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Introduction

The polylogarithm is a very powerful tool in studying special values of L-
functions and subject to many conjectures. Most notably, the Zagier conjec-
ture claims that all values of L-functions of number fields can be described by
polylogarithms. The interpretation of the polylogarithm functions in terms of
periods of variations of Hodge structures has lead to a motivic theory of the
polylog and to generalizations as the elliptic polylog by Beilinson and Levin.
Building on this work, Wildeshaus has defined polylogarithms in a more general
context and in particular for abelian schemes.
Not very much is known about the extension classes arising from these “abelian
polylogarithms”. In an earlier paper [K] we were able to show that the abelian

1Dedicated to John Coates with admiration and respect.
Editorial Remark: This article was intended to be included in Documenta Math., The
Book Series, vol. 4: John H. Coates’ Sixtieth Birthday (2006), but its publication was
unfortunately delayed for reasons not caused by the author.
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polylogarithm, is indeed of motivic origin, i.e., is in the image of the regulator
from K-theory.
It was Levin in [L], who started to investigate certain ”polylogarithmic cur-
rents” on abelian schemes, which are related to the construction by Wilde-
shaus. In [B1], Blottière could show that these currents actually represent the
polylogarithmic extension in the category of Hodge modules.
In this paper we will, following and extending ideas from the case of the elliptic
polylog treated in [HK] (which is in turn inspired by [BL]), consider the prob-
lem of the degeneration of the abelian polylog on Hilbert modular varieties.
The main result will describe this degeneration in terms of (critical) special
values of L-functions of the totally real field, which defines the Hilbert modu-
lar variety. To describe the theorem more precisely, consider the specialization
of the polylog, which gives Eisenstein classes (say in the category of mixed étale
sheaves to fix ideas)

Eisk(α) ∈ Ext2g−1
S (Qℓ, SymkH(g)),

where S is the Hilbert modular variety of dimension g and H is the locally
constant sheaf of relative Tate-modules of the universal abelian scheme. Let
j : S → S be the Baily-Borel compactification of S and i : ∂S := S \ S → S
the inclusion of the cusps. The degeneration or residue map (see 1.5.2 for the
precise definition) is then

res : Ext2g−1
S (Qℓ, SymkH(g))→ Hom∂S(Qℓ, Qℓ).

The target of this map is sitting inside a sum of copies of Qℓ and the main
result of this paper 1.7.1 describes res(Eisk(α)) in terms of special values of
(partial) L-functions of the totally real field defining S.
The same result was also obtained by Blottière in [B2] with different methods.
His computation uses the explicit description of the polylogarithm in terms of
the currents constructed by Levin.
Our method of proof is inspired by [BL] 2.4. and [HK] and follows a different
line. Instead of computing directly the degeneration on the base we work with
the polylog, which lives on the universal abelian scheme, and use the fact that
the universal abelian variety can be written in a neighborhood of the cusps as
an extension of real tori. The idea is to view the problem as of topological
nature and use the good functorial properties of the topological polylog to
compute the degeneration. In fact, we avoid computations by reducing to the
situation considered by Nori [N] and Sczech [Sc]. For the convenience of the
reader we reproduce then their computations, which lead to the relation with
the L-values.
There is a very interesting question raised by the results in this paper. In
[HK] we were able to construct extension classes related to non-critical values
of Dirichlet-L-functions, if the residue map was zero on the specialization of
the polylog. Is there an analogous result here?
The paper is organized as follows: In the first section we review the definition
of the Hilbert modular variety, define the residue or degeneration map and
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formulate our main theorem. The second section reviews the theory of the
polylog and the Eisenstein classes emphasing the topological situation, which
is not extensively covered in the literature. In the third section we give the
proof of the main theorem.

It is a pleasure to thank David Blottière for a series of interesting and stim-
ulating discussions during his stay in Regensburg. Moreover, I like to thank
Sascha Beilinson for making available some time ago his notes about his and
A. Levin’s interpretation of Nori’s work.

1 Polylogarithms and degeneration

We review the definition of a Hilbert modular variety to fix notations and
pose the problem of computing the degeneration of the specializations of the
polylogarithm at the boundary. The main theorem describes this residue in
terms of special values of L-functions.

1.1 Notation

As in [BL] we deal with three different types of sheaves simultaneously. Let
X/k be a variety and L a coefficient ring for our sheaf theory, then we consider

i) k = C the usual topology on X(C) and L any commutative ring

ii) k = R or C and L = Q or R and we work with the category of mixed
Hodge modules

iii) k = Q and L = Z/lrZ, Zl or Ql and we work with the category of étale
sheaves

1.2 Hilbert modular varieties

We recall the definition of Hilbert modular varieties following Rapoport [R].
To avoid all technicalities, we will only consider the moduli scheme over Q.
The theory works over more general base schemes without any modification.

Let F be a totally real field, g := [F : Q], O the ring of integers, D−1 the
inverse different and dF its discriminant. Fix an integer n ≥ 3. We consider
the functor, which associates to a scheme T over Spec Q the isomorphism classes
of triples (A, α, λ), where A/T is an abelian scheme of dimension g, with real
multiplication by O, α : Homet,O,sym(A,A∗) → D−1 is a D−1-polarization in
the sense of [R] 1.19, i.e., an O-module isomorphism respecting the positivity
of the totally positive elements in D−1 ⊂ F , and λ : A[n] ∼= (O/nO)2 is a level
n structure satisfying the compatibility of [R] 1.21. For n ≥ 3 this functor is

represented by a smooth scheme S := SD−1

n of finite type over Spec Q . Let

A
π
−→ S
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be the universal abelian scheme over S. In any of the three categories of sheaves
i)-iii) from 1.1 we let

H := HomS(R1π∗L, L)

the first homology of A/S. In the étale case and L = Zℓ, the fiber of H at a
point is the Tate module of the abelian variety over that point.

1.3 Transcendental description

For the later computation we need a description in group theoretical terms of
the complex points S(C) and of H.
Define a group scheme G/ Spec Z by the Cartesian diagram

G −−−−→ ResO/Z Gl2y
ydet

Gm −−−−→ ResO/Z Gm

and let

H
g
± := {τ ∈ F ⊗ C|Im τ totally positive or totally negative}.

Then

(
a b
c d

)
∈ G(R) acts on H

g
± by the usual formula

(
a b
c d

)
τ =

aτ + b

cτ + d

and the stabilizer of 1⊗ i ∈ H
g
± is

K∞ := (F ⊗ C)∗ ∩G(R),

so that

H
g
±
∼= G(R)/K∞.

With this notation one has

S(C) = G(Z)\(Hg
± ×G(Z/nZ)).

On S(C) acts G(Z/nZ) by right multiplication. The determinant det : G→ Gm

induces

S(C)→ Gm(Z/nZ)

and the fibers are the connected components. Define a subgroup D ⊂ G iso-
morphic to Gm by D := {

(
a 0
0 1

)
∈ G : a ∈ Gm

)
. This gives a section of det.

Then the action of D(Z/nZ) by right multiplication is transitive on the set of
connected components.
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The embedding G(Z) ⊂ Gl2(O) defines an action of G(Z) on O⊕2 and in the
topological realization the local system H is given by the quotient

G(Z)\(Hg
± ×O

⊕2 ×G(Z/nZ)).

In particular, as a family of real (2g-dimensional) tori, the complex points A(C)
of the universal abelian scheme can be written as

G(Z)\(Hg
± × (F ⊗ R/O)⊕2 ×G(Z/nZ))

and the level n structure is given by the subgroup

(
1

n
O/O)⊕2 ⊂ (F ⊗ R/O)⊕2.

The O-multiplication on A(C) is in this description given by the natural O-
module structure on F ⊗ R.

1.4 Transcendental description of the cusps

The following description of the boundary cohomology is inspired by [H]. For
further details we refer to [H] 2.1. Let B ⊂ G the subgroup of upper triangular
matrices, T ⊂ B its maximal torus and N ⊂ B its unipotent radical. We have
an exact sequence

1→ N → B
q
−→ T → 1.

We denote by G1, B1 and T 1 the subgroups of determinant 1. Note that
G1 = ResO/Z Sl2. Let KB

∞ := B(R) ∩ K∞, then the Cartan decomposition
shows that H

g
± = B(R)/KB

∞. A pointed neighborhood of the set of all cusps is
given by

(1) S̃B := B(Z)\
(
B(R)/KB

∞ ×G(Z/nZ)
)
.

In particular, the set of cusps is (cf. also [R] p.305)

(2) ∂S(C) = B1(Z)\G(Z/nZ).

The fibres of the map ∂S(C)→ Gm(Z/nZ) induced by the determinant are

(3) B1(Z)\G1(Z/nZ) ∼= ΓG\P
1(O),

where ΓG := ker(G1(Z) → G1(Z/nZ)). In particular, we can think of a cusp
represented by h ∈ G1(Z/nZ) as a rank 1 O-module bh, which is a quotient

(4) O2 ph−→ bh,

together with a level structure, i.e., a basis h ∈ G1(Z/nZ). Explicitly, the
fractional ideal bh is generated by any representatives u, v ∈ O of the second
row of h.
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On S̃B acts G(Z/nZ) by multiplication from the right. This action is transitive

on the connected components of S̃B. Define

(5) SB := B(Z)\
(
B(R)/KB

∞ ×B(Z/nZ)
)
,

then SB ⊂ S̃B is a union of connected components of S̃B. Let KT
∞ (respectively

T (Z)) be the image of KB
∞ (respectively B(Z)) under q : B(R)→ T (R). Define

(6) ST := T (Z)\
(
T (R)/KT

∞ × T (Z/nZ)
)
,

then the map q : B → T induces a fibration

(7) q : SB → ST ,

whose fibers are N(Z)\
(
N(R)×N(Z/nZ)

)
with N(Z) := B(Z)∩N(R). Denote

by

(8) u : ST → pt

the structure map to a point. For the study of the degeneration, one considers
the diagram

(9)

SB
q

−−−−→ ST
u

−−−−→ pt
y

S

In fact we are interested in the cohomology of certain local systems on these
topological spaces. For the computations it is convenient to replace SB and ST

by homotopy equivalent spaces as follows.
Define KT 1

∞ := KT
∞ ∩T 1(R) and note that this is the kernel of the determinant

KT
∞ → R∗. Then the inclusion induces an isomorphism

T 1(Z)\
(
T 1(R)/KT 1

∞ × T (Z/nZ)
)
∼= ST .

The map a 7→
(

a 0
0 a−1

)
defines isomorphisms (F⊗R)∗ ∼= T 1(R) andO∗ ∼= T 1(Z).

Note that KT 1

∞ ⊂ (F⊗R)∗ is identified with the two torsion subgroup in (F⊗R)∗

and that KT 1

∞
∼= (Z/2Z)g permutes the set of connected components of T 1(R).

Lemma 1.4.1. Let (F ⊗ R)1 ⊂ T 1(R) = (F ⊗ R)∗ be the subgroup of elements
of norm 1 and O∗,1 = O∗ ∩ (F ⊗ R)1. Then

S1
T := O∗,1\

(
(F ⊗ R)1/KT 1

∞ ∩ (F ⊗ R)1 × T (Z/nZ)
)

is homotopy equivalent to ST . Moreover, the inclusion of the totally positive
elements (F ⊗ R)1+ into (F ⊗ R)1 provides an identification

(F ⊗ R)1+
∼= (F ⊗ R)1/KT 1

∞ ∩ (F ⊗ R)1.

Documenta Mathematica 13 (2008) 131–159



Degeneration of Polylogarithms . . . 137

Proof. The exact sequence

0→ (F ⊗ R)1 → (F ⊗ R)∗ → R∗ → 0

together with the fact that KT 1

∞ is the two torsion in (F ⊗R)∗ allows to identify

T 1(R)/KT 1

∞
∼=

(
(F ⊗ R)1/KT 1

∞ ∩ (F ⊗ R)1
)
× R>0.

The last identity is clear. �

We define S1
B to be the inverse image of S1

T under q, so that we have a Cartesian
diagram

(10)

S1
B

q
−−−−→ S1

Ty
y

SB
q

−−−−→ ST .

Over SB the representation O2 has a filtration

0→ O → O2 p
−→ O → 0,(11)

where the first map sends a ∈ O to the vector
(
a
0

)
and the second map is(

a
b

)
7→ b. This induces a filtration on the local system H

(12) 0→ N → H →M→ 0,

where N and M are the associated local systems. In particular, over S1
B one

has a filtration of topological tori

(13) 0→ TN → A(C)
p
−→ TM → 0,

where TN := N ⊗R/Z and TM :=M⊗R/Z. By definition of N the fibration
in (13) and (10) are compatible, i.e., one has a commutative diagram

(14)

A(C)
p

−−−−→ TM

π

y
yπM

S1
B

q
−−−−→ S1

T .

1.5 The degeneration map

In this section we explain the degeneration problem we want to consider.
The polylogarithm on π : A → S defines for certain linear combinations α of
torsion sections of A an extension class

(15) Eisk(α) ∈ Ext2g−1
?,S (L, SymkH(g)),
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where ? can be MHM, et, top. The construction of this class will be given in
section 2 definition 2.4.1.
Let S be the Baily-Borel compactification of S. Denote by ∂S := S \ S the set
of cusps. We get

∂S
i
−→ S

j
←− S.

The adjunction map together with the edge morphism in the Leray spectral
sequence for Rj∗ gives

(16)

Ext2g−1
S (L, SymkH(g)) −−−−→ Ext2g−1

∂S (L, i∗Rj∗ SymkH(g))

ց
y

Hom∂S(L, i∗R2g−1j∗ SymkH(g)).

There are several possibilities to compute i∗R2g−1j∗ SymkH(g).

Theorem 1.5.1. Assume that Q ⊂ L. Then, in any of the categories
MHM, et, top, there is a canonical isomorphism

i∗R2g−1j∗ SymkH(g) ∼= L,

where L has the trivial Hodge structure (resp. the trivial Galois action).

Remark: J. Wildeshaus has pointed out that the determination of the weight
on the right hand side is not necessary for our main result, but follows from it.
In fact, our main result gives non-zero classes in

Hom∂S(L, i∗R2g−1j∗ SymkH(g)),

so that the rank one sheaf i∗R2g−1j∗ SymkH(g) has to be of weight zero.

Using this identification we define the residue or degeneration map:

Definition 1.5.2. The map from (16) together with the identification of 1.5.1
define the residue map

res : Ext2g−1
S (L, SymkH(g))→ Hom∂S(L, L).

The residue map is equivariant for the G(Z/nZ) action on both sides.

Proof. (of theorem 1.5.1). In the case of Hodge modules we use theorem 2.9.
in Burgos-Wildeshaus [BW] and in the étale case we use theorem 5.3.1 in
[P2]. Roughly speaking, both results asserts that the higher direct image can
be calculated using group cohomology and the “canonical construction”, which
associates to a representation of the group defining the Shimura variety a Hodge
module resp. an étale sheaf.
More precisely, from a topological point of view, the monodromy at the cusps
is exactly the cohomology of S̃B . One has

H2g−1(S̃B, SymkH(g)) ∼= Ind
G(Z/nZ)
B(Z/nZ) H2g−1(SB, SymkH(g))
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and
H2g−1(SB , SymkH(g)) ∼=

⊕

r+s=2g−1

Hr(ST , Rsq∗ SymkH(g))).

As the cohomological dimension of ΓT is g − 1 and that of ΓN is g, one has in
fact

H2g−1(SB , SymkH(g)) ∼= Hg−1(ST , Rgq∗ SymkH(g))).

The exact sequence

0→ O → O2 p
−→ O → 0

from (11) shows that Rgq∗ SymkH(g) can be identified via p with SymkO ⊗
L with the induced T (Z) action, which maps

(
a 0
0 d

)
to dk. To compute the

coinvariants, extend the coefficients to R, so that

O ⊗ R ∼=
⊕

τ :F→R

R

and
(

a 0
0 d

)
∈ T (Z) acts via τ(d) on the component indexed by τ . Thus SymkO⊗

L can only have a trivial quotient, if k ≡ 0 mod g and on this one dimensional
quotient the action is by the norm map T (Z)→ ±1. One gets:

Hg−1(ST , SymkO ⊗ L) ∼=

{
L if k ≡ 0 mod g
0 else

The above mentioned theorems imply that this topological computation gives
also the result in the categories MHM, et, top. The Hodge structure on
Hg−1(ST , SymkO ⊗ L) is the trivial one, as one sees from the explicit de-
scription of the action of T and the fact that the action of the Deligne torus S,
which defines the weight, is induced from the embedding x 7→

(
x 0
0 1

)
., hence is

trivial. The same remark and proposition 5.5.4. in [P2] show that the weight
is also zero in the étale case. �

1.6 Partial zeta functions of totally real fields

Let b, f be relatively prime integral ideals of O, ǫ : (R ⊗ F )∗ → {±1} a sign
character. This is a product of characters ǫτ : R∗ → {±1} for all embeddings
τ : F → R. Denote by |ǫ| the number of non-trivial ǫτ which occur in this
product decomposition of ǫ. Moreover let x ∈ O such that x 6≡ 0 mod b−1f

and O∗
f := {a ∈ O|a totally positive and a ≡ 1 mod f}. Define

(17) F (b, f, ǫ, x, s) :=
∑

ν∈(x+fb−1)/O∗
f

ǫ(ν)

|N(ν)|s

for Re s > 1. Here N is the norm. On the other hand let Tr : F → Q be the
trace map and define

(18) L(b, f, ǫ, x, s) :=
∑

λ∈b(fD)−1/O∗
f

ǫ(λ)e2πi Tr(xλ)

|N(ν)|s
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These two L-functions are related by a functional equation. To formulate it we
introduce the Γ-factor

Γǫ(s) := π− 1
2 (sg+|ǫ|)Γ

(
s + 1

2

)|ǫ|

Γ
(s

2

)g−|ǫ|

.

The functional equation follows directly with Hecke’s method for
Grössencharacters and was first mentioned for these partial zeta functions by
Siegel:

Proposition 1.6.1 (cf.[Si] Formel (10)). The functional equation reads:

Γǫ(1− s)F (b, f, ǫ, x, 1− s) = i−|ǫ||dF |
− 1

2 N(f−1b)Γǫ(s)L(b, f, ǫ, x, s),

where dF is the discriminant of F/Q.

The functional equation shows that F (b, f, ǫ, x, 1− k) can be non-zero for k =
1, 2, . . . only if |ǫ| is either g or 0. Let us introduce

ζ(b, f, x, s) :=
∑

ν∈(x+fb−1)/O∗
f

1

N(ν)s
.

We get:

Corollary 1.6.2. The functional equation shows that F (b, f, ǫ, x, 1 − k) for
k = 1, 2, . . . is non-zero for |ǫ| = 0 and k even or for |ǫ| = g and k odd. In
these cases one has

ζ(b, f, x, 1 − k) = |dF |
− 1

2 N(f−1b)
((k − 1)!)g

(2πi)kg
L(b, f, ǫ, x, k).

1.7 The main theorem

Here we formulate our main theorem. It computes the residue map from (1.5.2)
in terms of the partial L-functions.
The transcendental description of the cusps gives

H0(∂S(C), L) = Ind
G(Z/nZ)
B1(Z) L

and H0(∂S, L) is the subgroup of elements invariant under D(Z/nZ). Similarly,
the n-torsion sections of A[n] over S(C) can be identified with functions from
G(Z/nZ) to ( 1

nO/O)2, which are equivariant with respect to the canonical
G1(Z) := ker(G(Z) → Z∗) action. The action of G(Z/nZ) on S induces via
pull-back an action on A[n](S(C)) and we have:

A[n](S(C)) = Ind
G(Z/nZ)
G1(Z) (

1

n
O/O)2.
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The group A[n](S) consists again of the elements invariant under D(Z/nZ).
Let D := A[n](S) and consider the formal linear combinations

L[D]0 :=
{∑

σ∈D

lσ(σ) : lσ ∈ L and
∑

σ∈D

lσ = 0
}
.

The G(Z/nZ) action on D carries over to an action on L[D]0. For α ∈ L[D]0

we construct in 2.4.1 a class

Eisk(α) ∈ Ext2g−1
S (L, SymkH(g)),

which depends on α in a functorial way. Thus, the resulting map

(19) L[D]0
Eisk

−−−→ Ext2g−1
S (L, SymkH(g))

res
−−→ Ind

G(Z/nZ)
B1(Z) L

is equivariant for the G(Z/nZ) action.

Theorem 1.7.1. Let L ⊃ Q and α =
∑

σ∈D lσ(σ). Then res(Eism(α)) is non-
zero only for m ≡ 0(g) and for every h ∈ G(Z/nZ) and k > 0

res(Eisgk(α))(h) = (−1)g−1
∑

σ∈D

lσζ(O,O, p(hσ),−k).

To use the basis given by the coinvariants in SymgkO ⊗ L as we did in the
proof of theorem 1.5.1 is not natural. A better description is as follows: For
each h ∈ G(Z/nZ) choose an element dh ∈ D(Z/nZ) such that h̃ := hd−1

h ∈
G1(Z/nZ). Then, as in (4) we have an ideal bh̃ and a projection

O2 peh−→ beh.

Now use the identification Hg−1(ST , Symgk beh ⊗ L) ∼= L at the cusp h. With
this basis the above result reads

Corollary 1.7.2. In this basis

res(Eisgk(α))(h) = (−1)g−1Nb−k−1
eh

∑

σ∈D

lσζ(beh,O, peh(σ),−k).

The theorem and the corollary will be proved in section 3.

2 Polylogarithms

In this section we review the theory of the polylogarithm on abelian schemes.
Special emphasis is given the topological case, which will be important in the
proof of the main theorem. The elliptic polylogarithm was introduced by Beilin-
son and Levin [BL] and the generalization to higher dimensional families of
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abelian varieties is due to Wildeshaus [W]. The idea to interprete the con-
struction by Nori in terms of the topological polylogarithm is due to Beilinson
and Nori (unpublished).

The polylogarithm can be defined in any of the categories MHM, et, top for
any abelian scheme π : A → S, with unit section e : S → A of constant relative
dimension g. If we work in top, it even suffices to assume that π : A → S is
a family of topological tori (i.e., fiberwise isomorphic to (R/Z)g). For more
details in the case of abelian schemes, see [W] chapter III part I, or [L]. In the
case of elliptic curves one can also consult [BL] or [HK].

2.1 Construction of the polylog

For simplicity we assume L ⊃ Q in this section and discuss the necessary
modifications for integral coefficients later. Define a lisse sheaf Log(1) on A,
which is an extension

0→ H→ Log(1) → L→ 0

together with a splitting s : e∗L → e∗ Log(1) in any of the three categories
MHM, et, top as follows: Consider the exact sequence

0→ Ext1S(L,H)
π∗

−→ Ext1A(L, π∗H)→ HomS(L, R1π∗π
∗H)→ 0,

which is split by e∗. Note that by the projection formula R1π∗π
∗H ∼= R1π∗L⊗

H so that

HomS(L, R1π∗π
∗H) ∼= HomS(H,H).

Then Log(1) is a sheaf representing the unique extension class in Ext1A(L, π∗H),
which splits when pulled back to S via e∗ and which maps to id ∈ HomS(H,H).
Define

Log(k) := Symk Log(1) .

Definition 2.1.1. The logarithm sheaf is the pro-sheaf

Log := LogA := lim
←−

Log(k),

where the transition maps are induced by the map Log(1) → L. In particular,
one has exact sequences

0→ SymkH→ Log(k) → Log(k−1) → 0

and a splitting induced by s : e∗L→ e∗ Log(1)

e∗ Log ∼=
∏

k≥0

SymkH.
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Any isogeny φ : A → A of degree invertible in L induces an isomorphism Log ∼=
φ∗ Log, which is on the associated graded induced by Symk φ : SymkH →
SymkH. For every torsion point x ∈ A(S)tors one gets an isomorphism

(20) x∗ Log ∼= e∗ Log ∼=
∏

k≥0

SymkH.

The most important property of the sheaf Log is the vanishing of its higher
direct images except in the highest degree.

Theorem 2.1.2 (Wildeshaus, [W], cor. 4.4., p. 70). One has

Riπ∗ Log = 0 for i 6= 2g

and the augmentation Log→ L induces canonical isomorphisms

R2gπ∗ Log ∼= R2gπ∗L ∼= L(−g).

For the construction of the polylogarithm one considers a non-empty disjoint
union of torsion sections i : D ⊂ A, whose orders are invertible in L (more
generally, one can also consider D étale over S). Let

L[D] :=
⊕

σ∈D

L

and L[D]0 ⊂ L[D] the kernel of the augmentation map L[D] → L. Elements
α ∈ L[D] are written as formal linear combinations α =

∑
σ∈D lσ(σ). Similarly,

define
Log[D] :=

⊕

σ∈D

σ∗ Log

and
Log[D]0 := ker (Log[D]→ L)

to be the kernel of the composition of the sum of the augmentation maps
Log[D]→ L[D] and the augmentation L[D]→ L.

Corollary 2.1.3. The localization sequence for U := A \ D induces an iso-
morphism

Ext2g−1
U (L[D]0, Log(g)) ∼= HomS(L[D]0, Log[D]0).

Proof. The vanishing result 2.1.2 implies that the localization sequence is of
the form

0→ Ext2g−1
U (L[D]0, Log(g))→ HomS(L[D]0, i∗ Log)→ HomS(L[D]0, L)→ 0.

Inserting the definition of Log[D]0 gives the desired result. �
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Definition 2.1.4. The polylogarithm polD is the extension class

polD ∈ Ext2g−1
U (L[D]0, Log(g)),

which maps to the canonical inclusion L[D]0 → Log[D] under the isomorphism
in 2.1.3. In particular, for every α ∈ L[D]0 we get by pull-back an extension
class

polDα ∈ Ext2g−1
U (L, Log(g)).

2.2 Integral version of the polylogarithm, the topological case

In the topological and the étale situation it is possible to define the polylog-
arithm with integral coefficients. In this section we treat the topological case
and the étale case in the next section. The construction presented here is a
reinterpretation by Beilinson and Levin (unpublished) of results of Nori and
Sczech.
We start by defining the logarithm sheaf for any (commutative) coefficient ring
L, in particular for L = Z. In the topological situation, it is even possible to
define more generally the polylogarithm for any smooth family of real tori of
constant dimension g, which has a unit section.
Let

π : T → S

be such a family, e : S → T the unit section and let HL := HomS(R1π∗L, L)
be the local system of the homologies of the fibers with coefficients in L. Let
H̃R be the associated vector bundle of HR. Then T ∼= HZ\H̃R and we denote
by

π̃ : H̃R → T

the associated map. Let
L[HZ] := e∗π̃!L

be the local system of group rings on S, which is stalk-wise the group ring of
the stalk of the local system HZ with coefficients in L. The augmentation ideal
of L[HZ]→ L is denoted by I and we define

L[[HZ]] := lim
←−

r

L[HZ]/Ir

the completion along the augmentation ideal. Note that In/In+1 ∼= SymnHL.
If L ⊃ Q, one has even a ring isomorphism

(21) L[[HZ]]
∼=
−→

∏

k≥0

SymkHL,

induced by h 7→
∑

k≥0 h⊗k/k! for h ∈ HZ. In the special case L = Z, Q the
canonical map of group rings Z[HZ]→ Q[HZ] induces

(22) Z[[HZ]]→ Q[[HZ]]∼=
∏

k≥0

SymkHQ.
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Definition 2.2.1. The logarithm sheaf Log is the local system on T defined
by

Log := π̃!L⊗L[HZ] L[[HZ]].

As a local system of L[[HZ]]-modules, Log is of rank 1.

Any isogeny φ : T → T of order invertible in L induces an isomorphism
Log ∼= φ∗ Log, which is induced by φ : HZ → HZ. In particular, if the order of
a torsion section x : S → T is invertible in L, one has an isomorphism

x∗ Log ∼= e∗ Log = L[[HZ]].

To complete the definition of the polylogarithm, one has to compute the coho-
mology of Log. As L[[HZ]] is a flat L[HZ]-module one gets

Riπ∗ Log ∼= Riπ∗π̃!L⊗L[HZ] L[[HZ]]

and because π∗ = π! one has to consider Ri(π ◦ π̃)!L. But the fibers of

π ◦ π̃ : H̃R → S

are just g-dimensional vector spaces and the cohomology with compact support
lives only in degree g, where it is the dual of ΛmaxHL. Hence, we have proved:

Lemma 2.2.2. Denote by µ∨
T the L-dual of µT := ΛmaxHL. Then the higher

direct images of Log are given by

Riπ∗ Log ∼=

{
µ∨
T if i = g
0 else.

As in 2.1.3 one obtains

Extg
U (L[D]0, Log⊗µT ) ∼= HomS(L[D]0, Log[D]0)

and one defines the polylogarithm

polD ∈ Extg−1
U (L[D]0, Log⊗µT )

in the same way. For α ∈ L[D]0 one has again

polDα ∈ Extg−1
U (L, Log⊗µT ) = Hg−1(U, Log⊗µT ).

The relation to the polylog defined in 2.1.4 is as follows: If we denote the
logarithm sheaf and the polylog from this section by LogZ and polDZ and sim-
ilarly the ones from 2.1.4 by LogQ and polDQ , we get from 22 a canonical map
Q⊗Z LogZ → LogQ and hence a map

Extg−1
U (Z[D]0, LogZ⊗µT )→ Extg−1

U (Q[D]0, LogQ⊗µT ),

which maps polDZ to
polDQ .

Documenta Mathematica 13 (2008) 131–159



146 Guido Kings

2.3 Integral version of the polylogarithm, the étale case

This section will not be used in the rest of the paper and can be omitted by
any reader not interested in the integral étale case.
To define an integral étale polylogarithm, one has to modify the definition of
the logarithm sheaf as in the topological case. The situation we consider here
is again an abelian scheme

π : A → S

of constant fiber dimension g and unit section e : S → A. Let ℓ be a prime
number, L = Z/ℓkZ and assume that ℓ is invertible in OS . Then the ℓr-
multiplication [ℓr] : A → A is étale and the sheaves [ℓr]!L form a projective
system via the trace maps

[ℓr]!L→ [ℓr−1]!L.

Definition 2.3.1. The logarithm sheaf is the inverse limit

LogL := lim
←−

r

[ℓr]!L

with respect to the above trace maps. The logarithm sheaf with Zℓ-coefficients
is defined by

LogZℓ
:= lim
←−

k

LogZ/ℓkZ .

Let Hℓ := lim
←−r
A[ℓr] be the Tate-module of A/S. As ℓ is nilpotent in L, we

get that e∗ Log = L[[Hℓ]] is the Iwasawa algebra of Hℓ with coefficients in
L. Any isogeny φ : A → A of degree prime to ℓ induces an isomorphism
[ℓr]!L→ φ∗[ℓr]!L, which induces

Log ∼= φ∗ Log .

Proposition 2.3.2. Let L = Z/ℓkZ or L = Zℓ. The higher direct images of
Log are given by

Riπ∗ Log ∼=

{
L(−g) if i = 2g

0 else.

Proof. It suffices to consider the case L = Z/ℓkZ. We will show that the
transition maps Riπ∗[ℓ

r]!L→ Riπ∗[ℓ
s]!L are zero for i < 2g and every s, if r is

sufficiently big. By Poincaré duality we may consider the maps

(23) R2g−iπ![ℓ
s]∗L(g)→ R2g−iπ![ℓ

r]∗L(g).

By base change we may assume that S is the spectrum of an algebraically
closed field. Denote by As the variety A considered as covering of A via [ℓs].
Then

R1π![ℓ
s]∗L(g) = H1(A, [ℓs]∗L(g)) = Hom(π1(As), L(g)).
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With this description we see that for every f ∈ Hom(π1(As), L(g)) there is an
r, such that the restriction to π1(Ar) is trivial. This shows that the map in
(23) is zero, if r is sufficiently big and i < 2g as the cohomology in degree i is
the i-th exterior power of the first cohomology. That (23) is an isomorphism
for i = 2g is clear. �

2.4 Eisenstein classes

The Eisenstein classes are specializations of the polylogarithm. The situation
is as follows. First let α ∈ L[A[n]]0 and assume that Q ⊂ L. Then one can

pull-back the class polA[n]
α ∈ Extg−1

U (L, Log(g)) along e and gets:

e∗ polA[n]
α ∈ Ext2g−1

S (L, e∗ Log(g)) =
∏

k≥0

Ext2g−1
S (L, SymkH(g)).

Definition 2.4.1. For any α ∈ L[A[n]]0, define the k-th Eisenstein class as-
sociated to α,

Eisk(α) ∈ Ext2g−1
S (L, SymkH(g)),

to be the k-th component of e∗ polA[n]
α .

Note that by the functoriality of the polylogarithm the map

(24) L[A[n]]0
Eisk

−−−→ Ext2g−1
S (L, SymkH(g))

is equivariant for the G(Z/nZ) action on both sides.
These Eisenstein classes should be considered as analogs of Harder’s Eisenstein
classes (but observe that we have only classes in cohomological degree 2g− 1).
The advantage of the above classes is that they are defined by a universal
condition, which makes a lot of their properties easy to verify.

3 Proof of the main theorem

In this section we assume that Q ⊂ L.
The proof of the main theorem will be in several steps. First we reduce to
the case of local systems for the usual topology. The second step consists of
a trick already used in [HK]: instead of working with the Eisenstein classes
directly, we work with the polylogarithm itself. The reason is that the polylog
is characterized by a universal property and has a very good functorial behavior.
The third step reviews the computations of Nori in [N]. In the fourth step we
compute the integral over S1

T and the fifth step gives the final result.

3.1 1. Step: Reduction to the classical topology

We distinguish the MHM and the étale case. In the MHM case, the target
of the residue map from (1.5.2)

(25) res : Ext2g−1
S (L, SymkH(g))→ Hom∂S(L, L).
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is purely topological and does not depend on the Hodge structure. More pre-
cisely, the canonical map “forget the Hodge structure” denoted by rat induces
an isomorphism

rat : HomMHM,∂S(L, L) ∼= Homtop,∂S(L, L).

By [Sa] thm. 2.1 we have a commutative diagram

(26)

Ext2g−1
MHM,S(L, SymkH(g))

res
−−−−→ HomMHM,∂S(L, L)

yrat ∼=

yrat

Ext2g−1
top,S(L, SymkH(g))

res
−−−−→ Homtop,∂S(L, L).

This reduces the computation of the residue map for MHM to the case of local
systems in the classical topology.
In the étale case one has an injection

Homet,∂S(L, L) →֒ Homet,∂S×Q̄(L, L) ∼= Homtop,∂S(C)(L, L).

and a commutative diagram

(27)

Ext2g−1
et,S (L, SymkH(g))

res
−−−−→ Homet,∂S(L, L)

y
y

Ext2g−1
top,S(C)(L, SymkH(g))

res
−−−−→ Homtop,∂S(C)(L, L).

Again, this reduces the residue computation to the classical topology.

3.2 2. Step: Topological degeneration

In this section we reduce the computation of res ◦Eisk to a computation of the
polylog on TM.
We are now in the topological situation and use again the notations ∂S and S
instead of ∂S(C) and S(C).
Recall from (19) that res ◦Eisk is G(Z/nZ) equivariant. In particular,

res(Eisk(α))(h) = res(Eisk(hα))(id),

where hα denotes the action of h on α. To compute the residue it suffices to
consider the residue at id.
Recall from (14) that we have a commutative diagram of fibrations

(28)

A(C)
p

−−−−→ TM

π

y
yπM

S1
B

q
−−−−→ S1

T .
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The map p : H →M induces LogA → p∗ LogM. Let D = A[n] and U := A\D
be the complement. Let p(D) = TM[n] be the image of D in TM and V :=
TM \ p(D) be its complement in TM. Then p induces a map

p : U \ p−1(p(D))→ V.

We define a trace map

(29) p∗ : Ext2g−1
U (L, LogA⊗µA)→ Extg−1

V (L, LogM⊗µTM
)

as the composition of the restriction to U \ p−1(p(D))

Ext2g−1
U (L, LogA⊗µA)→ Ext2g−1

U\p−1(p(D))(L, LogA⊗µA)

with the adjunction map

Ext2g−1
U\p−1(p(D))(L, LogA⊗µA)→ Extg−1

V (L, Rgp∗p
∗ LogM⊗µA).

As µA
∼= µTN

⊗ µTM
, the projection formula gives

Rgp∗p
∗ LogM

∼= LogM⊗µTM
.

The composition of these maps gives the desired p∗ in (29). The crucial fact is
that the polylogarithm behaves well under this trace map.

Proposition 3.2.1. With the notations above, let α ∈ L[D]0 and polDA,α ∈

Ext2g−1
U (L, LogA) be the associated polylogarithm. Denote by p(α) the image

of α under the map

p : L[D]0 → L[p(D)]0

induced by p : A(C)→ TM. Then

p∗ polDA,α = pol
p(D)
TM,p(α) .

Proof. This is a quite formal consequence of the definition and the fact that the
residue map commutes with the trace map. We use cohomological notation,
then one has a commutative diagram

H2g−1(U, LogA⊗µA) −−−−→ H2g
D (A, LogA⊗µA)

y
y

H2g−1(U \ p−1(p(D)), LogA⊗µA) −−−−→ H2g
p−1(p(D))(A, LogA⊗µA)

yp∗

yp∗

Hg−1(V, LogM⊗µTM
) −−−−→ Hg

p(D)(TM, LogM⊗µTM
).
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We can identify

H2g
D (A, LogA⊗µA) ∼=

⊕

σ∈D

σ∗ LogA

and
Hg

p(D)(TM, LogM⊗µTM
) ∼=

⊕

σ∈p(D)

σ∗ LogTM
.

With this identification the composition of the vertical arrows on the right is
induced by LogA → p∗ LogTM

. The polylog polDA,α belongs to the section α ∈
L[D]0 ⊂

⊕
σ∈D σ∗ LogA. This maps to p(α) ∈ L[p(D)]0 ⊂

⊕
σ∈p(D) σ∗ LogTM

.

Thus polDA,α is mapped under p∗ to pol
p(D)
TM,p(α). �

We want to prove the same sort of result for the Eisenstein classes themselves.
To formulate it properly, we need:

Lemma 3.2.2. Let q : S1
B → S1

T be the fibration from (28). Then

Rgq∗ SymkH ∼= SymkM⊗ µ∨
TN

.

Proof. Recall the exact sequence

0→ N → H →M→ 0

from (12). By definition of N(Z), the coinvariants of SymkH for N(Z) are
exactly SymkM. The lemma follows, as Rgq∗ corresponds by definition of the
fibering exactly to the coinvariants under N(Z). �

Define a trace map

q∗ : Ext2g−1
SB

(L, SymkH⊗ µA)→ Extg−1
ST

(L, SymkM⊗ µTM
)

by adjunction for q, the isomorphism Rgq∗ SymkH ∼= SymkM ⊗ µ∨
TN

from

lemma 3.2.2 and the isomorphism µA
∼= µTN

⊗µTM
. The behaviour of Eisk(α)

under q∗ is given by:

Theorem 3.2.3. Let k > 0 and α ∈ L[D]0. Then

q∗(Eisk
A(α)) = Eisk

TM
(p(α)),

where p : L[D]0 → L[p(D)]0 is the map from 3.2.1.

Proof. Consider the following diagram in the derived category:

(30)

Rp∗ LogA⊗µA −−−−→ Rp∗e∗e
∗ LogA⊗µAy

∥∥∥

Rp∗p
∗ LogTM

⊗µA e′∗Rq∗e
∗ LogA⊗µAy

y

LogTM
⊗µTM

[−g] −−−−→ e′∗e
′∗ LogTM

⊗µTM
[−g]
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We will show that this diagram is commutative and thereby explain all the
maps. First consider the commutative diagram

Rp∗ LogA⊗µA −−−−→ Rp∗e∗e
∗ LogA⊗µAy

y

Rp∗p
∗ LogTM

⊗µA −−−−→ Rp∗e∗e
∗p∗ LogTM

⊗µA,

where the horizontal arrows are induced from adjunction id → e∗e
∗ and the

vertical arrows from LogA → p∗ LogTM
. One has p ◦ e = e′ ◦ q and hence

Rp∗e∗e
∗p∗ LogTM

⊗µA
∼= e′∗Rq∗q

∗e′∗ LogTM
⊗µA.

The projection formula gives

e′∗Rq∗q
∗e′∗ LogTM

⊗µA
∼= e′∗e

′∗ LogTM
⊗µA ⊗Rq∗L.

Projection to the highest cohomology gives a commutative diagram

Rp∗p
∗ LogTM

⊗µA −−−−→ e′∗e
′∗ LogTM

⊗µA ⊗Rq∗Ly
y

LogTM
⊗µA ⊗ µ∨

TN
−−−−→ e′∗e

′∗ LogTM
⊗µA ⊗ µ∨

TN
,

where the horizontal maps are adjunction maps id→ e′∗e
′∗. Finally we use µA⊗

µ∨
TN

∼= µTM
to obtain the commutative diagram (30). Applying Ext2g−1

V (L,−)
to this diagram, where V := TM \ p(D) we get

Ext2g−1
U (L, LogA⊗µA) −−−−→ Ext2g−1

S (L, e∗ Log⊗µA)

p∗

y
yq∗

Extg−1
V (L, LogTM

⊗µTM
) −−−−→ Extg−1

S (L, e′∗ LogTM
⊗µTM

).

Now, as k > 0, we may assume that α ∈ L[D\e(S)]0 and p(α) ∈ L[p(D)\e′(S)]0.
The result follows then from proposition 3.2.1. �

In a similar (but simpler) way one shows:

Theorem 3.2.4. Let φ : TM → TM′ be an isogeny of tori, then φ induces a
morphism φ∗ : e∗ LogM → e∗ LogM′ and

φ∗ Eisk
TM

(α) = Eisk
TM′

(φ(α)).
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3.3 3. Step: Explicit description of the polylog

In this section we follow Nori [N] to describe the polylog pol
TM[n]
β for any

β ∈ L[TM[n]\0]0 explicitly. The presentation is also influenced by unpublished
notes of Beilinson and Levin.
In fact it is useful for the connection with L-functions to consider a more general
situation and to allow arbitrary fractional ideals a instead just O.
We assume L = C. The geometric situation is this: Recall that T 1(Z) = O∗

and let a ⊂ F be a fractional ideal with the usual T 1(Z)-action. We can form
as usual the semi direct product

a ⋊ T 1(Z),

where the multiplication is given by the formula (v, t)(v′, t′) = (v + tv′, tt′).
Similarly, we can form a⊗ R ⋊ T 1(R) and we define

Ta := a ⋊ T (Z)\
(
a⊗ R ⋊ T 1(R)

)
/KT

∞.

We have
πa : Ta → S1

T

and we consider the polylog for this real torus bundle of relative dimension
g. The case TM is the one where

(
a 0
0 d

)
∈ T 1(Z) acts via d ∈ O∗ on O. Let

us describe the logarithm sheaf LogTa
in this setting. As the coefficients are

L = C, we can use the isomorphism from (21)

C[[a]]
∼=
−→

∏

k≥0

Symk aC =: Û(a)(31)

v 7→ exp(v) :=

∞∑

k=0

v⊗k

k!

The action of (0, t) ∈ a ⋊ T 1(Z) on Û(a) is induced by the action of T 1(Z) on
a. The action of

(v, id) ∈ a ⋊ T 1(Z)

on Û(a) is given by multiplication with exp(v). The logarithm sheaf LogTa
is

just the local system defined by the quotient

a ⋊ T 1(Z)\
(
a⊗ R ⋊ T 1(R)× Û(a)

)
/KT

∞.

A C∞-section f of LogTa
is a function f : a ⊗ R ⋊ T 1(R) → Û(a), which has

the equivariance property

f((v, t)(v′, t′)) = (v, t)−1f(v′, t′).

In a similar way, we can describe LogTa
-valued currents. The global C∞-section

exp(−v) : (v, t) 7→
∞∑

k=0

(−v)⊗k

k!
,
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with (v, t) ∈ a ⊗ R ⋊ T 1(R) defines a trivialization of LogTa
as C∞-bundle.

Every current µ(v, t) with values in LogTa
can then be written in the form

µ(v, t) = ν(v, t) exp(−v),

where ν(v, t) is now a current with values in the constant bundle Û(a). In
particular, ν(v, t) is invariant under the action of a ⊂ a ⋊ T 1(Z).

Lemma 3.3.1. Let v : a⊗R→ Û(a) be the canonical inclusion given by a⊗R ⊂
Sym1 a⊗ C, then the canonical connection ∇ on LogTa

acts on ν by

∇ν = (d− dv)ν.

Proof. Straightforward computation. �

Following Nori [N] we describe the polylog as a LogTa
-valued current µ(v, t) on

Ta, such that

(32) ∇µ(v, t) = δβ ,

where
δβ :=

∑

σ∈D

lσδσ

and δσ are the currents defined by integration over the cycles on Ta given by
the section σ. If we write as above

µ(v, t) = ν(v, t) exp(−v)

we get the equivalent condition

(33) (d− dv)ν(v, t) = δβ .

As ν(v, t) is invariant under the a-action, we can develop ν(v, t) into a Fourier
series

(34) ν(v, t) =
∑

ρ∈a∨

νρ(t)e
2πiρ(v).

The property (33) reads for the Fourier coefficients νρ(t):

(35) (d + 2πidρ− dv)νρ(t) = (e−2πiρ(β)) vol,

where vol is the unique constant coefficient g-form on a ⊗ R, such that the
integral

∫
a⊗R/a

vol = 1 and

e−2πiρ(β) :=
∑

σ

lσe−2πiρ(σ).
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We do not explain in detail the method of Nori to solve this equation, we just
give the result. This suffices, because the cohomology class of the polylogarithm
is uniquely determined by the equation (32) and we just need to give a solution
for it.
Fix a positive definite quadratic form q on a⊗ R, viewed as an isomorphism

q : (a⊗ R)∨ ∼= a⊗ R.

Define a left action of t ∈ T 1(R) by qt(v, w) := q(t−1v, t−1w). Consider ρ as
element in (a ⊗ R)∨. Then qt(ρ) can be considered as a vector field and we
denote by ιρ the contraction with this vector field qt(ρ). We may also consider

qt(ρ) as element in Û(a) and denote this by qt(ρ).

Theorem 3.3.2 (Nori). With the notations above, one has for 0 6= ρ

νρ(t) =

g−1∑

m=0

(−1)m(e−2πiρ(β))

(2πiρ(qt(ρ))− qt(ρ))m+1
ιρ(d ◦ ιρ)

m vol

and
ν0(t) = 0

Proof. Write Φρ for the operator multiplication by 2πidρ−dv and Ψρ := d+Φρ.
One checks that Ψρ ◦ Ψρ = 0 = ιρ ◦ ιρ and that Ψρ ◦ ιρ + ιρ ◦ Ψρ is an
isomorphism. Indeed Φρ ◦ ιρ + ιρ ◦ Φρ is multiplication by 2πiρ(qt(ρ))− qt(ρ)
and Lρ := d◦ ιρ + ιρ◦ is the Lie derivative with respect to the vector field qt(ρ).
The formula in the theorem is just

ιρ ◦ (Ψρ ◦ ιρ + ιρ ◦Ψρ)
−1(e−2πiρ(β)) vol

and to check that

Ψρ ◦ ιρ ◦ (Ψρ ◦ ιρ + ιρ ◦Ψρ)
−1 = id

note that ιρ◦Ψρ commutes with (Ψρ◦ιρ+ιρ◦Ψρ)
−1 and ιρ◦Ψρ(e

−2πiρ(β)) vol =
0. �

Corollary 3.3.3. The polylogarithm pol
Ta[n]
β is given in the topological real-

ization by the current
µ(v, t) = ν(v, t) exp(−v)

where ν(v, t) is the current given by

g−1∑

m=0

∞∑

k=0

(
k + m

k

) ∑

ρ∈a∨\0

(−1)me2πiρ(v−β)

(2πiρ(qt(ρ)))k+m+1
qt(ρ)⊗kιρ(d ◦ ιρ)

m vol .

Proof. This follows from the formula 1
(A−B)m+1 =

∑∞
k=0

Bk

Ak+m+1

(
k+m

k

)
. �
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The Eisenstein classes are obtained by pull-back of this current along the zero
section e. As for k > 0 the series over the ρ converges absolutely, this is defined
and only terms with m = g − 1 survive. We get the following formula for the
Eisenstein classes.

Corollary 3.3.4. Let β ∈ C[Ta[n]]0 and k > 0, then the topological Eisenstein
class is given by

Eisk(β) =
(k + g − 1)!

k!

∑

ρ∈a∨\0

(−1)g−1e−2πiρ(β)

(2πiρ(qt(ρ)))k+g
qt(ρ)⊗kqt(ρ)∗ιE vol .

Here, we have written E for the Euler vector field and qt(ρ) is considered as a
function qt(ρ) : ST → a⊗ R, which maps t to the vector qt(ρ).

Proof. From 3.3.3 we have to compute

e∗ιρ(d ◦ ιρ)
m vol .

For this remark that the Lie derivative Lρ = d ◦ ιρ + ιρ ◦ d with respect to the
vector field qt(ρ) acts in the same way on vol as d ◦ ιρ. One sees immediately
that e∗ιρ(d◦ ιρ)m vol = 0, if m < g−1 and a direct computation in coordinates
gives that ιρ(Lρ)g−1 vol = (g − 1)!qt(ρ)∗ιE vol. �

3.4 4. Step: Computation of the integral

To finish the proof of theorem 1.7.1 we have to compute u∗ Eisk(β), where u :
S1

T → pt is the structure map. As we need only to compute the corresponding
integral for the component of S1

T corresponding to id, we let ΓT ⊂ T 1(Z) be
the stabilizer of id ∈ T (Z/nZ) and consider

uid : ΓT \
(
T 1(R)/KT 1

∞

)
→ pt.

To compute the integral, we introduce coordinates on T 1(R) ∼= (F ⊗ R)∗ and
on the torus Ta. We identify F ⊗ R ∼=

∏
τ :F→R R and denote by e1, . . . , eg the

standard basis on the right hand side and by x1, . . . , xg the dual basis. For
any element u =

∑
uiei or u =

∑
uixi we write Nu := u1 · · ·ug. Let q be the

quadratic form given by
∑

x2
i . We identify the orbit of q under T 1(R) with

(F ⊗ R)∗+ by mapping

(F ⊗ R)∗ → T 1(R)q(36)

t 7→ qt.

This map factors over (F ⊗ R)∗+ and the map is compatible with the T 1(Z)
action on both sides. We let t1, . . . , tg be coordinates on (F ⊗ R)1 so that
t21, . . . , t

2
g are coordinates on (F ⊗R)1+. If we write ρ =

∑
ρixi and ti := xi(t),

then
ρ(qt(ρ)) =

∑
t2i ρ

2
i
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and qt(ρ) has coordinates t2i ρi. More precisely, if we let e1, . . . , eg be the basis

e1, . . . , eg considered as elements of Û(a), which identifies Û(a) with the power
series ring C[[e1, . . . , eg]], then qt(ρ) =

∑
t2i ρiei. The volume form is given by

vol = |dF |
−1/2Na−1dx1 ∧ . . . ∧ dxg

and we can write the Euler vector field as E =
∑

xi∂xi
. One gets (observe that

Nt = 1)

qt(ρ)∗ιE vol = |dF |
−1/22g−1N(ρ)Na−1

g∑

k=1

(−1)k−1tkdt1 ∧ . . . d̂tk . . . ∧ dtg.

Explicitly, the Eisenstein class is given as a current on T 1(R) by

(37) Eisk(β)(t) =

(k + g − 1)!

k!

∑

ρ∈a∨\0

(−1)g−1e−2πiρ(β)(
∑

t2i ρiei)
⊗k

(2πi
∑

ρ2
i t

2
i )

k+g
qt(ρ)∗ιE vol

Define an isomorphism (R⊗F )1×R∗ ∼= (R⊗F )∗ by mapping (t, r) 7→ y := rt.
Then we get:

(38)
dy1

y1
∧ . . . ∧

dyg

yg
=

dr

r
∧

g∑

k=1

(−1)k−1tkdt1 ∧ . . . d̂tk . . . ∧ dtg.

We use this decomposition to write Eisk(β)(t) as a Mellin transform:

(39) Eisk(β)(t) =

∑

ρ∈a∨\0

(−1)g−1e−2πiρ(β)

∫

R>0

e−u(2πi
P

ρ2
i t2i ) (

∑
t2i ρiei)

⊗k

k!
uk+g du

u
∧ qt(ρ)∗ιE vol .

Substitute u = r2 = N(y)2/g and use (38) to get

(40) Eisk(β)(t) =

∑

ρ∈a∨\0

(−1)g−12ge−2πiρ(β)N(ρ)

|dF |1/2Na

∫

R>0

e−2πi
P

ρ2
i y2

i
(
∑

y2
i ρiei)

⊗k

k!
N(y)dy1∧. . .∧dyg.

The application of uid,∗ amounts to integration over

ΓT \
(
T 1(R)/KT 1

∞

)
∼= O∗

(n)\(F ⊗ R)1+,
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where O∗
(n) are the totally positive units, which are congruent to 1 modulo the

ideal generated by (n). This gives with the usual trick

(41) uid,∗ Eisk(β) =

∑

ρ∈O∗
(n)

\
(
a∨\0

)
(−1)g−12ge−2πiρ(β)N(ρ)

|dF |1/2Na

×

∫

(F⊗R)∗+

e−2πi
P

ρ2
i y2

i
(
∑

y2
i ρiei)

⊗k

k!
N(y)dy1 ∧ . . . ∧ dyg.

The integral is a product of integrals for j = 1, . . . , g:

∫

R>0

e−2πiρ2
j y2

j ρk
j

e
⊗k
j

k!
y2k+2

j

dyj

yj
=

e
⊗k
j

2ρj(2πiρj)k+1
.

We now consider Eisgk(β) instead of Eisk(β). If we consider e∗ polDβ as a

power series in the ei we are interested in the coefficient of Ne
⊗k

k!g . In fact, the

integrallity properties of Eisgk(β) are better reflected if we write it in terms
of a basis a1, . . . , ag of a. Then Ne

⊗k = Na−kNa
⊗k, where a1, . . . ,ag denote

again the images of a1, . . . , ag in Û(a). We get:

Corollary 3.4.1. With the above basis a1, . . . ,ag, The integral over the Eisen-
stein class is given by

uid,∗ Eisgk(β) =
(−1)g−1(k!)g

(2πi)g(k+1)|dF |1/2Nak+1

∑

ρ∈O∗
(n)

\
(
a∨\0

)
e−2πiρ(β)

N(ρ)k+1

Na
⊗k

k!g
.

3.5 5. Step: End of the proof

To finish the proof of the theorem 1.7.1, let α ∈ L[A[n]]0 and suppose we want
to compute res(Eisk(α))(h). Using the equivariance of res ◦Eisk from (19), this
amounts to compute res(Eisk(hα))(id). Theorem 1.5.1 shows that

res(Eisk(hα))(id) = uid,∗q∗ Eisk(hα),

where q : S1
B → S1

T and uid : ΓT \
(
T 1(R)/KT 1

∞

)
→ pt is the structure map of

the component corresponding to id ∈ T 1(Z/nZ). From theorem 3.2.3 we get

q∗ Eisk(hα) = Eisk(p(hα)).

Using corollary 3.4.1 for a = O and the formula 1.6.2 for b = f = O we get
(42)

(−1)g−1(k!)g

(2πi)gk+g |dF |1/2

∑

ρ∈O∗
(n)

\
(
O∨\0

)
e−2πiρ(p(hα))

N(ρ)k+1
= (−1)g−1

∑

σ∈D

lσζ(O,O, p(hσ),−k),
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which is the formula in the main theorem 1.7.1. To prove the corollary, we use
that the map of real tori

A(C)
p
−→ TM

factors through φ : Tbeh
→ TM, where φ is induced by the inclusion beh ⊂ O.

Using corollary 3.4.1 for a = beh, we get the desired formula

res(Eisgk(α))(h) = (−1)g−1Nb−k−1
eh

∑

σ∈D

lσζ(beh,O, peh(σ),−k),

which ends the proof.
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[P1] R. Pink: Arithmetical compactification of mixed Shimura varieties,
Bonner Mathematische Schriften, 209, 1990.

[P2] R. Pink: On ℓ-adic sheaves on Shimura varieties and their higher
direct images in the Baily-Borel compactification, Math. Ann. 292
1992, 197-240.

[R] M. Rapoport: Compactifications de l’espace de modules de Hilbert-
Blumenthal, Comp. Math, 36, 1978, 255-335.

[Sa] M. Saito: Hodge conjecture and mixed motives I, in: Proceedings of
Symposia in Pure Mathematics, vol. 53, AMS, 1991.

[Sc] R. Sczech: Eisenstein group cocycles for Gln and values of L-functions,
Invent. math., 113, 1993, 581-616.

[Si] C.L. Siegel: Über die Fourierschen Koeffizienten von Modulformen,
Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 15-56, 1970.

[W] J. Wildeshaus: Realizations of Polylogarithms, LNM 1650, Springer
1997.

Guido Kings
Fakulät für Mathematik
Universität Regensburg
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