≤nX is the homotopy fiber of kn−1. This k-invariant is a

cohomology class in Hn+1(τ≤n−1X, πnX). When it vanishes, the fibration is
trivial.
There is a p-localization functor L(p) that takes a topological space X and pro-

duces a space L(p)X whose homotopy groups are Z(p)-modules. For the the-

ory of localization of CW complexes, we refer to the monograph of Bousfield
and Kan [10]. This functor takes fiber sequences to fiber sequences when
the base is simply connected by the principal fibration lemma [10, Chap-
ter II]. Since the Z(p)-localization of an Eilenberg-MacLane space K(π, n) is

K(π ⊗Z Z(p), n), for which see [10, page 65], it follows that application of

L(p) commutes with the formation of Postnikov towers of simply-connected
spaces.
Now, we consider the p-local homotopy type of certain stages in the Postnikov
tower of BSLn(C). By Bott periodicity [9, Theorem 5] the p-local homotopy
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groups of BSLn(C) for 1 ≤ i ≤ 2n + 1 are

πi

(
L(p) BSLn(C)

)
∼= πi (BSLn(C))⊗Z Z(p)

∼=






Z(p) if i is even and i ≥ 4,

Z/(n!)⊗Z Z(p) if i = 2n + 1,

0 otherwise.

Proposition 2.4. The localization L(p)τ≤2p BSLn(C), where n ≥ p, is a general-

ized Eilenberg–MacLane space:

(2) L(p)τ≤2p BSLn(C) ≃ K(Z(p), 4)× K(Z(p), 6)× · · · × K(Z(p), 2p).

Proof. We prove the general statement

L(p)τ≤2j BSLn(C) ≃ K(Z(p), 4)× K(Z(p), 6)× · · · × K(Z(p), 2j), for j ≤ p

by induction on j. The base case when j = 1 is trivial. For the induction step,
suppose that L(p)τ≤2j BSLn(C) is

K(Z(p), 4)× · · · × K(Z(p), 2j)

for some 1 ≤ j < p. The extension

K(Z(p), 2j + 2) → L(p)τ≤2j+2 BSLn(C) → L(p)τ≤2j BSLn(C)

is classified by the k-invariant

k2j ∈ H2j+3(K(Z(p), 4)× · · · × K(Z(p), 2j),Z(p)).

By Lemmas 2.2 and 2.3, this cohomology group must vanish, since j < p.
Hence k2j = 0 and the extension is trivial. �

Before we prove the next proposition, we need a well-known lemma. Recall
that an n-equivalence is a map such that πk( f ) : πk(X) → πk(Y) is an isomor-
phism for 0 ≤ k < n and a surjection for k = n.

Lemma 2.5. Let f : X → Y be an n-equivalence. Then, for any coefficient abelian
group A, the induced map

f ∗ : Hk(Y, A) → Hk(X, A)

is an isomorphism for 0 ≤ k ≤ n − 1 and an injection for k = n.

Proof. This follows most easily from the Serre spectral sequence for the fibra-

tion sequence F → X → Y. Since the fiber is n-connected, the groups H̃
k
(F, A)

vanish for k < n. The first nontrivial extension-problem in the spectral se-
quence takes the form

0 → Hn(Y, A) → Hn(X, A) → Hn(F, A),

which proves the result. �
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The previous proposition asserts that L(p)τ≤2p BSLp(C) is a generalized

Eilenberg–MacLane space, the following asserts that the τ≤2p appearing there
is sharp, and the nontriviality of the extension can be detected after pulling
the extension back along an inclusion K(Z(p), 4) → L(p)τ≤2p BSLp(C).

Proposition 2.6. Denote by i a map i : K(Z(p), 4) → L(p)τ≤2p BSLp(C) split-

ting the projection map. Write k2p ∈ H2p+2(L(p)τ≤2p BSLp(C),Z/p) for the k–

invariant of the extension

(3) K(Z/p, 2p+ 1) // L(p)τ≤2p+1 BSLp(C)

��

L(p)τ≤2p BSLp(C).

Then k2p is of order p, and moreover i∗(k2p) is a generator for

H2p+2(K(Z(p), 4),Z/p) ∼= Z/p.

Proof. Note that X → τ≤nX is an (n+ 1)–equivalence. By Lemma 2.5, the map
of rings

Hi(L(p)τ≤2p BSLp,Z(p)) → Hi(L(p) BSLp,Z(p)) = Z(p)[c2, c3, . . . , cp]

is an isomorphism when i ≤ 2p, and an injection, and hence an isomorphism,

when i = 2p + 1. By Lemmas 2.2 and 2.3, the ring Hi(L(p)τ≤2p BSLp,Z(p)) is

isomorphic to a polynomial ring on generators in degrees 4, 6, 8, . . . , 2p in the
range where i ≤ 2p + 2, so that it follows that

H2p+2(L(p)τ≤2p BSLp,Z(p)) → H2p+2(L(p) BSLp,Z(p))

is an isomorphism as well. We also deduce that

H2p+3(L(p)τ≤2p BSLp(C),Z(p))
∼= Z/p · ρ,

where i∗(ρ) is a generator of H2p+3(K(Z, 4),Z(p))
∼= Z/p.

Considering the long exact sequence in cohomology associated to the se-
quence

0 → Z(p) → Z(p) → Z/p → 0

we deduce the existence of a decomposition

H2p+2(L(p)τ≤2p BSLp,Z/p) = H2p+2(L(p) BSLp,Z/p)⊕Z/p · σ,

where βp(σ) = ρ.
We observe two things. First that there is a quotient relationship arising from
the Postnikov extensions

H2p+2(L(p)τ≤2p BSLp,Z/p)/〈k2p〉 ∼= H2p+2(L(p)τ≤2p+1 BSLp,Z/p),

and second that the functorial map

H2p+2(L(p)τ≤2p+1 BSLp,Z/p) →֒ H2p+2(L(p) BSLp,Z/p)
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is injective by Lemma 2.5. It follows directly that k2p = uσ where u is a unit.

By naturality, β2p(i
∗(k2p)) = ui∗(ρ), and in particular, i∗(k2p) 6= 0. �

Corollary 2.7. A map h : L(p)τ≤2p+1 BSLp(C) → L(p)τ≤2p+1 BSLp(C) that

induces an isomorphism on π4

(
L(p)τ≤2p+1 BSLp(C)

)
∼= Z(p), also induces an iso-

morphism on

π2p+1

(
L(p)τ≤2p+1 BSLp(C)

)
∼= Z/p.

Proof. Let i : K(Z(p), 4) → L(p)τ≤2p BSLp(C) again denote a map splitting the

projection onto K(Z(p), 4) in Proposition 2.4. Let

τ≤2ph : τ≤2p BSLp(C) → τ≤2p BSLp(C)

be the truncation of h. This map fits into a commutative diagram

(4) K(Z(p), 4)
i //

≃

��

L(p)τ≤2p BSLp(C)
k2p

//

τ≤2ph

��

K(Z/p, 2p + 2)

Bh∗

��

K(Z(p), 4)
i

// L(p)τ≤2p BSLp(C)
k2p

// K(Z/p, 2p+ 2),

where the map Bh∗ is the result of applying a functorial classifying-space

construction to the endomorphism of K(π2p+1

(
L(p) BSLp

)
, 2p + 1) ≃

K(Z/p, 2p + 1) arising from the map h∗ on π2p+1L(p) BSLp. The map

K(Z(p), 4) → K(Z(p), 4) is the composition of i with h and the projec-

tion, and is a weak equivalence since i, h and the projection all induce
isomorphisms on π4, by hypothesis. Since i∗(k2p) 6= 0 is a generator of

H2p+2(K(Z(p), 4),Z/p)), commutativity of the diagram proves that h∗ is an

equivalence, as claimed. �

2.3. The p-local homotopy type of BPGLp(C). There is a fiber se-
quence, obtained by truncating a sequence associated to the defining quotient
SLp(C)/µp = PGLp(C), of the form

τ≤2p+1 BSLp(C) // τ≤2p+1BPGLp(C) // K(Z/p, 2).

The main theorem concerns itself with maps f : τ≤2p+1BPGLp(C) →
τ≤2p+1BPGLp(C) that induce isomorphisms on π2(τ2p+1BPGLp(C)), these
maps fit into diagrams

τ≤2p+1 BSLp(C)

f̃

��
✤

✤

✤

// τ≤2p+1BPGLp(C) //

��

K(Z/p, 2)

≃

τ≤2p+1 BSLp(C) // τ≤2p+1BPGLp(C) // K(Z/p, 2)
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in which the right-hand square commutes up to homotopy. The map, f̃ , mak-
ing the left-hand square commute up to homotopy exists, but is not unique.
We refer to such a map as a lift of the map f .
Since π2p+1

(
BSLp(C)

)
∼= Z/(p!), it follows that π2p+1

(
BPGLp(C)

)
∼=

Z/(p!), and hence that

π2p+1

(
L(p)BPGLp(C)

)
∼= Z/(p!)⊗Z Z(p)

∼= Z/p.

The following lemma is a technical ingredient in Theorem 2.9.

Lemma 2.8. Let f : τ≤2p+1BPGLp(C) → τ≤2p+1BPGLp(C) be a map that induces
an isomorphism

π2( f ) : π2

(
τ≤2p+1BPGLp(C)

)
→ π2

(
τ≤2p+1BPGLp(C)

)
= Z/p.

Any lift f̃ : τ≤2p+1 BSLp(C) → τ≤2p+1 BSLp(C) of f has the property that the
p-localization

π4(L(p) f̃∗) : π4

(
BSLp(C)

)
⊗Z Z(p) → π4

(
BSLp(C)

)
⊗Z Z(p)

is an isomorphism.

Proof. The first nontrivial fiber sequence appearing in the Postnikov tower of
BPGLp(C) is

K(Z, 4) // τ≤4BPGLp(C) // K(Z/p, 2).

In [2] we proved that the K(Z, 4)–bundle above is classified by a
map K(Z/p, 2) → K(Z, 5) that represents a generator of the group

H5(K(Z/p, 2),Z) ∼= Z/pǫ, where ǫ = 1 unless p = 2 in which case
ǫ = 2. If f induces an isomorphism on π2, it must also induce a map f∗
on π4

(
τ≤2p+1BPGLp(C)

)
∼= Z such that the functorially-derived diagram

K(Z/p, 2)

∼=
��

// K(Z, 5)

B f∗
��

K(Z/p, 2) // K(Z, 5)

commutes. The class B f∗ ∈ H5(K(Z, 5),Z) = Z must be an integer that
is relatively prime to p, and in turn the endomorphism induced by f on
π4

(
τ≤2p+1BPGLp(C)

)
∼= Z must be multiplication by an integer that is rel-

atively prime to p. The map induced by f on π4

(
L(p)τ≤2p+1BPGLp(C)

)
is

consequently an isomorphism.

For any choice of f̃ , the p-localized diagram

L(p)τ≤2p+1 BSLp(C)

L(p) f̃

��

// L(p)τ≤2p+1BPGLp(C)

L(p) f

��

L(p)τ≤2p+1 BSLp(C) // L(p)τ≤2p+1BPGLp(C)
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commutes. Here the horizontal arrows induce isomorphisms on all homotopy
groups, πi, where i ≥ 3, and the result follows. �

We are now in a position to prove the main topological theorem of the paper.

Theorem 2.9. Let f : τ≤2p+1BPGLp(C) → τ≤2p+1BPGLp(C) be a map that
induces an isomorphism

π2( f ) : π2

(
τ≤2p+1BPGLp(C)

)
→ π2

(
τ≤2p+1BPGLp(C)

)
∼= Z/p.

Then

π2p+1(L(p) f ) : π2p+1

(
L(p)τ≤2p+1BPGLp(C)

)
→ π2p+1

(
L(p)τ≤2p+1BPGLp(C)

)

is an isomorphism.

Proof. Suppose f is a map meeting the hypothesis of the theorem. Choose

a lift, f̃ : τ≤2p+1 BSLp(C) → τ≤2p+1 BSLp(C). By Lemma 2.8, the map f̃∗ is

an isomorphism on π4

(
L(p)τ≤2p+1 BSLp(C)

)
, and therefore by Corollary 2.7,

π2p+1(L(p) f̃ ) is an isomorphism.

Since the projection L(p)τ≤2p+1 BSLp(C) → L(p)τ≤2p+1BPGLp(C) induces an

isomorphism on all higher homotopy groups πi where i ≥ 3, it follows that f∗

is an isomorphism on π2p+1

(
L(p)τ≤2p+1BPGLp(C)

)
, as claimed. �

3. PURITY

We consider purity in this section, giving two applications of algebraic topol-
ogy to algebraic purity questions. The first uses the machinery of Section 2
to show that purity fails in general for PGLp torsors, while the second
uses [2, Theorem D] to show that purity fails for the cohomological filtration
on the Witt group.

3.1. Definitions. Let F : C op → Sets be a presheaf on some category of
schemes C . We will suppress any mention of the category C throughout, and
we will assume that all necessary localizations of an object X in C are also in
C . Suppose that X is a regular noetherian integral scheme in C , and let K be
the function field of X. If the natural map

im(F (X) → F (Spec K)) →
⋂

P∈X(1)

im(F (Spec OX,P) → F (Spec K))

is a bijection, where X(1) denotes the set of codimension 1 points of X, then
we say that purity holds for F (X).

Example 3.1. If X is a regular noetherian integral scheme with an ample line
bundle such that Q ⊆ Γ(X, OX), then purity holds for Br(X). In particular,
purity holds for Br(X) for smooth quasi-projective schemes over field of char-
acteristic 0. This follows from two facts. First, it is a theorem of Gabber and de
Jong [16] that if X has an ample line bundle, then Br(X) = H2

ét(X,Gm)tors. Sec-

ond, Gabber has shown (see Fujiwara [20]) that H2
ét(X,Gm)tors satisfies purity
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when X is a regular scheme and when each positive integer is invertible in X.
The case of smooth affine schemes over fields had been handled previously by
Hoobler [26], following Auslander and Goldman’s work on the 2-dimensional
affine situation [7, Proposition 6.1], while Gabber [22] had proved the result in
characteristic 0 with an added excellence condition. Gabber [21] proved purity

for H2
ét(X,Gm)tors without the excellence hypothesis when dim X ≤ 3; hence,

in combination with the Br = Br′ result above, purity holds for the Brauer
group when dim X ≤ 3 and X has an ample line bundle. If X is an arbitrary
regular noetherian integral scheme, then purity holds for Br(X)′, the part of
the Brauer group containing the m-torsion for all m > 0 invertible in X. This

follows from purity for H2
ét(X, µn) when n is prime to p. See Fujiwara [20]

together with [4, Exposée XIV, Section 3] or [14, Theorem 3.8.2].

Currently unknown is whether purity holds for Br(X) for every regular noe-
therian integral scheme X. The results above should be contrasted to what
happens for degree 3 cohomology classes: for any integer n > 1, there are

smooth projective complex varieties X such that purity fails for H3
ét(X,Z/n).

See [15, Section 5] for an overview, or Totaro [36] and Schoen [34] for exam-
ples. It is not hard to see that unramified cohomology is homotopy invari-
ant [37, Theorem 1.3], so it follows by using Jouanolou’s device [28] that there

are smooth affine complex varieties where purity fails for H3
ét(X,Z/n) as well.

3.2. Purity for torsors. Let X be a regular noetherian integral scheme,
and let G be a smooth reductive group scheme over X. In [13, Question 6.4],

Colliot-Thélène and Sansuc ask whether purity holds for H1
ét(X, G). As stated

in the introduction, many examples are known where purity holds in the spe-
cial case where X = Spec R is the spectrum of a regular noetherian local ring
R. But, as far as the authors are aware, except for our negative results [3] for
G = PGL2, no results are known in the non-local case, either for or against
purity, except in some trivial cases such as for special groups like SLn and in
the following two theorems.

Theorem 3.2 ([13, Corollaire 6.9]). Purity holds for H1
ét(X, G) for all regular

noetherian integral schemes X and all finite type X-group schemes of multiplicative
type G.

Theorem 3.3 ([13, Théorème 6.13]). Purity holds for H1
ét(X, G) for all regu-

lar noetherian integral 2-dimensional schemes X and all smooth reductive X-group
schemes G.

Before we prove our main theorem, we need a standard result.

Lemma 3.4. Let R be a discrete valuation ring, and let α ∈ Br(R) ⊆ Br(K) be
a Brauer class. If D is a central simple algebra over K, the fraction field of R, with
Brauer class α, then every maximal order A in D is Azumaya over R.

Proof. A maximal order A is in particular reflexive. Since a reflexive module
on a regular domain of dimension at most 2 is projective, A is projective. The
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lemma now follows from the argument in the second paragraph of the proof
of [7, Proposition 7.4]. �

The goal of this paper is to show that Theorem 3.3 does not extend to higher-
dimensional schemes. The method is based on [3], augmented by the results
of Section 2.
Let a, b be positive integers and let P(a, ab) denote the complex algebraic group
SLab(C)/µa. There is a commutative diagram of short exact sequences of
groups

1 // µa

��

// SLab(C)

��

// P(a, ab) //

��

1

1 // C∗ // GLab(C) // PGLab(C) // 1.

and therefore, for any topological space X, a commutative square

(5) H1(X, P(a, ab)) //

��

H2(X,Z/a)

��

H1(X, PGLab(C)) // H2(X,C∗) ∼= H3(X,Z).

If we have a principal P(a, ab)-bundle on a topological space X, then the quo-
tient map P(a, ab) → PGLab(C) gives rise to a principal PGLab(C)-bundle and
therefore a degree ab topological Azumaya algebra. Diagram 5 implies that
this Azumaya algebra is of exponent dividing a.
Similarly, in the category of schemes over C, an SLab /µa-torsor (for the étale
topology) gives rise to a degree ab Azumaya algebra, and the exponent of this
Azumaya algebra divides a.
We rely on the following argument repeatedly: If X is a simply connected topo-
logical space, then π2(X) ∼= H2(X,Z) by the Hurewicz theorem. Then, by the

universal coefficient theorem, the torsion Br(X) = H3(X,Z)tors is naturally
the dual of the torsion subgroup of H2(X,Z) ∼= π2(X). In the cases we con-
sider, π2(X) is itself a torsion abelian group, and therefore Br(X) is naturally
the dual of π2(X).

Lemma 3.5. Suppose f : X → BP(a, ab) is a 3-equivalence of topological spaces.
Denote the Azumaya algebra associated to the PGLab(C) bundle classified by the

composite X
f
→ BP(a, ab) → BPGLab(C) by A (C). The exponent of A (C) is a.

Proof. Since f ∗ is a 3-equivalence, the Hurewicz and universal coefficients the-

orems imply that it induces an isomorphism on Brtop(·) ∼= H3(·,Z)tors. It suf-
fices therefore to show that the map φ∗ : Brtop(BPGLab(C)) → Brtop(BP(a, ab))
takes a generator to a class of order a.
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The following is a diagram of short exact sequences of groups

1 // µa

i

��

// SLab(C) // P(a, ab)

φ

��

// 1

1 // µa
// SLab(C) // PGLab(C) // 1.

Here i denotes the inclusion µa ⊂ µab. This gives rise to a map of fiber se-
quences:

BSLab(C) // BP(a, ab)

φ

��

// B2µa

B2i
��

BSLab(C) // BPGLab(C) // B2µab.

Since H̃
∗
(SLab(C),Z) vanishes below degree 4, the natural map of Serre spec-

tral sequences for H∗(·,Z) yields to a commutative square

Brtop(BP(a, ab)) H3(BP(a, ab),Z) H3(B2µa,Z) ∼= Z/a∼=
oo

Brtop(BPGLab(C)) H3(BPGLab(C),Z)

(Bφ)∗

OO

H3(B2µab,Z) ∼= Z/(ab),∼=
oo

(B2i)∗

OO

where (B2i)∗, by means of the Hurewicz and universal coefficient theorems, is
seen to be the dual of the inclusion Z/a = µa ⊂ µab = Z/(ab). Namely, it is a
surjection Z/(ab) → Z/a, as required. �

We now can prove our main theorem:

Theorem 3.6. Let p be a prime. There exists a smooth affine complex variety X of

dimension 2p + 2 such that purity fails for H1
ét(X, PGLp).

Proof. Let q > 1 be an integer prime to p. Let V be an algebraic representation
of the complex algebraic group G = SLpq /µp such that there is a G-invariant
closed subvariety S of codimension at least p + 2 with the following proper-
ties: the complement V − S is contained in the stable locus of the G-action
on V (in the sense of [29]) for some G-linearization of OV , and G acts freely
on V − S. Such a representation is constructed in [35, Remark 1.4] by taking
a large direct sum of any faithful G-representation. There is a universal geo-
metric quotient q : (V − S) → (V − S)/G with (V − S)/G a quasi-projective
variety [29]. Moreover, (V − S) → (V − S)/G is an algebraic principal G bun-
dle, and (V − S)/G is smooth, since (V − S) → (V − S)/G is a smooth surjec-
tive morphism with (V − S) smooth. We can replace (V − S)/G by an affine
scheme using Jouanolou’s device [28], and then we can use the affine Lefschetz
theorem [24, Introduction, Section 2.2] to cut down to a 2p + 2-dimensional
closed subscheme X. Pulling q back along X → (V − S)/G gives an algebraic
G-torsor E → X, and therefore an induced PGLpq-torsor E×P(p,pq) PGLpq, and
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finally an associated (algebraic) Azumaya algebra A on X. Write α ∈ Br(X)
for the class of A ; since A is induced from a principal SLpq /µp-bundle, the
exponent of α divides p.
The map X → (V − S)/G is an affine vector bundle, and upon complex re-
alization, yields a homotopy equivalence. The realization G(C) is the group
P(p, pq), and by construction ((V − S)/G)(C) → BP(p, pq) is a 2p + 3 equiva-
lence. The topological Azumaya algebra classified by the composite X(C) →
BP(p, pq) → BPGLpq(C) is A (C), and by Lemma 3.5 it has exponent p. Since
there is a homomorphism Br(X) → Br(X(C)) taking the class, α, of A to that
of A (C), it follows that the exponent of α is exactly p.
Returning to algebra, let K be the function field of X. There is an inclusion
Br(X) ⊂ Br(K), and the class α ∈ Br(K) corresponds to a central simple al-
gebra A ⊗OX

K of degree pq and exponent p. From the theory of the index
of a Brauer class of a field, [23, Proposition 4.5.13], we know that there is an
Azumaya algebra A′ of degree p (in fact, a division algebra) over K in the class
of α. By Lemma 3.4, therefore, every codimension 1 local ring OX,x of X has
the property that there is some Azumaya algebra of degree p representing the

class of α in Br(OX,x), which is to say that the class of A′ in H1
ét(K, PGLp) lies

in the intersection
⋂

x∈X(1)

im
(

Hét(Spec OX,x, PGLp) → H1
ét(Spec K, PGLp)

)
.

To show that purity does not hold for PGLp, therefore, it suffices to show that
α ∈ Br(X) is not represented by any Azumaya algebra of degree p. By com-
parison, it is sufficient to show that the class of A (C) in Br(X(C)), is not rep-
resented by any topological Azumaya algebra of degree p.
Suppose for the sake of contradiction that such a topological Azumaya al-
gebra exists. Let f : X(C) → BPGLp(C) be a map classifying it. Since
the class of A (C) in Br(X(C)) is of exponent p, it follows that the map
f ∗ : Br(BPGLp(C)) → Br(X(C)) is nonzero, and by the universal coefficients
and Hurewicz theorems, it follows that the map f∗ : Z/p ∼= π2(X(C)) →
π2(BPGLp(C)) ∼= Z/p is nonzero, and in particular is an isomorphism.
We consider the composition

τ≤2p+2BPGLp(C) → τ≤2p+2BP(p, pq) → τ≤2p+2X → τ≤2p+2BPGLp(C),

where the first arrow is the 2p + 2-truncation of the q-fold block sum map
BPGLp(C) → BP(p, pq), the second arrow is a homotopy inverse to the ho-
motopy equivalence τ≤2p+2X → τ≤2p+2BP(p, pq), and the third arrow is the
truncation of f . This composition induces an isomorphism on π2, and hence
on π2p+1, by Theorem 2.9 (applied to the further truncation τ≤2p+1 of the com-

position). But π2p+1BP(p, pq) = 0, which is a contradiction. �

The theorem implies in particular that on X there is an unramified degree-p
division algebra over K that does not extend to an Azumaya algebra on X. The
case p = 2 was proved first in [3].
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Corollary 3.7. Let p be a prime There exists a smooth affine complex variety X of
dimension 2p + 2 and an unramified division algebra D over C(X) of degree p that
contains no Azumaya maximal order on X.

Scholium 3.8. Let p be a prime, and let n1, . . . , nk be integers greater than p such
that gcdi{ni} = p. There is a smooth affine complex variety X of dimension 2p + 2
and a Brauer class α ∈ Br(X) of exponent p such that there are Azumaya algebras of
degrees n1, . . . , nk in the class α, but no Azumaya algebra of degree p.

Proof. The proof is largely the same as that of the theorem, but using the alge-
braic group

SLn1 × · · · × SLnk
/µp ,

where µp is embedded diagonally in each of the groups SLni
. �

3.3. Local purity. In contrast to the global failure of purity for PGLp-
torsors exhibited above, in this section, we give a proof that purity holds for

H1
ét(X, PGLn) when X is the spectrum of a regular local ring R and the Brauer

class has exponent invertible in X. Our result is a minor generalization of a
recent theorem of Ojanguren [30] and of the local purity result for PGLn in
characteristic 0 due to Panin [32].
To prove the theorem, we recall first a result of DeMeyer, which is also used
by both Ojanguren and Panin.

Theorem 3.9 (DeMeyer [17, Corollary 1]). Suppose that R is an integral semi-
local ring and that α ∈ Br(R). Then, there exists a unique Azumaya algebra A with
class α having no idempotents besides 0 and 1. Moreover, any other Azumaya algebra
with class α is of the form Mn(A) for some n.

Now, we prove our local purity result. Define H1(X, PGLn)′ to be the set of
PGLn-torsors whose associated Brauer class in Br(X) has exponent invertible
in X.

Theorem 3.10. Suppose that R is a regular noetherian integral semi-local ring.

Then, purity holds for H1(Spec R, PGLn)′.

Proof. Let K be the function field of R, and let D be a degree n central simple
algebra in

⋂

ht P=1

im
(

H1
ét(Spec Rp, PGLn)

′ → H1
ét(Spec K, PGLn)

′
)

.

Let m be the exponent of [D] ∈ Br(K). Because D lifts to every codimension
1 local ring, so does the Brauer class. Since m is invertible in R and hence in
these local rings, this Brauer class lifts to a Brauer class α ∈ Br(R), by purity
for Br(R)′ (see Example 3.1).
By DeMeyer’s theorem, there exists an Azumaya algebra A with Brauer class
α such that every other Azumaya algebra in the class α is isomorphic to Mr(A)
for some r. In particular, ind(α) = deg(A), where, if X is a scheme and
α ∈ Br(X), we define ind(α) to be the gcd of the degrees of all Azumaya
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algebras with class α. On the other hand, by [2, Proposition 6.1], the index
of α can be computed either over R or over K. Thus, ind(α) divides deg(D).
Therefore, D ∼= Mr(AK) for some integer r > 0. It follows that Mr(A) is a

class in H1
ét(Spec R, PGLn)′ that restricts to D, which shows that purity holds

for H1
ét(Spec R, PGLn)′. �

3.4. Canonical factorization. We prove in this section a theorem we view
as evidence for Conjecture 1.2 for all PGLn.
Let m > 1 divide n. Both BP(m, n) and BPGLm(C) are equipped with canon-
ical maps to K(Z/m, 2). Moreover, a topological PGLn(C) bundle, P → X,
may be lifted to a P(m, n) bundle if and only if the associated obstruction class

δn(P) in H2(X,Z/n) is m-torsion. A canonical factorization of Azumaya al-
gebras with structure group P(m, n) is a factorization BP(m, n) → BPGLm →
K(Z/m, 2). The existence of such a factorization would give, for every Azu-
maya algebra A of degree n and m-torsion obstruction class, a canonical Azu-

maya algebra B of degree m with the same obstruction class in H2(X,Z/m).
Unsurprisingly, this cannot occur.

Theorem 3.11. If n > m, then there is no canonical factorization BP(m, n) →
BPGLm(C) → K(Z/m, 2).

Proof. Suppose that BP(m, n) → K(Z/m, 2) factors through BPGLm(C) →
K(Z/m, 2). Let BPGLm(C) → BP(m, n) be the map induced block-summation.
Write f : BP(m, n) → BP(m, n) for the composition. This map induces an

isomorphism H2(BP(m, n),Z/m) ∼= Z/m, and is in particular not nullhomo-
topic.
As BP(m, n) is homotopy equivalent to BSUn/µm, there is a complete descrip-
tion of the homotopy-classes of self-maps BP(m, n) → BP(m, n) due to Jack-
owski, McClure, and Oliver [27, Theorem 2]. Their theorem says we can factor

f as Bα ◦ ψk, where α is an outer automorphism of P(m, n), and ψk is an un-
stable Adams operation on BP(m, n), for some k ≥ 0 prime to the order of

the Weyl group of P(m, n), which is n!. The map ψk induces multiplication

by ki on H2i(BP(m, n),Q). In particular a map BP(m, n) → BP(m, n) is either
nullhomotopic or induces an isomorphism on rational cohomology.
The rational cohomology of BP(m, n) is

H∗(BP(m, n),Q) ∼= Q[c2, . . . , cn], ci ∈ H2i(BP(m, n),Q),

while that of BPGLm(C) is

H∗(BPGLm(C),Q) ∼= Q[c2, . . . , cm], ci ∈ H2i(BP(m, n),Q).

In particular,

dim H2m+2(BP(m, n),Q) = dim H2m+2(BPGLm(C),Q) + 1,

so that f cannot induce an isomorphism on rational cohomology, and must be
nullhomotopic, a contradiction. �
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The argument above has philosophically informed the authors’ work both in
this paper and in [3]. In order to construct algebraic counterexamples, how-
ever, we must use complex algebraic varieties X that approximate BPGLm(C)
in the sense that there exists a map X(C) → BPGLm(C) induced by an alge-
braic PGLm-torsor on X and inducing an isomorphism on homotopy groups in
a range dimensions, and for these we cannot bring the strength of [27] to bear.
We have made do with ad hoc arguments that furnish obstructions in known,
bounded dimension to maps BPGLm(C) → BPGLm(C). For instance, the topo-

logical plank in the argument proving that purity fails for H1
ét(X, PGLp) is an

obstruction to a map

τ≤2p+1BP(p, pq) → τ≤2p+1BPGLp(C)

that induces an isomorphism on Brauer group. This obstruction depends on
Theorem 2.9, which describes a restriction on maps

τ≤2p+1BPGLp → τ≤2p+1BPGLp,

in that it says a map inducing an isomorphism on π2 must necessarily also
induce an isomorphism on the p–primary part of π2p+1. To prove Conjecture
1.2 for all PGLm, one might only have to find an obstruction to the existence of
maps X → BPGLm where X approximates BP(m, mq), with q > 1 prime to m.

3.5. The Witt group. Our second application of topology to purity is to
give a new example where purity fails for the cohomological filtration on the
Witt group.

Example 3.12. Local purity is known for the Witt group W(Spec R) when-
ever R is a regular noetherian local ring containing a field of characteristic not
2 by work of Ojanguren and Panin [31].

Given the positive results for the Brauer group, it is natural to ask the follow-
ing question.

Question 3.13. Does purity hold for W(X) when X is an regular excellent
noetherian integral scheme having no points of characteristic 2?

It is known that purity holds for W(X) when X is a regular noetherian sep-
arated integral scheme of Krull dimension at most 4 and 2 is invertible in
Γ(X, OX) by Balmer-Walter [8, Corollary 10.3]. However, Totaro [37] showed
that the injectivity property fails for the Witt group: there is a smooth affine
complex 5-fold such that W(X) → W(K) is not injective. Thus, it might be nat-
ural to guess that the purity property fails as well. For an extensive overview
of results on purity for the Witt group, see Auel [6].

Let I1(X) be the ideal of W(X) generated by even-dimensional quadratic

spaces. There is a discriminant map I1(X) → H1
ét(X, µ2). Let I2(X) be the

kernel. There is a map I2(X) → 2 Br(X), called the Clifford invariant map.

Denote by I3(X) the kernel. It is known that purity fails for I2(X)/ I3(X). The
first examples were due to Parimala and Sridharan [33], who showed that it
fails for some affine bundle torsors over smooth projective p-adic curves. We
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include another example below, which uses a smooth affine variety we con-
structed in [2], giving the first examples over C.

Example 3.14. Let X be the smooth affine 5-dimensional variety over C con-
structed in [2, Theorem D], having a Brauer class α ∈ Br(X) of exponent 2 that

is not in the image of the Clifford invariant map I2(X) → 2 Br(X). Consider
the commutative diagram

0

��

0

��

0

��

I3(X) //

��

I3(K) //

��

⊕
p∈X(1) I2(k(p))

��

I2(X) //

��

I2(K) //

��

⊕
p∈X(1) I1(k(p))

��

0 //
2 Br(X) //

2 Br(K) //

��

⊕
p∈X(1) H1(k(p),Z/2)

��

0 0,

where the columns and the bottom row are exact, and where I2(X) (resp.

I3(X)) maps into the kernel of the map I2(K) →
⊕

I1(k(p)) (resp I3(K) →⊕
I2(k(p))). The image of α in 2 Br(K) is in the image of the map I2(K) →

2 Br(K) by Merkurjev’s theorem; say it is the Clifford invariant of σ ∈ I2(K).

Then, σ is unique up to an element of I3(K). On the other hand, the ramifica-

tion classes ∂p(σ) are all in I2(k(p)). Hence, σ ∈ I2(K)/ I3(K) is unramified.

But, by construction, it is not in the image of I2(X)/ I3(K) → I2(K)/ I3(K).

This is the first such example known for a variety over an algebraically closed
field. It has the added advantage that it is not explained by the presence of
line-bundle valued quadratic forms, as explained in [2, Section 7].
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[4] Théorie des topos et cohomologie étale des schémas. Tome 3, Lecture Notes
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