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Derived Categories of Coherent Sheaves
on Rational Homogeneous Manifolds 261–331

Goro Shimura
Integer-Valued Quadratic Forms
and Quadratic Diophantine Equations 333–367

iii
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Statistics of Lattice Points

in Thin Annuli for Generic Lattices

Igor Wigman

Received: August 22, 2005

Communicated by Friedrich Götze

Abstract. We study the statistical properties of the counting func-
tion of lattice points inside thin annuli. By a conjecture of Bleher
and Lebowitz, if the width shrinks to zero, but the area converges
to infinity, the distribution converges to the Gaussian distribution. If
the width shrinks slowly to zero, the conjecture was proven by Hughes
and Rudnick for the standard lattice, and in our previous paper for
generic rectangular lattices. We prove this conjecture for arbitrary
lattices satisfying some generic Diophantine properties, again assum-
ing the width of the annuli shrinks slowly to zero. One of the obstacles
of applying the technique of Hughes-Rudnick on this problem is the
existence of so-called close pairs of lattice points. In order to overcome
this difficulty, we bound the rate of occurence of this phenomenon by
extending some of the work of Eskin-Margulis-Mozes on the quanti-
tative Openheim conjecture.

2000 Mathematics Subject Classification: Primary: 11H06, Sec-
ondary: 11J25
Keywords and Phrases: Lattice, Counting Function, Circle, Ellipse,
Annulus, Two-Dimensional Torus, Gaussian Distribution, Diophan-
tine approximation

1 Introduction

We consider a variant of the circle problem. Let Λ ⊂ R2 be a planar lattice,
with det Λ the area of its fundamental cell. Let

NΛ(t) = {x ∈ Λ : |x| ≤ t},

Documenta Mathematica 11 (2006) 1–23



2 Igor Wigman

denote its counting function, that is, we are counting Λ-points inside a disc of
radius t.
As well known, as t → ∞, NΛ(t) ∼ π

det Λ t
2. Denoting the remainder or the

error term
∆Λ(t) = NΛ(t)− π

det Λ
t2,

it is a conjecture of Hardy that

|∆Λ(t)| ≪ǫ t
1/2+ǫ.

Another problem one could study is the statistical behavior of the value distri-
bution of ∆Λ normalized by

√
t, namely of

FΛ(t) :=
∆Λ(t)√

t
.

Heath-Brown [HB] shows that for the standard lattice Λ = Z2, the value dis-
tribution of FΛ, weakly converges to a non-Gaussian distribution with density
p(x). Bleher [BL3] established an analogue of this theorem for a more general
setting, where in particular it implies a non-Gaussian limiting distribution of
FΛ, for any lattice Λ ⊂ Z2.
However, the object of our interest is slightly different. Rather than counting
lattice points in the circle of varying radius t, we will do the same for annuli.
More precisely, we define

NΛ(t, ρ) := NΛ(t+ ρ)−NΛ(t),

that is, the number of Λ-points inside the annulus of inner radius t and width
ρ. The ”expected” value is the area π

det Λ (2tρ + ρ2), and the corresponding
normalized remainder term is

SΛ(t, ρ) :=
NΛ(t+ ρ)−NΛ(t)− π

det Λ (2tρ+ ρ2)√
t

.

The statistics of SΛ(t, ρ) vary depending to the size of ρ(t). Of our particular
interest is the intermediate or macroscopic regime. Here ρ → 0, but ρt →
∞. A particular case of the conjecture of Bleher and Lebowitz [BL4] states
that SΛ(t, ρ) has a Gaussian distribution. In 2004 Hughes and Rudnick [HR]
established the Gaussian distribution for the unit circle, under an additional
assumption that ρ(t)≫ t−ǫ for every ǫ > 0.
By a rotation and dilation (which does not effect the counting function), we
may assume, with no loss of generality, that Λ admits a basis one of whose
elements is the vector (1, 0), that is Λ =

〈
1, α + iβ

〉
(we make the natural

identification of i with (0, 1)). In a previous paper [W] we already dealt with
the problem of investigating the statistical properties of the error term for rect-
angular lattice Λ =

〈
1, iβ

〉
. We established the limiting Gaussian distribution

for the ”generic” case in this 1-parameter family.
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Statistics of Lattice Points . . . 3

Some of the work done in [W] extends quite naturally for the 2-parameter
family of planar lattices

〈
1, α + iβ

〉
. That is, in the current work we will

require the algebraic independence of α and β, as well as a strong Diophantine
property of the pair (α, β) (to be defined), rather than the transcendence and
a strong Diophantine property of the aspect ratio of the ellipse, as in [W].
We say that a real number ξ is strongly Diophantine, if for every fixed natural

n, there exists K1 > 0, such that for integers aj with
n∑
j=0

ajξ
j 6= 0,

∣∣∣∣
n∑

j=0

ajξ
j

∣∣∣∣≫n
1

(
max

0≤j≤n
|aj |
)K1

.

It was shown by Mahler [MAH], that this property holds for a ”generic” real
number. We say that a pair of numbers (α, β) is strongly Diophantine, if for
every fixed natural n, there exists a number K1 > 0, such that for every integral
polynomial p(x, y) =

∑
i+j≤n

ai, jx
iyj of degree ≤ n, we have

|p(α, β)| ≫n
1

max
i+j≤n

|ai, j |K1
,

whenever p(α, β) 6= 0. This holds for almost all real pairs (α, β), see section 2.2.

Theorem 1.1. Let Λ =
〈
1, α + iβ

〉
where (α, β) is algebraically independent

and strongly Diophantine pair of real numbers. Assume that ρ = ρ(T ) → 0,
but for every δ > 0, ρ≫ T−δ. Then for every interval A,

lim
T→∞

1

T
meas

{
t ∈ [T, 2T ] :

SΛ(t, ρ)

σ
∈ A

}
=

1√
2π

∫

A

e−
x2

2 dx, (1)

where the variance is given by

σ2 :=
4π

β
· ρ. (2)

Remark: Note that the variance σ2 is α-independent, since the determinant
det(Λ) = β.
One of the features of a rectangular lattice is that it is quite easy to show that
the number of so-called close pairs of lattice points or pairs of points lying
within a narrow annulus is bounded by essentially its average (see lemma 5.2
of [W]). This particular feature of the rectangular lattices was exploited while
reducing the computation of the moments to the ones of a smooth counting
function (we call it ”unsmoothing”). In order to prove an analogous bound for
a general lattice, we extend a result from Eskin, Margulis and Mozes [EMM]
for our needs to obtain proposition 3.1. We believe that this proposition is of
independent interest.

Documenta Mathematica 11 (2006) 1–23



4 Igor Wigman

2 The distribution of S̃Λ,M,L

We apply the same smoothing as in [HR] and [W]: let χ be the indicator
function of the unit disc and ψ a nonnegative, smooth, even function on the
real line, of total mass unity, whose Fourier transform, ψ̂ is smooth and has
compact support. Introduce a rotationally symmetric function Ψ on R2 by
setting Ψ̂(~y) = ψ̂(|~y|), where | · | denotes the standard Euclidian norm. For
ǫ > 0, set

Ψǫ(~x) =
1

ǫ2
Ψ

(
~x

ǫ

)
.

Define a smooth counting function

ÑΛ,M (t) =
∑

~n∈Λ

χǫ

(
~n

t

)
, (3)

with ǫ = ǫ(M) and χǫ = χ ∗ Ψǫ, the convolution of χ with Ψǫ. In what will
follow,

ǫ =
1

t
√
M
, (4)

where M = M(T ) is the smoothing parameter, which tends to infinity with t.
In this section, we are interested in the distribution of the smooth version of
SΛ(t, ρ), denoted S̃Λ,M,L(t), where L := 1

ρ , defined by

S̃Λ,M,L(t) =
ÑΛ,M (t+ 1

L )− ÑΛ,M (t)− π
d ( 2t

L + 1
L2 )√

t
, (5)

We assume that for every δ > 0, L = L(T ) = O(T δ), which corresponds to the
assumption of theorem 1.1 regarding ρ := 1

L .
Rather than drawing t at random from [T, 2T ] with a uniform distribution, we
prefer to work with smooth densities: introduce ω ≥ 0, a smooth function of
total mass unity, such that both ω and ω̂ are rapidly decaying, namely

|ω(t)| ≪ 1

(1 + |t|)A , |ω̂(t)| ≪ 1

(1 + |t|)A ,

for every A > 0. Define the averaging operator

〈f〉T =
1

T

∞∫

−∞

f(t)ω(
t

T
)dt,

and let Pω, T be the associated probability measure:

Pω, T (f ∈ A) =
1

T

∞∫

−∞

1A(f(t))ω(
t

T
)dt.

Documenta Mathematica 11 (2006) 1–23



Statistics of Lattice Points . . . 5

Remark: In what follows, we will suppress the explicit dependency on T ,
whenever convenient.

Theorem 2.1. Suppose that M(T ) and L(T ) are increasing to infinity with
T , such that M = O(T δ) for all δ > 0, and L/

√
M → 0. Then if (α, β)

is an algebraically independent strongly Diophantine pair, we have for Λ =〈
1, α+ iβ

〉
,

lim
T→∞

Pω, T

{
S̃Λ,M,L

σ
∈ A

}
=

1√
2π

∫

A

e−
x2

2 dx,

for any interval A, where

σ2 :=
4π

βL
. (6)

Definition: A tuple of real numbers (α1, . . . , αn) ∈ Rn is called Diophan-
tine, if there exists a number K > 0, such that for every integer tuple {ai}ni=0,

∣∣∣∣a0 +
n∑

i=1

aiαi

∣∣∣∣≫
1

qK
, (7)

with q = max
0≤i≤n

|ai|, whenever the LHS of the inequality doesn’t vanish. Khint-

chine proved that almost all tuples in Rn are Diophantine (see, e.g. [S], pages
60-63).
Denote the dual lattice

Λ∗ =
〈
1, γ + iδ

〉

with γ = −αβ and δ = 1
β . In the rest of the current section, we assume, that,

unless specified otherwise, the set of the squared lengths of vectors in Λ∗ satisfy
the Diophantine property. That means, that (α2, αβ, β2) is a Diophantine
triple of real numbers. We may assume (α2, αβ, β2) being Diophantine, since
theorem 1.1 (and theorem 2.1) assume (α, β) is strongly Diophantine, which is,
obviously, a stronger assumption.
We use the following approximation to ÑΛ,M (t) (see e.g [W], lemma 4.1), which
holds unconditionally on any Diophantine assumption:

Lemma 2.2. As t→∞,

ÑΛ,M (t) =
πt2

β
−
√
t

βπ

∑

~k∈Λ∗\{0}

cos
(
2πt|~k|+ π

4

)

|~k| 32
· ψ̂
( |~k|√

M

)
+O

(
1√
t

)
, (8)

where, again, Λ∗ is the dual lattice.

By the definition of S̃Λ,M,L in (5) and appropriately manipulating the sum in
(8) we obtain the following

Documenta Mathematica 11 (2006) 1–23



6 Igor Wigman

Corollary 2.3.

S̃Λ,M,L(t) =
2

βπ

∑

~k∈Λ∗\{0}

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π
(
t+

1

2L

)
|~k|+ π

4

)
ψ̂

( |~k|√
M

)

+O

(
1√
t

)
.

(9)

One should note that ψ̂ being compactly supported means that the sum essen-
tially truncates at |~k| ≈

√
M .

Unlike the standard lattice, clearly there are no nontrivial multiplicities in Λ,
that is

Lemma 2.4. Let ~aj = mj +nj(α+ iβ) ∈ Λ, j = 1, 2, with an irrational α such
that β /∈ Q(α). Then if | ~a1| = | ~a2|, either n1 = n2 and m1 = m2 or n1 = −n2

and n2 = −m2.

Proof of theorem 2.1. We will show that the moments of S̃Λ,M,L correspond-
ing to the smooth probability space converge to the moments of the normal
distribution with zero mean and variance which is given by theorem 2.1. This
allows us to deduce that the distribution of S̃Λ,M,L converges to the normal
distribution as T →∞, precisely in the sense of theorem 2.1.
First, we show that the mean is O( 1√

T
). Since ω is real,

∣∣∣∣∣

〈
sin

(
2π
(
t+

1

2L

)
|~k|+ π

4

)〉∣∣∣∣∣ =

∣∣∣∣ℑm
{
ω̂
(
− T |~k|

)
eiπ(

|~k|
L + 1

4

}∣∣∣∣≪
1

TA|~k|A

for any A > 0, where we have used the rapid decay of ω̂. Thus

∣∣∣∣
〈
S̃Λ,M,L

〉∣∣∣∣≪
∑

~k∈Λ∗\{0}

1

TA|~k|A+3/2
+O

(
1√
T

)
≪ O

(
1√
T

)
,

due to the convergence of
∑

~k∈Λ∗\{0}

1

|~k|A+3/2
, for A > 1

2

Now define

MΛ,m :=

〈(
2

βπ

∑

~k∈Λ∗\{0}

sin

(
π|~k|
L

)

|~k| 32
sin

(
2π
(
t+

1

2L

)
|~k|+ π

4

)
ψ̂
( |~k|√

M

))m
〉

(10)
Then from (9), the binomial formula and the Cauchy-Schwartz inequality,

〈(
S̃Λ,M,L

)m
〉

=MΛ,m +O

( m∑

j=1

(
m

j

)√M2m−2j

T j/2

)

Documenta Mathematica 11 (2006) 1–23



Statistics of Lattice Points . . . 7

Proposition 2.5 together with proposition 2.8 allow us to deduce the re-
sult of theorem 2.1 for an algebraically independent strongly Diophantine
(ξ, η) := (−αβ , 1

β ). Clearly, (α, β) being algebraically independent and strongly
Diophantine is sufficient.

2.1 The variance

The computation of the variance is done in two steps. First, we reduce the
main contribution to the diagonal terms, using the assumption on the pair
(α, β) (i.e. (α2, αβ, β2) is Diophantine). Then we compute the contribution
of the diagonal terms. Both these steps are very close to the corresponding
ones in [W].
Suppose that the triple (α2, αβ, β2) satisfies (7).

Proposition 2.5. If M = O
(
T 1/(K+1/2+δ)

)
for fixed δ > 0, then the variance

of S̃Λ,M,L is asymptotic to

σ2 :=
4

β2π2

∑

~k∈Λ∗\{0}

sin2

(
π|~k|
L

)

|~k|3
ψ̂2

( |~k|√
M

)

If L→∞, but L/
√
M → 0, then

σ2 ∼ 4π

βL
(11)

Remark: In the formulation of proposition 2.5, K is implicitly given by (7).

Proof. Expanding out (10), we have

MΛ, 2 =
4

β2π2

∑

~k,~l∈Λ∗\{0}

sin

(
π|~k|
L

)
sin

(
π|~l|
L

)
ψ̂
( |~k|√

M

)
ψ̂
( |~l|√

M

)

|~k| 32 |~l| 32

×
〈

sin

(
2π

(
t+

1

2L

)
|~k|+ π

4

)
sin

(
2π

(
t+

1

2L

)
|~l|+ π

4

)〉

(12)

It is easy to check that the average of the second line of the previous equation
is:

1

4

[
ω̂
(
T (|~k| − |~l|)

)
eiπ(1/L)(|~l|−|~k|)+

ω̂
(
T (|~l| − |~k|)

)
eiπ(1/L)(|~k|−|~l|)+

ω̂
(
T (|~k|+ |~l|)

)
e−iπ(1/2+(1/L)(|~k|+|~l|))−

ω̂
(
− T (|~k|+ |~l|)

)
eiπ(1/2+(1/L)(|~k|+|~l|))

]
(13)
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8 Igor Wigman

Recall that the support condition on ψ̂ means that ~k and ~l are both constrained
to be of length O(

√
M). Thus the off-diagonal contribution (that is for |~k| 6= |~l|

) of the first two lines of (13) is

≪
∑

~k,~l∈Λ∗\{0}
|~k|, |~k′|≤

√
M

MA(K+1/2)

TA
≪ MA(K+1/2)+2

TA
≪ T−B ,

for every B > 0, since (α, αβ, β2) is Diophantine.

Obviously, the contribution to (12) of the two last lines of (13) is negligible both
in the diagonal and off-diagonal cases, justifying the diagonal approximation
of (12) in the first statement of the proposition. To compute the asymptotics,
we write we take a large parameter Y = Y (T ) > 0 (to be chosen later), and
write:

∑

~k∈Λ∗\{0}

sin2

(
π|~k|
L

)

|~k|3
ψ̂2

( |~k|√
M

)
=

∑

~k∈Λ∗\{0}
|~k|2≤Y

+
∑

~k∈Λ∗\{0}
|~k|2>Y

:= I1 + I2,

Now for Y = o(M), ψ̂2
( |~k|√

M

)
∼ 1 within the constraints of I1, and so

I1 ∼
∑

~k∈Λ∗\{0}
|~k|2≤Y

sin2

(
π|~k|
L

)

|~k|3
.

Recall that Λ∗ = 〈1, γ + iδ〉. The sum in

∑

~k∈Λ∗\{0}
|~k|2≤Y

sin2

(
π|~k|
L

)

|~k|3
=

1

L

∑

~k∈Λ∗\{0}
|~k|2≤Y

sin2

(
π|~k|
L

)

( |~k|
L

)3
1

L2
.

is a 2-dimensional Riemann sum of the integral

∫∫

1/L2≪(x+yγ)2+(δy)2≤Y/L2

sin2
(
π
√

(x+ yγ)2 + (δy)2
)

|(x+ yγ)2 + (δy)2|3/2 dxdy

∼ 2π

δ

√
Y

L∫

1
L

sin2(πr)

r2
dr → βπ3,

Documenta Mathematica 11 (2006) 1–23



Statistics of Lattice Points . . . 9

provided that Y/L2 →∞, since
∞∫
0

sin2(πr)
r2 dr = π2

2 . We changed the coordinates

appropriately. And so,

I1 ∼
βπ3

L

Next we will bound I2. Since ψ̂ ≪ 1, we may use the same change of variables
to obtain:

I2 ≪
1

L

∫∫

(x+yγ)2+(δy)2≥Y/L2

sin2
(
π
√

(x+ yγ)2 + (δy)2
)

|(x+ yγ)2 + (δy)2|3/2 dxdy

≪ 1

L

∞∫

√
Y /L

dr

r2
= o

(
1

L

)
.

This concludes the proposition, provided we have managed to choose Y with
L2 = o(Y ) and Y = o(M). Such a choice is possible by the assumption of the
proposition regarding L.

2.2 The higher moments

In order to compute the higher moments we will prove that the main contri-
bution comes from the so-called diagonal terms (to be explained later). Our
bound for the contribution of the off-diagonal terms holds for a strongly Dio-
phantine pair of real numbers, which is defined below. In order to show that the
strongly Diophantine pairs are ”generic”, we use theorem 2.6 below, which is a
consequence of the work of Kleinbock and Margulis [KM]. The contribution of
the diagonal terms is computed exactly in the same manner it was done in [W],
and so we will omit it here.

Definition: We call the pair (ξ, η) strongly Diophantine, if for all natural
n there exists a number K1 = K1(ξ, η, n) ∈ N such that for every integral
polynomial of 2 variables p(x, y) =

∑
i+j≤n

ai, jx
iyj of degree ≤ n, we have

∣∣p(ξ, η)
∣∣≫ h−K1 , (14)

where h = max
i+j≤n

|ai, j | is the height of p. The constant involved in the ” ≫ ”

notation may depend only on ξ, η, n and K1.

Theorem 2.6. Let an integer n be given. Then almost all pairs of real numbers
(ξ, η) ∈ R2 satisfy the following property: there exists a number K1 = K1(n) ∈
N such that for every integer polynomial of 2 variables p(x, y) =

∑
i+j≤n

ai, jx
iyj

of degree ≤ n, (14) is satisfied.

Theorem 2.6 states that almost all real pairs of numbers are strongly Diophan-
tine.
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Remark: Theorem A in [KM] is much more general than the result we are
using. As a matter of fact, we have the inequality

∣∣b0 + b1f1(x) + . . .+ bnfn(x)
∣∣≫ǫ

1

hn+ǫ

with bi ∈ Z and
h := max

0≤i≤n
|bi|.

The inequality above holds for every ǫ > 0 for a wide class of functions fi :
U → R, for almost all x ∈ U , where U ⊂ Rm is an open subset. Here we use
this inequality for the monomials.

Remark: Simon Kristensen [KR] has recently shown, that the set of all pairs
(ξ, η) ∈ R2 which fail to be strongly Diophantine has Hausdorff dimension 1.
Obviously, if (ξ, η) is strongly Diophantine, then any n-tuple of real numbers,
which consists of a set of monomials in ξ and η, is Diophantine. Moreover,
(ξ, η) is strongly Diophantine iff (− ξ

η ,
1
η ) is such.

We have the following analogue of lemma 4.7 in [W], which will eventually
allow us to exploit the strong Diophantine assumption of (α, β).

Lemma 2.7. If (ξ, η) is strongly Diophantine, then it satisfies the following
property: for any fixed natural m, there exists K ∈ N, such that if

zj = a2
j + b2jξ

2 + 2ajbjξ + b2jη
2 ≪M,

and ǫj = ±1 for j = 1, . . . ,m, with integral aj , bj and if
m∑
j=1

ǫj
√
zj 6= 0, then

∣∣
m∑

j=1

ǫj
√
zj
∣∣≫M−K , (15)

where the constant involved in the ”≫ ” notation depends only on η and m.

The proof is essentially the same as the one of lemma 4.7 from [W], considering

the product Q of numbers of the form
m∑
j=1

δj
√
zj over all possible signs δj . Here

we use the Diophantine condition of the real tuple (ξ, η) rather than of a single
real number.

Proposition 2.8. Let m ∈ N be given. Suppose that Λ = 〈1, α+iβ〉, such that
the pair (ξ, η) := (−αβ , 1

β ) is algebraically independent strongly Diophantine,
which satisfy the property of lemma 2.7 for the given m, with K = Km. Then

if M = O
(
T

1−δ
Km

)
for some δ > 0, and if L → ∞ such that L/

√
M → 0, the

following holds:

MΛ,m

σm
=





m!

2m/2
(

m
2

)
!

+O
(

logL
L

)
, m is even

O
(

logL
L

)
, m is odd
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Proof. Expanding out (10), we have

MΛ,m =
2m

βmπm

∑

~k1,..., ~km∈Λ∗\{0}

m∏

j=1

sin

(
π| ~kj |
L

)
ψ̂
( | ~kj |√

M

)

|~kj | 32

×
〈 m∏

j=1

sin

(
2π
(
t+

1

2L

)
| ~k1|+

π

4

)〉
(16)

Now,

〈 m∏

j=1

sin

(
2π
(
t+

1

2L

)
| ~k1|+

π

4

)〉

=
∑

ǫj=±1

m∏
j=1

ǫj

2mim
ω̂

(
− T

m∑

j=1

ǫj |~kj |
)
e
πi

mP
j=1

ǫj

(
(1/L)| ~kj |+1/4

)

We call a term of the summation in (16) with
m∑
j=1

ǫj |~kj | = 0 diagonal, and

off-diagonal otherwise. Due to lemma 2.7, the contribution of the off-diagonal
terms is:

≪
∑

~k1,..., ~km∈Λ∗\{0}
| ~k1|, ..., | ~km|≤

√
M

(
T

MKm

)−A
≪MmT−Aδ,

for every A > 0, by the rapid decay of ω̂ and our assumption regarding M .

Since m is constant, this allows us to reduce the sum to the diagonal terms.
In order to be able to sum over all the diagonal terms we need the following
analogue of a well-known theorem due to Besicovitch [BS] about incommensu-
rability of square roots of integers.

Proposition 2.9. Suppose that ξ and η are algebraically independent, and

zj = a2
j + 2ajbjξ + b2j (ξ

2 + η), (17)

such that (aj , bj) ∈ Z2
+ are all different primitive vectors, for 1 ≤ j ≤ m. Then

{√zj}mj=1 are linearly independent over Q.

The last proposition is an immediate consequence of a theorem proved in the
appendix of [BL2].
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12 Igor Wigman

Definition: We say that a term corresponding to { ~k1, . . . , ~km} ∈
(

Λ∗ \

{0}
)m

and {ǫj} ∈ {±1}m is a principal diagonal term if there is a partition

{1, . . . , m} =
l⊔
i=1

Si, such that for each 1 ≤ i ≤ l there exists a primitive ~ni ∈
Λ∗ \ {0}, with non-negative coordinates, that satisfies the following property:

for every j ∈ Si, there exist fj ∈ Z with |~kj | = fj |~ni|. Moreover, for each
1 ≤ i ≤ l, ∑

j∈Si

ǫjfj = 0.

Obviously, the principal diagonal is contained within the diagonal. However,
the meaning of proposition 2.9 is, that in our situation, the converse also is
true:

Corollary 2.10. Every diagonal term is a principle diagonal term whenether
ξ and η are algebraically independent.

Computing the contribution of the principal diagonal terms is done literally the
same way it was done in [W], and we sketch it here. As in [W], one can show

that the contribution of a particular partition {1, . . . , m} =
l⊔
i=1

Si is negligible,

unless m = 2l is even and #Si = 2 for all 1 ≤ i ≤ l.
In the latter case, the contribution is asymptotic to 1. Therefore, the m-
th moment is asymptotic to 0, if m is odd, and to the number of partitions

{1, . . . , m} =
l⊔
i=1

Si with #Si = 2 for all i, m = 2l. This number equals to

m!

2m/2
(

m
2

)
!
, which is also them-th moment of the standard Gaussian distribution.

3 Bounding the number of close pairs of lattice points

Roughly speaking, we say that a pair of lattice points, n and n′ is close, if∣∣|n| − |n′|
∣∣ is small. We would like to show that this phenomenon is rare. This

is closely related to the Oppenheim conjecture, as |n|2 − |n′|2 is a quadratic
form on the coefficients of n and n′.
In order to establish a quantative result, we use a technique developed in a pa-
per by Eskin, Margulis and Mozes [EMM]. Note that the proof is unconditional
on any Diophantine assumptions.

3.1 Statement of the results

The ultimate goal of this section is to establish the following

Proposition 3.1. Let Λ be a lattice and denote

A(R, δ) := {(~k, ~l) ∈ Λ× Λ : R ≤ |~k|2 ≤ 2R, |~k|2 ≤ |~l|2 ≤ |~k|2 + δ}. (18)
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Then if δ > 1, such that δ = o(R), we have

#A(R, δ)≪ Rδ · logR

In order to prove this result, we note that evaluating the size of A(R, δ) is
equivalent to counting integer points ~v ∈ R4 with T ≤ ‖~v‖ ≤ 2T such that

0 ≤ Q1(v) ≤ δ,

where Q1 is a quadratic form of signature (2, 2), given explicitly by

Q1(~v) = (v1 + v2α)2 + (v2β)2 − (v3 + v4α)2 − (v4β)2. (19)

For a fixed δ > 0 and a large R, this situation was considered extensively by
Eskin, Margulis and Mozes [EMM]. The authors give an asymptotical upper
bound in this situation. We will examine how the constants involved in their
bound depend on δ, and find out that there is a linear dependency, which
is what we essentially need. The author wishes to thank Alex Eskin for his
assistance with this matter.

Remarks: 1. In a more recent paper, Eskin Margulis and Mozes [EMM1]
prove that for ”generic” lattice Λ, there is a constant c > 0, such that for any
fixed δ > 0, as R→∞, #A(R, δ) is asymptotic to cδR.
2. For our purposes we need a weaker result:

#A(R, δ)≪ǫ Rδ ·Rǫ,

for every ǫ > 0. If Λ is a rectangular lattice (i.e. α = 0), then this result follows
from properties of the divisor function (see e.g. [BL], lemma 3.2).
Theorem 2.3 in [EMM] considers a more general setting than proposition 3.1.
We state here theorem 2.3 from [EMM] (see theorem 3.2). It follows from
theorem 3.3 from [EMM], which will be stated as well (see theorem 3.3). Then
we give an outline of the proof of theorem 2.3 of [EMM], and inspect the
dependency on δ of the constants involved.

3.2 Theorems 2.3 and 3.3 from [EMM]

Let ∆ be a lattice in Rn. We say that a subspace L ⊂ Rn is ∆-rational, if
L ∩∆ is a lattice in L. We need the following definitions:

Definitions:

αi(∆) := sup

{
1

d∆(L)

∣∣∣∣ L is a ∆− rational subspace of dimension i

}
,

where
d∆(L) := vol(L/(L ∩∆)).

Documenta Mathematica 11 (2006) 1–23



14 Igor Wigman

Also
α(∆) := max

0≤i≤n
αi(∆).

Since the space of unimodular lattices is canonically isomorphic to
SL(n, R)/SL(n, Z), the notation α(g) makes sense for g ∈ G := SL(n, R).
For a bounded function f : Rn → R, with |f | ≤ M , which vanishes outside a
ball B(0, R), define f̃ : SL(n, R)→ R by the following formula:

f̃(g) :=
∑

v∈Zn

f(gv).

Lemma 3.1 in [S2] implies that

f̃(g) < cα(g), (20)

where c = c(f) is an explicit constant constant

c(f) = c0M max(1, Rn),

for some constant c0 = c0(n), independent on f. In section 3.4 we prove a
stronger result, assuming some additional information about the support of f .
Let Q0 be a quadratic form defined by

Q0(~v) = 2v1vn +

p∑

i=2

v2
i −

n−1∑

i=p+1

v2
i .

Since

v1vn =
(v1 + vn)2 − (v1 − vn)2

2
,

Q0 is of signature p, q. Obviously, G := SL(n,R) acts on the space of quadratic
forms of signature (p, q), and discriminant ±1, O = O(p, q) by:

Qg(v) := Q(gv).

Moreover, by the well known classification of quadratic forms, O is the orbit
of Q0 under this action.
In our case the signature is (p, q) = (2, 2) and n = 4. We fix an element h1 ∈ G
with Qh1 = Q1, where Q1 is given by (19). There exists a constant τ > 0, such
that for every v ∈ R4,

τ−1‖v‖ ≤ ‖h1v‖ ≤ τ‖v‖. (21)

We may assume, with no loss of generality that τ ≥ 1.
Let H := StabQ0

(G). Then the natural mophism H\G → O(p, q) is a homeo-
morphism. Define a 1-parameter family at ∈ G by:

atei =





e−te1, i = 1

ei, i = 2, . . . , n− 1

eten, i = n

.
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Clearly, at ∈ H. Furthermore, let K̂ be the subgroup of G consisting of or-
thogonal matrices, and denote K := H ∩ K̂.
Let (a, b) ∈ R2 be given and let Q : Rn → R be any quadratic form. The
object of our interest is:

V(a, b)(Z) = V Q(a, b)(Z) = {x ∈ Zn : a < Q(x) < b}.

Theorem 2.3 states, in our case:

Theorem 3.2 (Theorem 2.3 from [EMM]). Let Ω = {v ∈ R4| ‖v‖ <
ν(v/‖v‖)}, where ν is a nonnegative continuous function on S3. Then we
have:

#V Q1

(a, b)(Z) ∩ TΩ < cT 2 log T,

where the constant c depends only on (a, b).

The proof of theorem 3.2 relies on theorem 3.3 from [EMM], and we give here
a particular case of this theorem

Theorem 3.3 (Theorem 3.3 from [EMM]). For any (fixed) lattice ∆ in R4,

sup
t>1

1

t

∫

K

α(atk∆)dm(k) <∞,

where the upper bound is universal.

3.3 Outline of the proof of theorem 3.2:

Step 1: Define

Jf (r, ζ) =
1

r2

∫

R2

f(r, x2, x3, x4)dx2dx3, (22)

where

x4 =
ζ − x2

2 + x2
3

2r
Lemma 3.6 in [EMM] states that Jf is approximable by means of an integral
over the compact subgroup K. More precisely, there is some constant C > 0,
such that for every ǫ > 0,

∣∣∣∣C · e2t
∫

K

f(atkv)ν(k−1e1)dm(k)− Jf
(
‖v‖e−t, Q0(v)

)
ν(

v

‖v‖ )

∣∣∣∣ < ǫ (23)

with et, ‖v‖ > T0 for some T0 > 0.

Step 2: Choose a continuous nonnegative function f on R4
+ = {x1 > 0}

which vanishes outside a compact set so that

Jf (r, ζ) ≥ 1 + ǫ

on [τ−1, 2τ ]× [a, b]. We will show later, how one can choose f .
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16 Igor Wigman

Step 3: Denote T = et, and suppose that T ≤ ‖v‖ ≤ 2T and a ≤ Q0(h1v) ≤
b. Then by (21), Jf

(
‖h1v‖T−1, Q0(h1v)

)
≥ 1+ ǫ, and by (23), for a sufficiently

large t,

C · T 2

∫

K

f(atkh1v)dm(k) ≥ 1, (24)

for T ≤ ‖v‖ ≤ 2T and
a ≤ Qx0(v) ≤ b. (25)

Step 4: Summing (24) over all v ∈ Z4 with (25) and T ≤ ‖v‖ ≤ 2T , we
obtain:

#V(a, b)(Z) ∩ [T, 2T ]S3 ≤
∑

v∈Zn

C · T 2

∫

K

f(atkh1v)dm(k)

= C · T 2

∫

K

f̃(atkh1)dm(k)

(26)

using the nonnegativity of f .

Step 5: By (20), (26) is

≤ C · c(f) · T 2

∫

K

α(atkh1)dm(k).

Step 6: The result of theorem 2.3 is obtained by using theorem 3.3 on the
last expression.

3.4 δ-dependency:

In this section we assume that (a, b) = (0, δ), which suits the definition of the
set A(R, δ), (18). One should notice that there only 3 δ-dependent steps:
• Choosing f in step 2, such that Jf ≥ 1 + ǫ on [τ−1, 2τ ] × [0, δ]. We will
construct a family of functions fδ with an universal bound |fδ| ≤M , such that
fδ vanishes outside of a compact set which is only slightly larger than

V (δ) = [τ−1, 2τ ]× [−1, −1]2 × [0,
δτ

2
]. (27)

This is done in section 3.4.1.
• The dependency of T0 of step 3, so that the usage of lemma 3.6 in [EMM] is
legitimate. For this purpose we will have to examine the proof of this lemma.
This is done in section 3.4.2.
• The constant c in (20). We would like to establish a linear dependency on
δ. This is straightforward, once we are able to control the number of integral
points in a domain defined by (27). This is done in section 3.4.3.
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3.4.1 Choosing fδ:

Notation: For a set U ⊂ Rn, and ǫ > 0, denote

Uǫ := {x ∈ Rn : max
1≤i≤n

|xi − yi| ≤ ǫ, for some y ∈ U}.

Choose a nonnegative continuous function f0, on R4
+, which vanishes outside

a compact set, such that its support, Ef0 , slightly exceeds the set V (1). More
precisely, V (1) ⊂ Ef0 ⊂ V (1)δ0 for some δ0 > 0. By the uniform continuity of
f , there are ǫ0, δ0 > 0, such that if max

1≤i≤4
|xi − x0

i | ≤ δ0, then f(x) > ǫ0, for

every x0 = (x0
1, 0, 0, x0

4) ∈ V (1).
Thus for (r, ζ) ∈ [τ−1, 2τ ] × [0, δ], the contribution of [−δ0, δ0]2 to Jf0 is
≥ ǫ0 · (2δ0)2. Multiplying f0 by a suitable factor, and by the linearity of Jf0 ,
we may assume that this contribution is at least 1 + ǫ.
Now define fδ(x1, . . . , x4) := f0(x1, x2, x3,

x4

δ ). We have for δ ≥ 1

ζ − x2
2 + x2

3

2rδ
=
ζ/2r

δ
− (x2/

√
δ)2

2r
+

(x3/
√
δ)2

2r
.

Thus for δ ≥ 1, if (r, ζ) ∈ [τ−1, 2τ ] × [0, δ] and for i = 2, 3, |xi| < δ0, fδ
satisfies:

fδ(r, x2, x3, x4) > ǫ0,

and therefore the contribution of this domain to Jfδ
is

≥ ǫ0(2δ)2 ≥ 1 + ǫ

by our assumption.
By the construction, the family {fδ} has a universal upper bound M which is
the one of f0.

3.4.2 How large is T0

The proof of lemma 3.6 from [EMM] works well along the same lines, as long
as

f(atx) 6= 0 (28)

implies that for t → ∞, x/‖x‖ converges to e1 = (1, 0, 0, 0). Now, since at
preserves x1x4, (28) implies for the particular choice of f = fδ in section 3.4.1:

|x1x4| = O(δ); x1 ≫ T.

Thus

‖x‖ = x1 +O

(
δ

T

)
+O(1),

and so, as long as δ = O(T ), x/‖x‖ indeed converges to e1.
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18 Igor Wigman

3.4.3 Bounding integral points in Vδ:

Lemma 3.4. Let V (δ) defined by

V (δ) = [τ−1, 2τ ]× [−1, −1]n−2 × [0,
δβ

2
]. (29)

for some constant τ and n ≥ 3. Let g ∈ SL(n, R) and denote

N(g, δ) := #V (δ) ∩ gZn.

Then for δ ≥ 1,

∣∣∣∣N(g, δ)− 2n−2(2τ − τ−1)δ

det g

∣∣∣∣ ≤ c5δ
n−1∑

i=1

1

vol(Li/(gZn ∩ Li)

for some g-rational subspaces Li of R4 of dimension i, where c5 = c5(n) depends
only on n.

A direct consequence of lemma 3.4 is the following

Corollary 3.5. Let f : Rn → R be a nonnegative function which vanishes
outside a compact set E. Suppose that E ⊂ Vǫ(δ) for some ǫ > 0. Then for
δ ≥ 1, (20) is satisfied with

c(f) = c3 ·Mδ,

where the constant c3 depends on n only.

In order to prove lemma 3.4, we shall need the following:

Lemma 3.6. Let Λ ⊂ Rn be a m-dimensional lattice, and let

At =




1
1

. . .

t


 (30)

an n-dimensional linear transformation. Then for t > 0 we have

detAtΛ ≤ tdet Λ. (31)

Proof. We may assume that m < n, since if m = n, we obviously have an
equality. Let v1, . . . , vm the basis of Λ and denote for every i, ui ∈ Rn−1 the
vector, which consists of first n − 1 coordinates of vi. Also, let xi ∈ R be the
last coordinate of vi. By switching vectors, if necessary, we may assume x1 6= 0.
We consider the function

f(t) := (detAtΛ)2,
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as a function of t ∈ R.
Obviously,

f(t) = det
(
〈ui, uj〉+ xixjt

2
)
1≤i, j≤m.

Substracting xi

x1
times the first row from any other, we obtain:

f(t) =

∣∣∣∣∣∣∣∣∣

〈u1, uj〉+ x1xjt
2

〈u2, uj〉 − x2

x1
〈u1, uj〉

...
〈um, uj〉 − xm

x1
〈u1, uj〉

∣∣∣∣∣∣∣∣∣
,

and by the multilinearity property of the determinant, f is a linear function of
t2. Write

f(t) = a(t2 − 1) + bt2.

Thus

b = f(1); a = −f(0),

and so b = det Λ, and a = −det
(
〈ui, uj〉

)
≤ 0, being minus the determinant

of a Gram matrix. Therefore,

(detAtΛ)2 − t2 det Λ = a(t2 − 1) ≤ 0

for t ≥ 1, implying (30).

Proof of lemma 3.4. We will prove the lemma, assuming β = 2. However, it
implies the result of the lemma for any β, affecting only c5. Let δ > 0. Trivially,

N(g, δ) = N(g0, 1),

where g0 = A−1
δ g with Aδ given by (30). Let λ1 ≤ λ2 ≤ . . . ≤ λn be the

successive minima of g0, and pick linearly independent lattice points v1, . . . , vn
with ‖vi‖ = λi. Denote Mi the linear space spanned by v1, . . . , vi and the
lattice Λi = g0Zn ∩Mi.
First, assume that λn ≤

√
τ2 + (n− 1) =: r. Now, by Gauss’ argument,

∣∣∣∣N(g0, 1)− 2n−1(2τ − τ−1)δ

det g

∣∣∣∣ ≤
1

det g0
vol(Σ),

where

Σ := {x : dist(x, ∂V (1)) ≤ nλn}.
Now, for λn ≤ r,

vol(Σ)≪ λn,

where the constant implied in the “ ≪ “-notation depends on n only (this is
obvious for λn ≤ 1

2n , and trivial otherwise, since for λn ≤ r, vol(Σ) = O(1)).
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Thus,
∣∣∣∣N(g0, 1)− 2n−1(2τ − τ−1)δ

det g

∣∣∣∣≪
λn

det g0
≪ 1

det Λn−1

=
1

vol(Mn−1/Mn−1 ∩ g0Zn)
≤ δ

vol(AδMn−1/AδMn−1 ∩ gZn)

Next, suppose that λn > r. Then,

V (δ) ∩ g0Zn ⊂ V (δ) ∩ Λn−1.

Thus, by the induction hypothesis, the number of such points is:

≤c4
k−1∑

i=0

1

det(Λi)
=
k−1∑

i=0

1

vol(Mi/Mi ∩ g0Zn)

≤ δ
k−1∑

i=0

1

vol(AδMi/AδMi ∩ gZn)
.

Since λn > r, we have

1

det g
=

1

λn

1

det g/λn
≪ 1

det g/λn
≪ 1

λ1 · . . . · λn−1
,

and we’re done by defining Li := AδMi.

4 Unsmoothing

4.1 An asymptotic formula for NΛ

We need an asymptotic formula for the sharp counting function NΛ. Unlike
the case of the standard lattice, Z2, in order to have a good control over the
error terms we should use some Diophantine properties of the lattice we are
working with. We adapt the following notations:
Let Λ = 〈1, α + iβ〉, be a lattice, d := det Λ = β its determinant, and t > 0 a
real variable. Denote the set of squared norms of Λ by

SNΛ = {|~n|2 : n ∈ Λ}.
Suppose we have a function δΛ : SNΛ → R, such that given ~k ∈ Λ, there are
no vectors ~n ∈ Λ with 0 < ||~n|2 − |~k|2| < δΛ(|~k|2). That is,

Λ ∩ {~n ∈ Λ : |~k|2 − δΛ(|~k|2) < |~n|2 < |~k|2 + δΛ(|~k|2)} = A|~k|,

where
Ay := {~n ∈ Λ : |~n| = y}.

Extend δΛ to R by defining δΛ(x) := δΛ(|~k|2), where ~k ∈ Λ minimizes |x− |~k|2|
(in the case there is any ambiguity, that is if x = | ~n1|2+| ~n2|2

2 for vectors ~n1, ~n2 ∈
Λ with consecutive increasing norms, choose ~k := ~n1). We have the following
lemma:
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Lemma 4.1. For every a > 0, c > 1,

NΛ(t) =
π

β
t2 −

√
t

βπ

∑

~k∈Λ∗\{0}
|~k|≤

√
N

cos
(
2πt|~k|+ π

4

)

|~k| 32
+O(Na)

+O

(
t2c−1

√
N

)
+O

(
t√
N
·
(

log t+ log(δΛ(t2)
))

+O

(
logN + log(δΛ∗(t

2))

)

As a typical example of such a function, δΛ, for Λ = 〈1, α + iβ〉, with a
Diophantine (α, α2, β2), we may choose δΛ(y) = c

yK , where c is a constant. In

this example, if Λ ∋ ~k = (a, b), then by lemma 2.4, A|~k| = ±(a, b), provided

that β /∈ Q(α).

Sketch of proof. The proof of this lemma is essentially the same as the one of
lemma 5.1 in [W]. We start from

ZΛ(s) :=
1

2

∑

~k∈Λ\0

1

|~k|2s
=

∑

(m,n)∈Z2
+\0

1(
(m+ nα)2 + (βn)2

)s ,

where the series is convergent for ℜs > 1.
The function ZΛ has an analytic continuation to the whole complex plane,
except for a single pole at s = 1, defined by the formula

Γ(s)π−sZΛ(s) =

∞∫

1

xs−1ψΛ(x)dx+
1

d

∞∫

1

x−sψΛ∗(x)dx− s− d(s− 1)

2ds(1− s) ,

where

ψΛ(x) :=
1

2

∑

~k∈Λ\0

e−π|
~k|2x.

Moreover, ZΛ satisfies the following functional equation:

ZΛ(s) =
1

d
χ(s)ZΛ∗(1− s), (32)

with

χ(s) = π2s−1 Γ(1− s)
Γ(s)

. (33)

The connection between NΛ and ZΛ is given in the following formula, which is
satisfied for every c > 1:

1

2
NΛ(x) =

1

2πi

c+i∞∫

c−i∞

ZΛ(s)
xs

s
ds.
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The result of the current lemma follows from moving the contour of the inte-
gration to the left, collecting the residue at s = 1 (see [W] for details).

Proposition 4.2. Let a lattice Λ = 〈1, α + iβ〉 with a Diophantine triple of
numbers (α2, αβ, β2) be given. Suppose that L→∞ as T →∞ and choose M ,
such that L/

√
M → 0, but M = O

(
T δ
)

for every δ > 0 as T → ∞. Suppose
furthermore, that M = O(Ls0) for some (fixed) s0 > 0. Then

〈∣∣∣∣SΛ(t, ρ)− S̃Λ,M,L(t)

∣∣∣∣
2
〉
≪ 1√

M

The proof of proposition 4.2 proceeds along the same lines as the one of propo-
sition 5.1 in [W], using again an asymptotic formula for the sharp counting
function, given by lemma 4.1. The only difference is that here we use proposi-
tion 3.1 rather than lemma 5.2 from [W].
Once we have proposition 4.2 in our hands, the proof of our main result, namely,
theorem 1.1 proceeds along the same lines as the one of theorem 1.1 in [W].
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Abstract. In this paper, we determine the scheme automorphism
group of the reduction modulo p of the integral model of the connected
Shimura variety (of prime-to-p level) for reductive groups of type A
and C. The result is very close to the characteristic 0 version studied
by Shimura, Deligne and Milne-Shih.
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There are two aspects of the Artin reciprocity law. One is representation
theoretic, for example,

Homcont(Gal(Qab/Q),C×) ∼= Homcont((A(∞))×/Q×
+,C

×)

via the identity of L–functions. Another geometric one is:

Gal(Qab/Q) ∼= GL1(A(∞))/Q×
+.

They are equivalent by duality, and the first is generalized by Langlands in
non-abelian setting. Geometric reciprocity in non-abelian setting would be via
Tannakian duality; so, it involves Shimura varieties.

Iwasawa theory is built upon the geometric reciprocity law. The cyclo-
tomic field Q(µp∞) is the maximal p–ramified extension of Q fixed by

Ẑ(p) ⊂ A×/Q×R×
+ removing the p–inertia toric factor Z×

p . We then try to

study arithmetically constructed modules X out of Q(µp∞) ⊂ Qab. The main
idea is to regard X as a module over over the Iwasawa algebra (which is a

completed Hecke algebra relative to GL1(A
(∞))

GL1(bZ(p))Q×+
), and ring theoretic techniques

are used to determine X.
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26 Haruzo Hida

If one wants to get something similar in a non-abelian situation, we really need
a scheme whose automorphism group has an identification with G(A(∞))/Z(Q)
for a reductive algebraic group G. If G = GL(2)/Q, the tower V/Qab of modular

curves has Aut(V/Q) identified with GL2(A(∞))/Z(Q) as Shimura proved. The

decomposition group of (p) is given by B(Qp)× SL2(A(p∞))/{±1} for a Borel
subgroup B, and I have been studying various arithmetically constructed

modules over the Hecke algebra of GL2(A
(∞))

GL2(bZ(p))U(Zp)Q×+
, relative to the unipotent

subgroup U(Zp) ⊂ B(Zp) (removing the toric factor from the decomposition
group). Such study has yielded a p–adic deformation theory of automorphic
forms (see [PAF] Chapter 1 and 8), and it would be therefore important
to study the decomposition group at p of a given Shimura variety, which is
basically the automorphism group of the mod p Shimura variety.

Iwasawa theoretic applications (if any) are the author’s motivation for the
investigation done in this paper. However the study of the automorphism
group of a given Shimura variety has its own intrinsic importance. As is
clear from the construction of Shimura varieties done by Shimura ([Sh]) and
Deligne ([D1] 2.4-7), their description of the automorphism group (of Shimura
varieties of characteristic 0) is deeply related to the geometric reciprocity
laws generalizing classical ones coming from class field theory and is almost
equivalent to the existence of the canonical models defined over a canonical
algebraic number field. Except for the modulo p modular curves and Shimura
curves studied by Y. Ihara, the author is not aware of a single determination
of the automorphism group of the integral model of a Shimura variety and of
its reduction modulo p, although Shimura indicated and emphasized at the
end of his introduction of the part I of [Sh] a good possibility of having a
canonical system of automorphic varieties over finite fields described by the
adelic groups such as the ones studied in this paper.

We shall determine the automorphism group of mod p Shimura varieties of
PEL type coming from symplectic and unitary groups.

1 Statement of the theorem

Let B be a central simple algebra over a field M with a positive involution ρ
(thus TrB/Q(xxρ) > 0 for all 0 6= x ∈ B). Let F be the subfield of M fixed by
ρ. Thus F is a totally real field, and either M = F or M is a CM quadratic
extension of F . We write O (resp. R) for the integer ring of F (resp. M). We
fix an algebraic closure F of the prime field Fp of characteristic p > 0. Fix a
proper subset Σ of rational places including ∞ and p. Let F×

+ be the subset
of totally positive elements in F , and O(Σ) denotes the localization of O at Σ
(disregarding the infinite place in Σ) and OΣ is the completion of O at Σ (again
disregarding the infinite place). We write O×

(Σ)+ = F×
+ ∩ O(Σ). We have an
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exact sequence

1→ B×/M× → Autalg(B)→ Out(B)→ 1,

and by a theorem of Skolem-Noether, Out(B) ⊂ Aut(M). Here b ∈ B× acts
on B by x 7→ bxb−1. Since B is central simple, any simple B-module N is
isomorphic each other. Take one such simple B-module. Then EndB(N) is a
division algebra D◦. Taking a base of N over D◦ and identifying N ∼= (D◦)r,
we have B = EndD◦(N) ∼= Mr(D) for the opposite algebra D of D◦. Letting
Autalg(D) act on b ∈ Mr(D) entry-by-entry, we have Autalg(D) ⊂ Autalg(B),
and Out(D) = Out(B) under this isomorphism.

Let OB be a maximal order of B. Let L be a projective OB–module with a
non-degenerate F -linear alternating form 〈 , 〉 : LQ×LQ → F for LA = L⊗ZA
such that 〈bx, y〉 = 〈x, bρy〉 for all b ∈ B. Identifying LQ with a product
of copies of the column vector space Dr on which Mr(D) acts via matrix
multiplication, we can let σ ∈ Autalg(D) act component-wise on LQ so that
σ(bv) = σ(b)σ(v) for all σ ∈ Autalg(D).

Let C be the opposite algebra of C◦ = EndB(LQ). Then C is a central simple
algebra and is isomorphic to Ms(D), and hence Out(C) ∼= Out(D) = Out(B).
We write CA = C ⊗Q A, BA = B ⊗Q A and FA = F ⊗Q A. The algebra
C has involution ∗ given by 〈cx, y〉 = 〈x, c∗y〉 for c ∈ C, and this involution
“∗” of C extends to an involution again denoted by “∗” of EndQ(LQ) given by
TrF/Q(〈gx, y〉) = TrF/Q(〈x, g∗y〉) for g ∈ EndQ(LQ). The involution ∗ (resp. ρ)
induces the involution ∗⊗ 1 (resp. ρ⊗ 1) on CA (resp. on BA) which we write
as ∗ (resp. ρ) simply. Define an algebraic group G/Q by

G(A) =
{
g ∈ CA

∣∣ν(g) := gg∗ ∈ (FA)×
}

for Q-algebras A (1.1)

and an extension G̃ of G by the following subgroup of the opposite group
Aut◦A(LA) of the A-linear automorphism group AutA(LA):

G̃(A) =
{
g ∈ Aut◦A(LA)

∣∣gCAg−1 = CA and ν(g) := gg∗ ∈ (FA)×
}
. (1.2)

Since C◦ = EndB(LQ), we have B◦ = EndC(LQ), and from this we
find that gBg−1 = B ⇔ gCg−1 = C for g ∈ AutQ(LQ), and if this
holds for g, then gg∗ ∈ F× ⇔ gxρg−1 = (gxg−1)ρ for all x ∈ B and

gy∗g−1 = (gyg−1)∗ for all y ∈ C. Then G is a normal subgroup of G̃

of finite index, and G̃(Q)/G(Q) = OutQ-alg(C, ∗). Here OutQ-alg(C, ∗) is
the outer automorphism group of C commuting with ∗; in other words,
it is the quotient of the group of automorphisms of C commuting with ∗
by the group of inner automorphisms commuting with ∗. Thus we have
OutQ-alg(C, ∗) ⊂ H0(〈∗〉,OutQ-alg(C)) ⊂ OutQ-alg(C) ⊂ Aut(M/Q). All the
four groups are equal if G/Q is quasi-split but are not equal in general. We
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put PG = G/Z and PG̃ = G̃/Z for the center Z of G.

We write G1 for the derived group of G; thus, G1 = {g ∈ G|NC(g) = ν(g) =
1} for the reduced norm NC of C over M . We write ZG = G/G1 for the
cocenter of G. Then g 7→ (ν(g), NC(g)) identifies ZG with a sub-torus of
ResF/QGm×ResM/QGm. If M = F , G1 is equal to the kernel of the similitude
map g 7→ ν(g); so, in this case, we ignore the right factor ResM/QGm and regard
ZG ⊂ ResF/QGm. By a result of Weil ([W]) combined with an observation in
[Sh] II (4.2.1), the automorphism group AutA-alg(CA, ∗) of the algebra CA
preserving the involution ∗ is given by PG̃(A). In other words, we have an
exact sequence of Q-algebraic groups

1→ PG(A)→ AutA-alg(CA, ∗)(= PG̃(A))→ OutA-alg(BA, ρ)→ 1. (1.3)

We write

π : G̃(A)→ G̃(A)/G(A) = OutA-alg(BA, ρ) ⊂ OutA-alg(BA)

for the projection.

The automorphism group of the Shimura variety of level away from Σ is a
quotient of the following locally compact subgroup of G̃(A(Σ)):

G(Σ) =
{
x ∈ G̃(A(Σ))

∣∣π(x) ∈ OutQ-alg(B, ρ)
}
, (1.4)

where we embed OutQ-alg(B, ρ) into
∏
ℓ 6∈Σ OutQℓ-alg(Bℓ) = OutA(Σ)-alg(B ⊗Q

A(Σ)) by the diagonal map (Bℓ = B ⊗Q Qℓ).

We suppose to have an R–algebra homomorphism h : C → CR such that
h(z) = h(z)∗ and

(h1) (x, y) = 〈x, h(i)y〉 induces a positive definite hermitian form on LR.

We define X to be the conjugacy classes of h under G(R). Then X is a finite
disjoint union of copies of the hermitian symmetric domain isomorphic to
G(R)+/Ch, where Ch is the stabilizer of h and the superscript “+” indicates
the identity connected component of the Lie group G(R). Then the pair (G,X)
satisfies the three axioms (see [D1] 2.1.1.1-3) specifying the data for defining
the Shimura variety Sh (and its field of definition, the reflex field E; see [Ko]
Lemma 4.1). In [D1], two more axioms are stated to simplify the situation:
(2.1.1.4-5). These two extra axioms may not hold generally for our choice of
(G,X) (see [M] Remark 2.2).

The complex points of Sh are given by

Sh(C) = G(Q)\
(
G(A(∞))×X

)
/Z(Q).
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This variety can be characterized as a moduli variety of abelian varieties up to
isogeny with multiplication by B. For each x ∈ X, we have hx : C→ CR given
by z 7→ g · h(z)g−1 for g ∈ G(R)/Ch sending h to x. Then v 7→ hx(z)v for
z ∈ C gives rise to a complex vector space structure on LR, and Xx(C) = LR/L
is an abelian variety, because by (h1), 〈 , 〉 induces a Riemann form on L. The
multiplication by b ∈ OB is given by (v mod L) 7→ (b · v mod L).

We suppose

(h2) all rational primes in Σ are unramified in M/Q, and Σ contains ∞ and
p;

(h3) For every prime ℓ ∈ Σ, OB,ℓ = OB ⊗Z Zℓ ∼= Mn(Rℓ) for Rℓ = R⊗Z Zℓ;

(h4) For every prime ℓ ∈ Σ, 〈 , 〉 induces Lℓ = L⊗Z Zℓ ∼= Hom(Lℓ, Oℓ);

(h5) The derived subgroup G1 is simply connected; so, G1(R) is of type A
(unitary groups) or of type C (symplectic groups).

Let G(ZΣ) = {g ∈ G(QΣ)|g ·LΣ = LΣ} for QΣ = Q⊗Z ZΣ and LΣ = L⊗Z ZΣ.
We define Sh(Σ) = Sh/G(ZΣ). This moduli interpretation (combined with
(h1-4)) allows us to have a well defined p–integral model of level away from Σ
(see below for a brief description of the moduli problem, and a more complete
description can be found in [PAF] 7.1.3). In other words,

Sh(Σ)(C) = G(Q)\
(
G(A(∞))×X

)
/Z(Q)G(ZΣ)

has a well defined smooth model over OE,(p) := OE ⊗Z Z(p) which is again a

moduli scheme of abelian varieties up to prime-to–Σ isogenies. We write Sh(p)

for Sh(Σ) when Σ = {p,∞}. We also write Q(p)
Σ = QΣ/Qp and Z(p)

Σ = ZΣ/Zp.

We have taken full polarization classes under scalar multiplication by O×
(Σ)+

in our moduli problem (while Kottwitz’s choice in [Ko] is a partial class of
multiplication by Z×

(Σ)+). By our choice, the group G is the full similitude

group, while Kottwitz choice is a partial rational similitude group. Our choice
is convenient for our purpose because G has cohomologically trivial center,
and the special fiber at p of the characteristic 0 Shimura variety Sh/G(ZΣ)
gives rise to the mod p moduli of abelian varieties of the specific type we study
(as shown in [PAF] Theorem 7.5), while Kottwitz’s mod p moduli is a disjoint
union of the reduction modulo p of finitely many characteristic 0 Shimura
varieties associated to finitely many different pairs (Gi,Xi) with Gi locally
isomorphic each other at every place ([Ko] Section 8).

We fix a strict henselization W ⊂ Q of Z(p). Thus W is an unramified

valuation ring with residue field F = Fp. Under these five conditions (h1-5),
combining (and generalizing) the method of Chai-Faltings [DAV] for Siegel
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modular varieties and that of [Ra] for Hilbert modular varieties, Fujiwara ([F]
Theorem in §0.4) proved the existence of a smooth toroidal compactification of

Sh
(p)
S = Sh(p)/S for sufficiently small principal congruence subgroups S with

respect to L in G(A(p)) as an algebraic space over a suitable open subscheme of
Spec(OE) containing Spec(W ∩ E). Although our moduli problem is slightly
different from the one Kottwitz considered in [Ko], as was done in [PAF] 7.1.3,
following [Ko] closely, the p-integral moduli Sh(p) over OE,(p) is proven to
be a quasi-projective scheme; so, Fujiwara’s algebraic space is a projective
scheme (if we choose the toroidal compactification data well). If the reader
is not familiar with Fujiwara’s work, the reader can take the existence of the
smooth toroidal compactification (which is generally believed to be true) as an
assumption of our main result.

Since p is unramified in M/Q, OE,(p) is contained inW. We fix a geometrically

connected component V/Q of Sh(Σ) ×E Q and write V/W for the schematic

closure of V/Q in Sh
(Σ)
/W := Sh

(Σ)
/OE,(p)

⊗OE,(p)
W. By Zariski’s connectedness

theorem combined with the existence of a normal projective compactification

(either minimal or smooth) of Sh
(Σ)
/W , the reduction V/F = V ×W F is a geo-

metrically irreducible component of Sh
(Σ)
/W ⊗W F. The scheme Sh

(Σ)
/S classifies,

for any S–scheme T , quadruples (A, λ, i, φ(Σ))/T defined as follows: A is an

abelian scheme of dimension 1
2 rankZ L for which we define the Tate module

T (A) = lim←−N A[N ], T (Σ)(A) = T (A) ⊗Z Ẑ(Σ), TΣ(A) = T (A) ⊗Z ZΣ and

V (Σ)(A) = T (A) ⊗Z A(Σ); The symbol i stands for an algebra embedding
i : OB →֒ End(A) taking the identity to the identity map on A; φ(Σ) is a
level structure away from Σ, that is, an OB–linear φ(p) : L⊗Q A(p) ∼= V (p)(A)

modulo G(ZΣ), where we require that φ
(p)
Σ : L ⊗Z Q(p)

Σ
∼= TΣ(A) ⊗Z Q(p)

Σ send

L⊗Z Z(p)
Σ isomorphically onto TΣ(A)⊗Z Z(p)

Σ ; λ is a class of polarizations λ up
to scalar multiplication by i(O×

(Σ)+) which induces the Riemann form 〈·, ·〉 on

L up to scalar multiplication by O×
(Σ)+. There is one more condition (cf. [Ko]

Section 5 or [PAF] 7.1.1 (det)) specifying the module structure of ΩA/T over
OB ⊗Z OT (which we do not recall).

The group G(A(Σ)) acts on Sh(Σ) by φ(Σ) 7→ φ(Σ) ◦ g. We can extend
the action of G(A(Σ)) to the extension G(Σ). Each element g ∈ G(Σ)

with projection π(g) = σg in OutQ-alg(B, ρ) acts also on Sh(Σ) by
(A, λ, i, φ(Σ))/T 7→ (A, λ, i ◦ σg, φ(Σ) ◦ g)/T .

The reduced norm map NC : C× → M× extends uniquely to a ho-
momorphism NC : G̃ → ResM/QGm of algebraic groups. Indeed, we

have an isomorphism G̃(A) ∼= OutA-alg(CA, ∗) ⋉ G(A) for a suitable fi-
nite extension field A of M , and the norm map NC factoring through
the right factor G(A) descends to NC : G̃(Q) → M× (which determines
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NC : G̃ → ResM/QGm independently of the choice of A). The diagonal map

µ : G̃ ∋ g 7→ (ν(g), NC(g)) ∈ (ResF/QGm × ResM/QGm) factors through the

cocenter ZG of G; so, we have a homomorphism µ : G̃ → ZG of algebraic
Q-groups. We write ZG(R)+ for the identity connected component of ZG(R)

and put ZG(Z(Σ))
+ = ZG(R)+ ∩

(
O×

(Σ) ×R×
(Σ)

)
; so, ZG(Z(Σ))

+ = O×
(Σ)+ if

M = F . Similarly, we identify Z with ResR/ZGm so that Z(Z(Σ)) = R×
(Σ).

We now state the main result:

Theorem 1.1. Suppose (h1-5). Then the field automorphism group
Aut(F(V )/F) of the function field F(V ) over F is given by the stabilizer

the connected component V (in π0(Sh
(Σ)
/F )) inside G(Σ)/Z(Z(Σ)). The stabilizer

is given by

GV =

{
g ∈ G(Σ)

∣∣µ(g) ∈ ZG(Z(Σ))+
}

Z(Z(Σ))
,

where ZG(Z(Σ))+ (resp. Z(Z(Σ))) is the topological closure of ZG(Z(Σ))
+ (resp.

Z(Z(Σ)))in ZG(A(Σ)) (resp. in G(A(Σ))). In particular, this implies that the
scheme automorphism group Aut(V/F) coincides with the field automorphism
group Aut(F(V )/F) and is given as above.

This type of theorems in characteristic 0 situation has been proven mainly
by Shimura, Deligne and Milne-Shih (see [Sh] II, [D1] 2.4-7 and [MS] 4.13),
whose proof uses the topological fundamental group of V and the existence of
the analytic universal covering space. Our proof uses the algebraic fundamen-
tal group of V and the solution of the Tate conjecture on endomorphisms of
abelian varieties over function fields of characteristic p due to Zarhin (see [Z],
[DAV] Theorem V.4.7 and [RPT]). The characteristic 0 version of the finiteness
theorem due to Faltings (see [RPT]) yields a proof in characteristic 0, arguing
slightly more, but we have assumed for simplicity that the characteristic of the
base field is positive (see [PAF] for the argument in characteristic 0). We shall
give the proof in the following section and prove some group theoretic facts
necessary in the proof in the section following the proof. Our original proof
was longer and was based on a density result of Chai (which has been proven
under some restrictive conditions on G), and Ching-Li Chai suggested us a
shorter proof via the results of Zarhin and Faltings (which also eliminated the
extra assumptions we imposed). The author is grateful for his comments.

2 Proof of the theorem

We start with

Proposition 2.1. Suppose (h1-5). Let σ ∈ Aut(F(V )/F). Let U ⊂ V be
a connected open dense subscheme on which σ ∈ Aut(F(V )/F) induces an
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isomorphism U ∼= σ(U). For x ∈ (U ∩ σ(U))(F), the two abelian varieties Xx
and Xσ(x) are isogenous over F, where Xx is the abelian variety sitting over x.

Proof. We recall the subgroup in the theorem:

GV =

{
g ∈ G(Σ)

∣∣µ(g) ∈ ZG(Z(Σ))+
}

Z(Z(Σ))
.

By characteristic 0 theory in [D] Theorem 2.4 or [MS] p.929 (or [PAF] 7.2.3),

the action of G̃(A(Σ))/Z(Z(Σ)) on π0(Sh
(Σ)

/Q
) factors through the homomor-

phism G̃(A(Σ))/Z(Z(Σ)) → ZG(A(Σ))/ZG(Z(Σ))+ induced by µ. The idele

class group of cocenter ZG(A(Σ))/ZG(Z(Σ))+ acts on π0(Sh
(Σ)

/Q
) faithfully.

Since each geometrically connected component of Sh(Σ) is defined over the field
K of fractions of W, by the existence of a normal projective compactification
(either smooth toroidal or minimal) over W (and Zariski’s connectedness
theorem), we have a bijection between geometrically connected components
over K and over the residue field F induced by reduction modulo p. Then the

stabilizer in G̃(A(Σ))/Z(Z(Σ)) of V in π0(Sh
(Σ)
/F ) is given by GV .

The scheme theoretic automorphism group Aut(V/F) is a subgroup of the field
automorphism group Aut(F(V )/F). By a generalization due to N. Jacobson
of the Galois theory (see [IAT] 6.3) to field automorphism groups, the Krull
topology of Aut(F(V )/F) is defined by a system of open neighborhoods of
the identity, which is made up of the stabilizers of subfields of F(V ) finitely
generated over F. For an open compact subgroups K in G(A(Σ))/Z(Z(Σ)),

we consider the image VK of V in Sh(Σ)/K. Then we have VK = V/KV

for KV = K ∩ GV , and KV is isomorphic to the scheme theoretic Galois
group Gal(V/VK/F), which is in turn isomorphic to Gal(F(V )/F(VK)). Since

all sufficiently small open compact subgroups of GV are of the form KV

for open compact subgroups K of G(A(Σ))/Z(Z(Σ)), the KV ’s for open

compact subgroups K of G(A(Σ))/Z(Z(Σ)) give a fundamental system of
open neighborhoods of the identity of Aut(F(V )/F) under the Krull topol-
ogy. In other words, the scheme theoretic automorphism group Aut(V/F)
is an open subgroup of Aut(F(V )/F). If we choose K sufficiently small
depending on σ ∈ Aut(F(V )/F), we have σKV = σKV σ

−1 still inside GV in
G(A(Σ))/Z(Z(Σ)). We write UK (resp. UσK) for the image of U (resp. of
σ(U)) in VK (resp. in VσK).

By the above description of the stabilizer of V , the image of G1(A(Σ)) in the

scheme automorphism group Aut(Sh
(Σ)
/F ) is contained in the stabilizer Aut(V/F)

and hence in the field automorphism group Aut(F(V )/F). Let G1(A(Σ)) be the
image of G1(A(Σ)) in Aut(F(V )/F) (so G1(A(Σ)) is isomorphic to the quotient
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of G1(A(Σ)) by the center of G1(Z(Σ))). We take a sufficiently small open com-

pact subgroup S of G(A(Σ)). We write S1 = G1(A(Σ))∩S and S1 for the image
of S1 in G1(A(Σ)) with G1(A(Σ)). Shrinking S if necessary, we may assume
that S1

∼= S1, that V/VS is étale, that Gal(V/VS/F) = S1, that S =
∏
ℓ Sℓ with

Sℓ = S ∩ G(Qℓ) for primes ℓ 6∈ Σ and that σS1 := σS1σ
−1 ⊂ G1(A(Σ)). We

identify Sh(p)/S̃ = Sh(Σ)/S for S̃ = S×G(Z(p)
Σ ), where Z(p)

Σ =
∏
ℓ∈Σ−{p,∞} Zℓ.

Since S1
∼= S1, we hereafter identify the two groups.

Let m be the maximal ideal ofW and we write κ = OE/(OE ∩m) for the reflex

field E. Since Sh
(Σ)
/F is a scalar extension relative to F/κ of the model Sh

(Σ)
/κ

defined over the finite field κ, the Galois group Gal(F/κ) acts on the underlying
topological space of Sh(Σ)/S. Since π0((Sh(Σ)/S)/Q) is finite, π0((Sh(Σ)/S)/F)
is finite, and we have therefore a finite extension Fq of the prime field Fp
such that Gal(F/Fq) gives the stabilizer of VS in π0((Sh(Σ)/S)/F). We may
assume that (as varieties) US and UσS are defined over Fq and that US ×Fq

F
and UσS ×Fq

F are irreducible. Since σ ∈ Hom(US , UσS), the Galois group
Gal(F/Fq) acts on σ by conjugation. By further extending Fq if necessary, we
may assume that σ is fixed by Gal(F/Fq), x ∈ US(Fq) and σ(x) ∈ UσS(Fq).
Thus σ descends to an isomorphism σS : US ∼= UσS defined over Fq.

Let XS/Fq
→ US/Fq

be the universal abelian scheme with the origin 0. We write
(Xx,0x) for the fiber of (XS ,0) over x and fix a geometric point x ∈ V (F) above

x. The prime-to-p part π
(p)
1 (Xx,0x) of π1(Xx,0x) is canonically isomorphic to

the prime to-p part T (p)(Xx/F) of the Tate module T (Xx/F), and the p-part
of π1(Xx,0x) is the discrete p-adic Tate module of Xx/F which is the inverse
limit of the reduced part of Xx[pn](F) (e.g. [ABV] page 171). We can make

the quotient π
{p}
1 (XS/F,0x) by the image of the p-part of π1(Xx,0x). Then we

have the following exact sequence ([SGA] 1.X.1.4):

T (p)(Xx)
i−→ π

{p}
1 (XS/Fq

,0x)→ π1(US/Fq
, x)→ 1.

This sequence is split exact, because of the zero section 0 : US → XS . The
multiplication by N : X → X (for N prime to p) is an irreducible étale cover-

ing, and we conclude that T (p)(Xx) injects into π
{p}
1 (XS/F,0x). We make the

quotient πΣ
1 (XS/Fq

,0x) = π
{p}
1 (XS/Fq

,0x)/i(T (p)
Σ (Xx)), and we get a split short

exact sequence:

0→ T (Σ)(Xx)→ πΣ
1 (XS/Fq

,0x)→ π1(US/Fq
, x)→ 1. (2.1)

By this exact sequence, π1(US/Fq
, x) acts by conjugation on T (Σ)(Xx). Recall

that we have chosen S sufficiently small so that V ։ VS is étale. We have a
canonical surjection π1(UK/Fq

, x) ։ Gal(U/US). We write SV = Gal(U/US),

which is an extension of SV by Gal(F/Fq) generated by the Frobenius automor-
phism over Fq. Since Xx[N ] for all integers N outside Σ gets trivialized over
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U , the action of π1(US/Fq
, x) on T (Σ)(Xx) factors through π1(US/Fq

, x) ։ SV .

We now have another split exact sequence:

0→ T (Σ)(Xσ(x))→ πΣ
1 (XσS/Fq

,0σ(x))→ π1(UσS/Fq
, σ(x))→ 1. (2.2)

Again the action of π1(UσS/Fq
, σ(x)) on T (Σ)(Xσ(x)) factors through

Gal(U/UσS) = σSV . We fix a path in UσS from σ(x) to x and lift it to
a path from σ(0x) to 0x in XσS , which induces canonical isomorphisms ([SGA]
V.7):

ισ : πΣ
1 (XσS/F,0σ(x)) ∼= πΣ

1 (XσS/F,0x) and ισ : π1(UσS ,0σ(x)) ∼= π1(UσS , x).

The isomorphism ισ in turn induces an isomorphism ι : T (Σ)(Xσ(x)) →
T (Σ)(Xx) of σS1–modules.

We want to have the following commutative diagram

T (Σ)(Xx)
→֒−−−−→ πΣ

1 (XS/F,0x)
։−−−−→ π1(US/F, x)

?

y
y? σ∗

y

T (Σ)(Xσ(x))
→֒−−−−→ πΣ

1 (XσS/F,0σ(x))
։−−−−→ π1(UσS/F, σ(x))

ι

y ισ
y

yισ

T (Σ)(Xx) −−−−→
→֒

πΣ
1 (XσS/F,0x) −−−−→

։
π1(UσS/F, x),

and we will find homomorphisms of topological groups fitting into the spot
indicated by “?”. In other words, we ask if we can find a linear endomorphism
L ∈ EndA(Σ)(T (Σ)(Xx) ⊗ Q) such that L(s · v) = σs · L(v) for all s ∈ S1 and
v ∈ T (Σ)(Xx), where σs = σsσ−1 is the image of ισ(σ∗(s)) in σS1 for any
lift s ∈ π1(VS , x) inducing s ∈ S1. Since Hom(G1(Zℓ), G1(Zℓ′)) is a singleton
made of the zero-map (taking the entireG1(Zℓ) to the identity ofG1(Zℓ′)) if two
primes ℓ and ℓ′ are large and distinct (see Section 3 (S3) for a proof of this fact),
s 7→ σs sends S1,ℓ into σS1,ℓ for almost all primes ℓ, where S1,ℓ = G1(Qℓ)∩ Sℓ.
If we shrink S further if necessary for exceptional finitely many primes, we
achieve that Sℓ is ℓ–profinite for exceptional ℓ and the logarithm logℓ : S1,ℓ →
Lie(S1,ℓ) given by logℓ(s) =

∑∞
n=1(−1)n+1 (s−1)n

n is an ℓ-adically continuous
isomorphism. Then by a result of Lazard [GAN] IV.3.2.6 (see Section 3 (S1)),
σ induces by logℓ ◦σ = [σ]ℓ ◦ logℓ an automorphism [σ]ℓ of the Lie algebra
Lie(Sℓ)⊗Zℓ

Qℓ over Qℓ. Note that

Lie(S1,ℓ)⊗Zℓ
Qℓ =

{
x ∈ Cℓ

∣∣ρ(x) = −x and Tr(x) = 0
}
,

where Tr : Cℓ → Mℓ is the reduced trace map. Extending scalar to a finite
Galois extension of K/Qℓ, Lie(Sℓ) ⊗Zℓ

K becomes split semi-simple over K,
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and therefore [σ]ℓ is induced by an element of PG̃(K) (the Lie algebra version
of (S2) in the following section), which implies by Galois descent that [σ]ℓ is

induced by an element of PG̃(Qℓ). Thus for all ℓ 6∈ Σ, s 7→ σs sends S1,ℓ into
σS1,ℓ and that the isomorphism: s 7→ σs is induced by an element L of the
group fitting into the middle term of the exact sequence (1.3):

1→ PG(A(Σ))→ PG̃(A(Σ))→ Aut(M
(Σ)
A /A(Σ)).

The element L in Aut(G1(A(Σ))) is in turn induced by an endomorphism L ∈
EndA(Σ)(T (Σ)(Xx) ⊗ Q). Define g(σ) = ι−1 ◦ L. Then g(σ) is an element of
HomS1

(T (Σ)Xx, T (Σ)Xσ(x)) invertible in HomS1
(T (Σ)Xx, T (Σ)Xσ(x))⊗Z Q, and

g(σ) is S1–linear in the sense that g(σ)(sx) = σs·g(σ)(x) for all s ∈ S1. Though
L may depends on the choice of the path from x to σ(x), the isomorphism g(σ)
(modulo the centralizer of S1) is independent of the choice of the path; so, we
will forget about the path hereafter. Applying this argument to Σ = {p,∞},
we have the following commutative diagram

T (p)(Xx)⊗Z A(p) g(σ)−−−−→ T (p)(Xσ(x))⊗Z A(p)

≀
xφ(p)

x
≀
xφ(p)

σ(x)

L⊗Z A(p) −−−−→
gσ

L⊗Z A(p)

(2.3)

for gσ ∈ G̃(A(p)). Thus g
(Σ)
σ has the projection π(g

(Σ)
σ ) ∈ OutA(Σ)-alg(B

(Σ)
A , ρ).

Consider the relative Frobenius map πS : US → US over Fq. Since σ : US ∼= UσS

is defined over Fq by our choice, σ satisfies σS ◦ πS = πσS ◦ σS . If X → US
is an étale irreducible covering, X ×US ,πS

US → US is étale irreducible, and
πS : US → US induces an endomorphism πS,∗ : π1(US , x) → π1(US , x). We
have a diagram:

T (Σ)(Xσ(x))
→֒−−−−→ πΣ

1 (XσS/F,0σ(x))
։−−−−→ π1(UσS/F, σ(x))

g(σ)−1

y
yg(σ)−1⋉σ−1

S,∗

yσ−1
S,∗

T (Σ)(Xx)
→֒−−−−→ πΣ

1 (XS/F,0x)
։−−−−→ π1(US/F, x)

πx

y
yπx⋉πS,∗

yπS,∗

T (Σ)(Xx)
→֒−−−−→ πΣ

1 (XS/F,0x)
։−−−−→ π1(US/F, x)

g(σ)

y
yg(σ)⋉σS,∗

yσS,∗

T (Σ)(Xσ(x)) −−−−→
→֒

πΣ
1 (XσS/F,0σ(x)) −−−−→

։
π1(UσS/F, σ(x)),

where πx is the relative Frobenius endomorphism of Xx over Fq. The middle
horizontal three squares of the above diagram are commutative, because (πx ⋉
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πS,∗) is induced by the relative Frobenius endomorphism of XS/Fq
. The top

and the bottom three squares are commutative by construction; so, the entire
diagram is commutative. In short, we have the following commutative diagram:

T (Σ)(Xσ(x))
→֒−−−−→ πΣ

1 (XσS/F,0σ(x))
։−−−−→ π1(UσS/F, σ(x))

g(σ)πxg(σ)−1

y
y πσS,∗

y

T (Σ)(Xσ(x)) −−−−→
→֒

πΣ
1 (XσS/F,0σ(x)) −−−−→

։
π1(UσS/F, σ(x)),

because σSπSσ
−1
S = πσS . Since πσ(x) also gives a similar commutative diagram:

T (Σ)(Xσ(x))
→֒−−−−→ πΣ

1 (XσS/F,0σ(x))
։−−−−→ π1(UσS/F, σ(x))

πσ(x)

y
y

yπσS,∗

T (Σ)(Xσ(x)) −−−−→
→֒

πΣ
1 (XσS/F,0σ(x)) −−−−→

։
π1(UσS/F, σ(x)),

we find out that g(σ)πxg(σ)−1π−1
σ(x) commutes with the action of σS1, and hence

it is in the center of AutR(T (Σ)(Xσ(x))). In other words, g(σ)πxg(σ)−1 = zπσ(x)

for z ∈ (R̂(Σ))×. Taking the determinant with respect to
∧g Tℓ(Xσ(x)) for

the rank g = rankRℓ
Tℓ(Xσ(x)) with a prime ℓ 6∈ Σ, we find that det(πx) =

zg det(πσ(x)). Since det(πx) = N(πx)r with a positive integer r for the reduced
norm map N : B → M , we find that det(πx) = det(πσ(x)), and hence z

is a g–th root of unity in (R̂(Σ))× (purity of the Weil number πx). Then
g(σ) ∈ Hom(T (p)Xx, T (p)Xσ(x)) satisfies g(σ) ◦ πgx = πgσ(x) ◦ g(σ), and hence

g(σ) is an isogeny of Gal(F/Fqg )–modules. Then by a result of Tate ([T]),

HomGal(F/Fqg )(T (Σ)Xx, T (Σ)Xσ(x)) = Hom(Xx/Fqg ,Xσ(x)/Fqg )⊗Z A(Σ),

we find that Xx and Xσ(x) are isogenous over Fqg .

We have a canonical projection Auttop group(G1(A(Σ))) → OutA(Σ)-alg(B
(Σ)
A , ρ)

(induced by π) whose kernel is given by PG(A(Σ)). Thus σ ∈ Aut(F(V )/F) has

projection π(g
(Σ)
σ ) (for gσ in (2.3)) in

OutA(Σ)-alg(B
(Σ)
A , ρ) ⊂ AutA(Σ)-alg(M

(Σ)
A ) =

∏

ℓ 6∈Σ

AutQℓ-alg(Mℓ)

which will be written as σB = π(g
(Σ)
σ ).

Corollary 2.2. If σ ∈ Aut(F(V )/F), we have σB ∈ OutQ-alg(B, ρ), where the
group OutQ-alg(B, ρ) is diagonally embedded into

∏
ℓ 6∈Σ AutQℓ-alg(Mℓ).

Proof. The element g(σ) = ι−1 ◦L ∈ HomS(T (Σ)Xx, T (Σ)Xσ(x)) in the proof of

Proposition 2.1 acts on G1(A(Σ)) by conjugation of gσ ∈ G̃(A(Σ)) in (2.3); so, its
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projection π(gσ) in OutA(Σ)-alg(B
(Σ)
A , ρ) inside Aut(M

(Σ)
A /A(Σ)) is given by σB .

By the proof of Proposition 2.1, g(σ) is induced by ξ ∈ HomOB
(Xx,Xσ(x)) mod-

ulo Z(Z(Σ))S. Choose a rational prime q outside Σ. We have Bq ∩End(Xx) =
OB . Note that b 7→ g(σ)−1 ◦ b ◦ g(σ) sends Bq into itself and that the con-
jugation by ξ sends Bq ∩ (End(Xx)⊗Z Q) = B into itself. Since the image
of the conjugation by g(σ) in OutQq-alg(Bq) and the image of the conjugation
by ξ in Out(End(Xx) ⊗Z Q) coincide, we conclude σB ∈ OutQ-alg(B). Since

σB ∈ OutA(Σ)-alg(B
(Σ)
A , ρ) ∩OutQ-alg(B), we get σB ∈ OutQ-alg(B, ρ).

Corollary 2.3. For the generic point η of VS, Xη and Xσ(η) are isogenous.

In particular, if σB is the identity in OutQ-alg(B, ρ), we find aS ∈ G(A(Σ))
inducing σ on F(VS) for all sufficiently small open compact subgroups S of
G(A(Σ)).

Proof. We choose S sufficiently small as in the proof of Proposition 2.1. We
replace q in the proof of Proposition 2.1 by qg at the end of the proof in order
to simplify the symbols.
Suppose that σS induces US ∼= UσS for an open dense subscheme US ⊂
VS . Again we use the exact sequence:0 → T (Σ)Xη → πΣ

1 (X/Fq
,0η) →

π1(US/Fq
, η) → 1. By the same argument as above, we find gη(σ) ∈

Homπ1(US/F,η)(T (Σ)Xη, T (Σ)Xσ(η)). Since Xη[ℓ∞] gets trivialized over U for
a prime ℓ 6∈ Σ, fixing a path from η to x for a closed point x ∈ US(Fq)
and taking its image from σ(η) to σ(x), we may identify π(US/Fq

, x) (resp.

T (Σ)Xx and T (Σ)Xσ(x)) with the Galois group Gal(F(Ũ)/Fq(US)) for the

universal covering Ũ (resp. with the generic Tate modules T (Σ)Xη and

T (Σ)Xσ(η)). By the universality, σ : U ∼= σU extends to σ̃ : Ũ ∼= σŨ .
Writing Dx for the decomposition group of the closed point x ∈ US(Fq),
the points x : Spec(Fq) →֒ US and σ(x) : Spec(Fq) →֒ UσS induce iso-
morphisms Dx

∼= Gal(F/Fq) ∼= Dσ(x) = σ̃Dxσ̃
−1 (choosing the extension σ̃

suitably) and splittings: Gal(F(Ũ)/Fq(US)) = Dx ⋉ Gal(F(Ũ)/F(US)) and

Gal(F(σŨ)/Fq(UσS)) = Dσ(x) ⋉ Gal(F(σŨ)/F(UσS)). The morphism g(σ) :

T (Σ)Xx → T (Σ)Xσ(x) induces a morphism gη(σ) : T (Σ)Xη → T (Σ)Xσ(η) satis-
fying gη(σ)(sx) = σs · gη(σ)(x) for all s ∈ SV . Thus gη(σ) is a morphism of
π1(US/Fq

, η)–modules (not just that of πΣ
1 (US/F, η)–modules). Then by a result

of Zarhin (see [RPT] Chapter VI, [Z] and also [ARG] Chapter II), Xη/Fq(VS)

and Xσ(η)/Fq(VσS) are isogenous. Here we note that the field Fq(VS) = Fq(US)
is finitely generated over Fp (which has to be the case in order to apply Zarhin’s
result). Thus we can find an isogeny αη : Xη → Xσ(η), which extends to an
isogeny XS → σ∗XσS = XσS ×UσS ,σ US over US . We write α : XS → XσS for
the composite of the above isogeny with the projection XσS ×UσS ,σ US → XσS .
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We then have the commutative diagram:

XS
α−−−−→ XσSy

y

US −−−−→
σ

UσS .

Assume that σB = 1. Then α is B-linear. Suppose we have another B-linear
isogeny α′ : XS → σ∗XσS inducing gη(σ). Then α−1α′ commutes with the

action of Gal(F(Ũ)/F(US)) and hence with the action of S. Thus we find
ξ = φ−1α−1α′φ ∈ EndS(LA(Σ)) for the level structure φ = φ(Σ) : LA(Σ) →
V (Σ)(Xη). This implies B-linear ξ commutes with the action of C, and hence

in the center of B ⊂ EndC(LQ). We thus find ξ ∈ Z(Q)G(Z(p)
Σ )S. We consider

the commutative diagram similar to (2.3):

T (p)(Xη)⊗Z A(p) αη−−−−→ T (p)(Xσ(η))⊗Z A(p)

≀
xφ(p)

η ≀
xφ(p)

σ(η)

L⊗Z A(p) −−−−→
gσ

L⊗Z A(p).

(2.4)

The prime-to-Σ component of g−1
σ eventually gives aS in the corollary. By the

above fact, g
(Σ)
σ is uniquely determined in G̃(A(Σ))/Z(Q)S.

Note that σ∗(XσS , λσS , iσS , φ
(p)
σ(η) ◦ g

(Σ)
σ )/US

is a quadruple classified by

Sh
(Σ)
/S = Sh(p)/G(Z(p)

Σ )S. By the universality of Sh
(Σ)
/S (proven under (h2-4)),

we have a morphism τ : US → US ⊂ Sh(Σ)/S with a prime-to-Σ and B-linear
isogeny β : σ∗XσS → τ∗XS over US . Identifying Gal(U/US) with a subgroup

SV of S ⊂ G(A(Σ)), the actions of s ∈ SV on φ1 = φ
(Σ)
σ(η) ◦ gσ and on φ2 = φ

(Σ)
η

have identical effect: s ◦ φj = φj ◦ s (j = 1, 2). Thus the effect of τ (and βαη)
on T (Σ)(Xη) commutes with the action of SV , and the action of B-linear βαη
on the Tate module T (Σ)(Xη) commutes with the action of SV . Therefore it
is in the center Z(Q). Thus the isogeny α between σ∗(XσS) and XS can be
chosen (after modification by a central element) to be a prime-to-Σ isogeny.
This τ could be non-trivial without the three assumptions (h2-4), and if this

is the case, the action of τ is induced by an element of G(Q(p)
Σ ) normalizing

G(Z(p)
Σ ). Under (h2-4), τ is determined by its effect on T (Σ)(Xη) and is the

identity map (see the following two paragraphs), and we may assume that α

is a prime-to-Σ isogeny (after modifying by an element of Z(Q)). Thus g
(Σ)
σ is

uniquely determined in GV modulo S.

We add here a few words on this point related to the universality of Sh(Σ).
Without the assumptions (h2-4), the effect of σ on the restriction of each
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level structure φ(p) to LA(Σ) may not be sufficient to uniquely determine σ.
In other words, in the definition of our moduli problem, we indeed have the

datum of φ
(p)
Σ modulo G(Z(p)

Σ ), which we cannot forget. To clarify this, take a
(characteristic 0) geometrically connected component V0 of Sh/E whose image

V
(Σ)
0 in Sh

(Σ)
/E = Sh/G(ZΣ) giving rise to V/F after extending scalar to W

and then taking reduction modulo p. By the description of π0(Sh/Q) at the

beginning of the proof of Proposition 2.1, the stabilizer in G(A(∞))/Z(Q) of
V0/Q ∈ π0(Sh/Q) is given by

G0 =

{
g ∈ G(A(∞))

∣∣µ(g) ∈ ZG(Q)+
}

Z(Q)
.

Inside this group, every element g ∈ G(A(∞)) inducing an automorphism

of V
(Σ)
0 has its ℓ-component gℓ for a prime ℓ ∈ Σ in the normalizer of

G(Zℓ). Under (h2-4), as is well known, the normalizer of G(Zℓ) in G(Qℓ)
is Z(Qℓ)G(Zℓ) (see [Ko] Lemma 7.2, which is one of the key points of the
proof of the universality of Sh(Σ)). By (h2-4), G(Qℓ) is quasi-split over Qℓ,
and we have the Iwasawa decomposition G(Qℓ) = P0(Qℓ)G(Zℓ) for ℓ ∈ Σ
with a minimal parabolic subgroup P0 of G, from which we can easily prove
that the normalizer of G(Zℓ) is Z(Qℓ)G(Zℓ). An elementary proof of the
Iwasawa decomposition (for a unitary group or a symplectic group acting
on Mr

ℓ keeping a skew-hermitian form relative to Mℓ/Fℓ) can be found in
[EPE] Section 5, particularly pages 36-37. By (h3-4), G(Qℓ) is isomorphic to
a unitary or symplectic group acting on Mn

ℓ = εLQℓ
for an idempotent ε (for

example, ε = diag[1, 0, . . . , 0] fixed by ρ) of OBℓ
∼= Mn(Rℓ) with respect to the

skew-hermitian form on εLQℓ
induced by 〈·, ·〉; so, the result in [EPE] Section 5

applies to our case.

Suppose that g ∈ G(A(∞)) preserves the quotient V
(Σ)
0 of V0. If Σ is finite,

we can therefore choose ξ ∈ Z(Q) so that (ξg)ℓ is in G(Zℓ) for all ℓ ∈ Σ,

and the action of (ξg)(Σ) ∈ GV on V
(Σ)
0 induces the action of g. Suppose

that Σ is infinite. Since αη is a prime-to-Σ isogeny, (gσ)Σ is contained in

G(Z(p)
Σ ). Thus σ is induced by (g

(Σ)
σ )−1 even if Σ is infinite. This fact can

be also shown in a group theoretic way as in the case of finite Σ: Modifying
g by an element in G(ZΣ), we may assume that gℓ ∈ Z(Qℓ) for all ℓ ∈ Σ.
Taking an increasing sequence of finite sets Σi so that Σ =

⋃
i Σi and choosing

ξi ∈ Z(Q) so that the action of (ξig)(Σi) induces the action of g on V
(Σi)
0 , we

find ξig ∈ G(ZΣi
)G(A(Σi)) whose action on V

(Σ)
0 is identical to that of g. We

write Fi for the closed subset of elements in G(ZΣi
)G(A(Σi)) whose action on

V
(Σ)
0 is identical to that of g. In the locally compact group G(A(∞)), the filter

{Fi}i has a nontrivial intersection
⋂
i Fi 6= ∅. Thus the action of g on V

(Σ)
0 is

represented by an element in G(A(Σ)). In other words, an element of G(A(∞))

in the stabilizer of the connected component V
(Σ)
0 ∈ π0(Sh

(Σ)

/Q
) is represented
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by an element in the group G(A(Σ)) without Σ-component. Since π0(Sh
(Σ)

/Q
)

is in bijection with π0(Sh
(Σ)
/F ), any element in the stabilizer in G̃(A(p)) of

V ∈ π0(Sh
(Σ)
/F ) is represented by an element in G(A(Σ)). By this fact, under

(h2-4), the effect of σ on φ
(p)
Σ is determined by g

(Σ)
σ outside Σ. Thus we can

really forget about the Σ-component.

Writing the prime-to-Σ level structures of Xη and Xσ(η) as φ
(Σ)
η and φ

(Σ)
σ(η),

respectively, we now find that αη ◦φ(Σ)
η = φ

(Σ)
σ(η) ◦a−1

S for a−1
S = g

(Σ)
σ ∈ G̃(A(Σ)).

Since the effect of σ on T (Σ)(Xη) determines σ, we have a−1
S (σ(η)) = η, which

implies that aS = σ on the Zariski open dense subset US of VS , and hence,
they are equal on the entire VS .

By the smoothness of Sh(Σ) over W, Zariski’s connectedness theorem (com-
bined with the existence of a projective compactification normal over W), we

have a bijection π0(Sh
(Σ)
/F ) ∼= π0(Sh

(Σ)

/Q
) as described at the beginning of the

proof of Proposition 2.1. Since our group G has cohomologically trivial cen-

ter (cf., [MS] 4.12), the stabilizer of V
(Σ)
0 ∈ π0(Sh

(Σ)

/Q
) in G(A(Σ))

Z(Z(Σ))
has a simple

expression given by the subgroup GV in the theorem (see [D1] 2.1.6, 2.1.16,
2.6.3 and [MS] Theorem 4.13), and the above corollaries finish the proof of the

theorem because σ on V is then induced by a = limS→1 aS in G(A(Σ))

Z(Z(Σ))
. Since

a fixes V ∈ π0(Sh
(Σ)
/F ), we conclude a ∈ GV . The description of the stabilizer

of V in the theorem necessitates the strong approximation theorem (which fol-
lows from noncompactness of G1(R) combined with simply connectedness of
G1: [Kn]).

3 Automorphism groups of quasi-split classical groups

In the above proof of the theorem, we have used the following facts:

(S) For an open compact subgroups S, S′ ⊂ G1(A(Σ)), if σ : S ∼= S′ is an
isomorphism of groups, replacing S by an open subgroup and replacing
S′ accordingly by the image of σ, σ is induced by the conjugation by an
element g(σ) ∈ G̃(A(Σ)) as in (1.2).

We may modify σ by g ∈ G̃(A(Σ)) so that σB = 1. Then this assertion (S)
follows from the following three assertions for σ with σB = 1:

(S1) For open subgroups Sℓ and S′
ℓ of G1(Qℓ) (for every prime ℓ), an iso-

morphism σℓ : Sℓ ∼= S′
ℓ is induced by conjugation s 7→ gℓ(σ)sgℓ(σ)−1 for

gℓ(σ) ∈ G(Qℓ) after replacing Sℓ by an open subgroup of Sℓ and replacing
S′
ℓ by the image of the new Sℓ;
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(S2) For a prime ℓ at which G1/Zℓ
is smooth quasi-split (so for a sufficiently

large rational prime ℓ), we have

Aut(G1(Zℓ)) = Aut(Mℓ/Qℓ) ⋉ PG(Zℓ)

and
Aut(G1(Qℓ)) = Aut(Mℓ/Qℓ) ⋉ PG(Qℓ),

(S3) For sufficiently large distinct rational primes p and ℓ, any group homo-
morphism φ : G1(Zp)→ G1(Zℓ)) is trivial (that is, Ker(φ) = G1(Zp)).

The assertion (S1) follows directly from a result of Lazard on ℓ–adic Lie groups
(see [GAN] IV.3.2.6), because the automorphism of the Lie algebra of S (hence
of S′) are all inner up to the automorphism of the field (in our case). The
assertion (S2) for finite fields is an old theorem of Steinberg (see [St] 3.2),
and as remarked in [CST] in the comments (in page 587) on [St], (S2) for
general infinite fields follows from a very general result in [BT] 8.14. Since the
paper [BT] is a long paper and treats only algebraic groups over an infinite
field (not over a valuation ring like Zℓ), for the reader’s convenience, we will
give a self-contained proof of (S2) restricting ourselves to unitary groups and
symplectic groups.

Since the assertions (S3) concerns only sufficiently large primes, we may always
assume

(QS) G1(Zp) and G1(Zℓ) are quasi-split.

We now prove the assertion (S3). Let φ : G1(Zp) → G1(Zℓ) be a homomor-
phism. Since G1(Zp) is quasi split, G1(Zp) is generated by unipotent elements
(see Proposition 3.1), and its unipotent radical U is generated by an additive
subgroup Uα corresponding to a simple root α.

If G1 = SL(n)/Z, for example, we may assume that Uα is made of diagonal
matrices

diag[1j , ( 1 u
0 1 ) , 1n−j−2] :=

( 1j 0 0

0 ( 1 u
0 1 ) 0

0 0 1n−j−2

)

with u ∈ Zp for an index j (with 1 ≤ j ≤ n), where 1j is the j × j identity
matrix.

In general, U and Uα are p-profinite. We consider the normalizer N(Uα) and
the centralizer Z(Uα) of Uα in G1. Then by conjugation, N(Uα)/Z(Uα) acts
on Uα. Since φ is a group homomorphism, the quotient N(Uα)/Z(Uα) keeps
acting on the image φ(Uα) in G1(Zℓ) through conjugation by elements in
φ(N(Uα)). If p 6= ℓ, every element of φ(Uα) is semi-simple (because unipotent
radical of G1(Zℓ) is ℓ-profinite). Thus the centralizer (resp. the normalizer) of
φ(Uℓ) is given by Z(Zℓ) (resp. N(Zℓ)) for a reductive subgroup Z (resp. N)
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of G1. Then N(Zℓ)/Z(Zℓ) is a finite subgroup of the Weyl group W1 of G1/C

which is independent of ℓ.

For example, if G1 = SL(n)/Z, and if φ(Uα) is made of diagonal matrices
diag[ζ11m1

, ζ21m2
, . . . , ζr1mr

] for generically distinct ζj , Z is given by the sub-
group

SL(n) ∩ (GL(m1)×GL(m2)× · · · ×GL(mr)),

where GL(m1) × GL(m2) × · · · × GL(mr) is embedded in GL(n) diagonally.
The quotient N/Z in this case is isomorphic to the subgroup of permutation
matrices preserving Z.

If φ(Uα) is nontrivial, the image of N(Uα)/Z(Uα) in Aut(φ(Uα)) grows at least
on the order of p as p grows. In the above example of G1 = SL(n)/Z, if
φ(Uα) ∼= Z/pmZ for m > 0, all elements in Aut(φ(Uα)) ∼= (Z/pmZ)× come
from N(Uα)/Z(Uα) ∼= Z×

p . This is impossible if p ≫ |W1|. Thus φ(Uα) = 1.
Since G1(Zp) for large enough p is generated by Uα for all simple roots α, φ
has to be trivial for p large enough.

Since we assume to have the strong approximation theorem, we need to assume
that G1 is simply connected; so, we may restrict ourselves to symplectic and
unitary groups (those groups of types A and C). We shall give a detailed
exposition of how to prove (S2) for general linear groups and split symplectic
groups and give a sketch for quasi split unitary groups.

Write χ : G→ ZG = G/G1 for the projection map for the cocenter ZG. In the
following subsection, we assume that the base field K is either a number field
or a nonarchimedean field of characteristic 0 (often a p-adic field). When K is
nonarchimedean, we suppose that the classical group G is defined over Zp, and
if K is a number field, G is defined over Q. We write O for the maximal compact
ring of K if K is nonarchimedean (so, O is the p-adic integer ring if K is p-adic).
We equip the natural locally compact topology (resp. the discrete topology) on
G(A) for A = K or O if K is a local field (resp. a number field). Then we define,
for A = K and O, Autχ(G(A)) by the group of continuous automorphisms of
the group G(A) which preserve χ up to automorphisms induced on ZG by the
field automorphisms of K. Thus

Autχ(G(A)) = {σ ∈ Aut(G(A))|χ(σ(g)) = τ(χ(g)) for ∃ τ ∈ Aut(K)}.

For a subgroup H with G1(A) ⊂ H ⊂ G(A) and a section s of χ : H → ZG(A),
we write Auts(H) for the group of continuous automorphisms of H preserving
s up to field automorphisms and inner automorphisms (in [PAF] 4.4.3, the
symbol Autdet(GL2(A)) means the group Auts here for a section s of det :
GL(2)→ Gm).

Documenta Mathematica 11 (2006) 25–56



Automorphism Groups of Shimura Varieties 43

3.1 General linear groups

Let Lj ⊂ Pn−1 be the hyperplane of the projective space Pn−1(K) defined
by the vanishing of the j–th homogeneous coordinate xj . We start with the
following well known fact:

Proposition 3.1. Let P be the maximal parabolic subgroup of GL(n) fixing the
infinity hyperplane Ln of Pn−1. For an infinite field K, SLn(K) is generated
by conjugates of UP (K), where UP is the unipotent radical of P .

Proof. Let H be a subgroup generated by all conjugates of UP . Thus H is
a normal subgroup of SLn(K). Since SLn(K) is almost simple, we find that
SLn(K) = H.

Proposition 3.2. For an open compact subgroup S of SLn(K) for a p–adic
local field K, the unipotent radical U of a Borel subgroup B1 of SLn(K) and
S generate SLn(K). Similarly S and a Borel subgroup B of GLn(K) generate
GLn(K).

Proof. We may assume that U is upper triangular. Thus U ⊃ UP for the max-
imal parabolic subgroup P in Proposition 3.1. We consider the subgroup H
generated by S and UP . The group UP acts transitively on the affine space
An−1(K) = Pn−1(K) − Ln. For any g ∈ S − B1 for the upper triangu-
lar Borel subgroup B1, gUg−1 acts transitively on Pn−1(K) − g(Ln). Note
that

⋂
g∈S g(Ln) is empty, because intersection of n transversal hyperplanes is

empty. Thus we find that H acts transitively on Pn−1(K). Since Pn−1(K) is in
bijection with the set of all unipotent subgroups conjugate to UP in SLn(K),
H contains all conjugates of UP in SLn(K); so, H = SLn(K) by Propo-
sition 3.1. From this, generation of GLn(K) by B and S is clear because
GLn(K) = B · SLn(K).

In this case of GLn, we have χ = det and ZG = Gm. Thus, for A = K
or O, Autdet(GLn(A)) is the automorphism group of the group GLn(A)
preserving the determinant map up to field automorphisms of K, that is,
σ ∈ Autdet(GLn(A)) satisfies det(σ(g)) = τ(det(g)) for a field automor-
phism τ ∈ Aut(K). More generally, for a subgroup H ⊂ GLn(A) containing
SLn(A), we define Autdet(H) for the automorphism group of H preserv-
ing det : H → A× up to field automorphisms of K. Fixing a section
s : A× → GLn(A) of the determinant map, that is, det(s(x)) = x, we recall
Auts(GLn(A)) = {σ ∈ Aut(GLn(A))|σ(s(x)) = g · s(τ(x))g−1} for some
g ∈ GLn(A) and τ ∈ Aut(K). Similarly, we define Auts(H) for a section s of
the determinant map det : H → A×. We write Z(SLn(A)) for the center of
SLn(A), which is the finite group µn(A) of n-th roots of unity.

We now prove (S2) for SLn(A):
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Proposition 3.3. If A = K, assume that K is either a local field of char-
acteristic 0 or a number field. If A = O, assume that K is a local field of
characteristic 0. Then we have

1. The continuous automorphism groups Aut(PGLn(A)), Aut(PSLn(A))
and Aut(SLn(A)) are all canonically isomorphic to

{
(Aut(K)× 〈J〉) ⋉ PGLn(A) if n ≥ 3,

Aut(K) ⋉ PGLn(A) if n = 2,

where J(x) = w0
tx−1w−1

0 for w0 = (δi,n+1−j) ∈ GL(n) and Aut(K) is
the continuous field automorphism group of K.

2. If H ⊃ SLn(A) is a subgroup of GLn(A), we have

Auts(H) = {g ∈ Aut(PGLn(A))|τg(det(H)) = det(H)},

where τg indicates the projection of g to Aut(K).

3. We have a canonical split exact sequence

1→ Hom(A×, Z(SLn(A)))→ Autdet(GLn(A))→ Aut(SLn(A))→ 1.

In other words, for σ ∈ Autdet(GLn(A)), there exists g ∈
GLn(A) and τ ∈ Aut(K) with σ(x) = ζ(det(x))gτ(x)g−1 for
ζ ∈ Hom(A×, Z(SLn(A))).

If K is a local field, we put the natural locally compact topology on the group,
and if K is a global field, we put the discrete topology on the group. We shall
give a computational proof for GLn, because it describes well the mechanism of
how an automorphism is determined entry by entry (of the matrices involved).

Proof. We first deal with the case where A is the field K. We first study
PGLn(K). We have an exact sequence:

1→ PGLn(K)
i−→ Aut(PGLn(K))→ Out(PGLn(K))→ 1,

where i(x)(g) = xgx−1. We write B (resp. U) for the upper triangular Borel
subgroup (resp. the upper triangular unipotent subgroup) of GLn(K). Their
image in PGLn(K) will be denoted by B and U .

Let A be a subgroup of GLn(K) isomorphic to the additive group K; so,
we have an isomorphism a : K ∼= A. Consider the image a(1) of 1 ∈ K in
A. Replacing K by a finite extension containing an eigenvalue α of a(1), let
Vα ⊂ Kn be the eigenspace of a(1) with eigenvalue α. Then a( 1

m ) acts on Vα
and a( 1

m )m = a(1) = α ∈ End(Vα). Thus we have an algebra homomorphism:
K[x]/(xm − α) → EndK(Vα) for all 0 < m ∈ Z. If K is a p–adic local field,⋂
m(K×)m! = {1}. By using this, we find

⋂
m(K×)m = {1} for a number field
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K. Thus if K is a non-archimedean local field or a number field, we find that
α has to be 1. Thus A is made up of commuting unipotent elements; so, by
conjugation, we can embed A into U .

Since U ∼= U is generated by unipotent subgroups isomorphic to K, by the
above argument, σ(U) for σ ∈ Aut(PGLn(K)) is again a unipotent subgroup
of PGLn(K). Since B is the normalizer of U , again σ(B) is the normalizer of
σ(U); so, σ(B) is a Borel subgroup. We find g ∈ GLn(K) such that σ(B) =
gBg−1. Thus we may assume that σ fixes B. Applying the same argument to
U , we may assume that σ fixes U . Since we have a unique filtration:

U = U1 ⊃ U2 ⊃ U3 ⊃ · · · ⊃ Un−1 ⊃ {1} = Un

with [Uj , Uj ] = Uj+1 and Uj/Uj+1
∼= Kn−j , σ preserves this filtration. We fix

an isomorphism aj : Kn−j →֒ Uj given by

aj(α1, . . . , αn−j) = 1 + α1E1,j+1 + α2E2,j+2 + · · ·+ αn−jEn−j,n,

where Ei,j is the matrix having non-zero entry 1 only at the (i, j)-spot. Then
aj induces Kn−j ∼= Uj/Uj+1. Since σ([u, u′]) = [σ(u), σ(u′)] for u, u′ ∈ Uj
and [σ(u), σ(u′)] mod Uj+2 is uniquely determined by the cosets uUj+1 and
u′Uj+1, σ : U ∼= U is uniquely determined by σ1 : U1/U2

∼= U1/U2 induced by σ.

Each subquotient Uj/Uj+1 is a K-vector space and is a direct sum of one-
dimensional eigenspaces under the conjugate action of T := B/U . Define an
isomorphism t : (K×)n/K× ∼= T by t(α1, . . . , αn) = diag[α1, . . . , αn], and we
write αj(t) = αj if t = diag[α1, . . . , αn]. Then Uij ⊂ U (j > i) generated by
uij = 1 + Ei,j is the eigen-subgroup (isomorphic to one dimensional vector
space over K) on which t ∈ T acts via the multiplication by χij(t) = αiα

−1
j (t).

The automorphism σ also induces an automorphism σ of T = B/U . Thus σ
permutes the eigen-subgroups Uij of U .

Let k = Q if K is a number field and k = Qp if K is a p-adic field.
Then σ induces a k-linear automorphism on Uj/Uj+1 for all j. We first
assume K = k. Write σ(a1(1, . . . , 1)) = a1(α1, . . . , αn−1) mod U2. Solve
aja

−1
j+1 = αj for j = 1, . . . , n − 1. Then changing σ by x 7→ tσ(x)t−1 for

t = diag[a1, a2, . . . , an], we may assume that σ1(a1(1)) ≡ a1(1) mod U2 for
1 = (1, 1, . . . , 1) ∈ Kn−1. Further by conjugating σ by an element in U , we
may assume that σ(a1(1)) = a1(1). Thus σ(a1(r · 1)) = a1(r · 1) for all r ∈ Q.
By taking commutators of a1(r · 1), we have a nontrivial element in Uj/Uj+1

fixed by σ for all j. In particular, σ fixes Un−1
∼= k and hence fixes the

character χ1n. If n ≥ 3, looking at Un−2/Un−1 = U1,n−1 ⊕ U2,n, we conclude
that σ either interchanges the two eigenspaces or fixes each. If σ interchange
the two, replacing σ by σ ◦ J for the automorphism J = Jn of GLn(K) given
by J(x) = w0

tx−1w−1
0 , we may assume σ fix each T -eigenspace of Un−2/Un−1.

By the commutator relation [uij , ujk] = uik if i < j < k, we conclude that
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σ has to fix all eigen-subgroups Uij of U . Since tuijt
−1 = χij(t)uij and

σ commutes with the multiplication by χij(t) ∈ k on Uij , we find by the
K-linearity of σ that χij(σ(t))σ(uij) = σ(χij(t)uij) = χij(t)σ(uij). Thus σ
acts trivially on T . Since a1(1) has non-trivial projection to all T -eigenspaces
in U1/U2, we conclude that σ(ui,i+1) = ui,i+1. Then U is fixed by σ again
by the commutator relation [uij , ujk] = uik if i < j < k. Thus, modifying
σ further by an inner automorphism and J , we may assume that σ fixes B
element-by-element.

Now we assume that K ) k. Modifying σ as above by composing an inner
automorphism and the action of J if necessary, we assume that σ preserves the
eigen subgroups Uij for all i < j. We are going to show that χij ◦ σ = σ̃ ◦ χij
(for all i < j) for a continuous field automorphism σ̃ of K. Since σ induces
a k-linear automorphism of Uij ∼= K and χij(t) ∈ Im(χij) = K× acts on
Uij through the multiplication by χij(t) ∈ K×, we find an automorphism
σ̃ij ∈ Aut(K) of the field K such that χij ◦ σ = σ̃ij ◦ χij . This field au-
tomorphism σ̃ = σ̃ij does not depend on (i, j) by the commutator relation
[uij , ujk] = uik for all i < j < k. Thus modifying σ further by an element of
Aut(K), we may assume that σ fixes B.

We are going to prove that σ inducing the identity map on B is the identity
on the entire group. For the moment, we suppose that K is p–adic. Then by
[GAN] IV.3.2.6, for a sufficiently small open compact subgroup S ⊂ PGLn(K),
σ : S ∼= σ(S) induces an automorphism Φσ of the Lie algebra GQp

of PGLn(K)
over Qp. Since dimQp

GQp
= dimQp

GK for the Lie algebra GK of PGLn(K)
over K, we find that AutK(GK) ⊂ AutQp

GQp
has the same dimension over

Qp as a Lie group over Qp (cf. [BLI] VIII.5.5). Thus Φσ ∈ GK is induced
by g ∈ GLn(K) through the adjoint action (cf. [BLI] VIII.13). Since σ fixes
B, we find that g commutes with B and, hence, g is in the center. Therefore,
shrinking S further if necessary, we conclude σ = 1 on S and on B. Since B
and S generate PGLn(K) (see Proposition 3.2), we find σ is the identity map
over entire PGLn(K). This shows that, under the condition that n ≥ 3,

Out(PGLn(K)) ∼= Aut(K)× 〈J〉
and Aut(PGLn(K)) = (Aut(K)× 〈J〉) ⋉ PGLn(K)

if K is a local p–adic field. If n = 2, we need to remove the factor 〈J〉 from the
above formula. If K = R or C, the above fact is well known (see [BLI] III.10.2).

Suppose now that K is a number field. Write O for the integer ring of K. Take
a prime p such that Op

∼= Zp. Since σ fixes B, for the diagonal torus T , σ fixes
its normalizer N(T ). Since N(T ) = W ⋉ T , we find that σ(w) = tw for an
element t ∈ T . Since PGLn(K) =

⊔
w∈W BwB, we find that σ is continuous

with respect to the p–adic topology. Thus σ induces Aut(PGLn(Kp)) fixing B,
and we find that σ = 1, which shows again Out(PGLn(K)) ∼= (Aut(K)× 〈J〉)
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and Aut(PGLn(K)) = (Aut(K)× 〈J〉) ⋉ PGLn(K) for a number field K.

We can apply the same argument to Aut(PSLn(K)) and Aut(SLn(K)). Modi-
fying σ by inner automorphisms, J and an element in Aut(K), we may assume
that σ leaves B1 fixed. Then by the same argument as above, we conclude
σ = 1 and hence we find that, if n > 2,

Aut(SLn(K)) = Aut(PSLn(K)) = (Aut(K)× 〈J〉) ⋉ PGLn(K).

If n = 2, again we need to remove the factor 〈J〉 from the above formulas.

Now we look at Auts(H) for a section s of det : H → K×. Since σ ∈ Autdet(H)
preserves the section s up to field and inner automorphisms, modifying σ by
such an automorphism, we may assume that σ fixes Im(s). Then σ is deter-
mined by its restriction to SLn(K) ⊂ H and, hence, comes from and element
in Aut(K) ⋉ PGL2(K) preserving H.

To see the last assertion (3) for A = K, we consider the restriction map

Res : Autdet(GLn(K))→ Aut(SLn(K)).

Since Aut(SLn(K)) acts naturally on GLn(K) by the result already proven,
the homomorphism Res is surjective. Take σ ∈ Ker(Res), and fix a section
s : K× → GLn(K) of the determinant map. Then for x ∈ SLn(K), we
have s(a)xs(a)−1 = σ(s(a)xs(a)−1) = σ(s(a))xσ(s(a))−1, because Res(σ)
is the identity map. Thus σ(s(a))s(a)−1 commutes with SLn(K). Taking
the determinant of σ(s(a))s(a)−1, we find that σ(s(a))s(a)−1 ∈ Z(SLn(K))
and a 7→ ζ(a) = σ(s(a))s(a)−1 is a homomorphism of the group K× into
Z(SL2(K)).

For any g ∈ GLn(K), we can write uniquely g = s(det(g))u with u ∈ SLn(K).
For a homomorphism ζ : K× → Z(SLn(K)),

σ(g) = σ(s(det(g))u) = ζ(det(g))s(det(g))u = ζ(det(g))g

gives an endomorphism of GLn(K). It is an automorphism because σ induces
the identity on SLn(K) and K× = det(GLn(K)). Thus we get the desired
exact sequence.

We now assume A = O. Since the argument is the same as in the case of the
field K, we only indicates some essential points. Let U(O) = U∩SLn(O) for the
subgroup U of upper unipotent matrices. Since Pn−1(O) = Pn−1(K), all Borel
subgroups of SLn(O) are conjugate each other. Since B1(O) = SLn(O)∩B is a
semi-direct product of T1(O) and U(O), all unipotent subgroups are conjugate
each other. By the same argument in the case of the field, we may assume that

σ ∈ Aut(PGLn(O)) leaves U(O) stable. Writing bj for (0, . . . ,
j

bj , 0, . . . , 0) ∈
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On−1 with bj ∈ O, we have t(α)a1(bj)t(α)−1 = a1(αjbjα
−1
j+1) for a1 : On−1 ∼=

U(O)/[U(O), U(O)] and t : (O×)n ∼= T (O) as in the proof of Proposition 3.3.
Then applying σ to the above formula, we see that σ preserves the coordinates
αj , and σ(t(α))σ(a1(bj))σ(t(α)−1) = σ(a1(αjbjα

−1
j+1)) for α = (αj) ∈ (O×)n.

If σ(a1(ej)) ∈ m for ej = (0, . . . ,
j

1, 0, . . . , 0) ∈ On−1, then

σ(t(α))σ(a1(ej))σ(t(α))−1 = σ(a1(αejα
−1))

has entry in m at (j, j + 1). However σ(U/U2) = U/U2
∼= On−1 by a1(b) ↔ b,

we find O ⊂ m, a contradiction. Thus we have σ(a1(1)) = a1(α) for an element
in α ∈ (O×)n−1. Then t(α) ∈ GLn(O),and modifying σ by the conjugation of
t(α), we may assume that σ(a1(1)) = a1(1). Then proceeding in exactly the
same way in the case of the field, we find that

Aut(PGLn(O)) =

{
(Aut(O)× 〈J〉) ⋉ PGLn(O) if n ≥ 3,

Aut(O) ⋉ PGL2(O) if n = 2.

From this, again we obtain the desired result for all other automorphism groups
listed in the proposition.

Let M = K⊕K be a semi-simple algebra with involution c(x, y) = (y, x). Then
we can realize SLn(K) as a special unitary group with respect to the hermitian
form (u, v) = Tr(tucw0v) (u, v ∈Mn):

G1(K) =
{
α ∈ SLn(M)

∣∣(αu, αv) = (u, v)
}
.

Indeed SLn(K) ∼= G1(K) by x 7→ (x, J(x)). Then we have Aut(M) ∼=
Aut(K) × 〈J〉, and the results in Propositions 3.3 for A = O and K can be
restated as

Aut(G1(A)) = Aut(M) ⋉ PG(A)

for the unitary group G with respect to (·, ·). We used in the proof of the
theorem this version of the result in this section when K is a completion of the
totally real field F at a prime l splitting in the CM field M ; so, Ml = Kl ⊕Kl

and c is induced by complex conjugation c of M .

3.2 Symplectic groups

We start with a general fact valid for quasi-split almost simple connected groups
G1 not necessarily a symplectic group.

Proposition 3.4. Let K be a p–adic local field. Let S be an open subgroup
of G1(K) of a classical almost simple connected group G1 quasi-split over K.
Let P0 be a minimal parabolic subgroup of G1 defined over K with unipotent
radical U . Then S and U(K) generate G1(K).
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The proof is similar to that of Proposition 3.2. Here is a sketch. Taking the
universal covering of G1, we may assume that G1 is simply connected and is
given by a Chevalley group G1 inside GL(n) for an appropriate n defined over
O. Thus G1(K) is almost simple. We may assume that P0 = B ∩ G1 for the
upper-triangular Borel subgroup B of GL(n). Thus G1 acts on the projective
space Pn−1 through the embedding G1 ⊂ GL(n). Take the stabilizer P ⊂ G1 of
the infinity hyperplane Ln of Pn−1. Then P is a maximal parabolic subgroup
of G1 containing P0. Since G1(K) is almost simple, G1(K) is generated by
conjugates of the unipotent radical UP (K) of P . The flag variety P = G1/P
is an irreducible closed subscheme of Pn−1, and UP (K) acts transitively on
P−Ln. Since P is covered by finitely many affine open subschemes of the form
P−g(Ln) (on which gUP g

−1 acts transitively), the subgroup H generated by S
and UP (K) acts transitively on P and hence contains all conjugates of UP (K).
This shows that G1(K) is generated by S and UP (K).

Let In be the antidiagonal In = (δn+1−i,j) ∈ Mn(Q) and Jn =
(

0 −Ig

Ig 0

)
for

n = 2g is an anti-diagonal alternating matrix. In this subsection, we deal with
the split symplectic group defined over Q given by

G(A) = GSp2g(A) =
{
α ∈ GLn(A)

∣∣αJ2g
tα = ν(α)J2g for ν(α) ∈ A×} ,

and G1 = Sp2g = Ker(ν). We write Z for the center of GSp2g. We write B for
the upper triangular Borel subgroup of GSp2g. We write U for the unipotent
radical of B. For the diagonal torus T , we have B = T ⋉ U , and B is the
normalizer of U(K) in GSp2g(K) for a field extension K of Q. We take a
standard parabolic subgroup P ⊃ B of GSp2g(K) with unipotent radical UP
contained in U .

In this symplectic case, χ : G → ZG is the similitude map ν : GSp2n → Gm;
so, we have Autν(GSp2n(A)) and Auts(H) for a subgroup H with Sp2n(A) ⊂
H ⊂ GSp2n(A) and a section s of ν : H → K×. Here A = K or O.

Proposition 3.5. Let K be a local or global field of characteristic 0. Then we
have

1. Aut(Sp2g(K)) = Aut(PGSp2n(K)) = Aut(K) ⋉ PGSp2g(K), where we
define PGSp2g(K) = GSp2n(K)/Z(K).

2. For a section s of ν : H → K× for a closed subgroup H with Sp2n(K) ⊂
H ⊂ GSp2n(K), Auts(H)is given by

{(τ, g) ∈ Aut(K) ⋉ PGSp2g(K)
∣∣τ(ν(H)) = ν(H)}.

3. We have a canonical split exact sequence

1→ Hom(K×, Z(Sp2n(K)))→ Autν(GSp2n(K))→ Aut(Sp2n(K))→ 1,

where Z(Sp2n(K)) is the center {±1} of Sp2n(K).
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We describe here a shorter argument proving the assertion (1) for GSp2g (than
the computational one for GL(n)) using the theory of root systems (although
this is just an interpretation of the computational argument in terms of a
slightly more sophisticated language). The assertions (2) and (3) follow from
the assertion (1) by the same argument as in the case of GLn(K).

Proof. By [BLI] III.10.2, we may assume that K is either p–adic local or a
number field. Write simply B = B(K), U = U(K) and T = T (K). Let
σ ∈ Aut(G(K)). In the same manner as in the case of GL(n), we verify that
σ sends unipotent elements to unipotent elements. Write N = log(U) which is
a maximal nilpotent subalgebra of the Lie algebra G of Sp2g(K).

Let k = Q if K is global and k = Qp if K is a p–adic field. Since σ(U) is
generated by unipotent matrices, we have log(σ(U)) (which we write σ(N)) is a
nilpotent subalgebra of G, and dimk σ(N) = dimk(N). Thus σ(N) is a maximal
nilpotent subalgebra of G; so, it is a conjugate of N by a ∈ Sp2g(K). This im-
plies σ(N) = aNa−1. Conjugating back by a, we may assume that σ(N) = N.
Then σ(U) = U and hence σ(B) = B because B is the normalizer of U .
Thus σ induces an automorphism σ of B/U ∼= T . We have weight spaces Nα

and N =
⊕

α Nα. From this, we conclude that σ permutes Nα: σ(Nα) = Nα◦σ.

Suppose K = k. Then σ is K–linear; in particular, σ induces a permutation of
roots which has to give rise to a K–linear automorphism of the Lie algebra G.
Modifying σ by the action of Weyl group (conjugation by a permutation ma-
trix), we find that the permutation has to be trivial or an outer automorphism
of the Dynkin diagram of Sp2g (e.g. [Tt] 3.4.2 or [BLI] VIII.13). Since the
Dynkin diagram of Sp2g does not have any non-trivial automorphism, we find
that the permutation is the identity map. Since on Nα, T acts by a character
α : T → K×, we find that α(t) = α(σ(t)); so, σ is also the identity map.

We now assume that K 6= k. For the set of simple roots ∆ of T with respect to
N,
⊕

α∈∆ Nα →֒ N induces an isomorphism
⊕

α∈∆ Nα
∼= N/[N,N]. In other

words, {Nα|α ∈ ∆} generates N over K. The K–vector space structure of
N induces an embedding i1 : K →֒ Endk(N) of k–algebras. Since σ induces
σN ∈ Endk(N), we have another embedding i2 = σ−1

N i1σN of K into Endk(N).
In Endk(N/[N,N]), the subalgebra A1 generated by i1(K) and the action of
T is a maximal commutative k–subalgebra. The subtorus T0 given by the
connected component of

{t ∈ T |α(t) = β(t) for all α, β ∈ ∆}

is dimension 1 and acts on N/[N,N] by scalar multiplication. This property
characterizes T0. Since the fact that T0 acts by scalar multiplication on
N/[N,N] does not change after applying σ, we have σ(T0) = T0. The image
of ij(K) in Endk(N/[N,N]) is generated over k by the action of T0; so, they
coincide. Since σ ∈ Autk(N) is an automorphism of the Lie algebra, the
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action of σ on N/[N,N] determines the action of σ on N. In particular, we
conclude i1(K) = i2(K), and we can think of τ = i−1

2 ◦ i1 ∈ Aut(K). Hence,
σ is τ–linear for τ ∈ Aut(K) (that is, σ(ξv) = ξτσ(v) for ξ ∈ K). Thus
modifying by τ , we may assume that σ : N→ N is K–linear. Then σ induces
a permutation of roots which has to give rise to an automorphism of the Lie
algebra of Sp2g. Then by the same argument as in the case where K = k,
we conclude that σ induces identity map on B/U and U . Taking T to be
diagonal, we may assume that σ(T ) = uσTu

−1
σ for uσ ∈ U . Thus by modifying

σ by the inner automorphism of uσ, we may assume that σ is the identity on B.

Suppose that K is p–adic, then σ sends an open compact subgroup S to
σ(S), which induces an endomorphism of the Lie algebra of Sp2g(O) for the
p–adic integer ring O and induces the identity map on the Lie algebra of B;
in particular, σ is a O–linear map on the Lie algebra. Since an automorphism
of the Lie algebra is inner induced by conjugation by an element g ∈ Sp2g(K),
we have gbg−1 = b for b ∈ B. Since the centralizer of B is the center of G, we
find that σ is the identity on S.
Since S and U generate G1 = Sp2g, we find that σ is the identity over G. This
proves the desired result for G1 and p–adic fields K.

We can proceed in exactly the same way as in the case of GL(n) when K is a
number field and conclude the result.

We then get the following integral analogue in a manner similar to Proposi-
tion 3.3:

Proposition 3.6. If K is a finite extension of Qp for p > 2 with integer ring
O, we have

Aut(Spn(O)) = Aut(PGSpn(O)) = Aut(K) ⋉ PGLn(O),

and a canonical split exact sequence

1→ Hom(O×, Z(Sp2n(O)))→ Autν(GSpn(O))→ Aut(Sp2n(O))→ 1,

where Z(Sp2n(O)) = {±1} is the center of Sp2n(O).

3.3 Quasi-split unitary groups

Let M/K be a p–adic quadratic extension with p–adic integer rings R/O, and
consider the quasi split unitary group

G(K) =
{
α ∈ GLn(M)

∣∣αIntαc = ν(α)In
}

and G(O) = GLn(R) ∩G(K),

where c is the generator of Gal(M/K), ν : G → K× is the similitude map,
In = w0 if n is odd and I2m =

(
1m 0
0 −1m

)
w0 if n = 2m is even. We may assume

that n ≥ 3 because in the case of n = 2, we have PG ∼= PGL2 (so, the desired
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result in this case has been proven already in 3.1).

We write G1 for the derived group of G. Thus

G1(K) = {g ∈ G(K)|det(g) = ν(g) = 1}.

Define the cocenter ZG = G/G1 and write µ : G→ ZG for the projection. We
may identify µ with det×ν and ZG with its image in ResM/Qp

Gm×ResK/Qp
Gm.

We consider Autµ(G(A)) for A = O and K made up of group automorphisms
σ of G(A) satisfying µ ◦ σ = µ. We suppose that the nontrivial automorphism
c of M over K is induced by an order 2 automorphism of the Galois closure
Mgal of M/Qp in the center of Gal(Mgal/Qp).

Write GA for the Lie algebra of G1(A) for A = K, O, M and R.
Since G1(M) ∼= SLn(M), by Proposition 3.3, the Lie algebra automor-
phism group Aut(GM ) is isomorphic to (Aut(M)× 〈J〉) ⋉ PG(M). Since
GK ⊗K M = GM , any automorphism of GK extends to an automor-
phism of GM ; so, AutK(GK) ⊂ Aut(GM ), and by this inclusion sends
σ ∈ Aut(M) ⊂ Aut(GK) to an element (σ, 1) ∈ (Aut(M)× 〈J〉). By this fact,
at the level of the Lie algebra, all automorphisms of GA for A = O and K
are inner up to automorphism of M , and we have Aut(GA) = Aut(A)⋉PG(A).

We now study the automorphism group of the p-adic Lie group G(K) and
G(O).

Proposition 3.7. Let A = O or K for a p-adic field K. We assume that
p > 2 and K/Qp is unramified if A = O. Then we have

1. Aut(G1(A)) = Aut(PG(A)) = Aut(M) ⋉ PG(A),

2. We have a canonical split exact sequence:

1→ Hom(ZG(A), Z(G1(A)))→ Autµ(G(A))→ Aut(G1(A))→ 1,

where Z(G1(A)) is the center of G1(A) and is isomorphic to µn(A).

Proof. We start with a brief sketch of the argument. A standard Borel
subgroup of G (i.e., a standard minimal parabolic subgroup) is given by
the subgroup B made up of all upper triangular matrices. We consider the
subgroup U ⊂ B made up of upper unipotent matrices. If σ ∈ Autµ(G(K)),
σ(U) is again generated by unipotent elements. Thus by [B] 6.5, σ(U) is a
conjugate of U in G(K). Then by the same argument in the case of GL(n),
modifying σ by an element in Aut(M) ⋉ G(K), we may assume that σ fixes
B. Again by the same argument as in the case of GL(n), we conclude that
σ = 1. Thus Aut(PG(K)) and Aut(G1(K)) are given by Aut(M) ⋉ PG(K),
and further assuming that p is odd and unramified in M/Qp, Aut(PG(O))
and Aut(G1(O)) are given by Aut(M) ⋉ PG(O). If σ ∈ Autµ(G(A)),
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then we can write σ(g) = hστ(g)h−1
σ with a unique hσ ∈ PG(A) and

τ ∈ Aut(M) for all x ∈ G1(A). Since Aut(PG(A)) = Aut(M) ⋉ PG(A), we
find σ(g) = ζ(g)hστ(g)h−1

σ with ζ(g) ∈ Z(G(A)) for all g ∈ G(A). Applying
µ and noting that µ(σ(g)) = τ(µ(g)), we find τ(µ(g)) = µ(ζ(g))τ(µ(g)); so,
ζ(g) ∈ Z(G1(A)). Since σ is an automorphism, ζ : G(A) → Z(G1(A)) is a
homomorphism. By our assumption on p, G1(A) is the derived group of the
topological group G(A), and hence, ζ factors through ZG(A) = G(A)/G1(A),
since Z(G1(A)) is abelian. This shows that the assertion (2) follows from the
assertion (1).

Let us fill in the proof of the assertion (1) with some more details, assuming
first for simplicity that n = 3. In this case, by computation, we have

U(K) =
{
u(x, y) =

( 1 x y
0 1 −xc

0 0 1

)
∈ GL3(M)

∣∣∣xxc + (y + yc) = 0
}
.

The diagonal torus T (K) ⊂ G is made of t(a, b) = diag[a, b, a−cbbc] for a ∈M×

and b ∈ M×. Thus writing N = log(U(K)), we have N/[N,N] ∼= M by
u(x, y) 7→ x and N/[N,N] is a one-dimensional vector space over M (so, it is
two-dimensional over the field of definition K) on which t(a, b) acts through
the multiplication by abc: t(a, b)u(x, y)t(a, b)−1 = u(abcx, (ab−1)(ab−1)cy).
By the above argument in the general case, we may assume that σ(B) = B
for σ ∈ Autµ(G(K)). Then we have σ(u(1, y)) = u(a, y′) for a ∈ M× and
t(a, 1)−1σ(u(1, y))t(a, 1) = u(1, y′′) for some y′, y′′ ∈M . Thus modifying σ by
an inner automorphism of an element in T (K) and identifying N/[N,N] with
M by u(x, ∗) mod [N,N] 7→ x, we find that σ induces an automorphism of
the field M = N/[N,N] and the same automorphism on T (K) = B(K)/U(K)
coordinate-wise. Thus again modifying σ by an element in Aut(K) and by an
inner automorphism of an element of U(K), we may assume that σ induces
the identity map on B. We then conclude that σ is the identity map on G(K)
by the same argument as in the case of GL(n) and GSp(2n).

Next, we suppose that n = 4. Again by computation, we have

U(K) =

{
u(w, y, x, z) =

( 1 w x z
0 1 y xc−ywc

0 0 1 −wc

0 0 0 1

)
∈ GL4(M)

∣∣∣∣∣
y=yc and
zc−z=xwc−wxc

}
.

The diagonal torus T (K) ⊂ G is made of t(a, b, ν) = diag[aν, bν, b−c, a−c] for
a, b ∈M× and ν ∈ K×. We have

t(a, b, ν)u(w, y, x, z)t(a, b, ν)−1 = u(ab−1w, bbcνy, abcνx, aacνz).

Thus writing N = log(U(K)), we have N/[N,N] ∼= M ⊕K by u(w, y, x, z) 7→
(w, y) and N/[N,N] is a three-dimensional vector space over K on which
t(a, b, ν) acts through (w, y) 7→ (ab−1w, bbcνy). By the above argument at the
level of the Lie algebra, we may assume that σ(B) = B for σ ∈ Autµ(G(K)) and
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that σ preserves the root space decomposition M ⊕K of N/[N,N]. We write
σM (resp. σK) for the Qp-linear map induced by σ on M (resp. K). Thus mod-
ifying σ by conjugation of t ∈ T (K), we may assume that σ(1, 1) = (1, 1) for
(1, 1) ∈M ⊕K. Writing the character of T giving the action of T on M (resp.
K) by χM (resp. χK), we have χM (t(a, b, ν)) = ab−1 and χK(t(a, b, ν)) = bbcν.
Then on M (resp. on K), the action of T gives rise to the multiplication
by elements of M× = Im(χM ) (resp. in K× = Im(χK)), which is preserved
by σM (resp. by σK); that is, we have σM (χM (t)w) = χM (σ(t))σM (w) and
σK(χK(t)y) = χK(σ(t))σK(y). Since σ fixes (1, 1), we find that σM ∈ Aut(M)
and σK ∈ Aut(K) satisfying χM ◦ σ = σM ◦ χM and χK ◦ σ = σK ◦ χK . By
the commutator relation [u(w, y, ∗, ∗), u(w′, y′, ∗, ∗)] = u(0, 0, wy′ − w′y, ∗), we
find that σM |K = σK . Then modifying σ by the element σM ∈ Aut(M), we
find that σ fixes T = B/U , and again modifying σ by the conjugation by an
element in U(K), we bring σ to preserve T ⊂ B; so, σ induces the identity
map on B. Out of this, we conclude that σ is the identity map on G(K) by
the same argument as in the case of GL(n) and GSp(2n), because σ coincides
with an inner automorphism on an open neighborhood of the identity in G(K)
(by the argument at the level of the Lie algebra).

In the general case of n > 4, if n = 2m+ 1 is odd, we may identify N/[N,N] =
Mm as M -vector space by (ui,j) ∈ N 7→ (u1,2, . . . , um,m+1). On the j-th
factor, t = diag[a1, . . . , an] ∈ T (K) acts through the multiplication by aja

−1
j+1 ∈

M×. If n = 2m is even, N/[N,N] ∼= Mm−1 ⊕K by sending upper unipotent
matrices (ui,j) ∈ U(K) to (u1,2, . . . , um,m+1). On the first j-th factors with
j < m, t = diag[νa1, . . . , νam, a

−c
m , . . . , a−c1 ] ∈ T (K) (aj ∈ M× and ν ∈ K×

acts through the multiplication by aja
−1
j+1 ∈ M× and on the m-th factor, t

acts through the multiplication by νama
c
m ∈ K×). More generally, writing

Nj = [Nj−1,Nj−1] starting with N1 = [N,N], Nj/Nj+1 is a T (K)-module
under the conjugation action. We go in the same way as in the case of GL(n):
modifying σ by an inner automorphism of an element of T , we may assume
that σ fixes 1 = (1, . . . , 1) ∈ Mm if n = 2m + 1 and that if n = 2m, σ fixes
1 = (1, . . . , 1, 1) ∈ Mm−1 ⊕ K. Once σ is normalized in this way, we see
that σ on B/U and σ on N/[N,N] are the action of an element of Aut(M)
coordinate-wise. The action of Aut(M) is faithful if n ≥ 3 because we have
a factor M in N/[N,N]. We modify σ therefore by an element of Aut(M);
then, σ is T (K)-linear on N/[N,N]. Once this is established, we verify, using
commutator relations, that σ commutes with the conjugation action of T on
Nj/Nj+1 for all j. Then modifying again by conjugation of an element of
U(K), we conclude that σ is the identity on B, and the rest is the same as the
proof in the case of GL(n) and GSp(2n).

If p is odd and unramified in M/Qp, the nilpotent Lie algebra N/O is the direct
sum of its root spaces as T (O)-modules. Then the above argument done over
the field K can be checked word-by-word over O, and we get the same assertion
for A = O.

Documenta Mathematica 11 (2006) 25–56



Automorphism Groups of Shimura Varieties 55

References

Books

[ABV] D. Mumford, Abelian Varieties, TIFR Studies in Mathematics, Ox-
ford University Press, New York, 1994.

[ARG] G. Cornell and J. H. Silverman, edited, Arithmetic Geometry,
Springer, 1986
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Abstract. We consider a semiabelian scheme G over a regular base
scheme S, which is generically abelian, such that the points of the
base where the scheme is not abelian form a regular divisor S0. We
construct a compactification of G, that is a proper flat scheme P over
the base scheme, containing G as a dense open set, such that PS0

is a divisor with normal crossings in P . We also show that given an
isogeny between two such semiabelian schemes, we can construct the
compactifications so that the isogeny extends to a morphism between
the compactifications.

2000 Mathematics Subject Classification: 11G10, 11G18, 14G35,
14K05

Introduction

Dans l’article [Mum72], Mumford construit une variété abélienne dégénérante,
c’est-à-dire un schéma semi-abélien qui est génériquement abélien à partir d’un
ensemble de données, dites données de dégénérescences, qui consistent en un
tore déployé de rang constant sur une base complète, et en un groupe de
périodes. Il obtient au cours de sa construction une compactification du schéma
semi-abélien, c’est-à-dire un schéma propre contenant le schéma semi-abélien
comme ouvert dense, et muni d’une action de celui-ci prolongeant son action
sur lui-même par translation.
Faltings et Chai dans [CF90] utilisent cette construction pour obtenir des com-
pactifications des variétés de Siegel et de leur schéma abélien universel. Ils ex-
posent ce faisant comment associer à un schéma abélien dégénérant l’ensemble
des données de dégénérescence qui permettent de le retrouver en utilisant la
technique de Mumford.
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Grâce à ces méthodes, Künnemann, dans [Kün98], construit des compac-
tifications régulières de schémas semi-abéliens sur un anneau de valuation
discrète dont la fibre générique est abélienne. Généralisant sa technique, nous
construisons des compactifications de schémas abéliens sur une base régulière
dégénérant le long d’un diviseur régulier. La méthode requiert l’utilisation
d’un faisceau inversible symétrique ample sur le schéma semi-abélien. En vertu
du corollaire XI 1.16 de [Ray70], tout schéma semi-abélien de fibre générique
abélienne sur une base régulière peut être muni d’un tel faisceau, nous n’intro-
duisons donc pas de restriction en imposant son existence.
Notre construction a pour application de permettre une compactification des
variétés de Shimura associées à certains groupes unitaires et de leur schéma
abélien universel, donnant ainsi des résultats similaires à ceux de Chai et Fal-
tings pour les variétés de Shimura associées aux groupes symplectiques exposés
dans [CF90].
Avant d’énoncer le théorème, introduisons les définitions suivantes.

Définition 1. S est un schéma régulier noethérien, et S0 un diviseur régulier
de S, W l’ouvert complémentaire de S0. G est un schéma semi-abélien sur S,
qui est de rang constant sur S0, et tel que GW est un schéma abélien, et L est
un faisceau inversible symétrique ample sur G.

Remarque 1. Comme G est de rang constant sur S0, il y est globalement
extension d’un schéma abélien par un tore, d’après le corollaire 2.11 de [CF90].

Définition 2. On appelle compactification de G la donnée d’un schéma P
propre, plat et régulier sur S tel que G ⊂ P , possédant les propriétés suivantes :

1. G est dense dans P , et agit sur P par prolongement de son action par
translation sur lui-même.

2. G et P cöıncident sur W

3. il existe un entier k positif tel que L⊗k se prolonge en un faisceau LP
ample sur P

4. P0 est un diviseur à croisements normaux dans P

Le théorème s’énonce alors :

Théorème 1. Il existe des compactifications de G.

On a même la propriété suivante de prolongement des morphismes :

Théorème 2. Soit G1 et G2 comme dans la définition 1, et f un morphisme
de S-schémas en groupes G1 → G2, qui induit une isogénie fη : G1η → G2η.
Alors il existe deux compactifications P1, P2 de G1 et G2 et un morphisme
f̄ : P1 → P2 prolongeant f .

L’énoncé ne fait aucune hypothèse d’existence de faisceaux amples sur G1 et
G2, qui résulte en fait des autres conditions du théorème : d’après la preuve de
la proposition XI 1.2 de [Ray70], du fait que fη est de noyau fini, il existe un
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faisceau inversible ample symétrique L2 sur G2 tel que L1 = f∗L2 soit aussi
ample. Nous supposerons dorénavant deux tels faisceaux fixés.

Pour prouver ces théorèmes, nous allons d’abord étudier une situation locale
(base affine, complète) dans le paragraphe 2, puis voir comment on peut déduire
le résultat global d’un résultat local, dans le paragraphe 3.

1 Découpage du problème

Dans tout ce paragraphe on va se placer dans un cas particulier : le cas où la
base S est irréductible et est complète par rapport au sous-schéma S0.
Le passage du cas complet au cas non complet est expliqué au paragraphe 3.3.
D’autre part, S étant régulier, les composantes irréductibles de S correspondent
à ses composantes connexes, on peut donc travailler composante par compo-
sante. Observons enfin que S étant complet par rapport à S0, S est irréductible
si et seulement si S0 l’est.

1.1 Cas d’un seul groupe

S étant complet par rapport à S0, on a une extension associée à G, appelée
extension de Raynaud (pour la construction de cette extension voir [CF90] p.
33, ou [Mor85]) :

0→ T → G̃
π→ A→ 0

et sur G̃ on a un faisceau inversible ample L̃ provenant de L. G̃ est caractérisé
par le fait que c’est un schéma semi-abélien de rang constant sur S dont le
complété formel le long de S0 est le même que celui de G.

Définition 3. On dit que l’extension est déployée si le tore T est déployé,
de groupe des caractères constant, et si L̃ se descend en un faisceau inversible
ample M sur A.

Lemme 3. Il existe un recouvrement étale fini S′ de S tel que l’extension de
Raynaud du groupe sur S′ obtenu par changement de base soit déployée.

Démonstration. En effet, d’après [D+70], théorème X 5.16, il existe un tel S′

qui permette d’obtenir un tore déployé à groupe de caractères constant, car S
est normal et localement noethérien. Pour ce qui est de l’existence de M, on
se réfère à [Mor85], I.7.2.3.

Définition 4. On appelle dégénérescence déployée la donnée d’un triplet
(G,L,M) où (G,L) est comme dans les données et a une extension de Ray-
naud associée déployée, et M est un faisceau cubique inversible sur A tel que
L̃ = π∗M.

Notons que nous appelons ici dégénéréscence ce qui serait appelé dans [CF90]
dégénérescence ample.
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Définition 5. Un morphisme entre dégénérescences déployées (G,L,M) et
(G′,L′,M′) est la donnée de f = (fG, fL, fA, fM), où fG est un morphisme
G → G′, fL est un isomorphisme f∗GL′ → L, fA : A → A′ est déduit de fG,
fM est un isomorphisme f∗AM′ → M, et enfin fL et fM induisent le même
morphisme f∗

G̃
L̃′ → L̃.

Pour nos données (G,L) sur le schéma S de départ, il existe donc (d’après le
lemme 3) une extension étale finie S′ de S telle que les données (G′,L′) sur S′

obtenues par changement de base forment une dégénérescence déployée (pour
un certain faisceauM′). Comme nous le démontrerons dans le paragraphe 3.2,
on peut déduire une compactification sur S d’une compactification sur S′, ce qui
explique que l’on s’intéresse au cas particulier des dégénérescences déployées.

1.2 Cas d’un morphisme

Plaçons-nous maintenant dans les hypothèses du théorème 2. La construction
de Raynaud étant fonctorielle, f induit fA, fT , fG̃ qui font commuter le dia-
gramme suivant :

0 −→ T1 −→ G̃1 −→ A1 −→ 0
fT ↓ fG̃ ↓ fA ↓

0 −→ T2 −→ G̃2 −→ A2 −→ 0

Définition 6. On appelle morphisme d’extensions une telle flèche.

Lemme 4. Il existe une extension finie comme dans le lemme 3 qui convienne
à la fois à G1 et à G2.

Démonstration. En effet, si S1 convient à G1 et S2 convient à G2, S1 ×S S2

convient à G1 et G2.

Après une telle extension, on obtient un morphisme de dégénérescences
déployées (G1,L1,M1) → (G2,L2,M2). Remarquons que comme fη est une
isogénie, le noyau de f est quasi-fini, de sorte que fT et fA sont aussi des
isogénies.

2 Compactifications locales

Introduisons dès à présent des notations. On notera S = SpecR, I l’idéal
définissant S0 et η le point générique de S. On notera Sn = SpecR/In+1.

On se restreint dans ce paragraphe au cas où S est irréductible, complet par
rapport à S0 et affine. On se donne une dégénérescence déployée (G,L,M), et
un morphisme de dégénérescences déployées f : (G1,L1,M1)→ (G2,L2,M2).
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2.1 Compactifications équivariantes

Dans ce cadre plus restrictif que celui de départ, nous allons démontrer un
théorème légèrement plus fort.
Soit H un groupe fini agissant sur S, c’est-à-dire qu’à chaque h ∈ H est associé
un automorphisme hS : S → S, et ce de manière compatible. On suppose que
H laisse S0 stable.

Définition 7. On dit que H agit sur la dégénérescence déployée (G,L,M),
si à chaque h ∈ H est associé un morphisme de dégénérescences déployées
(G,L,M)→ h∗S(G,L,M), ces morphismes étant compatibles entre eux.

Définition 8. L’action de H étant donnée, on dit qu’une compactification est
équivariante si on peut définir sur (P,LP ) une action de H prolongeant celle
sur (G,L).

Théorème 5. Soit S un schéma irréductible, affine, complet par rapport à
S0, (G,L,M) une dégénérescence déployée sur S, et H un groupe fini agissant
sur cette dégénérescence. Alors il existe des compactifications équivariantes de
(G,L).

Théorème 6. Soit S un schéma irréductible, affine, complet par rapport à S0,
(G1,L1,M1) et (G2,L2,M2) deux dégénérescences déployées sur S, et f un
morphisme de dégénérescences H-équivariant et tel que f induise une isogénie
G1η → G2η. Alors il existe des compactifications équivariantes P1 et P2 de G1

et G2, et un prolongement H-équivariant de f en un morphisme P1 → P2.

La suite du paragraphe est consacrée à la preuve de ces théorèmes.

2.2 Données de dégénérescence

On peut associer fonctoriellement à une dégénérescence déployée un en-
semble de données, appelé données de dégénérescence. Ici aussi nous appe-
lons simplement données de dégénérescence ce qui serait appelé données de
dégénérescences amples dans [CF90]. On a en fait une équivalence de catégories
entre dégénérescences et données de dégénérescence. L’obtention des données
de dégénérescence à partir de la dégénérescence est l’objet du chapitre II de
[CF90]. La construction inverse, due à Mumford ([Mum72]), est reprise en par-
tie ici pour obtenir une compactification.

2.2.1 Liste des données

Une donnée de dégénérescence consiste en un ensemble :
(A,X, Y , ϕ, c, ct, G̃, ι, τ, L̃,M, λA, ψ), tel que :

1. A est une variété abélienne sur S.

2. X et Y sont des faisceaux étales en groupes abéliens libres de même rang
fini r, qui sont constants de valeur X et Y .
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3. ϕ est un homomorphisme injectif Y → X (et donc de conoyau fini).

4. c est un morphisme X → At et ct un morphisme Y → A.

Soit T le tore déployé de groupe des caractères X. L’opposé du morphisme
c détermine une extension :

0→ T → G̃
π→ A→ 0

On fixe un faisceau de Poincaré P sur A×S At.
5. ι est un morphisme Y → G̃ au-dessus de ct. Le morphisme ι cor-

respond à une trivialisation τ : 1Y×X
∼−→ (c × ct)∗P−1

η , qui est
donnée par un système compatible de sections τ(y, µ) = τ(1y,µ) ∈
Γ(η, (ct(y), c(µ))∗P−1

η ) pour y ∈ Y et µ ∈ X.

ι définit une action de y ∈ Y sur G̃η par translation, qu’on note Sy.

6. un faisceau cubique inversible M sur A tel que la polarisation associée
λA : A→ At vérifie λA ◦ ct = c ◦ ϕ.

7. L̃ = π∗M.

On a une trivialisation τ ◦ (idY × ϕ) : 1Y×X
∼−→ (c× (c ◦ ϕ))∗P−1

η .

8. ψ : 1Yη

∼−→ ι∗L̃−1
η est une trivialisation compatible avec τ .

On notera pour simplifier ψ(y) pour ψ(1y) et τ(y, µ) pour τ(1(y,µ).
La trivialisation ψ vérifie la condition suivante : pour presque tout y ∈ Y , ψ(y)
s’étend en une section de ι∗L̃−1 congrue à 0 modulo I. De plus, pour tout
y ∈ Y, y 6= 0, τ(y, ϕ(y)) s’étend en une section congrue à 0 modulo I.
Les deux trivialisations ψ et τ définissent des idéaux fractionnaires de R : Iy
défini par ψ(y), et Iy,µ défini par τ(y, µ), avec la relation Iy+z = IyIzIz,ϕ(y).

Rappelons comment on obtient certaines de ces données. Étant donnée une
dégénérescence déployée (G,L,M), on forme son extension de Raynaud
0→ T → G̃→ A→ 0, ce qui fournit G̃, A, et X le groupe des caractères de
T , qui est constant puisque on a supposé la dégénérescence déployée. D’autre
part on a un schéma semi-abélien Gt tel que GtW est le schéma abélien dual
de GW , il forme aussi une dégénérescence déployée, d’extension de Raynaud
associée 0→ T t → G̃t → At → 0, où At est bien le schéma abélien dual de A.
Ceci nous donne Y qui est le groupe des caractères de T t, et est le dual de X.

2.2.2 Morphismes de données

Un morphisme entre les données de dégénérescences

(A,X, Y , ϕ, c, ct, G̃, ι, τ, L̃,M, λA, ψ)

et

(A′,X ′, Y ′, ϕ′, c′, ct
′
, G̃′, ι′, τ ′, L̃′,M′, λ′A, ψ

′)
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est la donnée d’un ensemble de morphismes fA : A → A′, fX : X → X ′,
fY : Y → Y ′, fG̃ : G̃ → G̃′, un isomorphisme fL : f∗

G̃
L̃′ → L̃, et un isomor-

phisme fM : f∗AM′ → M, ces morphismes vérifiant toutes les conditions de
compatibilité.
Par fonctorialité de la construction de données de dégénérescence, à partir d’un
morphisme f : (G1,L1,M1) → (G2,M2,L2), de dégénérescences déployées,
on obtient un morphisme entre les données de dégénérescences associées, et en
particulier fG̃ : G̃1 → G̃2 et fA : A1 → A2 (comme dans le paragraphe 1.2),
fX : X2 → X1 provenant de fT : T1 → T2, et fY : Y1 → Y2.

2.2.3 Propriétés particulières au cas étudié

Les idéaux Iy et Iy,µ ont une forme particulière dans notre cas.

Proposition 7. Il existe une fonction b : Y ×X → Z bilinéaire, et a : Y → Z
telles que Iy = Ia(y) et Iy,µ = Ib(y,µ)

Démonstration. Dans notre cas particulier, G ne dégénère que sur S0 : sur W ,
c’est un schéma abélien. Rappelons le résultat de [CF90], corollaire 7.5 p. 77.
Soit s un point de S, correspondant donc à un idéal premier p de R. Soit Ys
le sous-groupe de Y formé des éléments y ∈ Y pour lesquels Iy,ϕ(y) n’est pas
contenu dans p. Alors le groupe des caractères de la partie torique de Gts (fibre
de Gt au-dessus de s) est Y/Ys.
Gt étant abélien sur W , si s /∈ S0, la partie torique de Gts est nulle, et donc
Y = Ys, ce qui se traduit par ∀y ∈ Y, s /∈ V (Iy,ϕ(y)). Ceci étant vrai pour
tout s /∈ S0, on en déduit que pour tout y, on a V (Iy,ϕ(y)) ⊂ V (I). Comme
on sait que Iy,ϕ(y) ⊂ I à cause de la condition sur τ(y, ϕ(y)), on en déduit que
V (Iy,ϕ(y)) = V (I). I étant engendré par un élément irréductible ̟, Iy,ϕ(y) est

donc de la forme (̟k) pour un k ∈ Z. Les idéaux Iy et Iy,µ sont donc aussi de
la forme (̟k) pour un k ∈ Z. Il existe donc bien une fonction b : Y ×X → Z
bilinéaire, et a : Y → Z telles que Iy = Ia(y) et Iy,µ = Ib(y,µ).

Tous les idéaux que nous voyons apparâıtre sont donc des puissances de I. Tout
se passe donc comme si nous étions dans un anneau de valuation discrète, ce
qui est exactement la situation étudiée dans [Kün98], ce qui explique que nous
puissions nous inspirer largement de cet article.

2.2.4 Données de dégénérescence équivariantes

Soit H un groupe fini agissant sur S, de façon que chaque h ∈ H induise
un morphisme de dégénérescences déployées h : (G,L,M) → (G,L,M). On
obtient pour tout h ∈ H une action sur G̃ et sur L̃, qu’on note hG̃ et hL̃. Ces
actions sont compatibles avec l’action de Y , au sens où : hG̃η

◦Sy = Sh(y) ◦hG̃η

et S̃y ◦ S∗
y(hL̃η

) = hL̃η
◦ h∗

G̃η
(S̃h(y)). Ceci nous permet de définir une action de

Γ = Y ⋊H sur G̃η et L̃η par les formules Sγ = Sy ◦hG̃η
et S̃γ = hL̃η

◦h∗
G̃η

(S̃y)

pour γ = (y, h).
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2.3 Modèle relativement complet

2.3.1 Définition

Étant donnée une donnée de dégénérescence, on peut définir un modèle relati-
vement complet.

Définition 9. Un modèle relativement complet est la donnée de :

1. π̃ : P̃ → A localement de type fini tel que P̃ est intègre et contient G̃
comme ouvert dense.

2. L̃P̃ un faisceau inversible sur P̃ dont la restriction à G̃ cöıncide avec L̃.
3. une action de G̃ sur (P̃ , Ñ ), où Ñ = L̃P̃ ⊗ π̃∗M−1, qui étend l’action de

G̃ sur (G̃,OG̃) par translation.

4. une action de Y sur (P̃ , L̃P̃ ) notée (Sy, S̃y) qui étend l’action de Y sur

(G̃η, L̃η).

vérifiant les conditions suivantes :

1. il existe un ouvert U de P̃ qui soit G̃-invariant, de type fini sur S, et tel
que P̃ = ∪y∈Y Sy(U).

2. L̃P̃ est ample sur P̃ .

3. condition de complétude : pour une valuation v de K(G̃) positive sur R,
on note xv le centre de v sur A. Alors v a un centre sur P̃ si et seulement
si, ∀µ ∈ X,∃y ∈ Y, v(Iy,µOµ,xv

) ≥ 0.

Définition 10. Étant donné un morphisme de données de dégénérescences
f̃ : G̃1 → G̃2, et P̃1 et P̃2 des modèles relativement complets de G̃1 et G̃2 res-
pectivement, on appelle morphisme de modèles relativement complets un pro-
longement de f̃ (noté toujours f̃) en un morphisme entre P̃1 et P̃2 tel que
fA ◦ π̃2 = π̃1 ◦ f̃ , et f̃ commute aux actions de Y1 et Y2.

2.4 Compactifications toriques

Pour construire notre modèle relativement complet, nous allons construire une
compactification torique Z de T .
Soit T un tore déployé sur S, et X son groupe des caractères, de sorte que
T = SpecR[Xα]α∈X/(XαX β −Xα+β ,X 0 − 1)

2.4.1 Décomposition en cônes

Soit Y un groupe abélien libre de rang r. Un cône rationnel polyédral de Y ∗
R

est un sous-ensemble de Y ∗
R qui ne contient pas de droite, et qui peut s’écrire

sous la forme σ = R+l1 + . . .R+ln pour les li ∈ Y ∗.
Une décomposition d’une partie C de Y ∗

R en cônes rationnels polyédraux, ou
éventail, est la donnée d’une famille (éventuellement infinie) {σα}α∈I de cônes
rationnels polyédraux de Y ∗

R telle que chaque face d’un σα est un σβ pour un
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β ∈ I, et que l’intersection de deux cônes dans cet ensemble est une face de
chacun des deux cônes, et enfin que la réunion de tous les cônes de la famille
est égale à C.
Étant donnée une décomposition de C en cônes, on appelle fonction de sup-
port une fonction Φ : C → R qui soit continue, linéaire par morceaux, pre-
nant des valeurs entières sur C ∩ Y ∗, et vérifie Φ(al) = aΦ(l) pour tout
a ∈ R+, l ∈ C. Une telle fonction est dite strictement convexe si pour tout
cône σ de la famille, il existe un entier N et y ∈ Y tels que < y, . >|C≥ nΦ
et σ = {l ∈ C, < y, l >= nΦ(l)}. Une fonction de support qui est strictement
convexe et linéaire sur chaque cône de la famille est appelée fonction de pola-
risation.
Le cône dual σ̌ est le cône de l’ensemble des éléments de YR sur lesquels les
éléments de σ prennent des valeurs positives.
Le cône σ est appelé simplexe si on peut choisir les li linéairement indépendants.
On appelle alors Y ∗

σ le sous-groupe de Y ∗ engendré par les éléments de Y ∗ qui
appartiennent à une face de dimension 1 de σ. On appelle multiplicité de σ
l’indice de Y ∗

σ dans Y ∗ ∩ (Y ∗
σ ⊗Z Q). Un simplexe de multiplicité 1 est dit lisse.

2.4.2 Construction d’immersions toriques

On va appliquer cela à Y = X∗ ×Z = X̃. Soit σ ⊂ X∗
R ×R+ un cône. On pose

Z(σ) = SpecAσ, où :

Aσ = R[πkXm](m,k)∈X̃∩σ̌/(XαX β −Xα+β ,X 0 − 1)

Si τ est une face de σ, on a un morphisme naturel Z(τ) → Z(σ) qui identifie
Z(τ) à un ouvert affine de Z(σ).
Étant donnée une décomposition {σα} deX∗

R×R+, on en déduit par recollement
des immersions correspondant à chaque cône une immersion TW → Z. On note
que TW → T correspond au cône {0}×R+, donc dès que ce cône apparâıt dans
la décomposition, l’immersion se prolonge en T → Z.
Z est régulier si la décomposition est lisse, et (Z0)red est un diviseur à croise-
ments normaux stricts.

2.4.3 Construction de faisceaux

Soit ϕ une fonction de support ∪ασα → R. Alors ϕ définit un faisceau T -
équivariant F sur Z de la façon suivante. Sur Z(σ), on définit le faisceau Fσ
comme correspondant au Γ(Z(σ),OZ(σ))-module :

∑

(m,k)∈X̃,<(m,k), >|σ>ϕ|σ

IkXm

On dit que le faisceau F est ample si les sections de L⊗n, n ≥ 1, définissent
une base de la topologie Zariski de Z. Alors F est ample si ϕ est strictement
convexe, d’après [Kün98] 1.18.
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2.4.4 Fonctorialité

Soit maintenant S′ un ouvert affine de S rencontrant S0, T ′ le tore sur S′ obtenu
à partir de T par changement de base. T ′ ayant même groupe des caractères
que T , on peut fabriquer une compactification torique Z ′ de T ′ sur S′ à partir
de la même décomposition en cônes que celle utilisée pour construire Z. Alors
on observe que Z ′ est obtenu à partir de Z par changement de base de S à S′.
De même pour les faisceaux inversibles obtenus à partir d’une même fonction
de support.

2.4.5 Morphismes entre immersions toriques

Soit T et T ′ deux tores sur S, g un morphisme de T vers T ′, S et S ′ deux
éventails de X̃ et X̃ ′ respectivement. Alors g induit un morphisme entre les
immersions toriques associées à ces décompositions si et seulement si pour tout
σ ∈ S, il existe σ′ ∈ S ′ tel que g(σ) ⊂ σ′.

2.5 Choix d’une bonne décomposition

Il s’agit donc maintenant de trouver un bon éventail qui fasse de P̃ = G̃×T Z un
modèle relativement complet. L’article [Kün98] fournit une telle décomposition
dans le cas où R est un anneau de valuation discrète complet. Expliquons
précisément ce que l’on obtient.
On part de

1. X et Y groupes abéliens libres de rang r

2. ϕ : Y → X morphisme injectif

3. b : Y ×X → Z bilinéaire telle que b(., ϕ(.)) est symétrique définie positive.

4. a : Y → Z telle que a(0) = 0 et a(y + y′)− a(y)− a(y′) = b(y, ϕ(y′)).

5. H groupe fini d’automorphismes de (X,Y, ϕ, a, b) agissant à gauche sur
X et à droite sur Y , c’est-à-dire la donnée pour tout h de (hX , hY ) tels
que ϕ = hX ◦ ϕ ◦ hY , a ◦ hY = a, et b(hY (.), .) = b(., hX(.)).

Posons Γ = Y ⋊H, la composition étant donnée par :

(y, h)(y′, h′) = (y + h(y′), hh′)

Alors Γ agit à gauche sur X̃ = X∗ × Z par :

S(y,h)(l, s) = (l ◦ h(.) + sb(y, .), s)

Notons que C = (X∗
R × R∗

+) ∪ {0} est stable par l’action de Γ.

On définit la fonction χ : Γ×X̃R → R par χ((y, h), (l, s)) = sa(y)+l◦ϕ◦h−1(y).

Définition 11. On dit qu’un éventail de C est Γ-admissible si l’ensemble des
cônes est Γ-invariant, et qu’il n’y a qu’un nombre fini d’orbites.

Définition 12. Soit k un entier > 0. On dit qu’une fonction de polarisation Φ
est k-tordue et Γ-admissible si pour tout γ ∈ Γ, on a Φ(.)−Φ◦Sγ(.) = kχ(γ, .).
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Alors la proposition 3.3 de [Kün98] donne le résultat suivant :

Proposition 8. Il existe un éventail Γ-admissible {σα}α∈I muni d’une fonc-
tion de polarisation Φ Γ-admissible et k-tordu pour un certain k, qui soit lisse,
qui contienne le cône σT = {0} × R+, et qui vérifie Sy(σα) ∩ σα = {0} pour
tout y ∈ Y \ {0} et tout α ∈ I.

On dira qu’un tel éventail est convenable. Revenons à notre cas.

Lemme 9. Il existe un éventail convenable dans X̃.

Démonstration. Soit R′ l’anneau local de S au point générique de S0, et
I ′ = IR′. Alors R′ est un anneau de valuation discrète complet d’idéal maximal
I ′. Soit G′ déduit de G par changement de base de S à S′ = SpecR′, et T ′ son
tore, alors T ′ est aussi déduit de T par ce changement de base, ils ont donc
même groupe de caractères X. On peut donc utiliser les résultats de [Kün98]
pour mettre sur X̃ un éventail convenable.

Remarque 2. Si (X,Y, ϕ, a, b) provient de (G,L,M), alors pour un entier
k > 0, c’est (X,Y, kϕ, ka, b) qui est associé à (G,L⊗k,M⊗k). Supposons que
l’on ait trouvé pour (X,Y, ϕ, a, b) une décomposition de C avec une fonction de
polarisation Φ qui soit k-tordue, alors cette même fonction est 1-tordue pour
(X,Y, kϕ, ka, b). Ainsi, quitte à remplacer L et M par une certaine puissance,
on peut toujours supposer qu’on a associé à (X,Y, ϕ, a, b) une décomposition
munie d’une fonction de polarisation 1-tordue.

Intéressons-nous maintenant au cas d’un morphisme f : G1 → G2 H-
équivariant. f induit donc des morphismes fY : Y1 → Y2, et fX : X2 → X1

commutant à l’action de H, d’où fX̃ : X̃1 → X̃2. Comme fη est une isogénie,
fX et fY sont des injections.
Fixons un éventail convenable de X̃2. On veut trouver un éventail convenable
de X̃1 vérifiant la condition énoncée en 2.4.5, de façon à obtenir Z1 → Z2

prolongeant T1 → T2. Considérons les images réciproques des cônes constituant
l’éventail de X̃2. Comme f induit une injection de conoyau fini de X2 dans X1,
on peut identifier X̃1 à X̃2 muni d’une structure entière plus fine (c’est-à-dire
X∗

1×Z ⊂ X∗
2×Z). L’éventail construit pour X̃2 forme donc un éventail pour X̃1,

qui est convenable sauf qu’il peut ne pas être lisse. Il suffit donc de prendre un
raffinement de cet éventail pour obtenir un éventail dans X̃1 qui soit convenable
et lisse.
Deux tels éventails seront dits compatibles.

2.6 Obtention d’un modèle relativement complet

On prend ensuite la compactification torique Z de T obtenue à partir de cette
décomposition de X, et on fait le produit contracté de cette compactification
avec G̃, c’est-à-dire P̃ = G̃×T Z. Autrement dit P̃ est obtenu en recollant les
P̃ (σα) = G̃×T Z(σα).
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On obtient ainsi un modèle relativement complet de G̃, et muni d’une action
de H. La vérification est identique à celle de l’article [Kün98], paragraphe 3.7.
Nous avons ainsi construit (P̃ , L̃P̃ ) dont le quotient donnera une compactifica-
tion équivariante de (G,L).
Soit f : G1 → G2 H-équivariant, et deux éventails compatibles de X̃1 et X̃2,
alors f induit un morphisme entre les modèles relativement complets associés
aux éventails.

2.7 Du modèle relativement complet à la compactification

Le passage du modèle relativement complet à la compactification est décrit
dans [CF90]. Rappelons-en le principe.
Soit P̃n le changement de base de P̃ à Sn (notation définie au début du para-
graphe 2). Alors il existe un morphisme étale surjectif πn : P̃n → Pn tel que Pn
soit un quotient de P̃n sous l’action de Y comme faisceau fpqc. L̃n se descend
en un faisceau ample Ln sur Pn.
En effet, il existe un ensemble fini E ⊂ Y tel que pour tout y hors de E,
on ait Sy(U0) ∩ U0 = ∅, où U0 = U ×S S0 (cela se déduit des propriétés
du modèle relativement complet, et dans notre cas cela se verra directement
sur la construction), autrement dit Y agit librement sur P̃0. Alors on définit
facilement le quotient P ′

n de P̃n par mY pour un m assez grand. Ensuite, Y/mY
agit librement sur P ′

n qui est projectif donc on peut définir le quotient Pn.
Les (Pn,Ln) forment un système projectif, d’où (Pfor,Lfor) avec Lfor ample
sur Pfor. (Pfor,Lfor) s’algébrise en (P,LP ), avec LP ample sur P .

P est régulier et plat sur S, car c’est le cas pour P̃ (voir [Kün98], proposition
2.15).
Il s’agit ensuite de vérifier que P0 est bien un diviseur à croisements normaux
dans P . P̃ est muni d’une stratification, car c’est une immersion torique, chaque
cône de l’éventail correspondant à une strate, et P̃0 est un diviseur à croisements
normaux dans P̃ parce qu’on a supposé l’éventail lisse. Lorsque on passe au
quotient cette propriété est préservée, de plus l’hypothèse que Sy(σα)∩σα = {0}
pour tout y ∈ Y \ {0} et tout α ∈ I assure que P0 est muni d’une stratification
indexée par les orbites de Y dans l’ensemble des cônes, de sorte que (P0)red est
un diviseur à croisements normaux stricts.
P est alors une compactification de G, ce qui prouve le théorème 5.
D’autre part, si f̃ : P̃1 → P̃2 est un morphisme de modèles relativement com-
plets, f passe au quotient (car on a supposé que f̃ commutait à l’action de Y1

et Y2), et on obtient f̄ : P1 → P2 prolongeant f : G1 → G2. Ainsi on a prouvé
le théorème 6.

3 Recollements

Il s’agit maintenant d’utiliser divers théorèmes de descente pour montrer que
l’existence de compactifications dans le cas d’une base complète, avec une ex-
tension déployée, suffit à obtenir l’existence de compactifications dans le cas
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général. La partie difficile est de redescendre les objets, ensuite les morphismes
descendent automatiquement aussi, donc le théorème 2 va apparâıtre naturel-
lement comme conséquence de la fin de la preuve du théorème 1.

3.1 Cas non affine

Proposition 10. Supposons que S est complet par rapport à S0 et que (G,L)
forme une dégénérescence déployée (G,L,M). Supposons de plus que nous
avons une action d’un groupe fini H sur S et sur (G,L,M), telle que S peut
être recouvert par des ouverts affines stables par H. Alors il existe des compac-
tifications équivariantes.

Démonstration. Pour chaque ouvert affine de S stable par H rencontrant
S0, on peut faire la compactification localement par la méthode expliquée
précédemment. Les compactifications locales obtenues sont compatibles car
elles proviennent de la même décomposition de X (car tous les ouverts affines
considérés contiennent le point générique de S0).
La condition d’être un diviseur à croisement normaux et la condition de pro-
preté étant locales sur la base, le recollement des compactifications est bien une
compactification.

3.2 Cas où l’extension n’est pas déployée

Proposition 11. Supposons S complet par rapport à S0. Alors il existe des
compactifications.

Démonstration. Il existe une extension finie étale S′ de S telle que (G′,L′,M′)
sur S′ déduite de celle sur S soit déployée. On peut supposer que S′ u→ S est
galoisienne.
Soit H le groupe de Galois de S′ sur S. Soit S′

0 la préimage de S0 par u.
Supposons d’abord que S′

0 est irréductible. Le groupe H agit sur la
dégénérescence (G′,L′,M′) par son action sur S′. Observons que u est affine
puisque finie. En particulier, la préimage d’un ouvert affine de S est un ouvert
affine de S′ stable par H. On peut donc appliquer le résultat du paragraphe
3.1 à S′, S′

0 et H. On obtient une compactification sur S′ munie de l’action du
groupe de Galois, ce qui constitue une donnée de descente. Comme on cherche
à redescendre un schéma P ′ qui est quasi-compact sur S′ et muni d’un faisceau
inversible ample L′, on est dans une situation où toute donnée de descente est
effective. On peut donc redescendre P ′ en un P sur S (cf.[BLR90]).
Comme P ′ se déduit de P par un changement de base fini, P est propre sur
S si et seulement si P ′ est propre sur S′. D’autre part P ′ étant étale sur P ,
et (P ′

0)red étant un diviseur à croisements normaux stricts dans P ′, P0 est un
diviseur à croisements normaux dans P .
Dans le cas où S′

0 n’est pas irréductible, notons que pour S′ (et aussi pour S′
0)

les composantes irréductibles correspondent aux composantes connexes, du fait
de la propriété de régularité. D’autre part, S′ étant complet par rapport à S′

0,
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chaque composante connexe de S′ contient exactement une composante connexe
de S′

0. Alors n’importe quelle composante connexe de S′ est une extension
galoisienne de S, on est donc ramené au cas précédent.

3.3 Cas où la base n’est pas complète

Pour finir la preuve du théorème 1, il nous faut regarder le cas où S n’est pas
nécessairement complet.
On rappelle le résultat suivant ([BL95]) :

Théorème. Soit A un anneau, f un élément simplifiable de A, F un Af -

module, G un Â-module f-régulier, un isomorphisme Âf -linéaire ϕ : Â⊗AF →
Gf .
Il existe alors un A-module f-régulier M et des isomorphismes α : Mf → F et

β : Â⊗AM → G tels que ϕ soit l’application composée βf ◦ (1⊗ α−1).
Le triplet (M,α, β) est unique à isomorphisme unique près.
Si F est plat sur Af et G plat sur Â, alors M est plat sur A.

Par unicité de M , ce théorème s’étend en une situation globale sur S, donnant
un théorème de descente pour les faisceaux quasi-cohérents vérifiant les condi-
tions sur la torsion, donc en particulier pour les faisceaux plats sur S. D’où un
théorème de descente pour les schémas plats munis d’un faisceau ample.
Soit (Ĝ, L̂) obtenu par changement de base au complété Ŝ de S par rapport à S0.
D’après la proposition 11, il existe une compactification (P̂ , L̂P ) de (Ĝ, L̂), où
L̂p prolonge L̂⊗k. (P̂ , L̂P ) et (G|W ,L⊗k

|W ) deviennent isomorphes après passage

à Ŝ ×S W , et P̂ est plat sur Ŝ, on déduit du résultat de [BL95] l’existence
d’un (P,LP ) sur S, dont nous allons montrer que c’est une compactification de
(G,L).

Lemme 12. P0 est un diviseur à croisement normaux dans P .

Démonstration. Cette condition se lit sur les anneaux locaux des points de P
au-dessus de S0. Soit x un point de P0 = P̂0 au-dessus du point s ∈ S0. Alors
OP̂ ,x = OP,x⊗OS,s

OŜ,s. Comme OŜ,s est le complété de OS,s selon un certain
idéal, les anneaux locaux OP̂ ,x et OP,x ont même complété. La régularité de
l’un est donc équivalent à la régularité de l’autre. D’autre part la propriété
d’être réduit et les propriétés de dimension sont clairement conservées.

Lemme 13. P est propre sur S.

Démonstration. Il s’agit du corollaire 4.8 de l’exposé VIII de [Gro70] : la des-
cente fpqc conserve la propreté, or P̂ est propre sur Ŝ et G|W est propre sur
W .

Ainsi (P,LP ) vérifie toutes les conditions nécessaires pour être une compacti-
fication de (G,L). Une telle compactification existe donc bien.
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espaces homogènes, Lecture Notes in Mathematics, vol. 119, Springer-
Verlag, 1970.

Sandra Rozensztajn
LAGA, Institut Galilée
Université Paris 13
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1 Introduction

The aim of this paper is to provide new evidence for the validity of the Equivari-
ant Tamagawa Number Conjectures (for short ETNC) as formulated by Burns
and Flach in [4]. We recall that these conjectures generalize and refine the
Tamagawa Number Conjectures of Bloch, Kato, Fontaine, Perrin-Riou et al.
In the special case of the untwisted Tate motive the conjecture also refines
and generalizes the central conjectures of classical Galois module theory as
developed by Fröhlich, Chinburg, Taylor et al (see [2]). Moreover, in many
cases it implies refinements of Stark-type conjectures formulated by Rubin and
Popescu and the ‘refined class number formulas’ of Gross. For more details in
this direction see [3].
Let k denote a quadratic imaginary field. Let L be a finite abelian extension of
k and let K be any subfield of L/k. Let p be a prime number which does not
divide the class number hk of k and which splits in k/Q. Then we prove the
’p-part’ of the ETNC for the pair (h0(Spec(L),Z[Gal(L/K)])) (see Theorem
4.2).
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To help put the main result of this article into context we recall that so far
the ETNC for Tate motives has only been verified for abelian extensions of
the rational numbers Q and certain quaternion extensions of Q. The most
important result in this context is due to Burns and Greither [5] and establishes
the validity of the ETNC for the pair (h0(Spec(L)(r),Z[ 12 ][Gal(L/K)])), where
L/Q is abelian, Q ⊆ K ⊆ L and r ≤ 0. The 2-part was subsequently dealt with
by Flach [8], who also gives a nice survey on the general theory of the ETNC,
including a detailed outline of the proof of Burns and Greither. Shortly after
Burns and Greither, the special case r = 0 was independently shown (up to
the 2-part) by Ritter and Weiss [22] using different methods.
In order to prove our main result we follow very closely the strategy of Burns
and Greither, which was inspired by previous work of Bloch, Kato, Fontaine
and Perrin-Riou. In particular, in [13] Kato formulates a conjecture whose
proof is one of the main achievements in the work of Burns and Greither.
Roughly speaking, we will replace cyclotomic units by elliptic units. More
concretely, the ETNC for the pair (h0(Spec(L),Z[Gal(L/K)])) conjecturally
describes the leading coefficient in the Laurant series of the equivariant Dirichlet
L-function at s = 0 as the determinant of a canonical complex. By Kronecker’s
limit formula we replace L-values by sums of logarithms of elliptic units. In
this formulation we may pass to the limit along a Zp-extension and recover
(an analogue) of a conjecture which was formulated by Kato in [13]. As in
[5] we will deduce this limit conjecture from the Main Conjecture of Iwasawa
Theory and the triviality of certain Iwasawa µ-invariants (see Theorem 5.1).
Combining the validity of the limit theorem with Iwasawa-theoretic descent
considerations we then achieve the proof of our main result.
The Main Conjecture in the elliptic setting was proved by Rubin in [24], but
only in semi-simple case (i.e. p ∤ [L : k]). Following Greither’s exposition [10]
we adapt Rubin’s proof and obtain the full Main Conjecture (see Theorem 3.1)
for ray class fields L and primes p which split in k/Q and do not divide the
class number hk of k.
The triviality of µ-invariants in the elliptic setting is known from work of Gillard
[9], but again only in the ordinary case when p is split in k/Q.
The descent considerations are particularly involved in the presence of ’trivial
zeros’ of the associated p-adic L-functions. In this case we make crucial use of
a recently published result of the author [1] concerning valuative properties of
certain elliptic p-units.
As in the cyclotomic case it is possible to use the Iwasawa-theoretic result
of Theorem 5.1 and Iwasawa descent to obtain the p-part of the ETNC for
(h0(Spec(L)(r),Z[Gal(L/K)])), r < 0. We refer to thesis of Johnson [12] who
deals with this case.
We conclude this introduction with some remarks on the non-split situation.
Generically this case is more complicated because the corresponding Iwasawa
extension is of type Z2

p. The main issue, if one tries to apply the above described
strategy in the non-split case, is to prove µ = 0. Note that we already use the
triviality of µ in our proof of the Iwasawa Main Conjecture (see Remark 3.9).
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During the preparation of this manuscript I had the pleasure to spend three
months at the department of mathematics in Besançon and three weeks at
the department of mathematics at Caltech, Pasadena. My thanks go to the
algebra and number theory teams at both places for their hospitality and the
many interesting mathematical discussions.

2 Elliptic units

The aim of this section is to define the elliptic units that we will use in this
paper. Our main references are [20], [21] and [1].
We let L ⊆ C denote a Z-lattice of rank 2 with complex multiplication by the
ring of integers of a quadratic imaginary field k. We write N = Nk/Q for the
norm map from k to Q. For any Ok-ideal a satisfying (N(a), 6) = 1 we define
a meromorphic function

ψ(z;L, a) := F̃ (z;L, a−1L), z ∈ C,

where F̃ is defined in [20, Théorème principale, (15)]. This function ψ coincides
with the function θ(z; a) used by Rubin in [23, Appendix] and it is a canonical
12th root of the function θ(z;L, a) defined in [6, II.2].
The basic arithmetical properties of special values of ψ are summarized in [1,
§2].
We choose a Z-basis w1, w2 of the complex lattice L such that Im(w1/w2) > 0
and write η(τ), Im(τ) > 0, for the Dedekind η-function. Let η1, η2 denote the
quasi-periods of the Weierstrass ζ-function and for any z = a1w1 + a2w2 ∈
C, a1, a2 ∈ R, put z∗ = a1η1 + a2η2. Writing σ(z;L) for the Weierstrass σ-
function attached to L we define

ϕ(z;w1, w2) := 2πie−zz
∗/2σ(z;L)η2

(
w1

w2

)
w−1

2 . (1)

Note that ϕ is exactly the function defined in [20, (4)]. The function ϕ is not a
function of lattices but depends on the choice of a basis w1, w2. Its 12th power
does not depend on this choice and we will also write ϕ12(z;L). We easily
deduce from [20, Sec. 3, Lemme] and its proof that the relation between ϕ and
ψ is given by

ψ12(z;L, a) =
ϕ12N(a)(z;L)

ϕ12(z; a−1L)
. (2)

3 The Iwasawa main conjecture

For any Ok-ideal b we write k(b) for the ray class field of conductor b. In this
notation k(1) denotes the Hilbert class field. We let w(b) denote the number
of roots of unity in k which are congruent to 1 modulo b. Hence w(1) is the
number of roots of unity in k. This number will also be denoted by wk.
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Let p denote an odd rational prime which splits in k/Q, and let p be a prime
ideal of k lying over p. We assume p ∤ hk. For each n ≥ 0 we write

Gal(k(pn+1)/k) = Gal(k(pn+1)/k(p))×H,

where H is isomorphic to Gal(k(p)/k) by restriction. We set

kn := k(pn+1)H , k∞ :=
⋃

n≥0

kn,

and note that k∞/k is a Zp-extension. More precisely, k∞/k is the unique Zp-
extension of k which is unramified outside p. The prime p is totally ramified
in k∞/k.
Let now f be any integral ideal of k such that (f, p) = 1. Let F = k(fp)
denote the ray class field of conductor fp. We set Kn := Fkn = k(fpn+1) and
K∞ := ∪n≥0Kn. Then K∞/K0 is a Zp-extension in which each prime divisor
of p is totally ramified.
For any number field L we denote the p-part of the ideal class group of L by
A(L). Set A∞ := lim

←
n

A(Kn), the inverse limit formed with respect to the norm

maps. We write En for the group of global units of Kn. For a divisor g of f

we let Cn,g denote the subgroup of primitive Robert units of conductor fpn+1,
n ≥ 0. If g 6= (1), then Cn,g is generated by all ψ(1; gpn+1, a) with (a, gp) = 1
and the roots of unity in Kn. If g = (1), then the elements ψ(1; pn+1, a) are no
longer units. By [1, Th. 2.4] a product of the form

∏
ψ(1; pn+1, a)m(a) is a unit,

if and only if
∑
m(a)(N(a) − 1) = 0. We let Cn,g denote the group generated

by all such products and the roots of unity in Kn. We let Cn be the group of
units generated by the subgroups Cn,g with g running over the divisors of f.
We let Un denote the semi-local units of Kn⊗kkp which are congruent to 1
modulo all primes above p, and let Ēn and C̄n denote the closures of En ∩ Un
and Cn ∩ Un, respectively, in Un. Finally we define

Ē∞ := lim
←
n

Ēn, C̄∞ := lim
←
n

C̄n,

both inverse limits formed with respect to the norm maps.
We let

Λ = lim
←
n

Zp[Gal(Kn/k)]

denote the completed group ring and for a finitely generated Λ-module and any
abelian character χ of ∆ := Gal(K0/k) we define the χ-quotient of M by

Mχ := M⊗Zp[∆]Zp(χ),

where Zp(χ) denotes the ring extension of Zp generated by the values of χ. For
the basic properties of the functor M 7→Mχ the reader is referred to [30, §2].
The ring Λχ is (non-canonically) isomorphic to the power series ring Zp(χ)[[T ]].
If Mχ is a finitely generated torsion Λχ-module, then we write char(Mχ) for
the characteristic ideal.
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Theorem 3.1 Let p be an odd rational prime which splits into two distinct
primes in k/Q. Then

char(A∞,χ) = char((Ē∞/C̄∞)χ).

Remarks 3.2 a) If p ∤ [F : k] and p does not divide the number of roots of
unity in k(1), then the result of Theorem 3.1 is already proved by Rubin, see
[24, Th. 4.1(i)].
b) The Main Conjecture of Iwasawa theory for abelian extensions of Q was
first proved by Mazur and Wiles [16] using deep methods from algebraic geo-
metry. They proved the version which identifies the characteristic power series
of the projective limit over the p-class groups with a p-adic L-function. These
methods were further developed by Wiles [32] who in 1990 established the Main
Conjecture for p 6= 2 and Galois extensions L/K of a totally real base field K.
Under the condition that p ∤ |Gal(L/Q)| the result of Mazur and Wiles implies
a second version of the Main Conjecture where the p-adic L-function is replaced
by the characteristic power series of “units modulo cyclotomic units”. It is this
version which is needed in the context of this manuscript.
Due to work of Kolyvagin and Rubin there is a much more elementary proof
of the Main Conjecture for abelian extension L/Q with p ∤ |Gal(L/Q)|. This
approach uses the Euler system of cyclotomic units. Replacing cyclotomic
units by elliptic units (amongst many other things) Rubin achieves the result
mentioned in part a) of this remark.
In 1992 Greither [10] refined the method of Rubin and used the Euler system
of cyclotomic units to give an elementary (but technical) proof of the second
version of the Main Conjecture for L/Q abelian and all primes p. Our proof of
Theorem 3.1 will closely follow Greither’s exposition.
Finally we mention recent work of Huber and Kings [11]. They apply the
machinery of Euler systems and simultaneously prove the Main Conjecture
and the Bloch-Kato conjecture for all primes p 6= 2 and all abelian extensions
L/Q.

The rest of this section is devoted to the proof of Theorem 3.1. Let C(f)
denote the Iwasawa module of elliptic units as defined in [6, III.1.6]. Then
C(f) ⊆ C̄∞, so that char((Ē∞/C̄∞)χ) divides char((Ē∞/C(f))χ). By [6, III.2.1,
Theorem] it suffices to show that char(A∞,χ) divides char((Ē∞/C(f))χ) for all
characters χ of ∆ = Gal(K0/k) in order to prove the equality char(A∞,χ) =
char((Ē∞/C(f))χ). Hence it is enough for us to prove

char(A∞,χ) divides char((Ē∞/C̄∞)χ) (3)

for all characters χ of ∆.
For an abelian character χ of ∆ we write

eχ :=
1

|∆|
∑

δ∈∆

Tr(χ(δ))δ−1
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for the idempotent of Qp[∆] corresponding to χ with Tr denoting the trace
map from Zp(χ) to Zp. We also set Tr∆ =

∑
δ∈∆ δ.

For any Zp[∆]-module M we have an epimorphism

Mχ = M⊗Zp[∆]Zp(χ) −→ |∆|eχM, m⊗α 7→ |∆|λαeχm,

where λα ∈ Zp[∆] is an element which maps to α under Zp[∆] → Zp(χ). If Z
denotes the kernel, then it is easily seen that |∆|Z = 0.
Let now M = A∞ and χ = 1. Then

Z −→ A∞,χ −→ Tr∆A∞ −→ 0

is exact. Since Tr∆An is contained in the p-Sylow subgroup of the ideal class
group of kn, which is trivial by our assumption p ∤ hk and [31, Th. 10.4], we
see that A∞,χ is annihilated by |∆|. By the main result of [9] the Iwasawa
µ-invariant of A∞,χ is trivial. From this we deduce char(A∞,χ) = (1), thus
establishing (3) for the trivial character.

The rest of this section is devoted to the proof of the divisibility relation (3) for
non-trivial characters χ. As already mentioned we will closely follow Greither’s
exposition [10]. Whenever there are only minor changes we shall be very brief,
but emphasize those arguments which differ from the cyclotomic situation.
To see the Euler system method applied in an easy setting the reader is advised
to have a look at [26]. The strategy of the proof of our Theorem 3.1 is essentially
the same, but there are additional difficulties because we allow p to divide |∆|.
If p ∤ |∆|, the functor M 7→ Mχ is exact and the Euler system machinery
directly produces a divisibility result of the form char(A∞,χ) | char((Ē∞/C̄∞)χ).
If p | |∆|, the functor M 7→ Mχ is no longer exact, but Greither’s paper [10]
shows how to adapt the Euler system method to produce a weaker divisibility
relation of the form char(A∞,χ) | ηchar((Ē∞/C̄∞)χ) with an additional factor
η ∈ Λχwhich is essentially a product of powers of p and γ−1. Because of Lemma
3.7 and the triviality of the µ-invariant of A∞,χ, the factor η is coprime with
char(A∞,χ), so that we again derive a clean divisibility result as in the case
p ∤ |∆|.
We will need some notation from Kolyvagin’s theory. Let M be a large power
of p and define L = LF,M to be the set of all primes l of k satisfying

(i) l splits completely in F/k,

(ii) Nk/Q(l) ≡ 1(mod M).

By [24, Lem. 1.1] there exists a unique extension F (l) of F of degree M in Fk(l).
Further F (l)/F is cyclic, totally ramified at all primes above l and unramified
at all other primes.
We write J = ⊕λZλ for the group of fractional ideals of F and for every prime
l of k we let Jl = ⊕λ|lZλ denote the subgroup of J generated by the prime
divisors of l. If y ∈ F× we let (y)l ∈ Jl denote the support of the principal
ideal (y) = yOF above l. Analogously we write [y] ∈ J/MJ and [y]l ∈ Jl/MJl.
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For l ∈ L we let

ϕl :
(OF /lOF )

×
(

(OF /lOF )
×
)M −→ Jl/MJl

denote the Gal(F/k)-equivariant isomorphism defined by [24, Prop. 2.3]. For
every l ∈ L we also write ϕl for the induced map

ϕl : {y ∈ F×/
(
F×)M : [y]l = 0} −→ Jl/MJl, y 7→ ϕl(u),

where y = zMu, z ∈ F×, u a unit at all places above l.
We write S = SF,M for the set of squarefree integral ideals of k which are

only divisible by primes l ∈ L. If a ∈ S, a =
∏k
i=1 li, we write F (a) for

the compositum F (l1) · · ·F (lk) and F (Ok) = F . For every ideal g of Ok let
S(g) ⊆ S be the subset {a ∈ S : (a, g) = 1}. We write F̄ for the algebraic
closure of F and let U(g) denote the set of all functions

α : S(g) −→ F̄×

satisfying the properties (1a)-(1d) of [24]. Any such function will be called an
Euler system. Define UF = UF,M =

∐U(g). For α ∈ UF we write S(α) for the
domain of α, i.e. S(α) = S(g) if α ∈ U(g).

Given any Euler system α ∈ UF , we let κ = κα : S(α) −→ F×/ (F×)
M

be the
map defined in [24, Prop. 2.2].
Then we have:

Proposition 3.3 Let α ∈ UF , κ = κα, a ∈ S(α), a 6= 1, and l a prime of k. If
a = l we also assume that α(1) satisfies vλ(α(1)) ≡ 0(mod M) for all λ | l in
F/k. Then:

If l ∤ a, then [κ(a)]l = 0.

If l | a, then [κ(a)]l = ϕl(κ(a/l)).

Proof See [24, Prop. 2.4]. Note that the additional assumption in the case
a = l is needed in (ii), both for its statement (ϕl(κ(1)) may not be defined in
general) and for its proof.

We now come to the technical heart of Kolyvagin’s induction procedure, the
application of Chebotarev’s theorem.

Theorem 3.4 LetK/k be an abelian extension, G = Gal(K/k). LetM denote
a (large enough) power of p. Assume that we are given an ideal class c ∈ A(K),

a finite Z[G]-module W ⊆ K×/ (K×)
M

, and a G-homomorphism

ψ : W −→ (Z/MZ) [G].

Let p̄c be the precise power of p̄ which divides the conductor f of K. Then
there are infinitely many primes λ of K such that
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(1) [λ] = p3c+3c in A(K).

(2) If l = k ∩ λ, then N l ≡ 1(mod M), and l splits completely in K.

(3) For all w ∈ W one has [w]l = 0 in Jl/MJl and there exists a unit
u ∈ (Z/MZ)

×
such that

ϕl(w) = p3c+3uψ(w)λ.

Proof We follow the strategy of Greither’s proof of [10, Th. 3.7], but have
to change some technical details. Let H denote the Hilbert p-class field of K.
For a natural number n we write µn for the nth roots of unity in an algebraic
closure of K. We consider the following diagram of fields

K ′′ = K(µM ,W
1/M )

K ′ = K(µM ) H

mmmmmmmmmmmmmmmm

K
Claim (a) [H ∩K ′ : K] ≤ pc
Proof: The situation is clarified by the following diagram

K ′

ssssssssss

K ′ ∩H

xxxxxxxxx
k(µM )

uuuuuuuuuuuuuuuuuuuuuuuu

K Q(µM )

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

•

}}
}}

}}
}}

k

Q
We write ϕZ (resp. ϕOk

) for the Euler function in Z (resp. Ok). Obviously
p̄ is totally ramified in k(µM )/k. Hence p̄ ramifies in K ′/k of exponent at
least ϕZ(M). On the other hand, p̄ is ramified in K/k of exponent at most
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ϕOk
(p̄c). Therefore any prime divisor of p̄ ramifies in K ′/K of degree at least

ϕZ(M)/ϕOk
(p̄c). Since K ′ ∩ H/K is unramified and [K ′ : K] ≤ ϕZ(M), we

derive [K ′ ∩ H : K] ≤ ϕOk
(p̄c). Since p is split in k/Q we obtain ϕOk

(p̄c) =
(p− 1)pc−1 < pc, so that the claim is shown.

In order to follow Greither’s core argument for the proof of Theorem 3.4 we
establish the following two claims.

Claim (b) Gal(H ∩K ′′/K) is annihilated by p2c+1.

Claim (c) The cokernel of the canonical map from Kummer theory

Gal(K ′′/K ′) →֒ Hom(W,µM )

is annihilated by pc+2.

We write M = pm. Since divisors of p̄ are totally ramified in k(µM )/k of degree
ϕZ(M) and at most ramified in K/k of degree ϕOk

(p̄c), one has

[k(µM ) : K ∩ k(µM )] ≥ ϕZ(M)

ϕOk
(p̄c)

=

{
pm−c, if c ≥ 1,

(p− 1)pm−1, if c = 0.

Since k(µM )/k is cyclic, there exists an element j ∈ Gal(k(µM )/K ∩ k(µM ))
of exact order a = pm−c−1. Let r ∈ Z such that j(ζM ) = ζrM . Then ra ≡
1(mod M) and rb 6≡ 1(mod M) for all 0 < b < a. We also write j ∈ Gal(K ′/K)
for the unique extension of j to K ′ with j|K = id. Let σ ∈ Gal(K ′′/K ′) and
α ∈ K ′′ such that αM = w ∈ W . Then there exists an integer tw such that

σ(α) = ζtwM α. Since W ⊆ K×/ (K×)
M

, there is an extension of j to K ′′/K
such that j(α) = α for all α ∈ K ′′ such that αM ∈W . Therefore, for any such
α,

jσj−1(α) = jσ(α) = j(ζtwM α) = ζrtwM α.

Hence j acts as σ 7→ σr on Gal(K ′′/K ′). Since Gal(K ′/K) acts trivially on
Gal(K ′′ ∩ K ′H/K ′) this implies that r − 1 annihilates Gal(K ′′ ∩ K ′H/K ′).
On the other hand Gal(K ′′ ∩K ′H/K ′) is an abelian group of exponent M , so
that also gcd(M, r − 1) annihilates. Suppose that pd divides r − 1 with d ≥ 1.

By induction one easily shows that rp
m−d ≡ 1(mod pm). Hence a = pm−c−1

divides pm−d, which implies d ≤ c + 1. As a consequence, pc+1 annihilates
Gal(K ′′ ∩ K ′H/K ′) ≃ Gal(K ′′ ∩ H/K ′ ∩ H). Together with claim (a) this
proves (b).

We now proceed to demonstrate claim (c). Let W ′ ⊆ K ′×/ (K ′×)
M

denote the
image of W under the homomorphism

K×/
(
K×)M −→ K ′×/

(
K ′×)M . (4)

Since Gal(K ′′/K ′) ≃ Hom(W ′, µM ), it suffices to show that the kernel U of
the map in (4) is annihilated by pc+2. By Kummer theory U is isomorphic to
H1(K ′/K, µM ).
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The extension K ′/K is cyclic and a Herbrand quotient argument shows

#H1(K ′/K, µM ) = #H0(K ′/K, µM ) = #
µM (K)

NK′/K(µM )
.

From [20, Lem. 7] we deduce that #µM (K) divides pc+2. Hence U is annihilated
by pc+2.

Now that claim (b) and (c) are proved, the core argument runs precisely as
in [10, pg.473/474] (using Greiter’s notation the proof has to be adapted in

the following way: pc+2ιψ has preimage γ ∈ Gal(K ′′/K ′); γ1 = pc+2
(

c
H/K

)
∈

Gal(H/K); δ ∈ Gal(K ′′H/K) with δ|H = p2c+1γ1, δ|K′′ = p2c+1γ.)

Recall the notation introduced at the beginning of this section. In addi-
tion, we let ∆ = Gal(K0/k), Gn = Gal(Kn/k), G∞ = Gal(K∞/k) and
Γn = Gal(Kn/K0). We fix a topological generator γ of Γ = Gal(K∞/K0),
and abbreviate the pnth power of γ by γn.
For any abelian character χ of ∆ we write Λχ = Zp(χ)[[T ]] for the usual
Iwasawa algebra. Note that Λ⊗Zp[∆]Zp(χ) ≃ Zp(χ)[[T ]], so that our notation

is consistent. We choose a generator hχ ∈ Λχ of char
(
(Ē∞/C̄∞)χ

)
. By the

general theory of finitely generated Λχ-modules there is a quasi-isomorphism

τ : A∞,χ −→
k⊕

i=1

Λχ/(gi)

with gi ∈ Λχ, and by definition, char(A∞,χ) = (g) with g := g1 · · · gk.
As in [10] we need the following lemmas providing the link to finite levels.

Lemma 3.5 Let χ 6= 1 be an abelian character of ∆. Then there exist constants
n0 = n0(F ), ci = ci(F ), i = 1, 2, a divisor h′χ of hχ (all independent of n) and
Gn-homomorphisms

ϑn : Ēn,χ −→ Λn,χ := Λχ/(1− γn)Λχ

such that

(i) h′χ is relatively prime to γn − 1 for all n

(ii) (γn0
− 1)c1pc2h′χΛn,χ ⊆ ϑn(im(C̄n,χ))

where here im(C̄n,χ) denotes the image of C̄n,χ in Ēn,χ.

Proof We mainly follow Greither’s proof of [10, Lem. 3.9].
We let

πn : Ē∞/(1− γn)Ē∞ −→ Ēn
denote the canonical map and first prove
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Claim 1: There exists an integer κ (independent of n) such that

(γ − 1)pκ ker(πn) = 0 and (γ − 1)pκcok(πn) = 0

This is shown as in Greither’s proof of [10, Lem. 3.9]. He uses [25, Lem. 1.2],
which is stated under the additional assumption p ∤ |∆|. As already remarked
by Greither, this hypothesis is not necessary.

Next we define U∞ := lim
←
n

Un and proceed to prove

Claim 2 Qp⊗Zp
U∞ ≃ Qp⊗Zp

Λ = Λ[ 1p ].

This can be proved similarly as [18, Th. 11.2.5]. The assumption p ∤ |∆| of
loc.cit. is not needed, since we invert p. Alternatively, Claim 2 follows from [6,
Prop. III.1.3], together with Exercise (iii) of [6, III.1.1].

It follows that Qp⊗Zp
U∞,χ is free cyclic over Qp⊗Zp

Λχ = Λχ[ 1p ]. Since Λχ[ 1p ]

is a principal ideal domain, the submodule Qp⊗Zp
Ē∞,χ is also free cyclic over

Λχ[ 1p ]. It follows that there exists a pseudo-isomorphism

f : Ē∞,χ −→ C :=
⊕

i

Λχ/p
niΛχ ⊕ Λχ.

If we apply the snake lemma to the diagram

0 //

��

Ē∞,χ
= //

f

��

Ē∞,χ
//

pr◦f=:α

��

0

0 // ⊕Λχ/p
niΛχ // C

pr // Λχ // 0

we see that ker(α) is annihilated by some power of p and cok(α) is finite.
We note that for any G∞-module X one has

(X/(1− γn)X)χ ≃ Xχ/(1− γn)Xχ.

Let Wn denote the image of πn and set T := TorZp[∆](cok(πn),Zp(χ)). Then
we have a commutative diagram (with exact lines)

T
ϕ // Wn,χ //

=

��

Ēn,χ // cok(πn)χ // 0

ker(πn)χ
τ // Ē∞,χ

(1−γn)Ē∞,χ

πn // Wn,χ // 0
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We write πn,χ for the composite map and obtain the exact sequence

0 −→ ker(πn,χ) −→ Ē∞,χ

(1− γn)Ē∞,χ

πn,χ−→ Ēn,χ −→ cok(πn)χ −→ 0

We claim that ker(πn,χ) is annihilated by (γ− 1)2p2κ: Let e ∈ ker(πn,χ). Then

πn(e) = ϕ(t) for some t ∈ TorZp[∆](cok(πn),Zp(χ))

=⇒ πn((γ − 1)pκe) = ϕ((γ − 1)pκt) = 0

=⇒ τ(c) = (γ − 1)pκe for some c ∈ ker(πn)χ

=⇒ 0 = τ((γ − 1)pκc) = (γ − 1)2p2κe

So both ker(πn,χ) and cok(πn,χ) are annihilated by (γ − 1)2p2κ.
Consider now the following commutative diagram

Ē∞,χ

(γ−1)4p4κα //

πn,χ

��

Λχ

��
Ēn,χ

ϑn // Λn,χ = Λχ/(1− γn)Λχ

where we define ϑn in the following manner: for e ∈ Ēn,χ there exists z ∈ Ē∞,χ

such that πn,χ(z) = (γ − 1)2p2κe. We then set

ϑn(e) := (γ − 1)2p2κα(z)(mod (1− γn)Λχ).

On the other hand, we have the exact sequence

C̄∞,χ −→ Ē∞,χ −→
(
Ē∞/C̄∞

)
χ
−→ 0

so that
Ē∞,χ/im(C̄∞,χ) →֒

(
Ē∞/C̄∞

)
χ
.

The structure theorem of Λχ-torsion modules implies that hχ
(
Ē∞/C̄∞

)
χ

is

finite. Since α(Ē∞,χ)/α(imC̄∞,χ) is a quotient of Ē∞,χ/im(C̄∞,χ), the module
hχ
(
α(Ē∞,χ)/α(imC̄∞,χ)

)
is also finite. Since cok(α) is finite, there exists a

power ps such that ps ∈ α(Ē∞,χ) and pshχα(Ē∞,χ) ⊆ α(im(C̄∞,χ))). Therefore
p2shχ ∈ α(im(C̄∞,χ)) and we conclude further:

p2s+4κ(γ − 1)4hχ = p4κ(γ − 1)4α(z) for some z ∈ im(C̄∞,χ)

=⇒ ϑn(zn) = p2s+4κ(γ − 1)4hχ with zn = πn,χ(z) ∈ im(C̄n,χ)

=⇒ p2s+4κ(γ − 1)4hχΛn,χ ⊆ ϑn(im(C̄n,χ)) (5)

Since γn − 1 divides γn+1 − 1 for all n there exists a positive integer n0 and a
divisor h′χ of hχ such that hχ divides (γn0

−1)h′χ and such that h′χ is relatively
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prime with γn − 1 for all n. The assertions of the lemma are now immediate
from (5).

Lemma 3.6 Let χ 6= 1 be a character of ∆. Then there exists a constant
c3 = c3(F ) (independent of n) and Gn-homomorphisms

τn : An,χ −→
k⊕

i=1

Λn,χ/(ḡi)

such that pc3cokτn = 0 for all n ≥ 0. Here ḡi denotes the image of gi ∈ Λχ in
Λn,χ.

Proof The proof is identical to Greither’s proof of [10, Lem. 3.10]. It is based
on the following sublemma which will be used again at the end of the section.

Lemma 3.7 For n ≥ 0 the kernel and cokernel of multiplication with γn − 1
on A∞ are finite.

Proof See [25, pg. 705]. It is remarkable that one uses the known validity of
Leopoldt’s conjecture in this proof.

The following technical lemma is the analogue of [10, Lem. 3.12].

Lemma 3.8 Let K/k be an abelian extension, G = Gal(K/k) and ∆ a sub-
group of G. Let χ denote a character of ∆, M a power of p, a = l1 · · · li ∈ SM,K .
Let l = li and let λ be a fixed prime divisor of l in K. We write c for the class
of λ and assume that c ∈ A = A(K), where as usual A(K) denotes the p-Sylow
subgroup of the ideal class group of K.
Let B ⊆ A denote the subgroup generated by classes of prime divisors of

l1, . . . , li−1. Let x ∈ K×/ (K×)
M

such that [x]q = 0 for all primes q not

dividing a, and let W ⊆ K×/ (K×)
M

denote the Zp[G]-span of x. Assume that
there exist elements

E, g, η ∈ Zp[G]

satisfying

(i) E · ann(Zp[G])χ
(c̄χ) ⊆ g · (Zp[G])χ, where c̄χ is the image of c under A→

A/B → (A/B)χ.

(ii) #
(

(Zp[G])χ /g (Zp[G])χ

)
<∞

(iii) M ≥ |Aχ|
∣∣∣∣η
(
Jl/MJl

[W ]l

)
χ

∣∣∣∣, where [W ]l denotes the subgroup of Jl/MJl

generated by elements [w]l, w ∈W .

Documenta Mathematica 11 (2006) 73–118



86 W. Bley

Then there exists a G-homomorphism

ψ : Wχ −→ ((Z/MZ) [G])χ

such that
gψ(x)λχ = (E · η[x]l)χ

in (Jl/MJl)χ.

Proof Completely analoguous to the proof of [10, Lem. 3.12].

We will now sketch the main argument of the proof of Theorem 3.1. We fix a
natural number n ≥ 1 and let K = Kn = Fkn. We view ∆ as a subgroup of
G = Gal(K/k).
We let M denote a large power of p which we will specify in course of the proof.
By Lemma 3.6 there exists for each i = 1, . . . , k an ideal class ci ∈ Aχ such
that

τn(ci) = (0, . . . , 0, pc3 , 0, . . . , 0)

in
⊕k

i=1 Λn,χ/(ḡi) with pc3 at the ith position. Choose ck+1 arbitrary. By
Lemma 3.5 there exists an element ξ′ ∈ im(C̄n,χ) such that ϑn(ξ′) = (γn0

−
1)c1pc2h′χ in Λn,χ. It is now easy to show that there exists an actual elliptic
unit ξ ∈ Cn such that

ϑn(ξ) = (γn0
− 1)c1pc2h′χ(mod MΛn,χ). (6)

By [24, Prop. 1.2] there exists an Euler system α ∈ UK,M such that α(1) = ξ.
Set d := 3c+3, where c was defined in Theorem 3.4. Following Greither we will
use Theorem 3.4 to construct inductively prime ideals λi of K, 1 ≤ i ≤ k + 1,
such that

(a) [λi]χ = pdci

(b) li = λi ∩ k ⊆ SM,K

(c) one has the equalities

(vλ1
(κ(l1)))χ = u1|∆|(γn0

− 1)c1pd+c2h′χ,

(gi−1vλi
(κ(l1 · · · li)))χ = ui|∆|(γn0

− 1)c
i−1
1 pd+c3

(
vλi−1

(κ(l1 · · · li−1))
)
χ

for 2 ≤ i ≤ k + 1. These are equalities in Λn,χ/MΛn,χ. The elements
ui are units in Z/MZ and vλ(x) ∈ (Z/MZ) [G] ≃ Λn/MΛn is defined by
vλ(x)λ = [x]l in Jl/MJl, if l = λ ∩ k ∈ LM,K .

We briefly descibe this induction process. For i = 1 we let c ∈ A be a preimage
of c1 under the canonical epimorphism A → Aχ. We apply Theorem 3.4 with
the data c, W = E/EM (with E := O×

K) and

ψ : W
v−→ Ēn,χ/ĒMn,χ

ϑn−→ Λn,χ/MΛn,χ
εχ−→ (Z/MZ) [G]
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where v ∈ (Z/MZ)
×

is such that each unit x ∈ K⊗kp satisfies xv ≡ 1 modulo
all primes above p. The map εχ is defined in [10, Lemma 3.13]. Theorem 3.4
provides a prime ideal λ = λ1 which obviously satisfies (a) and (b) and, in
addition,

ϕl(w) = pduψ(w)λ for all w ∈ E/EM .
From this equality we conclude further

vλ(κ(l))λ = [κ(l)]l = ϕl(κ(1)) = ϕl(ξ)

= pduψ(ξ)λ =
(
pduv(εχ ◦ ϑn)(ξ)

)
λ

in Jl/MJl = (Z/MZ) [G]λ. Projecting the equality vλ(κ(l)) = pduv(εχ ◦ϑn)(ξ)
to ((Z/MZ) [G])χ = Λn,χ/MΛn,χ and using [10, Lemma 3.13] together with
(6) we obtain equality (c) for i = 1.
For the induction step i−1 7→ i we set ai−1 := l1 · · · li−1. Using (c) inductively
we see that

(
vλi−1

(κ(ai−1))
)
χ

divides


|∆|i−1p(i−2)(d+c3)+(d+c2)

︸ ︷︷ ︸
=:Di

(γn0
− 1)c1+

Pi−2
s=1 c

s
1h′χ



χ

.

Without loss of generality we may assume that c1 ≥ 2. Then one has c1 +∑i−2
i=1 c

s
1 ≤ ci−1

1 , so that
(
vλi−1

(κ(ai−1))
)
χ

also divides Di(γn0
− 1)tih′χ with

ti := ci−1
1 . The module

N = (γn0
− 1)ti

(
Jli−1

/
(
M, [κ(ai−1)]li−1

))
χ

is a cyclic as a Λn,χ-module and annihilated by Dih
′
χ. Consequently

|N | ≤ |Λn,χ/(Di)| · |Λn,χ/(h′χ)|.

Note that by the definition of h′χ the quotient Λn,χ/(h
′
χ) is finite. If we choose

M such that

M ≥ max
(
|Aχ| · |Λn,χ/(Dk+1)| · |Λn,χ/(h′χ)|, pn

)

then one has |N | ≤M |Aχ|−1.
We now apply Lemma 3.8 with a = ai−1, g = gi−1, x = κ(ai−1), E = pc3

and η = (γn0
− 1)ti . Following Greither it is straight forward to check the

hypothesis (a), (b) and (c) of Lemma 3.8. Note that for (b) one has to use
the fact that char(A∞,χ) is relatively prime to γn − 1 for all n, which is an
immediate consequence of Lemma 3.5. We let W denote the Zp[G]-span of

κ(ai−1) in K×/ (K×)
M

and obtain a homomorphism

ψi : Wχ −→ ((Z/MZ) [G])χ
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such that gi−1ψi(κ(ai−1)) =
(
pc3(γn0

− 1)tivλi−1
(κ(ai−1))

)
χ
. We let c denote

a preimage of ci and consider the homomorphism

ψ : W −→Wχ
ψi−→ Λn,χ/MΛn,χ

εχ−→ (Z/MZ) [G]

We again apply Theorem 3.4 and obtain λi satifying (a), (b) and also

ϕli(κ(ai−1)) = pduψ(κ(ai−1))λi.

As in the case i = 1 one now establishes equality (c). This concludes the
inductive construction of λ1, . . . , λk+1.
Using (c) successively we obtain (suppressing units in Z/MZ)

(
g1 · · · gkvλk+1

(κ(l1 · · · lk+1))
)

= ηh′χ

(as an equality in Λn,χ/MΛn,χ) with

η =
(
|∆|k+1pk(d+c3)+d+c2(γn0

− 1)c1+
Pk

s=1 c
s
1

)
χ
.

Therefore g = g1 · · · gk divides ηh′χ in Λn,χ/MΛn,χ, and since pn |M we also see
that g divides ηh′χ in Λn,χ/p

nΛn,χ. As in [31, page 371, last but one paragraph]
we deduce that g divides ηh′χ in Λχ.
By [6, III.2.1, Theorem] (together with [6, III.1.7, (13)]) we know that the
µ-invariant of A∞,χ is trivial. Hence g = char(A∞,χ) is coprime with p. By
Lemma 3.7 it is also coprime with γn0

− 1, and consequently |Λχ/(g, η)| <∞.
Therefore there exist α, β ∈ Λχ and N ∈ N such that pN = αg+βη and we see
that g divides pNh′χ. Since g is prime to p we obtain g | h′χ.

Remark 3.9 There are several steps in the proof where we use the assumption
that p splits in k/Q. Among these the vanishing of µ(A∞,χ) is most important.
The proof of this uses an important result of Gillard [9]. If p is not split in k/Q
our knowledge about µ(A∞,χ) seems to be quite poor.

4 The conjecture

In this section we fix an integral Ok-ideal f such that w(f) = 1 and write

M = h0(Spec(k(f)), A = Q[Gf], A = Z[Gf],

where for any Ok-ideal m we let Gm denote the Galois group Gal(k(m)/k).
For any commutative ring R we write D(R) for the derived category of the
homotopy category of bounded complexes of R-modules and Dp(R) for the
full triangulated subcategory of perfect complexes of R-modules. We write
Dpis(R) for the subcategory of Dp(R) in which the objects are the same, but
the morphisms are restricted to quasi-isomorphisms.
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We let P(R) denote the category of graded invertible R-modules. If R is
reduced, we write DetR for the functor from Dpis(R) to P(R) introduced by
Knudsen and Mumford [14]. To be more precise, we define

DetR(P ) :=




rkR(P )∧

R

P, rkR(P )


 ∈ Ob(P(R))

for any finitely generated projective R-module P and for a bounded complex
P • of such modules we set

DetR(P •) :=
⊗

i∈Z

Det
(−1)i

R (P i).

If R is reduced, then this functor extends to a functor from Dpis(R) to P(R).
For more information and relevant properties the reader is refered to [5, §2], or
the original papers [14] and [15].
For any finite set S of places of k we define YS = YS(k(f)) = ⊕w∈S(k(f))Zw.
Here S(k(f)) denotes the set of places of k(f) lying above places in S. We let
XS = XS(k(f)) denote the kernel of the augmentation map YS → Z, w 7→ 1.
The fundamental line Ξ(AM) is given by

Ξ(AM)# = Det−1
A

(
O×
k(f)⊗ZQ

)
⊗ADetA

(
X{v|∞}⊗ZQ

)
,

where the superscript # means twisting the action of Gf by g 7→ g−1. We let

R = Rk(f) : O×
k(f)⊗ZR −→ X{v|∞}⊗ZR,

u 7→ −
∑

v|∞
log |u|v · v

denote the Dirichlet regulator map. Let

Aϑ∞ : R[Gf] −→ Ξ(AM)#⊗QR

be the inverse of the canonical isomorphism

Det−1
R[Gf]

(
O×
k(f)⊗ZR

)
⊗R[Gf]DetR[Gf]

(
X{v|∞}⊗ZR

)

det(R)⊗1−→ Det−1
R[Gf]

(
X{v|∞}⊗ZR

)
⊗R[Gf]DetR[Gf]

(
X{v|∞}⊗ZR

)

eval−→ (R[Gf], 0) .

Following [19] we define for integral Ok-ideals g, g1 with g | g1 and each abelian
character η of Gg ≃ cl(g) (cl(g) denoting the ray class group modulo g)

Sg(η, g1) =
∑

c∈cl(g1)

η(c−1) log |ϕg(c)|,
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where η is regarded as a character of cl(g1) via inflation. For the definition of
the ray class invariants ϕg(c) we choose an integral ideal c in the class c and
set

ϕg(c) = ϕg(c) =

{
ϕ12N(g)(1; gc−1), if g 6= 1,∣∣∣N(c−1)6∆(c−1)

(2π)12

∣∣∣ , if g = 1,

where ϕ was defined in (1). Note that this definition does not depend on the
choice of the ideal c (see [20, pp. 15/16]).
For an abelian character η of cl(g) we write fη for its conductor. We write
L∗(η) for the leading term of the Taylor expansion of the Dirichlet L-function
L(s, η) at s = 0.
From [20, Th. 3] and the functional equation satisfied by Dirichlet L-functions
we deduce

L∗(η−1) = − Sfη
(η, fη)

6N(fη)w(fη)
. (7)

We denote by ĜQ
f the set of Q-rational characters associated with the Q-

irreducible representations of Gf. For χ ∈ ĜQ
f we set eχ =

∑
η∈χ eη ∈ A,

where we view χ as an Gal(Qc/Q)-orbit of absolutely irreducible characters of
Gf. Then the Wedderburn decompostion of A is given by

A ≃
∏

χ∈ĜQ
f

Q(χ). (8)

Here, by a slight abuse of notation, Q(χ) denotes the extension generated by
the values of η for any η ∈ χ. For any character χ ∈ ĜQ

f the conductor fχ,
defined by fχ := fη for any η ∈ χ, is well defined.
We put L∗(χ) :=

∑
η∈χ L

∗(η)eη and note that L∗(χ)# :=
∑
η∈χ L

∗(η−1)eη.

The statement L∗(χ)# ∈ Aeχ (compare to [8, page 8]) is not obvious, but
needs to be proved. This is essentially Stark’s conjecture.
We fix a prime ideal p of Ok and also choose an auxiliary ideal a of Ok such
that (a, 6fp) = 1. For each η 6= 1 we define elements

ξη :=

{
ψ(1; fη, a), if fη 6= 1,
δ(Ok,a

−1)
δ(p,pa−1) , if fη = 1, η 6= 1,

(9)

where δ denotes the function of lattices defined in [21, Th. 1]. We set ξχ := ξη
for any η ∈ χ.
We fix an embedding σ : Qc →֒ C and write w∞ = σ|k(f). A standard compu-
tation leads to

R(eηξη)

=

{
(Na− η(a))w(fη)[k(f) : k(fη)]L∗(η−1)eηw∞, fη 6= 1,

(1− η(p)−1)(Na− η(a))w(1)[k(f) : k(1)]L∗(η−1)eηw∞, fη = 1, η 6= 1.
(10)
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For the reader’s convenience we briefly sketch the computation for characters
η 6= 1 with fη = 1. By definition of the Dirichlet regulator map and [21, Cor. 2]
we obtain

R(eηξη) = −1

6
[k(f) : k(1)]

∑

c∈cl(1)

log

∣∣∣∣
∆(c)Na∆(a−1cp)

∆(a−1c)∆(cp)Na

∣∣∣∣ η(c)eηw∞. (11)

Since
∑

c∈cl(1) Cη(c) = 0 for any constant C we compute further

∑

c∈cl(1)

log

∣∣∣∣
∆(c)Na∆(a−1cp)

∆(a−1c)∆(cp)Na

∣∣∣∣ η(c)

=
∑

c∈cl(1)

log

∣∣∣∣∣

(
(Nc)6∆(c)

(2π)12

)Na
∣∣∣∣∣ η(c) +

∑

c∈cl(1)

log

∣∣∣∣
(Na−1cp)6∆(a−1cp)

(2π)12

∣∣∣∣ η(c)−

−
∑

c∈cl(1)

log

∣∣∣∣∣

(
(Ncp)6∆(cp)

(2π)12

)Na
∣∣∣∣∣ η(c)−

∑

c∈cl(1)

log

∣∣∣∣
(Na−1c)6∆(a−1c)

(2π)12

∣∣∣∣ η(c)

= Na
∑

c∈cl(1)

log
∣∣ϕ1(c−1)

∣∣ η(c) +
∑

c∈cl(1)

log
∣∣ϕ1(ac−1p−1)

∣∣ η(c)−

−Na
∑

c∈cl(1)

log
∣∣ϕ1(p−1c−1)

∣∣ η(c)−
∑

c∈cl(1)

log
∣∣ϕ1(ac−1)

∣∣ η(c).

Recalling that ϕg(c) is a class invariant we obtain

∑

c∈cl(1)

log

∣∣∣∣
∆(c)Na∆(a−1cp)

∆(a−1c)∆(cp)Na

∣∣∣∣ η(c) = (Na− η(a))(1− η(p)−1)S1(η, 1)eηw∞,

so that (10) is an immediate consequence of (7) and (11).
According to the decomposition (8) we decompose Ξ(AM)# character by char-
acter and obtain a canonical isomorphism

Ξ(AM)# −→



∏

χ∈ĜQ
f

(
Det−1

Q(χ)(O×
k(f)⊗AQ(χ))⊗Q(χ)DetQ(χ)(X{v|∞}⊗AQ(χ))

)

 .

As in the cyclotomic case one has

dimQ(χ) eχ

(
O×
k(f)⊗AQ(χ)

)
= dimQ(χ) eχ

(
X{v|∞}⊗AQ(χ)

)
=

{
1, χ 6= 1,

0, χ = 1.

(12)
Upon recalling that DetQ(0) = (Q, 0) in P(Q) we get a canonical isomorphism

Ξ(AM)# −→ Q×


∏

χ6=1

(
(O×

k(f)⊗AQ(χ))(−1)⊗Q(χ)(X{v|∞}⊗AQ(χ))
)

 .
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From (10) we deduce

(
Aϑ∞(L∗(AM, 0)−1)

)
χ

=





w(fχ)[k(f) : k(fχ)](Na− σ(a))eχξ
−1
χ ⊗w∞, fχ 6= 1,

w(1)[k(f) : k(1)](1− σ(p)−1)(Na− σ(a))eχξ
−1
χ ⊗w∞, fχ = 1, χ 6= 1

L(χ, 0)−1, χ = 1.

In particular, this proves the equivariant version of [8, Conjecture 2].
We fix a prime p and put Ap := A⊗QQp = Qp[Gf], Ap := A⊗ZZp = Zp[Gf].
Let S = Sram ∪ S∞ be the union of the set of ramified places and the set of
archimedian places of k. Let Sp = S ∪ {p | p} and put

∆(k(f)) := RHomZp
(RΓc(Ok(f),Sp

,Zp),Zp)[−3]

Then ∆(k(f)) can be represented by a perfect complex of Ap-modules whose
cohomology groups Hi(∆(k(f)) are trivial for i 6= 1, 2. For i = 1 one finds

H1(∆(k(f)) ≃ O×
k(f),Sp

⊗ZZp,

and H2 fits into an short exact sequence

0 −→ Pic(Ok(f),Sp
)⊗ZZp −→ H2(∆(k(f))) −→ X{w|fp∞}⊗ZZp −→ 0

We have an isomorphism

Aϑp : Ξ(AM)#⊗QQp −→ DetAp

(
∆(k(f))⊗Zp

Qp

)

given by the composite

Det−1
Ap

(O×
k(f)⊗ZQp)⊗Ap

DetAp
(X{v|∞}⊗ZQp)

ϕ1−→ Det−1
Ap

(O×
k(f),Sp

⊗ZQp)⊗Ap
DetAp

(X{v|fp∞}⊗ZQp)

ϕ2−→ Det−1
Ap

(O×
k(f),Sp

⊗ZQp)⊗Ap
DetAp

(X{v|fp∞}⊗ZQp)

ϕ3−→ DetAp

(
∆(k(f))⊗Zp

Qp

)
.

Here ϕ1 is induced by the split short exact sequences

0 −→ O×
k(f)⊗ZQp −→ O×

k(f),Sp
⊗ZQp −→ Y{w|fp}⊗ZQp −→ 0 (13)

0 −→ X{w|∞}⊗ZQp −→ X{w|fp∞}⊗ZQp −→ Y{w|fp}⊗ZQp −→ 0 (14)

The isomorphism ϕ2 is multiplication with the Euler factor
∏
v∈Sp

E#
v ∈ A×

where Ev is defined by

Ev =
∑

η|Dv =1

|Dv/Iv| eη +
∑

η|Dv 6=1

(1− η(fv))
−1
eη, (15)
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where fv ∈ Dv denotes a lift of the Frobenius element in Dv/Iv and Iv ⊆
Dv ⊆ Gf are the inertia and decomposition subgroups for a place w | v in
k(f)/k. Finally ϕ3 arises from the explicit description of the cohomology groups
Hi(∆(k(f))), i = 1, 2, and the canonical isomorphism

DetAp
(∆(k(f))⊗Ap

Qp) ≃
⊗

i∈Z

Det
(−1)i

Ap

(
Hi(∆(k(f))⊗Ap

Qp)
)

(16)

([14, Rem. b) following Th. 2]).
We are now in position to give a very explicit description of the equivariant
version of [8, Conjecture 3].

Conjecture 4.1 Aϑp
(
Aϑ∞(L∗(AM, 0)−1)

)
Ap = DetAp

(∆(k(f))).

The main result of this article reads:

Theorem 4.2 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hk of k.
Then Conjecture 4.1 holds.

Corollary 4.3 Let k denote a quadratic imaginary field and let p be an odd
prime which splits in k/Q and which does not divide the class number hk of k.
Let L be a finite abelian extension of k and k ⊆ K ⊆ L. Then the p-part of
the ETNC holds for the pair (h0(Spec(L),Z[Gal(L/K)])).

Proof This is implied by well known functorial properties of the ETNC.

5 The limit theorem

Following [8] or [5] we will deduce Theorem 4.2 from an Iwasawa theoretic
result which we will describe next. Let now p = pp̄ denote a split rational
prime and f an integral Ok-ideal such that w(f) = 1. In addition, we assume
that p̄ divides f whenever p divides f. We write f = f0p

ν , p ∤ f0. We put
∆ := Gal(k(f0p)/k) = Gf0p and let

Λ = lim
←
n

Zp[Gfpn ] ≃ Zp[∆][[T ]]

denote the completed group ring. The element T = γ−1 depends on the choice
of a topological generator γ of Γ := Gal(k(f0p

∞)/k(f0p)) ≃ Zp.
We will work in the derived category Dp(Λ) and define

∆∞ := lim
←
n

∆(k(f0p
n)).

Then ∆∞ can be represented by a perfect complex of Λ-modules. For its
cohomology groups one obtains Hi(∆∞) = 0 for i 6= 1, 2,

H1(∆∞) ≃ U∞
Sp

:= lim
←
n

(
O×
k(f0pn),Sp

⊗ZZp
)
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and H2(∆∞) fits into the short exact sequence

0 −→ P∞
Sp
−→ H2(∆∞) −→ X∞

{w|f0p∞} −→ 0,

where

P∞
Sp

:= lim
←
n

(
Pic(Ok(f0pn),Sp

)⊗ZZp
)
,

X∞
{w|f0p∞} := lim

←
n

(
X{w|f0p∞}(k(f0p

n))⊗ZZp
)
.

The limits over the unit and Picard groups are taken with respect to the norm
maps; the transition maps for the definition of X∞

{w|f0p∞} are defined by sending
each place to its restriction.
For g | f0 we put

ηg :=
{
ψ(1; gpn+1, a)

}
n≥0
∈ U∞

Sp
,

σ∞ :=
{
σ|k(f0pn+1)

}
n≥0
∈ Y∞

{w|fp∞},

where σ is our fixed embedding Qc →֒ C.
For any commutative ring R we write Q(R) for its total ring of fractions. Then
Q(Λ) is a finite product of fields,

Q(Λ) ≃
∏

ψ∈∆̂Qp

Q(ψ), (17)

where ∆̂Qp denotes the set of Qp-rational characters of ∆ which are associated

with the set of Qp-irreducible representations of ∆. For each ψ ∈ ∆̂Qp one has

Q(ψ) = Q

(
Zl(ψ)[[T ]][

1

p
]

)
.

As in [8] one shows that for each ψ ∈ ∆̂Qp one has

dimQ(ψ)

(
U∞
Sp
⊗ΛQ(ψ)

)
= dimQ(ψ)

(
Y∞
{w|fp∞}⊗ΛQ(ψ)

)
= 1

It follows that the element eψ(η−1
f0
⊗σ∞) is a Q(ψ)-basis of

DetQ(ψ)(∆
∞⊗ΛQ(ψ)) ≃ Det−1

Q(ψ)(U
∞
Sp
⊗ΛQ(ψ))⊗DetQ(ψ)(X

∞
{w|fp∞}⊗ΛQ(ψ)).

Theorem 5.1 Λ · L = DetΛ(∆∞) with L = (Na− σ(a))
(
η−1

f0
⊗σ∞

)
.

Proof By [8, Lem. 5.3] it suffices to show that the equality

Λq · L = DetΛq
(∆∞⊗ΛΛq) (18)
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holds for all height 1 prime ideals of Λ. Such a height 1 prime is called regular
(resp. singular) if p 6∈ q (resp. p ∈ q).
We first assume that q is a regular prime. Then Λq is a discrete valuation ring,
in particular, a regular ring. Hence we can work with the cohomology groups
of ∆∞, and in this way, the equality Λq · L = DetΛq

(∆∞⊗ΛΛq) is equivalent
to

(Na− σ(a))FittΛq
(Zp,q) FittΛq

(
U∞
Sp,q/ηf0Λq

)

= FittΛq

(
P∞
Sp,q

)
FittΛq

(
Y∞
{w|f0p∞},q/Λqσ∞

)
. (19)

Attached to each regular prime q there is a unique character ψ = ψq ∈ ∆̂Qp .
To understand this notion we recall that

Λ[
1

p
] ≃

∏

ψ∈∆̂Qp

(Zp(ψ)[[T ]]) [
1

p
].

If p 6∈ q, then Λq is just a further localisation of Λ[ 1p ], so that exactly one of
the above components survives the localization process.
We set

U∞ := lim
←
n

(
O×
k(f0pn)⊗ZZp

)
,

P∞ := lim
←
n

(
Pic(Ok(f0pn))⊗ZZp

)
.

Remark 5.2 Note that, using the notation of Section 3, one has P∞ = A∞.
We put Kn := k(f0p

n+1). Mimicking the proof of Leopoldt’s conjecture, one
can show that for each n ≥ 0 the natural map O×

Kn
⊗ZZp → Un (semi-local

units in Kn⊗kkp which are congruent to 1 mod p) is an injection. It follows
that U∞ = Ē∞, where Ē∞ is, as in Section 3, the projective limit over the
closures of the global units.

There is an exact sequence of Λ-modules

0 −→ U∞ −→ U∞
Sp
−→ Y∞

{w|f0p},β −→ P∞ −→ P∞
Sp
−→ 0, (20)

where
Y∞
{w|f0p},β = lim

←
n

(
Y{w|f0p}(k(f0p

n))⊗Zp
)

with respect to the transition maps

Y{w|f0p}(k(f0p
n+1)

βn+1/n−→ Y{w|f0p}(k(f0p
n))

induced by w 7→ fw|vv, if v denotes the restriction of w and fw|v the residue
degree.
If now b is a prime divisor of f0 and n0 ∈ N such that there is no further splitting
of primes above b in k(f0p

∞)/k(f0p
n0), then βm|n(w) = pm−nw|k(f0pn+1) for all
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m ≥ n ≥ n0. Letting m tend to infinity this shows that Y∞
{w|b},β = 0. Hence

we have an exact sequence of Λ-modules

0 −→ U∞ −→ U∞
Sp
−→ Y∞

{w|p},β −→ P∞ −→ P∞
Sp
−→ 0. (21)

In addition, one has the exact sequence

0 −→ X∞
{w|f0} −→ X∞

{w|f0p∞} −→ Y∞
{w|p} ⊕ Y∞

{w|∞} −→ 0. (22)

Remark 5.3 Note that the transition maps in the first two limits are induced
by restriction, which coincides with βn+1|n for the places above p and∞. Hence
Y{w|∞} = Y{w|∞},β and Y{w|p} = Y{w|p},β .

We observe that Y∞
{w|∞},q = Λq · σ∞. Putting together (21) and (22) we there-

fore deduce that (19) is equivalent to

(Na− σ(a))FittΛq

(
U∞

q /ηf0Λq

)
= FittΛq

(
P∞

q

)
FittΛq

(
X{w|f0},q

)
. (23)

Let d be a divisor of f0 such that ψq has conductor d or dp. For any prime
divisor l | f0 we write Il ⊆ Dl ⊆ Gf0p∞ for the inertia and decomposition
subgroups at l. Let Frl denote a lift of the Frobenius element in Dl/Il. We
view ψ as a character of Gf0p∞ via inflation and note that if l ∤ d (i.e. ψ|Il

= 1),
then Frl is a well defined element in Λq.

Lemma 5.4 Let

ε =

{
0, ψ 6= 1,

1, ψ = 1.

Then:

FittΛq
(ΛqT

εηd/Λqηf0) = T−ε ∏

l|f0,l∤d
(1− Fr−1

l )Λq = FittΛq
(X∞

{w|f0},q).

Lemma 5.5

FittΛq
(U∞

q /ΛqT
εηd) = (Na− σ(a))FittΛq

(P∞
q )

Proof of Lemma 5.5: Let ψ = ψq. By the Iwasawa main conjecture (Theo-
rem 3.1) and Remark 5.2 we have

char(P∞
ψ ) = char

(
(U∞/C̄∞)ψ

)
,

where (again by a slight abuse of notation) for a Λ-module M we set Mψ := Mη

for any η ∈ ψ.
The corollary to [16, App. Prop. 2] implies that

FittΛq
(P∞

q ) = FittΛq

(
(U∞/C̄∞)q

)
.
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Hence it suffices to show that

C̄∞(a)q = Λq · T εηd, (24)

FittΛq
(C̄∞,q/C̄∞(a)q) = (Na− σ(a))Λq. (25)

Here C̄∞(a) is the projective limit over

C̄n(a) = closure of 〈ψ(1; gpn+1, a) : g | f0〉Z[Gal(k(f0pn+1)/k)] ∩ En.

(Note that Λqηd is for ψ 6= 1 a group of units. This is true even for d = 1,
because Λqη1 = Λqeψη1 and eψ has augmentation 0.)
In order to prove (24) we set

ψn := ψ(1; dpn+1, a), Gn := Gal(k(f0p
n+1)/k), Λn := Zp[Gn].

If bn denotes the annihilator of ψn in Λn, then we have the following exact
sequence of inverse systems of finitely generated Zp-modules

0 −→ (Λn/bn)n −→
(
C̄n(a)

)
n
−→

(
C̄n(a)/Λnψn

)
n
−→ 0.

The topology of Zp induces on each of these modules the structure of a compact
topological group, so that [27, Prop. B.1.1] implies that lim

←
n

is exact. Hence we

obtain the short exact sequence of Λ-modules

0 −→ lim
←
n

(Λn/bn) −→ C̄∞(a) −→ lim
←
n

(
C̄n(a)/Λnψn

)
−→ 0.

Again by [27, Prop. B.1.1] we obtain

lim
←
n

(Λn/bn) ≃ Λ/ lim
←
n

bn ≃ Ληd,

so that

C̄∞(a)/Ληd ≃ lim
←
n

(C̄n(a)/Λψn). (26)

For d | f0 we identify Gal(k(f0p
n+1)/k(dpn+1)) and Gal(k(f0p)/k(dp)). Then

one has (in additive notation) for any g with d | g | f0 the distribution relation

Nk(f0p)/k(dp)

(
ψ(1; gpn+1, a)

)

= [k(f0p) : k(gp)]


 ∏

l|g,l∤d
(1− Fr−1

l )


ψ(1; dpn+1, a). (27)

In addition, one obviously has

[k(f0p) : k(gp)]ψ(1; gpn+1, a) = Nk(f0p)/k(gp)

(
ψ(1; gpn+1, a)

)
. (28)
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Note that for ψ 6= 1 and d ∤ g one has ψ(Nk(f0p)/k(gp)) = 0. Hence, if ψ 6= 1,
then (27), (28) and (26) show that

A :=


 ∏

g|f0,d∤g

[k(f0p) : k(gp)]


 ·Nk(f0p)/k(dp)

annihilates C̄∞(a)/Ληd. Since ψ(A) ∈ Zp is non-trivial and p is invertible in
Λq, the element A is a actually a unit in Λq, which implies C̄∞(a)q = Λqηd.
If ψ = 1 we proceed in almost the same way, but now set ψn := ψ(1; pn+1, a)γ−1.
In this case we have d = 1.

Sublemma: Let {Cn, fn}n≥0 be a projective system of finitely generated
Zp[Gn]-modules and set C∞ = lim

←
n

Cn. Let q denote a regular prime and let

ψ = ψq. Then:
C∞,q ≃ (lim

←
n

Cn,ψ)q.

Proof of Sublemma: The natural map Cn −→ ⊕χ∈∆̂QpCn,χ has kernel

and cokernel annihilated by |∆|. Passing to the limit we obtain (again by [27,
B.1.1]) an exact sequence of Λ-modules

0 −→W∞ −→ C∞ −→
⊕

χ∈∆̂Qp

lim
←
n

Cn,χ −→ X∞ −→ 0,

where W∞ and X∞ are annihilated by |∆|. Since |∆| ∈ Λ×
q we obtain

C∞,q ≃


 ⊕

χ∈∆̂Qp

lim
←
n

Cn,χ




q

=

(
lim
←
n

Cn,ψ

)

q

.

Arguing as in the case ψ 6= 1 and applying the Sublemma we obtain

(
C̄∞(a)/ΛTηd

)
q
≃
(

lim
←
n

(C̄n(a)/Λnψn)

)

q

≃
(

lim
←
n

(C̄n(a)/Λnψn)ψ

)

q

.

Hence it suffices to show that each of the modules (C̄n(a)/Λnψn)ψ is annihilated
by the unit Nk(f0p)/k(p). If

∏

g6=1

ψ(1; gpn+1, a)αg · ψ(1; pn+1, a)α1 with α1, αg ∈ Zp[Gn]

is a unit in Kn = k(f0p
n+1), then the prime ideal factorization of the singular

values ψ(1; gpn+1, a) (see [1, Th. 2.4]) implies that α1 has augmentation 0. It
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follows that ψ(α1) ∈ Zp[Gal(Kn/K0)] is divisible by γ−1. For any element σ ∈
Gn we write σ = γ(σ)δ(σ) according to the decomposition Gn = Gal(Kn/K0)×
∆. If g 6= 1 each of the factors ψ(1 − Fr−1

l ) = 1− γ(Frl)
−1 in (27) is divisible

by γ − 1.
Altogether this implies that Nk(f0p)/k(p) annihilates

(
C̄∞(a)/ΛTηd

)
q
, hence

C̄∞(a)q = ΛqTηd.
It finally remains to prove (25). For any integral ideal m and any two integral
ideals a and b such that (ab, 6m) = 1 one has the relation

ψ(1; m, a)Nb−σ(b) = ψ(1; m, b)Na−σ(a). (29)

This is a straightforward consequence of [1, Prop. 2.2] and the definition of ψ,
see in particular [20, Théorème principal (b) and Remarque 1 (g)]. Equality
(29) shows that Na−σ(a) annihilates C̄∞,q/C̄∞(a)q. Using the same arguments
as in the proof of Lemma 3.5 (see that paragraph following Claim 2), one shows
that this module is generated by one element. By [16, App. 3 and 8 ] it therefore
suffices to show that (Na− σ(a))Λq is the exact annihilator. From Lemma 5.6
below we obtain finitely many ideals a1, . . . , as and n1, . . . , ns ∈ Λq such that

1 =

s∑

i=1

ni(Nai − σ(ai)).

Consider the element η := T ε
∏s
i=1 ηd(ai)

ni , where ηd(ai) :=
{ψ(1; dpn+1, ai)}∞n=0. One has

ηNa−σ(a) = T εηd.

As a consequence of Lemma 3.5, Claim 2, the module C̄∞(a)q = ΛqT
εηd

is Λq-free. It follows that no divisor of Na − σ(a) annihilates the quotient
C̄∞,q/C̄∞(a)q.
To complete the proof for the localization at regular primes q we add the
following

Lemma 5.6 Let ψ ∈ ∆̂Qp , η ∈ ψ and write R = Zl(ψ) = Zl(η). Let I denote
the ideal of Λψ = R[[Γ]] generated by the elements Na−σ(a) = Na−η(a)γ(a),
where a runs through the integral ideals of Ok such that (a, 6fp) = 1. Then
IΛψ[ 1p ] = Λψ[ 1p ].

Proof As usual we identify R[[Γ]] with R[[T ]] by identifying γ with 1 + T .
We note that Λψ[ 1p ] is a principal ideal domain whose irreducible elements are

given by the irreducible distinguished polynomials f ∈ R[T ]. We fix such f
and write

f(T ) = γs + as−1γ
s−1 + . . .+ a1γ + a0, ai ∈ R.

For any n there exist ideals a0, . . . , as (depending on n) such that (ai, 6fp) = 1
and σ(ai)|Kn

= γi|Kn
. In particular, this implies η(ai) = γi and

s∑

i=0

ai(Nai − σ(ai)) ≡
s∑

i=0

aiNai − f(T )(mod (γp
n − 1)Λψ).
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Inverting p we derive

s∑

i=0

a′i(Nai − σ(ai)) ≡ 1− cf(T )(mod (γp
n − 1)Λψ[

1

p
])

with a′1, . . . , a
′
s, c ∈ Qp(ψ) = Qp(η). Therefore

1 ∈ IΛψ[
1

p
] + fΛψ[

1

p
] +
⋂

n

(γp
n − 1)Λψ[

1

p
].

Since (γp
n − 1)Λψ[ 1p ] is a strictly decreasing sequence of ideals in a principal

ideal domain we obtain
⋂
n(γp

n − 1)Λψ[ 1p ] = (0). Consequently,

IΛψ[ 1p ] + fΛψ[ 1p ] = Λψ[ 1p ] for every irreducible distinguished polynomial f and

the lemma is proved.

We now assume that q is a singular prime. We write ∆ = ∆′ × P with p ∤ |∆′|
and note that the singular primes q are in one-to-one correspondence with the
Qp-rational irreducible characters of ∆′ ([5, Lem. 6.2(i)]). Assume that in this

way q is associated with ψ ∈ ∆̂′Qp and set χ = ψ×η, where η ∈ P̂ is arbitrarily
chosen. From [6, III,2.1 Theorem] and [6, III,1.7 (13)] we know that the µ-
invariant of P∞

χ := P∞⊗Zp[∆]Zp(χ) vanishes. By [8, Lem. 5.6] it follows that
P∞

q = 0. The module X∞
{w|f0p} is Zp[[T ]]-torsion and free over Zp, hence has

vanishing µ-invariant (as Zp[[T ]]-module). Again by [8, Lem. 5.6] we derive
X∞

{w|f0p},q = 0. Since P∞
Sp

is an epimorphic image of P∞ and because of the
exactness of

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y∞
{w|∞} −→ 0

we derive
H2(∆∞)q = Y∞

{w|∞},q ≃ Λqσ∞.

We now compute H1(∆∞)q. Consider the filtration

Λ · ηf0 ⊆ C̄∞(a) ⊆ C̄∞ ⊆ U∞ ⊆ U∞
Sp

= H1(∆∞).

By (21) the quotient U∞
Sp
/U∞ injects into Y∞

{w|p}. This module is a finite free

Zp-module and hence has vanishing µ-invariant. The module U∞/C̄∞ (or rather
any of its χ-components) also has vanishing µ-invariant by [6, III, 2.1 Theorem
and 1.7 (13)]. As shown above, the graded piece C̄∞/C̄∞(a) is annihilated by
Na − σ(a). We claim that Na − σ(a) ∈ Λ×

q . In order to prove the claim we
note that Na− σ(a) = Na− δ(a)(1 + T )w with w ∈ Zp and w 6= 0 (since σ(a)
has infinite order in Gf0p∞). Let π denote a prime element in Zp(ψ). Then the
explicit description of q given in [5, Lem. 6.2] easily implies q = (π,∆P )[[T ]],
where ∆P is the kernel of the augmentation map Zp(ψ)[P ]→ Zp(ψ). Therefore
Λ/q ≃ (Zp(ψ)/π))[[T ]]. Hence it suffices to show that the image of Na− σ(a)
under

Λ −→ Zp(ψ)[[T ]] −→ (Zp(ψ)/π) [[T ]] = Λ/q
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given by Na − ψ(a)(1 + T )w is non-trivial. This, in turn, is an easy exercise.
Finally we will use the distribution relation

Nk(f0pn+1)/k(frgpn+1)ψ(1; f0p
n+1, a) =


 ∏

l|f0,l∤g
(1− Fr−1

l )


ψ(1; gpn+1, a) (30)

to show that C̄∞(a)q/Λqηf0 is trivial. Indeed, a statement similar to (26) shows
that this quotient is annihilated by

∏
l|f0(1−Fr−1

l ), which is a unit in Λq (same

argument as with Na− σ(a) as above).
In conclusion, we have now shown that ∆∞

q has perfect cohomology, so that
again (18) is equivalent to (19), which is trivially valid because all modules
involved have trivial µ-invariants.

In the following we want to deduce Conjecture 4.1 from Theorem 5.1. Again
we can almost word by word rely on Flach’s exposition [8].
We have a ring homomorphism

Λ −→ Zp[Gf] = Ap ⊆ Ap =
∏

χ∈ĜQp
f

Qp(χ),

a canonical isomorphism of complexes

∆∞⊗L
ΛAp ≃ ∆(k(f)), (31)

and a canonical isomorphism of determinants

(DetΛ∆∞)⊗ΛAp ≃ DetAp
(∆(k(f)))

It remains to verify that the image of the element L⊗1 in DetAp
(∆(k(f))) ⊆

DetAp

(
∆(k(f))⊗Zp

Qp

)
agrees with Aϑp

(
Aϑ∞(L∗(AM, 0)−1)

)
. Let δ denote

the morphism such that the following diagram commutes

DetQ(Λ)(∆
∞⊗ΛQ(Λ))⊗Q(Λ)Ap

≃ //

≃
��

DetQ(Λ)(H
•(∆∞⊗ΛQ(Λ)))⊗Q(Λ)Ap

δ

��
DetAp

(∆(k(f))⊗Zp
Qp)

≃ // DetAp
(H•(∆(k(f))⊗Zp

Qp))

We let

φ : DetQp(χ)

(
∆(k(f))⊗Ap

Qp(χ)
)

≃
{

Det−1
Qp(χ)(O×

k(f)⊗Ap
Qp(χ))⊗Qp(χ)DetQp(χ)(X{v|∞}⊗Ap

Qp(χ)), χ 6= 1,

Q, χ = 1
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denote the isomorphism induced by ϕ−1
1 and ϕ−1

3 (see (13), (14) and (16)).
Note that φ is defined in terms of cohomology. Then we have to show that


∏

v∈Sp

(
E#
v

)−1


φ(δ(L⊗1)) (32)

=





w(fχ)[k(f) : k(fχ)](Na− χ(a))eχξ
−1
χ ⊗w∞, fχ 6= 1,

w(1)[k(f) : k(1)](1− χ(p)−1)(Na− χ(a))eχξ
−1
χ ⊗w∞, fχ = 1, χ 6= 1

L(χ, 0)−1, χ = 1.

By abuse of notation we also write χ for the composite ring homomorphism
Λ → Qp(χ) and denote its kernel by qχ. Then qχ is a regular prime of Λ and
Λqχ

is a discrete valuation ring with residue field Qp(χ). We consider χ as a

character of Gal(k(f0p
∞)/k). If χ = ψ × η with ψ ∈ ∆̂ and η a character of

Gal(k(f0p
∞)/k(f0p)), then the quotient field of Λqχ

is given by Q(ψ) (notation
as in (17)). We set

f1 =

{
f, if p | f,
fp, if p ∤ f.

Let pn be the degree of k(f1)/k(f0p).

Lemma 5.7 The element ω̄ := 1− γpn

is a uniformizing element for Λqχ
.

Proof We have to show that after localisation at qχ the kernel of χ is
generated by ω̄. Since the idempotents eψ and eη associated with ψ and η,

respectively, are units in Λqχ
, one has

(
Λ[ 1p ]

)
qχ

=
(

(Zp(ψ)[[T ]][ 1p ]
)

qχ

and

(Qp(ψ)][Γn])
qχ

= Qp(χ). This immediately implies the result.

We apply [8, Lem. 5.7] to

R = Λqχ
, ∆ = ∆∞

qχ
, ω̄ = 1− γpn

.

For a R-module M we put Mω̄ := {m ∈ M | ω̄m = 0} and M/ω̄ := M/ω̄M .
As we already know, the cohomology of ∆ is concentrated in degrees 1 and 2.
We will see that the R-torsion subgroup of Hi(∆), i = 1, 2, is annihilated by
ω̄, hence Hi(∆)tors = Hi(∆)ω̄. We define free R-modules M i, i = 1, 2, by the
short exact sequences

0 −→ Hi(∆)ω̄ −→ Hi(∆) −→M i −→ 0,

and consider the exact sequences of Qp(χ)-vector spaces

0 −→ Hi(∆)/ω̄ −→ Hi(∆⊗L
RQp(χ)) −→ Hi+1(∆)ω̄ −→ 0

induced by the distinguished triangle

∆
ω̄−→ ∆ −→ ∆⊗L

RQp(χ) −→ ∆[1].
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Then the map φω̄ of [8, Lem. 5.7] is induced by the exact sequence of Qp(χ)-
vector spaces

0 −→M1/ω̄ −→ H1(∆⊗L
RQp(χ))

βω̄−→ H2(∆⊗L
RQp(χ)) −→M2/ω̄ −→ 0,

(33)
where the Bockstein map βω̄ is given by the composite

H1(∆⊗L
RQp(χ)) −→ H2(∆)ω̄ −→ H2(∆)/ω̄ −→ H2(∆⊗L

RQp(χ)).

Note that for the exactness of (33) on the left we need to show that H1(∆) is
torsion-free.
We recall that Gal(k(f0p

n+1)/k(f0p)) = Gal(Kn/K0) is isomorphic to (1 +
f0p)/(1 + f0p

n+1) ≃ (1 + pZp)/(1 + pn+1Zp) via the Artin map. As before we
denote this isomorphism by σ : (1 + pZp)/(1 + pn+1Zp) → Gal(Kn/K0) and
also write σ : 1 + pZp → Γ. Passing to the limit we obtain a character

χell : Γ −→ 1 + pZp

uniquely defined by σ(χell(τ) mod (1 + pn+1Zp)) = τ |Kn
for all τ ∈ Γ. Note

that one has
ψ(1; f0p

n+1, a)τ = ψ(χell(τ); f0p
n+1, a)

for all n ≥ 0 and τ ∈ Γ.
For a place w | p in k(f)/k and u ∈ k(f) we write uw = σw(u), where σw : Qc →
Qc
p defines w.

Lemma 5.8 Define for l | f0 the element cl ∈ Zp by γclp
n

= Fr−fl

l , where fl ∈ Z
is the residue degree at l of k(f)/k. Put cp = logp(χell(γ

pn

))−1 ∈ Qp. Then βω̄
is induced by the map

H1(∆(k(f)))⊗Qp = O×
k(f),Sp

⊗Qp −→ X{w|fp∞}⊗Qp = H2(∆(k(f)))⊗Qp

given by

u 7→
∑

l|f0
cl
∑

w|l
ordw(u) · w + cp

∑

w|p
Trk(f)w/Qp

(
logp(uw)

)
· w.

Proof As in [8, Lem. 5.8].

Let a1, a2 denote integral Ok-ideals and set b = lcm(a1, a2), c = gcd(a1, a2). In
the following we will frequently apply the formulas

[k(b) : k(a1)k(a2)] =
w(b)w(c)

w(a1)w(a2)
, k(a1) ∩ k(a2) = k(c),

which follow easily from [28, (15)]. Without loss of generality we may assume
that w(f0) = 1. We also note that w(p) = 1, because p ∤ 2 and p 6= p̄. This
implies w(g) = 1 for any multiple g of f0 or p.
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After these preparations we will now prove equality (32). Recall that this equal-
ity is equivalent to the statement that the image of L⊗1 in DetAp

(∆(k(f))) ⊆
DetAp

(
∆(k(f))⊗Zp

Qp

)
is equal to Aϑp

(
Aϑ∞(L∗(AM, 0)−1)

)
. This suggests to

think of L as a p-adic L-function. The connection with the usual p-adic L-
function is hidden in the fact that for each character χ the characteristic power
series of the module of “semi-local units modulo elliptic units” is generated by
the p-adic L-function (see [24, Remark after Theorem 4.1]).
It is therefore intuitively clear that our descent considerations will be most
difficult (and interesting) in the case of “trivial zeros” of the associated p-adic
L-function.

The case of χ|Dp
6= 1. We let χ ∈ ĜQp

f be a non-trivial character such that
χ|Dp

6= 1. This should be considered as the case of no trivial zeros.
We first show that P∞

qχ
= 0. From Lemma 3.7 we know that multiplication by

γp
n − 1 on P∞ has finite kernel and cokernel. It follows that the characteristic

power series h ∈ Zp[[Γ]] of P∞ (considered as a module over Zp[[Γ]]) is coprime
with γp

n − 1. Hence h is a unit in Λqχ
which annihilates P∞

qχ
.

From (21) and Remark 5.3 we obtain the short exact sequence

0 −→ U∞
qχ
−→ U∞

Sp,qχ
−→ Y∞

{w|p},qχ
−→ 0

Moreover, Y∞
{w|p} = Zp[G∞/Dp], so that χ|Dp

6= 1 implies Y∞
{w|p},qχ

= 0. It

follows that H1(∆) = U∞
Sp,qχ

≃ U∞
qχ

and Lemma 5.5 implies

U∞
qχ

= (Na− σ(a))(1− γ)εηfχ,0
· Λqχ

,

where fχ,0 is the divisor of f0 such that ψ has conductor fχ,0 or fχ,0p. Recall
also that

ε =

{
0, ψ 6= 1,

1, ψ = 1.

If ψ = 1, then η 6= 1 and 1 − χ(γ) = 1 − η(γ) 6= 0, so that 1 − γ is a unit in
Λqχ

. Since also Na − σ(a) ∈ Λ×
qχ

, we may choose β1 = ηfχ,0
as Λqχ

-basis of

M1 = U∞
qχ

.

Since P∞
{w|fp} is a quotient of P∞ we obtain P∞

{w|fp},qχ
= 0. Therefore H2(∆) =

X∞
{w|f0p∞},qχ

. From the short exact sequence

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y∞
{w|∞} −→ 0

together with the fact that X∞
{w|f0p} is Λ-torsion, we derive

M2 = Y∞
{w|∞} = Λqχ

· β2 with β2 = σ∞.

We now apply [8, Lem. 5.7] with ω̄ = 1 − γp
n

. Recall that H2(∆)tors =
X∞

{w|f0p},qχ
and this module is annihilated by ω̄. Indeed, ω̄ ∼ 1 − γp

m

for
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m ≥ n. For large m one has γp
m ∈ Dl for each l | f0p. It follows that 1− γpm

annihilates X∞
{w|f0p}, so that the assumptions of [8, Lem. 5.7] are satisfied. The

element β̄1 ∈M1/ω̄ is the image of the norm-compatible system

ηfχ,0
=
{
ψ(1; fχ,0p

n+1, a)
}
n≥0

in M1/ω̄ ⊆ O×
k(f),Sp

⊗Z[Gf]Qp(χ). We write

f = f0p
ν , fχ = fχ,0p

ν′ .

and recall the definition of ξχ in (9). We will show that

β̄1 = Tχξχ⊗[k(f) : k(f0p
ν′)]−1

with

Tχ =

{
(1− χ−1(p)), if fχ 6= 1,

1, if fχ = 1.

If ν = 0, then f1 = fp, fχ,0 = fχ and we have the following diagram of fields

k(f1)

w(fχ)

ttttttttt

k(f)k(fχp)

tttttttttt

k(f) k(fχp)

ttttttttt

k(fχ)

Hence we obtain from[1, Th. 2.3]

β̄1 = Nk(f1)/k(f)ψ(1; fχp, a)⊗1 = Tχξχ⊗1.

Note that in this case [k(f) : k(f0p
ν′)] = 1.

If ν > 0 and ν′ = 0 we obtain the diagram

k(f0p
ν) = k(f)

w(fχ)

w(fχpν )

nnnnnnnnnnnn

k(f0)k(fχpν)

nnnnnnnnnnnnn

k(f0) k(fχpν)

nnnnnnnnnnnn

k(fχ,0) = k(fχ)
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Writing |Gf|eχ = tχ and t̄χ for the image of tχ in Z[Gal(k(fχ)/k)] we therefore
have

β̄1 = ψ(1; fχpν , a)⊗1

= tχψ(1; fχpν , a)⊗1/|Gf|

= t̄χTχξχ⊗
w(fχpν)

w(fχ)

1

[k(fχpν) : k]

= Tχξχ⊗
w(fχpν)

w(fχ)

1

[k(fχpν) : k(fχ)]

= Tχξχ⊗[k(f) : k(f0)]−1.

The case ν, ν′ > 0 is similar. Note that in this case χ(p) = 0.

For each l | f0 we choose a place wl above l in k(f)/k. It is easy to see that

Y{w|l}⊗AQp(χ) =

{
0, χ|Dl

6= 1,

Qp(χ) · wl, χ|Dl
= 1.

We choose for each l | f0 with χ|Dl
= 1 an element xl ∈ k(f)× such that

ordwl
(xl) 6= 0

ordw(xl) = 0 for all w 6= wl.

Then Qp(χ)xl
val−→ Y{w|l}⊗Zp[Gf]Qp(χ) = Qp(χ)wl is an isomorphism. We set

J = {l | f0 : χ|Dl
= 1}, xJ :=

∧

l∈J
xl, wJ :=

∧

l∈J
wl and cχ :=

∏

l∈J
cl.

Since O×
k(f)⊗AQp(χ) is a Qp(χ)-vector space of of dimension 1, the element

β̄1 is necessarily a generator. Therefore {β̄1} ∪ {xl : l ∈ J} is a Qp(χ)-basis
of H1(∆⊗L

RQp(χ)) = O×
k(f),Sp

⊗AQp(χ). Moreover, {β̄2} ∪ {wl : l ∈ J} is a

Qp(χ)-basis of Y{w|f0p∞}⊗AQp(χ). Finally note that β̄2 = σ|k(f). From (33)
we deduce

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = φ(β̄−1
1 ∧ x−1

J ⊗βω̄(xJ) ∧ β̄2)

Applying Lemma 5.8 we obtain further

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = cχφ(β̄−1
1 ∧ x−1

J ⊗val(xJ) ∧ β̄2)

= cχ(β̄−1
1 ⊗β̄2) (34)

= cχ[k(f) : k(f0p
ν′)]T−1

χ ξ−1
χ ⊗σ|k(f)︸ ︷︷ ︸

=:A

.
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In order to apply [8, Lem. 5.7] we compute the exponent e such that ω̄eβ−1
1 ⊗β2

is a Λqχ
-basis of DetΛqχ

(∆∞
qχ

). By the proof of [8, Lem. 5.7] one has

e =
∑

i∈Z

(−1)i+1 dimQp(χ)

(
Hi(∆)ω̄

)

= −dimQp(χ)

(
X∞

{w|f0p}⊗AQp(χ)
)

χ6=1
= −dimQp(χ)


⊕

l|f0p

Zp[G∞/Dl]⊗AQp(χ)




= −|J |.

As elements of (DetΛ(∆∞))qχ
we have

L = (Na− σ(a))η−1
f0
⊗σ∞

= (Na− σ(a))[k(f0p) : k(fχ,0p)][Trk(f0p)/k(fχ,0p)ηf0 ]−1⊗σ∞,

because Trk(f0p)/k(fχ,0p) = [k(f0p) : k(fχ,0p)] as elements of Λqχ
(multiply both

sides with eχ). From the distribution relation we derive further

L = (Na− σ(a))[k(f0p) : k(fχ,0p)]
∏

l|f0,l∤fχ,0

1

1− Fr−1
l

η−1
fχ,0
⊗σ∞

= (Na− σ(a))[k(f0p) : k(fχ,0p)]
∏

l|f0,l∤fχ,0

χ(l) 6=1

1

1− Fr−1
l

∏

l∈J

ω̄

1− Fr−1
l

︸ ︷︷ ︸
=:B

(
ω̄eβ−1

1 ⊗β2

)
.

Now [8, Lem. 5.7] implies

φω̄(B−1(L⊗1)) = β̄−1
1 ⊗β̄2,

which in conjunction with (34) shows that φ(B−1(L⊗1)) = A or φ(L⊗1) = AB.

For l ∈ J we have by definition of cl the equality Fr−fl

l = γclp
n

and therefore

χ

(
ω̄

1− Fr−1
l

)
= χ

(
(1− γpn

)(1 + Fr−1
l + . . .+ Fr−fl+1

l )

1− γclpn

)
=
fl

cl
. (35)

Using [k(f) : k(f0p
ν′)][k(f0p) : k(fχ,0p)] = w(fχ)[k(f) : k(fχ)] it follows that

AB =

(Na− σ(a))w(fχ)[k(f) : k(fχ)]




∏

l|f0,l∤fχ,0

χ(l) 6=1

1

1− Fr−1
l




(
∏

l∈J
fl

)
T−1
χ ξ−1

χ ⊗σ|k(f).
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Recalling the definition of the elements Ev from (15) we observe that this is
exactly the equality (32).

The case of χ 6= 1 and χ|Dp
= 1. We let χ ∈ ĜQp

f be a non-trivial character
such that χ|Dp

= 1. This should be considered as the case of trivial zeros. Note
that in this case p ∤ fχ, i.e. fχ,0 = fχ.

Before going into detail we brievely explain the strategy of the proof. We first
point out that in one respect the elliptic case is easier than the cyclotomic case:
there is no distinction between odd and even characters. Indeed, in the elliptic
setting every non-trivial character behaves like an even character. Nevertheless,
the strategy of the proof becomes most clear, if one recalls what happens in
the cyclotomic case for odd characters. In order to avoid the trivial zero one
divides the p-adic L-function by γ−1. As a consequence of a theorem of Ferrero
and Greenberg [7] (which gives a formula for the first derivative of the p-adic
L-function) one obtains that this quotient interpolates essentially the global
L-function L(χ−1, s) at s = 0 (for more details see [8, Lemma 5.11]).

For even characters the strategy can be motivated by the fact that the p-adic L-
function is closely related to norm-coherent sequences of cyclotomic (or in our
case, of elliptic) units. In order to “avoid the trivial zero” we again divide by
γ− 1, which means that we have to take the (γ− 1)-st root of a norm-coherent
sequence of cyclotomic or elliptic units. In the cyclotomic case this is achieved
by using a result of Solomon [29] which also provides enough information to
work out the relation to the value of L(χ−1, s) at s = 0. In the elliptic case we
will use an analoguous result proved by the author in [1].

For any subgroup H of G∞ we define JH to be the kernel of the canonical map
Zp[[G∞]]→ Zp[[G∞/H]].

As in the case of no trivial zeros we can show that P∞
qχ

= 0. From (21) we
obtain the short exact sequence

0 −→ U∞
qχ
−→ U∞

Sp,qχ
−→ Y∞

{w|p},qχ
−→ 0 (36)

where now Y∞
{w|p},qχ

≃ Zp[G∞/Dp]⊗ΛΛqχ
≃ Λ/JDp

⊗ΛΛqχ
≃ Λqχ

/JDp
Λqχ

.

Since Γ ⊆ Dp one has γp
n − 1 ∼ γ − 1. It follows that Y∞

{w|p},qχ
≃ Qp(χ),

and in addition, the structure theorem for modules over principal ideal rings
implies (γ − 1)U∞

Sp,qχ
= U∞

qχ
.

For a finite set S of places of k we set U∞
k(fχ),S = lim

←
n

(
O×
k(fχpn+1),S⊗ZZp

)
.

Lemma 5.9 a) The sequence

0 −→ U∞
k(fχ),Sp

γ−1−→ U∞
k(fχ),Sp

−→ U∞
k(fχ),Sp,Γ

−→ 0

is exact.

b) The canonical map U∞
k(fχ),Sp,Γ

−→ O×
k(fχp),Sp

⊗ZZp is injective.
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Proof One has
(
U∞
k(fχ),Sp

)Γ

= lim
←
n

(
O×
k(fχp),Sp

⊗ZZp
)

= 0. Hence a) is imme-

diate. For b) one has to prove

(γ − 1)U∞
k(fχ),Sp

= {u ∈ U∞
k(fχ),Sp

| u0 = 1}.

The inclusion ”⊆” is obvious. Suppose that u0 = 1. Then for each n Hilbert’s
Theorem 90 provides an element βn ∈ k(fχpn+1)×/k(fχp)× such that

βγ−1
n = un and Nk(fχpn+2)/k(fχpn+1)(βn+1) ≡ βn(mod k(fχp)×).

Let S be a finite set of places of k containing Sp and such that Pic(Ok(fχp),S) =
0. Then we may assume that

βn ∈ O×
k(fχpn+1),S/O

×
k(fχp),S .

In the following diagram all vertical maps are induced by the norm,

0 // O×
k(fχp),S⊗Zp //

��

O×
k(fχpn+2),S⊗Zp //

��

O×
k(fχpn+2),S

⊗Zp

O×
k(fχp),S

⊗Zp

//

��

0

0 // O×
k(fχp),S⊗Zp // O×

k(fχpn+1),S⊗Zp //
O×

k(fχpn+1),S
⊗Zp

O×
k(fχp),S

⊗Zp

// 0

The natural topology of Zp induces on each finitely generated Zp-module the
structure of a compact topological group. By [17, Satz IV.2.7] the functor lim

←
n

is

therefore exact on the above exact sequence of projective systems. In addition,
the projective limit over the modules on the left hand side is obviously trivial
and therefore

U∞
k(fχ),S ≃ lim

←
n

O×
k(fχpn+1),S⊗Zp

Ok(fχp),S⊗Zp
.

Moreover, the argument used to prove (21) also shows that U∞
k(fχ),S ≃

U∞
k(fχ),Sp

≃ U∞
k(fχ),{w|p∞} for any set S ⊇ Sp, so that the inclusion ”⊇” fol-

lows.

We now choose an auxiliary prime ideal b of Ok such that

(b, fp) = 1, w(b) = 1, χ(b) 6= 1.

In order to be able to deal also with the case fχ = 1 we introduce the element

η = {ψ(1; fχbpn+1, a)}∞n=0 ∈ lim
←
n

O×
k(fχbpn+1).

With respect to the injection U∞
k(fχ),Sp,Γ

−→ O×
k(fχp),Sp

⊗Zp the element

Nk(fχbp)/F (η) maps to Nk(fχbp)/F (η0), where here F denotes the decomposi-
tion subfield at p in k(fχ)/k. One has the following diagram of fields
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k(f)

ww
ww

ww
ww

w

•

ssssssssss

k(f)
Dp k(fχ)

tttttttttt

F

k(f)
ker(χ)

Since by definition of F one has σ(p)|F = id, we derive from the distribution
relation

Nk(fχbp)/F (η0) = (1− σ(p)−1)Nk(fχb)/Fψ(1; fχb, a) = 1,

so that Lemma 5.9 yields a unique element z∞ ∈ U∞
k(fχ),Sp

⊗Zp
Qp such that

(γ − 1)z∞ =
1

[k(fχbp) : F ]
Nk(fχbp)/F (η). (37)

From Lemma 5.5 and Na−σ(a) ∼ 1 we deduce U∞
qχ

= Λqχ
ηfχ

. Again from the
distribution relations [1, Th. 2.3] we deduce

Nk(fχbp)/F η = (1− Fr−1
b )Nk(fχp)/F ηfχ

.

Combining (36) and (37) we see that

H1(∆) = U∞
Sp,qχ

= Λqχ
· β1 with β1 = z∞.

Note that

β̄1 =

{
zµ, if p | f, f = f0p

µ+1, µ ≥ 0,

Nk(fp)/k(f)(z0), if p ∤ f,

when we regard β̄1 as an element in O×
k(f),Sp

⊗Zp.
Let v denote a place of k(f) above w, where w | p in F/k. Using the above
diagram we compute

Trk(f)v/Qp

(
logp

(
Nk(fχb)/k(fχ) (ψ(1; fχb, a))

))

=
|Dp|

[k(fχ) : F ]
logp

(
Nk(fχb)/F (ψ(1; fχb, a))

)

=
|Dp|

[k(fχ) : F ]
logp(χell(γ))

1

logp(χell(γ))
logp

(
Nk(fχb)/F (ψ(1; fχb, a))

)

︸ ︷︷ ︸
=:B
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By the main result of [1] the quantity B is well known. We briefly recall
the construction of [1]. Let k∞ denote the unique Zp-extension of k which is
unramified outside p. Let kn ⊆ k∞ denote the extension of degree pn above k.
We put Fn := Fkn and consider the diagram of fields

k(fχbpn+1)

rrrrrrrrrr

k(fχbp) •

qqqqqqqqqqqq

k(fχb) Fn

qqqqqqqqqqqq

F = F0

For each n Hilbert’s Theorem 90 provides an element βn ∈ F×
n /F

× such that

βγ−1
n = Nk(fχbpn+1)/Fn

(
ψ(1; fχbpn+1, a)

)
.

If we put κn := NFn/F (βn) ∈ F×/ (F×)
pn

and κ∞ := {κn}∞n=0 ∈
limF×/ (F×)

pn

, then the main result of [1] says

B = ordw(κ∞).

From the construction of z∞ it is clear that one has

βn = Nk(fχbpn+1)/Fn
(zn) in F×

n /F
×,

and consequently,

κ∞ = {Nk(fχbp)/F (z0)}∞n=0.

We let w′ | w denote the place in k(fχ)/F defined by v and set cp(γ) :=
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logp(χell(γ))−1. Then

Trk(f)v/Qp

(
logp

(
Nk(fχb)/k(fχ) (ψ(1; fχb, a))

))

=
|Dp|

[k(fχ) : F ]
cp(γ)−1ordw(Nk(fχbp)/F z0)

=
|Dp|cp(γ)−1

[k(fχ) : F ]
ordw(Nk(fχp)/FNk(fχbp)/k(fχp)z0)

=
|Dp|cp(γ)−1[k(fχbp) : k(fχp)]

[k(fχ) : F ]
ordw(Nk(fχp)/F z0)

=
|Dp|cp(γ)−1w(1)[k(b) : k(1)]

[k(fχ) : F ]
ordw(Nk(fχ)/F (Nk(fχp)/k(fχ)z0))

=
|Dp|cp(γ)−1w(1)[k(b) : k(1)]

[k(fχ) : F ]
fw′/wordw′(Nk(fχp)/k(fχ)z0)

= |Dp|cp(γ)−1w(1)[k(b) : k(1)]e−1
v/w′ordv(Nk(fχp)/k(fχ)z0)

= fpcp(γ)−1w(1)[k(b) : k(1)]ordv(Nk(fχp)/k(fχ)z0)

We now apply Lemma 5.8. The congruence in the following computation is
modulo Y{w|f0}⊗Zp

Qp.

βω̄
(
Nk(fχb)/k(fχ)(ψ(1; fχb, a))

)

≡ cp
∑

v|p
Trk(f)v/Qp

(
logp(Nk(fχb)/k(fχ)(ψ(1; fχb, a)))

)
· v

=
cp

cp(γ)
fpw(1)[k(b) : k(1)]

∑

v|p
ordv

(
Nk(fχp)/k(fχ)(z0)

)
· v

=

{
fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑
v|p ordv(Nk(f0p)/k(f0)z0) · v, if p ∤ f,

fp

pnw(1)[k(b) : k(1)][k(fχp) : k(fχ)]
∑
v|p ordv (z0) · v, if p | f

=





fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑
v|p ordv(Nk(f0p)/k(f0)z0) · v, if p ∤ f,

fp

pnw(1)[k(b) : k(1)][k(fχp) : k(fχ)][k(fχpµ+1) : k(fχp)]
∑
v|p ordv (zµ) · v,

if p | f

=

{
fp

pn [k(b) : k(1)] w(1)
w(fχ)

∑
v|p ordv(Nk(f0p)/k(f0)z0) · v, if p ∤ f,

fp

pnw(1)[k(b) : k(1)][k(fχpµ+1) : k(fχ)]
∑
v|p ordv

(
β̄1

)
· v, if p | f

=

{
fp

pn

w(1)
w(fχ) [k(b) : k(1)]

∑
v|p ordv(β̄1) · v, if p ∤ f,

fp

pnw(1)[k(b) : k(1)][k(fχpν) : k(fχ)]
∑
v|p ordv

(
β̄1

)
· v, if p | f
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We first assume that p | f and use this data to compute

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2)

= φ
(
β̄−1

1 ∧ [Nk(fχb)/k(fχ)ψ(1; fχb, a)]−1

∧x−1
J ⊗βω̄(xJ ) ∧ βω̄(Nk(fχb)/k(fχ)(ψ(1; fχb, a))) ∧ β̄2

)

= cχ
fp

pn
w(1)[k(b) : k(1)][k(fχpν) : k(fχ)]×

φ
(
β̄−1

1 ∧ [Nk(fχb)/k(fχ)(ψ(1; fχb, a))]−1 ∧ x−1
J ⊗val(xJ) ∧ val(β̄1) ∧ β̄2

)

= −cχ
fp

pn
w(1)[k(b) : k(1)][k(fχp

ν) : k(fχ)][Nk(fχb)/k(fχ)(ψ(1; fχb, a))]−1⊗σ∞|k(f)

| {z }

=:A

.

On the other hand we note that fχ = fχ,0 and compute

L = (Na− σ(a))[k(f0p) : k(fχp)]
∏

l|f0,l∤fχ

1

1− Fr−1
l

η−1
fχ
⊗σ∞.

In addition, one has

(γ − 1)β1 = (γ − 1)z∞ =
1

[k(fχbp) : F ]
Nk(fχbp)/F (η)

and
ω̄

1− γ = T := 1 + γ + . . .+ γp
n−1.

This implies the equality

ω̄β1 = (1− γ)Tβ1 = −T 1

[k(fχbp) : k(fχp)]
Nk(fχbp)/k(fχp)(η)

= −T 1

[k(fχbp) : k(fχp)]
(1− σ(b)−1)ηfχ

= −T 1

w(1)[k(b) : k(1)]
(1− σ(b)−1)ηfχ

in U∞
Sp,qχ

. Since e = −(|J |+ 1) we obtain L = Bω̄e(β−1
1 ⊗β2) with

B = −T (Na− σ(a))[k(f0p) : k(fχp)](w(1)[k(b) : k(1)])−1 ×

(1− σ(b)−1)
∏

l|f0,l∤fχ

χ(l) 6=1

1

1− Fr−1
l

∏

l∈J

ω̄

1− Fr−1
l

.

Again we deduce from [8, Lem. 5.7] that φ(L⊗1) = AB. From

[k(fχpν) : k(fχ)][k(f0p : k(fχp)] = [k(f) : k(fχ)]
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(recall again that w(p) = w(f) = 1) and

Nk(fχb)/k(fχ)(ψ(1; fχb, a)w(fχ)) =

{
(1− σ(b)−1)ψ(1; fχ, a), if fχ 6= 1,
δ(Ok,a

−1)
δ(b,a−1b) , if fχ = 1,

we compute

AB =

= w(fχ)[k(f) : k(fχ)](Na− σ(a))
∏

l|f0
χ(l) 6=1

1

1− Fr−1
l

∏

l∈J∪{p}
fl ×

{
ψ(1; fχ, a)−1⊗σ∞|k(f), if fχ 6= 1,

(1− σ(b)−1) δ(Ok,a
−1)

δ(b,a−1b)⊗σ∞|k(f), if fχ = 1.

Finally we use in the case fχ = 1 the relation

(
δ(Ok, a−1)

δ(b, a−1b)

)1−σ(p)−1

=

(
δ(Ok, a−1)

δ(p, a−1p)

)1−σ(b)−1

and recover the equation (32). The case p ∤ f is completely analogous.

The case of the trivial character In this case β1 = η1 and we first have
to compute β̄1. If p ∤ f, the β̄1 = Nk(fp)/k(f)(ψ(1; q, a)) and the distribution
relation [1, Th. 2.3 b)] implies

β̄1 = Nk(q)/k(1)(ψ(1; q, a)w(1)) =
δ(Ok, a−1)

δ(p, pa−1)
,

where δ denotes the function of lattices defined in [21, Th. 1]. We recall that

δ(L,L)12 =
∆(L)[L:L]

∆(L)
.

If p | f, then β̄1 = ψ(1; pν , a), where again f = f0p
ν .

We now want to compute (φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2). Since χ is now trivial we no
longer have X{w|∞}⊗AQp(χ) = Y{w|∞}⊗AQp(χ), and therefore have to take
into account the short exact sequence

0 −→ X∞
{w|f0p} −→ X∞

{w|f0p∞} −→ Y∞
{w|∞} −→ 0 (38)

in the definition of φω̄. Recall here that H2(∆) = X∞
{w|f0p∞} and Y∞

{w|∞} = M2.

A lift of σ|k(f) ∈ M2/ω̄ = Y{w|∞} is given by σ|k(f) − wp, where wp denotes a
fixed place of k(f) above p. We obtain

(φ ◦ φ−1
ω̄ )(β̄−1

1 ⊗β̄2) = φ(β̄−1
1 ∧ x−1

J ⊗βω̄(xJ) ∧ (σ|k(f) − wp))

= cχφ(β̄−1
1 ∧ x−1

J ⊗val(xJ) ∧ (σ|k(f) − wp))
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Next, we compute val(β̄1) and express the result in terms of σ|k(f)−wp. If p ∤ f,
then

val(β̄1) =
1

12
(Na− 1)val

(
∆(Ok)

∆(p)

)
.

We use ∆(Ok)/∆(p) ∼ p12 and obtain in Y{w|f0p}⊗AQp(χ)

val(β̄1) = (Na− 1)
∑

w|p
ordw(p) · w

= (Na− 1)|Ip|
∑

w|p
w

= (Na− 1)|Ip|
|Gf|
|Dp|

wp

= (Na− 1)
[k(f) : k]

fp

wp

An explicit splitting of the short exact sequence (14) is given by

w 7→ w − 1

[k(f) : k]
Trk(f)/kσ|k(f).

Under this map val(β̄1) maps to −(Na − 1) [k(f):k]
fp

(σ|k(f) − wp) in

X{w|fp∞}⊗AQp(χ).

Recall that ϕOk
denotes the Euler function attached to the ring Ok. In the

case p | f we compute from [1, Th. 2.4]

val(β̄1) =
Na− 1

ϕOk
(pν)

∑

w|p
ordw(p) · w

=
Na− 1

ϕOk
(pν)

[k(f) : k]

fp

wp.

So we derive the closed formula

val(β̄1) = − Na− 1

ϕOk
(pν)

[k(f) : k]

fp

(σ|k(f) − wp)

as elements of X{w|fp∞}⊗AQp(χ).

This implies

(φ ◦ φ−1
ω̄ )(β̄−1

1 ) = −cχ
ϕOk

(pν)

Na− 1

fp

[k(f) : k]︸ ︷︷ ︸
=:A
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On the other hand we compute for L⊗1

L⊗1 = (Na− σ(a))η−1
f0
⊗σ

= (Na− σ(a)) [k(f0) : k(1)]
w(1)

w(f0)

[
Trk(f0pn+1)/k(pn+1)η

−1
f0

]−1

⊗σ

= (Na− σ(a)) [k(f0) : k(1)]
w(1)

w(f0)

∏

l|f0

1

1− Fr−1
l

η−1
1 ⊗σ

= (Na− σ(a)) [k(f0) : k(1)]
w(1)

w(f0)

∏

l|f0

ω̄

1− Fr−1
l

︸ ︷︷ ︸
=:B

ω̄e(β−1
1 ⊗β̄2).

It follows from (35) together with

[k(f) : k] = hk
w(f)

w(1)
ϕOk

(f), [k(f0) : k(1)] =
w(f0)

w(1)
ϕOk

(f0)

that φ(L⊗1) = AB = −fp

(∏
l|f0 fl

)
w(1)
hk

. Since ζ∗k(0) = − hk

w(1) this concludes

the proof.
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Abstract. We determine the probability that a randomly chosen
elliptic curve E/Fp over a randomly chosen prime field Fp has an
ℓ-primary part E(Fp)[ℓ∞] isomorphic with a fixed abelian ℓ-group

H
(ℓ)
α,β = Z/ℓα × Z/ℓβ .

Probabilities for “|E(Fp)| divisible by n”, “E(Fp) cyclic” and expec-
tations for the number of elements of precise order n in E(Fp) are
derived, both for unbiased E/Fp and for E/Fp with p ≡ 1 (ℓr).

2000 Mathematics Subject Classification: 11 N 45, 11 G 20, 11 S 80
Keywords and Phrases: Elliptic curves over finite fields, group struc-
tures, counting functions

1. Introduction

Given an elliptic curve E over the finite field Fq with q elements, the set E(Fq)
of rational points forms an abelian group, which satisfies

(1.1) |E(Fq)− (q + 1)| ≤ 2q1/2 (Hasse)

and

(1.2) E(Fq) ∼= Z/m× Z/n

with well-defined numbers m,n and m|n. Our aim is to study the statistics
of such group structures if E/Fq varies through an infinite family F . In the
present article, we consider

(1.3)
F = {Fp-isomorphism classes of elliptic

curves E/Fp over finite prime fields Fp}
but note that a similar study may be performed for elliptic curves E/Fq over
arbitrary finite fields, or for E/Fq where q runs through the powers of the fixed
prime number p.
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Given any algebraic property (A) of E/Fp (or any subset A of F), we define
its “probability” in F as

(1.4) P (F , A) := lim
x→∞

|{E/Fp ∈ F | p ≤ x, E/Fp has property A}|
|{E/Fp ∈ F | p ≤ x}|

,

provided the limit exists. Then P (F , ·) is a “content” on F , i.e., it satisfies
the usual axioms of a probability measure except that the condition of σ-
additivity (= countable additivity) is relaxed to finite additivity. In a similar
fashion, we may define other notions of probability theory for F , for example
the conditional probability P (F , A|B) for property A under condition B, or
the expectation E(F , f) for a function f on F .

It is obvious from (1.1) that P (F , A) = 0 for any property like

(A) E(Fp) ∼= Z/m× Z/n with m,n fixed ;

i.e., such probabilities are meaningless. Instead, the typical question we will
deal with is:

1.5 Question: Let a prime number ℓ and a finite abelian ℓ-group

H = H
(ℓ)
α,β = Z/ℓα × Z/ℓβ

with 0 ≤ α ≤ β be given. How likely (cf. (1.4)) is it that the ℓ-primary part
E(Fp)[ℓ∞] of E(Fp) is isomorphic with H, if E/Fp is randomly chosen in F?

(Instead of fixing one prime ℓ and the finite ℓ-group H, we could fix a finite set
L of primes and a finite abelian L-group H of rank less or equal to 2, and ask
for the probability that the L-part of E(Fp) is isomorphic with H.)

In Theorem 3.15, using results of E. Howe [7], we show that the corresponding

P (F , “E(Fp)[ℓ∞] ∼= H
(ℓ)
α,β”) always exists, and give its value, along with an error

term Oℓ,α,β(x−1/2). As prescribed by Serre’s “Čebotarev theorem” ([8], Theo-

rem 7), that probability agrees with the (non-vanishing) Haar volume g(ℓ)(α, β)
of a certain subset X(ℓ)(α, β) of GL(2,Zℓ). The relevant Haar measures are
provided by Theorem 2.3, the proof of which forms the contents of section 2.

Actually, we will see in section 4 that P (F , ·) defines a probability measure (in
the usual sense, that is, even σ-additive) on the discrete set of isomorphism

classes of abelian groups of shape H
(ℓ)
α,β = Z/ℓα × Z/ℓβ (0 ≤ α ≤ β), and that

these measures for varying primes ℓ are stochastically independent.

We use the preceding to derive (both without restrictions on p, or under con-
gruence conditions for p) the exact values of

(a) the probability P (F , “n| |E(Fp)”) that |E(Fp)| is divisible by the fixed
natural number n (Proposition 5.1, Corollary 5.2);

(b) the expectation E(F , κn) for the number κn(E(Fp)) of elements of
precise order n in E(Fp) (Proposition 5.6);

(c) the probability P (F , “E(Fp) is cyclic”) of cyclicity of E(Fp) (Theorem
5.9).
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Items (a) and (c) are related to results of Howe (Theorem 1.1 of [5]) and S.G.
Vladut (Theorem 6.1 of [7]), the difference being that the cited authors consider
elliptic curves E over one fixed finite field Fq, while (a),(b),(c) are results
averaged over all Fp (or all Fp where p lies in some arithmetic progression).

Given E/Fp and a prime number ℓ different from p, we let Fℓ = Fℓ(E/Fp) be
its Frobenius element, an element of GL(2,Zℓ) well-defined up to conjugation
(Zℓ = ℓ-adic integers). Its characteristic polynomial χFℓ

(X) = X2− tr(Fℓ)X+
det(Fℓ) satisfies

(1.6) det(Fℓ) = p, tr(Fℓ) = p+ 1− |E(Fp)|;

in particular, it has integral coefficients independent of ℓ. It is related with the
group structure on E(Fp) through

(1.7) E(Fp)[ℓ∞] ∼= cok(Fℓ − 1),

where “cok” is the cokernel of a matrix regarded as an endomorphism on Zℓ×Zℓ
(see e.g. [3], appendix, Proposition 2).

In order to avoid technical problems irrelevant for our purposes, we exclude
for the moment the primes p = 2 and 3 from our considerations, that is,
F = {E/Fp | p ≥ 5 prime}. Then we define

(1.8) w(E/Fp) = 2|AutFp
(E/Fp)|−1 =





1
3 , p ≡ 1 (3), j(E) = 0
1
2 , p ≡ 1 (4), j(E) = 123

1 , otherwise.

Thus in “most” cases, w(E/Fp) = 1. For well-known philosophical reasons not
addressed here, we will count subsets of F not by ordinary cardinality, but by
cardinality weighted with w. That is, for a finite subset F ′ of F , we define its
weighted cardinality as

(1.9) |F ′|∗ =
∑

E/Fp∈F ′
w(E/Fp).

Then we have for example

(1.10) |{E/Fp}|∗ = 2p

for the number∗ of isomorphism classes of elliptic curves over a fixed prime
field Fp. Accordingly, we redefine probabilities P (F , A) as in (1.4), replacing
ordinary “| |” by weighted cardinalities “| |∗”. Of course, it doesn’t matter
whether or not we include the finite number of E/Fp with p = 2, 3 into F .

With each E/Fp ∈ F , we associate its total Frobenius element

F (E/Fp) = (. . . , Fℓ(E/Fp), . . .) ∈ Πℓ primeGL(2,Zℓ)
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(well-defined up to conjugation, and neglecting for the moment the question of
the p-component of F ). As usual, we let

Ẑ = lim←
N∈N

Z/N =
∏

ℓ prime

Zℓ

be the profinite completion of Z. Then GL(2, Ẑ) =
∏

GL(2,Zℓ) is a compact
group provided with a canonical projection “(modN)” onto GL(2,Z/N) for
each N ∈ N.

Led by the Čebotarev and other equidistribution theorems or conjectures, in
particular, the “Cohen-Lenstra philosophy” [2], we make the following hypoth-
esis:

(H) The series (F (E/Fp))E/Fp∈F is equidistributed in GL(2, Ẑ).

In more detailed terms, this means:

(1.11) Given N ∈ N and any conjugacy class C in GL(2,Z/N), the limit

lim
x→∞

|{E/Fp ∈ F | F (E/Fp)(modN) lies in C and p ≤ x}|∗
|{E/Fp ∈ F | p ≤ x}|∗

exists and equals |C|/|GL(2,Z/N)|.
Note that in the form just given, the hypothesis does not require specifying
the p-component of F (E/Fp), since for given N and C we may omit the finite
number of terms indexed by E/Fp with p|N without changing the limit. Note
also that the number of E/Fp with w(E/Fp) 6= 1 over a fixed Fp is uniformly
bounded, and is therefore negligible for large p. That is, though (1.11) appears
to be the “right” formula, the limit (provided it exists) doesn’t change upon
replacing weighted by unweighted cardinalities.

Now (H) may be derived from the general “Čebotarev theorem” (Theorem 7
of [8]) of Serre, applied to the moduli scheme of elliptic curves endowed with
a level-N structure, and also from Theorem 3.1 of [1]. We thus regard (H) as
established, although our proofs are independent of its validity.

In [6], we studied the frequency of E/Fp with a fixed Frobenius trace tr(E/Fp) ∈
Z. The results (loc. cit., Theorems 5.5 and 6.4) turned out to be those ex-
pected by (H) (and other known properties of E/Fp, like the result of [2]).
On the other hand, (H) in the form (1.11) applied to prime powers N = ℓn

along with (1.7) predicts that for each group H
(ℓ)
α,β = Z/ℓα × Z/ℓβ , the prob-

ability P (F , “E(Fp)[ℓ∞] ∼= H
(ℓ)
α,β”) equals the Haar volume in GL(2,Zℓ) of

{γ ∈ GL(2,Zℓ) | cok(γ − 1) ∼= H
(ℓ)
α,β}. Our Theorem 3.15 states an effec-

tive version of that identity, i.e., including the error term.

Notation. Apart from standard mathematical symbols, we use the following
notation.

N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .} and P = {2, 3, 5, . . .} denote the sets of
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natural, of non-negative integral, of prime numbers, respectively, and |X| the
cardinality of the set X. For m,n ∈ N, “m|n” means “m divides n” and “m‖n”
that m is an exact divisor of n, i.e., m|n and m is coprime with n/m.

Z/n is the residue class group Z/nZ, and for each abelian group A and n ∈ N,
A[n] = {x ∈ A | nx = 0}. Further, for ℓ ∈ P, A[ℓ∞] =

⋃
r∈N A[ℓr].

The symbols p and ℓ always stand for primes, and e.g. “
∑
p≤x · · · ” means the

sum over all primes p ≤ x.

If f and g are functions defined on suitable subsets of R, then

f ∼ g :⇔ lim
x→∞

f(x)/g(x) = 1;

f = O(g) :⇔ there exists a constant C > 0 such that f(x) ≤ Cg(x). We write
f = Oα,β(g) to indicate that C might depend on the parameters α, β, . . .

2. Some Haar measures in GL(2,Zℓ).

In the present section, we calculate the volumes with respect to Haar measure
of certain subsets of GL(2,Zℓ) relevant for our purposes.

(2.1) Fix a prime number ℓ, and let

M = Mat(2,Zℓ) be the ring of 2× 2-matrices over Zℓ, and

G = GL(2,Zℓ), with normalized Haar measures µ on M and
ν on G, respectively.

For each natural number n, we put

Mn = Mat(2,Z/ℓn) and Gn = GL(2,Z/ℓn).

By abuse of language, and if the context allows for no ambiguity, we often write
“a” for the image of a ∈ Zℓ (or of a ∈ Z/ℓm with m ≥ n) in Z/ℓn, etc. The
reduction mapping a 7−→ a : Zℓ −→ Fℓ = Z/ℓ and everything derived from it
will be denoted by a bar, e.g. γ 7−→ γ : M −→ M1. Finally, vℓ denotes both
the ℓ-adic valuation on Zℓ and the truncated valuation Z/ℓn −→ {0, 1, . . . , n}.

(2.2) The possible ℓ-torsion of an elliptic curve over a finite field is of shape

H = Hα,β = H
(ℓ)
α,β = Z/ℓα × Z/ℓβ ,

where 0 ≤ α ≤ β are well-defined by H. (We omit some ℓ’s in the notation.)
For reasons explained in the introduction, we are interested in the volumes
(with respect to ν) of the subsets

X(α, β) = {γ ∈ G | cok(γ − 1) ∼= Hα,β}
and

Xr(α, β) = {γ ∈ G | cok(γ − 1) ∼= Hα,β , vℓ(det(γ)− 1) = r}
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of G. Here cok(δ) = Z2
ℓ/δ(Z

2
ℓ) is the module determined by the matrix δ ∈M .

We will show:

2.3 Theorem.

(i) Given α, β ∈ N0 with α ≤ β, we have volν(X(α, β)) = g(α, β) with

g(α, β) = ℓ3−2ℓ2−ℓ+3
(ℓ2−1)(ℓ−1) , 0 = α = β

ℓ2−ℓ−1
(ℓ−1)ℓ ℓ

−β , 0 = α < β

ℓ−4α, 0 < α = β

ℓ+1
ℓ ℓ−β−3α, 0 < α < β .

(ii) Given α ≤ β and r ∈ N0, Xr(α, β) is empty if r < α. Otherwise,
volν(Xr(α, β)) is given by the following table.

volν(Xr(α, β)) r = α r > α

0 = α = β ( ℓ−2
ℓ−1 )2 ℓ2−ℓ−1

ℓ2−1 ℓ−r

0 = α < β ℓ−2
ℓ−1ℓ

−β ℓ−1
ℓ ℓ−β−r

0 < α = β ℓ2−ℓ−1
ℓ2−1 ℓ−4α ℓ

ℓ+1ℓ
−3α−r

0 < α < β ℓ−β−3α ℓ+1
ℓ ℓ−β−2α−r

We need some preparations to prove the theorem. We start with three simple
observations, stated without proof, where we always assume that 0 ≤ α ≤ β.

(2.4) For δ ∈M we have the equivalence

cok(δ) ∼= Hα,β ⇔ δ ≡ 0 (ℓα), δ 6≡ 0 (ℓα+1) and
vℓ(det δ) = α+ β.

(2.5) If δ ∈ M satisfies cok(δ) ∼= Hα,β and δ ≡ δ′(ℓn) with n > β then
cok(δ′) ∼= Hα,β .

As a consequence we get:

(2.6) If n > β then

volµ{δ ∈M | cok(δ) ∼= Hα,β} = ℓ−4n|{δ ∈Mn | cok(δ) ∼= Hα,β}|.
That number is easy to determine.

2.7 Proposition.

volµ{δ ∈M | cok(δ) ∼= Hα,β} = (1− ℓ−1)(1− ℓ−2)ℓ−4α, 0 ≤ α = β

(1− ℓ−2)2ℓ−β−3α, 0 ≤ α < β.

Proof. In view of (2.4) and the bijection δ 7−→ ℓ−αδ of {δ ∈ Mn | cok(δ)
∼= Hα,β} with {ǫ ∈ Mn−α | cok(ǫ) ∼= H0,β−α}, valid for n > β, the proof boils
down to counting of matrices ǫ in Mn−α with ǫ 6= 0 and given value of vℓ(det ǫ).
We omit the details. �
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2.8 Remark. The volume of {δ ∈ Mat(n,Zℓ) | cok(δ) ∼= H} has been
calculated by Friedman and Washington in full generality, i.e., for arbitrary
n and abelian ℓ-groups H (see Proposition 3.1 of [5]). In our special case
however, it is less complicated to apply the simple proof scheme given above
than to extract (2.7) from the general result.

Similar to (2.6) we have

(2.9)

volν(X(α, β)) = |Gn|−1|{γ ∈ Gn | cok(γ − 1) ∼= Hα,β}|
and
volν(Xr(α, β)) = |Gn|−1|{γ ∈ Gn | cok(γ − 1) ∼= Hα,β ,

vℓ(det(γ)− 1) = r}|,
where n > β in the first and n > max(β, r) in the second case.

Note that

(2.10) |Gn| = |G1|ℓ4(n−1) = (ℓ2 − 1)(ℓ− 1)ℓ4n−3.

Thus (2.3) will be established as soon as we determine the numerators in (2.9).

Let γ ∈ G with residue class γ ∈ G1 = GL(2,Fℓ) be given, and suppose that
cok(γ − 1) ∼= Hα,β with 0 ≤ α ≤ β.

2.11 Lemma. We have

(I) 0 = α = β ⇔ 1 is not an eigenvalue of γ. There are ℓ(ℓ3− 2ℓ2− ℓ+ 3) such
elements γ ∈ G1, among which there are ℓ(ℓ2 − ℓ− 1) with determinant 1;

(II) 0 = α < β ⇔ γ − 1 has rank 1
⇔ γ is conjugate to

(
1 1
0 1

)
(case IIa) or

γ is conjugate to
(
1 0
0 d

)
with d ∈ Fℓ − {0, 1} (case IIb).

There are ℓ2 − 1 (case IIa) and (ℓ+ 1)ℓ(ℓ− 2) (case IIb) such γ ∈ G1;

(III) 0 < α ≤ β ⇔ γ = 1.

Proof. For δ = γ − 1 we have cok(δ)/ℓ cok(δ) = cok(δ), and thus the equiva-
lences are obvious. Now the centralizer of

(
1 1
0 1

)
(resp. of

(
1 0
0 d

)
) in G1 consists

of the matrices of shape
(
a b
0 a

)
(resp. the diagonal matrices) in G1, from which

we find the numbers of γ subject to condition IIa (resp. IIb) and, finally, of
γ subject to I. There are ℓ3 − ℓ elements γ of determinant 1, of which ℓ2 − 1
(resp. 1) are of type II (resp. III), thus ℓ3 − ℓ2 − ℓ of type I. �

Next, we need a series of lemmas that count numbers of matrices in Mn with
various properties.

2.12 Lemma. (i) The number of δ ∈ M1 such that det(δ) 6= 0 equals ℓ(ℓ2 −
1)(ℓ − 1). A share of ℓ · (ℓ2 − 1)−1, i.e., precisely ℓ2(ℓ − 1) of them, satisfy
tr(δ) = 0.
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(ii) The number of 0 6= δ ∈ M1 such that det(δ) = 0 equals (ℓ − 1)(ℓ + 1)2. A
share of (ℓ+ 1)−1, i.e., precisely ℓ2 − 1 of them, satisfy tr(δ) = 0.

Proof. Omitted. �

2.13 Lemma. Let n ∈ N and δn ∈ Mn = Mat(2,Z/ℓn) be given, and suppose
that

tr(δn) + det(δn) ≡ 0 (ℓn).

Then there are precisely ℓ3 elements δn+1 ∈Mn+1 such that δn+1 ≡ δn(ℓn) and

tr(δn+1) + det(δn+1) ≡ 0 (ℓn+1).

Proof. Writing δn =
(
a b
c d

)
with a, b, c, d ∈ Z/ℓn, we have

(∗) a+ d+ ad− bc = 0.

If a 6= −1, we write the left hand side as d(1 + a) + a − bc, choose arbitrary

lifts ã, b̃, c̃ of a, b, c in Z/ℓn+1 and solve for d̃ such that (∗) holds for ã, b̃, c̃, d̃.
If a = −1 but d 6= −1, we may exchange the parts of a and d. If both a and
d equal −1 then bc = −1, we may arbitrarily choose lifts ã, b̃, d̃ of a, b, d and

solve for c̃. In any case, we get precisely ℓ3 matrices δn+1 =
(
ã b̃
c̃ d̃

)
∈ Mn+1 as

required. �

2.14 Lemma. Let 0 < β < n and d ∈ Fℓ−{0} be fixed. The number of matrices

δ =
(
a b
c d

)
∈Mn such that δ =

(
0 0
0 d

)
and vℓ(ad− bc) = β is (ℓ− 1)ℓ4n−4−β.

Proof. For each of the (ℓ − 1)ℓn−1−β possible values of “det” in Z/ℓn with
vℓ(det) = β, the quantities b, c and d may be freely chosen subject to b = 0 = c
and d ≡ d(ℓ), and then a = d−1(det +bc). �

2.15 Lemma. Let t, u ∈ Z/ℓn be given with t = 0 = u. There are precisely

(ℓ2−1)ℓ2(n−1) elements ǫ =
(
a b
c d

)
of Mn such that ǫ 6= 0, tr(ǫ) = t and det(ǫ) =

u.

Proof. Choose a ∈ Z/ℓn, which determines d = t− a. If a 6= 0 then d 6= 0, and
we may freely choose b ∈ (Z/ℓn)∗ and solve for c in

(∗) ad− u = bc.

If a = 0 then d = 0, either b or c is invertible, and we may solve for the other
one in (∗). Counting the number of possible choices yields the stated value. �

Now we are ready for the

Proof of Theorem 2.3. At several occasions, we will use the trivial identity

(1) det(1 + δ) = 1 + tr(δ) + det(δ)

for 2× 2-matrices δ. Among other things, it implies (together with (2.4)) that
Xr(α, β) is empty for r < α.

Case 0 = α = β From (2.9), putting n = 1, and (2.11), we see after a little
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calculation that the volumes of X(0, 0) and X0(0, 0) are as asserted. Let γ =
1+δ ∈ G1 be such that δ also belongs toG1. By (2.11), there are precisely ℓ(ℓ2−
ℓ− 1) such γ with determinant 1, i.e., using (1), such that tr(δ) + det(δ) = 0.
By induction on n, using (2.13), we see that among the ℓ4(n−1) lifts γn = 1+δn
of γ to Gn, there are precisely ℓ3(n−1) that satisfy det(γn) ≡ 1 (ℓn), if n ≥ 2.
For r ≥ 1 and n := r + 1, (2.9) yields

vol(Xr(0, 0)) =
ℓ(ℓ2 − ℓ− 1)ℓ3(r−1)(ℓ4 − ℓ3)

(ℓ2 − 1)(ℓ− 1)l4r+1
=
ℓ2 − ℓ− 1

ℓ2 − 1
ℓ−r.

Case 0 = α < β According to (2.4) and (2.9), we have for n > β

vol(X(0, β)) = |Gn|−1|{γ ∈ Gn | γ 6= 1, vℓ(det(γ − 1)) = β}|.

Any γ = 1 + δ as above satisfies (see (2.11)):

• γ ∈ G1 is conjugate to
(
1 1
0 1

)
, which happens ℓ2 − 1 times, or

• γ is conjugate to
(

1 0
0 d′

)
, which happens (ℓ+ 1)ℓ(ℓ− 2) times.

Thus we have to count the number of lifts γ ∈ Gn of γ such that vℓ(det(γ−1)) =
β, i.e., of lifts δ of δ with vℓ(det δ) = β. Clearly, that number is invariant under
conjugation, so we may assume that

• γ =
(
1 1
0 1

)
, i.e., δ =

(
0 1
0 0

)
, or

• γ =
(

1 0
0 d′

)
, i.e., δ =

(
0 0
0 d

)
with d = d′ − 1 ∈ Fℓ − {0,−1}.

In both cases, Lemma 2.14 (after possibly permuting the rows of δ) yields the
same number (ℓ− 1)ℓ4n−4−β of lifts of the wanted type. Therefore,

vol(X(0, β)) = |Gn|−1[ℓ2 − 1 + (ℓ+ 1)ℓ(ℓ− 2)](ℓ− 1)ℓ4n−4−β

= ℓ2−ℓ−1
(ℓ−1)ℓ ℓ

−β .

In order to find vol(Xr(0, β)), we must determine the number of lifts γ as above
that moreover satisfy

det γ ≡ 1 (ℓr), 6≡ 1 (ℓr+1), where r < n, i.e., n > max(β, r).

Suppose r > 0 and γ conjugate to
(
1 1
0 1

)
, without restriction, γ =

(
1 1
0 1

)
, δ =(

0 1
0 0

)
. The number of lifts is the number of δ =

(
a b
c d

)
∈Mn such that

(2) a ≡ c ≡ d ≡ 0, b ≡ 1 (ℓ)
(3) a+ d+ ad− bc = tr(δ) + det(δ) ≡ 0 (ℓr), 6≡ 0 (ℓr+1)
(4) vℓ(det δ) = β

hold. Now there are

• (ℓ− 1)ℓn−β−1 choices of det(δ) subject to (4);
• ℓn−1 free choices for a and b each subject to (2);
• (ℓ − 1)ℓn−r−1 choices for d compatible with (2), (3) and the choices

made of det(δ) and a,
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which together determine c = b−1(ad − det(δ)). Therefore, γ has
(ℓ−1)2ℓ4(n−1)−r−β lifts of the wanted type. If, on the other hand, γ is conjugate
to
(

1 0
0 d′

)
with d′ 6= 0, 1, then any lift γ satisfies det(γ) 6≡ 1 (ℓr). Hence

vol(Xr(0, β)) = |Gn|−1(ℓ2 − 1)(ℓ− 1)2ℓ4(n−1)−r−β = ℓ−1
ℓ ℓ−β−r.

Suppose r = 0 . If γ is unipotent, no lifts of the wanted type exist. Thus let

γ =
(

1 0
0 d′

)
with d′ ∈ Fℓ − {0, 1}. Any lift γ ∈ Gn of γ satisfies det(γ) 6≡ 1 (ℓ),

so we have for n > β

vol(X0(0, β)) = |Gn|−1(ℓ+ 1)ℓ(ℓ− 2)(ℓ− 1)ℓ4n−4−β = ℓ−2
ℓ−1ℓ

−β .

It remains to treat the

Case 0 < α ≤ β . Here, for n > β,

vol(X(α, β)) = |Gn|−1|{γ ∈Mn | γ = 1, cok(γ − 1) ∼= Hα,β}|.

The condition on γ = 1 + δ is equivalent with δ = 0, cok(δ) ∼= Hα,β , i.e., with
cok(δ′) ∼= Hα−1,β−1 for δ′ := ℓ−1δ ∈Mn−1. The number of such δ′ is given by
(2.6) and (2.7), and yields the stated result for vol(X(α, β)).

Now to find vol(Xr(α, β)), where r ≥ α, we need to analyze the condition

(5) cok(δ) ∼= Hα,β , det(1 + δ) ≡ 1 (ℓr), 6≡ 1 (ℓr+1) for δ ∈ Mn and
n > max(β, r). Note that cok(δ) ∼= Hα,β implies δ ≡ 0 (ℓα),
6≡ 0 (ℓα+1). Thus, letting ǫ := ℓ−αδ ∈Mn−α, (5) is equivalent with

(6) ǫ 6= 0, vℓ(det ǫ) = β − α, tr(ǫ) + ℓα det(ǫ) ≡ 0 (ℓr−α),
6≡ 0 (ℓr−α+1).

Suppose α = β . If r = α then (6) is equivalent with ǫ ∈ Gn−α, tr(ǫ) 6= 0, and

the volume of Xα(α, α) comes out by (2.9) along with (2.12), putting n = α+1.

Each of the ℓ2(ℓ− 1) elements δ = δα+1 ∈Mα+1 subject to

cok(δ) ∼= Hα,α, tr(δ) ≡ 0 (ℓα+1)

has precisely ℓ3(n−α−1) lifts δn to Mn (n ≥ α+ 1) such that

tr(δn) + det(δn) ≡ 0 (ℓn),

by (2.13). Therefore, for r > α ,

|{δ ∈Mr+1 | cok(δ) ∼= Hα,α, tr(δ) + det(δ) ≡ 0 (ℓr), 6≡ 0 (ℓr+1)}|
= ℓ2(ℓ− 1)ℓ3(r−α−1)(ℓ4 − ℓ3),

which together with (2.9) yields the stated result for vol(Xr(α, α)).

Suppose α < β . By virtue of Lemma 2.15, we have for r > α and n >
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max(β, r):

|{ǫ ∈Mn−α | ǫ 6= 0, vℓ(det ǫ) = β − α, tr(ǫ) + ℓα det(ǫ) ≡ 0 (ℓr−α),

6≡ 0 (ℓr−α+1)}|
= (ℓ2 − 1)ℓ2(n−α−1) | {(t, u) ∈ Z/ℓn × Z/ℓn | (t, u) subject to (7)}|

with the condition

(7) t = 0 = u, vℓ(u) = β − α, t+ ℓαu ≡ 0 (ℓr−α), 6≡ 0 (ℓr−α+1).

For the number of these pairs (t, u), we find (ℓ − 1)2ℓ2n−β−r−2, which yields
vol(Xr(α, β)) for r > α. Finally,

vol(Xα(α, β)) = vol(X(α, β))−
∑

r>α

vol(Xr(α, β)),

which allows to fill in the last missing entry in the statement of Theorem 2.3.
�

(2.16) Put Xr := {γ ∈ G | vℓ(det(γ)− 1) = r}. We have the obvious formula

volν(Xr) = ℓ−2
ℓ−1 , r = 0

ℓ−r, r > 0.

Then we may interpret Theorem 2.3 as follows. Define for 0 ≤ α ≤ β, r ≥ 0
and (r, ℓ) 6= (0, 2):

(2.17) gr(α, β) :=
volν(Xr(α, β))

volν(Xr)
,

and recall that g(α, β) = volν(X(α, β)). Then

g(α, β) = probability of γ ∈ G to satisfy cok(γ − 1) ∼= Z/ℓα × Z/ℓβ

and
gr(α, β) = probability for the same event under the

assumption vℓ(det(γ)− 1) = r.

2.18 Corollary. The conditional probability gr(α, β) is zero if r < α, and
otherwise is given by the table below, where the two entries marked with “∗”
are undefined for ℓ = 2.

gr(α, β) r = α r > α

0 = α = β ℓ−2
ℓ−1 ∗ ℓ2−ℓ−1

ℓ2−1

0 = α < β ℓ−β ∗ ℓ−1
ℓ ℓ−β

0 < α = β ℓ2−ℓ−1
ℓ2−1 ℓ−3α ℓ

ℓ+1ℓ
−3α

0 < α < β ℓ−β−2α ℓ−1
ℓ ℓ−β−2α

That is, we have gr(α, β) = πr(α, β)ℓ−β−2α with some factor πr(α, β) ∈
{0, ℓ−2

ℓ−1 ,
ℓ2−ℓ−1
ℓ2−1 , ℓ−1

ℓ , ℓ
ℓ+1 , 1}. Note that

(2.19) πr(α, α) increases if r = α is replaced with r > α. On the other hand, if
α is less than β then πr(α, β) decreases upon enlarging r from α to r > α. In
any case, gr(α, β) is independent of r as long as r > α.
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3. Probabilities of group structures.

We first summarize some results of E. Howe from [7], which will play a crucial
role.

(3.1) Define the multiplicative arithmetic functions ϕ and ψ through their val-
ues on prime powers ℓα, α ≥ 1:

ϕ(ℓα) = ℓα−1(ℓ− 1), ψ(ℓα) = ℓα−1(ℓ+ 1),

i.e., ϕ is the Euler function. Further, given a prime number p ≥ 5 and m,n ∈ N
with m|n, put

wp(m,n) =
1

2

∑

E(Fp)[n]∼=Z/m×Z/n

w(E/Fp),

where E runs through the Fp-isomorphism classes of elliptic curves over Fp
with the property that E(Fp)[n] ∼= Z/m×Z/n. Up to the factor 1

2 (introduced
to be in keeping with [7]), wp(m,n) is a weighted cardinality | |∗ in the sense
of (1.9). Howe defines the approximation

(3.2) ŵp(m,n) = p
ψ(n/m)

mϕ(n)ψ(n)

∏

ℓ|gcd(n,p−1)/m

(1− ℓ−1),

where ℓ runs through the prime divisors of gcd(n, p − 1)/m, if m|p − 1, and
ŵp(m,n) = 0 otherwise. Note that

(3.3) p−1wp(1, 1) = p−1ŵp(1, 1) = 1.

On p. 245 of [7], he obtains the inequality

(3.4) |wp(m,n)− ŵp(m,n)| ≤ C(m,n)p1/2

with the constant

C(m,n) = (1/12 + 5/6
√

2)ψ(n/m)2ω(n)

independent of p. Here ω(n) := number of different prime divisors of n. Briefly,

wp(m,n) = ŵp(m,n) +Om,n(p1/2).

It is obvious that the 2-variable function p−1ŵp(m,n) localizes, that is

(3.5) p−1ŵp(m,n) =
∏

ℓ

p−1ŵp(ℓ
αℓ , ℓβℓ)

if m =
∏
ℓ ℓ
αℓ , n =

∏
ℓ ℓ
βℓ , 0 ≤ αℓ ≤ βℓ with pairwise different prime numbers

ℓ. The factors on the right hand side are simple functions of ℓ, αℓ, βℓ and

r(p, ℓ) := r ∈ N0 such that ℓr‖p− 1,

i.e., the dependence on p is via r(p, ℓ) only. We therefore define for 0 ≤ α ≤ β:

(3.6) h(ℓ)
r (α, β) := p−1ŵp(ℓ

α, ℓβ),

where r = r(p, ℓ). It vanishes for r < α; otherwise, its values are given by the
following table.

Documenta Mathematica 11 (2006) 119–142



The Distribution of Group Structures 131

3.7 Table for h
(ℓ)
r (α, β).

r = α r > α
0 = α = β 1 1

0 = α < β ℓ
ℓ−1ℓ

−β ℓ−β

0 < α = β ℓ2

ℓ2−1ℓ
−3α ℓ

ℓ+1ℓ
−3α

0 < α < β ℓ
ℓ−1ℓ

−β−2α ℓ−β−2α

Fix ℓ, α and β for the moment, and let

H = H
(ℓ)
α,β = Z/ℓα × Z/ℓβ .

From the above, replacing wp by its approximation ŵp, and taking (1.9) into
account, we may regard

h(ℓ)
r (α, β) ≈ |{E/Fp | E(Fp)[ℓβ ] ∼= H}|∗

|{E/Fp}|∗

as the probability that a randomly chosen E/Fp (with our fixed p subject
to r(p, ℓ) = r) satisfies “E(Fp)[ℓβ ] ∼= H”. The associated probability of
“E(Fp)[ℓ∞] ∼= H” is

(3.8)

g
(ℓ)
r (α, β) := h

(ℓ)
r (α, β)− h(ℓ)

r (α, β + 1),
r = 0 or r > 0, α < β

= h
(ℓ)
r (α, α)− h(ℓ)

r (α, α+ 1)− h(ℓ)
r (α+ 1, α+ 1),

r > 0, α = β

since, e.g., the event “E(Fp)[ℓ∞] ∼= Z/ℓα × Z/ℓβ” for α < β is equivalent with:
“E(Fp)[ℓβ ] ∼= Z/ℓα × Z/ℓβ” but not “E(Fp)[ℓβ+1] ∼= Z/ℓα × Z/ℓβ+1”.

More precisely, we get from (3.4) that

(3.9)
|{E/Fp | E(Fp)[ℓ∞] ∼= H}|∗

|{E/Fp}|∗
= g(ℓ)

r (α, β) +Oℓ,α,β(p−1/2),

where the constant implied by the O-symbol depends only on ℓ, α, β (and may
easily be determined). Evaluating (3.8) by means of (3.7), which requires a
number of case distinctions, we find:

(3.10) The present g
(ℓ)
r (α, β) agrees with the conditional probability (where

ℓ, α, β are fixed) gr(α, β) defined in (2.17) and described by the table in (2.18).

So far, p has been fixed. Letting p vary subject to r(p, ℓ) = r with some fixed
r and taking (1.10) into account yields for p ≤ x ∈ R:

(3.11)
|{E/Fp ∈ F | p ≤ x, r(p, ℓ) = r, E(Fp)[ℓ∞] ∼= H}|∗
= 2g

(ℓ)
r (α, β)

∑
p+Oℓ,α,β(

∑
p1/2),

where the sum in both cases ranges through

{p ∈ P | p ≤ x, r(p, ℓ) = r} = {p ≤ x | ℓr‖p− 1}.
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(Strictly speaking, we had to assume that p ≥ 5, but including p = 2, 3 doesn’t
change the asymptotic behavior. Thus we will neglect from now on the restric-
tion of p ≥ 5.)

We need a well-known fact from analytic number theory, an explicit reference
of which is nonetheless difficult to find.

3.12 Proposition. Let γ > −1 be a real number and a,m coprime natural
numbers. Then ∑

p≤x prime
p≡a (m)

pγ ∼ 1

ϕ(m)

1

1 + γ

x1+γ

log x
,

where “∼” denotes asymptotic equivalence.

Proof (sketch). Note that the assertion includes the prime number theorem
(γ = 0, m = 1) and Dirichlet’s theorem on primes in arithmetic progressions
(γ = 0). The general case (γ > −1 arbitrary) results from the case γ = 0 by
Abel summation (see the instructions and notation given in [9] pp. 3,4) of the
series

∑
n≤x anb(n) with

an =

{
1, n ≡ a(m), n prime
0, otherwise,

and the C1-function b with b(x) = xγ . �

In particular,
∑

p≤x
r(p,ℓ)=r

p1/2 ∼ 2

3
(

1

ϕ(ℓr)
− 1

ϕ(ℓr+1)
)
x3/2

log x
,

so the expression in (3.11) becomes

2g(ℓ)
r (α, β)

∑
p+ (

1

ϕ(ℓr)
− 1

ϕ(ℓr+1)
)Oℓ,α,β(

x3/2

log x
).

Applying (3.12) also to the first sum
∑
p in (3.11) yields

(3.13)

|{E/Fp | p ≤ x, r(p, ℓ) = r, E(Fp)[ℓ∞] ∼= H}|∗
|{E/Fp | p ≤ x, r(p, ℓ) = r}|∗

= g
(ℓ)
r (α, β) +Oℓ,α,β(x−1/2),

where the implied constant depends only on ℓ, α, β but not on r. Apart from

the condition “r(p, ℓ) = r”, this expresses g
(ℓ)
r (α, β) as a probability in the

sense of (1.4). It remains to evaluate

P{F , “E(Fp)[ℓ∞] ∼= H”) = lim
x→∞

|{E/Fp | p ≤ x, E(Fp)[ℓ∞] ∼= H}|∗
|{E/Fp | p ≤ x}|∗

.

It is tempting to calculate it via the conditional probabilities g
(ℓ)
r (α, β) simply

as ∑

r≥0

(
1

ϕ(ℓr)
− 1

ϕ(ℓr+1)
)g(ℓ)
r (α, β),
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where 1
ϕ(ℓr) − 1

ϕ(ℓr+1) = volν(Xr) (see (2.16)) is the probability of p to satisfy

r(p, ℓ) = r. This will turn out to be true, but requires reversing the order in
which we evaluate a double limit, and needs to be justified.

We have

|{E/Fp | p ≤ x, E(Fp)[ℓ∞] ∼= H}|∗

=
∑
r≥0[2g

(ℓ)
r (α, β)

∑
p≤x

r(p,ℓ)=r
p+ ( 1

ϕ(ℓr+1) − 1
ϕ(ℓr+1) )Oℓ,α,β( x

3/2

log x )].

Now g
(ℓ)
r (α, β) = 0 if r < α and g

(ℓ)
r (α, β) = g

(ℓ)
α+1(α, β) for r > α. Therefore,

the above is

2g(ℓ)
α (α, β)

∑

p≤x
r(p,ℓ)=α

p+ 2g
(ℓ)
α+1(α, β)

∑

p≤x
r(p,ℓ)>α

p+Oℓ,α,β(x3/2/ log x).

From (3.12) and (2.17) we find that

2g
(ℓ)
α (α, β)

∑
p≤x

r(p,ℓ)=α
p ∼ volν(Xα(α, β))x2/ log x,

2g
(ℓ)
α+1(α, β)

∑
p≤x

r(p,ℓ)>α
p ∼ ℓ

ℓ−1volν(Xα+1(α, β))x2/ log x.

Comparing with (2.3) yields in all the four cases

volν(Xα(α, β)) + ℓ
ℓ−1volν(Xα+1(α, β)) = g(ℓ)(α, β).

Thus, dividing by |{E/Fp | p ≤ x}|∗ = 2
∑
p≤x p ∼ x2/ log x, we finally get

(3.14)
|{E/Fp | p ≤ x, E(Fp)[ℓ∞] ∼= H}|∗

|{E/Fp | p ≤ x}|∗
= g(ℓ)(α, β) +Oℓ,α,β(x−

1
2 ).

Hence, in fact

P (F , “E(Fp)[ℓ∞] ∼= H”) = g(ℓ)(α, β) = volν(X(α, β)),

where X(α, β) = X(ℓ)(α, β) is the ℓ-adic set defined in (2.2).

We may summarize our results (3.13) and (3.14) as follows.

3.15 Theorem. Let a prime number ℓ and 0 ≤ α ≤ β be given.

(i) The probability P (F , “E(Fp)[ℓ∞] ∼= Z/ℓα × Z/ℓβ”) in the sense of (1.4)

exists and equals the value g(ℓ)(α, β) given in (2.3).
(ii) Fix moreover a non-negative integer r. The conditional probability

P (F , “E(Fp)[ℓ∞] ∼= Z/ℓα × Z/ℓβ” | “ℓr‖p− 1”) for
“E(Fp)[ℓ∞] ∼= Z/ℓα × Z/ℓβ” under the assumption “ℓr‖p− 1” exists

and equals the value of g
(ℓ)
r (α, β) given in (2.18).

In both cases the error terms are Oℓ,α,β(x−1/2).

Note that the probabilities thus found are those predicted by the hypothesis
(H) formulated in the introduction.
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3.16 Example. We consider the probability that the 2-part of E(Fp) is iso-
morphic with H = Z/4×Z/4 under congruence conditions for p. According to
(3.15), it is

1/3 · 2−6 for p ≡ 5 (8)

and increases to

2/3 · 2−6 for p ≡ 1 (8).

If we replace H by H ′ = Z/4× Z/8, the probability is

2−7 for p ≡ 5 (8)

and decreases to

2−8 for p ≡ 1 (8).

4. The probability spaces.

Theorem 3.15 has the drawback that it relies on the ad hoc notion (1.4) of
probability and does not involve probability spaces in the ordinary sense. Here
we will remedy this defect and put (3.15) in the framework of “ordinary” prob-
ability theory.

(4.1) For what follows, we fix a prime ℓ and put X(ℓ) for the set of all pairs (H, r),
where H is a group of shape Z/ℓα × Z/ℓβ with 0 ≤ α ≤ β and α ≤ r ∈ N0.
Hence elements of X(ℓ) correspond bijectively to triples (α, β, r) ∈ N3

0 with
α ≤ min(β, r), which we often use as an identification. By (2.3), the function

P (ℓ) : (α, β, r) 7−→ volν(X(ℓ)
r (α, β))

turns X(ℓ) into a discrete probability space (d.p.s.). (By a d.p.s. we understand
a countable set provided with a probability measure in which each non-empty
subset is measurable with positive volume.)

Given (H
(ℓ)
α,β , r) = (α, β, r) ∈ X(ℓ), we define

Aα,β,r := {E/Fp ∈ F | E(Fp)[ℓ∞] ∼= H
(ℓ)
α,β , r(p, ℓ) = r}.

We further let A(ℓ) be the σ-algebra of subsets of F generated by all the sets
Aα,β,r. Hence the elements of A(ℓ) are the subsets AY of F , where Y is an

arbitrary (finite or countably infinite) subset of X(ℓ) and

AY =
⋃

(α,β,r)∈Y

Aα,β,r (disjoint union).

4.2 Proposition. For each subset Y of X(ℓ), the limit P (F , AY) as in (1.4)
exists, and is given as

∑
(α,β,r)∈Y P (F , Aα,β,r).
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Here P (F , Aα,β,r) = P (F , “E(Fp)[ℓ∞] ∼= H
(ℓ)
α,β , r(p, ℓ) = r”) =

volν(X
(ℓ)
r (α, β)) by (3.15).

Proof. We must check the identity

(?)
limx→∞

|{E/Fp∈F | p≤x, (E(Fp)[ℓ∞], r(p,ℓ))∈Y}|∗
|{E/Fp∈F | p≤x}|∗

=
∑

(α,β,r)∈Y P (F , Aα,β,r),
which is obvious from (3.15) if Y is finite. Let fY(x) be the argument of the
limit in the left hand side of (?). Then for each finite subset Y0 of Y,

lim inf
x→∞

fY(x) ≥
∑

(α,β,r)∈Y0

P (F , Aα,β,r),

thus
lim inf
x→∞

fY(x) ≥
∑

(α,β,r)∈Y

P (F , Aα,β,r).

If Yc denotes the complement X(ℓ) − Y of Y, we have AYc = F − AY and
fYc(x) = 1− fY(x). Thus reversing the parts of Y and Yc yields

lim sup
x→∞

fY(x) ≤
∑

(α,β,r)∈Y

P (F , Aα,β,r).

�

As a consequence of (4.2), the function P (F , ·) is countably additive on A(ℓ)

and therefore a probability measure. The following is then obvious.

4.3 Corollary. The σ-algebra A(ℓ) provided with its probability measure
P (F , ·) is canonically isomorphic with the discrete probability space (X(ℓ), P (ℓ)).

It is easy to generalize the preceding to cover the case of events that involve
a finite number of primes ℓ. Thus let L ⊂ P be a finite set of primes. The
cartesian product

X(L) =
∏

ℓ∈L
X(ℓ)

provided with the product measure P (L) is itself a d.p.s. On the other hand,
given x = (αℓ, βℓ, rℓ)ℓ∈L ∈ X(L), we define

Ax := {E/Fp ∈ F | ∀ℓ ∈ L : E(Fp)[ℓ∞] ∼= H
(ℓ)
αℓ,βℓ

, r(p, ℓ) = rℓ}
and let A(L) be the σ-algebra in F generated by all the Ax, x ∈ X(L). Then
A(L) = {AY | Y ⊂ X(L)} with the obvious definition AY :=

⋃
x∈YAx.

4.4 Proposition.

(i) For x = (αℓ, βℓ, rℓ)ℓ∈L ∈ X(L),

P (F , Ax) =
∏

ℓ∈L
P (F , Aαℓ,βℓ,rℓ

)

holds.
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(ii) For each subset Y of X(L), the limit P (F , AY) exists, and is given as∑
x∈Y P (F , Ax).

Proof. (i) is a formal consequence of (3.4), (3.5) and (3.15). We omit the
details. The proof of (ii) is then identical to that of (4.2). �

As in the case of one single prime, (4.4)(ii) implies that P (F , ·) is a probability
measure on A(L). In view of (4.4)(i) we get:

4.5 Corollary. The σ-algebra A(L) provided with its probability measure
P (F , ·) is canonically isomorphic with the d.p.s. (X(L), P (L)). In particular,
the restrictions of P (F , ·) to the various A(ℓ) (ℓ ∈ L) are stochastically inde-
pendent on A(L).

4.6 Remark. For a number of reasons, no simple generalizations of (4.4)
and (4.5) to infinite subsets L ⊂ P are in sight. For example, the union⋃
L0∈L finite A(L0) is not a σ-algebra,

∏
ℓ∈L X(ℓ) is uncountable, and problems

on the convergence of infinite products and their commutation with limits arise.
Therefore, events in F that involve an infinite number of primes ℓ are a priori
not covered by the above, and are more difficult to study. In (5.9), we investi-
gate a significant instance of such an event, namely the property of cyclicity of
E(Fp).

5. Some applications.

We use the preceding results to derive probabilities/expectations associated
with some elementary properties of E/Fp ∈ F .

We start with divisibility by a fixed n ∈ N.

5.1 Proposition. Let a prime power ℓa and r ∈ N0 be given.

(i) The probability that ℓa divides |E(Fp)| equals

P (F , “ℓa | |E(Fp)|”) = ℓ−a
ℓ3 − ℓ− ℓ2−a

(ℓ2 − 1)(ℓ− 1)
.

(ii) The conditional probability for the same event under the assumption
ℓr‖p− 1 equals

P (F , “ℓa | |E(Fp)|” | “ℓr‖p− 1”) =

ℓ−a ℓ
ℓ−1 , r < a/2

ℓ−a ℓ
2+ℓ−ℓ1−(a−1)/2

ℓ2−1 , r > a/2, a odd

ℓ−a ℓ
2+ℓ−ℓ1−a/2

ℓ2−1 , r ≥ a/2, a even.

Proof. By virtue of (4.2), P (F , “ℓa | |E(Fp)|”) exists and is given by∑
g(ℓ)(α, β), where 0 ≤ α ≤ β and α + β ≥ a. The conditional probabil-

ity in (ii) is given by the same expression, but g(ℓ)(α, β) replaced by g
(ℓ)
r (α, β).
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The stated formulae result from a lengthy but elementary calculation using
(2.3) and (2.18), which will be omitted. �

5.2 Corollary. For arbitrary n ∈ N with factorization n =
∏
ℓaℓ into primes

ℓ, P (F , “n | |E(Fp)|”) is given by

n−1
∏

ℓ|n

ℓ3 − ℓ− ℓ2−aℓ

(ℓ2 − 1)(ℓ− 1)
.

Note that all the probabilities figuring in (5.1) and (5.2) are slightly larger than
n−1, the value naively expected. The probability of “n | |E(Fq)|” over a fixed
field Fq (i.e., the share of those E/Fq with the divisibility property) has been
determined by Howe in [7].

(5.3) For any function f : F −→ R, we define the expectation E(F , f) (provided
the limit exists) as

E(F , f) = lim
x→∞

∑
f(E/Fp)w(E/Fp)

|{E/Fp ∈ F | p ≤ x}|∗
,

where the sum in the numerator is over all objects E/Fp ∈ F with p ≤ x.
Restricting the domain F (for example by requiring congruence conditions on
p), we may also define the expectation of f on subsets F ′ of F . Given a prime
number ℓ, we call f

• of type ℓ, if f(E/Fp) depends only on E(Fp)[ℓ∞];
• weakly of type ℓ, if f(E/Fp) depends only on E(Fp)[ℓ∞] and r(p, ℓ).

If these conditions hold, we regard f as a function on the set of groups of shape

H
(ℓ)
α,β (or on the set X(ℓ), respectively), see (4.1). More concretely, ℓ being fixed,

f is a function on pairs (α, β) with 0 ≤ α ≤ β if it is of type ℓ, and is a function
on triples (α, β, r) with 0 ≤ α ≤ min(β, r) if it is weakly of type ℓ.

5.4 Lemma.

(i) Suppose that f is bounded and of type ℓ. Then E(F , f) is defined and
agrees with the sum

∑

α,β∈N0
α≤β

f(α, β)g(ℓ)(α, β).

(ii) Suppose that f is bounded and weakly of type ℓ, and let r ∈ N0 be given.
Then the expectation E(F , f, “ℓr‖p− 1”) of f on {E/Fp | ℓr‖p− 1} is
defined and agrees with

∑

α,β∈N0
α≤min(β,r)

f(α, β, r)g(ℓ)
r (α, β).

Proof. We restrict to showing (i); the proof of (ii) is similar. Let E be the
value of the absolutely convergent sum

∑

0≤α≤β
f(α, β)g(ℓ)(α, β),
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and let ǫ > 0 be given. In view of the absolute convergence, there exists a finite
subset Y ⊂ {(α, β) ∈ N0 × N0 | α ≤ β} such that

∑

(α,β) 6∈Y

|f(α, β)|g(ℓ)(α, β) <
ǫ

3
.

Let n = |Y| and let x0 be chosen sufficiently large such that for each (α, β) ∈ Y

and each x ≥ x0, we have

|f(α, β)| | g(ℓ)(α, β)−
|{E/Fp ∈ F | p ≤ x, E(Fp)[ℓ∞] ∼= H

(ℓ)
α,β}|∗

|{E/Fp ∈ F | p ≤ x}|∗
| ≤ ǫ/3n.

Then for x ≥ x0,

|
∑

(α,β)∈Y

f(α, β)
|{E/Fp | p ≤ x, E(Fp)[ℓ∞] ∼= H

(ℓ)
α,β}|∗

|{E/Fp | p ≤ x}|∗
− E| < 2ǫ/3

holds. According to (4.2), and since f(α, β) is bounded, we find x1 such that
for x ≥ x1, we have

∑

(α,β) 6∈Y

|f(α, β)|
|{E/Fp | p ≤ x, E(Fp)[ℓ∞] ∼= H

(ℓ)
α,β}|∗

|{E/Fp | p ≤ x}|∗
< ǫ/3.

Thus for x ≥ max(x0, x1),
∑
p≤x f(E/Fp)w(E/Fp)

|{E/Fp | p ≤ x}|∗
differs by less than ǫ from E. �

We apply (5.4) to the function κn : F −→ R defined by

(5.5) κn(E/Fp) = number of points of precise order n in E(Fp) for n ∈ N.

5.6 Proposition. Let a prime power n = ℓa and a non-negative integer r be
given. The expectation E(F , κn, “ℓr‖p− 1”) for κn on {E/Fp | ℓr‖p−1} exists
and equals 1 independently of r. Thus the total expectation E(F , κn) exists on
F and equals 1.

Proof. κn is bounded by n2 = ℓ2a and of type ℓ, thus by (5.4),

E(F , κn, “ℓr‖p− 1”) =
∑

α,β∈N0
α≤min(β,r)

κn(α, β)g(ℓ)
r (α, β).

Now κn(α, β) = number of elements of precise order ℓa in Z/ℓα×Z/ℓβ is easily
determined; we refrain from writing down the result. Evaluating after that
the right hand side above is an elementary but - due to the numerous cases -
laborious exercise in summing multiple geometric series. In each of the cases,
the result turns out to 1. �

5.7 Corollary. For each natural number n, the expectation E(F , κn) exists
and equals 1.
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Proof. Since only the finitely many prime divisors ℓ of n are involved and κn
is multiplicative in n, (4.4) allows to reduce the general case to (5.6). We omit
the details. �

5.8 Remark. The just established results on E(F , κ) are “formal facts” that
can be seen by “pure thought”, and avoiding the extended calculations with

the values of g
(ℓ)
r (α, β). Namely, taking into account that κn(E/Fp) equals the

number of fixed points of Frobenius on the points of precise order n of E(Fp),
(5.7) is almost immediate from (H) and Burnside’s lemma. I owe that hint to
Bas Edixhoven [4].

We conclude with determining the asymptotic probability of the property
“E(Fp) is a cyclic group”. Since it cannot be studied entirely in the framework

of the probability spaces A(L) or X(L) of section 4 with finite sets of primes,
some more preparations are needed. We will finally prove the following.

5.9 Theorem. The probability P (F , “E(Fp) is cyclic”) exists and is given by
∏

ℓ prime

(1− 1
(ℓ2−1)ℓ(ℓ−1) ) ≈ 0.81377.

5.10 Remark. Vladut in [10] described the share of the cyclic ones among
all the E/Fq over the fixed finite field Fq. It depends strongly on the prime
decomposition of q − 1. In contrast, (5.9) is an average over all primes p = q,
which balances local fluctuations.

We first determine the probability of local cyclicity.

5.11 Lemma. Fix a prime number ℓ and r ≥ 0.

(i) The probability P (F , “E(Fp)[L∞] is cyclic”) equals

τℓ := 1− 1
(ℓ2−1)ℓ(ℓ−1) .

(ii) The conditional probability under the assumption r(p, ℓ) = r for
E(Fp)[ℓ∞] to be cyclic equals 1 if r = 0 and

σℓ := 1− 1
(ℓ2−1)ℓ

if r > 0.

Proof. By (4.2), the first value is given by
∑
β≥0 g

(ℓ)(α, β), the second one by
∑
β≥0 g

(ℓ)
r (0, β). �

For any λ ∈ R, we call E(Fp) λ-cyclic if its ℓ-parts are cyclic for each prime
ℓ ≤ λ. From the lemma and (4.4) we get:

5.12 Corollary. P (F , “E(Fp) is λ-cyclic”) =
∏
ℓ≤λ τℓ.

Hence (5.9) is established as soon as we have ensured that the limit for λ −→∞
commutes with the limit underlying the definition (1.4) of P (F , ·).
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Since cyclicity implies λ-cyclicity, at least

lim sup
x→∞

|{E/Fp ∈ F | p ≤ x, E(Fp) cyclic}|∗
|{E/Fp ∈ F | p ≤ x}|∗

≤
∏

ℓ prime

τℓ

holds. Thus we must find lower estimates for the left hand side. Put for each
prime p

(5.13) c(p) :=
∏

ℓ|p−1

σℓ.

Then it is an easy consequence of (3.4) and the inclusion/exclusion principle
(see Theorem 6.1 of [10]) that for each ǫ > 0 and each fixed prime p, we have

|{E/Fp | E(Fp) cyclic}|∗ = 2pc(p) +Oǫ(p
1/2+ǫ).

Hence

(5.14) |{E/Fp ∈ F | p ≤ x,E(Fp) cyclic}|∗ = 2
∑

p≤x
pc(p) +Oǫ(

∑

p≤x
p1/2+ǫ).

5.15 Lemma. Suppose that the average

C := lim
x→∞

π(x)−1
∑

p≤x
c(p)

exists, where π(x) ∼ x/ log x is the prime number function. Then

2
∑

p≤x
pc(p) ∼ Cx2/ log x

and therefore P (F , “E(Fp) is cyclic”) = C.

Proof. Let (an)n∈N be the series defined by an = c(p) if n = p ∈ P and an = 0
otherwise, and A(x) =

∑
n≤x an =

∑
p≤x c(p). Abel summation with b(x) = x

yields
∑

p≤x
pc(p) = xA(x)−

∫ x

1

A(s)ds ∼ 1/2 Cx2/ log x,

since by assumption, A(x) ∼ Cx/ log x and any primitive F of x/ log x satisfies
F ∼ 1/2 x2/ log x. The last assertion follows from (5.14) and

∑

p≤x
p1/2+ǫ ∼ 1

3/2 + ǫ
x3/2+ǫ/ log x.

�

We are left to verifying the hypothesis of (5.15), which no longer involves elliptic
curves. Put

(5.16)

cλ(p) =
∏
ℓ|p−1, ℓ≤λ σℓ

Cλ(x) = π(x)−1
∑
p≤x cλ(p)

C(x) = π(x)−1
∑
p≤x c(p),
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the quantity whose limit we need to find. Now, since cλ(p) depends only on
the class of p modulo n :=

∏
ℓ≤λ ℓ, Dirichlet’s theorem implies that for λ fixed,

(5.17)
Cλ := limx→∞ Cλ(x) = average of cλ over (Z/n)∗

=
∏
ℓ≤λ (average of σ̃ℓ over (Z/ℓ)∗) =

∏
ℓ≤λ τℓ.

Here σ̃ℓ(x) = σℓ, (σ̃ℓ(x) = 1) if x ≡ 1, (x 6≡ 1) modulo ℓ, respectively (see
Lemma 5.11(ii)).

In view of c(p) ≤ cλ(p), we have for each λ

lim sup
x→∞

C(x) ≤ Cλ,

hence

lim supC(x) ≤
∏

ℓ prime

τℓ.

5.18 Claim. We have in fact

C := lim
x→∞

C(x) =
∏

ℓ prime

τℓ.

Proof of claim. Let λ0 ∈ R and ǫ > 0 be given. Choose x0 large enough such
that for x ≥ x0

|Cλ0
(x)− Cλ0

| < ǫ

holds. For such x and λ ≥ λ0, we have

Cλ(x) ≥ (
∏

λ0<ℓ≤λ
σℓ)Cλ0

(x) > (
∏

λ0<ℓ≤λ
σℓ)(Cλ0

− ǫ).

Letting λ −→∞, we find

C(x) ≥ (
∏

ℓ>λ0

σℓ)(Cλ0
− ǫ)

for each x ≥ x0, and therefore

lim inf
x→∞

C(x) ≥ (
∏

ℓ>λ0

σℓ)Cλ0
=
∏

ℓ≤λ0

τℓ
∏

ℓ>λ0

σℓ.

Since this holds for any λ0, and σℓ ≤ τℓ for each ℓ, we finally get

lim inf
x→∞

C(x) ≥
∏

ℓ prime

τℓ,

i.e., the claim. Together with (5.15), this also concludes the proof of Theorem
5.9. �
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Abstract. Algebras over a field k generalize to categories over k in
order to considers Galois coverings. Two theories presenting analogies,
namely smash extensions and Galois coverings with respect to a finite
group are known to be different. However we prove in this paper
that they are Morita equivalent. For this purpose we need to describe
explicit processes providing Morita equivalences of categories which
we call contraction and expansion. A structure theorem is obtained:
composition of these processes provides any Morita equivalence up to
equivalence, a result which is related with the karoubianisation (or
idempotent completion) and additivisation of a k-category.
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Keywords and Phrases: Hopf algebra, Galois covering, k-category,
Morita theory, smash product, completion, karoubianisation.

1 Introduction

Let k be a field. The observation that a k-algebra A is a category with one
object and endomorphisms given by A leads to Galois coverings given by cat-
egories with more than one object, see for instance [3]. In this context the
universal cover of the polynomial algebra in one variable is the free category

1This work has been supported by the projects Conicet-Cnrs:”Metodos Ho-
mologicos en Representaciones y Algebra de Hopf”, Pics 1514, Pict
08280 (Anpcyt), Ubacytx169 and Pip-Conicet 02265. The second author
is a research member of Conicet (Argentina) and a Regular Associate of ICTP Asso-
ciate Scheme.
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over k generated by the infinite quiver with integer vertices and one arrow from
i to i+ 1 for each integer i.
A category C over a field k has a set of objects C0 and each morphism set yCx
from an object x to an object y is a k-vector space, the composition of maps
of C is k-bilinear. In particular each endomorphism set xCx is an associative
k-algebra. Such categories are called k-categories, they have been considered
extensively and are considered as algebras with several objects, see [13, 14].
This work has a two-fold main purpose.
In one direction we show that there is a coincidence up to Morita equivalence
between Galois coverings of k-categories and smash extensions for a finite group.
More precisely we associate to each Galois covering of a k-category with finite
group G a smash extension with the same group, having the property that the
categories involved are Morita equivalent to the starting ones. In particular
from a full and dense functor we obtain a faithful one. Conversely, a smash
extension of categories gives rise to a Galois covering, with categories actu-
ally equivalent to the original ones. Consequently both procedures are mutual
inverses up to Morita equivalence.
This Theorem explains the analogous spectral sequence arising in cohomology
for both theories, see [5] and the generalisation [16], and [12].
We emphasize that similar results for an arbitrary group G can be obtained
considering coalgebras and comodule categories. This approach will be detailed
in a subsequent paper.
In the other direction, motivated by the above problem, we study the Morita
equivalence of k-categories, obtaining a complete description of these equiva-
lences. In other words, a Morita theorem for linear categories.
We consider modules over a k-category C, that is k-functors from C to the
category of k-vector spaces i.e. collections of vector spaces attached to the
objects with ”actions” of morphisms transforming vectors at the source of the
morphism to vectors at the target. Notice that if C is a finite object set k-
category it is well known and easy to prove that modules over C coincide with
usual modules over the ”matrix algebra” a(C) = ⊕x,y∈CyCx.
We introduce in this paper a general framework for Morita theory for k-
categories. More precisely we establish processes which provide categories
Morita equivalent to a starting one. We prove in the Appendix that up to
equivalence of categories any Morita equivalence of k-categories is a composi-
tion of contractions and expansions of a given k-category, where contraction
and expansion are processes generalizing a construction considered in [5]. More
precisely, given a partition E of the set of objects of a k-category C by means of
finite sets, the contracted category CE along E has set of objects the sets of the
partition while morphisms are provided by the direct sum of all the morphism
spaces involved between two sets of the partition. The reverse construction is
called expansion. Another process is related to the classical Morita theory for
algebras, that is for each vertex we provide an endomorphism algebra Morita
equivalent to the given one together with a corresponding Morita context, which
enables us to modify the morphisms of the original category. In particular the
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matrix category of a given category is obtained in this way. A discussion of this
processes in relation with karoubianisation and additivisation (see for instance
[1, 18]) is also presented in the Appendix. We thank Alain Bruguières and
Mariano Suarez Alvarez for useful conversations concerning this point.
Usually smash extensions are considered for algebras, see for instance [15].
We begin by extending this construction to k-categories, namely given a Hopf
algebra H we consider a Hopf module structure on a k-category C which is
provided by an H-module structure on each morphism space such that the
composition maps of C are H-module maps - in particular the endomorphism
algebra of each object is required to be an usual H-module algebra. Given a
Hopf module k-category C we define the smash category C#H in a coherent
way with the algebra case.
We need this extension of the usual algebra setting to the categorical one in or-
der to relate smash extensions to Galois coverings of k-categories as considered
for instance in [3, 5, 7].
Notice that we can consider, as in the algebra case, a smash extension of a
category as a Hopf Galois extension with the normal basis property and with
trivial map σ, see [15, p. 101] and also [2, 11, 17]. It would be interesting
to relate non trivial maps σ to an extended class of coverings of categories
accordingly, we will not initiate this study in the present paper.
We define a smash extension of an H-module category C to be the natural
functor from C to C#H. An expected compatibility result holds, namely if the
number of objects of C is finite, the corresponding matrix algebra a(C) has an
usual smash extension provided by a(C#H). The later algebra can indeed be
considered since the category C#H has also a finite number of objects, namely
the set of objects of C. Moreover, we have that a(C)#H = a (C#H).
We consider also Galois coverings of k-categories given by a group G, that is a k-
category with a free G-action and the projection functor to the corresponding
quotient category. More precisely, by definition a G-k-category C has a set
action of G on the set of objects, and has linear maps yCx → syCsx for each
element s of G and each couple of objects x and y, verifying the usual axioms
that we recall in the text. In other words we have a group morphism from G to
the autofunctors of C. In case C is object-finite, we infer a usual action of G by
automorphisms of the algebra a(C). A G-k-category is called free in case the
set action on the objects is free, namely sx = x implies s = 1. The quotient
category is well defined only in this case and we recall its construction, see
[3, 9, 7, 5, 4].
The group algebra kG is a Hopf algebra, hence we can consider kG-module
categories. Notice that G-k-categories form a wider class than kG-module
categories. In fact kG-module categories are G-k-categories which have trivial
action of G on the set of objects.
First we establish a comparison between two constructions obtained when start-
ing with a graded category C over a finite group G. From one side the smash
product category C#kG is defined in the present paper, and from the other side
a smash product category C#G has been considered in [4], actually the later

Documenta Mathematica 11 (2006) 143–159



146 Claude Cibils and Andrea Solotar

is the Galois covering of C corresponding to the grading. We show that C#kG
and C#G are not equivalent but Morita equivalent categories.
We note that starting with a Galois covering C of a category B, the covering
category C is B#G (see [4] and the grading of B introduced there, first consid-
ered by E. Green in [10] for presented k-categories by a quiver with relations).
Unfortunately B#G has no natural kG-module category structure. However
B#G and B#kG are Morita equivalent and we perform the substitution. The
later is a kG-module category using the left kG-module structure of kG pro-
vided by tδs = δst−1 . In this way we associate to the starting Galois covering
the smash extension (B#kG)#kG of B#kG.
The important point is that the later is Morita equivalent to C while
(B#kG)#kG is isomorphic to a matrix category that we introduce, which in
turn is Morita equivalent to B. Notice that this result is a categorical version
of the Cohen Montgomery duality Theorem, see [6]. Hence we associate to the
starting Galois covering C → B a smash extension with the same group and
where the categories are replaced by Morita equivalent ones.
Second we focus to the reverse procedure, namely given a smash extension
of categories with finite group G – that is a kG-module category B and the
inclusion B → C = B#kG – we intend to associate a Galois covering to this
data. For this purpose we consider the inflated category IFB of a category B
along a sequence F = {Fx} of sets associated to the vertices of the original
category : each object x of B0 provides | Fx | new objects while the set of
morphisms from (x, i) to (y, j) is precisely the vector space yBx with the obvious
composition. For a finite groupG the inflated category of a kG-module category
– using the constant sequence of sets G – has a natural structure of a free G-k-
category. The inflated category IGB is Morita equivalent to the matrix category
M|G|(B) by contraction and in turn the later is Morita equivalent to B.
Moreover the categorical quotient of IGC exists and in this way we obtain
a Galois covering having the required properties with respect to the starting
smash extension.

2 Hopf module categories

In this section we introduce the smash product of a category with a Hopf algebra
and we specify this construction in case the Hopf algebra is the function algebra
of a finite group G. We will obtain that the later is Morita equivalent to the
smash product category defined in [4].
We recall (see for instance [15]) that for a Hopf algebra H over k, an H-module
algebra A is a k-algebra which is simultaneously an H-module in such a way
that the product map of A is a morphism of H-modules, where A ⊗ A is
considered as an H-module through the comultiplication of H. Moreover we
require that h1A = ǫ(h)1A for every h ∈ H.
We provide an analogous definition for a k-category C instead of an algebra.

Definition 2.1 A k-category C is an H-module category if each morphism
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space is an H-module, each endomorphism algebra is an H-module algebra and
composition maps are morphisms of H-modules, where as before the tensor
product of H-modules is considered as an H-module via the comultiplication of
H.

Notice that analogously we may consider the structure of an H-comodule cat-
egory. In case H is a finite dimensional Hopf algebra, we recall from [15]
that there is a bijective vector space preserving correspondence between right
H-modules and left H∗-comodules.

Remark 2.2 Given a finite k-category C, let a(C) be the k-algebra obtained as
the direct sum of all k-module morphisms of C equipped with the usual matrix
product combined with the composition of C. In case C is an H-module category
a(C) is an H-module algebra.

Let C be an H-module category. We define the k-category C#H as follows. The
objets remain the same, while given two objects x and y we put y(C#H)x =

yCx ⊗k H. The composition map for morphisms

z(C#H)y ⊗ y(C#H)x −→ z(C#H)x

is given by

(zϕy ⊗ h) ◦ (yψx ⊗ h′) =
∑

zϕy ◦ (h1 yψx)⊗ h2h
′,

where the comultiplication ∆ of H is given by ∆(h) =
∑
h1⊗h2 and ◦ denotes

composition in C. As before we have an immediate coherence result:

Proposition 2.3 Let C be a finite object H-module category C. Then the k-
algebras a(C)#H and a(C#H) are canonically isomorphic.

Let now G be a group. A G-graded k-category C (see for instance [4]) is a k-
category C such that each morphism space yCx is the direct sum of sub-vector
spaces yCsx, indexed by elements s ∈ G such that zCyt yCxs ⊆ yCxts for all
x, y ∈ C and for all s, t ∈ G.
Notice that as in the algebra case, gradings of a k-category C by means of a
group G are in one-to-one correspondence with kG-comodule category struc-
tures on C. Let now G be a finite group, C be a G-graded k-category and
consider the function algebra kG = (kG)∗ which is a Hopf algebra. The cate-
gory C is a kG-module category, hence according to our previous definition we
can consider C#kG.
We want to compare this category with another construction of a k-category
denoted C#G which can be performed for an arbitrary group G, see [4] : the
set of objects is C0 ×G while the morphisms from (x, s) to (y, t) is the vector

space yCx(t−1s). The composition of morphisms is well-defined as an immediate
consequence of the definition of a graded category.
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Notice that given a graded algebra A considered as a single object G-graded k-
category, the preceding construction provides a category with as many objects
as elements of G, even if G is infinite. If G is finite, the associated algebra is
known to be the usual smash product algebra A#kG, see [4].
We will recall below the definition of the module category of a k-category in
order to prove that in case of a finite group G the module categories over C#kG
and C#G are equivalent.
First we introduce a general setting which is interesting by itself.

Definition 2.4 Let D be a k-category equipped with a partition E of the set
of objects D0 by means of finite sets {Ei}i∈I . Then DE is a new k-category
obtained by contraction along the partition, more precisely I is the set of objects
of DE and morphisms are given by

j(DE)i =
⊕

y∈Ej x∈Ei

yDx.

Composition is given by matrix product combined with composition of the origi-
nal category. Notice that the identity map of an object i is given by

∑
z∈Ei

z1z,
which makes sense since Ei is finite.

Example 2.5 Let A be an algebra and let F be a complete finite family of or-
thogonal idempotents in A (we don’t require that the idempotents are primitive).
Consider the category D with set of objects F and morphisms yDx = yAx. Then
the contracted category along the trivial partition with only one subset is a single
object category having endomorphism algebra

⊕
x,y∈F yDx =

⊕
x,y∈F yAx = A.

We also observe that for a finite object k-category C, the contracted category
along the trivial partition is a single object category with endomorphism alge-
bra precisely a(C). More generally let E be a partition of C0, then the k-algebras
a(C) and a(CE) are equal.
We will establish now a relation between D and DE at the representation theory
level of these categories. In order to do so we recall the definition of modules
over a k-category.

Definition 2.6 Let C be a k-category. A left C-module M is a collection of
k-modules {xM}x∈C0

provided with a left action of the k-modules of morphisms
of C, given by k-module maps yCx⊗k xM→ yM, where the image of yfx⊗ xm
is denoted yfx xm, verifying the usual axioms:

• zfy (ygx xm) = (zfy ygx) xm,

• x1x xm = xm.

In other wordsM is a covariant k-functor from C to the category of k-modules,
the preceding explicit definition is useful for some detailed constructions. We
denote by C−Mod the category of left C-modules. In case of a k-algebra A it is
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clear that A-modules considered as k-vector spaces equipped with an action of
A coincide with Z-modules provided with an A-action. Analogously, C-modules
as defined above are the same structures than Z-functors from C to the category
of Z-modules.

Definition 2.7 Two k-categories are said to be Morita equivalent if their left
module categories are equivalent.

Proposition 2.8 Let D be a k-category and let E be a partition of the objects
of D by means of finite sets. Then D and the contracted category DE are Morita
equivalent.

We notice that this result is an extension of the well known fact that the cate-
gory of modules over an algebra is isomorphic to the category of functors over
the category of projective left modules provided by a direct sum decomposi-
tion of the free rank one left module, obtained for instance through a complete
system of orthogonal idempotents of the algebra.
Proof. Let M be a D-module and let FM be the following DE-module:

iFM =
⊕

x∈Ei

xM for each i ∈ I,

the action of a morphism jfi = (yfx)x∈Ei,y∈Ej
∈ j(DE)i on im = (xm)x∈Ei

∈
iF (M) is obtained as a matrix by a column product, namely:

jfi im = (
∑

x∈Ei

yfx xm)y∈Ej
.

A D −Mod morphism φ :M→M′ is a natural transformation between both
functors, i.e. a collection of k-maps xφ : xM→ xM′, satisfying compatibility
conditions. We define Fφ : FM→ FM′ by:

i(Fφ) =
⊕

x∈Ei

xφ.

Conversely given a DE-module N , let GN ∈ (D −Mod) be the functor given
by x(GN ) = ex (iN ), where i is unique element in I such that x ∈ Ei, and
where ex is the idempotent |Ei|× |Ei| - matrix with one in the (x, x) entry and
zero elsewhere.
The action of yfx ∈ yDx on x(GN ) is obtained as follows: let i, j ∈ I be such
that x ∈ Ei and y ∈ Ej . Let yfx ∈ j(DE)i be the matrix with yfx in the
(y, x) entry and zero elsewhere. Then, for exn ∈ x(GN ) we put (yfx)(exn) =

j(yfx)i i(exn) ∈ ey (jN ) = y(GN ).
It is easy to verify that both compositions of F and G are the corresponding
identity functors.

We will now apply the preceding result to the situation D = C#G using the
partition provided by the orbits of the free G-action on the objects.
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Theorem 2.9 The k-categories C#G and C#kG are Morita equivalent.

Proof. We consider the contraction of C#G along the partition provided by
the orbits, namely for x ∈ C0 we put Ex = {(x, g) | g ∈ G}. Observe that for
all x ∈ C0 the set Ex is finite since its cardinal is the order of the group G.
Moreover the set of objects ((C#G)E)0 of the contracted category is identified
to C0.

The morphisms from x to y in the contracted category are
⊕

s,t∈G yCxt
−1s. On

the other hand

y(C#kG)x = yCx ⊗ kG =
⊕

v∈G
yCxv ⊗ kG.

We assert that the contracted category (C#G)E and C#kG are isomorphic. The
sets of objects already coincide. We define the functor L on the morphisms as
follows. Let (y,t)f(x,s) be an elementary matrix morphism of the contracted
category. We put

L
(
(y,t)f(x,s)

)
= f ⊗ δs ∈ yCxt

−1s ⊗ kG.

It is not difficult to check that L is an isomorphism preserving composition.

Remark 2.10 The categories C#G and C#kG are not equivalent in general
as the following simple example already shows : let A be the group algebra
kC2 of the cyclic group of order two C2 and let CA be the single object C2-
graded k-category with A as endomorphism algebra. The category C#C2 has
two objects that we denote (∗, 1) and (∗, t), while C#kC2 has only one object ∗.
If C#G and C#kG were equivalent categories the algebras EndC#C2

((∗, 1)) and
EndC#kC2 (∗)) would be isomorphic. However the former is isomorphic to k
while the latter is the four dimensional algebra EndC#kC2 (∗) = (k

⊕
kt)⊗kC2 .

3 kG-module categories

Let G be a group and let C be a kG-module category. Using the Hopf algebra
structure of kG and the preceding definitions we are able to construct the
smash category C#kG. We have already noticed that if C is an object finite
k-category then the algebra a(C#kG) is the classical smash product algebra
a(C)#kG.
According to [4] a G-k-category D is a k-category with an action of G on the
set of objects and, for each s ∈ G, a k-linear map s : yDx → syDsx such that
s(gf) = s(g)s(f) and t(sf) = (ts)f for any composable couple of morphisms
g, f and any elements s, t of G. Such a category is called a free G-k-category
in case the action of G on the objects is a free action, namely the only group
element acting trivially on the category is the trivial element of G.

Remark 3.1 Notice that kG-module categories are G-k-categories verifying
that the action of G on the set of objects is trivial.
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We need to associate a free G-k-category to a kG-module category C, in order
to perform the quotient category as considered in [4]. For this purpose we
consider inflated categories as follows.

Definition 3.2 Let C be a k-category and let F = (Fx)x∈C0
be a sequence of

sets associated to the objects of C. The set of objects of the inflated category
IFC is

{(x, i) | x ∈ C0 and i ∈ Fx}
while (y,j)(IFC)(x,i) = yCx with the obvious composition provided by the com-
position of C. Alternatively, consider F as a map ϕ from a set to C0 such that
the fiber over each object x is Fx. The set of objects of the inflated category is
the fiber product of C0 with this set over ϕ.

Remark 3.3 Clearly an inflated category is equivalent to the original category
since all the objects with the same first coordinate are isomorphic. Hence a
choice of one object in each set {(x, i) | i ∈ Fx} provides a full sub-category of
IFC which is isomorphic to C.

In case C is a kG-module category we use the constant sequence of sets provided
by the underlying set of G. We obtain a free action of G on the objects of the
inflated category IGC by translation on the second coordinate. Moreover the
original action of G on each morphism set of C provides a free G-k-category
structure on the inflated category. More precisely the G-action on the category
IGC is obtained through maps for each u ∈ G as follows:

u : (y,t)IGC(x,s) → (y,ut)IGC(x,us)

u
(
(y,t)f(x,s)

)
= (y,ut)(u (yfx)) (x,us).

As a next step we notice that the free G-k-category IGC has a skew category
(IGC)[G] associated to it. In fact any G-k-category has a related skew category
defined in [4]. We recall that (IGC)[G]0 = (IGC)0 = C0 × G. For x, y ∈ C0
t, s ∈ G we have

(y,t)(IGC)[G](x,s) =
⊕

u∈G
(y,ut)(IGC)(x,s) =

⊕

u∈G
yCx = yCx ×G.

We are going to compare the categories C#kG and (IGC)[G]. In order to do
so we consider the intermediate quotient category (IGC)/G (see [4, Definition
2.1]). We recall the definition of D/G, where D is a free G-k-category: the
set of objects is the set of G-orbits of D0, while the k-module of morphisms in
D/G from the orbit α to the orbit β is

β(D/G)α =


 ⊕

b∈β,a∈α
bDa


 /G.
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Recall that X/G denotes the module of coinvariants of a kG-module X, namely
the quotient of X by (Ker ǫ)X where ǫ : kG → k the augmentation map.
Composition is well defined precisely because the action of G is free on the
objects, more explicitly, for g ∈ dDc and f ∈ bDa where b and c are objects
in the same G-orbit, let s be the unique element of G such that sb = c. Then
[g][f ] = [g (sf)] = [(s−1g) f ].

Lemma 3.4 The k-categories C#kG and (IGC)/G are isomorphic.

Proof. Clearly the set of objects can be identified. Given a morphism
(yfx ⊗ u) ∈ y(C#kG)x we associate to it the class [f ] of the morphism
f ∈ (y,1)(IGC)(x,u). Notice that in the smash category we have

(zgy ⊗ v)(yfx ⊗ u) = zgy v(yfx)⊗ vu

which has image [zgy v(yfx)]. The composition in the quotient provides pre-
cisely [g][f ] = [g vf ]. The inverse functor is also clear.

Since (IGC)/G and (IGC)[G] are equivalent (see [4]), we obtain the following:

Proposition 3.5 The categories C#kG and (IGC)[G] are equivalent.

4 From Galois coverings to smash extensions and vice versa

Our aim is to relate kG-smash extensions and Galois coverings for a finite
group G. Recall that it has been proved in [4] that any Galois covering with
group G of a k-category B is obtained via a G-grading of B, we have that
C = B#G is the corresponding Galois covering of B. We have already noticed
that for a finite group G a G-grading of a k-category B is the same thing than
a kG-module category structure on B.
However neither B nor B#G have a natural kG-module category structure
which could provide a smash extension. We have proven before that B#kG is
Morita equivalent to the category B#G. The advantage of B#kG is that it
has a natural kG-module category structure provided by the left kG-module
structure of kG given by tδs = δst−1 .
In this way we associate to the starting Galois covering B#G of B the smash
extension (B#kG)→ (B#kG)#kG. In [17] the authors describe when a given
Hopf-Galois extension is of this type (in the case of algebras). We will prove
that the later is isomorphic to an ad-hoc category M|G|(B) which happens to
be Morita equivalent to B.

Definition 4.1 Let B be a k-category and let n be a sequence of positive in-
tegers (nx)x∈B0

. The objects of the matrix category Mn(B) remain the same
objects of B. The set of morphisms from x to y is the vector space of nx-
columns and ny-rows rectangular matrices with entries in yBx. Composition of
morphisms is given by the matrix product combined with the composition in B.
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Remark 4.2 In case the starting category B is a single object category provided
by an algebra B, the matrix category has one object with endomorphism algebra
precisely the usual algebra of matrices Mn(B).
Notice that the matrix category that we consider is not the category Mat(C)
defined by Mitchell in [13]. In fact Mat(C) corresponds to the additivisation of
C (see the Appendix).

We need the next result in order to have that the smash extension associated to
a Galois covering has categories Morita equivalent to the original ones. In fact
this result is also a categorical generalization of Cohen Montgomery duality
Theorem [6].

Lemma 4.3 Let B be a G-graded category and let n be the order of G. Then
the categories (B#kG)#kG and Mn(B) are isomorphic.

Proof. Both sets of objects coincide. Given two objects x and y we define
two linear maps:

φ : yBx ⊗ kG ⊗ kG→ y(Mn(B))x ,

ψ : y(Mn(B))x → yBx ⊗ kG ⊗ kG.
Given an homogeneous element

(f ⊗ δg ⊗ h) ∈ yBx ⊗ kG ⊗ kG,

where f has degree r and g, h ∈ G we put

φ(f ⊗ δg ⊗ h) = f rgEgh,

where rgEgh is the elementary matrix with 1 in the (rg, gh)-spot and 0 else-
where. It is straightforward to verify that φ is well-behaved with respect to
compositions.
We also define ψ on elementary morphisms as follows:

ψ(f gEh) = f ⊗ δr−1g ⊗ g−1rh,

where r is the degree of f .

Next we have to prove that Mn(B) is Morita equivalent to B. In order to do so
we develop some Morita theory for k-categories which is interesting by itself.
When we restrict the following theory to a particular object, it will coincide
with the classical theory, see for instance [19, p.326]. Moreover, in case of a
finite object set k-categories both Morita theories coincide using the associated
algebras that we have previously described.
Let C be a k-category. For simplicity for a given object x we denote by Ax the
k-algebra xCx. For each x, let Bx be a k-algebra such that there is a (Bx, Ax)-
bimodule Px and a (Ax, Bx)-bimodule Qx verifying that Px ⊗Ax

Qx ∼= Bx as
Bx-bimodules and Qx ⊗Bx

Px ∼= Ax as Ax-bimodules. In other words for each
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object we assume that we have a Morita context providing that Ax and Bx
are Morita equivalent. Note that it follows from the assumptions that Px is
projective and finitely generated on both sides, see for instance [19].
Using the preceding data we modify the morphisms in order to define a new
k-category D which will be Morita equivalent to C. In particular the endomor-
phism algebra of each object x will turn out to be Bx.
More precisely the set of objects of D remains the set of objects of C while for
morphisms we put

yDx = Py ⊗Ay yCx ⊗Ax
Qx.

Notice that for x = y we have xDx ∼= Bx. In order to define composition in D
we need to provide a map

(Pz ⊗Az zCy ⊗Ay
Qy)⊗k (Py ⊗Ay yCy ⊗Ax

Qx) −→ Pz ⊗Az zCx ⊗Ax
Qx,

For this purpose let ϕx be a fixed Ax-bimodule isomorphism from Qx ⊗Bx
Px

to Ax and consider φx the composition the projection Qx ⊗k Px → Qx ⊗Bx
Px

followed by ϕx. Then composition is defined as follows

(pz ⊗ g ⊗ qy)(py ⊗ f ⊗ qx) = pz ⊗ g [φy(qy ⊗ py)] f ⊗ qx.

This composition is associative since the use of the morphisms φ do not interfere
in case of composition of three maps.

Proposition 4.4 Let C and D be k-categories as above. Then C and D are
Morita equivalent.

Proof. For a C-module M we define the D-module FM as follows:

x(FM) = Px ⊗Ax xM, which is already a left Bx-module.

The left action yDx ⊗ x(FM) → y(FM) is obtained using the following mor-
phism induced by φx

(
Py ⊗Ay yCx ⊗Ax

Qx
)
⊗k (Px ⊗Ax xM) −→ Py ⊗Ay yCx ⊗k Ax ⊗k xM

and the actions of Ax and of yCx on xM. We then obtain a map with target

y(FM). This defines clearly a D-module structure.
Similarly we obtain a functor G in the reverse direction which is already an
equivalent inverse for F .

We apply now this Proposition to a k-category C and the category obtained
from C by replacing each endomorphism algebra by matrix algebras over it.
For each object x in C0 consider the k-algebra Bx = Mn(Ax). The bimodule

Mn(Ax)(Px)Ax
is the left ideal of Mn(Ax) given by the first column and zero

elsewhere, while Ax
(Qx)Mn(Ax) is given by the analogous right ideal provided

by the first row. Then the category D defined above is precisely Mn(C).
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Corollary 4.5 C and Mn(C) are Morita equivalent.

Remark 4.6 An analogous Morita equivalence still hold when the integer n is
replaced by a sequence of positive integers (nx)x∈C0

.

The applications of Morita theory for categories developed above covers a larger
spectra than the one considered in this paper. We have produced several sorts
of Morita equivalences for categories, namely expansion, contraction and the
Morita context for categories described above. We will prove the next result in
the Appendix.

Theorem 4.7 Let C and D be Morita equivalent k-categories. Up to equiva-
lence of categories, D is obtained from C by contractions and expansions.

Example 4.8 Let A be a k-algebra and CA the corresponding single object cat-
egory. It is well known that the following k-category MCA is Morita equivalent
to CA: objects are all the positive integers [n] and the morphisms from [n] to
[m] are the matrices with n columns, m rows, and with A entries.

At each object [n] choose the system of n idempotents provided by the elementary
matrices which are zero except in a diagonal spot where the value is the unit of
the algebra. The expansion process through this choice provides a category with
numerable set of objects, morphisms are A between any couple of objects, they
are all isomorphic, consequently this category is equivalent to CA. This way a
Morita equivalence (up to equivalence) between CA and MCA is obtained using
the expansion process.

Conversely, in order to obtain MCA from CA, first inflate CA using the set of
positive integers. Then consider the partition by means of the finite sets having
all the positive integers cardinality, namely {1}, {2, 3}, {4, 5, 6}, . . .. Finally the
contraction along this partition provides precisely MCA.

We provide now an alternative proof of the fact that a matrix category is
Morita equivalent to the original one. It provides also evidence for Theorem
4.7 concerning the structure of the Morita equivalence functors. First consider
the inflated category using the sequence of positive integers defining the matrix
category. We have shown before that this category is equivalent to the origi-
nal one. Secondly perform the contraction of this inflated category along the
finite sets partition provided by couples having the same first coordinate. This
category is the matrix category. Since we know that a contracted category
is Morita equivalent to the original one, this provides a proof that a matrix
category is Morita equivalent to the the starting category, avoiding the use of
Morita contexts. The alternative proof we have presented indicate how classical
Morita equivalence between algebras can be obtained by means of contractions,
expansions and equivalences of categories. More precisely Theorem 4.7 states
that classical Morita theory can be replaced by those processes.

The results that we have obtained provide the following
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Theorem 4.9 Let C −→ B be a Galois covering of categories with finite group
G. The associated smash extension B#kG −→ (B#kG)#kG verifies that
B#kG is Morita equivalent to C and (B#kG)#kG is Morita equivalent to B.

Finally notice that the proof of a converse for this result is a direct consequence
of the discussion we have made in the previous section:

Theorem 4.10 Let C −→ B be a smash extension with finite group G. The
corresponding Galois covering IGC −→ (IGC) /G verifies that IGC is equivalent
to C and that (IGC) /G is equivalent to B.

Proof. Indeed an inflated category is isomorphic to the original one; moreover
B = C#kG and by Lemma 3.4 this category is isomorphic to (IGC)/G.

5 Appendix: Morita equivalence of categories over a field

We have considered in this paper several procedures that we can apply to a
k-category. We briefly recall and relate them with the karoubianisation (also
called idempotent completion) and the additivisation (or additive completion),
see for instance the appendix of [18].
The inflation procedure clearly provides an equivalent category : given a set Fx
over each object x of the k-category C, the objects of the inflated category IFC
are the couples (x, i) with i ∈ Fx. Morphisms from (x, i) to (y, j) remain the
morphisms from x to y. Consequently objects with the same first coordinate
are isomorphic in the inflated category. Choosing one of them above each object
of the original category C provides a full subcategory of the inflated one, which
is isomorphic to C.
The skeletonisation procedure consists in choosing precisely one object in each
isomorphism set of objects and considering the corresponding full subcategory.
Clearly any category is isomorphic to an inflation of its skeleton. Skeletons of
the same category are isomorphic, as well as skeletons of equivalent categories.
Those remarks show that up to isomorphism of categories, any equivalence of
categories is the composition of a skeletonisation and an inflation procedure.
Concerning Morita equivalence, we have used contraction and expansion. In or-
der to contract we need a partition of the objects of the k-category C by means
of finite sets. The sets of the partition become the objects of the contracted cat-
egory, and morphisms are provided by matrices of morphisms of C. Conversely,
in order to expand we choose a complete system of orthogonal idempotents for
each endomorphism algebra at each object of the k-category (the trivial choice
is given by just the identity morphism at each object). The set of objects of the
expanded category is the disjoint union of all those finite sets of idempotents.
Morphisms from e to f are fyCxe, assuming e is an idempotent at x and f is
an idempotent at y. Composition is given by the composition of C.
We assert that the karoubianisation and the additivisation (see for instance
[1, 18]) can be obtained through the previous procedures.
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Recall that the karoubianisation of C replaces each object of C by all the idem-
potents of its endomorphism algebra, while the morphisms are defined as for
the expansion process above.

Consider now the partition of the objects of the karoubianisation of C given
by an idempotent and its complement, namely the sets {e, 1 − e} for each
idempotent at each object of C. The contraction along this partition provides
a category equivalent to C, since all the objects over a given object of C are
isomorphic in the contraction of the karoubianisation. Concerning the additivi-
sation, notice first that two constructions are in force which provide equivalent
categories as follows.

The larger category is obtained from C by considering all the finite sequences
of objects, and morphisms given through matrix morphisms of C. Observe
that two objects (i.e. two finite sequences) which differ by a transposition are
isomorphic in this category, using the evident matrix morphism between them.

Consequently the objects of the smaller construction are the objects of the
previous one modulo permutation, namely the set of objects are finite sets of
objects of C with positive integers coefficients attached. In other words objects
are maps from C0 to N with finite support. Morphisms are once again matrix
morphisms.

The observation above concerning finite sequences differing by a transposition
shows that the larger additivisation completion is equivalent to the smaller one.

Finally the smaller additivisation of C can be expanded: choose the canonical
complete orthogonal idempotent system at each object provided by the matrix
endomorphism algebra. Of course the expanded category have several evident
isomorphic objects which keeps trace of the original objects. A choice provides
a full subcategory equivalent to C.
It follows from this discussion that karoubianisation and additivisation pro-
vide Morita equivalent categories to a given category, using contraction and
expansion processes, up to isomorphism of categories.

We denote Ĉ the completion of C, namely the additivisation of the karoubian-
isation (or vice-versa since those procedures commute). We notice that two
categories are Morita equivalent if and only if their completions are Morita
equivalent.

Recall that a k-category is called amenable if it has finite coproducts and if
idempotents split, see for instance [8]. It is well known and easy to prove that

the completion Ĉ is amenable.

We provide now a proof of Theorem 4.7. We have shown that the completion
of a k-category is obtained (up to equivalence) by expansions and contractions

of the original one. Notice that Ĉ and D̂ are Morita equivalent amenable
categories. We recall now the proof that this implies that the categories Ĉ
and D̂ are already equivalent (a result known as ”Freyd’s version of Morita

equivalence”, see [13, p.18]): consider the full subcategory of representable Ĉ-
modules, namely modules of the form −Ĉx. This category is isomorphic to the
opposite of the original one (this is well known and immediate to prove using
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Yoneda’s Lemma). Since Ĉ is amenable, representable Ĉ-modules are precisely
the small (or finitely generated) projective ones, see for instance [8, p. 119].
Finally the small projective modules are easily seen to be preserved by any
equivalence of categories; consequently the opposite categories of Ĉ and D̂ are
equivalent, hence the categories themselves are also equivalent.
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Abstract. We study some basic analytic questions related to dif-
ferential operators on Lie manifolds, which are manifolds whose large
scale geometry can be described by a a Lie algebra of vector fields
on a compactification. We extend to Lie manifolds several classical
results on Sobolev spaces, elliptic regularity, and mapping properties
of pseudodifferential operators. A tubular neighborhood theorem for
Lie submanifolds allows us also to extend to regular open subsets of
Lie manifolds the classical results on traces of functions in suitable
Sobolev spaces. Our main application is a regularity result on poly-
hedral domains P ⊂ R3 using the weighted Sobolev spaces Kma (P). In
particular, we show that there is no loss of Kma –regularity for solutions
of strongly elliptic systems with smooth coefficients. For the proof, we
identify Kma (P) with the Sobolev spaces on P associated to the metric
r−2

P gE , where gE is the Euclidean metric and rP(x) is a smoothing
of the Euclidean distance from x to the set of singular points of P.
A suitable compactification of the interior of P then becomes a regular
open subset of a Lie manifold. We also obtain the well-posedness of
a non-standard boundary value problem on a smooth, bounded do-
main with boundary O ⊂ Rn using weighted Sobolev spaces, where
the weight is the distance to the boundary.
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Introduction

We study some basic analytic questions on non-compact manifolds. In order
to obtain stronger results, we restrict ourselves to “Lie manifolds,” a class of
manifolds whose large scale geometry is determined by a compactification to a
manifold with corners and a Lie algebra of vector fields on this compactification
(Definition 1.3). One of the motivations for studying Lie manifolds is the loss
of (classical Sobolev) regularity of solutions of elliptic equations on non-smooth
domains. To explain this loss of regularity, let us recall first that the Poisson
problem

(1) ∆u = f ∈ Hm−1(Ω), m ∈ N ∪ {0}, Ω ⊂ Rn bounded,

has a unique solution u ∈ Hm+1(Ω), u = 0 on ∂Ω, provided that ∂Ω is smooth.
In particular, u will be smooth up to the boundary if ∂Ω and f are smooth (in
the following, when dealing with functions defined on an open set, by “smooth,”
we shall mean “smooth up to the boundary”). See the books of Evans [16], or
Taylor [58] for a proof of this basic well-posedness result.
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This well-posedness result is especially useful in practice for the numerical ap-
proximation of the solution u of Equation (1) [8]. However, in practice, it is
only rarely the case that Ω is smooth. The lack of smoothness of the domains
interesting in applications has motivated important work on Lipschitz domains,
see for instance [23, 40] or [65]. These papers have extended to Lipschitz do-
mains some of the classical results on the Poisson problem on smooth, bounded
domains, using the classical Sobolev spaces

Hm(Ω) := {u, ∂αu ∈ L2(Ω), |α| ≤ m}.
It turns out that, if ∂Ω is not smooth, then the smoothness of f on Ω (i. e., up
to the boundary) does not imply that the solution u of Equation (1) is smooth
as well on Ω. This is the loss of regularity for elliptic problems on non-smooth
domains mentioned above.
The loss of regularity can be avoided, however, by a conformal blowup of the
singular points. This conformal blowup replaces a neighborhood of each con-
nected component of the set of singular boundary points by a complete, but
non-compact end. (Here “complete” means complete as a metric space, not
geodesically complete.) It can be proved then that the resulting Sobolev spaces
are the “Sobolev spaces with weights” considered for instance in [25, 26, 35, 46].
Let f > 0 be a smooth function on a domain Ω, we then define the mth Sobolev
space with weight f by

(2) Kma (Ω; f) := {u, f |α|−a∂αu ∈ L2(Ω), |α| ≤ m}, m ∈ N ∪ {0}, a ∈ R.

Indeed, if Ω = P ⊂ R2 is a polygon, and if we choose

(3) f(x) = ϑ(x) = the distance to the non-smooth boundary points of P,

then there is no loss of regularity in the spaces Kma (Ω) := Kma (Ω;ϑ) [26, Theo-
rem 6.6.1]. In this paper, we extend this regularity result to polyhedral domains
in three dimensions, Theorem 6.1, with the same choice of the weight (in three
dimensions the weight is the distance to the edges). The analogous result in
arbitrary dimensions leads to topological difficulties [9, 66].
Our regularity result requires us first to study the weighted Sobolev spaces
Kma (Ω) := Kma (Ω;ϑ) where ϑ(x) is the distance to the set of singular points
on the boundary. Our approach to Sobolev spaces on polyhedral domains is
to show first that Kma (Ω) is isomorphic to a Sobolev space on a certain non-
compact Riemannian manifold M with smooth boundary. This non-compact
manifold M is obtained from our polyhedral domain by replacing the Euclidean
metric gE with

(4) r−2
P gE , rP a smoothing of ϑ,

which blows up at the faces of codimension two or higher, that is, at the set of
singular boundary points. (The metric r−2

P gE is Lipschitz equivalent to ϑ−2gE ,
but the latter is not smooth.) The resulting non-compact Riemannian manifold
turns out to be a regular open subset in a “Lie manifold.” (see Definition 1.3,
Subsection 1.6, and Section 6 for the precise definitions). A Lie manifold is a
compact manifold with corners M together with a C∞(M)-module V whose
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elements are vector fields on M . The space V must satisfy a number of axioms,
in particular, V is required to be closed under the Lie bracket of vector fields.
This property is the origin of the name Lie manifold. The C∞(M)-module V
can be identified with the sections of a vector bundle A over M . Choosing a
metric on A defines a complete Riemannian metric on the interior of M . See
Section 1 or [4] for details.
The framework of Lie manifolds is quite convenient for the study of Sobolev
spaces, and in this paper we establish, among other things, that the main
results on the classical Sobolev spaces remain true in the framework of Lie
manifolds. The regular open sets of Lie manifolds then play in our framework
the role played by smooth, bounded domains in the classical theory.
Let P ⊂ Rn be a polyhedral domain. We are especially interested in describing

the spaces Km−1/2
a−1/2 (∂P) of restrictions to the boundary of the functions in the

weighted Sobolev space Kma (P;ϑ) = Kma (P; rP) on P. Using the conformal
change of metric of Equation (4), the study of restrictions to the boundary of
functions in Kma (P) is reduced to the analogous problem on a suitable regular

open subset ΩP of some Lie manifold. More precisely, Kma (P) = r
a−n/2
P Hm(ΩP).

A consequence of this is that

(5) Km−1/2
a−1/2 (∂P) = Km−1/2

a−1/2 (∂P;ϑ) = r
a−n/2
P Hm−1/2(∂ΩP).

(In what follows, we shall usually simply denote Kma (P) := Kma (P;ϑ) =
Kma (P; rP) and Kma (∂P) := Kma (∂P;ϑ) = Kma (∂P; rP), where, we recall, ϑ(x)
is the distance from x to the set of non-smooth boundary points and rP is a
smoothing of ϑ that satisfies rP/ϑ ∈ [c, C], c, C > 0.)
Equation (5) is one of the motivations to study Sobolev spaces on Lie manifolds.
In addition to the non-compact manifolds that arise from polyhedral domains,
other examples of Lie manifolds include the Euclidean spaces Rn, manifolds
that are Euclidean at infinity, conformally compact manifolds, manifolds with
cylindrical and polycylindrical ends, and asymptotically hyperbolic manifolds.
These classes of non-compact manifolds appear in the study of the Yamabe
problem [32, 48] on compact manifolds, of the Yamabe problem on asymptoti-
cally cylindrical manifolds [2], of analysis on locally symmetric spaces, and of
the positive mass theorem [49, 50, 67], an analogue of the positive mass theo-
rem on asymptotically hyperbolic manifolds [6]. Lie manifolds also appear in
Mathematical Physics and in Numerical Analysis. Classes of Sobolev spaces on
non-compact manifolds have been studied in many papers, of which we mention
only a few [15, 18, 27, 30, 34, 36, 39, 37, 38, 51, 52, 53, 63, 64] in addition to
the works mentioned before. Our work can also be used to unify some of the
various approaches found in these papers.
Let us now review in more detail the contents of this paper. A large part of the
technical material in this paper is devoted to the study of Sobolev spaces on Lie
manifolds (with or without boundary). IfM is a compact manifold with corners,
we shall denote by ∂M the union of all boundary faces of M and by M0 :=
Mr∂M the interior of M . We begin in Section 1 with a review of the definition
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of a structural Lie algebra of vector fields V on a manifold with corners M .
This Lie algebra of vector fields will provide the derivatives appearing in the
definition of the Sobolev spaces. Then we define a Lie manifold as a pair
(M,V), where M is a compact manifold with corners and V is a structural
Lie algebra of vector fields that is unrestricted in the interior M0 of M . We
will explain the above mentioned fact that the interior of M carries a complete
metric g. This metric is unique up to Lipschitz equivalence (or quasi-isometry).
We also introduce in this section Lie manifolds with (true) boundary and, as
an example, we discuss the example of a Lie manifold with true boundary
corresponding to curvilinear polygonal domains. In Section 2 we discuss Lie
submanifolds, and most importantly, the global tubular neighborhood theorem.
The proof of this global tubular neighborhood theorem is based on estimates
on the second fundamental form of the boundary, which are obtained from
the properties of the structural Lie algebra of vector fields. This property
distinguishes Lie manifolds from general manifolds with boundary and bounded
geometry, for which a global tubular neighborhood is part of the definition. In
Section 3, we define the Sobolev spaces W s,p(M0) on the interior M0 of a
Lie manifold M , where either s ∈ N ∪ {0} and 1 ≤ p ≤ ∞ or s ∈ R and
1 < p <∞. We first define the spaces W s,p(M0), s ∈ N ∪ {0} and 1 ≤ p ≤ ∞,
by differentiating with respect to vector fields in V. This definition is in the
spirit of the standard definition of Sobolev spaces on Rn. Then we prove
that there are two alternative, but equivalent ways to define these Sobolev
spaces, either by using a suitable class of partitions of unity (as in [54, 55, 62]
for example), or as the domains of the powers of the Laplace operator (for
p = 2). We also consider these spaces on open subsets Ω0 ⊂ M0. The spaces
W s,p(M0), for s ∈ R, 1 < p < ∞ are defined by interpolation and duality
or, alternatively, using partitions of unity. In Section 4, we discuss regular
open subsets Ω ⊂ M . In the last two sections, several of the classical results
on Sobolev spaces on smooth domains were extended to the spaces W s,p(M0).
These results include the density of smooth, compactly supported functions,
the Gagliardo-Nirenberg-Sobolev inequalities, the extension theorem, the trace
theorem, the characterization of the range of the trace map in the Hilbert space
case (p = 2), and the Rellich-Kondrachov compactness theorem.
In Section 5 we include as an application a regularity result for strongly el-
liptic boundary value problems, Theorem 5.1. This theorem gives right away
the following result, proved in Section 6, which states that there is no loss of
regularity for these problems within weighted Sobolev spaces.

Theorem 0.1. Let P ⊂ R3 be a polyhedral domain and P be a strongly elliptic,
second order differential operator with coefficients in C∞(P). Let u ∈ K1

a+1(P),

u = 0 on ∂P, a ∈ R. If Pu ∈ Km−1
a−1 (P), then u ∈ Km+1

a+1 (P) and there exists
C > 0 independent of u such that

‖u‖Km+1
a+1 (P) ≤ C

(
‖Pu‖Km−1

a−1 (P) + ‖u‖K0
a+1(P)

)
, m ∈ N ∪ {0}.

The same result holds for strongly elliptic systems.
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Note that the above theorem does not constitute a Fredholm (or normal solv-
ability) result, because the inclusion Km+1

a+1 (P)→ K0
a+1(P) is not compact. See

also [25, 26, 35, 46] and the references therein for similar results.
In Section 7, we obtain a “non-standard boundary value problem” on a smooth
domain O in weighted Sobolev spaces with weight given by the distance to the
boundary. The boundary conditions are thus replaced by growth conditions.
Finally, in the last section, Section 8, we obtain mapping properties for the
pseudodifferential calculus Ψ∞

V (M) defined in [3] between our weighted Sobolev
spaces ρsW r,p(M). We also obtain a general elliptic regularity result for elliptic
pseudodifferential operators in Ψ∞

V (M).

Acknowledgements: We would like to thank Anna Mazzucato and Robert
Lauter for useful comments. The first named author wants to thank MSRI,
Berkeley, CA for its hospitality.

1. Lie manifolds

As explained in the Introduction, our approach to the study of weighted Sobolev
spaces on polyhedral domains is based on their relation to Sobolev spaces on Lie
manifolds with true boundary. Before we recall the definition of a Lie manifold
and some of their basic properties, we shall first look at the following example,
which is one of the main motivations for the theory of Lie manifolds.

Example 1.1. Let us take a closer look at the local structure of the Sobolev
space Kma (P) associated to a polygon P (recall (2)). Consider Ω := {(r, θ) | 0 <
θ < α}, which models an angle of P. Then the distance to the vertex is
simply ϑ(x) = r, and the weighted Sobolev spaces associated to Ω, Kma (Ω), can
alternatively be described as

(6) Kma (Ω) = Kma (Ω;ϑ) := {u ∈ L2
loc(Ω), r−a(r∂r)

i∂jθu ∈ L2(Ω), i+ j ≤ m}.
The point of the definition of the spaces Kma (Ω) was the replacement of the
local basis {r∂x, r∂y} with the local basis {r∂r, ∂θ} that is easier to work with
on the desingularization Σ(Ω) := [0,∞)×[0, α] ∋ (r, θ) of Ω. By further writing
r = et, the vector field r∂r becomes ∂t. Since dt = r−1dr, the space Km1 (Ω)
then identifies with Hm(Rt × (0, α)). The weighted Sobolev space Km1 (Ω) has
thus become a classical Sobolev space on the cylinder R× (0, α), as in [25].

The aim of the following definitions is to define such a desingularisation in
general. The desingularisation will carry the structure of a Lie manifold, defined
in the next subsection.
We shall introduce a further, related definition, namely the definition of a “Lie
submanifolds of a Lie manifold” in Section 4.

1.1. Definition of Lie manifolds. At first, we want to recall the definition
of manifolds with corners. A manifold with corners is a closed subset M of
a differentiable manifold such that every point p ∈ M lies in a coordinate
chart whose restriction to M is a diffeomorphism to [0,∞)k × Rn−k, for some
k = 0, 1, . . . , n depending on p. Obviously, this definition includes the property
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that the transition map of two different charts are smooth up to the boundary.
If k = 0 for all p ∈M , we shall say that M is a smooth manifold. If k ∈ {0, 1},
we shall say that M is a smooth manifold with smooth boundary.
Let M be a compact manifold with corners. We shall denote by ∂M the union
of all boundary faces of M , that is, ∂M is the union of all points not having a
neighborhood diffeomorphic to Rn. Furthermore, we shall write M0 := Mr∂M
for the interior of M . In order to avoid confusion, we shall use this notation
and terminology only when M is compact. Note that our definition allows ∂M
to be a smooth manifold, possibly empty.
As we shall see below, a Lie manifold is described by a Lie algebra of vector
fields satisfying certain conditions. We now discuss some of these conditions.

Definition 1.2. A subspace V ⊆ Γ(M ;TM) of the Lie algebra of all smooth
vector fields on M is said to be a structural Lie algebra of vector fields on M
provided that the following conditions are satisfied:

(i) V is closed under the Lie bracket of vector fields;
(ii) every V ∈ V is tangent to all boundary hyperfaces of M ;

(iii) C∞(M)V = V; and
(iv) each point p ∈M has a neighborhood Up such that

VUp
:= {X|Up

|X ∈ V} ≃ C∞(Up)
k

in the sense of C∞(Up)-modules.

The condition (iv) in the definition above can be reformulated as follows:

(iv’) For every p ∈ M , there exist a neighborhood Up ⊂ M of p and vector
fields X1,X2, . . . ,Xk ∈ V with the property that, for any Y ∈ V, there
exist functions f1, . . . , fk ∈ C∞(M), uniquely determined on Up, such
that

(7) Y =

k∑

j=1

fjXj on Up.

We now have defined the preliminaries for the following important definition.

Definition 1.3. A Lie structure at infinity on a smooth manifold M0 is a pair
(M,V), where M is a compact manifold with interior M0 and V ⊂ Γ(M ;TM)
is a structural Lie algebra of vector fields on M with the following property: If
p ∈ M0, then any local basis of V in a neighborhood of p is also a local basis
of the tangent space to M0.

It follows from the above definition that the constant k of Equation (7) equals
to the dimension n of M0.
A manifold with a Lie structure at infinity (or, simply, a Lie manifold) is a
manifold M0 together with a Lie structure at infinity (M,V) on M0. We shall
sometimes denote a Lie manifold as above by (M0,M,V), or, simply, by (M,V),
because M0 is determined as the interior of M . (In [4], only the term “manifolds
with a Lie structure at infinity” was used.)
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Example 1.4. If F ⊂ TM is a sub-bundle of the tangent bundle of a smooth
manifold (so M has no boundary) such that VF := Γ(M ;F ) is closed under
the Lie bracket, then VF is a structural Lie algebra of vector fields. Using the
Frobenius theorem it is clear that such vector bundles are exactly the tangent
bundles of k-dimensional foliations on M , k = rankF . However, VF does not
define a Lie structure at infinity, unless F = TM .

Remark 1.5. We observe that Conditions (iii) and (iv) of Definition 1.2 are
equivalent to the condition that V be a projective C∞(M)-module. Thus, by
the Serre-Swan theorem [24], there exists a vector bundle A → M , unique up
to isomorphism, such that V = Γ(M ;A). Since V consists of vector fields,
that is V ⊂ Γ(M ;TM), we also obtain a natural vector bundle morphism
̺M : A → TM , called the anchor map. The Condition (ii) of Definition 1.3 is
then equivalent to the fact that ̺M is an isomorphism A|M0

≃ TM0 on M0.
We will take this isomorphism to be an identification, and thus we can say that
A is an extension of TM0 to M (that is, TM0 ⊂ A).

1.2. Riemannian metric. Let (M0,M,V) be a Lie manifold. By definition, a
Riemannian metric on M0 compatible with the Lie structure at infinity (M,V)
is a metric g0 on M0 such that, for any p ∈ M , we can choose the basis
X1, . . . ,Xk in Definition 1.2 (iv’) (7) to be orthonormal with respect to this
metric everywhere on Up ∩M0. (Note that this condition is a restriction only
for p ∈ ∂M := M r M0.) Alternatively, we will also say that (M0, g0) is a
Riemannian Lie manifold. Any Lie manifold carries a compatible Riemannian
metric, and any two compatible metrics are bi-Lipschitz to each other.

Remark 1.6. Using the language of Remark 1.5, g0 is a compatible metric on
M0 if, and only if, there exists a metric g on the vector bundle A→M which
restricts to g0 on TM0 ⊂ A.

The geometry of a Riemannian manifold (M0, g0) with a Lie structure (M,V)
at infinity has been studied in [4]. For instance, (M0, g0) is necessarily complete
and, if ∂M 6= ∅, it is of infinite volume. Moreover, all the covariant deriva-
tives of the Riemannian curvature tensor are bounded. Under additional mild
assumptions, we also know that the injectivity radius is bounded from below
by a positive constant, i. e., (M0, g0) is of bounded geometry. (A manifold with
bounded geometry is a Riemannian manifold with positive injectivity radius
and with bounded covariant derivatives of the curvature tensor, see [54] and
references therein).
On a Riemannian Lie manifold (M0,M,V, g0), the exponential map exp :
TM0 → M0 is well-defined for all X ∈ TM0 and extends to a differentiable
map exp : A→M . A convenient way to introduce the exponential map is via
the geodesic spray, as done in [4]. Similarly, any vector field X ∈ V = Γ(M ;A)
is integrable and will map any (connected) boundary face of M to itself. The
resulting diffeomorphism of M0 will be denoted ψX .

1.3. Examples. We include here two examples of Lie manifolds together with
compatible Riemannian metrics. The reader can find more examples in [4, 31].
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Examples 1.7.

(a) Take Vb to be the set of all vector fields tangent to all faces of a manifold
with corners M . Then (M,Vb) is a Lie manifold. This generalizes
Example 1.1. See also Subsection 1.6 and Section 6. Let r ≥ 0 to be a
smooth function on M that is equal to the distance to the boundary in
a neighborhood of ∂M , and is > 0 outside ∂M (i. e., on M0). Let h be
a smooth metric on M , then g0 = h+ (r−1dr)2 is a compatible metric
on M0.

(b) Take V0 to be the set of all vector fields vanishing on all faces of a
manifold with corners M . Then (M,V0) is a Lie manifold. If ∂M is a
smooth manifold (i. e., if M is a smooth manifold with boundary), then
V0 = rΓ(M ;TM), where r is as in (a).

1.4. V-differential operators. We are especially interested in the analysis
of the differential operators generated using only derivatives in V. Let Diff∗

V(M)
be the algebra of differential operators on M generated by multiplication with
functions in C∞(M) and by differentiation with vector fields X ∈ V. The
space of order m differential operators in Diff∗

V(M) will be denoted DiffmV (M).
A differential operator in Diff∗

V(M) will be called a V-differential operator.
We can define V-differential operators acting between sections of smooth vector
bundles E,F →M , E,F ⊂M × CN by

(8) Diff∗
V(M ;E,F ) := eFMN (Diff∗

V(M))eE ,

where MN (Diff∗
V(M)) is the algebra of N×N -matrices over the ring Diff∗

V(M),
and where eE , eF ∈MN (C∞(M)) are the projections onto E and, respectively,
onto F . It follows that Diff∗

V(M ;E) := Diff∗
V(M ;E,E) is an algebra. It is also

closed under taking adjoints of operators in L2(M0), where the volume form is
defined using a compatible metric g0 on M0.

1.5. Regular open sets. We assume from now on that rinj(M0), the injec-
tivity radius of (M0, g0), is positive.
One of the main goals of this paper is to prove the results on weighted Sobolev
spaces on polyhedral domains that are needed for regularity theorems. We
shall do that by reducing the study of weighted Sobolev spaces to the study of
Sobolev spaces on “regular open subsets” of Lie manifolds, a class of open sets
that plays in the framework of Lie manifolds the role played by domains with
smooth boundaries in the framework of bounded, open subsets of Rn. Regular
open subsets are defined below in this subsection.
Let N ⊂ M be a submanifold of codimension one of the Lie manifold (M,V).
Note that this implies that N is a closed subset of M . We shall say that N is
a regular submanifold of (M,V) if we can choose a neighborhood V of N in M
and a compatible metric g0 on M0 that restricts to a product-type metric on
V ∩M0 ≃ (∂N0) × (−ε0, ε0), N0 = N r ∂N = N ∩M0. Such neighborhoods
will be called tubular neighborhoods.
In Section 2, we shall show that a codimension one manifold is regular if, and
only if, it is a tame submanifold of M ; this gives an easy, geometric, necessary
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and sufficient condition for the regularity of a codimension one submanifold of
M . This is relevant, since the study of manifolds with boundary and bounded
geometry presents some unexpected difficulties [47].
In the following, it will be important to distinguish properly between the bound-
ary of a topological subset, denoted by ∂top, and the boundary in the sense of
manifolds with corners, denoted simply by ∂.

Definition 1.8. Let (M,V) be a Lie manifold and Ω ⊂M be an open subset.
We shall say that Ω is a regular open subset in M if, and only if, Ω is con-
nected, Ω and Ω have the same boundary, ∂topΩ (in the sense of subsets of the
topological space M), and ∂topΩ is a regular submanifold of M .

Let Ω ⊂ M be a regular open subset. Then Ω is a compact manifold with
corners. The reader should be aware of the important fact that ∂topΩ = ∂topΩ is

contained in ∂Ω, but in general ∂Ω and ∂topΩ are not equal. The set ∂topΩ will

be called the true boundary of Ω. Furthermore, we introduce ∂∞Ω := ∂Ω∩∂M ,
and call it the boundary at infinity of Ω. Obviously, one has ∂Ω = ∂topΩ∪∂∞Ω.
The true boundary and the boundary at infinity intersect in a (possibly empty)
set of codimension ≥ 2. See Figure 1. We will also use the notation ∂Ω0 :=
∂topΩ ∩M0 = ∂Ω ∩M0.

Ω

∂topΩ

∂∞Ω

M0

Figure 1. A regular open set Ω. Note that the interior of
∂∞Ω is contained in Ω, but the true boundary ∂topΩ = ∂topΩ
is not contained in Ω

The space of restrictions to Ω or Ω of order m differential operators in Diff∗
V(M)

will be denoted DiffmV (Ω), respectively DiffmV (Ω). Similarly, we shall denote by
V(Ω) the space of restrictions to Ω of vector fields in V, the structural Lie
algebra of vector fields on M .
Let F ⊂ ∂Ω be any boundary hyperface of Ω of codimension 1. Such a face is
either contained in ∂topΩ or in ∂∞Ω. If F ⊂ ∂∞Ω, then the restrictions of all
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vector fields in V to F are tangent to F . However, if F ⊂ ∂topΩ the regularity
of the boundary implies that there are vector fields in V whose restriction to
F is not tangent to F . In particular, the true boundary ∂topΩ of Ω is uniquely

determined by (Ω,V(Ω)), and hence so is Ω = Ω r ∂topΩ. We therefore obtain
a one-to-one correspondence between Lie manifolds with true boundary and
regular open subsets (of some Lie manifold M).
Assume we are given Ω, Ω (the closure in M), and V(Ω), with Ω a regular open
subset of some Lie manifold (M,V). In the cases of interest, for example if
∂topΩ is a tame submanifold of M (see Subsection 2.3 for the definition of tame
submanifolds), we can replace the Lie manifold (M,V) in which Ω is a regular
open set with a Lie manifold (N,W) canonically associated to (Ω,Ω,V(Ω)) as
follows. Let N be obtained by gluing two copies of Ω along ∂topΩ, the so-called

double of Ω, also denoted Ω
db

= N . A smooth vector field X on Ω
db

will be

in W, the structural Lie algebra of vector fields W on Ω
db

if, and only if, its
restriction to each copy of Ω is in V(Ω). Then Ω will be a regular open set
of the Lie manifold (N,W). For this reason, the pair (Ω,V(Ω)) will be called
a Lie manifold with true boundary. In particular, the true boundary of a Lie
manifold with true boundary is a tame submanifold of the double. The fact
that the double is a Lie manifold is justified in Remark 2.10.

1.6. Curvilinear polygonal domains. We conclude this section with a dis-
cussion of a curvilinear polygonal domain P, an example that generalizes Ex-
ample 1.1 and is one of the main motivations for considering Lie manifolds. To
study function spaces on P, we shall introduce a “desingularization” (Σ(P), κ)
of P (or, rather, of P), where Σ(P) is a compact manifold with corners and
κ : Σ(P) → P is a continuous map that is a diffeomorphism from the interior
of Σ(P) to P and maps the boundary of Σ(P) onto the boundary of P.
Let us denote by Bk the open unit ball in Rk.

Definition 1.9. An open, connected subset P ⊂ M of a two dimensional
manifold M will be called a curvilinear polygonal domain if, by definition, P is
compact and for every point p ∈ ∂P there exists a diffeomorphism φp : Vp → B2,
φp(p) = 0, defined on a neighborhood Vp ⊂M such that

(9) φj(Vp ∩ P) = {(r cos θ, r sin θ), 0 < r < 1, 0 < θ < αp} , αp ∈ (0, 2π).

A point p ∈ ∂P for which αp 6= π will be called a vertex of P. The other points
of ∂P will be called smooth boundary points. It follows that every curvilinear
polygonal domain has finitely many vertices and its boundary consists of a
finite union of smooth curves γj (called the edges of P) which have no other
common points except the vertices. Moreover, every vertex belongs to exactly
two edges.
Let {P1, P2, . . . , Pk} ⊂ P be the vertices of P. The cases k = 0 and k = 1 are
also allowed. Let Vj := VPj

and φj := φPj
: Vj → B2 be the diffeomorphisms

defined by Equation (9). Let (r, θ) : R2 r {(0, 0)} → (0,∞) × [0, 2π) be the
polar coordinates. We can assume that the sets Vj are disjoint and define
rj(x) = r(φj(x)) and θj(x) = θ(φj(x)).
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The desingularization Σ(P) of P will replace each of the vertices Pj , j = 1, . . . , k
of P with a segment of length αj = αPj

> 0. Assume that P ⊂ R2. We can

realize Σ(P) in R3 as follows. Let ψj be smooth functions supported on Vj with
ψj = 1 in a neighborhood of Pj .

Φ : P r {P1, P2, . . . , Pk} → R2 × R, Φ(p) =
(
p ,
∑

j

ψj(p)θj(p)
)
.

Then Σ(P) is (up to a diffeomorphism) the closure of Φ(P) in R3. The desin-
gularization map is κ(p, z) = p.
The structural Lie algebra of vector fields V(P) on Σ(P) is given by (the lifts of)
the smooth vector fields X on P r {P1, P2, . . . , Pk} that, on Vj , can be written
as

X = ar(rj , θj)rj∂rj
+ aθ(rj , θj)∂θj

,

with ar and aθ smooth functions of (rj , θj), rj ≥ 0. Then (Σ(P),V(P)) is a Lie
manifold with true boundary.
To define the structural Lie algebra of vector fields on Σ(P), we now choose a
smooth function rP : P→ [0,∞) with the following properties

(i) rP is continuous on P,
(ii) rP is smooth on P,

(iii) rP(x) > 0 on P r {P1, P2, . . . , Pk},
(iv) rP(x) = rj(x) if x ∈ Vj .

Note that rP lifts to a smooth positive function on Σ(P). Of course, rP is
determined only up to a smooth positive function ψ on Σ(P) that equals to 1
in a neighborhood of the vertices.

Definition 1.10. A function of the form ψrP, with ψ ∈ C∞(Σ(P)), ψ > 0 will
be called a canonical weight function of P.

In what follows, we can replace rP with any canonical weight function. Canon-
ical weight functions will play an important role again in Section 6. Canoni-
cal weights are example of “admissible weights,” which will be used to define
weighted Sobolev spaces.
Then an alternative definition of V(P) is

(10) V(P) := { rP (ψ1∂1 + ψ2∂2) }, ψ1, ψ2 ∈ C∞(Σ(P)).

Here ∂1 denotes the vector field corresponding to the derivative with respect to
the first component. The vector field ∂2 is defined analogously. In particular,

(11) rP(∂jrP) = rP
∂rP

∂xj
∈ C∞(Σ(P)),

which is useful in establishing that V(P) is a Lie algebra. Also, let us notice that
both {rP∂1, rP∂2} and {rP∂rP

, ∂θ} are local bases for V(P) on Vj . The transition
functions lift to smooth functions on Σ(P) defined in a neighborhood of κ−1(Pj),
but cannot be extended to smooth functions defined in a neighborhood of Pj
in P.
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Then ∂topΣ(P), the true boundary of Σ(P), consists of the disjoint union of the
edges of P (note that the interiors of these edges have disjoint closures in Σ(P)).
Anticipating the definition of a Lie submanifold in Section 2, let us notice that
∂topΣ(P) is a Lie submanifold, where the Lie structure consists of the vector
fields on the edges that vanish at the end points of the edges.
The function ϑ used to define the Sobolev spaces Kma (P) := Kma (P;ϑ) in Equa-
tion (2) is closely related to the function rP. Indeed, ϑ(x) is the distance from
x to the vertices of P. Therefore ϑ/rP will extend to a continuous, nowhere
vanishing function on Σ(P), which shows that

(12) Kma (P;ϑ) = Kma (P; rP).

If P is an order m differential operator with smooth coefficients on R2 and
P ⊂ R2 is a polygonal domain, then rmP P ∈ DiffmV (Σ(P)), by Equation (10).

However, in general, rmP P will not define a smooth differential operator on P.

2. Submanifolds

In this section we introduce various classes of submanifolds of a Lie manifold.
Some of these classes were already mentioned in the previous sections.

2.1. General submanifolds. We first introduce the most general class of
submanifolds of a Lie manifold.
We first fix some notation. Let (M0,M,V) and (N0, N,W) be Lie manifolds.
We know that there exist vector bundles A → M and B → N such that
V ≃ Γ(M ;A) and W ≃ Γ(N ;B), see Remark 1.5. We can assume that V =
Γ(M ;A) andW = Γ(N ;B) and write (M,A) and (N,B) instead of (M0,M,V)
and (N0, N,W).

Definition 2.1. Let (M,A) be a Lie manifold with anchor map ̺M : A →
TM . A Lie manifold (N,B) is called a Lie submanifold of (M,A) if

(i) N is a closed submanifold of M (possibly with corners, no transversality
at the boundary required),

(ii) ∂N = N ∩ ∂M (that is, N0 ⊂M0, ∂N ⊂ ∂M), and
(iii) B is a sub vector bundle of A|N , and
(iv) the restriction of ̺M to B is the anchor map of B → N .

Remark 2.2. An alternative form of Condition (iv) of the above definition is

(13) W = Γ(N ;B) = {X|N |X ∈ Γ(M ;A) and X|N tangent to N}
= {X ∈ Γ(N ;A|N ) | ̺M ◦X ∈ Γ(N ;TN)}.

We have the following simple corollary that justifies Condition (iv) of Defini-
tion 2.1.

Corollary 2.3. Let g0 be a metric on M0 compatible with the Lie structure
at infinity on M0. Then the restriction of g0 to N0 is compatible with the Lie
structure at infinity on N0.
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Proof. Let g be a metric on A whose restriction to TM0 defines the metric g0.
Then g restricts to a metric h on B, which in turn defines a metric h0 on N0.
By definition, h0 is the restriction of g0 to N0. �

We thus see that any submanifold (in the sense of the above definition) of a
Riemannian Lie manifold is itself a Riemannian Lie manifold.

2.2. Second fundamental form. We define the A-normal bundle of the Lie
submanifold (N,B) of the Lie manifold (M,A) as νA = (A|N )/B which is a
bundle over N . Then the anchor map ̺M defines a map νA → (TM |N )/TN ,
called the anchor map of νA, which is an isomorphism over N0.
We denote the Levi-Civita-connection on A by ∇A and the Levi-Civita connec-
tion on B by ∇B [4]. Let X,Y,Z ∈ W = Γ(N ;B) and X̃, Ỹ , Z̃ ∈ V = Γ(M ;A)

be such that X = X̃|N , Y = Ỹ |N , Z = Z̃|N . Then ∇A
X̃
Ỹ |N depends only on

X,Y ∈ W = Γ(N ;B) and will be denoted ∇AXY in what follows. Furthermore,
the Koszul formula gives

2g(Z̃,∇A
Ỹ
X̃) =∂̺M (X̃)g(Ỹ , Z̃) + ∂̺M (Ỹ )g(Z̃, X̃)− ∂̺M (Z̃)g(X̃, Ỹ )

− g([X̃, Z̃], Ỹ )− g([Ỹ , Z̃], X̃)− g([X̃, Ỹ ], Z̃),

2g(Z,∇BYX) = ∂̺M (X)g(Y,Z) + ∂̺M (Y )g(Z,X)− ∂̺M (Z)g(X,Y )

− g([X,Z], Y )− g([Y,Z],X)− g([X,Y ], Z).

As this holds for arbitrary sections Z of Γ(N ;B) with extensions Z̃ on Γ(M ;A),
we see that ∇BXY is the tangential part of ∇AXY |N .
The normal part of ∇A then gives rise to the second fundamental form II
defined as

II :W ×W → Γ(νA), II(X,Y ) := ∇AXY −∇BXY.
The Levi-Civita connections ∇A and ∇B are torsion free, and hence II is sym-
metric because

II(X,Y )− II(Y,X) = [X̃, Ỹ ]|N − [X,Y ] = 0.

A direct computation reveals also that II(X,Y ) is tensorial in X, and hence,
because of the symmetry, it is also tensorial in Y . (“Tensorial” here means
II(fX, Y ) = fII(X,Y ) = II(X, fY ), as usual.) Therefore the second funda-
mental form is a vector bundle morphism II : B ⊗B → νA, and the endomor-
phism at p ∈ M is denoted by IIp : Bp ⊗ Bp → Ap. It then follows from the
compactness of N that

‖IIp(Xp, Yp)‖ ≤ C‖Xp‖ ‖Yp‖,
with a constant C independent of p ∈ N . Clearly, on the interior N0 ⊂ M0

the second fundamental form coincides with the classical second fundamental
form.

Corollary 2.4. Let (N,B) be a submanifold of (M,A) with a compatible
metric. Then the (classical) second fundamental form of N0 in M0 is uniformly
bounded.
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2.3. Tame submanifolds. We now introduce tame manifolds. Our main in-
terest in tame manifolds is the global tubular neighborhood theorem, Theorem
2.7, which asserts that a tame submanifold of a Lie manifold has a tubular
neighborhood in a strong sense. In particular, we will obtain that a tame sub-
manifold of codimension one is regular. This is interesting because being tame
is an algebraic condition that can be easily verified by looking at the structural
Lie algebras of vector fields. On the other hand, being a regular submanifold
is an analytic condition on the metric that may be difficult to check directly.

Definition 2.5. Let (N,B) be a Lie submanifold of the Lie manifold (M,A)
with anchor map ̺M : A→ TM . Then (N,B) is called a tame submanifold of
M if TpN and ̺M (Ap) span TpM for all p ∈ ∂N .

Let (N,B) be a tame submanifold of the Lie manifold (M,A). Then the anchor
map ̺M : A→ TM defines an isomorphism from Ap/Bp to TpM/TpN for any
p ∈ N . In particular, the anchor map ̺M maps B⊥, the orthogonal complement
of B in A, injectively into ̺M (A) ⊂ TM . For any boundary face F and p ∈ F
we have ̺M (Ap) ⊂ TpF . Hence, for any p ∈ N ∩ F , the space TpM is spanned
by TpN and TpF . As a consequence, N∩F is a submanifold of F of codimension
dimM − dimN . The codimension of N ∩ F in F is therefore independent of
F , in particular independent of the dimension of F .

Examples 2.6.
(1) Let M be any compact manifold (without boundary). Fix a p ∈ M . Let

(N,B) be a manifold with a Lie structure at infinity. Then (N0×{p}, N ×
{p}, B) is a tame submanifold of (N0 ×M,N ×M,B × TM).

(2) If ∂N 6= ∅, the diagonal N is a submanifold of N × N , but not a tame
submanifold.

(3) Let N be a submanifold with corners of M such that N is transverse to all
faces of M . We endow these manifolds with the b-structure at infinity Vb
(see Example 1.7 (i)). Then (N,Vb) is a tame Lie submanifold of (M,Vb).

(4) A regular submanifold (see section 1) is a also a tame submanifold.

We now prove the main theorem of this section. Note that this theorem is not
true for a general manifold of bounded geometry with boundary (for a mani-
fold with bounded geometry and boundary, the existence of a global tubular
neighborhood of the boundary is part of the definition, see [47]).

Theorem 2.7 (Global tubular neighborhood theorem). Let (N,B) be a tame
submanifold of the Lie manifold (M,A). For ǫ > 0, let (νA)ǫ be the set of all
vectors normal to N of length smaller than ǫ. If ǫ > 0 is sufficiently small,
then the normal exponential map expν defines a diffeomorphism from (νA)ǫ to
an open neighborhood Vǫ of N in M . Moreover, dist(expν(X), N) = |X| for
|X| < ǫ.

Proof. Recall from [4] that the exponential map exp : TM0 →M0 extends to
a map exp : A→M . The definition of the normal exponential function expν is
obtained by identifying the quotient bundle νA with B⊥, as discussed earlier.
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This gives

expν : (νA)ǫ →M.

The differential d expν at 0p ∈ νAp , p ∈ N is the restriction of the anchor map

to B⊥ ∼= νA, hence any point p ∈ N has a neighborhood U(p) and τp > 0 such
that

(14) expν : (νA)τp
|Up
→M

is a diffeomorphism onto its image. By compactness τp ≥ τ > 0. Hence, expν

is a local diffeomorphism of (νA)τ to a neighborhood of N in M . It remains to
show that it is injective for small ǫ ∈ (0, τ).
Let us assume now that there is no ǫ > 0 such that the theorem holds. Then
there are sequences Xi, Yi ∈ νA, i ∈ N, Xi 6= Yi such that expν Xi = expν Yi
with |Xi|, |Yi| → 0 for i→∞. After taking a subsequence we can assume that
the basepoints pi of Xi converge to p∞ and the basepoints qi of Yi converge to
q∞. As the distance in M of pi and qi converges to 0, we conclude that p∞ =
q∞. However, expν is a diffeomorphism from (νA)τ |U(p∞) into a neighborhood
of U(p∞). Hence, we see that Xi = Yi for large i, which contradicts the
assumptions. �

We now prove that every tame codimension one Lie submanifold is regular.

Proposition 2.8. Let (N,B) be a tame submanifold of codimension one of
(M,A). We fix a unit length section X of νA. Theorem 2.7 states that

expν : (νA)ǫ ∼= N × (−ǫ, ǫ) → {x | d(x,N) < ǫ} =: Vǫ
(p, t) 7→ exp

(
tX(p)

)

is a diffeomorphism for small ǫ > 0. Then M0 carries a compatible metric
g0 such that (expν)∗g0 is a product metric, i. e., (expν)∗g0 = gN + dt2 on
N × (−ǫ/2, ǫ/2).

Proof. Choose any compatible metric g1 on M0. Let g2 be a metric on Uǫ such
that (expν)∗g2 = g1|N + dt2 on N × (−ǫ, ǫ). Let d(x) := dist(x,N). Then

g0 = (χ ◦ d) g1 + (1− χ ◦ d) g2,

has the desired properties, where the cut-off function χ : R → [0, 1] is 1 on
(−ǫ/2, ǫ/2) and has support in (−ǫ, ǫ), and satisfies χ(−t) = χ(t). �

The above definition shows that any tame submanifold of codimension 1 is a
regular submanifold. Hence, the concept of a tame submanifold of codimen-
sion 1 is the same as that of a regular submanifolds. We hence obtain a new
criterion for deciding that a given domain in a Lie manifold is regular.

Proposition 2.9. Assume the same conditions as the previous proposition.
Then d expν

(
∂
∂t

)
defines a smooth vector field on Vǫ/2. This vector field can be

extended smoothly to a vector field Y in V. The restriction of A to Vǫ/2 splits

in the sense of smooth vector bundles as A = A1 ⊕ A2 where A1|N = νA and
A2|N = B. This splitting is parallel in the direction of Y with respect to the
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Levi-Civita connection of the product metric g0, i.e. if Z is a section of Ai,
then ∇Y Z is a section of Ai as well.

Proof. Because of the injectivity of the normal exponential map, the vector
field Y1 := d expν

(
∂
∂t

)
is well-defined, and the diffeomorphism property implies

smoothness on Vǫ. At first, we want to argue that Y1 ∈ V(Vǫ). Let π : S(A)→
M be the bundle of unit length vectors in A. Recall from [4], section 1.2 that
S(A) is naturally a Lie manifold, whose Lie structure is given by the thick
pullback π#(A) of A. Now the flow lines of Y1 are geodesics, which yield in
coordinates solutions to a second order ODE in t. In [4], section 3.4 this ODE
was studied on Lie manifolds. The solutions are integral lines of the geodesic
spray σ : S(A) → f#(A). As the integral lines of this flow stay in S(A) ⊂ A
and as they depend smoothly on the initial data and on t, we see that Y1 is a
smooth section of constant length one of A|Vǫ

.
Multiplying with a suitable cutoff-function with support in Vǫ one sees that we
obtain the desired extension Y ∈ V. Using parallel transport in the direction of
Y , the splitting A|N = νA ⊕ TN extends to a small neighborhood of N . This
splitting is clearly parallel in the direction of Y . �

Remark 2.10. Let N ⊂ M be a tame submanifold of the Lie manifold (M,V)
and Y ∈ V as above. If Y has length one in a neighborhood of N and is
orthogonal to N , then V :=

⋃
|t|<ǫ φt(N) will be a tubular neighborhood of

N . According to the previous proposition the restriction of A → M to V has
a natural product type decomposition. This justifies, in particular, that the
double of a Lie manifold with boundary is again a Lie manifold, and that the Lie
structure defined on the double satisfies the natural compatibility conditions
with the Lie structure on a Lie manifold with boundary.

3. Sobolev spaces

In this section we study Sobolev spaces on Lie manifolds without boundary.
These results will then be used to study Sobolev spaces on Lie manifolds with
true boundary, which in turn, will be used to study weighted Sobolev spaces on
polyhedral domains. The goal is to extend to these classes of Sobolev spaces
the main results on Sobolev spaces on smooth domains.

Conventions. Throughout the rest of this paper, (M0,M,V) will be a fixed
Lie manifold. We also fix a compatible metric g on M0, i. e., a metric compat-
ible with the Lie structure at infinity on M0, see Subsection 1.2. To simplify
notation we denote the compatible metric by g instead of the previously used
g0. By Ω we shall denote an open subset of M and Ω0 = Ω∩M0. The letters C
and c will be used to denote possibly different constants that may depend only
on (M0, g) and its Lie structure at infinity (M,V).

We shall denote the volume form (or measure) on M0 associated to g by
d volg(x) or simply by dx, when there is no danger of confusion. Also, we
shall denote by Lp(Ω0) the resulting Lp-space on Ω0 (i. e., defined with respect
to the volume form dx). These spaces are independent of the choice of the

Documenta Mathematica 11 (2006) 161–206



178 Bernd Ammann, Alexandru D. Ionescu, Victor Nistor

compatible metric g on M0, but their norms, denoted by ‖ · ‖Lp , do depend
upon this choice, although this is not reflected in the notation. Also, we shall
use the fixed metric g on M0 to trivialize all density bundles. Then the space
D′(Ω0) of distributions on Ω0 is defined, as usual, as the dual of C∞c (Ω0). The
spaces Lp(Ω0) identify with spaces of distributions on Ω0 via the pairing

〈u, φ〉 =

∫

Ω0

u(x)φ(x)dx, where φ ∈ C∞c (Ω0) and u ∈ Lp(Ω0).

3.1. Definition of Sobolev spaces using vector fields and connec-
tions. We shall define the Sobolev spaces W s,p(Ω0) in the following two cases:

• s ∈ N ∪ {0}, 1 ≤ p ≤ ∞, and arbitrary open sets Ω0 or
• s ∈ R, 1 < p <∞, and Ω0 = M0.

We shall denote W s,p(Ω) = W s,p(Ω0) and W s,p(M) = W s,p(M0). If Ω is
a regular open set, then W s,p(Ω) = W s,p(Ω0). In the case p = 2, we shall
often write Hs instead of W s,2. We shall give several definitions for the spaces
W s,p(Ω0) and show their equivalence. This will be crucial in establishing the
equivalence of various definitions of weighted Sobolev spaces on polyhedral
domains. The first definition is in terms of the Levi-Civita connection ∇ on
TM0. We shall denote also by ∇ the induced connections on tensors (i. e., on
tensor products of TM0 and T ∗M0).

Definition 3.1 (∇-definition of Sobolev spaces). The Sobolev space
W k,p(Ω0), k ∈ N ∪ {0}, is defined as the space of distributions u on Ω0 ⊂ M0

such that

(15) ‖u‖p∇,Wk,p :=

k∑

l=1

∫

Ω0

|∇lu(x)|pdx <∞ , 1 ≤ p <∞.

For p = ∞ we change this definition in the obvious way, namely we require
that,

(16) ‖u‖∇,Wk,∞ := sup |∇lu(x)| <∞ , 0 ≤ l ≤ k.
We introduce an alternative definition of Sobolev spaces.

Definition 3.2 (vector fields definition of Sobolev spaces). Let again k ∈
N ∪ {0}. Choose a finite set of vector fields X such that C∞(M)X = V. This
condition is equivalent to the fact that the set {X(p),X ∈ X} generates Ap
linearly, for any p ∈M . Then the system X provides us with the norm

(17) ‖u‖pX ,Wk,p :=
∑
‖X1X2 . . . Xlu‖pLp , 1 ≤ p <∞,

the sum being over all possible choices of 0 ≤ l ≤ k and all possible choices
of not necessarily distinct vector fields X1,X2, . . . ,Xl ∈ X . For p = ∞, we
change this definition in the obvious way:

(18) ‖u‖X ,Wk,∞ := max ‖X1X2 . . . Xlu‖L∞ ,
the maximum being taken over the same family of vector fields.
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In particular,

(19) W k,p(Ω0) = {u ∈ Lp(Ω0), Pu ∈ Lp(Ω0), for all P ∈ DiffkV(M)}

Sometimes, when we want to stress the Lie structure V on M , we shall write
W k,p(Ω0;M,V) := W k,p(Ω0).

Example 3.3. Let P be a curvilinear polygonal domain in the plane and let
Σ(P)db be the “double” of Σ(P), which is a Lie manifold without boundary (see
Subsection 1.6). Then P identifies with a regular open subset of Σ(P)db, and
we have

Km1 (P) = Wm,2(P) = Wm,2(P; Σ(P)db,V(P)).

The following proposition shows that the second definition yields equivalent
norms.

Proposition 3.4. The norms ‖ · ‖X ,Wk,p and ‖ · ‖∇,Wk,p are equivalent
for any choice of the compatible metric g on M0 and any choice of a system of
the finite set X such that C∞(M)X = V. The spaces W k,p(Ω0) are complete
Banach spaces in the resulting topology. Moreover, Hk(Ω0) := W k,2(Ω0) is a
Hilbert space.

Proof. As all compatible metrics g are bi-Lipschitz to each others, the equiv-
alence classes of the ‖ · ‖X ,Wk,p -norms are independent of the choice of g. We
will show that for any choice X and g, ‖ · ‖X ,Wk,p and ‖ · ‖∇,Wk,p are equiv-
alent. It is clear that then the equivalence class of ‖ · ‖X ,Wk,p is independent
of the choice of X , and the equivalence class of ‖ · ‖∇,Wk,p is independent of
the choice of g.
We argue by induction in k. The equivalence is clear for k = 0. We assume
now that the W l,p-norms are already equivalent for l = 0, . . . , k − 1. Observe
that if X,Y ∈ V, then the Koszul formula implies ∇XY ∈ V [4]. To simplify
notation, we define inductively X 0 := X , and X i+1 = X i∪{∇XY |X,Y ∈ X i}.
By definition any V ∈ Γ(M ;T ∗M⊗k) satisfies (∇∇V )(X,Y ) = ∇X∇Y V −
∇∇XY V. This implies for X1, . . . ,Xk ∈ X

(∇ . . .∇f︸ ︷︷ ︸
k-times

)(X1, . . . ,Xk) = X1 . . . Xkf +

k−1∑

l=0

∑

Yj∈Xk−l

aY1,...,Yl
Y1 . . . Yl f,

for appropriate choices of aY1,...,Yl
∈ N ∪ {0}. Hence,

‖(∇ . . .∇f︸ ︷︷ ︸
k-times

)‖Lp ≤ C
∑
‖∇ . . .∇f(X1, . . . ,Xk)‖Lp ≤ C‖f‖X ,Wk,p .
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By induction, we know that ‖Y1, . . . , Ylf‖Lp ≤ C‖f‖∇,W l,p for Yi ∈ X k−l,
0 ≤ l ≤ k − 1, and hence

‖X1 . . . Xkf‖Lp ≤ ‖∇ . . .∇f‖Lp‖X1‖L∞ · · · ‖Xk‖L∞︸ ︷︷ ︸
≤C‖f‖∇,W k,p

+

k−1∑

l=0

∑

Y1,...,Yl∈Xk−l

aY1,...,Yl
Y1 . . . Yl f

︸ ︷︷ ︸
≤C‖f‖∇,W k−1,p

.

This implies the equivalence of the norms.
The proof of completeness is standard, see for example [16, 60]. �

We shall also need the following simple observation.

Lemma 3.5. Let Ω′ ⊂ Ω ⊂ M be open subsets, Ω0 = Ω ∩ M0, and Ω′
0 =

Ω′∩M0, Ω′ 6= ∅. The restriction then defines continuous operators W s,p(Ω0)→
W s,p(Ω′

0). If the various choices (X , g, xj) are done in the same way on Ω and
Ω′, then the restriction operator has norm 1.

3.2. Definition of Sobolev spaces using partitions of unity. Yet an-
other description of the spaces W k,p(Ω0) can be obtained by using suitable
partitions of unity as in [54, Lemma 1.3], whose definition we now recall. See
also [13, 18, 51, 52, 55, 62].

Lemma 3.6. For any 0 < ǫ < rinj(M0)/6 there is a sequence of points {xj} ⊂
M0, and a partition of unity φj ∈ C∞c (M0), such that, for some N large enough
depending only on the dimension of M0), we have

(i) supp(φj) ⊂ B(xj , 2ǫ);
(ii) ‖∇kφj‖L∞(M0) ≤ Ck,ǫ, with Ck,ǫ independent of j; and

(iii) the sets B(xj , ǫ/N) are disjoint, the sets B(xj , ǫ) form a covering of M0,
and the sets B(xj , 4ǫ) form a covering of M0 of finite multiplicity, i. e.,

sup
y∈M0

#{xj | y ∈ B(xj , 4ǫ)} <∞.

Fix ǫ ∈ (0, rinj(M0)/6). Let ψj : B(xj , 4ǫ) → BRn(0, 4ǫ) normal coordinates
around xj (defined using the exponential map expxj

: Txj
M0 → M0). The

uniform bounds on the Riemann tensor R and its derivatives ∇kR imply uni-
form bounds on ∇kd expxj

, which directly implies that all derivatives of ψj are
uniformly bounded.

Proposition 3.7. Let φi and ψi be as in the two paragraphs above. Let
Uj = ψj(Ω0 ∩B(xj , 2ǫ)) ⊂ Rn. We define

νk,∞(u) := sup
j
‖(φju) ◦ ψ−1

j ‖Wk,∞(Uj)

and, for 1 ≤ p <∞,

νk,p(u)p :=
∑

j

‖(φju) ◦ ψ−1
j ‖pWk,p(Uj)

.
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Then u ∈W k,p(Ω0) if, and only if, νk,p(u) <∞. Moreover, νk,p(u) defines an
equivalent norm on W k,p(Ω0).

Proof. We shall assume p < ∞, for simplicity of notation. The case p = ∞
is completely similar. Consider then µ(u)p =

∑
j ‖φju‖

p
Wk,p(Ω0)

. Then there

exists Ck,ε > 0 such that

(20) C−1
k,ε‖u‖Wk,p(Ω0) ≤ µ(u) ≤ Ck,ε‖u‖Wk,p(Ω0),

for all u ∈W k,p(Ω0), by Lemma 3.6 (i. e., the norms are equivalent). The fact
that all derivatives of expxj

are bounded uniformly in j further shows that µ
and νk,p are also equivalent. �

The proposition gives rise to a third, equivalent definition of Sobolev spaces.
This definition is similar to the ones in [54, 55, 62, 61] and can be used to define
the spaces W s,p(Ω0), for any s ∈ R, 1 < p < ∞, and Ω0 = M0. The cases
p = 1 or p =∞ are more delicate and we shall not discuss them here.
Recall that the spaces W s,p(Rn), s ∈ R, 1 < p < ∞ are defined using the
powers of 1 + ∆, see [56, Chapter V] or [60, Section 13.6].

Definition 3.8 (Partition of unity definition of Sobolev spaces). Let s ∈ R,
and 1 < p <∞. Then we define

(21) ‖u‖pW s,p(M0)
:=
∑

j

‖(φju) ◦ ψ−1
j ‖pW s,p(Rn), 1 < p <∞.

By Proposition 3.7, this norm is equivalent to our previous norm on W s,p(M0)
when s is a nonnegative integer.

Proposition 3.9. The space C∞c (M0) is dense in W s,p(M0), for 1 < p < ∞
and s ∈ R, or 1 ≤ p <∞ and s ∈ N ∪ {0}.
Proof. For s ∈ N ∪ {0}, the result is true for any manifold with bounded
geometry, see [7, Theorem 2] or [19, Theorem 2.8], or [20]. For Ω0 = M0,
s ∈ R, and 1 < p < ∞, the definition of the norm on W s,p(M0) allows us to
reduce right away the proof to the case of Rn, by ignoring enough terms in
the sum defining the norm (21). (We also use a cut-off function 0 ≤ χ ≤ 1,
χ ∈ C∞c (BRn(0, 4ǫ)), χ = 1 on BRn(0, 4ǫ).) �

We now give a characterization of the spaces W s,p(M0) using interpolation,

s ∈ R. Let k ∈ N ∪ {0} and let W̃−k,p(M0) be the set of distributions on M0

that extend by continuity to linear functionals on W k,q(M0), p−1 + q−1 = 1,

using Proposition 3.9. That is, let W̃−k,p(M0) be the set of distributions on
M0 that define continuous linear functionals on W k,q(M0), p−1 + q−1 = 1. We
let

W̃ θk,k,p(M0) := [W̃ 0,p(M0),W k,p(M0)]θ , 0 ≤ θ ≤ 1 ,

be the complex interpolation spaces. Similarly, we define

W̃−θk,k,p(M0) = [W̃ 0,p(M0),W−k,p(M0)]θ.
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(See [12] or [58, Chapter 4] for the definition of the complex interpolation
spaces.)
The following proposition is an analogue of Proposition 3.7. Its main role
is to give an intrinsic definition of the spaces W s,p(M0), a definition that is
independent of choices.

Proposition 3.10. Let 1 < p < ∞ and k > |s|. Then we have a topological

equality W̃ s,k,p(M0) = W s,p(M0). In particular, the spaces W s,p(M0), s ∈ R,
do not depend on the choice of the covering B(xj , ǫ) and of the subordinated
partition of unity and we have

[W s,p(M0),W 0,p(M0)]θ = W θs,p(M0) , 0 ≤ θ ≤ 1 .

Moreover, the pairing between functions and distributions defines an isomor-
phism W s,p(M0)∗ ≃W−s,q(M0), where 1/p+ 1/q = 1.

Proof. This proposition is known if M0 = Rn with the usual metric

[60][Equation (6.5), page 23]. In particular, W̃ s,p(Rn) = W s,p(Rn). As in
the proof of Proposition 3.7 one shows that the quantity

(22) νs,p(u)p :=
∑

j

‖(φju) ◦ ψ−1
j ‖pW̃ s,p(Rn)

,

is equivalent to the norm on W̃ s,p(M0). This implies W̃ s,p(M0) = W s,p(M0).
Choose k large. Then we have

[W s,p(M0),W 0,p(M0)]θ = [W s,k,p(M0),W 0,k,p(M0)]θ

= W θs,k,p(M0) = W θs,p(M0).

The last part follows from the compatibility of interpolation with taking duals.
This completes the proof. �

The above proposition provides us with several corollaries. First, from the
interpolation properties of the spaces W s,p(M0), we obtain the following corol-
lary.

Corollary 3.11. Let φ ∈ W k,∞(M0), k ∈ N ∪ {0}, p ∈ (1,∞), and s ∈ R
with k ≥ |s|. Then multiplication by φ defines a bounded operator on W s,p(M0)
of norm at most Ck‖φ‖Wk,∞(M0). Similarly, any differential operator P ∈
DiffmV (M) defines continuous maps P : W s,p(M0)→W s−m,p(M0).

Proof. For s ∈ N ∪ {0}, this follows from the definition of the norm on
W k,∞(M0) and from the definition of DiffmV (M) as the linear span of differ-
ential operators of the form fX1 . . . Xk, (f ∈ C∞(M) ⊂ W k,∞, Xj ∈ V, and
0 ≤ k ≤ m), and from the definition of the spaces W k,p(Ω0).
For s ≤ m, the statement follows by duality. For the other values of s, the
result follows by interpolation. �

Next, recall that an isomorphism φ : M →M ′ of the Lie manifolds (M0,M,V)
and (M ′

0,M
′,V ′) is defined to be a diffeomorphism such that φ∗(V) = V ′. We
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then have the following invariance property of the Sobolev spaces that we have
introduced.

Corollary 3.12. Let φ : M → M ′ be an isomorphism of Lie manifolds,
Ω0 ⊂ M0 be an open subset and Ω′ = φ(Ω). Let p ∈ [1,∞] if s ∈ N ∪ {0},
and p ∈ (1,∞) if s 6∈ N ∪ {0}. Then f → f ◦ φ extends to an isomorphism
φ∗ : W s,p(Ω′)→W s,p(Ω) of Banach spaces.

Proof. For s ∈ N ∪ {0}, this follows right away from definitions and Proposi-
tion 3.4. For −s ∈ N∪ {0}, this follows by duality, Proposition (3.10). For the
other values of s, the result follows from the same proposition, by interpola-
tion. �

Recall now that M0 is complete [4]. Hence the Laplace operator ∆ = ∇∗∇ is
essentially self-adjoint on C∞c (M0) by [17, 45]. We shall define then (1 + ∆)s/2

using the spectral theorem.

Proposition 3.13. The space Hs(M0) := W s,2(M0), s ≥ 0, identifies with
the domain of (1 + ∆)s/2, if we endow the latter with the graph topology.

Proof. For s ∈ N ∪ {0}, the result is true for any manifold of bounded geom-
etry, by [7, Proposition 3]. For s ∈ R, the result follows from interpolation,
because the interpolation spaces are compatible with powers of operators (see,
for example, the chapter on Sobolev spaces in Taylor’s book [58]). �

The well known Gagliardo–Nirenberg–Sobolev inequality [7, 16, 19] holds also
in our setting.

Proposition 3.14. Denote by n the dimension of M0. Assume that 1/p =
1/q − m/n, 1 < q ≤ p < ∞, where m ≥ 0. Then W s,q(M0) is continuously
embedded in W s−m,p(M0).

Proof. If s and m are integers, s ≥ m ≥ 0, the statement of the proposition
is true for manifolds with bounded geometry, [7, Theorem 7] or [19, Corol-
lary 3.1.9]. By duality (see Proposition 3.10), we obtain the same result when
s ≤ 0, s ∈ Z. Then, for integer s,m, 0 < s < m we obtain the correspond-
ing embedding by composition W s,q(M0) → W 0,r(M0) → W s−m,p(M0), with
1/r = 1/q−s/n. This proves the result for integral values of s. For non-integral
values of s, the result follows by interpolation using again Proposition 3.10. �

The Rellich-Kondrachov’s theorem on the compactness of the embeddings of
Proposition 3.14 for 1/p > 1/q − m/n is true if M0 is compact [7, Theorem
9]. This happens precisely when M = M0, which is a trivial case of a manifold
with a Lie structure at infinity. On the other hand, it is easily seen (and well
known) that this compactness cannot be true for M0 non-compact. We will
nevertheless obtain compactness in the next section by using Sobolev spaces
with weights, see Theorem 4.6.
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4. Sobolev spaces on regular open subsets

Let Ω ⊂ M be an open subset. Recall that Ω is a regular open subset in M
if, and only if, Ω and Ω have the same boundary in M , denoted ∂topΩ,, and

if ∂topΩ is a regular submanifold of M . Let Ω0 = Ω ∩ M0. Then ∂Ω0 :=

(∂Ω) ∩M0 = ∂topΩ ∩M0 is a smooth submanifold of codimension one of M0

(see Figure 1). We shall denote W s,p(Ω) = W s,p(Ω) = W s,p(Ω0). Throughout
this section Ω will denote a regular open subset of M .
We have the following analogue of the classical extension theorem.

Theorem 4.1. Let Ω ⊂ M be a regular open subset. Then there exists a
linear operator E mapping measurable functions on Ω0 to measurable functions
on M0 with the properties:

(i) E maps W k,p(Ω0) continuously into W k,p(M0) for every p ∈ [1,∞] and
every integer k ≥ 0, and

(ii) Eu|Ω0
= u.

Proof. Since ∂Ω0 is a regular submanifold we can fix a compatible metric g on
M0 and a tubular neighborhood V0 of ∂Ω0 such that V0 ≃ (∂Ω0) × (−ε0, ε0),
ε0 > 0. Let ε = min(ε0, rinj(M0))/20, where rinj(M0) > 0 is the injectivity
radius of M0. By Zorn’s lemma and the fact that M0 has bounded geometry
we can choose a maximal, countable set of disjoint balls B(xi, ε), i ∈ I. Since
this family of balls is maximal we have M0 = ∪iB(xi, 2ε). For each i we fix
a smooth function ηi supported in B(xi, 3ε) and equal to 1 in B(xi, 2ε). This
can be done easily in local coordinates around the point xi; since the metric
g is induced by a metric g on A we may also assume that all derivatives of
order up to k of ηi are bounded by a constant Ck,ε independent of i. We then

set η̃i :=
(∑

j∈I η
2
j

)−1/2
ηi. Then

∑
i∈I η̃

2
i = 1, η̃i equals 1 on B(xi, ǫ) and is

supported in B(xi, 3ǫ).
Following [56, Ch. 6] we also define two smooth cutoff functions adapted to the
set Ω0. We start with a function ψ : R → [0, 1] which is equal to 1 on [−3, 3]
and which has support in [−6, 6]
Let ϕ = (ϕ1, ϕ2) denote the isomorphism between V0 and ∂Ω0 × (−ε0, ε0),
where ϕ1 : V0 → ∂Ω0 and ϕ2 : V0 → (−ε0, ε0). We define

Λ+(x) :=

{
0 if x ∈M0 \ V0

ψ(ϕ2(x)/ε) if x ∈ V0,

and Λ−(x) := 1−Λ+(x). Clearly Λ+ and Λ− are smooth functions on M0 and
Λ+(x) + Λ−(x) = 1. Obviously, Λ+ is supported in a neighborhood of ∂Ω0 and
Λ− is supported in the complement of a neighborhood of ∂Ω0.
Let ∂Ω0 = A1 ∪ A2 ∪ . . . denote the decomposition of ∂Ω0 into connected
components. Let V0 = B1 ∪ B2 ∪ . . . denote the corresponding decomposition
of V0 into connected components, namely, Bj = ϕ−1(Aj × (−ε0, ε0)). Since

∂Ω0 = ∂Ω0, we have ϕ(Ω0 ∩Bj) = Aj × (−ε0, 0) or ϕ(Ω0 ∩Bj) = Aj × (0, ε0).
Thus, if necessary, we may change the sign of ϕ on some of the connected
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components of V0 in such a way that

ϕ(Ω0 ∩ V0) = ∂Ω0 × (0, ε0).

Let ψ0 denote a fixed smooth function, ψ0 : R→ [0, 1], ψ0(t) = 1 if t ≥ −ε and
ψ0(t) = 0 if t ≤ −2ε, and let

Λ0(x) =





1 if x ∈ Ω0 \ V0

0 if x ∈M0 \ (Ω0 ∪ V0)

ψ0(ϕ2(x)) if x ∈ V0.

We look now at the points xi defined in the first paragraph of the proof. Let
J1 = {i ∈ I : d(xi, ∂Ω0) ≤ 10ε} and J2 = {i ∈ I : d(xi, ∂Ω0) > 10ε}. For every
point xi, i ∈ J1, there is a point yi ∈ ∂Ω0 with the property that B(xi, 4ε) ⊂
B(yi, 15ε). Let B∂Ω0

(yi, 15ε) denote the ball in ∂Ω0 of center yi and radius
15ε (with respect to the induced metric on ∂Ω0). Let hi : B∂Ω0

(yi, 15ε) →
BRn−1(0, 15ε) denote the normal system of coordinates around the point yi.
Finally let gi : BRn−1(0, 15ε) × (−15ε, 15ε) → V0 denote the map gi(v, t) =
ϕ−1(h−1

i (v), t).
Let ERn denote the extension operator that maps W k,p(Rn+) to W k,p(Rn)
continuously, where Rn+ denotes the half-space {x : xn > 0}. Clearly,
ERnu|Rn

+
= u. The existence of this extension operator is a classical fact,

for instance, see [56, Chapter 6]. For any u ∈ W k,p(Ω0) and i ∈ J1 the func-
tion (η̃iu) ◦ gi is well defined on Rn+ simply by setting it equal to 0 outside

the set BRn−1(0, 15ε)× (0, 15ε). Clearly, (η̃iu) ◦ gi ∈W k,p(Rn+). We define the
extension Eu by the formula
(23)

Eu(x) = Λ0(x)Λ−(x)u(x) + Λ0(x)Λ+(x)
∑

i∈J1

η̃i(x)
(
ERn [(η̃iu) ◦ gi]

)
(g−1
i x) .

Notice that for all i ∈ J2, the function η̃i vanishes on the support of Λ+, and
hence

(24)
∑

i∈J1

η̃2
i (x) =

∑

i∈I
η̃2
i (x) = 1 in supp Λ+.

This formula implies Eu|Ω0
= u. It remains to verify that

‖Eu‖Wk,p(M0) ≤ Ck‖u‖Wk,p(Ω0).

This follows as in [56] using (24), the fact that the extension ERn satisfies the
same bound, and the definition of the Sobolev spaces using partitions of unity
(Proposition 3.7). �

Let Ω be a regular open subset of M and Ω0 = Ω ∩M , as before. We shall
denote by Ω0 the closure of Ω0 in M0.

Theorem 4.2. The space C∞c (Ω0) is dense in W k,p(Ω0), for 1 ≤ p <∞.
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Proof. For any u ∈ W k,p(Ω0) let Eu denote its extension from Theorem 4.1,
Eu ∈ W k,p(M0). By Proposition 3.9, there is a sequence of functions fj ∈
C∞
c (M0) with the property that

lim
j→∞

fj = Eu in W k,p(M0).

Thus limj→∞ fj |Ω0
= u in W k,p(Ω0), as desired. �

Theorem 4.3. The restriction map C∞c (Ω0)→ C∞c (∂Ω0) extends to a contin-
uous map T : W k,p(Ω0)→W k−1,p(∂Ω0), for 1 ≤ p ≤ ∞.

Proof. The case p = ∞ is obvious. In the case 1 ≤ p < ∞, we shall assume
that the compatible metric on M0 restricts to a product type metric on V0,
our distinguished tubular neighborhood of ∂Ω0. As the curvature of M0 and
the second fundamental form of ∂Ω0 in M0 are bounded (see Corollary 2.4),
there is an ǫ1 > 0 such that, in normal coordinates, the hypersurface ∂Ω0 is
the graph of a function on balls of radius ≤ ǫ1.
We use the definitions of the Sobolev spaces using partitions of unity, Proposi-
tion 3.7 and Lemma 3.6 with ε = min(ǫ1, ǫ0, rinj(M0))/10. Let B(xj , 2ε) denote
the balls in the cover of M0 in Lemma 3.6, let ψj : B(ǫ, xj) → B(ǫ, 0) denote
normal coordinates based in xj , and let 1 =

∑
j φj be a corresponding partition

of unity. Then φ̃j = φj |∂Ω0
form a partition of unity on ∂Ω0.

Start with a function u ∈W k,p(Ω0) and let uj = (uφj)◦ψ−1
j , uj ∈W k,p(ψj(Ω0∩

B(xj , 4ε))). In addition uj ≡ 0 outside the set ψj(Ω0∩B(xj , 2ε)). If B(xj , 4ε)∩
∂Ω0 = ∅ let T̃ (uj) = 0. Otherwise notice that B(xj , 4ε) is included in V0, the
tubular neighborhood of ∂Ω0, thus the set ψj(∂Ω0∩B(xj , 4ε)) is the intersection

of a graph and the ball BRn(0, 4ε). We can then let T̃ (uj) denote the Euclidean

restriction of uj to ψj(∂Ω0 ∩B(xj , 4ε)) (see [16, Section 5.5]). Clearly T̃ (uj) is
supported in ψj(∂Ω0 ∩B(xj , 2ε)) and

‖T̃ (uj) ◦ ψ̃j‖Wk−1,p(∂Ω0) ≤ C‖uj‖Wk,p(ψj(Ω0∩B(xj ,4ε))),

where ψ̃j = ψj |Ω0
and the constant C is independent of j (recall that ψj(∂Ω0∩

B(xj , 4ε)) is the intersection of a hyperplane and the ball BRn(0, 4ε)). Let

Tu =
∑

j

T̃ (uj) ◦ ψ̃j .

Since the sum is uniformly locally finite, Tu is well-defined and we have

‖Tu‖p
Wk−1,p(∂Ω0)

≤ C
∑

j

‖T̃ (uj) ◦ ψ̃j‖pWk−1,p(∂Ω0)

≤ C
∑

j

‖uj‖pWk,p(ψj(Ω0∩B(xj ,4ε)))
≤ C‖u‖p

Wk,p(Ω0) ,

with constants C independent of u. The fact that Tu|C∞c (Ω0) is indeed the
restriction operator follows immediately from the definition. �
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We shall see that if p = 2, we get a surjective map W s,2(Ω0)→W s−1/2,2(∂Ω0)
(Theorem 4.7).
In the following, ∂ν denotes derivative in the normal direction of the hypersur-
face ∂Ω0 ⊂M0.

Theorem 4.4. The closure of C∞c (Ω0) in W k,p(Ω0) is the intersection of the
kernels of T ◦ ∂jν : W k,p(Ω0)→W k−j−1,p(Ω0), 0 ≤ j ≤ k − 1, 1 ≤ p <∞.

Proof. The proof is reduced to the Euclidean case [1, 16, 33, 58] following the
same pattern of reasoning as in the previous theorem. �

The Gagliardo–Nirenberg–Sobolev theorem holds also for manifolds with
boundary.

Theorem 4.5. Denote by n the dimension of M and let Ω ⊂M be a regular
open subset in M . Assume that 1/p = 1/q−m/n > 0, 1 ≤ q <∞, where m ≤ k
is an integer. Then W k,q(Ω0) is continuously embedded in W k−m,p(Ω0).

Proof. This can be proved using Proposition 3.14 and Theorem 4.1. Indeed,
denote by

j : W k,q(M0)→W k−m,p(M0)

the continuous inclusion of Proposition 3.14. Also, denote by r the restriction
maps W k,p(M0)→W k,p(Ω0). Then the maps

W k,q(Ω0)
E−→W k,q(M0)

j−→W k−m,p(M0)
r−→W k−m,p(Ω0)

are well defined and continuous. Their composition is the inclusion of W k,q(Ω0)
into W k−m,p(Ω0). This completes the proof. �

For the proof of a variant of Rellich–Kondrachov’s compactness theorem, we
shall need Sobolev spaces with weights. Let Ω ⊂ M be a regular open subset.
Let aH ∈ R be a parameter associated to each boundary hyperface (i. e., face
of codimension one) of the manifold with corners Ω. Fix for any boundary
hyperface H ⊂ Ω a defining function ρH , that is a function ρH ≥ 0 such that
H = {ρH = 0} and dρH 6= 0 on H. Let

(25) ρ =
∏

ρaH

H ,

the product being taken over all boundary hyperfaces of Ω. A function of the
form ψρ, with ψ > 0, ψ smooth on Ω, and ρ as in Equation (25) will be called an
admissible weight of Ω (or simply an admissible weight when Ω is understood).
We define then the weighted Sobolev space W k,p(Ω0) by

(26) ρW k,p(Ω0) := {ρu, u ∈W k,p(Ω0)},
with the norm ‖ρsu‖ρsWk,p(Ω0) := ‖u‖Wk,p(Ω0).

Note that in the definition of an admissible weight of Ω, for a regular open
subset Ω ⊂ M of the Lie manifold (M,V), we allow also powers of the defin-
ing functions of the boundary hyperfaces contained in ∂Ω = ∂topΩ, the true

boundary of Ω. In the next compactness theorem, however, we shall allow only
the powers of the defining functions of M , or, which is the same thing, only
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powers of the defining functions of the boundary hyperfaces of Ω whose union
is ∂∞Ω (see Figure 1).

Theorem 4.6. Denote by n the dimension of M and let Ω ⊂M be a regular
open subset, Ω0 = Ω ∩M0. Assume that 1/p > 1/q −m/n > 0, 1 ≤ q < ∞,
where m ∈ {1, . . . , k} is an integer, and that s > s′ are real parameters. Then

ρsW k,q(Ω0) is compactly embedded in ρs
′
W k−m,p(Ω0) for any admissible weight

ρ :=
∏
H ρ

aH

H of M such that aH > 0 for any boundary hyperface H of M .

Proof. The same argument as that in the proof of Theorem 4.5 allows us to
assume that Ω0 = M0. The norms are chosen such that W k,p(Ω0) ∋ u 7→ ρsu ∈
ρsW k,p(Ω0) is an isometry. Thus, it is enough to prove that ρs : W k,q(Ω0) →
W k−m,p(Ω0), s > 0, is a compact operator.
For any defining function ρH and any X ∈ V, we have that X(ρH) vanishes
on H, since X is tangent to H. We obtain that X(ρs) = ρsfX , for some fX ∈
C∞(M). Then, by induction, X1X2 . . . Xk(ρs) = ρsg, for some g ∈ C∞(M).
Let χ ∈ C∞([0,∞) be equal to 0 on [0, 1/2], equal to 1 on [1,∞), and non-
negative everywhere. Define φǫ = χ(ǫ−1ρs). Then

‖X1X2 . . . Xk

(
ρsφǫ − ρs

)
‖L∞ → 0 , as ǫ→ 0,

for any X1,X2, . . . ,Xk ∈ V. Corollary 3.11 then shows that ρsφǫ 7→ ρs in
the norm of bounded operators on W s,p(Ω0). But multiplication by ρsφǫ is a
compact operator, by the Rellich-Kondrachov’s theorem for compact manifolds
with boundary [7, Theorem 9]. This completes the proof. �

We end with the following generalization of the classical restriction theorem
for the Hilbertian Sobolev spaces Hs(M0) := W s,2(M0).

Theorem 4.7. Let N0 ⊂ M0 be a tame submanifold of codimension k of the
Lie manifold (M0,M,V). Restriction of smooth functions extends to a bounded,
surjective map

Hs(M0)→ Hs−k/2(N0),

for any s > k/2. In particular, Hs(Ω0) → Hs−1/2(∂Ω0) is continuous and
surjective.

Proof. Let B → N be the vector bundle defining the Lie structure at infinity
(N,B) on N0 and A → M be the vector bundle defining the Lie structure at
infinity (M,A) on M0. (See Section 2 for further explanation of this notation.)
The existence of tubular neighborhoods, Theorem 2.7, and a partition of unity
argument, allows us to assume that M = N × S1 and that A = B × TS1

(external product). Since the Sobolev spaces Hs(M0) and Hs−1/2(N0) do not
depend on the metric on A and B, we can assume that the circle S1 is given
the invariant metric making it of length 2π and that M0 is given the product
metric. The rest of the proof now is independent of the way we obtain the
product metric on M0.
Let S1 be the unit circle in the plane. Let us denote by ∆M ,∆N , and ∆S1 the
Laplace operators on M0, N0, and S1, respectively. Then ∆M = ∆N + ∆S1
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and ∆S1 = −∂2/∂θ2 has spectrum {4π2n2 |n ∈ N ∪ {0}}. We can decompose
L2(N0 × S1) according to the eigenvalues n ∈ Z of − 1

2πı∂θ:

L2(N0 × S1) ≃
⊕

n∈Z

L2(N0 × S1)n ≃
⊕

n∈Z

L2(N0),

where the isomorphism L2(N0 × S1)n ≃ L2(N0) is obtained by restricting to
N0 = N0 × {1}, 1 ∈ S1. We use this isomorphism to identify the above spaces
in what follows.
Let ξ ∈ L2(N0 × S1). Then ξ identifies with a sequence (ξn) under the above
isomorphism. By Proposition 3.13, we have that ξ ∈ Hs(N0 × S1) if, and only
if, (1 + ∆M )s/2ξ =

∑
n

(
(1 + n2 + ∆N )s/2ξn

)
∈⊕n∈Z L

2(N0) ≃ L2(N0 × S1).
The restriction of ξ to N0 is then given by

∑
n ξn. We want to show that∑

n ξn ∈ Hs−1/2(N0), which is equivalent to (1+∆N )s/2−1/4
(∑

ξn
)
∈ L2(N0).

The spectral spaces of ∆N corresponding to [m,m+ 1) ⊂ R, m ∈ N∪ {0} give
an orthogonal direct sum decomposition of L2(N0).
We decompose ξn =

∑
m ξmn, with ξmn in the spectral space corresponding to

[m,m + 1) of ∆N . Note that ξmn is orthogonal to ξm′n for m 6= m′. Denote
h = (1+m2)−1/2, f(t) = (1+t2)−s, and C = 1+

∫
R
f(t)dt. Then an application

of the Cauchy–Schwartz inequality gives

(27) (1 +m2)s−1/2
(∑

n

‖ξmn‖
)2

≤ (1 +m2)s−1/2
(∑

n

(1 + n2 +m2)−s
)∑

n

‖(1 + n2 +m2)s/2ξmn‖2

≤ h
(∑

n

f(nh)
)∑

n

‖(1+n2+m2)s/2ξmn‖2 ≤ Cs
∑

n

‖(1+n2+m2)s/2ξmn‖2.

The constant Cs is independent of m (but depends on s). We sum over m and
obtain

(28) ‖
∑

n

(1 + ∆N )s/2−1/4ξn‖2 =
∑

m

‖
∑

n

(1 + ∆N )s/2−1/4ξnm‖2

≤
∑

m

(1 + (m+ 1)2)s−1/2
(∑

n

‖ξnm‖
)2

≤ 2s
∑

m

(1 +m2)s−1/2
(∑

n

‖ξnm‖
)2

≤ 2sCs
∑

n,m

‖(1 + n2 +m2)s/2ξnm‖2 ≤ 2sCs
∑

n,m

‖(1 + n2 + ∆N )s/2ξnm‖2

= 2sCs
∑

n

‖(1 + n2 + ∆N )s/2ξn‖2,

with the same constant Cs as in Equation (27). This shows that ζ :=
∑
n ξn ∈

Hs−1/2(N0) if ξ = (ξn) ∈ ⊕n L
2(N0) ≃ L2(N0 × S1) is a finite sequence

such that ‖ξ‖Hs :=
∑
n ‖(1 + n2 + ∆N )s/2ξn‖2L2(N0)

<∞, and that ζ depends

continuously on ξ ∈ Hs(N0 × S1). This completes the proof. �
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We finally obtain the following consequences for a curvilinear polygonal do-
main P (see Subsection 1.6). First, recall that the distance ϑ(x) from x to the
vertices of a curvilinear polygon P and rP have bounded quotients, and hence
define the same weighted Sobolev spaces (Equation (12)). Moreover, the func-
tion rP is an admissible weight. Recall that P has a compactification Σ(P) that
is a Lie manifold with boundary (that is, the closure of a regular open subset of
a Lie manifold M). Let us write Wm,p(Σ(P)) := Wm,p(P) the Sobolev spaces
defined by the structural Lie algebra of vector fields on Σ(P). Then

(29) Kma (P;ϑ) = ra−1
Ω Km1 (P; rP) = ra−1

P Wm,2(Σ(P)).

This identifies the weighted Sobolev spaces on P with a weighted Sobolev space
of the form ρW k,p(Ω0).
Motivated by Equation (29), we now define

(30) Kma (∂P) = Kma (∂P;ϑ) = Kma (∂P; rP) = r
a−1/2
P Wm,2(∂P).

More precisely, let us notice that we can identify each edge with [0, 1]. Then
Kma (∂P) consists of the functions f : ∂P→ C that, on each edge, are such that
tk(1 − t)kf (k) ∈ L2([0, 1]), 0 ≤ k ≤ m (here we identify that edge with [0, 1]).
This last condition is equivalent to [t(1− t)∂t]kf ∈ L2([0, 1]), 0 ≤ k ≤ m.

Proposition 4.8. Let P ⊂ R2 be a curvilinear polygonal domain and P be a
differential operator of order m with coefficients in C∞(P). Then Pλ := rλPPr

−λ
P

defines a continuous family of bounded maps Pλ : Ksa(P) → Ks−ma−m(P), for any

s, a ∈ R. Let P′ be P with the vertices removed. Then C∞c (P′) is dense in Kma (P).
Also, the restriction to the boundary extends to a continuous, surjective trace

map Ksa(P) → Ks−1/2
a−1/2(∂P). If s = 1, then the kernel of the trace map is the

closure of C∞c (P) in K1
a(P).

The above proposition, except maybe for the description of the restrictions to
the boundary, is well known in two dimensions. It will serve as a model for the
results in three dimensions that we present in the last section.

5. A regularity result

We include in this section an application to the regularity of boundary value
problems, Theorem 5.1. Its proof is reduced to the Euclidean case using a
partition of unity argument and the tubular neighborhood theorem 2.7, both
of which require some non-trivial input from differential geometry.
Let us introduce some notation first that will be also useful in the following. Let
exp : TM0 −→M0×M0 be given by exp(v) := (x, expx(v)), v ∈ TxM0. If E is
a real vector bundle with a metric, we shall denote by (E)r the set of all vectors
v of E with |v| < r. Let (M2

0 )r := {(x, y), x, y ∈ M0, d(x, y) < r}. Then the
exponential map defines a diffeomorphism exp : (TM0)r → (M2

0 )r. We shall
also need the admissible weight function ρ defined in Equation (25) and the
weighted Sobolev spaces ρsW k,p(Ω0) := {ρsu, u ∈ W k,p(Ω0)} introduced in
Equation 26.
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Recall [58], Chapter 5, Equation (11.79), that a differential operator P of order
m is called strongly elliptic if there exists C > 0 such that Re

(
σ(m)(P )(ξ)

)
≥

C‖ξ‖m for all ξ.

Theorem 5.1. Let Ω ⊂M be a regular open subset of the Lie manifold (M,V).
Let P ∈ Diff2

V(M) be an order 2 strongly elliptic operator on M0 generated by
V and s ∈ R, t ∈ Z, 1 < p < ∞. Then there exists C > 0 such that, for any
u ∈ ρsW 1,p(Ω0), u|∂Ω0

= 0, we have

‖u‖ρsW t+2,p(Ω0) ≤ C(‖Pu‖ρsW t,p(Ω0) + ‖u‖ρsLp(Ω0)).

In particular, let u ∈ ρsW 1,p(Ω0) be such that Pu ∈ ρsW t,p(Ω0), and u|∂Ω0
= 0,

then u ∈ ρsW t+2,p(Ω0).

Proof. Note that, locally, this is a well known statement. In particular, φu ∈
W t+2,p(Ω0), for any φ ∈ C∞c (M0). The result will follow then if we prove that

(31) ‖u‖ρsW t+2,p(M0) ≤ C(‖Pu‖ρsW t,p(M0) + ‖u‖ρsLp(M0))

for any u ∈ W t+2,p
loc (Ω0). Here, of course, ‖u‖ρsLp(M0) = ‖ρ−su‖Lp(M0) (see

Equation (26)).
Let r < rinj(M0) and let exp : (TM0)r → (M2

0 )r be the exponential map. The
statement is trivially true for t ≤ −2, so we will assume t ≥ −1 in what follows.
Also, we will assume first that s = 0. The general case will be reduced to this
one at the end. Assume first that Ω0 = M0.
Let Px be the differential operators defined on BTxM0

(0, r) obtained from P by
the local diffeomorphism exp : BTxM0

(0, r) → M0. We claim that there exists
a constant C > 0, independent of x ∈M0 such that

(32) ‖u‖pW t+2,p(TxM0)
≤ C

(
‖Pxu‖pW t,p(TxM0)

+ ‖u‖pLp(TxM0)

)
,

for any function u ∈ C∞c (BTxM0
(0, r)). This is seen as follows. We can find a

constant Cx > 0 with this property for any x ∈ M0 by the ellipticity of Px.
(For p = 2, a complete proof can be found in [58], Propositions 11.10 and 11.16.
For general p, the result can be proved as [16], Theorem 1 in subsection 5.8.1,
page 275.) Choose Cx to be the least such constant. Let π : A → M be the
extension of the tangent bundle of M0, see Remark 1.5 and let Ax = π−1(x).
The family Px, x ∈ M0, extends to a family Px, x ∈ M , that is smooth in
x. The smoothness of the family Px in x ∈ M shows that Cx is upper semi-
continuous (i. e., the set {Cx < η} is open for any x). Since M is compact,
Cx will attain its maximum, which therefore must be positive. Let C be that
maximum value.
Let now φj be the partition of unity and ψj be the diffeomorphisms appearing
in Equation (22), for some 0 < ǫ < r/6. In particular, the partition of unity φj
satisfies the conditions of Lemma 3.6, which implies that supp(φj) ⊂ B(xj , 2ǫ)
and the sets B(xj , 4ǫ) form a covering of M0 of finite multiplicity. Let ηj = 1
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on the support of φj , supp(ηj) ⊂ B(xj , 4ǫ). We then have

νt+2,p(u)p :=
∑

j

‖(φju) ◦ ψ−1
j ‖pW t+2,p(Rn)

≤ C
∑

j

(
‖Px(φju)‖pW t,p(TxM0)

+ ‖φju‖pLp(TxM0)

)

≤ C
∑

j

(
‖φjPxu‖pW t,p(TxM0)

+ ‖[Px, φj ]u‖pW t,p(TxM0)
+ ‖φju‖pLp(TxM0)

)

≤ C
∑

j

(
‖φjPxu‖pW t,p(TxM0)

+ ‖ηju‖pW t+1,p(TxM0)
+ ‖φju‖pLp(TxM0)

)

≤ C
(
νt,p(Pu)p + νt+1(u)p

)
.

The equivalence of the norm νs,p with the standard norm on W s,p(M0)
(Propositions 3.7 and 3.10) shows that ‖u‖W t+2,p(M0) ≤ C(‖Pu‖W t,p(M0) +
‖u‖W t+1,p(M0)), for any t ≥ −1. This is known to imply

(33) ‖u‖W t+2,p(M0) ≤ C(‖Pu‖W t,p(M0) + ‖u‖Lp(M0))

by a boot-strap procedure, for any t ≥ −1. This proves our statement if s = 0
and Ω0 = M0.
The case of arbitrary domains Ω0 follows in exactly the same way, but using a
product type metric in a neighborhood of ∂topΩ0 and the analogue of Equation
(32) for a half-space, which shows that Equation (31) continues to hold for M0

replaced with Ω0.
The case of arbitrary s ∈ R is obtained by applying Equation (33) to the elliptic
operator ρ−sPρs ∈ Diff2

V(M) and to the function ρ−su ∈W k,p(Ω0), which then
gives Equation (31) right away. �

For p = 2, by combining the above theorem with Theorem 4.7, we obtain the
following corollary.

Corollary 5.2. We keep the assumptions of Theorem 5.1. Let u ∈ ρsH1(Ω0)
be such that Pu ∈ ρsHt(Ω0) and u|∂Ω0

∈ ρsHt+3/2(Ω0), s ∈ R, t ∈ Z. Then
u ∈ ρsHt+2(Ω0) and

(34) ‖u‖ρsHt+2(Ω0) ≤ C(‖Pu‖ρsHt(Ω0) + ‖u‖ρsL2(Ω0) + ‖u|∂Ω0
‖ρsHt+3/2(Ω0)).

Proof. For u|∂Ω0
= 0, the result follows from Theorem 5.1. In general, choose

a suitable v ∈ Ht+2(Ω0) such that v|∂Ω0
= u|∂Ω0

, which is possible by Theorem
4.7. Then we use our result for u− v. �

6. Polyhedral domains in three dimensions

We now include an application of our results to polyhedral domains P ⊂ R3.
A polyhedral domain in P ⊂ R3 is a bounded, connected open set such that
∂P = ∂P =

⋃
Dj where

• each Dj is a polygonal domain with straight edges contained in an affine
2-dimensional subspace of R3
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• each edge is contained in exactly two closures of polygonal domains Dj .

(See Subsection 1.6 for the definition of a polygonal domain.)
The vertices of the polygonal domains Dj will form the vertices of P. The
edges of the polygonal domains Dj will form the edges of P. For each vertex
P of P, we choose a small open ball VP centered in P . We assume that the
neighborhoods VP are chosen to be disjoint. For each vertex P , there exists a
unique closed polyhedral cone CP with vertex at P , such that P∩VP = CP ∩VP .
Then P ⊂ ⋃CP .
We now proceed to define canonical weight functions of P in analogy with
the definition of canonical weights of curvilinear polygonal domains, Definition
1.10. We want to define first a continuous function rP : Ω → [0,∞) that is
positive and differentiable outside the edges. Let ϑ(x) be the distance from
x to the edges of P, as before. We want rP(x) = ϑ(x) close to the edges but
far from the vertices and we want the quotients rP(x)/ϑ(x) and ϑ(x)/rP(x) to
extend to continuous functions on Ω. Using a smooth partition of unity, in
order to define rP, we need to define it close to the vertices.
Let us then denote by {Pk} the set of vertices of P. Choose a continuous
function r : P→ [0,∞) such that r(x) is the distance from x to the vertex P if
x ∈ VP ∩P, and such that r(x) is differentiable and positive on Pr{Pk}. Let S2

be the unit sphere centered at P and let rP be a canonical weight associated to
the curvilinear polygon CP ∩S2 (see Definition 1.10). We extend this function
to CP to be constant along the rays, except at P , where rP (P ) = 0. Finally,
we let rP(x) = r(x)rP (x), for x close to P . Then a canonical weight of P is any
function of the form ψrP, where ψ is a smooth, nowhere vanishing function on
P.
For any canonical weight rP, we then we have the following analogue of Equation
(12)

(35) Kma (P) := Kma (P;ϑ) = Kma (P; rP).

Let us define, for every vertex P of P, a spherical coordinate map ΘP : P r
{P} → S2 by ΘP (x) = |x − P |−1(x − P ). Then, for each edge e = [AB] of
P joining the vertices A and B, we define a generalized cylindrical coordinate
system (re, θe, ze) to satisfy the following properties:

(i) re(x) be the distance from x to the line containing e.
(ii) A as the origin (i. e., re(A) = ze(A) = 0),

(iii) θe = 0 on one of the two faces containing e, and
(iv) ze ≥ 0 on the edge e.

Let ψ : S2 → [0, 1] be a smooth function on the unit sphere that is equal to 1 in
a neighborhood of (0, 0, 1) = {φ = 0} ∩ S2 and is equal to 0 in a neighborhood
of (0, 0,−1) = {φ = π} ∩ S2. Then we let

θ̃e(x) = θe(x)ψ(ΘA(x))ψ(−ΘB(x))

where θe(x) is the θ coordinate of x in a cylindrical coordinate system (r, θ, z)
in which the point A corresponds to the origin (i. e., r = 0 and z = 0) and the
edge AB points in the positive direction of the z axis (i. e., B corresponds to
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r = 0 and z > 0). By choosing ψ to have support small enough in S2 we may

assume that the function θ̃e is defined everywhere on P r e. (This is why we
need the cut-off function ψ.)
We then consider the function

Φ : P→ RN , Φ(x) = (x,ΘP (x), re(x), θ̃e(x)),

with N = 3 + 3nv + 2ne, nv being the number of vertices of P and ne being the
number of edges of P. Finally, we define Σ(P) to be the closure of Φ(P) in RN .
Then Σ(P) is a manifold with corners that can be endowed with the structure
of a Lie manifold with true boundary as follows. (Recall that a Lie manifold
with boundary Σ is the closure Ω of a regular open subset Ω in a Lie manifold
M and the true boundary of Σ is the topological boundary ∂topΩ.) The true
boundary ∂topΣ(Ω) of Σ(Ω) is defined as the union of the closures of the faces
Dj of P in Σ(P). (Note that the closures of Dj in Σ(P) are disjoint.) We can
then take M to be the union of two copies of Σ(P) with the true boundaries
identified (i. e., the double of Σ(P)) and Ω = Σ(P) r ∂topΣ(P). In particular,
Ω0 := Ω ∩M0 identifies with P.
To complete the definition of the Lie manifold with true boundary on Σ(P), we
now define the structural Lie algebra of vector fields V(P) of Σ(P) by

(36) V(P) := {rP(φ1∂1 + φ2∂2 + φ3∂3), φj ∈ C∞(Σ(P))}.
(Here ∂j are the standard unit vector fields. Also, the vector fields in V(P) are
determined by their restrictions to P.) This is consistent with the fact that
∂topΣ(P), the true boundary of Σ(P), is defined as the union of the boundary
hyperfaces of Σ(P) to which not all vector fields are tangent. This completes
the definition of the structure of Lie manifold with boundary on Σ(P).
The function rP is easily seen to be an admissible weight on Σ(P). It hence
satisfies

rP(∂jrP) = rP
∂rP

∂xj
∈ C∞(Σ(P)),

which is equivalent to the fact that V(P) is a Lie algebra. This is the analogue
of Equation (11).
To check that Σ(P) is a Lie manifold, let us notice first that g = r−2

P gE is a
compatible metric on Σ(P), where gE is the Euclidean metric on P. Then, let
us denote by ν the outer unit normal to P (where it is defined), then rP∂ν is
the restriction to ∂topΣ(Ω) of a vector field in V(P). Moreover rP∂ν is of length

one and orthogonal to the true boundary in the compatible metric g = r−2
P gE .

The definition of V(P) together with our definition of Sobolev spaces on Lie
manifolds using vector fields shows that

(37) Kma (P) = r
a−3/2
P Wm,2(Σ(P)) = r

a−3/2
P Hm(Σ(P)).

The induced Lie manifold structure on Σ(P) consists of the vector fields on
the faces Dj that vanish on the boundary of Dj . The Soblev spaces on the
boundary are

(38) Kma (∂P) = ra−1
P Wm,2(∂topΣ(P)) = ra−1

P Hm(∂topΣ(P)).

Documenta Mathematica 11 (2006) 161–206



Sobolev Spaces 195

The factors −3/2 and −1 in the powers of rP appearing in the above two
equations are due to the fact that the volume elements on P and Σ(P) differ
by these factors.
If P is an order m differential operator with smooth coefficients on R3 and
P ⊂ R3 is a polyhedral domain, then rmP P ∈ DiffmV (Σ(P)), by Equation (10).

However, in general, rmP P will not define a smooth differential operator on P.
In particular, we have the following theorem, which is a direct analog of Propo-
sition 4.8, if we replace “vertices” with “edges:”

Theorem 6.1. Let P ⊂ R3 be a polyhedral domain and P be a differential
operator of order m with coefficients in C∞(P). Then Pλ := rλPPr

−λ
P defines a

continuous family of bounded maps Pλ : Ksa(P) → Ks−ma−m(P), for any s, a ∈ R.

Let P′ be P with the edges removed. Then C∞c (P′) is dense in Kma (P). Also,
the restriction to the boundary extends to a continuous, surjective trace map

Ksa(P)→ Ks−1/2
a−1/2(∂P). If s = 1, then the kernel of the trace map is the closure

of C∞c (P) in K1
a(P).

See [11] for applications of these results, especially of the above theorem.
Theorem 5.1 and the results of this section immediately lead to the proof of
Theorem 0.1 formulated in the Introduction.

7. A non-standard boundary value problem

We present in this section a non-standard boundary value problem on a smooth
manifold with boundary. Let O be a smooth manifold with boundary. We shall
assume that O is connected and that the boundary is not empty.
Let r : O → [0,∞) be a smooth function that close to the boundary is equal to
the distance to the boundary and is > 0 on O. Then we recall [14] that there
exists a constant depending only on O such that

(39)

∫

O
r−2|u(x)|2dx ≤ C

∫

O
|∇u(x)|2dx

for any u ∈ H1(O) that vanishes at the boundary. If we denote, as in Equation
(2),

Kma (O; r) := {u ∈ L2
loc(O), r|α|−a∂αu ∈ L2(O), |α| ≤ m}, m ∈ N∪{0}, a ∈ R,

with norm ‖ · ‖Km
a

, the Equation (39) implies that ‖u‖K1
1
≤ C‖∇u‖L2 .

Let M = O with the structural Lie algebra of vector fields

V = V0 := {X,X = 0 at ∂O} = rΓ(M ;TM),

(see Example 1.7). Recall from Subsection 1.4 that DiffmV (M) is the space of
order m differential operators on M generated by multiplication with functions
in C∞(M) and by differentiation with vector fields X ∈ V. It follows that

(40) rmP ∈ DiffmV (M)

for any differential operator P of order m with smooth coefficients on M .
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Lemma 7.1. The pair (M,V) is a Lie manifold with M0 = O satisfying

(41) Kma (O; r) = ra−n/2Hm(M).

If P is a differential operator with smooth coefficients on M , then rmP is a
differential operator generated by V, and hence Pλ := rλPr−λ gives rise to a
continuous family of bounded maps Pλ : Ksa(O; r)→ Ks−ma−m(O; r).

Because of the above lemma, it makes sense to define Ksa(O; r) = ra−n/2Hs(M),
for all s, a ∈ R, with norm denoted ‖ ·‖Ks

a
. The regularity result (Theorem 5.1)

then gives

Lemma 7.2. Let P be an order m elliptic differential operator with smooth
coefficients defined in a neighborhood of M = O. Then, for any s, t ∈ R, there
exists C = Cst > 0 such that

‖u‖Ks
a
≤ C

(
‖Pu‖Ks−m

a−m
+ ‖u‖Kt

a

)
.

In particular, let u ∈ Kta(O; r) be such that Pu ∈ Ks−ma−m(O; r), then u ∈
Ksa(O; r). The same result holds for elliptic systems.

Proof. We first notice that rmP ∈ DiffmV (M) is an elliptic operator in the usual
sense (that is, its principal symbol σ(m)(rmP ) does not vanish outside the zero
section of A∗). For this we use that σ(m)(rmP ) = rmσ(m)(P ) and that A∗ is
defined such that multiplication by rm defines an isomorphism C∞(T ∗M) →
C∞(A∗) that maps order m elliptic symbols to elliptic symbols. Then the proof
is exactly the same as that of Theorem 5.1, except that we do not need strong
ellipticity, because we do not have boundary conditions (and hence we have no
condition of the form u = 0 on the boundary). �

An alternative proof of our lemma is obtained using pseudodifferential opera-
tors generated by V [3] and their Lp–continuity.

Theorem 7.3. There exists η > 0 such that ∆ : Ka+1
s+1 (O; r) → Ka−1

s−1 (O; r) is
an isomorphism for all s ∈ R and all |a| < η.

Proof. The proof is similar to that of Theorem 2.1 in [10], so we will be brief.
Consider

B : K1
1(O; r)×K1

1(O; r)→ C, B(u, v) =

∫

O
∇u · ∇vdx.

Then |B(u, v)| ≤ ‖u‖K1
1
‖v‖K1

1
, so B is continuous.

On the other hand, by Equation (39), B(u, u) ≥ θ‖u‖2K1
1
, for all u with compact

support on O and for some θ > 0 independent of u. Since C∞c (O) is dense in
K1

1(O; r), by Theorem 4.2, the Lax-Milgram Lemma can be used to conclude
that

∆ : K1
1(O; r)→ K−1

−1(O; r) := K1
1(O; r)∗

is an isomorphism. Since multiplication by ra : K1
1(O; r) → K1

a+1(O; r) is an
isomorphism and the family ra∆r−a depends continuously on a by Lemma 7.1,
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we obtain that ∆ : K1
a+1(O; r)→ K−1

a−1(O; r) is an isomorphism for |a| < η, for
some η > 0 small enough.
Fix now a, |a| < η. We obtain that ∆ : Ks+1

a+1(O; r)→ Ks−1
a−1(O; r) is a continu-

ous, injective map, for all s ≥ 0. The first part of the proof (for a = 0) together
with the regularity result of Lemma 7.2 show that this map is also surjective.
The Open Mapping Theorem therefore completes the proof for s ≥ 0. For
s ≤ 0, the result follows by considering duals. �

It can be shown as in [10] that η is the least value for which ∆ : K1
η+1(O; r)→

K−1
η−1(O; r) is not Fredholm. This, in principle, can be decided by using the

Fredholm conditions in [43] that involve looking at the L2 invertibility of the
same differential operators when M is the half-space {xn+1 ≥ 0}. See also
[5] for some non-standard boundary value problems on exterior domains in
weighted Sobolev spaces.

8. Pseudodifferential operators

We now recall the definition of pseudodifferential operators on M0 generated
by a Lie structure at infinity (M,V) on M0.

8.1. Definition. We fix in what follows a compatible Riemannian metric g
on M0 (that is, a metric coming by restriction from a metric on the bundle
A → M extending TM0), see Section 1. In order to simplify our discussion
below, we shall use the metric g to trivialize all density bundles on M . Recall
that M0 with the induced metric is complete [4]. Also, recall that A→M is a
vector bundle such that V = Γ(A).
Let expx : TxM0 → M0 be the exponential map, which is everywhere defined
because M0 is complete. We let

(42) Φ : TM0 −→M0 ×M0, Φ(v) := (x, expx(−v)), v ∈ TxM0,

If E is a real vector bundle with a metric, we shall denote by (E)r the set of all
vectors v of E with |v| < r. Let (M2

0 )r := {(x, y), x, y ∈M0, d(x, y) < r}. Then
the map Φ of Equation (42) restricts to a diffeomorphism Φ : (TM0)r → (M2

0 )r,
for any 0 < r < rinj(M0), where rinj(M0) is the injectivity radius of M0, which
was assumed to be positive. The inverse of Φ is of the form

(M2
0 )r ∋ (x, y) 7−→ (x, τ(x, y)) ∈ (TM0)r .

We shall denote by Sm1,0(E) the space of symbols of order m and type (1, 0)
on E (in Hörmander’s sense) and by Smcl (E) the space of classical symbols of
order m on E [21, 42, 57, 59]. See [3] for a review of these spaces of symbols
in our framework.
Let χ ∈ C∞(A∗) be a smooth function that is equal to 1 on (A∗)r and is equal
to 0 outside (A∗)2r, for some r < rinj(M0)/3. Then, following [3], we define

q(a)u(x) = (2π)−n
∫

T∗M0

eiτ(x,y)·ηχ(x, τ(x, y))a(x, η)u(y) dη dy .
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This integral is an oscillatory integral with respect to the symplectic measure
on T ∗M0 [22]. Alternatively, we consider the measures on M0 and on T ∗

xM0

defined by some choice of a metric on A and we integrate first in the fibers
T ∗
xM0 and then on M0. The map σtot : Sm1,0(A∗)→ Ψm(M0)/Ψ−∞(M0),

σtot(a) := q(a) + Ψ−∞(M0)

is independent of the choice of the function χ ∈ C∞c ((A)r) [3].
We now enlarge the class of order −∞ operators that we consider. Any X ∈
V = Γ(A) generates a global flow ΨX : R ×M → M because X is tangent
to all boundary faces of M and M is compact. Evaluation at t = 1 yields a
diffeomorphism

(43) ψX := ΨX(1, ·) : M →M.

We now define the pseudodifferential calculus on M0 that we will consider
following [3]. See [28, 29, 41, 44] for the connections between this calculus and
groupoids.

Definition 8.1. Fix 0 < r < rinj(M0) and χ ∈ C∞c ((A)r) such that χ = 1 in a
neighborhood of M ⊆ A. For m ∈ R, the space Ψm

1,0,V(M0) of pseudodifferential

operators generated by the Lie structure at infinity (M,V) is defined to be the
linear space of operators C∞c (M0)→ C∞c (M0) generated by q(a), a ∈ Sm1,0(A∗),

and q(b)ψX1
. . . ψXk

, b ∈ S−∞(A∗) and Xj ∈ Γ(A), ∀j.
Similarly, the space Ψm

cl,V(M0) of classical pseudodifferential operators gener-

ated by the Lie structure at infinity (M,V) is obtained by using classical symbols
a in the construction above.

We have that Ψ−∞
cl,V(M0) = Ψ−∞

1,0,V(M0) =: Ψ−∞
V (M0) (we dropped some sub-

scripts).

8.2. Properties. We now review some properties of the operators in
Ψm

1,0,V(M0) and Ψm
cl,V(M0) from [3]. These properties will be used below. Let

Ψ∞
1,0,V(M0) =

⋃
m∈Z Ψm

1,0,V(M0) and Ψ∞
cl,V(M0) =

⋃
m∈Z Ψm

cl,V(M0).

First of all, each operator P ∈ Ψm
1,0,V(M0) defines continuous maps C∞c (M0)→

C∞(M0), and C∞(M) → C∞(M), still denoted by P . An operator P ∈
Ψm

1,0,V(M0) has a distribution kernel kP in the space Im(M0 × M0,M0) of
distributions on M0 ×M0 that are conormal of order m to the diagonal, by
[22]. If P = q(a), then kP has support in (M0 ×M0)r. If we extend the expo-
nential map (TM0)r →M0×M0 to a map A→M , then the distribution kernel
of P = q(a) is the restriction of a distribution, also denoted kP in Im(A,M).
If P denotes the space of polynomial symbols on A∗ and Diff(M0) denotes the
algebra of differential operators on M0, then

(44) Ψ∞
1,0,V(M0) ∩Diff(M0) = Diff∞

V (M) = q(P).

The spaces Ψm
1,0,V(M0) and Ψm

1,0,V(M0) are independent of the choice of the
metric on A and the function χ used to define it, but depend, in general,
on the Lie structure at infinity (M,A) on M0. They are also closed under
multiplication, which is a quite non-trivial fact.
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Theorem 8.2. The spaces Ψ∞
1,0,V(M0) and Ψ∞

cl,V(M0) are filtered algebras that
are closed under adjoints.

For Ψm
1,0,V(M0), the meaning of the above theorem is that

Ψm
1,0,V(M0)Ψm′

1,0,V(M0) ⊆ Ψm+m′

1,0,V (M0) and
(
Ψm

1,0,V(M0)
)∗

= Ψm
1,0,V(M0)

for all m,m′ ∈ C ∪ {−∞}.
The usual properties of the principal symbol remain true.

Proposition 8.3. The principal symbol establishes isomorphisms

(45) σ(m) : Ψm
1,0,V(M0)/Ψm−1

1,0,V(M0)→ Sm1,0(A∗)/Sm−1
1,0 (A∗)

and

(46) σ(m) : Ψm
cl,V(M0)/Ψm−1

cl,V (M0)→ Smcl (A
∗)/Sm−1

cl (A∗).

Moreover, σ(m)(q(a)) = a + Sm−1
1,0 (A∗) for any a ∈ Sm1,0(A∗) and

σ(m+m′)(PQ) = σ(m)(P )σ(m′)(Q), for any P ∈ Ψm
1,0,V(M0) and Q ∈

Ψm′

1,0,V(M0).

We shall need also the following result.

Proposition 8.4. Let ρ be a defining function of some hyperface of M . Then
ρsΨm

1,0,V(M0)ρ−s = Ψm
1,0,V(M0) and ρsΨm

cl,V(M0)ρ−s = Ψm
cl,V(M0) for any s ∈

C.

8.3. Continuity on W s,p(M0). The preparations above will allow us to prove
the continuity of the operators P ∈ Ψm

1,0,V(M0) between suitable Sobolev
spaces. This is the main result of this section. Some of the ideas and con-
structions in the proof below have already been used in 5.1, which the reader
may find convenient to review first. Let us recall from Equation (25) that an
admissible weight ρ of M is a function of the form ρ :=

∏
H ρ

aH

H , where aH ∈ R
and ρH is a defining function of H.

Theorem 8.5. Let ρ be an admissible weight of M and let P ∈ Ψm
1,0,V(M0)

and p ∈ (0,∞). Then P maps ρrW s,p(M0) continuously to ρrW s−m,p(M0) for
any r, s ∈ R.

Proof. We have that P maps ρrW s,p(M0) continuously to ρrW s−m,p(M0)
if, and only if, ρ−rPρr maps W s,p(M0) continuously to W s−m,p(M0). By
Proposition 8.4 it is therefore enough to check our result for r = 0.
We shall first prove our result if the Schwartz kernel of P has support close
enough to the diagonal. To this end, let us choose ǫ < rinj(M0)/9 and as-
sume that the distribution kernel of P is supported in the set (M2

0 )ǫ :=
{(x, y), d(x, y) < ǫ} ⊂M2

0 . This is possible by choosing the function χ used to
define the spaces Ψm

1,0,V(M0) to have support in the set (M2
0 )ǫ. There will be

no loss of generality then to assume that P = q(a).
Then choose a smooth function η : [0,∞) → [0, 1], η(t) = 1 if t ≤ 6ǫ, η(t) = 0
if t ≥ 7ǫ. Let ψx : B(x, 8ǫ) → BTxM0

(0, 8ǫ) denote the normal system of
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coordinates induced by the exponential maps expx : TxM0 → M0. Denote
π : A→M be the natural (vector bundle) projection and

(47) B := A×M A := {(ξ1, ξ2) ∈ A×A, π(ξ1) = π(ξ2)},
which defines a vector bundle B → M . In the language of vector bundles,
B := A ⊕ A. For any x ∈ M0, let ηx denote the function η ◦ expx, and con-
sider the operator ηxPηx on B(x, 13ǫ). The diffeomorphism ψx then will map
this operator to an operator Px on BTxM0

(0, 8ǫ). Then Px maps continuously
W s,p(TxM0)→W s−m,p(TxM0), by the continuity of pseudodifferential opera-
tors on Rn [60, XIII, §5] or [56].
The distribution kernel kx of Px is a distribution with compact support on

TxM0 × TxM0 = Ax ×Ax = Bx

If P = q(a) ∈ Ψm
1,0,V(M0), then the distributions kx can be determined in

terms of the distribution kP ∈ Im(A,M) associated to P . This shows that
the distributions kx extend to a smooth family of distributions on the fibers of
B → M . From this, it follows that the family of operators Px : W s,p(Ax) →
W s−m,p(Ax), x ∈ M0, extends to a family of operators defined for x ∈ M
(recall that Ax = TxM0 if x ∈ M0). This extension is obtained by extending
the distribution kernels. In particular, the resulting family Px will depend
smoothly on x ∈ M . Since M is compact, we obtain, in particular, that the
norms of the operators Px are uniformly bounded for x ∈M0.
By abuse of notation, we shall denote by Px : W s,p(M0) → W s−m,p(M0) the
induced family of pseudodifferential operators, and we note that it will still be
a smooth family that is uniformly bounded in norm. Note that it is possible
to extend Px to an operator on M0 because its distribution kernel has compact
support.
Then choose the sequence of points {xj} ⊂ M0 and a partition of unity φj ∈
C∞c (M0) as in Lemma 3.6. In particular, φj will have support in B(xj , 2ǫ).
Also, let ψj : B(xj , 4ǫ) → BRn(0, 4ǫ) denote the normal system of coordinates
induced by the exponential maps expx : TxM0 →M0 and some fixed isometries
TxM0 ≃ Rn. Then all derivatives of ψj ◦ ψ−1

k are bounded on their domain of
definition, with a bound that may depend on ǫ but does not depend on j and
k [13, 54].
Let

νs,p(u)p :=
∑

j

‖(φju) ◦ ψ−1
j ‖pW s,p(Rn).

be one of the several equivalent norms defining the topology on W s,p(M0) (see
Proposition 3.10 and Equation (21). It is enough to prove that

(48) νs,p(Pu)p :=
∑

j

‖(φjPu) ◦ ψ−1
j ‖pW s,p(Rn)

≤ C
∑

j

‖(φju) ◦ ψ−1
j ‖pW s,p(Rn) =: Cνs,p(u)p,

for some constant C independent of u.
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We now prove this statement. Indeed, for the reasons explained below, we have
the following inequalities.

∑

j

‖(φjPu) ◦ ψ−1
j ‖pW s,p(Rn) ≤ C

∑

j,k

‖(φjPφku) ◦ ψ−1
j ‖pW s,p(Rn)

= C
∑

j,k

‖(φjPxj
φku) ◦ ψ−1

j ‖pW s,p(Rn) ≤ C
∑

j,k

‖(φjφku) ◦ ψ−1
j ‖pW s,p(Rn)

≤ C
∑

j

‖(φju) ◦ ψ−1
j ‖pW s,p(Rn) = Cνs,p(u)p.

Above, the first and last inequalities are due to the fact that the family φj
is uniformly locally finite, that is, there exists a constant κ such that at any
given point x, at most κ of the functions φj(x) are different from zero. The
first equality is due to the support assumptions on φj , φk, and Pxj

. Finally,
the second inequality is due to the fact that the operators Pxj

are continuous,
with norms bounded by a constant independent of j, as explained above. We
have therefore proved that P = q(a) ∈ Ψm

1,0,V(M0) defines a bounded operator

W s,p(M0)→W s−m,p(M0), provided that the Schwartz kernel of P has support
in a set of the (M2

0 )ǫ, for ǫ < rinj(M0)/9.
Assume now that P ∈ Ψ−∞

V (M0). We shall check that P is bounded as
a map W 2k,p(M0) → W−2k,p(M0). For k = 0, this follows from the fact
that the Schwartz kernel of P is given by a smooth function k(x, y) such that∫
M0
|k(x, y)|d volg(x) and

∫
M0
|k(x, y)|d volg(y) are uniformly bounded in x and

y. For the other values of k, it is enough to prove that the bilinear form

W 2k,p(M0)×W 2k,p(M0) ∋ (u, v) 7→ 〈Pu, v〉 ∈ C

is continuous. Choose Q a parametrix of ∆k and let R = 1−Q∆k be as above.
Let R′ = 1−∆kQ ∈ Ψ−∞

V (M0). Then

〈Pu, v〉=〈(QPQ)∆ku,∆kv〉+〈(QPR)u,∆kv〉+〈(R′PQ)∆ku, v〉+〈(R′PR)u, v〉,
which is continuous since QPQ,QPR,R′PQ, and R′PR are in Ψ−∞

V (M0) and
hence they are continuous on Lp(M0) and because ∆k : W 2k,p(M0)→ Lp(M0)
is continuous.
Since any P ∈ Ψm

1,0,V(M0) can be written P = P1 + P2 with P2 ∈ Ψ−∞
V (M0)

and P1 = q(a) ∈ Ψm
1,0,V(M0) with support arbitrarily close to the diagonal in

M0, the result follows. �

We obtain the following standard description of Sobolev spaces.

Theorem 8.6. Let s ∈ R+ and p ∈ (1,∞). We have that u ∈ W s,p(M0) if,
and only if, u ∈ Lp(M0) and Pu ∈ Lp(M0) for any P ∈ Ψs

1,0,V(M0). The norm

u 7→ ‖u‖Lp(M0) + ‖Pu‖Lp(M0) is equivalent to the original norm on W s,p(M0)
for any elliptic P ∈ Ψs

1,0,V(M0).

Similarly, the map T : Lp(M0)⊕Lp(M0) ∋ (u, v) 7→ u+Pv ∈W−s,p(M0) is sur-
jective and identifies W−s,p(M0) with the quotient (Lp(M0)⊕Lp(M0))/ ker(T ).
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Proof. Clearly, if u ∈ W s,p(M0), then Pu, u ∈ Lp(M0). Let us prove the
converse. Assume Pu, u ∈ Lp(M0). Let Q ∈ Ψ−s

1,0,V(M0) be a parametrix of

P and let R,R′ ∈ Ψ−∞
V (M0) be defined by R := 1 − QP and R′ = 1 − PQ.

Then u = QPu+Ru. Since both Q,R : Lp(M0)→ W s,p(M0) are defined and
bounded, u ∈W s,p(M0) and ‖u‖W s,p(M0) ≤ C

(
‖u‖Lp(M0) +‖Pu‖Lp(M0)

)
. This

proves the first part.
To prove the second part, we observe that the mapping

W s,q(M0) ∋ u 7→ (u, Pu) ∈ Lq(M0)⊕ Lq(M0), q−1 + p−1 = 1,

is an isomorphism onto its image. The result then follows by duality using also
the Hahn-Banach theorem. �

We conclude our paper with the sketch of a regularity results for solutions of el-
liptic equations. Recall the Sobolev spaces with weights ρsW s,p(Ω0) introduced
in Equation (26).

Theorem 8.7. Let P ∈ DiffmV (M) be an order m elliptic operator on M0

generated by V. Let u ∈ ρsW r,p(M0) be such that Pu ∈ ρsW t,p(M0), s, r, t ∈ R,
1 < p <∞. Then u ∈ ρsW t+m,p(M0).

Proof. Let Q ∈ Ψ−∞
V (M0) be a parametrix of P . Then R = I − QP ∈

Ψ−∞
V (M0). This gives u = Q(Pu) + Ru. But Q(Pu) ∈ ρsW t+m,p(M0), by

Theorem 8.5, because Pu ∈ ρsW t,p(M0). Similarly, Ru ∈ ρsW t+m,p(M0).
This completes the proof. �

Note that the above theorem was already proved in the case t ∈ Z and m = 2,
using more elementary methods, as part of Theorem 5.1. The proof here is
much shorter, however, it attests to the power of pseudodifferential operator
algebra techniques.
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[52] E. Schrohe. Fréchet algebra techniques for boundary value problems: Fred-
holm criteria and functional calculus via spectral invariance. Math. Nachr.,
199:145–185, 1999.

[53] E. Schrohe and B.-W. Schulze. Boundary value problems in Boutet de
Monvel’s algebra for manifolds with conical singularities II. In Boundary
value problems, Schrödinger operators, deformation quantization, volume 8
of Math. Top. Akademie Verlag, Berlin, 1995.

[54] M. A. Shubin. Spectral theory of elliptic operators on noncompact man-
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Abstract. It is proved that for a commutative noetherian ring with
dualizing complex the homotopy category of projective modules is
equivalent, as a triangulated category, to the homotopy category of
injective modules. Restricted to compact objects, this statement is a
reinterpretation of Grothendieck’s duality theorem. Using this equiva-
lence it is proved that the (Verdier) quotient of the category of acyclic
complexes of projectives by its subcategory of totally acyclic com-
plexes and the corresponding category consisting of injective modules
are equivalent. A new characterization is provided for complexes in
Auslander categories and in Bass categories of such rings.
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Gorenstein dimension, Auslander category, Bass category

Introduction

Let R be a commutative noetherian ring with a dualizing complex D; in this
article, this means, in particular, that D is a bounded complex of injective R-
modules; see Section 3 for a detailed definition. The starting point of the work
described below was a realization that K(PrjR) and K(InjR), the homotopy
categories of complexes of projective R-modules and of injective R-modules,
respectively, are equivalent. This equivalence comes about as follows: D con-
sists of injective modules and, R being noetherian, direct sums of injectives
are injective, so D ⊗R − defines a functor from K(PrjR) to K(InjR). This

1S. I. was partly supported by NSF grant DMS 0442242
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functor factors through K(FlatR), the homotopy category of flat R-modules,
and provides the lower row in the following diagram:

K(PrjR)
inc

// K(FlatR)
qoo

D⊗R−
// K(InjR)

HomR(D,−)oo

The triangulated structures on the homotopy categories are preserved by inc

and D⊗R−. The functors in the upper row of the diagram are the correspond-
ing right adjoints; the existence of q is proved in Proposition (2.4). Theorem
(4.2) then asserts:

Theorem I. The functor D ⊗R − : K(PrjR)→ K(InjR) is an equivalence of
triangulated categories, with quasi-inverse q ◦ HomR(D,−).

This equivalence is closely related to, and may be viewed as an extension of,
Grothendieck’s duality theorem for Df (R), the derived category of complexes
whose homology is bounded and finitely generated. To see this connection,
one has to consider the classes of compact objects – the definition is recalled
in (1.2) – in K(PrjR) and in K(InjR). These classes fit into a commutative
diagram of functors:

Kc(PrjR)
D⊗R− // Kc(InjR)

Df (R)
��
≀P

RHomR(−,D) // Df (R)
��

≀ I

The functor P is induced by the composite

K(PrjR)
HomR(−,R)−−−−−−−−→ K(R)

can−−→ D(R) ,

and it is a theorem of Jørgensen [11] that P is an equivalence of categories.
The equivalence I is induced by the canonical functor K(R)→ D(R); see [14].
Given these descriptions it is not hard to verify that D ⊗R − preserves com-
pactness; this explains the top row of the diagram. Now, Theorem I implies
that D ⊗R − restricts to an equivalence between compact objects, so the dia-
gram above implies RHomR(−,D) is an equivalence; this is one version of the
duality theorem; see Hartshorne [9]. Conversely, given that RHomR(−,D) is
an equivalence, so is the top row of the diagram; this is the crux of the proof
of Theorem I.
Theorem I appears in Section 4. The relevant definitions and the machinery
used in the proof of this result, and in the rest of the paper, are recalled in
Sections 1 and 2. In the remainder of the paper we develop Theorem (4.2) in
two directions. The first one deals with the difference between the category
of acyclic complexes in K(PrjR), denoted Kac(PrjR), and its subcategory
consisting of totally acyclic complexes, denoted Ktac(PrjR). We consider also
the injective counterparts. Theorems (5.3) and (5.4) are the main new results
in this context; here is an extract:
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Theorem II. The quotients
Kac(PrjR)/Ktac(PrjR) and Kac(InjR)/Ktac(InjR)

are compactly generated, and there are, up to direct factors, equivalences

Thick(R,D)/Thick(R)
∼−→
[(

Kac(PrjR)/Ktac(PrjR)
)c]op

Thick(R,D)/Thick(R)
∼−→
(
Kac(InjR)/Ktac(InjR)

)c
.

In this result, Thick(R,D) is the thick subcategory of Df (R) generated by
R and D, while Thick(R) is the thick subcategory generated by R; that is
to say, the subcategory of complexes of finite projective dimension. The quo-
tient Thick(R,D)/Thick(R) is a subcategory of the category Df (R)/Thick(R),
which is sometimes referred to as the stable category of R. Since a dualizing
complex has finite projective dimension if and only if R is Gorenstein, one
corollary of the preceding theorem is that R is Gorenstein if and only if every
acyclic complex of projectives is totally acyclic, if and only if every acyclic
complex of injectives is totally acyclic.
Theorem II draws attention to the category Thick(R,D)/Thick(R) as a mea-
sure of the failure of a ring R from being Gorenstein. Its role is thus analogous
to that of the full stable category with regards to regularity: Df (R)/Thick(R)
is trivial if and only if R is regular. See (5.6) for another piece of evidence that
suggests that Thick(R,D)/Thick(R) is an object worth investigating further.
In Section 6 we illustrate the results from Section 5 on local rings whose maxi-
mal ideal is square-zero. Their properties are of interest also from the point of
view of Tate cohomology; see (6.5).
Sections 7 and 8 are a detailed study of the functors induced on D(R) by
those in Theorem I. This involves two different realizations of the derived
category as a subcategory of K(R), both obtained from the localization func-
tor K(R) → D(R): one by restricting it to Kprj(R), the subcategory of K-
projective complexes, and the other by restricting it to Kinj(R), the subcat-
egory of K-injective complexes. The inclusion Kprj(R) → K(PrjR) admits a
right adjoint p; for a complex X of projective modules the morphism p(X)→ X
is a K-projective resolution. In the same way, the inclusion Kinj(R)→ K(InjR)
admits a left adjoint i, and for a complex Y of injectives the morphism Y → i(Y )
is a K-injective resolution. Consider the functors G = i ◦(D ⊗R −) restricted
to Kprj(R), and F = p ◦ q ◦ HomR(D,−) restricted to Kinj(R). These functors
better visualized as part of the diagram below:

K(PrjR)

p

��

D⊗R−
∼ // K(InjR)

i

��

q ◦HomR(D,−)oo

Kprj(R)

inc

OO

G
// Kinj(R)

inc

OO

Foo
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It is clear that (G,F) is an adjoint pair of functors. However, the equivalence in
the upper row of the diagram does not imply an equivalence in the lower one.
Indeed, given Theorem I and the results in Section 5 it is not hard to prove:

The natural morphism X → FG(X) is an isomorphism if and only if the map-
ping cone of the morphism (D ⊗R X)→ i(D ⊗R X) is totally acyclic.

The point of this statement is that the mapping cones of resolutions are, in gen-
eral, only acyclic. Complexes in Kinj(R) for which the morphism GF(Y )→ Y is
an isomorphism can be characterized in a similar fashion; see Propositions (7.3)
and (7.4). This is the key observation that allows us to describe, in Theo-
rems (7.10) and (7.11), the subcategories of Kprj(R) and Kinj(R) where the
functors G and F restrict to equivalences.
Building on these results, and translating to the derived category, we arrive at:

Theorem III. A complex X of R-modules has finite G-projective dimension if
and only if the morphism X → RHomR(D,D⊗L

RX) in D(R) is an isomorphism
and H(D ⊗L

R X) is bounded on the left.

The notion of finite G-projective dimension, and finite G-injective dimension,
is recalled in Section 8. The result above is part of Theorem (8.1); its counter-
part for G-injective dimensions is Theorem (8.2). Given these, it is clear that
Theorem I restricts to an equivalence between the category of complexes of fi-
nite G-projective dimension and the category of complexes of finite G-injective
dimension.
Theorems (8.1) and (8.2) recover recent results of Christensen, Frankild, and
Holm [6], who arrived at them from a different perspective. The approach
presented here clarifies the connection between finiteness of G-dimension and
(total) acyclicity, and uncovers a connection between Grothendieck duality and
the equivalence between the categories of complexes of finite G-projective di-
mension and of finite G-injective dimension by realizing them as different shad-
ows of the same equivalence: that given by Theorem I.
So far we have focused on the case where the ring R is commutative. How-
ever, the results carry over, with suitable modifications in the statements and
with nearly identical proofs, to non-commutative rings that possess dualizing
complexes; the appropriate comments are collected towards the end of each
section. We have chosen to present the main body of the work, Sections 4–8,
in the commutative context in order to keep the underlying ideas transparent,
and unobscured by notational complexity.

Notation. The following symbols are used to label arrows representing func-
tors or morphisms: ∼ indicates an equivalence (between categories), ∼= an iso-
morphism (between objects), and ≃ a quasi-isomorphism (between complexes).

1. Triangulated categories

This section is primarily a summary of basic notions and results about triangu-
lated categories used frequently in this article. For us, the relevant examples of
triangulated categories are homotopy categories of complexes over noetherian
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rings; they are the focus of the next section. Our basic references are Weibel
[23], Neeman [19], and Verdier [22].

1.1. Triangulated categories. Let T be a triangulated category. We refer
the reader to [19] and [22] for the axioms that define a triangulated category.
When we speak of subcategories, it is implicit that they are full.
A non-empty subcategory S of T is said to be thick if it is a triangulated
subcategory of T that is closed under retracts. If, in addition, S is closed
under all coproducts allowed in T , then it is localizing ; if it is closed under all
products in T it is colocalizing.
Let C be a class of objects in T . The intersection of the thick subcategories
of T containing C is a thick subcategory, denoted Thick(C). We write Loc(C),
respectively, Coloc(C), for the intersection of the localizing, respectively, colo-
calizing, subcategories containing C. Note that Loc(C) is itself localizing, while
Coloc(C) is colocalizing.

1.2. Compact objects and generators. Let T be a triangulated category
admitting arbitrary coproducts. An object X of T is compact if HomT (X,−)
commutes with coproducts; that is to say, for each coproduct

∐
i Yi of objects

in T , the natural morphism of abelian groups
∐

i

HomT (X,Yi) −→ HomT
(
X,
∐

i

Yi
)

is bijective. The compact objects form a thick subcategory that we denote
T c. We say that a class of objects S generates T if Loc(S) = T , and that
T is compactly generated if there exists a generating set consisting of compact
objects.
Let S be a class of compact objects in T . Then S generates T if and only if
for any object Y of T , we have Y = 0 provided that HomT (ΣnS, Y ) = 0 for all
S in S and n ∈ Z; see [18, (2.1)].

Adjoint functors play a useful, if technical, role in this work, and pertinent
results on these are collected in the following paragraphs. MacLane’s book [15,
Chapter IV] is the basic reference for this topic; see also [23, (A.6)].

1.3. Adjoint functors. Given categories A and B, a diagram

A
F

// B
Goo

indicates that F and G are adjoint functors, with F left adjoint to G; that is
to say, there is a natural isomorphism HomB(F(A), B) ∼= HomA(A,G(B)) for
A ∈ A and B ∈ B.

1.4. Let T be a category, S a full subcategory of T , and q : T → S a right
adjoint of the inclusion inc : S → T . Then q ◦ inc ∼= idS . Moreover, for each T
in T , an object P in S is isomorphic to q(T ) if and only if there is a morphism
P → T with the property that the induced map HomT (S, P ) → HomT (S, T )
is bijective for each S ∈ S.
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1.5. Let F : S → T be an exact functor between triangulated categories such
that S is compactly generated.

(1) The functor F admits a right adjoint if and only if it preserves coproducts.
(2) The functor F admits a left adjoint if and only if it preserves products.
(3) If F admits a right adjoint G, then F preserves compactness if and only

if G preserves coproducts.

For (1), we refer to [18, (4.1)]; for (2), see [19, (8.6.1)]; for (3), see [18, (5.1)].

1.6. Orthogonal classes. Given a class C of objects in a triangulated cat-
egory T , the full subcategories

C⊥ = {Y ∈ T | HomT (ΣnX,Y ) = 0 for all X ∈ C and n ∈ Z} ,
⊥C = {X ∈ T | HomT (X,ΣnY ) = 0 for all Y ∈ C and n ∈ Z} .

are called the classes right orthogonal and left orthogonal to C, respectively. It
is elementary to verify that C⊥ is a colocalizing subcategory of T , and equals
Thick(C)⊥. In the same vein, ⊥C is a localizing subcategory of T , and equals
⊥ Thick(C).
Caveat: Our notation for orthogonal classes conflicts with the one in [19].

An additive functor F : A → B between additive categories is an equivalence up
to direct factors if F is full and faithful, and every object in B is a direct factor
of some object in the image of F.

Proposition 1.7. Let T be a compactly generated triangulated category and
let C ⊆ T be a class of compact objects.

(1) The triangulated category C⊥ is compactly generated. The inclusion
C⊥ → T admits a left adjoint which induces, up to direct factors, an
equivalence

T c/Thick(C) ∼−→ (C⊥)c .

(2) For each class B ⊆ C, the triangulated category B⊥/C⊥ is compactly
generated. The canonical functor B⊥ → B⊥/C⊥ induces, up to direct
factors, an equivalence

Thick(C)/Thick(B)
∼−→ (B⊥/C⊥)c .

Proof. First observe that C can be replaced by a set of objects because the
isomorphism classes of compact objects in T form a set. Neeman gives in [17,
(2.1)] a proof of (1); see also [17, p. 553 ff]. For (2), consider the following
diagram

T c can //

inc

��

T c/Thick(B)
can //

��

T c/Thick(C)

��
T

a
// B⊥

b
//

incoo
C⊥

incoo

where a and b denote adjoints of the corresponding inclusion functors and unla-
beled functors are induced by a and b respectively. The localizing subcategory
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Loc(C) of T is generated by C and hence it is compactly generated and its full
subcategory of compact objects is precisely Thick(C); see [17, (2.2)]. Moreover,
the composite

Loc(C) inc−→ T can−−→ T /C⊥

is an equivalence. From the right hand square one obtains an analogous descrip-
tion of B⊥/C⊥, namely: the objects of C in T c/Thick(B) generate a localizing
subcategory of B⊥, and this subcategory is compactly generated and equiva-
lent to B⊥/C⊥. Moreover, the full subcategory of compact objects in B⊥/C⊥
is equivalent to the thick subcategory generated by C which is, up to direct
factors, equivalent to Thick(C)/Thick(B). �

2. Homotopy categories

We begin this section with a recapitulation on the homotopy category of an
additive category. Then we introduce the main objects of our study: the ho-
motopy categories of projective modules, and of injective modules, over a noe-
therian ring, and establish results which prepare us for the development in the
ensuing sections.
Let A be an additive category; see [23, (A.4)]. We grade complexes cohomo-
logically, thus a complex X over A is a diagram

· · · −→ Xn ∂n

−→ Xn+1 ∂
n+1

−→ Xn+2 −→ · · ·

with Xn in A and ∂n+1 ◦ ∂n = 0 for each integer n. For such a complex X, we
write ΣX for its suspension: (ΣX)n = Xn+1 and ∂ΣX = −∂X .
Let K(A) be the homotopy category of complexes over A; its objects are com-
plexes over A, and its morphisms are morphisms of complexes modulo homo-
topy equivalence. The category K(A) has a natural structure of a triangulated
category; see [22] or [23].
Let R be a ring. Unless stated otherwise, modules are left modules; right
modules are sometimes referred to as modules over Rop, the opposite ring of
R. This proclivity for the left carries over to properties of the ring as well: when
we say noetherian without any further specification, we mean left noetherian,
etc. We write K(R) for the homotopy category of complexes over R; it is K(A)
with A the category of R-modules. The paragraphs below contain basic facts
on homotopy categories required in the sequel.

2.1. Let A be an additive category, and let X and Y complexes over A. Set
K = K(A). Let d be an integer. We write X>d for the subcomplex

· · · → 0→ Xd → Xd+1 → · · ·

of X, and X6d−1 for the quotient complex X/X>d. In K these fit into an exact
triangle

(∗) X>d −→ X −→ X6d−1 −→ ΣX>d
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This induces homomorphisms HomK(X,Y ) → HomK(X>d, Y ) and
HomK(X6d−1, Y ) → HomK(X,Y ) of abelian groups. These have the fol-
lowing properties.

(1) One has isomorphisms of abelian groups:

Hd(HomA(X,Y )) ∼= HomK(X,ΣdY ) ∼= HomK(Σ−dX,Y ) .

(2) If Y n = 0 for n ≥ d, then the map HomK(X6d, Y ) → HomK(X,Y ) is
bijective.

(3) If Y n = 0 for n ≤ d, then the map HomK(X,Y ) → HomK(X>d, Y ) is
bijective.

There are also versions of (2) and (3), where the hypothesis is on X.
Indeed, these remarks are all well-known, but perhaps (2) and (3) less so than
(1). To verify (2), note that (1) implies

H0(HomA(X>d+1, Y )) = 0 = H1(HomA(X>d+1, Y )) ,

so applying HomA(−, Y ) to the exact triangle (∗) yields that the induced ho-
momorphism of abelian groups

H0(HomA(X6d, Y )) −→ H0(HomA(X,Y ))

is bijective, which is as desired. The argument for (3) is similar.

Now we recall, with proof, a crucial observation from [14, (2.1)]:

2.2. Let R be a ring, M an R-module, and let iM be an injective resolution of
M . Set K = K(R). If Y is a complex of injective R-modules, the induced map

HomK(iM,Y ) −→ HomK(M,Y )

is bijective. In particular, HomK(iR, Y ) ∼= H0(Y ).
Indeed, one may assume (iM)n = 0 for n ≤ −1, since all injective resolutions
of M are isomorphic in K. The inclusion M → iM leads to an exact sequence
of complexes

0 −→M −→ iM −→ X −→ 0

with Xn = 0 for n ≤ −1 and H(X) = 0. Therefore for d = −1, 0 one has
isomorphisms

HomK(ΣdX,Y ) ∼= HomK(ΣdX,Y >−1) = 0 ,

where the first one holds by an analogue of (2.1.2), and the second holds because
Y >−1 is a complex of injectives bounded on the left. It now follows from the
exact sequence above that the induced map HomK(iM,Y )→ HomK(M,Y ) is
bijective.

The results below are critical ingredients in many of our arguments. We write
K−,b(prjR) for the subcategory of K(R) consisting of complexes X of finitely
generated projective modules with H(X) bounded and Xn = 0 for n≫ 0, and
Df (R) for its image in D(R), the derived category of R-modules.

2.3. Let R be a (not necessarily commutative) ring.
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(1) When R is coherent on both sides and flat R-modules have finite projec-
tive dimension, the triangulated category K(PrjR) is compactly gener-
ated and the functors HomR(−, R) : K(PrjR)→ K(Rop) and K(Rop)→
D(Rop) induce equivalences

Kc(PrjR)
∼−→ K−,b(prjRop)op

∼−→ Df (Rop)op.

(2) When R is noetherian, the triangulated category K(InjR) is compactly
generated, and the canonical functor K(InjR)→ D(R) induces an equiv-
alence

Kc(InjR)
∼−→ Df (R)

Indeed, (1) is a result of Jørgensen [11, (2.4)] and (2) is a result of Krause [14,
(2.3)].

In the propositions below d(R) denotes the supremum of the projective dimen-
sions of all flat R-modules.

Proposition 2.4. Let R be a two-sided coherent ring such that d(R) is finite.
The inclusion K(PrjR)→ K(FlatR) admits a right adjoint:

K(PrjR)
inc

// K(FlatR)
qoo

Moreover, the category K(PrjR) admits arbitrary products.

Proof. By Proposition (2.3.1), the category K(PrjR) is compactly generated.
The inclusion inc evidently preserves coproducts, so (1.5.1) yields the desired
right adjoint q. The ring R is right coherent, so the (set-theoretic) product of
flat modules is flat, and furnishes K(FlatR) with a product. Since inc is an
inclusion, the right adjoint q induces a product on K(PrjR): the product of a
set of complexes {Pλ}λ∈Λ in K(PrjR) is the complex q

(∏
λ Pλ

)
. �

The proof of Theorem 2.7 below uses homotopy limits in the homotopy category
of complexes; its definition is recalled below.

2.5. Homotopy limits. Let R be a ring and let · · · → X(r+ 1)→ X(r) be a
sequence of morphisms in K(R). The homotopy limit of the sequence {X(i)},
denoted holim X(i), is defined by an exact triangle

holim X(i) //
∏
i>rX(i)

id− shift //
∏
i>rX(i) // Σ holim X(i) .

The homotopy limit is uniquely defined, up to an isomorphism in K(R); see [4]
for details.

The result below identifies, in some cases, a homotopy limit in the homotopy
category with a limit in the category of complexes.

Lemma 2.6. Let R be a ring. Consider a sequence of complexes of R-modules:

· · · −→ X(i)
ε(i)−→ X(i− 1) −→ · · · −→ X(r + 1)

ε(r+1)−→ X(r) .
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If for each degree n, there exists an integer sn such that ε(i)n is an isomorphism
for i ≥ sn + 1, then there exists a degree-wise split-exact sequence of complexes

0 // lim←−X(i) //
∏
iX(i)

id− shift //
∏
iX(i) // 0 .

In particular, it induces in K(R) an isomorphism holim X(i) ∼= lim←−X(i).

Proof. To prove the desired degree-wise split exactness of the sequence, it suf-

fices to note that if · · · −→ M(r + 1)
δ(r+1)−→ M(r) is a sequence of R-modules

such that δ(i) is an isomorphism for i ≥ s+ 1, for some integer s, then one has
a split exact sequence of R-modules:

0 // M(s)
η //
∏
iM(i)

id− shift //
∏
iM(i) // 0 ,

where the morphism η is induced by ηi : M(s)→M(i) with

ηi =





δ(i+ 1) · · · δ(s) if i ≤ s− 1

id if i = s

δ(i)−1 · · · δ(s+ 1)−1 if i ≥ s+ 1 .

Indeed, in the sequence above, the map (id− shift) is surjective since the system
{Mi} evidently satisfies the Mittag-Leffler condition, see [23, (3.5.7)]. More-
over, a direct calculation shows that Im(η) = Ker(id− shift). It remains to
note that the morphism π :

∏
M(i)→M(s) defined by π(ai) = as is such that

πη = id.
Finally, it is easy to verify that degree-wise split exact sequences of complexes
induce exact triangles in the homotopy category. Thus, by the definition of
homotopy limits, see (2.5), and the already established part of the lemma, we
deduce: holim X(i) ∼= lim←−X(i) in K(R), as desired. �

The result below collects some properties of the functor q : K(FlatR) →
K(PrjR). It is noteworthy that the proof of part (3) describes an explicit
method for computing the value of q on complexes bounded on the left. As
usual, a morphism of complexes is called a quasi-isomorphism if the induced
map in homology is bijective.

Theorem 2.7. Let R be a two-sided coherent ring with d(R) finite, and let F
be a complex of flat R-modules.

(1) The morphism q(F )→ F is a quasi-isomorphism.
(2) If Fn = 0 for n≫ 0, then q(F ) is a projective resolution of F .
(3) If Fn = 0 for n ≤ r, then q(F ) is isomorphic to a complex P with

Pn = 0 for n ≤ r − d(R).

Proof. (1) For each integer n, the map HomK(ΣnR, q(F ))→ HomK(ΣnR,F ),
induced by the morphism q(F ) → F , is bijective; this is because R is in
K(PrjR). Therefore (2.1.1) yields H−n(q(F )) ∼= H−n(F ), which proves (1).
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(2) When Fn = 0 for n ≥ r, one can construct a projective resolution P → F
with Pn = 0 for n ≥ r. Thus, for each X ∈ K(PrjR) one has the diagram
below

HomK(X6r, P ) = HomK(X,P )→ HomK(X,F ) = HomK(X6r, F ) .

where equalities hold by (2.1.2). The complex X6r is K-projective, so the
composed map is an isomorphism; hence the same is true of the one in the
middle. This proves that q(F ) ∼= P ; see (1.4).
(3) We may assume d(R) is finite. The construction of the complex P takes
place in the category of complexes of R-modules. Note that F>i is a subcom-
plex of F for each integer i ≥ r ; denote F (i) the quotient complex F/F>i.
One has surjective morphisms of complexes of R-modules

· · · −→ F (i)
ε(i)−→ F (i− 1) −→ · · · −→ F (r + 1)

ε(r+1)−→ F (r) = 0

with Ker(ε(i)) = ΣiF i. The surjections F → F (i) are compatible with the
ε(i), and the induced map F → lim←−F (i) is an isomorphism. The plan is to
construct a commutative diagram in the category of complexes of R-modules

· · · // P (i)
δ(i) //

κ(i)

��

P (i− 1) //

κ(i−1)

��

· · · // P (r + 1)
δ(r+1)//

κ(r+1)

��

P (r) = 0

· · · // F (i)
ε(i) // F (i− 1) // · · · // F (r + 1)

ε(r+1)// F (r) = 0

(†)

with the following properties: for each integer i ≥ r + 1 one has that

(a) P (i) consists of projectives R-modules and P (i)n = 0 for n 6∈ (r−d(R), i];
(b) δ(i) is surjective, and Ker δ(i)n = 0 for n < i− d(R);
(c) κ(i) is a surjective quasi-isomorphism.

The complexes P (i) and the attendant morphisms are constructed iteratively,
starting with κ(r+1): P (r+1)→ F (r+1) = Σr+1F r+1 a surjective projective
resolution, and δ(r + 1) = 0. One may ensure P (r + 1)n = 0 for n ≥ r + 2,
and also for n ≤ r − d(R), because the projective dimension of the flat R-
module F r+1 is at most d(R). Note that P (r+1), δ(r+1), and κ(r+1) satisfy
conditions (a)–(c).
Let i ≥ r + 2 be an integer, and let κ(i − 1) : P (i − 1) → F (i − 1) be a
homomorphism with the desired properties. Build a diagram of solid arrows

0 // Q //____

θ

��

P (i)
δ(i) //___

κ(i)

���
�

�
P (i− 1) //

κ(i−1)

��

0

0 // ΣiF i
ι // F (i)

ε(i) // F (i− 1) // 0

where ι is the canonical injection, and θ : Q → ΣiF i is a surjective projective
resolution, chosen such that Qn = 0 for n < i− d(R). The Horseshoe Lemma
now yields a complex P (i), with underlying graded R-module Q⊕P (i−1), and
dotted morphisms that form the commutative diagram above; see [23, (2.2.8)].
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It is clear that P (i) and δ(i) satisfy conditions (a) and (b). As to (c): since both
θ and κ(i−1) are surjective quasi-isomorphisms, so is κ(i). This completes the
construction of the diagram (†).
Set P = lim←−P (i); the limit is taken in the category of complexes. We claim

that P is a complex of projectives and that q(F ) ∼= P in K(PrjR).
Indeed, by property (b), for each integer n the map P (i + 1)n → P (i)n is
bijective for i > n+ d(R), so Pn = P (n+ d(R))n, and hence the R-module Pn

is projective. Moreover Pn = 0 for n ≤ r − d(R), by (a).
The sequences of complexes {P (i)} and {F (i)} satisfy the hypotheses of
Lemma (2.6); the former by construction, see property (b), and the latter
by definition. Thus, Lemma (2.6) yields the following isomorphisms in K(R):

holim P (i) ∼= P and holim F (i) ∼= F .

Moreover, the κ(i) induce a morphism κ : holim P (i) → holim F (i) in K(R).
Let X be a complex of projective R-modules. To complete the proof of (3), it
suffices to prove that for each integer i the induced map

HomK(X,κ(i)) : HomK(X,P (i)) −→ HomK(X,F (i))

is bijective. Then, a standard argument yields that HomK(X,κ) is bijective,
and in turn this implies P ∼= holim P (i) ∼= q(holim F (i)) ∼= q(F ), see (1.4).
Note that, since κ(i) is a quasi-isomorphism and P (i)n = 0 = F (i)n for n ≥ i+
1, the morphism κ(i) : P (i)→ F (i) is a projective resolution. Since projective
resolutions are isomorphic in the homotopy category, it follows from (2) that
P (i) ∼= q(F (i)), and hence that the map HomK(X,κ(i)) is bijective, as desired.
Thus, (3) is proved. �

3. Dualizing complexes

Let R be a commutative noetherian ring. In this article, a dualizing complex
for R is a complex D of R-modules with the following properties:

(a) the complex D is bounded and consists of injective R-modules;
(b) the R-module Hn(D) is finitely generated for each n;
(c) the canonical map R→ HomR(D,D) is a quasi-isomorphism.

See Hartshorne [9, Chapter V] for basic properties of dualizing complexes.
The presence of a dualizing complex for R implies that its Krull dimension is
finite. As to the existence of dualizing complexes: when R is a quotient of
a Gorenstein ring Q of finite Krull dimension, it has a dualizing complex: a
suitable representative of the complex RHomQ(R,Q) does the job. On the
other hand, Kawasaki [13] has proved that if R has a dualizing complex, then
it is a quotient of a Gorenstein ring.

3.1. A dualizing complex induces a contravariant equivalence of categories:

Df (R)
HomR(−,D)

// Df (R)
HomR(−,D)oo
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This property characterizes dualizing complexes: if C is a complex of R-
modules such that RHomR(−, C) induces a contravariant self-equivalence of
Df (R), then C is isomorphic in D(R) to a dualizing complex for R; see [9,
(V.2)]. Moreover, if D and E are dualizing complexes for R, then E is quasi-
isomorphic to P ⊗R D for some complex P which is locally free of rank one;
that is to say, for each prime ideal p in R, the complex Pp is quasi-isomorphic
ΣnRp for some integer n; see [9, (V.3)].

Remark 3.2. Let R be a ring with a dualizing complex. Then, as noted above,
the Krull dimension of R is finite, so a result of Gruson and Raynaud [20,
(II.3.2.7)] yields that the projective dimension of each flat R-module is at most
the Krull dimension of R. The upshot is that Proposition (2.4) yields an adjoint
functor

K(PrjR)
inc

// K(FlatR)
qoo

and this has properties described in Theorem (2.7). In the remainder of the
article, this remark will be used often, and usually without comment.

In [6], Christensen, Frankild, and Holm have introduced a notion of a dualizing
complex for a pair of, possibly non-commutative, rings:

3.3. Non-commutative rings. In what follows 〈S,R〉 denotes a pair of rings,
where S is left noetherian and R is left coherent and right noetherian. This
context is more restrictive than that considered in [6, Section 1], where it is
not assumed that R is left coherent. We make this additional hypothesis on R
in order to invoke (2.3.1).

3.3.1. A dualizing complex for the pair 〈S,R〉 is complex D of S-R bimodules
with the following properties:

(a) D is bounded and each Dn is an S-R bimodule that is injective both as
an S-module and as an Rop-module;

(b) Hn(D) is finitely generated as an S-module and as an Rop-module for
each n;

(c) the following canonical maps are quasi-isomorphisms:

R −→ HomS(D,D) and S −→ HomRop(D,D)

When R is commutative and R = S this notion of a dualizing complex coincides
with the one recalled in the beginning of this section. The appendix in [6]
contains a detailed comparison with other notions of dualizing complexes in
the non-commutative context.
The result below implies that the conclusion of Remark (3.2): existence of a
functor q with suitable properties, applies also in the situation considered in
(3.3).

Proposition 3.4. Let D be a dualizing complex for the pair of rings 〈S,R〉,
where S is left noetherian and R is left coherent and right noetherian.

(1) The projective dimension of each flat R-module is finite.
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(2) The complex D induces a contravariant equivalence:

Df (Rop)
HomRop (−,D)

// Df (S)
HomS(−,D)oo

Indeed, (1) is contained in [6, (1.5)]. Moreover, (2) may be proved as in the
commutative case, see [9, (V.2.1)], so we provide only a

Sketch of a proof of (2). By symmetry, it suffices to prove that for each com-
plex X of right R-modules if H(X) is bounded and finitely generated in each
degree, then so is H(HomRop(X,D)), as an S-module, and that the biduality
morphism

θ(X) : X −→ HomS(HomRop(X,D),D))

is a quasi-isomorphism. To begin with, since H(X) is bounded, we may pass
to a quasi-isomorphic complex and assume X is itself bounded, in which case
the complex HomRop(X,D), and hence its homology, is bounded.
For the remainder of the proof, by replacing X by a suitable projective reso-
lution, we assume that each Xi is a finitely generated projective module, with
Xi = 0 for i ≫ 0. In this case, for any bounded complex Y of S-R bimod-
ules, if the S-module H(Y ) is finitely generated in each degree, then so is the
S-module H(HomRop(X,Y )); this can be proved by an elementary induction
argument, based on the number

sup{i | Hi(Y ) 6= 0} − inf{i | Hi(Y ) 6= 0} ,
keeping in mind that S is noetherian. Applied with Y = D, one obtains that
each Hi(HomRop(X,D)) is finitely generated, as desired.
As to the biduality morphism: fix an integer n, and pick an integer d ≤ n such
that the morphism of complexes

HomS(HomRop(X>d,D),D)) −→ HomS(HomRop(X,D),D))

is bijective in degrees ≥ n−1; such a d exists because D is bounded. Therefore,
Hn(θ(X)) is bijective if and only if Hn(θ(X>d)) is bijective. Thus, passing to
X>d, we may assume that Xi = 0 when |i| ≫ 0. One has then a commutative
diagram of morphisms of complexes

X ⊗R R
∼=

��

X⊗Rθ(R) // X ⊗R HomS(D,D)

∼=
��

X ≃
θ(X) // HomS(HomRop(X,D),D)

The isomorphism on the right holds because X is a finite complex of finitely
generated projectives; for the same reason, since θ(R) is a quasi-isomorphism,
see (3.3.1.c), so is X ⊗R θ(R). Thus, θ(X) is a quasi-isomorphism. This
completes the proof. �
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4. An equivalence of homotopy categories

The standing assumption in the rest of this article is that R is a commutative
noetherian ring. Towards the end of each section we collect remarks on the
extensions of our results to the non-commutative context described in (3.3).
The main theorem in this section is an equivalence between the homotopy cat-
egories of complexes of projectives and complexes of injectives. As explained in
the discussion following Theorem I in the introduction, it may be viewed as an
extension of the Grothendieck duality theorem, recalled in (3.1). Theorem (4.2)
is the basis for most results in this work.

Remark 4.1. Let D be a dualizing complex for R; see Section 3.
For any flat module F and injective module I, the R-module I⊗RF is injective;
this is readily verified using Baer’s criterion. Thus, D⊗R− is a functor between
K(PrjR) and K(InjR), and it factors through K(FlatR). If I and J are
injective modules, the R-module HomR(I, J) is flat, so HomR(D,−) defines
a functor from K(InjR) to K(FlatR); evidently it is right adjoint to D ⊗R
− : K(FlatR)→ K(InjR).

Here is the announced equivalence of categories. The existence of q in the
statement below is explained in Remark (3.2), and the claims implicit in the
right hand side of the diagram are justified by the preceding remark.

Theorem 4.2. Let R be a noetherian ring with a dualizing complex D. The
functor D ⊗R − : K(PrjR) → K(InjR) is an equivalence. A quasi-inverse is
q ◦ HomR(D,−):

K(PrjR)
inc

// K(FlatR)
qoo

D⊗R−
// K(InjR)

HomR(D,−)oo

where q denotes the right adjoint of the inclusion K(PrjR)→ K(FlatR).

4.3. The functors that appear in the theorem are everywhere dense in the
remainder of this article, so it is expedient to abbreviate them: set

T = D ⊗R − : K(PrjR) −→ K(InjR) and

S = q ◦ HomR(D,−) : K(InjR) −→ K(PrjR) .

The notation ‘T’ should remind one that this functor is given by a tensor
product. The same rule would call for an ‘H’ to denote the other functor;
unfortunately, this letter is bound to be confounded with an ‘H’, so we settle
for an ‘S’.

Proof. By construction, (inc, q) and (D⊗R−,HomR(D,−)) are adjoint pairs of
functors. It follows that their composition (T,S) is an adjoint pair of functors
as well. Thus, it suffices to prove that T is an equivalence: this would imply
that S is its quasi-inverse, and hence also an equivalence.
Both K(PrjR) and K(InjR) are compactly generated, by Proposition (2.3),
and T preserves coproducts. It follows, using a standard argument, that it suf-
fices to verify that T induces an equivalence Kc(PrjR)→ Kc(InjR). Observe
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that each complex P of finitely generated projective R-modules satisfies

HomR(P,D) ∼= D ⊗R HomR(P,R) .

Thus one has the following commutative diagram

K−,b(prjR)

≀
��

HomR(−,R)

∼
// Kc(PrjR)

T // K+(InjR)

≀
��

Df (R)
HomR(−,D)

// D+(R)

By (2.3.2), the equivalence K+(InjR) → D+(R) identifies Kc(InjR) with
Df (R), while by (3.1), the functor HomR(−,D) induces an auto-equivalence of
Df (R). Hence, by the commutative diagram above, T induces an equivalence
Kc(PrjR)→ Kc(InjR). This completes the proof. �

In the proof above we utilized the fact that K(PrjR) and K(InjR) admit
coproducts compatible with T. The categories in question also have products;
this is obvious for K(InjR), and contained in Proposition (2.4) for K(PrjR).
The equivalence of categories established above implies:

Corollary 4.4. The functors T and S preserve coproducts and products.

Remark 4.5. Let iR be an injective resolution of R, and set D∗ = S(iR).
Injective resolutions of R are uniquely isomorphic in K(InjR), so the complex
S(iR) is independent up to isomorphism of the choice of iR, so one may speak
of D∗ without referring to iR.

Lemma 4.6. The complex D∗ is isomorphic to the image of D under the com-
position

Df (R)
∼−→ K−,b(prjR)

HomR(−,R)−−−−−−−−→ K(PrjR) .

Proof. The complex D is bounded and has finitely generated homology mod-
ules, so we may choose a projective resolution P of D with each R-module Pn

finitely generated, and zero for n≫ 0. In view of Theorem (4.2), it suffices to
verify that T(HomR(P,R)) is isomorphic to iR. The complex T(HomR(P,R)),
that is to say, D ⊗R HomR(P,R) is isomorphic to the complex HomR(P,D),
which consists of injective R-modules and is bounded on the left. Therefore
HomR(P,D) is K-injective. Moreover, the composite

R −→ HomR(D,D) −→ HomR(P,D)

is a quasi-isomorphism, and one obtains that in K(InjR) the complex
HomR(P,D) is an injective resolution of R. �

The objects in the subcategory Thick(PrjR) of K(PrjR) are exactly the com-
plexes of finite projective dimension; those in the subcategory Thick(InjR) of
K(InjR) are the complexes of finite injective dimension. It is known that the

Documenta Mathematica 11 (2006) 207–240



Acyclicity Versus Total Acyclicity 223

functor D ⊗R − induces an equivalence between these categories; see, for in-
stance, [1, (1.5)]. The result below may be read as the statement that this
equivalence extends to the full homotopy categories.

Proposition 4.7. Let R be a noetherian ring with a dualizing complex
D. The equivalence T : K(PrjR) → K(InjR) restricts to an equivalence
between Thick(PrjR) and Thick(InjR). In particular, Thick(InjR) equals
Thick(AddD).

Proof. It suffices to prove that the adjoint pair of functors (T,S) in Theo-
rem (4.2) restrict to functors between Thick(PrjR) and Thick(InjR).
The functor T maps R to D, which is a bounded complex of injectives and
hence in Thick(InjR). Therefore T maps Thick(PrjR) into Thick(InjR).
Conversely, given injective R-modules I and J , the R-module HomR(I, J) is
flat. Therefore HomR(D,−) maps Thick(InjR) into Thick(FlatR), since D is a
bounded complex of injectives. By Theorem (2.7.2), for each flat R-module F ,
the complex q(F ) is a projective resolution of F . The projective dimension of F
is finite since R has a dualizing complex; see (3.2). Hence q maps Thick(FlatR)
to Thick(PrjR). �

4.8. Non-commutative rings. Consider a pair of rings 〈S,R〉 as in (3.3), with
a dualizing complex D. Given Proposition (3.4), the proof of Theorem (4.2)
carries over verbatim to yield:

Theorem. The functor D⊗R − : K(PrjR)→ K(InjS) is an equivalence, and
the functor q ◦ HomS(D,−) is a quasi-inverse. �

This basic step accomplished, one can readily transcribe the remaining results
in this section, and their proofs, to apply to the pair 〈S,R〉; it is clear what
the corresponding statements should be.

5. Acyclicity versus total acyclicity

This section contains various results concerning the classes of (totally) acyclic
complexes of projectives, and of injectives. We start by recalling appropriate
definitions.

5.1. Acyclic complexes. A complex X of R-modules is acyclic if HnX = 0
for each integer n. We denote Kac(R) the full subcategory of K(R) formed by
acyclic complexes of R-modules. Set

Kac(PrjR) = K(PrjR) ∩Kac(R) and Kac(InjR) = K(InjR) ∩Kac(R) .

Evidently acyclicity is a property intrinsic to the complex under consideration.
Next we introduce a related notion which depends on a suitable subcategory
of ModR.

5.2. Total acyclicity. Let A be an additive category. A complex X over
A is totally acyclic if for each object A ∈ A the following complexes of abelian
groups are acyclic.

HomA(A,X) and HomA(X,A)
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We denote by Ktac(A) the full subcategory of K(A) consisting of totally acyclic
complexes. Specializing to A = PrjR and A = InjR one gets the notion of a
totally acyclic complex of projectives and a totally acyclic complex of injectives,
respectively.

Theorems (5.3) and (5.4) below describe various properties of (totally) acyclic
complexes. In what follows, we write Kc

ac(PrjR) and Kc
ac(InjR) for the class of

compact objects in Kac(PrjR) and Kac(InjR), respectively; in the same way,
Kc

tac(PrjR) and Kc
tac(InjR) denote compacts among the corresponding totally

acyclic objects.

Theorem 5.3. Let R be a noetherian ring with a dualizing complex D.

(1) The categories Kac(PrjR) and Ktac(PrjR) are compactly generated.
(2) The equivalence Df (R) → Kc(PrjR)op induces, up to direct factors,

equivalences

Df (R)/Thick(R)
∼−→ Kc

ac(PrjR)op

Df (R)/Thick(R,D)
∼−→ Kc

tac(PrjR)op .

(3) The quotient Kac(PrjR)/Ktac(PrjR) is compactly generated, and one
has, up to direct factors, an equivalence

Thick(R,D)/Thick(R)
∼−→
[(

Kac(PrjR)/Ktac(PrjR)
)c]op

.

The proof of this result, and also of the one below, which is an analogue for
complexes of injectives, is given in (5.10). It should be noted that, in both
cases, part (1) is not new: for the one above, see the proof of [12, (1.9)], and
for the one below, see [14, (7.3)].

Theorem 5.4. Let R be a noetherian ring with a dualizing complex D.

(1) The categories Kac(InjR) and Ktac(InjR) are compactly generated.
(2) The equivalence Df (R)→ Kc(InjR) induces, up to direct factors, equiv-

alences

Df (R)/Thick(R)
∼−→ Kc

ac(InjR)

Df (R)/Thick(R,D)
∼−→ Kc

tac(InjR) .

(3) The quotient Kac(InjR)/Ktac(InjR) is compactly generated, and we
have, up to direct factors, an equivalence

Thick(R,D)/Thick(R)
∼−→
(
Kac(InjR)/Ktac(InjR)

)c
.

Here is one consequence of the preceding results. In it, one cannot restrict to
complexes (of projectives or of injectives) of finite modules; see the example in
Section 6.

Corollary 5.5. Let R be a noetherian ring with a dualizing complex. The
following conditions are equivalent.

(a) The ring R is Gorenstein.
(b) Every acyclic complex of projective R-modules is totally acyclic.
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(c) Every acyclic complex of injective R-modules is totally acyclic.

Proof. Theorems (5.3.3) and (5.4.3) imply that (b) and (c) are equivalent, and
that they hold if and only if D lies in Thick(R), that is to say, if and only if
D has finite projective dimension. This last condition is equivalent to R being
Gorenstein; see [5, (3.3.4)]. �

Remark 5.6. One way to interpret Theorems (5.3.3) and (5.4.3) is that the
category Thick(R,D)/Thick(R) measures the failure of the Gorenstein prop-
erty for R. This invariant of R appears to possess good functorial properties.
For instance, let R and S be local rings with dualizing complexes DR and
DS , respectively. If a local homomorphism R → S is quasi-Gorenstein, in the
sense of Avramov and Foxby [1, Section 7], then tensoring with S induces an
equivalence of categories, up to direct factors:

−⊗L
R S : Thick(R,DR)/Thick(R)

∼−→ Thick(S,DS)/Thick(S)

This is a quantitative enhancement of the ascent and descent of the Gorenstein
property along such homomorphisms.

The notion of total acyclicity has a useful expression in the notation of (1.6).

Lemma 5.7. Let A be an additive category. One has Ktac(A) = A⊥ ∩ ⊥A,
where A is identified with complexes concentrated in degree zero.

Proof. By (2.1.1), for each A in A the complex HomA(X,A) is acyclic if and
only if HomK(A)(X,Σ

nA) = 0 for every integer n; in other words, if and only

if X is in ⊥A. By the same token, HomA(A,X) is acyclic if and only if X is in
A⊥. �

5.8. Let R be a ring. The following identifications hold:

Ktac(PrjR) = Kac(PrjR) ∩ ⊥(PrjR)

Ktac(InjR) = (InjR)⊥ ∩Kac(InjR) .

Indeed, both equalities are due to (5.7), once it is observed that for any com-
plex X of R-modules, the following conditions are equivalent: X is acyclic;
HomR(P,X) is acyclic for each projective R-module P ; HomR(X, I) is acyclic
for each injective R-module I.

In the presence of a dualizing complex total acyclicity can be tested against a
pair of objects, rather than against the entire class of projectives, or of injec-
tives, as called for by the definition. This is one of the imports of the result
below. Recall that iR denotes an injective resolution of R, and that D∗ = S(iR);
see (4.5).

Proposition 5.9. Let R be a noetherian ring with a dualizing complex D.

(1) The functor T restricts to an equivalence of Ktac(PrjR) with Ktac(InjR).
(2) Kac(PrjR) = {R}⊥ and Ktac(PrjR) = {R,D∗}⊥.
(3) Kac(InjR) = {iR}⊥ and Ktac(InjR) = {iR,D}⊥.
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Proof. (1) By Proposition (4.7), the equivalence induced by T identifies
Thick(PrjR) with Thick(InjR). This yields the equivalence below:

Ktac(PrjR) = Thick(PrjR)⊥ ∩ ⊥ Thick(PrjR)
∼−→ Thick(InjR)⊥ ∩ ⊥ Thick(InjR) = Ktac(InjR)

The equalities are by Lemma (5.7).
(3) That Kac(InjR) equals {iR}⊥ follows from (2.2). Given this, the claim on
Ktac(InjR) is a consequence of (5.8) and the identifications

{D}⊥ = Thick(AddD)⊥ = Thick(InjR)⊥ = (InjR)⊥,

where the second one is due to Proposition (4.7).
(2) The equality involving Kac(PrjR) is immediate from (2.1.1). Since R ⊗R
D ∼= D and D∗ ⊗R D ∼= iR, the second claim follows from (1) and (3). �

5.10. Proof of Theorems (5.4) and (5.3). The category T = K(InjR)
is compactly generated, the complexes iR and D are compact, and one has a
canonical equivalence T c ∼−→ Df (R); see (2.3.2). Therefore, Theorem (5.4) is
immediate from Proposition (5.9.3), and Proposition (1.7) applied with B =
{iR} and C = {iR,D}.
To prove Theorem (5.3), set T = K(PrjR). By (2.3.1), this category is com-
pactly generated, and in it R and D∗ are compact; for D∗ one requires also the
identification in (4.5). Thus, in view of Proposition (5.9.2), Proposition (1.7)
applied with B = {R} and C = {R,D∗} yields that the categories Kac(PrjR)
and Ktac(PrjR), and their quotient, are compactly generated. Furthermore, it
provides equivalences up to direct factors

Kc(PrjR)/Thick(R)
∼−→ Kc

ac(PrjR)

Kc(PrjR)/Thick(R,D∗)
∼−→ Kc

tac(PrjR)

Thick(R,D∗)/Thick(R)
∼−→
(
Kac(PrjR)/Ktac(PrjR)

)c
.

Combining these with the equivalence Df (R) → Kc(PrjR)op in (2.3.1) yields
the desired equivalences. �

Remark 5.11. Proposition (5.9.3) contains the following result: a complex of
injectives X is totally acyclic if and only if both X and HomR(D,X) are acyclic.
We should like to raise the question: if both HomR(X,D) and HomR(D,X) are
acyclic, is then X acyclic, and hence totally acylic? An equivalent formulation
is: if X is a complex of projectives and X and HomR(X,R) are acyclic, is then
X totally acyclic?
In an earlier version of this article, we had claimed an affirmative answer to this
question, based on a assertion that if X is a complex of R-modules such that
HomR(X,D) is acyclic, then X is acyclic. This assertion is false. Indeed, let R
be a complete local domain, with field of fractions Q. A result of Jensen [10,
Theorem 1] yields ExtiR(Q,R) = 0 for i ≥ 1, and it is easy to check that
HomR(Q,R) = 0 as well. Thus, HomR(Q, iR) is acyclic. It remains to recall
that when R is Gorenstein, iR is a dualizing complex for R.
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5.12. Non-commutative rings. Theorems (5.3) and (5.4), and Proposition
(5.9), all carry over, again with suitable modifications in the statements, to the
pair of rings 〈S,R〉 from (3.3). The analogue of Corollary (5.5) is especially
interesting:

Corollary. The following conditions are equivalent.

(a) The projective dimension of D is finite over Rop.
(b) The projective dimension of D is finite over S.
(c) Every acyclic complex of projective R-modules is totally acyclic.
(d) Every acyclic complex of injective S-modules is totally acyclic. �

6. An example

Let A be a commutative noetherian local ring, with maximal ideal m, and
residue field k = A/m. Assume that m2 = 0, and that rankk(m) ≥ 2. Observe
that A is not Gorenstein; for instance, its socle is m, and hence of rank at
least 2. Let E denote the injective hull of the R-module k; this is a dualizing
complex for A.

Proposition 6.1. Set K = K(PrjA) and let X be a complex of projective
A-modules.

(1) If X is acyclic and the A-module Xd is finite for some d, then X ∼= 0 in
K.

(2) If X is totally acyclic, then X ∼= 0 in K.
(3) The cone of the homothety A → HomA(P, P ), where P is a projective

resolution of D, is an acyclic complex of projectives, but it is not totally
acyclic.

(4) In the derived category of A, one has Thick(A,D) = Df (A), and hence

Thick(A,D)/Thick(A) = Df (A)/Thick(A) .

The proof is given in (6.4). It hinges on some properties of minimal resolutions
over A, which we now recall. Since A is local, each projective A-module is free.
The Jacobson radical m of A is square-zero, and in particular, nilpotent. Thus,
Nakayama’s lemma applies to each A-module M , hence it has a projective cover
P →M , and hence a minimal projective resolution; see [7, Propositions 3 and
15]. Moreover, Ω = Ker(P → M), the first syzygy of M , satisfies Ω ⊆ mP , so
that mΩ ⊆ m2P = 0, so mΩ = 0. In what follows, ℓA(−) denotes length.

Lemma 6.2. Let M be an A-module; set b = ℓA(M), c = ℓA(Ω).

(1) If M is finite, then its Poincaré series is

PAM (t) = b+
ct

1− et
In particular, βAn (M), the nth Betti number of M , equals cen−1, for
n ≥ 1.

(2) If ExtnA(M,A) = 0 for some n ≥ 2, then M is free.
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Proof. (1) This is a standard calculation, derived from the exact sequences

0 −→ m −→ A −→ k −→ 0 and 0 −→ Ω −→ P −→M −→ 0

The one on the left implies PAk (t) = 1 + etPAk (t), so PAk (t) = (1− et)−1, while
the one on the right yields PAM (t) = b+ ctPAk (t), since mΩ = 0.
(2) If M is not free, then Ω 6= 0 and hence has k as a direct summand. In this
case, since Extn−1

A (Ω, A) ∼= ExtnA(M,A) = 0, one has Extn−1
A (k,A) = 0, which

in turn implies that A is Gorenstein; a contradiction. �

The following test to determine when an acyclic complex is homotopically triv-
ial is surely known. Note that it applies to any (commutative) noetherian ring
of finite Krull dimension, and, in particular, to the ring A that is the focus of
this section.

Lemma 6.3. Let R be a ring whose finitistic global dimension is finite. An
acyclic complex X of projective R-modules is homotopically trivial if and only
if for some integer s the R-module Coker(Xs−1 → Xs) is projective.

Proof. For each integer n set M(n) = Coker(Xn−1 → Xn). It suffices to prove
that the R-module M(n) is projective for each n. This is immediate for n ≤ s
because M(s) is projective so that the sequence · · · → Xs−1 → Xs →M(s)→
0 is split exact.
We may now assume that n ≥ s + 1. By hypothesis, there exists an integer d
with the following property: for any R-module M , if its projective dimension,
pdRM is finite, then pdRM ≤ d. It follows from the exact complex

0 −→M(s) −→ Xs+1 −→ · · · −→ Xn+d −→M(n+ d) −→ 0

that pdRM(n+ d) is finite. Thus, pdRM(n+ d) ≤ d, and another glance at
the exact complex above reveals that M(n) must be projective, as desired. �

Now we are ready for the

6.4. Proof of Proposition (6.1). In what follows, set M(s) =
Coker(Xs−1 → Xs).
(1) Pick an integer n ≥ 1 with en−1 ≥ rankA(Xd) + 1. Since X is acyclic,
Σ−d−nX6d+n is a free resolution of the A-module M(n+ d). Let Ω be the first
syzygy of M(n+ d). One then obtains the first one of the following equalities:

rankA(Xd) ≥ βAn (M(n+ d)) ≥ ℓA(Ω)en−1 ≥ ℓA(Ω)(rankA(Xd) + 1)

The second equality is Lemma (6.2.1) applied to M(n+ d) while the last one
is by the choice of n. Thus ℓA(Ω) = 0, so Ω = 0 and M(n+ d) is free. Now
Lemma (6.3) yields that X is homotopically trivial.
(2) Fix an integer d. Since Σ−dX6d is a projective resolution of M(d), total
acyclicity of X implies that the homology of HomA(Σ−dX6d, A) is zero in
degrees ≥ 1, so ExtnA(M(d), A) = 0 for n ≥ 1. Lemma (6.2.2) established
above implies M(d) is free. Once again, Lemma (6.3) completes the proof.
(3) Suppose that the cone of A → HomA(P, P ) is totally acyclic. This leads
to a contradiction: (2) implies that the cone is homotopic to zero, so A ∼=
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HomA(P, P ) in K. This entails the first of the following isomorphisms in K(A);
the others are standard.

HomA(k,A) ∼= HomA(k,HomA(P, P ))

∼= HomA(P ⊗A k, P )

∼= Homk(P ⊗A k,HomA(k, P ))

∼= Homk(P ⊗A k,HomA(k,A)⊗A P )

∼= Homk(P ⊗A k,HomA(k,A)⊗k (k ⊗A P ))

Passing to homology and computing ranks yields H(k ⊗A P ) ∼= k, and this
implies D ∼= A. This cannot be for rankk soc(D) = 1, while rankk soc(A) = e
and e ≥ 2.
(4) Combining Theorem (5.3.2) and (3) gives the first part. The second part
then follows from the first. A direct and elementary argument is also available:
As noted above the A-module D is not free; thus, the first syzygy module Ω
of D is non-zero, so has k as a direct summand. Since Ω is in Thick(A,D), we
deduce that k, and hence every homologically finite complex of A-modules, is
in Thick(A,D).

Remark 6.5. Let A be the ring introduced at the beginning of this section, and
let X and Y be complexes of A-modules.
The Tate cohomology of X and Y , in the sense of Jørgensen [12], is the homol-
ogy of the complex HomA(T, Y ), where T is a complete projective resolution of
X; see (7.6). By Proposition (6.1.2) any such T , being totally acyclic, is homo-
topically trivial, so the Tate cohomology modules of X and Y are all zero. The
same is true also of the version of Tate cohomology introduced by Krause [14,
(7.5)] via complete injective resolutions. This is because A has no non-trivial
totally acyclic complexes of injectives either, as can be verified either directly,
or by appeal to Proposition (5.9.1).
These contrast drastically with another generalization of Tate cohomology over
the ring A, introduced by Vogel and described by Goichot [8]. Indeed, Avramov
and Veliche [3, (3.3.3)] prove that for an arbitrary commutative local ring R
with residue field k, if the Vogel cohomology with X = k = Y has finite rank
even in a single degree, then R is Gorenstein.

7. Auslander categories and Bass categories

Let R be a commutative noetherian ring with a dualizing complex D. We
write Kprj(R) for the subcategory of K(PrjR) consisting of K-projective com-
plexes, and Kinj(R) for the subcategory of K(InjR) consisting of K-injective
complexes. This section is motivated by the following considerations: One has
adjoint pairs of functors

Kprj(R)
inc

// K(PrjR)
poo

and K(InjR)
i

// Kinj(R)
incoo
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and composing these functors with those in Theorem (4.2) gives functors

G = (i ◦T) : Kprj(R) −→ Kinj(R) and F = (p ◦ S) : Kinj(R) −→ Kprj(R) .

These functors fit into the upper half of the picture below:

K(PrjR)

p

��

T

∼ // K(InjR)

i

��

Soo

Kprj(R)

inc

OO

G
// Kinj(R)

inc

OO

Foo

D(R)
��

≀

D⊗L

R−
// D(R)

��

≀
RHomR(D,−)oo

The vertical arrows in the lower half are obtained by factoring the canonical
functor K(PrjR)→ D(R) through p, and similarly K(InjR)→ D(R) through
i. A straightforward calculation shows that the functors in the last row of
the diagram are induced by those in the middle. Now, while T and S are
equivalences – by Theorem (4.2) – the functors G and F need not be; indeed,
they are equivalences if and only if R is Gorenstein; see Corollary (7.5) ahead.
The results in this section address the natural:

Question. Identify subcategories of Kprj(R) and Kinj(R) on which G and F

restrict to equivalences.

Given the equivalences in the lower square of the diagram an equivalent problem
is to characterize subcategories of D(R) on which the functors D ⊗L

R − and
RHomR(D,−) induce equivalences. This leads us to the following definitions:

7.1. Auslander category and Bass category. Consider the categories

Â(R) ={X ∈ D(R) | the natural map

X → RHomR(D,D ⊗L
R X) is an isomorphism.}

B̂(R) ={Y ∈ D(R) | the natural map

D ⊗L
R RHomR(D,Y )→ Y is an isomorphism.}

The notation is intended to be reminiscent of the ones for the Auslander cat-
egory A(R) and the Bass category B(R), introduced by Avramov and Foxby
[1], which are the following subcategories of the derived category:

A(R) = {X ∈ Â(R) | X and D ⊗L
R X are homologically bounded.}

B(R) = {Y ∈ B̂(R) | Y and RHomR(D,Y ) are homologically bounded.}
The definitions are engineered to lead immediately to the following
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Proposition 7.2. The adjoint pair of functors (G,F) restrict to equivalences

of categories between Â(R) and B̂(R), and between A(R) and B(R). �

In what follows, we identify Â(R) and B̂(R) with the subcategories of Kprj(R)
and Kinj(R) on which S ◦ T and T ◦ S, respectively, restrict to equivalences.
The Auslander category and the Bass category are identified with appropriate
subcategories.

The main task then is describe the complexes in the categories being considered.
In this section we provide an answer in terms of the categories of K-projectives
and K-injectives; in the next one, it is translated to the derived category.
Propositions (7.3) and (7.4) below are the first step towards this end. In them,
the cone of a morphism U → V in a triangulated category refers to an object
W obtained by completing the morphism to an exact triangle: U → V →W →
ΣU . We may speak of the cone because they exist and are all isomorphic.

Proposition 7.3. Let X be a complex of projective R-modules. If X is K-

projective, then it is in Â(R) if and only if the cone of the morphism T(X)→
iT(X) in K(InjR) is totally acyclic.

Remark. The cone in question is always acyclic, because T(X)→ iT(X) is an
injective resolution; the issue thus is the difference between acyclicity and total
acyclicity.

Proof. Let η : T(X)→ iT(X) be a K-injective resolution. In K(PrjR) one has
then a commutative diagram

X
κ //

∼=
��

FG(X)

≃
��

ST(X)
S(η) // SiT(X)

of adjunction morphisms, where the isomorphism is by Theorem (4.2). It is
clear from the diagram above that

X is in Â(R) ⇐⇒ κ is a quasi-isomorphism

⇐⇒ S(η) is a quasi-isomorphism

It thus remains to prove that the last condition is equivalent to total acyclicity
of the cone of η. In K(InjR) complete η to an exact triangle:

T(X)
η

≃
// iT(X) // C // ΣT(X)

From this triangle one obtains that S(η) is a quasi-isomorphism if and only if
S(C) is acyclic. Now S(C) is quasi-isomorphic to HomR(D,C), see Theorem
(2.7.1), and the acyclicity of HomR(D,C) is equivalent to C being in {D}⊥,
in K(InjR). However, C is already acyclic, and hence in {iR}⊥. Therefore
Proposition (5.9.3) implies that S(C) is acyclic if and only if C is totally acyclic,
as desired. �
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An analogous proof yields:

Proposition 7.4. Let Y be a complex of injective R-modules. If Y is K-

injective, then it is in B̂(R) if and only if the cone of the morphism pS(Y ) →
S(Y ) in K(PrjR) is totally acyclic. �

Corollary 7.5. Let R be a noetherian ring with a dualizing complex. The ring

R is Gorenstein if and only if Â(R) = Kprj(R), if and only if B̂(R) = Kinj(R).

Proof. Combine Propositions (7.3) and (7.4) with Corollary (5.5). �

One shortcoming in Propositions (7.3) and (7.4) is they do not provide a struc-
tural description of objects in the Auslander and Bass categories. Addressing
this issue requires a notion of complete resolutions.

7.6. Complete resolutions. The subcategory Ktac(PrjR) of K(PrjR)
is closed under coproducts; moreover, it is compactly generated, by Theo-
rem (5.3.1). Thus, the inclusion Ktac(PrjR) → K(PrjR) admits a right ad-
joint:

Ktac(PrjR)
inc

// K(PrjR)
too

For each complex X in K(PrjR) we call t(X) the complete projective resolution
of X. In K(PrjR), complete the natural morphism t(X) → X to an exact
triangle:

t(X) −→ X −→ u(X) −→ Σt(X)

Up to an isomorphism, this triangle depends only on X.
Similar considerations show that the inclusion Ktac(InjR)→ K(InjR) admits
a left adjoint. We denote it s, and for each complex Y of injectives call s(Y ) the
complete injective resolution of Y . This leads to an exact triangle in K(InjR):

v(Y ) −→ Y −→ s(Y ) −→ Σv(Y )

Relevant properties of complete resolutions and the corresponding exact trian-
gles are summed up in the next two result; the arguments are standard, and
details are given for completeness.

Lemma 7.7. Let X be a complex of projectives R-modules.

(1) The morphism X → u(X) is a quasi-isomorphism and u(X) is in
Ktac(PrjR)⊥.

(2) Any exact triangle T → X → U → ΣT in K(PrjR) where T is totally
acyclic and U is in Ktac(PrjR)⊥ is isomorphic to t(X)→ X → u(X)→
Σt(X).

Proof. (1) By definition, one has an exact triangle

t(X) −→ X −→ u(X) −→ Σt(X) .

Since the complex t(X) is acyclic, the homology long exact sequence arising
from this triangle proves that X → u(X) is an quasi-isomorphism, as claimed.
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Moreover, for each totally acyclic complex T the induced map below is bijective:

(†) HomK(T, t(X)) −→ HomK(T,X)

This holds because t is a right adjoint to the inclusion Ktac(PrjR)→ K(PrjR).
Since t(−) commutes with translations, the morphism Σnt(X) → ΣnX coin-
cides with the morphism t(ΣnX) → ΣnX. Thus, from (†) one deduces that
the induced map

HomK(T, t(ΣnX)) −→ HomK(T,ΣnX)

is bijective for each integer n. It is now immediate from the exact triangle
above that HomK(T, u(X)) = 0; this settles (1), since Ktac(PrjR) is stable
under translations.
(2) Given such an exact triangle, the induced map HomK(−, T ) →
HomK(−,X) is bijective on Ktac(PrjR), since HomK(−, U) vanishes on
Ktac(PrjR). Thus, there is an isomorphism α : T → t(X), by (1.4), and one
obtains a commutative diagram

T //

α

��

X // U //

β

���
�

� ΣT //

Σα

��

· · ·

t(X) // X // u(X) // Σt(X) // · · ·

of morphisms in K(PrjR). Since the rows are exact triangles, and we are
in a triangulated category, there exists a β as above that makes the diagram
commute. Moreover, since α is an isomorphism, so is β; this is the desired
result. �

One has also a version of Lemma (7.7) for complexes of injectives; proving it
calls for a new ingredient, provided by the next result. Recall that iR denotes
an injective resolution of R and D∗ = S(iR); see (4.5).

Lemma 7.8. ⊥Ktac(InjR) = Loc(iR,D)

Proof. Proposition (5.9.3) implies that iR and D are contained in ⊥Ktac(InjR),
and hence so is Loc(iR,D). To see that the reverse inclusion also holds note that
Loc(iR,D) is compactly generated (by iR and D) and closed under coproducts.
Thus, by (1.5.1), the inclusion Loc(iR,D) → K(InjR) admits a right adjoint,
say r. Let X be a complex of injectives. Complete the canonical morphism
r(X)→ X to an exact triangle

r(X) −→ X −→ C −→ Σr(X)

For each integer n the induced map HomK(−,Σnr(X)) → HomK(−,ΣnX) is
bijective on {iR,D}, so the exact triangle above yields that HomK(iR,ΣnC) =
0 = HomK(D,ΣnC). Therefore, C is totally acyclic, by Proposition (5.9.3). In
particular, when X is in ⊥Ktac(InjR), one has HomK(X,C) = 0, so the exact
triangle above is split, that is to say, X is a direct summand of r(X), and hence
in Loc(iR,D), as claimed. �
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Here is the analogue of Lemma (7.7) for complexes of injectives; it is a better
result for it provides a structural description of v(Y ).

Lemma 7.9. Let Y be a complex of injective R-modules.

(1) The morphism v(Y ) → Y is a quasi-isomorphism and v(Y ) is in
Loc(iR,D).

(2) Any exact triangle V → X → T → ΣV in K(InjR) where T is totally
acyclic and V is in Loc(iR,D) is isomorphic to v(Y ) → Y → s(Y ) →
Σv(Y ).

Proof. An argument akin to the proof of Lemma (7.7.1) yields that v(Y )→ Y is
a quasi-isomorphism and that v(Y ) is in ⊥Ktac(InjR), which equals Loc(iR,D),
by Lemma (7.8). Given this, the proof of part (2) is similar to that of Lemma
(7.7.2). �

Our interest in complete resolutions is due to Theorems (7.11) and (7.10), which
provide one answer to the question raised at the beginning of this section.

Theorem 7.10. Let R be a noetherian ring with a dualizing complex D, and
let X be a complex of projective R-modules. If X is K-projective, then the
following conditions are equivalent.

(a) The complex X is in Â(R).
(b) The complex u(X) is in Coloc(PrjR).
(c) In K(PrjR), there exists an exact triangle T → X → U → ΣU where T

is totally acyclic and U is in Coloc(PrjR).

Proof. Let t(X) → X → u(X) → Σt(X) be the exact triangle associated to
the complete projective resolution of X; see (7.6). Let η : T(X)→ iT(X) be a
K-injective resolution, and consider the commutative diagram

T(X)
η

≃
//

≃
��

iT(X)

Tu(X) ≃
κ // iT(X)

arising as follows: the vertical map on the left is a quasi-isomorphism because
it sits in the exact triangle with third vertex Tt(X), which is acyclic since t(X)
is totally acyclic; see Proposition (5.9.1). Since iT(X) is K-injective, η extends
to yield κ, which is a quasi-isomorphism because the other maps in the square
are.
Note that the cone of the morphism T(X)→ Tu(X) is ΣTt(X), so applying the
octahedral axiom to the commutative square above gives us an exact triangle

ΣTt(X) // Cone(η) // Cone(κ) // Σ2 Tt(X)

where Cone(−) refers to the cone of the morphism in parenthesis. Since t(X)
is totally acyclic, so is Tt(X), by Proposition (5.9.1). Hence the exact triangle
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above yields:

Cone(η) is totally acyclic if and only if Cone(κ) is totally acyclic.(†)
This observation is at the heart of the equivalence one has set out to establish.
(a) ⇒ (b): Proposition (7.3) yields that Cone(η) is totally acyclic, and hence
so is Cone(κ), by (†). Consider the exact triangle

Tu(X)
κ

≃
// iT(X) // Cone(κ) // ΣTu(X)

According to Lemma (7.7.1) the complex u(X) is in Ktac(PrjR)⊥, so Proposi-
tion (5.9) yields that Tu(X) is in Ktac(InjR)⊥, and hence the total acyclicity
of Cone(κ) implies

HomK(Cone(κ),Tu(X)) = 0

Thus the triangle above is split exact, and Tu(X) is a direct summand of
iT(X). Consequently Tu(X) is in Coloc(InjR), so, by Theorem (4.2) and Corol-
lary (4.4), one obtains that u(X) is in Coloc(PrjR), as desired.
(b) ⇒ (a): By Corollary (4.4), as u(X) is in Coloc(PrjR) the complex Tu(X)
is in Coloc(InjR), that is to say, it is K-injective. The map κ : Tu(X)→ iT(X),
being a quasi-isomorphism between K-injectives, is an isomorphism. Therefore
Cone(κ) ∼= 0 so (†) implies that Cone(η) is totally acyclic. It remains to recall
Proposition (7.3).
That (b) implies (c) is patent, and (c)⇒ (b) follows from Lemma (7.7), because
Ktac(PrjR)⊥ ⊇ Coloc(PrjR). The completes the proof of the theorem. �

An analogous argument yields a companion result for complexes of injectives:

Theorem 7.11. Let R be a noetherian ring with a dualizing complex D, and let
Y be a complex of injective R-modules. If Y is K-injective, then the following
conditions are equivalent.

(a) The complex Y is in B̂(R).
(b) The complex v(Y ) is in Loc(D).
(c) In K(InjR), there exists an exact triangle V → Y → T → ΣV where V

is in Loc(D) and T is totally acyclic. �

Section 8 translates Theorems (7.11) and (7.10) to the derived category of R.

7.12. Non-commutative rings. Consider a pair of rings 〈S,R〉 with a du-
alizing complex D, defined in (3.3). As in (7.1), one can define the Auslander
category of R and the Bass category of S; these are equivalent via the adjoint
pair of functors (D ⊗R −, q ◦ HomS(D,−)). The analogues of Theorems (7.10)

and (7.11) extend to the pair 〈S,R〉, and they describe the complexes in Â(R)

and B̂(S).

8. Gorenstein dimensions

Let R be a commutative noetherian ring, and let X be a complex of R-modules.
We say that X has finite Gorenstein projective dimension, or, in short: finite G-
projective dimension, if there exists an exact sequence of complexes of projective
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R-modules
0 −→ U −→ T −→ pX −→ 0

where T is totally acyclic, pX is a K-projective resolution of X, and Un = 0
for n≪ 0.
Similarly, a complex Y of R-modules has finite G-injective dimension if there
exists an exact sequence of complexes of injective R-modules

0 −→ iY −→ T −→ V −→ 0

where T is totally acyclic, iY is a K-injective resolution of Y , and V n = 0 for
n≫ 0.
The preceding definitions are equivalent to the usual ones, in terms of G-
projective and G-injective resolutions; see Veliche [21], and Avramov and
Martsinkovsky [2].
The theorem below contains a recent result of Christensen, Frankild, and Holm;
more precisely, the equivalence of (i) and (ii) in [6, (4.1)], albeit in the case when
R is commutative; however, see (8.3).

Theorem 8.1. Let R be a noetherian ring with a dualizing complex D, and X
a complex of R-modules. The following conditions are equivalent:

(a) X has finite G-projective dimension.

(b) pX is in Â(R) and D ⊗L
R X is homologically bounded on the left.

(c) u(pX) is isomorphic, in K(PrjR), to a complex U with Un = 0 for
n≪ 0.

When H(X) is bounded, these conditions are equivalent to: X is in A(R).

Proof. Substituting X with pX, one may assume that X is K-projective and
that D ⊗L

R X is quasi-isomorphic to D ⊗R X, that is to say, to T(X).

(a)⇒ (b): By definition, there is an exact sequence of complexes of projectives
0 → U → T → X → 0 where T is totally acyclic and Un = 0 for n ≪ 0.
Passing to K(PrjR) gives rise to an exact triangle

U −→ T −→ X −→ ΣU

Since T is totally acyclic, T(X) is quasi-isomorphic to T(ΣU); the latter is
bounded on the left as a complex, hence the former is homologically bounded
on the left, as claimed. This last conclusion yields also that T(ΣU) is in
Coloc(InjR). Thus, by Theorem (4.2) and Corollary (4.4), the complex ΣU is
in Coloc(PrjR), so the exact triangle above and Theorem (7.10) imply that X

is in Â(R).

(b) ⇒ (c): By Theorem (7.10), there is an exact triangle

T −→ X −→ U −→ ΣT

with T totally acyclic and U in Coloc(PrjR). The first condition implies
that T(U) is quasi-isomorphic to T(X), and hence homologically bounded
on the left, while the second implies, thanks to Corollary (4.4), that it is in
Coloc(InjR), that is to say, it is K-injective. Consequently T(U) is isomorphic
to a complex of injectives I with In = 0 for n ≪ 0. This implies that the

Documenta Mathematica 11 (2006) 207–240



Acyclicity Versus Total Acyclicity 237

complex of flat R-modules HomR(D,T(U)) is bounded on the left. Theorem
(2.7.3) now yields that the complex q(HomR(D,T(U))), that is to say, ST(U),
is bounded on the left; thus, the same is true of U as it is isomorphic to ST(U),
by Theorem (4.2). It remains to note that Coloc(PrjR) ⊆ Ktac(PrjR)⊥, so
u(X) ∼= U by Lemma (7.7).

(c) ⇒ (a): Lift the morphism X → u(X) ∼= U in K(PrjR) to a morphism
α : X → U of complexes of R-modules. In the mapping cone exact sequence

0 −→ U −→ Cone(α) −→ ΣX −→ 0

Cone(α) is homotopic to t(X), and hence totally acyclic, while Un = 0 for
n ≪ 0, by hypothesis. Thus, the G-projective dimension of ΣX, and hence of
X, is finite.
Finally, when H(X) is bounded, D⊗L

RX is always bounded on the right. It is
now clear from definitions that the condition that X is in A(R) is equivalent
to (b). �

Here is a characterization of complexes in D(R) that are in the Bass category.
For commutative rings, it recovers [6, (4.4)]; see (8.3). The basic idea of the
proof is akin the one for the theorem above, but the details are dissimilar
enough to warrant exposition.

Theorem 8.2. Let R be a noetherian ring with a dualizing complex D, and Y
a complex of R-modules. The following conditions are equivalent:

(a) Y has finite G-injective dimension.

(b) iY is in B̂(R) and RHomR(D,Y ) is homologically bounded on the right.
(c) v(iY ) is isomorphic, in K(InjR), to a complex V with V n = 0 for n≫ 0.

When H(Y ) is bounded, these conditions are equivalent to: Y is in B(R).

Proof. Replacing Y with iY we assume that Y is K-injective, so RHomR(D,Y )
is quasi-isomorphic to HomR(D,Y ). In the argument below the following re-
mark is used without comment: in K(InjR), given an exact triangle

Y1 −→ Y2 −→ T −→ ΣY1

if T is totally acyclic, then one has a sequence

HomR(D,Y1)
≃←− S(Y1)

≃−→ S(Y2)
≃−→ HomR(D,Y2) .

of quasi-isomorphisms. Indeed, the first and the last quasi-isomorphism hold
by Theorem (2.7.1), while the middle one holds because S(T ) is totally acyclic,
by Theorem (4.2).

(a) ⇒ (b): The defining property of complexes of finite G-injective dimension
provides an exact sequence of complexes of injectives 0 → Y → T → V → 0
where T is totally acyclic and V n = 0 for n ≫ 0. Passing to K(InjR) gives
rise to an exact triangle

Σ−1V −→ Y −→ T −→ V

Since T is totally acyclic, HomR(D,Σ−1V ) is quasi-isomorphic to HomR(D,Y );
the former is bounded on the right as a complex, so the latter is homologically
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bounded on the right, as claimed. Furthermore, since V is bounded on the
right, so is HomR(D,Σ−1V ). Theorem (2.7.2) then yields that S(Σ−1V ) is its
projective resolution, and hence it is in Loc(R). Thus, by Theorem (4.2), the
complex Σ−1V is in Loc(D), so the exact triangle above and Theorem (7.11)

imply that Y is in B̂(R).

(b) ⇒ (c): By hypothesis and Theorem (7.11) there exists and exact triangle

V −→ Y −→ T −→ ΣV

in K(InjR), where V lies in Loc(D) and T is totally acyclic. Thus S(V ) is
in Loc(R), that is to say, it is K-projective, and it is quasi-isomorphic to
HomR(D,Y ), and hence it is homologically bounded on the right. Therefore,
S(V ) is isomorphic to a complex of projectives P with Pn = 0 for n ≫ 0. By
Theorem (4.2), this implies that V is isomorphic to T(P ), which is bounded on
the right.

(c) ⇒ (a): Lift the morphism V ∼= v(Y ) → Y in K(InjR) to a morphism
α : V → Y of complexes of R-modules. In the mapping cone exact sequence

0 −→ Y −→ Cone(α) −→ ΣV −→ 0

the complex Cone(α) is homotopic to s(Y ), and hence totally acyclic, while
V n = 0 for n ≫ 0, by hypothesis. Thus, the G-injective dimension of Y is
finite.
Finally, when Y is homologically bounded, RHomR(D,Y ) is bounded on the
left, so Y is in B(R) if and only if it satisfies condition (b). �

8.3. Non-commutative rings. Following the thread in (3.3), (4.8), (5.12),
and (7.12), the development of this section also carries over to the context of a
pair of rings 〈S,R〉 with a dualizing complex D. In this case, the analogues of
Theorems (8.1) and (8.2) identify complexes of finite G-projective dimension
over R and of finite G-injective dimension over S as those in the Auslander
category of R and the Bass category of S, respectively. These results contain
[6, (4.1),(4.4)], but only when one assumes that the ring R is left coherent as
well; the reason for this has already been given in (3.3).
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Abstract. A correction of an error in the proof of Lemma 5.3 is
given.
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In the first paragraph of the proof of Lemma 5.3 of the above paper it is claimed
that C∞(G, π) is nuclear for π an irreducible admissible representation of G.
This does not hold, for it implies that the subspace of constant functions, i.e.,
π itself, is also nuclear. Now π can be a Hilbert-representation and a Hilbert
space is only nuclear if it is finite dimensional.
It was the aim of that paragraph to give a proof that π∞ is nuclear. This can be
seen as follows: First assume that π is induced from a minimal parabolic. Then
π∞ may, in the compact model, be interpreted as the space of smooth sections
of a vector bundle over the compact manifold K/M . Hence π∞ is nuclear. By
the results of Casselman [10], every π∞ may be embedded topologically into
an induced representation as above, therefore is nuclear.
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Communicated by Eckhard Meinrenken

Abstract. Let G be a topological group such that its homol-
ogy H(G) with coefficients in a principal ideal domain R is an ex-
terior algebra, generated in odd degrees. We show that the singu-
lar cochain functor carries the duality between G-spaces and spaces
over BG to the Koszul duality between modules up to homotopy
over H(G) and H∗(BG). This gives in particular a Cartan-type
model for the equivariant cohomology of a G-space with coeffi-
cients in R. As another corollary, we obtain a multiplicative quasi-
isomorphism C∗(BG)→ H∗(BG). A key step in the proof is to show
that a differential Hopf algebra is formal in the category of A∞ al-
gebras provided that it is free over R and its homology an exterior
algebra.

2000 Mathematics Subject Classification: Primary 16S37, 55N91; Sec-
ondary 16E45, 55N10

1. Introduction

Let G be a topological group. A space over the classifying space BG of G is a
map Y → BG. There are canonical ways to pass from left G-spaces to spaces
over BG and back: The Borel construction tX = EG×G X is a functor

t : G-Space→ Space-BG,

and pulling back the universal right G-bundle EG→ BG along Y → BG and
passing to a left action gives a functor in the other direction,

h : Space-BG→ G-Space.

These functors are essentially inverse to each other in the sense that
htX and thY are homotopy-equivalent in the category of spaces to X and Y ,
respectively, cf. [3].
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Goresky–Kottwitz–MacPherson [8] have related this to an algebraic phenom-
enon called Koszul duality (see also Alekseev–Meinrenken [1] and Allday–
Puppe [2]). Let Λ be an exterior algebra over some ring R with genera-
tors x1, . . . , xr of odd degrees, and S∗ the symmetric R-algebra with gen-
erators ξ1, . . . , ξr dual to the xi and with degrees shifted by 1. We will denote
the categories of bounded below differential graded modules over Λ and S∗ by
Λ-Mod and S∗-Mod, respectively. The Koszul functors

t : Λ-Mod→ S∗-Mod and h : S∗-Mod→ Λ-Mod

are defined by

tN = S∗ ⊗N, d(σ ⊗ n) = σ ⊗ dn+
r∑

i=1

ξiσ ⊗ xin(1.1)

and

hM = Λ∗ ⊗M, d(α⊗m) = (−1)|α|α⊗ dm−
r∑

i=1

xi · α⊗ ξim.(1.2)

Here Λ acts on Λ∗ by contraction. Koszul duality refers to the fact that htN
and thM are homotopy-equivalent in the category of R-modules to N and M ,
respectively.
Now let Λ = H(G) be the homology of the compact connected Lie group G
(with the Pontryagin product induced from the group multiplication) and
S∗ = H∗(BG) the cohomology of its classifying space BG. We take real
coefficients, so that Λ and S∗ are of the form described above. Goresky–
Kottwitz–MacPherson and Alekseev-Meinrenken have shown that for certain
G-spaces X, for instance for G-manifolds, tΩ∗(X)G computes the equivariant
cohomology of X as S∗-module, and hΩ∗(tX) the ordinary cohomology of X
as Λ-module. Here Ω∗(X)G denotes the G-invariant differential forms on X,
and Ω∗(tX) the (suitably defined) differential forms on the Borel construction
of X.
For the case of torus actions, the author has shown in [5] how to generalise this
to arbitrary spaces and, more importantly, to an arbitrary coefficient ring R
instead of R. Differential forms are thereby replaced by singular cochains.
The main problem one has to face is that the action of S∗ on H∗(Y ), Y a
space over BG, does not lift to an action on C∗(Y ) because the cup product of
cochains is not commutative – unlike that of differential forms. The solution
comes in form of“modules up to homotopy”. Although modules up to homotopy
– or weak modules, as we will call them – have a long history in Differential
Homological Algebra (cf. for instance [17] or [18]), they are not familiar to many
mathematicians in other areas. They will be defined precisely in Section 2; in
the following paragraphs we just explain their main features and why they are
useful for us.
A weak S∗-module is a bounded below differential graded module over a differ-
ential graded R-algebra A together with elements aπ ∈ A, ∅ 6= π ⊂ {1, . . . , r},
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such that

(1.3) d(α⊗m) = (−1)|α|α⊗ dm+
∑

π 6=∅
(−1)|xπ|xπ · α⊗ aπm

is a differential on Λ∗ ⊗ M . Here (xπ) denotes the canonical R-basis of Λ

consisting of the monomials in the xi. If A = S∗, one can simply set ai = ξi
and all higher elements equal to zero. This shows that any S∗-module is also
a weak S∗-module. In general, equation (1.3) puts certain conditions on the
elements aπ. For instance, the element a12 must satisfy the relation

(1.4) (da12)m = (a1a2 − a2a1)m for all m ∈M.

In other words, it compensates for the lack of commutativity between a1 and a2.
Gugenheim–May [10] have shown how to construct suitable elements aπ ∈ A =
C∗(BG) starting from representatives ai of the ξi ∈ S∗. As a consequence, the
cochains on any space Y over BG admit the structure of a weak S∗-module.
One then defines the Koszul dual of the weak S∗-module C∗(Y ) to be the Λ-
module Λ∗⊗C∗(Y ) with differential (1.3), and in [5] it was shown that for tori
this computes the cohomology of hY as Λ-module. (That this complex gives
the right cohomology as R-module appears already in Gugenheim–May [10].)
A fancier way to define a weak S∗-module is to say that it is an A-module as
above together with a so-called twisting cochain u : Λ∗ → A. The elements aπ
then are the images under u of the R-basis of Λ∗ dual to the basis (xπ). It
follows from equation (1.4) that the cohomology of a weak S∗-module admits
itself a (strict) S∗-action. Similarly, a weak Λ-module is a module N over
some algebra A together with a twisting cochain S→ A, where S denotes the
coalgebra dual to S∗. Its cohomology is canonically a Λ-module.
For torus actions there is no need to consider weak Λ-modules because the
Λ-action on cohomology can be lifted to an honest action on cochains. In
fact, since C(G) is graded commutative in this case, it suffices to choose rep-
resentatives ci ∈ C(G) of the generators xi ∈ Λ in order to construct a quasi-
isomorphism of algebras Λ → C(G). In [8, Sec. 12] it is claimed that a lifting
is possible for any compact connected Lie group, but the proof given there is
wrong. The mistake is that it is not possible in general to find conjugation-
invariant representatives of the generators xi because all singular simplices ap-
pearing in a conjugation-invariant chain ci necessarily map to the centre of G.
The example G = SU(3) shows that passing to subanalytic chains (which are
also used in [8]) is of no help: apart from the finite centre, all conjugation classes
of SU(3) have dimension 4 or 6. Hence, there can be no conjugation-invariant
subanalytic set supporting a representative of the 3-dimensional generator.
In the present paper, we extend the approach of [5] to non-commutative topo-
logical groups G by constructing a weak Λ-structure on the cochain complex of
a G-space X. We then show that the normalised singular cochain functor C∗

transforms the topological equivalence between G-spaces and spaces over BG,
up to quasi-isomorphism, to the Koszul duality between modules up to homo-
topy over the homology Λ = H(G) and the cohomology S∗ = H∗(BG). The
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only assumptions are that coefficients are in a principal ideal domain R and
that H(G) is an exterior algebra on finitely many generators of odd degrees or,
equivalently, that H∗(BG) a symmetric algebra on finitely many generators of
even degrees.
A priori, the isomorphism H(G) ∼=

∧
(x1, . . . , xr) must be one of Hopf algebras1

with primitive generators xi. But the Samelson–Leray theorem asserts that in
our situation any isomorphism of algebras (or coalgebras) can be replaced by
one which is Hopf. In characteristic 0 it suffices by Hopf’s theorem to check that
G is connected and H(G) free of finite rank over R. In particular, the condition
is satisfied for U(n), SU(n) and Sp(n) and arbitrary R, and for an arbitrary
compact connected Lie group if the order of the Weyl group is invertible in R.
Under the assumptions on H(G) and H∗(BG) mentioned above, we prove the
following:

Proposition 1.1. There are twisting cochains v : S → C(G) and u : Λ∗ →
C∗(BG) such that the Λ-action on the homology of a C(G)-module, viewed as
weak Λ-module, is the canonical one over H(G) = Λ, and analogously for u.

The cochains on aG-space are canonically a C(G)-module and the cochains on a
space over BG a C∗(BG)-module. Hence we may consider C∗ as a functor from
G-spaces to weak Λ-modules, and from spaces over BG to weak S∗-modules.
We say that two functors to a category of complexes are quasi-isomorphic if they
are related by a zig-zag of natural transformations which become isomorphisms
after passing to homology.

Theorem 1.2. The functors C∗◦t and t◦C∗ from G-spaces to weak S∗-modules
are quasi-isomorphic, as are the functors C∗◦h and h◦C∗ from spaces over BG
to weak Λ-modules.

Hence, the equivariant cohomology H∗
G(X) of a G-space X is naturally isomor-

phic, as S∗-module, to the homology of the “singular Cartan model”

(1.5a) tC∗(X) = S∗ ⊗ C∗(X)

with differential

(1.5b) d(σ ⊗ γ) = σ ⊗ dγ +

r∑

i=1

ξiσ ⊗ ci · γ +
∑

i≤j
ξiξjσ ⊗ cij · γ + · · · ,

where the ξi are generators of the symmetric algebra S∗ and the ci ∈ C(G)
representatives of the generators xi ∈ Λ. They are, like the higher order
terms cij etc., encoded in the twisting cochain v. The sum, which runs over all
non-constant monomials of S∗, is well-defined for degree reasons.
Similarly, the cohomology of the pull back of EG along Y → BG is isomorphic
to the homology of the Λ-module hC∗(Y ) = Λ∗⊗C∗(Y ), again with a twisted
differential. (See Section 3 for precise formulas for the differentials.) That the
complex hC∗(Y ) gives the right cohomology as R-module is already due to
Gugenheim–May [10]. The correctness of the Λ-action is new.

1Note that H(G) has a well-defined diagonal because it is free over R.
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Along the way, we obtain the following result, which was previously only known
for tori, and for other Eilenberg–Mac Lane spaces if R = Z2 (Gugenheim–
May [10, §4]):

Proposition 1.3. There exists a quasi-isomorphism of algebras C∗(BG) →
H∗(BG) between the cochains and the cohomology of the simplicial construction
of the classifying space of G.

Any such map has an A∞ map as homotopy inverse (cf. Lemma 4.1). So we
get as another corollary the well-known existence of an A∞ quasi-isomorphism
H∗(BG) ⇒ C∗(BG). The original proof (Stasheff–Halperin [22]) uses the
homotopy-commutativity of the cup product and the fact that H∗(BG) is free
commutative. Here it is based, like most of the paper, on the following result,
which is of independent interest and should be considered as dual to the theorem
of Stasheff and Halperin.

Theorem 1.4. Let A be a differential N-graded Hopf algebra, free over R and
such that its homology is an exterior algebra on finitely many generators of odd
degrees. Then there are A∞ quasi-isomorphisms A⇒ H(A) and H(A)⇒ A.

It is essentially in order to use Theorem 1.4 (and a similar argument in Sec-
tion 7) that we assume R to be a principal ideal domain. A look at the proofs
will show that once Proposition 1.1, Theorem 1.2 and Proposition 1.3 are es-
tablished for such an R, they follow by extension of scalars for any commutative
R-algebra R′ instead of R.
Johannes Huebschmann has informed the author that he has been aware of the
singular Cartan model and of Theorem 1.4 since the 1980’s, cf. [14]. Instead
of adapting arguments from his habilitation thesis [13, Sec. 4.8], we shall base
the proof of Theorem 1.4 on an observation due to Stasheff [21].

The paper is organised as follows: Notation and terminology is fixed in Sec-
tion 2. Section 3 contains a review of Koszul duality between modules up to
homotopy over symmetric and exterior algebras. Theorem 1.4 is proved in
Section 4. The proofs of the other results stated in the introduction appear
in Sections 5 to 7. In Section 8 we discuss equivariantly formal spaces and in
Section 9 the relation between the singular Cartan model and other models, in
particular the classical Cartan model. In an appendix we prove the versions of
the theorems of Samelson–Leray and Hopf mentioned above because they are
not readily available in the literature.

Acknowledgements. The author thanks Stéphane Guillermou, Johannes
Huebschmann, Tomasz Maszczyk and Andrzej Weber for stimulating dis-
cussions and comments.

2. Preliminaries

Throughout this paper, the letter R denotes a principal ideal domain. All com-
plexes are over R. Differentials always lower degree, hence cochain complexes
and cohomology are negatively graded. All (co)algebras and (co)modules are
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graded and have differentials (which might be trivial). Let A and B be com-
plexes. The dual f∗ ∈ Hom(B∗, A∗) of a map f ∈ Hom(A,B) is defined by

f∗(β)(a) = (−1)|f ||β| β(f(a)).

Algebras will be associative and coalgebras coassociative, and both have units
and counits (augmentations). Morphisms of (co)algebras preserve these struc-
tures. We denote the augmentation ideal of an algebra A by Ā. An N-graded
algebra A is called connected if Ā0 = 0, and an N-graded coalgebra C simply
connected if C0 = R and C1 = 0. Hopf algebras are algebras which are also
coalgebras with a multiplicative diagonal, cf. [18, Def. 4.39]. (Note that we do
not require the existence of an antipode, though there will always be one for
our examples.)
Let C be a coalgebra, A an algebra and t : C → A a twisting cochain. For
a right C-comodule M and a left A-module N , we define the twisted tensor
product M ⊗t N with differential

dt = d⊗ 1 + 1⊗ d+ (1⊗ µN )(1⊗ t⊗ 1)(∆M ⊗ 1).

Here ∆M : M → M ⊗ C and µN : A ⊗ N → N denote the structure maps of
M and N , respectively. Readers unfamiliar with twisting cochains can take the
fact that d is a well-defined differential (say, on C ⊗t A) as the definition of a
twisting cochain, plus the normalisation conditions tιC = 0 and εAt = 0, where
ιC is the unit of C and εA the augmentation of A. Suppose that C and A are N-
graded. We will regularly use the fact that twisting cochains C → A correspond
bijectively to coalgebra maps C → BA and to algebra maps ΩC → A. Here
BA denotes the normalised bar construction of A and ΩC the normalised cobar
construction of C. In particular, the functors Ω and B are adjoint. (See
for instance [15, Sec. II] for more about twisting cochains and the (co)bar
construction.)
We agree that an exterior algebra is one on finitely many generators of odd
positive degrees. Let A be an N-graded algebra such that Λ = H(A) =∧

(x1, . . . , xr) is an exterior algebra. Then H(BA) = H(BΛ) = S is a symmet-
ric coalgebra on finitely many cogenerators yi of even degrees |yi| = |xi| + 1,
cf. [18, Thm. 7.30]. (The converse is true as well.) We assume that the yi are
chosen such that they can be represented by the cycles [xi] ∈ BΛ and [ci] ∈ BA,
where the ci ∈ A are any representatives of the generators xi ∈ Λ. We denote
by xπ, π ⊂ {1, . . . , r}, the canonical R-basis of Λ generated by the xi, and the
dual basis of Λ∗ by ξπ. The R-basis of S induced by the yi is written as yα,
α ∈ Nr. The dual S∗ of S is a symmetric algebra on generators ξi dual to
the yi.
We work in the simplicial category. We denote by C(X) the normalised chain
complex of the simplicial set X. (If X comes from a topological space, then
C(X) is the complex of normalised singular chains.) The (negatively graded)
dual complex of normalised cochains is denoted by C∗(X). If G is a connected
(topological or simplicial) group, then the inclusion of the simplicial subgroup
consisting of the simplices with all vertices at 1 ∈ G is a quasi-isomorphism. We
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may therefore assume that G has only one vertex. Then C(G) is a connected
Hopf algebra and C(BG) a simply connected coalgebra. In both cases, the
diagonal is the Alexander–Whitney map, and the Pontryagin product of C(G)
is the composition of the shuffle map C(G) ⊗ C(G) → C(G × G) with the
map C(G × G) → C(G) induced by the multiplication of G. Analogously,
C(X) is a left C(G)-module if X is a left G-space. The left C(G)-action on
cochains is defined by

(2.1) (a · γ)(c) = (−1)|a||γ| γ(λ∗(a) · c)
where λ : G → G denotes the group inversion. If p : Y → BG is a space
over BG, then C∗(Y ) is a left C∗(BG)-module by β · γ = p∗(β) ∪ γ.

3. Koszul duality

Koszul duality is most elegantly expressed as a duality between Λ-modules and
comodules over the symmetric coalgebra S dual to S∗, see [5, Sec. 2]. It hinges
on the fact that the Koszul complex S ⊗w Λ is acyclic, where w : S → Λ is
the canonical twisting cochain which sends each yi to xi and annihilates all
other yα. In this paper, though, we adopt a cohomological viewpoint. This
makes definitions look rather ad hoc, but it is better suited to our discussion
of equivariant cohomology in Section 8.
We denote the categories of bounded above weak modules over Λ and S∗ by
Λ-Mod and S∗-Mod, respectively. (Recall that we grade cochain complexes
negatively.) Note that any (strict) module over Λ or S∗ is also a weak module
because of the canonical twisting cochain w and its dual w∗ : Λ∗ → S∗. The
homology of a weak Λ-module (N, v) is a Λ-module by setting xi·[n] = [v(yi)·n],
and S∗ acts on the homology of a weak S∗-module (M,u) by ξi ·[m] = [u(ξi)·m].
Before describing morphisms of weak modules, we say how the Koszul functors
act on objects.
The Koszul dual of (N, v) ∈ Λ-Mod is defined as the bounded above S∗-module
tN = S∗ ⊗N with differential

(3.1) d(σ ⊗ n) = σ ⊗ dn+
∑

α>0

ξασ ⊗ v(yα) · n.

(This is well-defined because N is bounded above.)
The Koszul dual of (M,u) ∈ S∗-Mod is the bounded above Λ-module hM =
Λ∗ ⊗M with differential

(3.2) d(α⊗m) = (−1)|α|α⊗ dm+
∑

π 6=∅
(−1)|xπ|xπ · α⊗ u(ξπ) ·m

and Λ-action coming from that on Λ∗, which is defined similarly to (2.1),

(a · α)(a′) = (−1)|a|(|α|+1)α(a ∧ a′).
A morphism f between two weak Λ-modules N and N ′ is a morphism of (strict)
S∗-modules tN → tN ′. Its “base-component”

N = 1⊗N →֒ S∗ ⊗N f−→ S∗ ⊗N ′ →→ 1⊗N ′ = N ′
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is a chain map inducing a Λ-equivariant map in homology. If the latter is an
isomorphism, we say that f is a quasi-isomorphism. The definitions for weak
S∗-modules are analogous. The Koszul dual of a morphism of weak modules is
what one expects.
The Koszul functors preserve quasi-isomorphisms and are quasi-inverse to each
other, cf. [5, Sec. 2.6]. Note that our (left) weak S∗-modules correspond to left
weak S-comodules and not to right ones as used in [5]. This detail, which is
crucial for the present paper, does not affect Koszul duality.

In the rest of this section we generalise results of [8, Sec. 9] to weak modules.

Following [8], we call a weak S∗-module M is called split and extended if it is
quasi-isomorphic to its homology and if the latter is of the form S∗ ⊗ L for
some graded R-module L. If M it is quasi-isomorphic to its homology and if
the S∗-action on H(M) is trivial, we say that M is split and trivial. Similar
definitions apply to weak Λ-modules. (Note that it does not make a difference
whether we require the homology of a split and free Λ-module to be isomorphic
to Λ⊗ L or to Λ∗ ⊗ L.)

Proposition 3.1. Under Koszul duality, split and trivial weak modules corre-
spond to split and extended ones.

Proof. That the Koszul functors carry split and trivial weak modules to split
and extended ones is almost a tautology. The other direction follows from
the fact that the Koszul functors are quasi-inverse to each other and preserve
quasi-isomorphisms because a split and extended weak module is by definition
quasi-isomorphic to the Koszul dual of a module with zero differential and
trivial action. �

Proposition 3.2. Let M be in S∗-Mod. If H(M) is extended, then M is split
and extended.

Proof. We may assume that M has a strict S∗-action because any weak S∗-
module M is quasi-isomorphic to a strict one (for instance, to thM). By
assumption, H(M) ∼= S∗⊗L for some graded R-module L. Since we work over
a principal ideal domain, there exists a free resolution

0←− L←− P 0 ←− P 1 ←− 0

of L with P 0, P 1 bounded above. Tensoring it with S∗ gives a free reso-
lution of the S∗-module H(M) and therefore the (not uniquely determined)
S∗-equivariant vertical maps in the following commutative diagram with exact
rows:

0 � S∗ ⊗ L � S∗ ⊗ P 0 � S∗ ⊗ P 1 � 0

0 � H(M)

∼=
?
� Z(M)

?
�d

M.
?
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This implies that the total complex S∗ ⊗ P is quasi-isomorphic to both
H(M) and M . �

4. Proof of Theorem 1.4

In this section all algebras are N-graded and connected unless otherwise stated.
Recall that an A∞ map f : A ⇒ A′ between two algebras is a map of coal-
gebras BA → BA′, see [18, Sec. 8.1] or [17] for example. It is called strict
if it is induced from an algebra map A → A′. If f : A ⇒ A′ is A∞, then its
base component f1 : B1A→ B1A

′ between the elements of external degree 1 is
a chain map, multiplicative up to homotopy. We denote the induced algebra
map in homology by H(f) : H(A)→ H(A′). If it is an isomorphism, we call f
an A∞ quasi-isomorphism.
In order to prove Theorem 1.4, it is sufficient to construct an A∞ quasi-iso-
morphism A⇒ H(A) =

∧
(x1, . . . , xr) = Λ, due to the following result:

Lemma 4.1. Let A be an algebra with A and H(A) free over R, and let
f : A ⇒ H(A) be an A∞ map inducing the identity in homology. Then f has
an A∞ quasi-inverse, i. e., there is an A∞ map g : H(A) ⇒ A also inducing
the identity in homology.

(At least over fields one can do better: there any A∞ quasi-isomorphism be-
tween two algebras – even A∞ algebras – is an A∞ homotopy equivalence,
cf. [20] or [17, Sec. 3.7].)

Proof. According to [19, Prop. 2.2], the claim is true if f is strict. (Here we
use that over a principal ideal domain any quasi-isomorphism A → H(A) of
free modules comes from a “trivialised extension” in the sense of [19, §2.1].)
To reduce the general case to this, we consider the cobar construction ΩBA
of BA. Coalgebra maps h : BA → BA′ correspond bijectively to algebra
maps h̃ : ΩBA→ A′. For h, the identity of A, the map h̃ is a quasi-isomorphism
[15, Thm II.4.4] with quasi-inverse (in the category of complexes), the canonical

inclusion A →֒ ΩBA. The composition of this map with f̃ : ΩBA → H(A) is

essentially f1, which is a quasi-isomorphism by hypothesis. Hence f̃ is so, too.
Now compose any A∞ quasi-inverse of it with the projection ΩBA→ A. �

Recall that for any complex C a cycle in Cq = Hom−q(C,R) is the same as
a chain map C → R[−q]. (Here R[−q] denotes the complex R, shifted to de-
gree q.) The crucial observation, made in a topological context by Stasheff [21,
Thm. 5.1], is the following:

Lemma 4.2. A∞ maps A ⇒ ∧
(x), |x| = q > 0, correspond bijectively to

cocycles in (BA)q+1.

Proof. Note that the augmentation ideal of
∧

(x) is R[−q] (with vanishing prod-
uct). An A∞ map f : A ⇒ ∧

(x) is given by components fp : Ā⊗p → R[−q] of
degree p− 1 such that for all [a1, . . . , ap] ∈ Bp(A),

fp(d[a1, . . . , ap]) = −fp−1(δ[a1, . . . , ap]),
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where d : Bp(A) → Bp(A) denotes the “internal” differential and δ : Bp(A) →
Bp−1(A) the “external” one, cf. [18, Thm. 8.18]. In other words, d(fp) =
−δ(fp−1), where δ and d now denote the dual differentials. But this is the
condition for a cycle in the double complex ((BA)∗, d, δ) dual to BA. �

By our assumptions, H∗(BA) = S∗ is a (negatively graded) polynomial algebra.
Taking representatives of the generators ξi gives A∞ maps f (i) : A ⇒ ∧

(xi).
By [19, Prop. 3.3 & 3.7], they assemble into an A∞ map

f (1) ⊗ · · · ⊗ f (r) : A⊗r ⇒
∧

(x1)⊗ · · · ⊗
∧

(xr) = Λ

whose base component is the tensor product of the base components f
(i)
1 . Since

A is a Hopf algebra, the r-fold diagonal ∆(r) : A → A⊗r is a morphism of
algebras. A test on the generators xi reveals that the composition (f (1) ⊗
· · · ⊗ f (r))∆(r) : A ⇒ Λ induces an isomorphism in homology, hence is the
A∞ quasi-isomorphism we are looking for.

Remark 4.3. Since we have not really used the coassociativity of ∆, Theo-
rem 1.4 holds even for quasi-Hopf algebras in the sense of [15, §IV.5].

5. The twisting cochain v : S→ C(G)

This is now easy: Compose the map S → BΛ determined by the canonical
twisting cochain w : S→ Λ with the map BΛ→ BC(G). This corresponds to
a twisting cochain S → C(G) mapping each cogenerator yi ∈ S to a represen-
tative of xi ∈ Λ. Since these elements are used to define the Λ-action in the
homology of a weak Λ-module, we get the usual action of Λ = H(G) there.
Note that by dualisation we obtain a quasi-isomorphism of alge-
bras (BC(G))∗ → S∗. This is not exactly the same as the quasi-isomorphism of
algebras C∗(BG)→ S∗ from Proposition 1.3, which we are going to construct
next.

6. Proof of Theorem 1.2 (first part) and of Proposition 1.3

In this section we construct maps

ΨX : S⊗v C(X)→ C(EG×
G
X) = C(tX),

natural in X ∈ G-Space. We will show that ψ := Ψpt : S→ C(BG) is a quasi-
isomorphism of coalgebras and that ΨX , which maps from an S-comodule to
a C(BG)–comodule, is a ψ-equivariant quasi-isomorphism. Taking duals then
gives Proposition 1.3 and the first half of Theorem 1.2.
Recall that the differential on S⊗v C(X) is

d(yα ⊗ c) = yα ⊗ dc+
∑

β<α

yβ ⊗ cα−β · c,

where we have abbreviated v(yα−β) to cα−β . The summation runs over all β
strictly smaller than α in the canonical partial ordering of Nr.
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To begin with, we define a map

f : S⊗v C(G)→ C(EG)

by recursively setting

f(1⊗ a) = e0 · a,

f(yα ⊗ a) =
(
Sf
(
d(yα ⊗ 1)

))
· a

for α > 0. Here e0 is the canonical base point of the simplicial construction of
the right G-space EG and S its canonical contracting homotopy, cf. [5, Sec. 3.7].

Lemma 6.1. This f is a quasi-morphism of right C(G)-modules.

Proof. The map is equivariant by construction. By induction, one has for α > 0

d f(yα⊗1) = dSf
(
d(yα⊗1)

)
= f

(
d(yα⊗1)

)
−S d f

(
d(yα⊗1)

)
= f

(
d(yα⊗1)

)
,

which shows that it is a chain map. That it induces an isomorphism in homology
follows from the acyclicity of S ⊗v C(G): Filter the complex according to the
number of factors ξi appearing in an element ξα⊗a, i. e., by α1 + · · ·+αr. Then
the E1 term of the corresponding spectral sequence is the Koszul complex S⊗w
Λ, hence acyclic. �

We will also need the following result:

Lemma 6.2. The image of f(yα ⊗ 1), α ∈ Nr, under the diagonal ∆ of the
coalgebra C(EG) is

∆f(yα ⊗ 1) ≡
∑

β+γ=α

f(yβ ⊗ 1)⊗ f(yγ ⊗ 1),

up to terms of the form c · a⊗ c′ with c, c′ ∈ C(EG) and a ∈ C(G), |a| > 0.

Proof. We proceed by induction, the case α = 0 being trivial. For α > 0 we
have

∆f(yα ⊗ 1) = ∆Sf
(
d (yα ⊗ 1)

)
=
∑

β<α

∆S
(
f(yβ ⊗ 1) · cα−β

)

We now use the identity ∆S(c) = Sc⊗ 1 + (1⊗S)AW (c) [5, Prop. 3.8] and the
C(G)-equivariance of the Alexander–Whitney map to get

= f(yα ⊗ 1)⊗ 1 + (1⊗ S)
∑

β<α

∆f(yβ ⊗ 1) ·∆cα−β ,

where the second diagonal is of course that of C(G). By induction and the fact
that ∆cα−β ≡ 1⊗ cα−β up to terms a⊗ a′ with |a| > 0, we find

≡ f(yα ⊗ 1)⊗ 1 + (1⊗ S)
∑

β+γ<α

f(yβ ⊗ 1)⊗ f(yγ ⊗ 1) · cα−(β+γ)

= f(yα ⊗ 1)⊗ 1 +
∑

β<α
γ<α−β

f(yβ ⊗ 1)⊗ Sf(yγ ⊗ c(α−β)−γ),
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which simplifies by the definition of f to

= f(yα ⊗ 1)⊗ 1 +
∑

β<α

f(yβ ⊗ 1)⊗ f(yα−β ⊗ 1),

as was to be shown. �

For a G-space X we define the map

ΨX : tC(X) = S⊗v C(X)→ C(EG×
G
X) = C(tX)

as the bottom row of the commutative diagram

S⊗v C(G)⊗ C(X)
f ⊗ 1- C(EG)⊗ C(X)

∇- C(EG×X)

S⊗v C(X) == S⊗v C(G)⊗
C(G)

C(X)
?

- C(EG)⊗
C(G)

C(X)
?

- C(EG×
G
X),

?

where ∇ denotes the shuffle map. ΨX is obviously natural in X.
It follows from the preceding lemma that ψ = Ψpt : S→ C(BG) is a morphism
of coalgebras because terms of the form c · a with |a| > 0 are annihilated by
the projection C(EG) → C(BG). (We are working with normalised chains!)
Using naturality and the commutativity of the diagram

C(EG)⊗ C(X)
∇ - C(EG×X)

C(BG)⊗ C(EG)⊗ C(X)

∆C(EG) ⊗ 1

?

1⊗∇
- C(BG)⊗ C(EG×X),

∆C(EG×X)

?

one proves similarly that ΨX is a ψ-equivariant morphism of comodules. To
see that it induces an isomorphism in homology, consider the diagram

TorC(G)
(
S⊗v C(G), C(X)

) - H
(
S⊗v C(G)⊗

C(G)
C(X)

)
== H(S⊗v C(X))

TorC(G)
(
C(EG), C(X)

)

Torid(f, id)

?
- H

(
C(EG)⊗

C(G)
C(X)

)?
- H(EG×

G
X).

H(ΨX)

?

The composition along the bottom row is an isomorphism by Moore’s theo-
rem [18, Thm. 7.27],2 and the top row is so because S ⊗v C(G) is C(G)-flat.

Since Torid(f, id) is an isomorphism by Lemma 6.1, H(ΨX) is so, too.

2In fact, each single arrow is an isomorphism. This follows from the twisted Eilenberg–
Zilber theorem, see [9] for example.

Documenta Mathematica 11 (2006) 243–259



Koszul Duality and Equivariant Cohomology 255

7. The twisting cochain u : Λ∗ → C∗(BG)
and the end of the proof of Theorem 1.2

The map ψ : S → C(BG) is a quasi-isomorphism of simply connected coal-
gebras. Similar to the first step in the proof of Lemma 4.1, it comes from
a trivialised extension (or “Eilenberg–Zilber data” in the terminology of [11]).
By [11, Thm. 4.1∗], there is an algebra map F : ΩC(BG) → ΩS whose base
component F−1 : Ω−1C(BG) → Ω−1S is essentially the chosen homotopy in-
verse to ψ. Composing such an F with the canonical map g : ΩS→ Λ, we get
a twisting cochain ũ : C(BG)→ Λ. Write

(7.1) ũ =
∑

∅6=π⊂{1,...,r}
xπ ⊗ γπ ∈ Λ⊗ C∗(BG) = Hom(C(BG),Λ).

Then γi is a representative of the generator ξi ∈ S∗ because it is a cocycle
(cf. [5, eq. (2.12)]) and

ũ(ψ(yi)) = g(F ([ψ(yi)])) = g(yi) = xi.

The dual u = ũ∗ : Λ∗ → C∗(BG) is again a cochain, which corresponds under
the isomorphism Hom(Λ∗, C∗(BG)) = C∗(BG) ⊗ Λ to the transposition of
factors of (7.1). Therefore, the induced action of S∗ on a C∗(BG)-module,
considered as weak S∗-module, is given by ξi · [m] = [γi ·m], as desired.

For a given G-space X, we now look at the map Ψ∗
X as a quasi-isomorphism

of C∗(BG)-modules, where the module structure of tC∗(X) is induced by ψ∗.
By naturality, it is a morphism of weak S∗-modules. This new weak S∗-action
on tC∗(X) coincides with the (strict) old one because the composition

(ΩS)∗
F∗−→ (ΩC(BG))∗

ψ∗−→ (ΩS)∗

is the identity. This proves that Ψ∗
X is a quasi-isomorphism of weak S∗-modules,

hence that the functors C∗ ◦ t and t ◦ C∗ are quasi-isomorphic.
The corresponding result for the functors h and h is a formal consequence of
this because they are quasi-inverse to t and t, respectively. This finishes the
proof of Theorem 1.2.

Remark 7.1. For G = (S1)r a torus (and a reasonable choice of v) one may
also take the twisting cochain Λ∗ → C∗(BG) of Gugenheim–May [10, Ex-
ample 2.2], which is defined using iterated cup1 products of (any choice of)
representatives γi ∈ C∗(BG) of the ξi ∈ S∗. (This follows for example from [5,
Cor. 4.4].) It would be interesting to know whether this remains true in general
if one chooses the γi carefully enough.

8. Equivariantly formal spaces

An important class of G-spaces are the equivariantly formal ones. Their equi-
variant cohomology is particularly simple, which is often exploited in algebraic
or symplectic geometry or combinatorics.
We say that X is R-equivariantly formal if the following conditions hold.
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Proposition 8.1. For a G-space X, the following are equivalent:

(1) H∗
G(X) is extended.

(2) C∗(XG) is split and extended.
(3) C∗(X) is split and trivial.
(4) The canonical map H∗

G(X) → H∗(X) admits a section of graded R-
modules.

(5) H∗
G(X) is isomorphic, as S∗-module, to the E2 term S∗⊗H∗(X) of the

Leray–Serre spectral sequence for XG (which therefore degenerates).

Note that if R is a field, condition (1) means that H∗
G(X) is free over S∗, and

condition (4) that H∗
G(X) → H∗(X) is surjective. A space X with the latter

property is traditionally called “totally non-homologous to zero in XG with
respect to R”. We stress the fact that for some of the above conditions we
really need the assumption that R is a principal ideal domain.
In [6] (see also [7]) it is shown that a compact symplectic manifold X with
a Hamiltonian torus action is Z-equivariantly formal if XT = XTp for each
prime p that kills elements in H∗(XT ). Here Tp ∼= Zrp denotes the maximal
p-torus contained in the torus T . In particular, a compact Hamiltonian T -
manifold is Z-equivariantly formal if the isotropy group of each non-fixed point
is contained in a proper subtorus.

Proof. (5) ⇒ (1) is trivial. (1) ⇒ (2) follows from Proposition 3.2, and
(2) ⇒ (3) from Proposition 3.1 because C∗(X) and C∗(XG) are Koszul dual
by Theorem 1.2. (4) ⇒ (5) is the Leray–Hirsch theorem. (Note that it holds
here for arbitrary X because H∗(BG) = S∗ is of finite type.)
(3) ⇒ (4): The (in the simplicial setting canonical) map C∗(XG) → C∗(X)
is the composition of Ψ∗

X with the canonical projection tC∗(X) → C∗(X).
Since C∗(X) is split, we can pass from C∗(X) to H∗(X) by a sequence of
commutative diagrams

tN - N

tN ′
?

- N ′
?

where the vertical arrow on the right is the base component of the quasi-
isomorphism of weak Λ-modules given on the left. But for the projection S∗⊗
H∗(X) → H∗(X) the assertion is obvious because Λ acts trivially on H∗(X),
which means that there are no differentials any more. �

9. Relation to the Cartan model

In differential geometry and differential homological algebra many different
complexes (“models”) are known that compute the equivariant cohomology of
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a space. We content ourselves with indicating the relation between our con-
struction and the probably best-known one, the so-called Cartan model. We
use real or complex coefficients.
Let G be a compact connected Lie group and X a G-manifold. The Cartan
model of X is the complex

(9.1a)
(

Sym(g∗)⊗ Ω(X)
)G

of G-invariants with differential

(9.1b) d(σ ⊗ ω) = σ ⊗ dω +

s∑

j=1

ζjσ ⊗ zj · ω.

Here Sym(g∗) denotes the (evenly graded) polynomial functions on the Lie
algebra g of G, (zj) a basis of g with dual basis (ζj), and zj ·ω the contraction
of the form ω with the generating vector field associated with zj . The Cartan
model computes H∗

G(X) as algebra and as S∗-module, cf. [12].
As mentioned in the introduction, Goresky, Kottwitz and MacPherson [8] have
found an even smaller complex giving the S∗-module H∗

G(X), namely tΩ(X)G,
or explicitly

(9.2a) Sym(g∗)G ⊗ Ω(X)G,

where Ω(X)G denotes the complex of G-invariant differential forms on X. The
differential

(9.2b) d(σ ⊗ ω) = σ ⊗ dω +

r∑

i=1

ξiσ ⊗ xi · ω

is similar to (9.1b), but the summation now runs over a system of generators
of S∗ = H∗(BG) = Sym(g∗)G. (This is of course differential (3.1) for strict
Λ-modules.) Alekseev and Meinrenken [1] have proved that the complexes
(9.1) and (9.2) are quasi-isomorphic as S∗-modules.
For the case of torus actions (where (9.1) and (9.2) coincide), Goresky–
Kottwitz–MacPherson [8, Sec. 12] have shown that one may replace Ω(X)T

by singular cochains together with the “sweep action”, which is defined by re-
stricting the action of C(T ) along a quasi-isomorphism of algebras Λ = H(T )→
C(T ). The latter is easy to construct, as explained in the introduction. Now all
ingredients are defined for an arbitrary topological T -space X and an arbitrary
coefficient ring R, and the resulting complex does indeed compute H∗

T (X) as
algebra and as S∗-module in this generality, see Félix–Halperin–Thomas [4,
Sec. 7.3].

Appendix: The theorems of Samelson–Leray and Hopf

All differentials are zero in this section. Recall that an element a of a Hopf
algebra A is called primitive if ∆a = a ⊗ 1 + 1 ⊗ a or, equivalently, if the
projection of ∆a to Ā⊗ Ā is zero.
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Let A be a Hopf algebra over a field, isomorphic as algebra to an exterior alge-
bra. Then A is primitively generated (Samelson–Leray). If R is a field of char-
acteristic 0 and A a connected commutative Hopf algebra, finite-dimensional
over R, then multiplicatively it is an exterior algebra (Hopf), hence also prim-
itively generated. (A good reference for our purposes is [16, §§1, 2].)
We now show that the analogous statements hold over any principal ideal do-
main. Denote for a Hopf algebra A over R the extension of coefficients to the
quotient field of R by A(0).

Proposition 9.1. Let A be a Hopf algebra, free over R and such that A(0)

is a primitively generated exterior algebra. Then A is a primitively generated
exterior algebra.

Proof. Let A′ be the sub Hopf algebra generated by the free submodule of
primitive elements of A. Then A′

(0) = A(0) (Samelson–Leray), hence A′ is a

primitively generated exterior algebra and A/A′ is R-torsion. Take an a ∈ A\A′

of smallest degree. Then ka ∈ A′ for some 0 6= k ∈ R, and the image of ∆a
in Ā ⊗ Ā already lies in Ā′ ⊗ Ā′. Write ka = a1 + a2 with a1 ∈ A′ primitive
and a2 ∈ Ā′ · Ā′. Note that the image of ∆a2 in Ā′ ⊗ Ā′ is divisible by k.
This implies that a2 is divisible by k in A′. (Look at how the various products
of the generators of a primitively generated exterior algebra behave under the
diagonal.) Since a− a2/k is primitive, it lies in A′, hence a as well. Therefore,
A = A′. �

Added in proof. Suppose that G is a compact connected Lie group and let
T ⊂ G be a maximal torus. In their recent preprint“Torsion and abelianization
in equivariant cohomology”(math.AT/0607069), T. Holm and R. Sjamaar show
that in this situation H∗

G(X) consists of the Weyl group invariants of H∗
T (X).

Their assumption on the coefficient ring R is essentially the same as ours.
Together with the explicit Cartan model for torus actions [5], this gives another
model for H∗

G(X).
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Abstract. One way to reformulate the celebrated theorem of Beilin-
son is that (O(−n), . . . ,O) and (Ωn(n), . . . ,Ω1(1),O) are strong com-
plete exceptional sequences in Db(CohPn), the bounded derived cat-
egory of coherent sheaves on Pn. In a series of papers ([Ka1], [Ka2],
[Ka3]) M. M. Kapranov generalized this result to flag manifolds of
type An and quadrics. In another direction, Y. Kawamata has re-
cently proven existence of complete exceptional sequences on toric
varieties ([Kaw]).
Starting point of the present work is a conjecture of F. Catanese which
says that on every rational homogeneous manifold X = G/P , where G
is a connected complex semisimple Lie group and P ⊂ G a parabolic
subgroup, there should exist a complete strong exceptional poset (cf.
def. 2.1.7 (B)) and a bijection of the elements of the poset with the
Schubert varieties in X such that the partial order on the poset is
the order induced by the Bruhat-Chevalley order (cf. conjecture 2.2.1
(A)). An answer to this question would also be of interest with re-
gard to a conjecture of B. Dubrovin ([Du], conj. 4.2.2) which has its
source in considerations concerning a hypothetical mirror partner of
a projective variety Y : There is a complete exceptional sequence in
Db(CohY ) if and only if the quantum cohomology of Y is generically
semisimple (the complete form of the conjecture also makes a predic-
tion about the Gram matrix of such a collection). A proof of this
conjecture would also support M. Kontsevich’s homological mirror
conjecture, one of the most important open problems in applications
of complex geometry to physics today (cf. [Kon]).
The goal of this work will be to provide further evidence for F.
Catanese’s conjecture, to clarify some aspects of it and to supply
new techniques. In section 2 it is shown among other things that
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the length of every complete exceptional sequence on X must be the
number of Schubert varieties in X and that one can find a complete
exceptional sequence on the product of two varieties once one knows
such sequences on the single factors, both of which follow from known
methods developed by Rudakov, Gorodentsev, Bondal et al. Thus
one reduces the problem to the case X = G/P with G simple. Fur-
thermore it is shown that the conjecture holds true for the sequences
given by Kapranov for Grassmannians and quadrics. One computes
the matrix of the bilinear form on the Grothendieck K-group K◦(X)
given by the Euler characteristic with respect to the basis formed by
the classes of structure sheaves of Schubert varieties in X; this matrix
is conjugate to the Gram matrix of a complete exceptional sequence.
Section 3 contains a proof of theorem 3.2.7 which gives complete ex-
ceptional sequences on quadric bundles over base manifolds on which
such sequences are known. This enlarges substantially the class of va-
rieties (in particular rational homogeneous manifolds) on which those
sequences are known to exist. In the remainder of section 3 we con-
sider varieties of isotropic flags in a symplectic resp. orthogonal vector
space. By a theorem due to Orlov (thm. 3.1.5) one reduces the prob-
lem of finding complete exceptional sequences on them to the case of
isotropic Grassmannians. For these, theorem 3.3.3 gives generators of
the derived category which are homogeneous vector bundles; in special
cases those can be used to construct complete exceptional collections.
In subsection 3.4 it is shown how one can extend the preceding method
to the orthogonal case with the help of theorem 3.2.7. In particular we
prove theorem 3.4.1 which gives a generating set for the derived cat-
egory of coherent sheaves on the Grassmannian of isotropic 3-planes
in a 7-dimensional orthogonal vector space. Section 4 is dedicated
to providing the geometric motivation of Catanese’s conjecture and
it contains an alternative approach to the construction of complete
exceptional sequences on rational homogeneous manifolds which is
based on a theorem of M. Brion (thm. 4.1.1) and cellular resolutions
of monomial ideals à la Bayer/Sturmfels. We give a new proof of the
theorem of Beilinson on Pn in order to show that this approach might
work in general. We also prove theorem 4.2.5 which gives a concrete
description of certain functors that have to be investigated in this
approach.

2000 Mathematics Subject Classification: 14M15, 14F05; 18E30

Keywords and Phrases: flag varieties, rational homogeneous mani-
folds, derived category
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1 Introduction

The concept of derived category of an Abelian category A, which gives a trans-
parent and compact way to handle the totality of cohomological data attached
to A and puts a given object of A and all of its resolutions on equal footing,
was conceived by Grothendieck at the beginning of the 1960’s and their internal
structure was axiomatized by Verdier through the notion of triangulated cate-
gory in his 1967 thesis (cf. [Ver1], [Ver2]). Verdier’s axioms for distinguished
triangles still allow for some pathologies (cf. [GeMa], IV.1, 7) and in [BK] it
was suggested how to replace them by more satisfactory ones, but since the
former are in current use, they will also be the basis of this text. One may
consult [Nee] for foundational questions on triangulated categories.
However, it was only in 1978 that people laid hands on “concrete” derived
categories of geometrical significance (cf. [Bei] and [BGG2]), and A. A. Beilin-
son constructed strong complete exceptional sequences of vector bundles for
Db(CohPn), the bounded derived category of coherent sheaves on Pn. The
terminology is explained in section 2, def. 2.1.7, below, but roughly the
simplification brought about by Beilinson’s theorem is analogous to the con-
struction of a semi-orthonormal basis (e1, . . . , ed) for a vector space equipped
with a non-degenerate (non-symmetric) bilinear form χ (i.e., χ(ei, ei) = 1 ∀i,
χ(ej , ei) = 0 ∀j > i)).
Beilinson’s theorem represented a spectacular breakthrough and, among other
things, his technique was applied to the study of moduli spaces of semi-
stable sheaves of given rank and Chern classes on P2 and P3 by Horrocks,
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Barth/Hulek, Drézet/Le Potier (cf. [OSS], [Po] and references therein).
Recently, A. Canonaco has obtained a generalization of Beilinson’s theorem to
weighted projective spaces and applied it to the study of canonical projections
of surfaces of general type on a 3-dimensional weighted projective space (cf.
[Can], cf. also [AKO]).
From 1984 onwards, in a series of papers [Ka1], [Ka2], [Ka3], M. M. Kapranov
found strong complete exceptional sequences on Grassmannians and flag vari-
eties of type An and on quadrics. Subsequently, exceptional sequences alongside
with some new concepts introduced in the meantime such as helices, muta-
tions, semi-orthogonal decompositions etc. were intensively studied, especially
in Russia, an account of which can be found in the volume [Ru1] summarizing
a series of seminars conducted by A. N. Rudakov in Moscow (cf. also [Bo],
[BoKa], [Or]). Nevertheless, despite the wealth of new techniques introduced
in the process, many basic questions concerning exceptional sequences are still
very much open. These fall into two main classes: first questions of existence:
E.g., do complete exceptional sequences always exist on rational homogeneous
manifolds? (For toric varieties existence of complete exceptional sequences was
proven very recently by Kawamata, cf. [Kaw].) Secondly, one often does not
know if basic intuitions derived from semi-orthogonal linear algebra hold true
in the framework of exceptional sequences, and thus one does not have enough
flexibility to manipulate them, e.g.: Can every exceptional bundle on a vari-
ety X on which complete exceptional sequences are known to exist (projective
spaces, quadrics...) be included in a complete exceptional sequence?
To round off this brief historical sketch, one should not forget to mention that
derived categories have proven to be of geometrical significance in a lot of other
contexts, e.g. through Fourier-Mukai transforms and the reconstruction theo-
rem of Bondal-Orlov for smooth projective varieties with ample canonical or
anti-canonical class (cf. [Or2]), in the theory of perverse sheaves and the gen-
eralized Riemann-Hilbert correspondence (cf. [BBD]), or in the recent proof
of T. Bridgeland that birational Calabi-Yau threefolds have equivalent derived
categories and in particular the same Hodge numbers (cf. [Brid]). Interest in
derived categories was also extremely stimulated by M. Kontsevich’s proposal
for homological mirror symmetry ([Kon]) on the one side and by new applica-
tions to minimal model theory on the other side.
Let me now describe the aim and contents of this work. Roughly speaking, the
problem is to give as concrete as possible a description of the (bounded) derived
categories of coherent sheaves on rational homogeneous manifolds X = G/P ,
G a connected complex semisimple Lie group, P ⊂ G a parabolic subgroup.
More precisely, the following set of main questions and problems, ranging from
the modest to the more ambitious, have served as programmatic guidelines:

P 1. Find generating sets of Db(CohX) with as few elements as possible.
(Here a set of elements of Db(CohX) is called a generating set if the
smallest full triangulated subcategory containing this set is equivalent to
Db(CohX)).
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We will see in subsection 2.3 below that the number of elements in a generating
set is always bigger or equal to the number of Schubert varieties in X.
In the next two problems we mean by a complete exceptional sequence an
ordered tuple (E1, . . . , En) of objects E1, . . . , En of Db(CohX) which form
a generating set and such that moreover R•Hom(Ei, Ej) = 0 for all i > j,
R•Hom(Ei, Ei) = C (in degree 0) for all i. If in addition all extension groups in
nonzero degrees between the elements Ei vanish we speak of a strong complete
exceptional sequence. See section 2, def. 2.1.7, for further discussion.

P 2. Do there always exist complete exceptional sequences in Db(CohX)?

P 3. Do there always exist strong complete exceptional sequences in
Db(CohX)?

Besides the examples found by Kapranov mentioned above, the only other
substantially different examples I know of in answer to P 3. is the one given
by A. V. Samokhin in [Sa] for the Lagrangian Grassmannian of totally isotropic
3-planes in a 6-dimensional symplectic vector space and, as an extension of this,
some examples in [Kuz].
In the next problem we mean by a complete strong exceptional poset a set of
objects {E1, . . . , En} of Db(CohX) that generate Db(CohX) and satisfy
R•Hom(Ei, Ei) = C (in degree 0) for all i and such that all extension groups
in nonzero degrees between the Ei vanish, together with a partial order ≤ on
{E1, . . . , En} subject to the condition: Hom(Ej , Ei) = 0 for j ≥ i, j 6= i (cf.
def. 2.1.7 (B)).

P 4. Catanese’s conjecture: On any X = G/P there exists a complete strong
exceptional poset ({E1, . . . , En},≤) together with a bijection of the ele-
ments of the poset with the Schubert varieties in X such that ≤ is the
partial order induced by the Bruhat-Chevalley order (cf. conj. 2.2.1 (A)).

P 5. Dubrovin’s conjecture (cf. [Du], conj. 4.2.2; slightly modified afterwards
in [Bay]; cf. also [B-M]): The (small) quantum cohomology of a smooth
projective variety Y is generically semi-simple if and only if there exists a
complete exceptional sequence in Db(CohY ) (Dubrovin also relates the
Gram matrix of the exceptional sequence to quantum-cohomological data
but we omit this part of the conjecture).

Roughly speaking, quantum cohomology endows the usual cohomology space
with complex coefficients H∗(Y ) of Y with a new commutative associative
multiplication ◦ω : H∗(Y ) × H∗(Y ) → H∗(Y ) depending on a complexified
Kähler class ω ∈ H2(Y,C), i.e. the imaginary part of ω is in the Kähler cone
of Y (here we assume Hodd(Y ) = 0 to avoid working with supercommutative
rings). The condition that the quantum cohomology of Y is generically semi-
simple means that for generic values of ω the resulting algebra is semi-simple.
The validity of this conjecture would provide further evidence for the famous
homological mirror conjecture by Kontsevich ([Kon]). However, we will not
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deal with quantum cohomology in this work.
Before stating the results, a word of explanation is in order to clarify why we
narrow down the focus to rational homogeneous manifolds:

• Exceptional vector bundles need not always exist on an arbitrary smooth
projective variety; e.g., if the canonical class of Y is trivial, they never
exist (see the explanation following definition 2.1.3).

• Db(CohY ) need not be finitely generated, e.g., if Y is an Abelian variety
(see the explanation following definition 2.1.3).

• If we assume that Y is Fano, then the Kodaira vanishing theorem tells
us that all line bundles are exceptional, so we have at least some a priori
supply of exceptional bundles.

• Within the class of Fano manifolds, the rational homogeneous spaces X =
G/P are distinguished by the fact that they are amenable to geometric,
representation-theoretic and combinatorial methods alike.

Next we will state right away the main results obtained, keeping the numbering
of the text and adding a word of explanation to each.
Let V be a 2n-dimensional symplectic vector space and IGrass(k, V ) the Grass-
mannian of k-dimensional isotropic subspaces of V with tautological subbundle
R. Σ• denotes the Schur functor (see subsection 2.2 below for explanation).

Theorem 3.3.3. The derived category Db(Coh(IGrass(k, V ))) is generated by
the bundles ΣνR, where ν runs over Young diagrams Y which satisfy

(number of columns of Y ) ≤ 2n− k ,
k ≥ (number of rows of Y ) ≥ (number of columns of Y )− 2(n− k) .

This result pertains to P 1. Moreover, we will see in subsection 3.3 that P 2.
for isotropic flag manifolds of type Cn can be reduced to P 2. for isotropic
Grassmannians. Through examples 3.3.6-3.3.8 we show that theorem 3.3.3
gives a set of bundles which is in special cases manageable enough to obtain
from it a complete exceptional sequence. In general, however, this last step is
a difficult combinatorial puzzle relying on Bott’s theorem for the cohomology
of homogeneous bundles and Schur complexes derived from tautological exact
sequences on the respective Grassmannians.
For the notion of semi-orthogonal decomposition in the next theorem we refer
to definition 2.1.17 and for the definition of spinor bundles Σ, Σ± for the
orthogonal vector bundle OQ(−1)⊥/OQ(−1) we refer to subsection 3.2.

Theorem 3.2.7. Let X be a smooth projective variety, E an orthogonal vector
bundle of rank r + 1 on X (i.e., E comes equipped with a quadratic form q ∈
Γ(X,Sym2E∨) which is non-degenerate on each fibre), Q ⊂ P(E) the associated
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quadric bundle, and let E admit spinor bundles (see subsection 3.2).
Then there is a semiorthogonal decomposition

Db(Q) =
〈
Db(X)⊗ Σ(−r + 1),Db(X)⊗OQ(−r + 2),

. . . ,Db(X)⊗OQ(−1),Db(X)
〉

for r + 1 odd and

Db(Q) =
〈
Db(X)⊗ Σ+(−r + 1),Db(X)⊗ Σ−(−r + 1),

Db(X)⊗OQ(−r + 2), . . . ,Db(X)⊗OQ(−1),Db(X)
〉

for r + 1 even.

This theorem is an extension to the relative case of a theorem of [Ka2]. It en-
larges substantially the class of varieties (especially rational-homogeneous vari-
eties) on which complete exceptional sequences are proven to exist (P 2). It will
also be the substantial ingredient in subsection 3.4: Let V be a 7-dimensional
orthogonal vector space, IGrass(3, V ) the Grassmannian of isotropic 3-planes
in V , R the tautological subbundle on it; L denotes the ample generator of
Pic(IGrass(3, V )) ≃ Z (a square root of O(1) in the Plücker embedding). For
more information cf. subsection 3.4.

Theorem 3.4.1. The derived category Db(Coh IGrass(3, V )) is generated as
triangulated category by the following 22 vector bundles:

∧2
R(−1), O(−2), R(−2)⊗ L, Sym2R(−1)⊗ L, O(−3)⊗ L,

∧2
R(−2)⊗ L, Σ2,1R(−1)⊗ L, R(−1), O(−2)⊗ L, O(−1),

R(−1)⊗ L,
∧2
R(−1)⊗ L, Σ2,1R⊗ L, Sym2R∨(−2)⊗ L,

∧2
R, O,

Σ2,1R, Sym2R∨(−2), O(−1)⊗ L, Sym2R∨(−1),
∧2
R⊗ L, R⊗ L.

This result pertains to P 1. again. It is worth mentioning that the expected
number of elements in a complete exceptional sequence for
Db(Coh IGrass(3, V )) is 8, the number of Schubert varieties in IGrass(3, V ). In
addition, one should remark that P 2. for isotropic flag manifold of type Bn or
Dn can again be reduced to isotropic Grassmannians. Moreover, the method
of subsection 3.4 applies to all orthogonal isotropic Grassmannians alike, but
since the computations tend to become very large, we restrict our attention to
a particular case.
Beilinson proved his theorem on Pn using a resolution of the structure sheaf
of the diagonal and considering the functor Rp2∗(p∗1(−)⊗LO∆) ≃ idDb(Coh Pn)

(here p1, p2 : Pn × Pn → Pn are the projections onto the two factors). The
situation is complicated on general rational homogeneous manifolds X because
resolutions of the structure sheaf of the diagonal ∆ ⊂ X × X analogous to
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those used in [Bei], [Ka1], [Ka2], [Ka3] to exhibit complete exceptional se-
quences, are not known. The preceding theorems are proved by “fibrational
techniques”. Section 4 outlines an alternative approach: In fact, M. Brion
([Bri]) constructed, for any rational homogeneous manifold X, a degeneration
of the diagonal ∆X into X0, which is a union, over the Schubert varieties in
X, of the products of a Schubert variety with its opposite Schubert variety
(cf. thm. 4.1.1). It turns out that it is important to describe the functors
Rp2∗(p∗1(−)⊗LOX0

) which, contrary to what one might expect at first glance,
are no longer isomorphic to the identity functor by Orlov’s representability the-
orem [Or2], thm. 3.2.1 (but one might hope to reconstruct the identity out of
Rp2∗(p∗1(−)⊗LOX0

) and some infinitesimal data attached to the degeneration).
For Pn this is accomplished by the following

Theorem 4.2.5. Let {pt} = L0 ⊂ L1 ⊂ · · · ⊂ Ln = Pn be a full flag of
projective linear subspaces of Pn (the Schubert varieties in Pn) and let L0 =
Pn ⊃ L1 ⊃ · · · ⊃ Ln = {pt} be a complete flag in general position with respect
to the Lj.
For d ≥ 0 one has in Db(CohPn)

Rp2∗(p∗1(O(d))⊗L OX0
) ≃

n⊕

j=0

OLj
⊗H0(Lj ,O(d))∨/H0(Lj+1,O(d))∨ .

Moreover, one can also describe completely the effect of Rp2∗(p∗1(−) ⊗L OX0
)

on morphisms (cf. subsection 4.2 below).

The proof uses the technique of cellular resolutions of monomial ideals of Bayer
and Sturmfels ([B-S]). We also show in subsection 4.2 that Beilinson’s theorem
on Pn can be recovered by our method with a proof that uses only X0 (see
remark 4.2.6).
It should be added that we will not completely ignore the second part of P 4.
concerning Hom-spaces: In section 2 we show that the conjecture in P 4. is
valid in full for the complete strong exceptional sequences found by Kapranov
on Grassmannians and quadrics (cf. [Ka3]). In remark 2.3.8 we discuss a pos-
sibility for relating the Gram matrix of a strong complete exceptional sequence
on a rational homogeneous manifold with the Bruhat-Chevalley order on Schu-
bert cells.
Additional information about the content of each section can be found at the
beginning of the respective section.
Acknowledgements. I would like to thank my thesis advisor Fabrizio
Catanese for posing the problem and several discussions on it. Special thanks
also to Michel Brion for filling in my insufficient knowledge of representation
theory and algebraic groups on a number of occasions and for fruitful sugges-
tions and discussions.
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2 Tools and background: getting off the ground

This section supplies the concepts and dictionary that will be used throughout
the text. We state a conjecture due to F. Catanese which was the motivational
backbone of this work and discuss its relation to work of M. M. Kapranov.
Moreover, we prove some results that are useful in the study of the derived
categories of coherent sheaves on rational homogeneous varieties, but do not
yet tackle the problem of constructing complete exceptional sequences on them:
This will be the subject matter of sections 3 and 4.

2.1 Exceptional sequences

Throughout the text we will work over the ground field C of complex numbers.
The classical theorem of Beilinson (cf. [Bei]) can be stated as follows.

Theorem 2.1.1. Consider the following two ordered sequences of sheaves on
Pn = P(V ), V an n+ 1 dimensional vector space:

B = (O(−n), . . . ,O(−1), O)

B′ =
(
Ωn(n), . . . ,Ω1(1), O

)
.

Then Db(CohPn) is equivalent as a triangulated category to the homotopy cat-
egory of bounded complexes of sheaves on Pn whose terms are finite direct sums
of sheaves in B (and the same for B replaced with B′).
Moreover, one has the following stronger assertion: If Λ =

⊕n+1
i=0 ∧iV and

S =
⊕∞

i=0 SymiV ∗ are the Z-graded exterior algebra of V , resp. symmetric al-
gebra of V ∗, and Kb

[0,n]Λ resp. Kb
[0,n]S are the homotopy categories of bounded

complexes whose terms are finite direct sums of free modules Λ[i], resp. S[i],
for 0 ≤ i ≤ n, and whose morphisms are homogeneous graded of degree 0, then

Kb
[0,n]Λ ≃ Db(CohPn) Kb

[0,n]S ≃ Db(CohPn)

as triangulated categories, the equivalences being given by sending Λ[i] to Ωi(i)
and S[i] to O(−i) (Λ[i], S[i] have their generator in degree i).

One would like to have an analogous result on any rational homogeneous va-
riety X, i.e. a rational projective variety with a transitive Lie group action
or equivalently (cf. [Akh], 3.2, thm. 2) a coset manifold G/P where G is a
connected semisimple complex Lie group (which can be assumed to be simply
connected) and P ⊂ G is a parabolic subgroup. However, to give a precise
meaning to this wish, one should first try to capture some formal features of
Beilinson’s theorem in the form of suitable definitions; thus we will recall next
a couple of notions which have become standard by now, taking theorem 2.1.1
as a model.
Let A be an Abelian category.
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Definition 2.1.2. A class of objects C generates Db(A) if the smallest full
triangulated subcategory containing the objects of C is equivalent to Db(A). If
C is a set, we will also call C a generating set in the sequel.

Unravelling this definition, one finds that this is equivalent to saying that, up to
isomorphism, every object in Db(A) can be obtained by successively enlarging C
through the following operations: Taking finite direct sums, shifting in Db(A)
(i.e., applying the translation functor), and taking a cone Z of a morphism
u : X → Y between objects already constructed: This means we complete u to
a distinguished triangle X

u−→ Y −→ Z −→ X[1].
The sheaves Ωi(i) and O(−i) in theorem 2.1.1 have the distinctive property of
being “exceptional”.

Definition 2.1.3. An object E in Db(A) is said to be exceptional if

Hom(E,E) ≃ C and Exti(E,E) = 0 ∀i 6= 0.

If Y is a smooth projective variety of dimension n, exceptional objects need
not always exist (e.g., if Y has trivial canonical class this is simply precluded
by Serre duality since then Hom(E,E) ≃ Extn(E,E) 6= 0).
What is worse, Db(CohY ) need not even possess a finite generating set: In
fact we will see in subsection 2.3 below that if Db(CohY ) is finitely generated,

then A(Y ) ⊗ Q =
⊕dimY

r=0 Ar(Y ) ⊗ Q, the rational Chow ring of Y , is finite
dimensional (here Ar(Y ) denotes the group of cycles of codimension r on Y
modulo rational equivalence). But, for instance, if Y is an Abelian variety,
A1(Y )⊗Q ≃ PicY ⊗Q does not have finite dimension.
Recall that a vector bundle V on a rational homogeneous variety X = G/P
is called G-homogeneous if there is a G-action on V which lifts the G-action
on X and is linear on the fibres. It is well known that this is equivalent to
saying that V ≃ G ×̺ V , where ̺ : P → GL(V ) is some representation of the
algebraic group P and G ×̺ V is the quotient of G × V by the action of P
given by p · (g, v) := (gp−1, ̺(p)v), p ∈ P , g ∈ G, v ∈ V . The projection to
G/P is induced by the projection of G× V to G; this construction gives a 1-1
correspondence between representations of the subgroup P and homogeneous
vector bundles over G/P (cf. [Akh], section 4.2).
Then we have the following result (mentioned briefly in a number of places,
e.g. [Ru1], 6., but without a precise statement or proof).

Proposition 2.1.4. Let X = G/P be a rational homogeneous manifold with
G a simply connected semisimple group, and let F be an exceptional sheaf on
X. Then F is a G-homogeneous bundle.

Proof. Let us first agree that a deformation of a coherent sheaf G on a complex
space Y is a triple (G̃, S, s0) where S is another complex space (or germ), s0 ∈ S,
G̃ is a coherent sheaf on Y ×S, flat over S, with G̃ |Y×{s0}≃ G and Supp G̃ → S
proper. Then one knows that, for the deformation with base a complex space
germ, there is a versal deformation and its tangent space at the marked point
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is Ext1(G,G) (cf. [S-T]).
Let σ : G×X → X be the group action; then (σ∗F , G, idG) is a deformation of
F (flatness can be seen e.g. by embedding X equivariantly in a projective space
(cf. [Akh], 3.2) and noting that the Hilbert polynomial of σ∗F |{g}×X= τ∗gF
is then constant for g ∈ G; here τg : X → X is the automorphism induced by
g). Since Ext1(F ,F) = 0 one has by the above that σ∗F will be locally trivial
over G, i.e. σ∗F ≃ pr∗2F locally over G where pr2 : G×X → X is the second
projection (F is “rigid”). In particular τ∗gF ≃ F ∀g ∈ G.
Since the locus of points where F is not locally free is a proper algebraic subset
of X and invariant under G by the preceding statement, it is empty because
G acts transitively. Thus F is a vector bundle satisfying τ∗gF ≃ F ∀g ∈ G.
Since G is semisimple and assumed to be simply connected, this is enough to
imply that F is a G-homogeneous bundle (a proof of this last assertion due to
A. Huckleberry is presented in [Ot2] thm. 9.9).

Remark 2.1.5. In proposition 2.1.4 one must insist that G be simply connected
as an example in [GIT], ch.1, §3 shows : The exceptional bundle OPn(1) on
Pn is SLn+1-homogeneous, but not homogeneous for the adjoint form PGLn+1

with its action σ : PGLn+1 × Pn → Pn since the SLn+1-action on H0(OPn(1))
does not factor through PGLn+1.

Remark 2.1.6. It would be interesting to know which rational homogeneous
manifolds X enjoy the property that exceptional objects in Db(CohX) are ac-
tually just shifts of exceptional sheaves. It is straightforward to check that this
is true on P1. This is because, if C is a curve, Db(CohC) is not very inter-
esting: In fancy language, the underlying abelian category is hereditary which
means Ext2(F ,G) = 0 ∀F ,G ∈ obj (CohC). It is easy to see (cf. [Ke], 2.5)
that then every object Z in Db(CohC) is isomorphic to the direct sum of shifts
of its cohomology sheaves

⊕
i∈Z H

i(Z)[−i] whence morphisms between objects
Z1 and Z2 correspond to tuples (ϕi, ei)i∈Z with ϕi : Hi(Z1)→ Hi(Z2) a sheaf
morphism and ei ∈ Ext1(Hi(Z1),Hi−1(Z2)) an extension class . Exceptional
objects are indecomposable since they are simple.
The same property holds on P2 (and more generally on any Del Pezzo surface)
by [Gor], thm. 4.3.3, and is conjectured to be true on Pn in general ([Gor],
3.2.7).

The sequences B and B′ in theorem 2.1.1 are examples of complete strong
exceptional sequences (cf. [Ru1] for the development of this notion).

Definition 2.1.7. (A) An n-tuple (E1, . . . , En) of exceptional objects in
Db(A) is called an exceptional sequence if

Extl(Ej , Ei) = 0 ∀1 ≤ i < j ≤ n and ∀l ∈ Z .

If in addition

Extl(Ej , Ei) = 0 ∀1 ≤ i, j ≤ n and ∀l 6= 0
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we call (E1, . . . , En) a strong exceptional sequence. The sequence is com-
plete if E1, . . . , En generate Db(A).

(B) In order to phrase conjecture 2.2.1 below precisely, it will be conve-
nient to introduce also the following terminology: A set of exceptional
objects {E1, . . . , En} in Db(A) that generates Db(A) and such that
Extl(Ej , Ei) = 0 for all 1 ≤ i, j ≤ n and all l 6= 0 will be called a
complete strong exceptional set. A partial order ≤ on a complete strong
exceptional set is admissible if Hom(Ej , Ei) = 0 for all j ≥ i, i 6= j. A pair
({E1, . . . , En},≤) consisting of a complete strong exceptional set and an
admissible partial order on it will be called a complete strong exceptional
poset.

(C) A complete very strong exceptional poset is a pair ({E1, . . . , En},≤) where
{E1, . . . , En} is a complete strong exceptional set and ≤ is a partial order
on this set such that Hom(Ej , Ei) = 0 unless i ≥ j.

Obviously every complete strong exceptional sequence is a complete strong ex-
ceptional poset (with the partial order being in fact a total order). I think it
might be possible that for complete strong exceptional posets in Db(CohX)
which consist of vector bundles, X a rational homogeneous manifold, the con-
verse holds, i.e. any admissible partial order can be refined to a total order
which makes the poset into a complete strong exceptional sequence. But I
cannot prove this.
Moreover, every complete very strong exceptional poset is in particular a com-
plete strong exceptional poset. If we choose a total order refining the partial
order on a complete very strong exceptional poset, we obtain a complete strong
exceptional sequence.
Let me explain the usefulness of these concepts by first saying what kind of
analogues of Beilinson’s theorem 2.1.1 we can expect for Db(A) once we know
the existence of a complete strong exceptional set.

Look at a complete strong exceptional set {E1, . . . , En} in Db(A) consisting
of objects Ei, 1 ≤ i ≤ n, of A. If Kb({E1, . . . , En}) denotes the homotopy
category of bounded complexes in A whose terms are finite direct sums of the
Ei’s, it is clear that the natural functor

Φ(E1,...,En) : Kb({E1, . . . , En})→ Db(A)

(composition of the inclusion Kb({E1, . . . , En}) →֒ Kb(A) with the localization
Q : Kb(A)→ Db(A)) is an equivalence; indeed Φ(E1,...,En) is essentially surjec-
tive because {E1, . . . , En} is complete and Φ(E1,...,En) is fully faithful because
Extp(Ei, Ej) = 0 for all p > 0 and all i and j implies

HomKb({E1,...,En})(A,B) ≃ HomDb(A)(Φ(E1,...,En)A,Φ(E1,...,En)B)

∀A, B ∈ objKb({E1, . . . , En})

Documenta Mathematica 11 (2006) 261–331



Derived Categories of Rational Homogeneous Manifolds 273

(cf. [AO], prop. 2.5).
Returning to derived categories of coherent sheaves and dropping the hypoth-
esis that the Ei’s be objects of the underlying Abelian category, we have the
following stronger theorem of A. I. Bondal:

Theorem 2.1.8. Let X be a smooth projective variety and (E1, . . . , En) a strong
complete exceptional sequence in Db(CohX). Set E :=

⊕n
i=1Ei, let A :=

End(E) =
⊕

i,j Hom(Ei, Ej) be the algebra of endomorphisms of E, and denote
mod−A the category of right modules over A which are finite dimensional over
C.
Then the functor

RHom•(E,−) : Db(Coh (X))→ Db(mod−A)

is an equivalence of categories (note that, for any object Y of Db(Coh (X)),
RHom•(E, Y ) has a natural action from the right by A = Hom(E,E)).
Moreover, the indecomposable projective modules over A are (up to isomor-
phism) exactly the Pi := idEi

·A, i = 1, . . . , n. We have HomDb(Coh (X))(Ei, Ej)
≃ HomA(Pi, Pj) and an equivalence

Kb({P1, . . . , Pn}) ∼−→ Db(mod−A)

where Kb({P1, . . . , Pn}) is the homotopy category of complexes of right A-
modules whose terms are finite direct sums of the Pi’s.

For a proof see [Bo], §§5 and 6. Thus whenever we have a strong complete
exceptional sequence in Db(Coh (X)) we get an equivalence of the latter with
a homotopy category of projective modules over the algebra of endomorphisms
of the sequence. For the sequences B, B′ in theorem 2.1.1 we recover Beilin-
son’s theorem (although the objects of the module categories Kb({P1, . . . , Pn})
that theorem 2.1.8 produces in each of these cases will be different from the
objects in the module categories Kb

[0,n]S, resp. Kb
[0,n]Λ, in theorem 2.1.1, the

morphisms correspond and the respective module categories are equivalent).
Next suppose that Db(CohX) on a smooth projective variety X is generated
by an exceptional sequence (E1, . . . , En) that is not necessarily strong. Since
extension groups in nonzero degrees between members of the sequence need not
vanish in this case, one cannot expect a description of Db(CohX) on a homo-
topy category level as in theorem 2.1.8. But still the existence of (E1, . . . , En)
makes available some very useful computational tools, e.g. Beilinson type spec-
tral sequences. To state the result, we must briefly review some basic material
on an operation on exceptional sequences called mutation. Mutations are also
needed in subsection 2.2 below. Moreover, the very concept of exceptional se-
quence as a weakening of the concept of strong exceptional sequence was first
introduced because strong exceptionality is in general not preserved by muta-
tions, cf. [Bo], introduction p.24 (exceptional sequences are also more flexible
in other situations, cf. remark 3.1.3 below).
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For A, B ∈ objDb(CohX) set Hom×(A,B) :=
⊕

k∈Z Extk(A,B), a graded
C-vector space. For a graded C-vector space V , (V ∨)i := HomC(V −i,C) de-
fines the grading of the dual, and if X ∈ objDb(CohX), then V ⊗ X means⊕

i∈Z V
i⊗X[−i] where V i⊗X[−i] is the direct sum of dimV i copies of X[−i].

Definition 2.1.9. Let (E1, E2) be an exceptional sequence in Db(CohX). The
left mutation LE1

E2 (resp. the right mutation RE2
E1) is the object defined by

the distinguished triangles

LE1
E2 −→ Hom×(E1, E2)⊗ E1

can−→ E2 −→ LE1
E2[1]

(resp. RE2
E1[−1] −→ E1

can′−→ Hom×(E1, E2)∨ ⊗ E2 −→ RE2
E1 ).

Here can resp. can′ are the canonical morphisms (“evaluations”).

Theorem 2.1.10. Let E = (E1, . . . , En) be an exceptional sequence in
Db(CohX). Set, for i = 1, . . . , n− 1,

RiE :=
(
E1, . . . , Ei−1, Ei+1, REi+1

Ei, Ei+2, . . . , En
)
,

LiE := (E1, . . . , Ei−1, LEi
Ei+1, Ei, Ei+2, . . . , En) .

Then RiE and LiE are again exceptional sequences. Ri and Li are inverse to
each other; the Ri’s (or Li’s) induce an action of Bdn, the Artin braid group
on n strings, on the class of exceptional sequences with n terms in Db(CohX).
If moreover E is complete, so are all the RiE’s and LiE’s.

For a proof see [Bo], §2.
We shall see in example 2.1.13 that the two exceptional sequences B, B′ of
theorem 2.1.1 are closely related through a notion that we will introduce next:

Definition 2.1.11. Let (E1, . . . , En) be a complete exceptional sequence in
Db(CohX). For i = 1, . . . , n define

E∨
i := LE1

LE2
. . . LEn−i

En−i+1 ,
∨Ei := REn

REn−1
. . . REn−i+2

En−i+1 .

The complete exceptional sequences (E∨
1 , . . . , E

∨
n ) resp. (∨E1, . . . ,

∨En) are
called the right resp. left dual of (E1, . . . , En).

The name is justified by the following

Proposition 2.1.12. Under the hypotheses of definition 2.1.11 one has

Extk(∨Ei, Ej) = Extk(Ei, E
∨
j ) =

{
C if i+ j = n+ 1, i = k + 1

0 otherwise

Moreover the right (resp. left) dual of (E1, . . . , En) is uniquely (up to unique
isomorphism) defined by these equations.
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The proof can be found in [Gor], subsection 2.6.

Example 2.1.13. Consider on Pn = P(V ), the projective space of lines in the
vector space V , the complete exceptional sequence B′ = (Ωn(n), . . . ,Ω1(1),O)
and for 1 ≤ p ≤ n the truncation of the p-th exterior power of the Euler
sequence

0 −→ ΩpPn −→
(∧p

V ∨
)
⊗OPn(−p) −→ Ωp−1

Pn −→ 0 .

Let us replace B′ by
(
Ωn(n), . . . ,Ω2(2),O, ROΩ1(1)

)
, i.e., mutate Ω1(1) to the

right across O. But in the exact sequence

0 −→ Ω1(1) −→ V ∨ ⊗O −→ O(1) −→ 0

the arrow Ω1(1) → V ∨ ⊗ O is nothing but the canonical morphism Ω1(1) →
Hom(Ω1(1),O)∨ ⊗O from definition 2.1.9. Therefore ROΩ1(1) ≃ O(1).
Now in the mutated sequence (Ωn(n), . . . ,Ω2(2),O,O(1)) we want to mutate
in the next step Ω2(2) across O and O(1) to the right. In the sequence

0 −→ Ω2(2) −→
∧2

V ∨ ⊗O −→ Ω1(2) −→ 0

the arrow Ω2(2) → ∧2
V ∨ ⊗ O is again the canonical morphism Ω2(2) →

Hom(Ω2(2),O)∨ ⊗O and ROΩ2(2) ≃ Ω1(2) and then

0 −→ Ω1(2) −→ V ∨ ⊗O(1) −→ O(2) −→ 0

gives RO(1)ROΩ2(2) ≃ O(2).
Continuing this pattern, one transforms our original sequence B′ by successive
right mutations into (O,O(1),O(2), . . . ,O(n)) which, looking back at definition
2.1.11 and using the braid relations RiRi+1Ri = Ri+1RiRi+1, one identifies as
the left dual of B′.

Here is Gorodentsev’s theorem on generalized Beilinson spectral sequences.

Theorem 2.1.14. Let X be a smooth projective variety and let Db(CohX) be
generated by an exceptional sequence (E1, . . . , En). Let F : Db(CohX) → A
be a covariant cohomological functor to some Abelian category A.
For any object A in Db(CohX) there is a spectral sequence

Ep,q1 =
⊕

i+j=q

Extn+i−1(∨En−p, A)⊗ F j(Ep+1)

=
⊕

i+j=q

Ext−i(A,E∨
n−p)

∨ ⊗ F j(Ep+1) =⇒ F p+q(A)

(with possibly nonzero entries for 0 ≤ p, q ≤ n− 1 only).
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For the proof see [Gor], 2.6.4 (actually one can obtain A as a convolution of
a complex over Db(CohX) whose terms are computable once one knows the
Exti(∨Ej , A), but we don’t need this).
In particular, taking in theorem 2.1.14 the dual exceptional sequences in ex-
ample 2.1.13 and for F the functor that takes an object in Db(CohPn) to its
zeroth cohomology sheaf, we recover the classical Beilinson spectral sequence.
It is occasionally useful to split a derived category into more manageable build-
ing blocks before starting to look for complete exceptional sequences. This is
the motivation for giving the following definitions.

Definition 2.1.15. Let S be a full triangulated subcategory of a triangulated
category T . The right orthogonal to S in T is the full triangulated subcategory
S⊥ of T consisting of objects T such that Hom(S, T ) = 0 for all objects S of
S. The left orthogonal ⊥S is defined similarly.

Definition 2.1.16. A full triangulated subcategory S of T is right- (resp. left-)
admissible if for every T ∈ obj T there is a distinguished triangle

S −→ T −→ S′ −→ S[1] with S ∈ objS , S′ ∈ objS⊥

(resp. S′′ −→ T −→ S −→ S′′[1] with S ∈ objS , S′′ ∈ obj ⊥S )

and admissible if it is both right- and left-admissible.

Other useful characterizations of admissibility can be found in [Bo], lemma 3.1
or [BoKa], prop. 1.5.

Definition 2.1.17. An n-tuple of admissible subcategories (S1, . . . ,Sn) of
a triangulated category T is semi-orthogonal if Sj belongs to S⊥i whenever
1 ≤ j < i ≤ n. If S1, . . . ,Sn generate T one calls this a semi-orthogonal
decomposition of T and writes

T = 〈S1, . . . ,Sn〉 .
To conclude, we give a result that describes the derived category of coherent
sheaves on a product of varieties.

Proposition 2.1.18. Let X and Y be smooth, projective varieties and

(V1, . . . ,Vm)

resp.
(W1, . . . ,Wn)

be (strong) complete exceptional sequences in Db(Coh(X)) resp. Db(Coh(Y ))
where Vi and Wj are vector bundles on X resp. Y . Let π1 resp. π2 be the
projections of X × Y on the first resp. second factor and put Vi ⊠ Wj :=
π∗

1Vi ⊗ π∗
2Wj. Let ≺ be the lexicographic order on {1, . . . ,m} × {1, . . . , n}.

Then
(Vi ⊠Wj)(i,j)∈{1,...,m}×{1,...,n}

is a (strong) complete exceptional sequence in Db(Coh(X×Y )) where Vi1 ⊠Wj1

precedes Vi2 ⊠Wj2 iff (i1, j1) ≺ (i2, j2) .
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Proof. The proof is a little less straightforward than it might be expected at
first glance since one does not know explicit resolutions of the structure sheaves
of the diagonals on X ×X and Y × Y .
First, by the Künneth formula,

Extk(Vi2 ⊠Wj2 ,Vi1 ⊠Wj1) ≃ Hk(X × Y, (Vi1 ⊗ V∨
i2) ⊠ (Wj1 ⊗W∨

j2))

≃
⊕

k1+k2=k

Hk1(X,Vi1 ⊗ V∨
i2)⊗Hk2(Y,Wj1 ⊗W∨

j2)

≃
⊕

k1+k2=k

Extk1(Vi2 ,Vi1)⊗ Extk2(Wj2 ,Wj1)

whence it is clear that (Vi ⊠Wj) will be a (strong) exceptional sequence for
the ordering ≺ if (Vi) and (Wj) are so.
Therefore we have to show that (Vi ⊠Wj) generates Db(Coh(X × Y )) (see
[BoBe], lemma 3.4.1). By [Bo], thm. 3.2, the triangulated subcategory T
of Db(Coh(X × Y )) generated by the Vi ⊠ Wj ’s is admissible, and thus by
[Bo], lemma 3.1, it suffices to show that the right orthogonal T ⊥ is zero. Let
Z ∈ obj T ⊥ so that we have

HomDb(Coh(X×Y ))(Vi ⊠Wj , Z[l1 + l2]) = 0 ∀i ∈ {1, . . . ,m} ,
∀j ∈ {1, . . . , n} ∀l1, l2 ∈ Z.

But

HomDb(Coh(X×Y ))(Vi ⊠Wj , Z[l1 + l2])

≃ HomDb(Coh(X×Y ))

(
π∗

1Vi, RHom•
Db(Coh(X×Y ))(π

∗
2Wj , Z[l1])[l2]

)

≃ HomDb(Coh(X))

(
Vi, Rπ1∗RHom•

Db(Coh(X×Y ))(π
∗
2Wj , Z[l1])[l2]

)

using the adjointness of π∗
1 = Lπ∗

1 and Rπ1∗. But then

Rπ1∗RHom•
Db(Coh(X×Y ))(π

∗
2Wj , Z[l1]) = 0 ∀j ∈ {1, . . . ,m} ∀l1 ∈ Z

because the Vi generate Db(Coh(X)) and hence there is no non-zero object in
the right orthogonal to 〈V1, . . . ,Vn〉. Let U ⊂ X and V ⊂ Y be affine open
sets. Then

0 = RΓ
(
U,Rπ1∗RHom•

Db(Coh(X×Y ))(π
∗
2Wj , Z[l + l1])

)

≃ RHom• (Wj , Rπ2∗(Z[l] |U×Y )[l1]) ∀l, l1 ∈ Z

whence Rπ2∗(Z[l] |U×Y ) = 0 since the Wj generate Db(Coh(Y )) (using thm.
2.1.2 in [BoBe]). Therefore we get

RΓ(U × V,Z) = 0 .

But RiΓ(U × V,Z) = Γ(U × V,Hi(Z)) and thus all cohomology sheaves of Z
are zero, i.e. Z = 0 in Db(Coh(X × Y )).
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Remark 2.1.19. This proposition is very useful for a treatment of the derived
categories of coherent sheaves on rational homogeneous spaces from a system-
atic point of view. For if X = G/P with G a connected semisimple complex
Lie group, P ⊂ G a parabolic subgroup, it is well known that one has a de-
composition

X ≃ S1/P1 × . . .× SN/PN
where S1, . . . , SN are connected simply connected simple complex Lie groups
and P1, . . . , PN corresponding parabolic subgroups (cf. [Akh], 3.3, p. 74).
Thus for the construction of complete exceptional sequences on any G/P one
can restrict oneself to the case where G is simple.

2.2 Catanese’s conjecture and the work of Kapranov

First we fix some notation concerning rational homogenous varieties and
their Schubert varieties that will remain in force throughout the text unless
otherwise stated. References for this are [Se2], [Sp].

G is a complex semi-simple Lie group which is assumed to be con-
nected and simply connected with Lie algebra g.
H ⊂ G is a fixed maximal torus in G with Lie algebra the Cartan
subalgebra h ⊂ g.
R ⊂ h∗ is the root system associated to (g, h) so that

g = h⊕
⊕

α∈R
gα

with gα the eigen-subspace of g corresponding to α ∈ h∗. Choose a
base S = {α1, . . . , αr} for R; R+ denotes the set of positive roots
w.r.t. S, R− := −R+, so that R = R+ ∪R−, and ̺ is the half-sum
of the positive roots.
Aut(h∗) ⊃ W := 〈sα | sα the reflection with vector α leaving R
invariant〉 ≃ N(H)/H is the Weyl group of R.
Let b := h ⊕⊕α>0 gα, b− := h ⊕⊕α<0 gα be opposite Borel sub-
algebras of g corresponding to h and S, and p ⊃ b a parabolic
subalgebra corresponding uniquely to a subset I ⊂ S (then

p = p(I) = h⊕
⊕

α∈R+

gα ⊕
⊕

α∈R−(I)

gα

where R−(I) := {α ∈ R− | α =
∑r
i=1 kiαi with ki ≤ 0 for all i

and kj = 0 for all αj ∈ I}). Let B, B−, P = P (I) ⊃ B be the
corresponding connected subgroups of G with Lie algebras b, b−,
p.
X := G/P is the rational homogeneous variety corresponding to G
and P .
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l(w) is the length of an element w ∈W relative to the set of gener-
ators {sα | α ∈ S}, i.e. the least number of factors in a decompo-
sition

w = sαi1
sαi2

. . . sαil
, αij ∈ S ;

A decomposition with l = l(w) is called reduced. One has the
Bruhat order ≤ on W , i.e. x ≤ w for x, w ∈ W iff x can be
obtained by erasing some factors of a reduced decomposition of w.
WP is the Weyl group of P , the subgroup of W generated by the
simple reflections sα with α /∈ I. In each coset wWP ∈ W/WP

there exists a unique element of minimal length and WP denotes
the set of minimal representatives of W/WP . One has WP = {w ∈
W | l(ww′) = l(w) + l(w′) ∀w′ ∈WP }.
For w ∈ WP , Cw denotes the double coset BwP/P in X, called a
Bruhat cell, Cw ≃ Al(w). Its closure in X is the Schubert variety
Xw. C−

w = B−wP/P is the opposite Bruhat cell of codimension

l(w) in X, Xw = C−
w is the Schubert variety opposite to Xw.

There is the extended version of the Bruhat decomposition

G/P =
⊔

w∈WP

Cw

(a paving of X by affine spaces) and for v, w ∈WP : v ≤ w ⇔ Xv ⊆
Xw; we denote the boundaries ∂Xw := Xw\Cw, ∂Xw := Xw\C−

w ,
which have pure codimension 1 in Xw resp. Xw.

Moreover, we need to recall some facts and introduce further notation concern-
ing representations of the subgroup P = P (I) ⊂ G, which will be needed in
subsection 3 below. References are [A], [Se2], [Sp], [Ot2], [Stei].

The spaces hα := [gα, g−α] ⊂ h, α ∈ R, are 1-dimensional, one
has g =

⊕
α∈S hα ⊕

⊕
α∈R+ gα ⊕⊕α∈R− gα and there is a unique

Hα ∈ hα such that α(Hα) = 2.
Then we have the weight lattice Λ := {ω ∈ h∗ | ω(Hα) ∈
Z ∀α ∈ R} (which one identifies with the character group of H)
and the set of dominant weights Λ+ := {ω ∈ h∗ | ω(Hα) ∈
N ∀α ∈ R}. {ω1, . . . , ωr} denotes the basis of h∗ dual to the basis
{Hα1

, . . . ,Hαr
} of h. The ωi are the fundamental weights. If (·, ·) is

the inner product on h∗ induced by the Killing form, they can also
be characterized by the equations 2(ωi, αj)/(αj , αj) = δij (Kro-
necker delta). It is well known that the irreducible finite dimen-
sional representations of g are in one-to-one correspondence with
the ω ∈ Λ+, these ω occurring as highest weights.
I recall the Levi-Malčev decomposition of P (I) (resp. p(I)): The
algebras

sP :=
⊕

α∈S\I
hα ⊕

⊕

α∈R−(I)

(gα ⊕ g−α)
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resp.

lP :=
⊕

α∈S
hα ⊕

⊕

α∈R−(I)

(gα ⊕ g−α)

are the semisimple resp. reductive parts of p(I) containing h, the
corresponding connected subgroups of G will be denoted SP resp.
LP . The algebra

uP :=
⊕

α∈R−\R−(I)

g−α

is an ideal of p(I), p(I) = lP ⊕ uP , and the corresponding normal
subgroup Ru(P ) is the unipotent radical of P . One has

P = LP ⋉Ru(P ) ,

the Levi-Malčev decomposition of P . The center Z of the Levi
subgroup LP is Z = {g ∈ H |α(g) = 1 ∀α ∈ S\I}. The connected
center corresponds to the Lie algebra

⊕
α∈I hα and is isomorphic

to the torus (C∗)
|I|

. One has

P = Z · SP ⋉Ru(P ) .

Under the hypothesis that G is simply connected, also SP is simply
connected.
If r : P → GL(V ) is an irreducible finite-dimensional represen-
tation, Ru(P ) acts trivially, and thus those r are in one-to-one
correspondence with irreducible representations of the reductive
Levi-subgroup LP and as such possess a well-defined highest weight
ω ∈ Λ. Then the irreducible finite dimensional representations of
P (I) correspond bijectively to weights ω ∈ h∗ such that ω can be
written as ω =

∑r
i=1 kiωi, ki ∈ Z, such that kj ∈ N for all j such

that αj /∈ I. We will say that such an ω is the highest weight of the
representation r : P → GL(V ).
The homogeneous vector bundle on G/P associated to r will be
G ×r V := G × V/{(g, v) ∼ (gp−1, r(p)v) , p ∈ P, g ∈ G, v ∈ V }
as above. However, for a character χ : H → C (which will often
be identified with dχ ∈ h∗), L(χ) will denote the homogeneous line
bundle on G/B whose fibre at the point e ·B is the one-dimensional
representation of B corresponding to the character −χ. This has
the advantage that L(χ) will be ample iff dχ =

∑r
j=1 kjωj with

kj > 0, kj ∈ Z for all j, and it will also prove a reasonable conven-
tion in later applications of Bott’s theorem.

The initial stimulus for this work was a conjecture due to F. Catanese. This is
variant (A) of conjecture 2.2.1. Variant (B) is a modification of (A) due to the
author, but closely related.
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Conjecture 2.2.1. (A) On any rational homogeneous variety X = G/P
there exists a complete strong exceptional poset (cf. def. 2.1.7 (B))
and a bijection of the elements of the poset with the Schubert varieties
in X such that the partial order of the poset is the one induced by the
Bruhat-Chevalley order.

(B) For any X = G/P there exists a strong complete exceptional sequence
E = (E1, . . . , En) in Db(CohX) with n = |WP |, the number of Schubert
varieties in X (which is the topological Euler characteristic of X).
Moreover, since there is a natural partial order ≤E on the set of objects
in E by defining that E′ ≤E E for objects E and E′ of E iff there are
objects F1, . . . , Fr of E such that Hom(E′, F1) 6= 0, Hom(F1, F2) 6= 0, . . .,
Hom(Fr, E) 6= 0 (the order of the exceptional sequence E itself is a total
order refining ≤E), there should be a relation between the Bruhat order
on WP and ≤E (for special choice of E).
If P = P (αi), some i ∈ {1, . . . , r}, is a maximal parabolic subgroup in G
and G is simple, then one may conjecture more precisely: There exists
a strong complete exceptional sequence E = (E1, . . . , En) in Db(CohX)
and a bijection

b : {E1, . . . , En} → {Xw |w ∈WP }

such that
Hom(Ei, Ej) 6= 0 ⇐⇒ b(Ej) ⊆ b(Ei) .

We would like to add the following two questions:

(C) Does there always exist on X a complete very strong exceptional poset
(cf. def. 2.1.7 (C)) and a bijection of the elements of the poset with the
Schubert varieties in X such that the partial order of the poset is the one
induced by the Bruhat-Chevalley order?

(D) Can we achieve that the Ei’s in (A), (B) and/or (C) are homogeneous
vector bundles?

It is clear that, if the answer to (C) is positive, this implies (A). Moreover, the
existence of a complete very strong exceptional poset entails the existence of a
complete strong exceptional sequence.
For P maximal parabolic, part (B) of conjecture 2.2.1 is stronger than part
(A). We will concentrate on that case in the following.
In the next subsection we will see that, at least upon adopting the right point of
view, it is clear that the number of terms in any complete exceptional sequence
in Db(CohX) must equal the number of Schubert varieties in X.
To begin with, let me show how conjecture 2.2.1 can be brought in line with
results of Kapranov obtained in [Ka3] (and [Ka1], [Ka2]) which are summarized
in theorems 2.2.2, 2.2.3, 2.2.4 below.
One more piece of notation: If L is an m-dimensional vector space and λ =
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(λ1, . . . , λm) is a non-increasing sequence of integers, then ΣλL will denote the
space of the irreducible representation ̺λ : GL(L) → GL(ΣλL) of GL(L) ≃
GLmC with highest weight λ. Σλ is called the Schur functor associated to
λ; if E is a rank m vector bundle on a variety Y , ΣλE will denote the vector
bundle PGL(E) ×̺λ

Σλ(L) := PGL(E) × Σλ(L)/{(f, w) ∼ (fg−1, ̺λ(g)w), f ∈
PGL(E), w ∈ ΣλL, g ∈ GLmC} where PGL(E) is the principal GLmC- bundle
of local frames in E .

Theorem 2.2.2. Let Grass(k, V ) be the Grassmanian of k-dimensional sub-
spaces of an n-dimensional vector space V , and let R be the tautological
rank k subbundle on Grass(k, V ). Then the bundles ΣλR where λ runs over
Y (k, n− k), the set of Young diagrams with no more than k rows and no more
than n − k columns, are all exceptional, have no higher extension groups be-
tween each other and generate Db(CohGrass(k, V )).
Moreover, Hom(ΣλR,ΣµR) 6= 0 iff λi ≥ µi ∀i = 1, . . . , k. (Thus these ΣλR
form a strong complete exceptional sequence in Db(CohGrass(k, V )) when ap-
propriately ordered).

Theorem 2.2.3. If V is an n-dimensional vector space, 1 ≤ k1 < · · · < kl ≤ n
a strictly increasing sequence of integers, and Flag(k1, . . . , kl;V ) the variety of
flags of subspaces of type (k1, . . . , kl) in V , and if Rk1 ⊂ · · · ⊂ Rkl

denotes the
tautological flag of subbundles, then the bundles

Σλ1Rk1 ⊗ · · · ⊗ ΣλlRkl

where λj, j = 1, . . . , l − 1, runs over Y (kj , kj+1 − kj), the set of Young dia-
grams with no more than kj rows and no more than kj+1 − kj columns, and
λl runs over Y (kl, n − kl), form a strong complete exceptional sequence in
Db(CohFlag(k1, . . . , kl;V ) if we order them as follows:
Choose a total order ≺j on each of the sets Y (kj , kj+1 − kj) and ≺l on
Y (kl, n − kl) such that if λ ≺j µ (or λ ≺t µ) then the Young diagram of λ
is not contained in the Young diagram of µ; endow the set Y = Y (kl, n −
kl) × Y (kl−1, kl − kl−1) × · · · × Y (k1, k2 − k1) with the resulting lexicographic
order ≺. Then Σλ1Rk1 ⊗ · · · ⊗ ΣλlRkl

precedes Σµ1Rk1 ⊗ · · · ⊗ ΣµlRkl
iff

(λl, . . . , λ1) ≺ (µl, . . . , µ1).

Theorem 2.2.4. Let V be again an n-dimensional vector space and Q ⊂ P(V )
a nonsingular quadric hypersurface.
If n is odd and Σ denotes the spinor bundle on Q, then the following constitutes
a strong complete exceptional sequence in Db(CohQ):

(Σ(−n+ 2), OQ(−n+ 3), . . . ,OQ(−1), OQ)

and Hom(E , E ′) 6= 0 for two bundles E, E ′ in this sequence iff E precedes E ′ in
the ordering of the sequence.
If n is even and Σ+, Σ− denote the spinor bundles on Q, then

(Σ+(−n+ 2), Σ−(−n+ 2), OQ(−n+ 3), . . . ,OQ(−1), OQ)

Documenta Mathematica 11 (2006) 261–331



Derived Categories of Rational Homogeneous Manifolds 283

is a strong complete exceptional sequence in Db(CohQ) and Hom(E , E ′) 6= 0
for two bundles E, E ′ in this sequence iff E precedes E ′ in the ordering of the
sequence with the one exception that Hom(Σ+(−n+ 2),Σ−(−n+ 2)) = 0.

Here by Σ (resp. Σ+, Σ−), we mean the homogeneous vector bundles on
Q = SpinnC/P (α1), α1 the simple root corresponding to the first node in
the Dynkin diagram of type Bm, n = 2m + 1, (resp. the Dynkin diagram
of type Dm, n = 2m), that are the duals of the vector bundles associated to
the irreducible representation of P (α1) with highest weight ωm (resp. highest
weights ωm, ωm−1). We will deal more extensively with spinor bundles in
subsection 3.2 below.
First look at theorem 2.2.2. It is well known (cf. [BiLa], section 3.1) that if
one sets

Ik,n := {i = (i1, . . . , ik) ∈ Nk | 1 ≤ i1 < · · · < ik ≤ n}
and if Vi := 〈v1, . . . , vi〉 where (v1, . . . , vn) is a basis for V , then the Schubert
varieties in Grass(k, V ) can be identified with

Xi :=
{
L ∈ Grass(k, V ) | dim(L ∩ Vij ) ≥ j ∀1 ≤ j ≤ k

}
, i ∈ Ik,n

and the Bruhat order is reflected by

Xi ⊆ Xi′ ⇐⇒ ij ≤ i′j ∀1 ≤ j ≤ k;

and the i ∈ Ik,n bijectively correspond to Young diagrams in Y (k, n − k) by
associating to i the Young diagram λ(i) defined by

λ(i)t := ik−t+1 − (k − t+ 1) ∀1 ≤ t ≤ k .

Then containment of Schubert varieties corresponds to containment of asso-
ciated Young diagrams. Thus conjecture 2.2.1 (B) is verified by the strong
complete exceptional sequence of theorem 2.2.2.
In the case of Flag(k1, . . . , kl;V ) (theorem 2.2.3) one can describe the Schubert
subvarieties and the Bruhat order as follows (cf. [BiLa], section 3.2): Define

Ik1,...,kl
=
{(
i(1), . . . , i(l)

)
∈ Ik1,n × · · · × Ikl,n | i(j) ⊂ i(j+1) ∀1 ≤ j ≤ l − 1

}

Then the Schubert varieties in Flag(k1, . . . , kl;V ) can be identified with the

X(i(1),...,i(l)) := {(L1, . . . , Ll) ∈ Flag(k1, . . . , kl;V ) ⊂ Grass(k1, V )× . . .

. . .×Grass(kl, V ) |Lj ∈ Xi(j) ∀1 ≤ j ≤ l
}

for
(
i(1), . . . , i(l)

)
running over Ik1,...,kl

(keeping the preceding notation for the

Grassmannian). The Bruhat order on the Schubert varieties may be identified
with the following partial order on Ik1,...,kl

:

(
i(1), . . . , i(l)

)
≤
(
j(1), . . . , j(l)

)
⇐⇒ i(t) ≤ j(t) ∀1 ≤ t ≤ l.
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To set up a natural bijection between the set Y in theorem 2.2.3 and Ik1,...,kl

associate to i :=
(
i(1), . . . , i(l)

)
the following Young diagrams: λl(i) ∈ Y (kl, n−

kl) is defined by

(λl(i))t := i
(l)
kl−t+1 − (kl − t+ 1) ∀1 ≤ t ≤ kl.

Now since i(j) ⊂ i(j+1) ∀1 ≤ j ≤ l − 1 one can write

i(j)s = i
(j+1)
r(s) , s = 1, . . . , kj

where 1 ≤ r(1) < . . . < r(kj) ≤ kj+1. One then defines λj(i) ∈ Y (kj , kj+1−kj)
by

(λj(i))t := r(kj − t+ 1)− (kj − t+ 1) ∀1 ≤ t ≤ kj .

However it is not clear to me in this case how to relate the Bruhat order on
Ik1,...,kl

with the vanishing or non-vanishing of Hom-spaces between members of
the strong complete exceptional sequence in theorem 2.2.3 (there is an explicit
combinatorial criterion for the non-vanishing of

Hom
(
Σλ1Rk1 ⊗ · · · ⊗ ΣλlRkl

,Σµ1Rk1 ⊗ · · · ⊗ ΣµlRkl

)

formulated in [Ka3], 3.12, but if this relates in any perspicuous way to the
Bruhat order is not clear). In this respect, for the time being, conjecture 2.2.1
(parts (A) and (B)) must remain within the confines of wishful thinking.
If in the set-up of theorem 2.2.4 Q ⊂ P(V ), dimV = n = 2m + 1 odd, is a
smooth quadric hypersurface, then there are 2m Schubert varieties in Q and
the Bruhat order on them is linear (cf. [BiLa], pp. 139/140), so the strong
complete exceptional sequence of theorem 2.2.4 satisfies conjecture 2.2.1. (B).
The case of a smooth quadric hypersurface Q ⊂ P(V ) with dimV = n = 2m
even, is more interesting. The Bruhat order on the set of Schubert varieties
can be depicted in the following way (cf. [BiLa], p. 142/143):
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Here X0, . . . ,Xm−2, Xm−1, X
′
m−1, Xm, . . . ,X2m−2 are labels for the Schubert

varieties in Q and the subscript denotes the codimension in Q. The strong
complete exceptional sequence

(Σ+(−2m+ 2), Σ−(−2m+ 2), OQ(−2m+ 3), . . . ,OQ(−1), OQ)

does not verify conjecture 2.2.1 (B), but we claim that there is a strong complete
exceptional sequence in the same braid group orbit (see thm. 2.1.10) that does.
In fact, by [Ott], theorem 2.8, there are two natural exact sequences on Q

0 −→ Σ+(−1) −→ Hom(Σ+(−1),OQ)∨ ⊗OQ −→ Σ− −→ 0

0 −→ Σ−(−1) −→ Hom(Σ−(−1),OQ)∨ ⊗OQ −→ Σ+ −→ 0

where the (injective) arrows are the canonical morphisms of definition 2.1.9; one
also has dim Hom(Σ+(−1),OQ)∨ = dim Hom(Σ−(−1),OQ)∨ = 2m−1. (Cau-
tion: the spinor bundles in [Ott] are the duals of the bundles that are called
spinor bundles in this text which is clear from the discussion in [Ott], p.305!).
It follows that if in the above strong complete exceptional sequence we mutate
Σ−(−2m+2) across OQ(−2m+3), . . . ,OQ(−m+1) to the right and afterwards
mutate Σ+(−2m + 2) across OQ(−2m + 3), . . . ,OQ(−m + 1) to the right, we
will obtain the following complete exceptional sequences in Db(CohQ):

If m is odd:

(
OQ(−2m+ 3), . . . ,OQ(−m+ 1), Σ+(−m+ 1), Σ−(−m+ 1),

OQ(−m+ 2), . . . ,OQ(−1), OQ) ,
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if m is even:

(
OQ(−2m+ 3), . . . ,OQ(−m+ 1), Σ−(−m+ 1), Σ+(−m+ 1),

OQ(−m+ 2), . . . ,OQ(−1), OQ) .

One finds (e.g. using theorem 2.2.4 and [Ott], thm.2.3 and thm. 2.8)
that these exceptional sequences are again strong and if we let the bun-
dles occurring in them (in the order given by the sequences) correspond to
X0, . . . ,Xm−2, Xm−1, X

′
m−1, Xm, . . . ,X2m−2 (in this order), then the above

two strong complete exceptional sequences verify conjecture 2.2.1. (B).

2.3 Information detected on the level of K-theory

The cellular decomposition of X has the following impact on Db(CohX).

Proposition 2.3.1. The structure sheaves OXw
, w ∈ WP , of Schubert vari-

eties in X generate Db(CohX) as a triangulated category.

Since we have the Bruhat decomposition and each Bruhat cell is isomorphic to
an affine space, the proof of the proposition will follow from the next lemma.

Lemma 2.3.2. Let Y be a reduced algebraic scheme, U ⊂ Y an open subscheme
with U ≃ Ad, for some d ∈ N, Z := Y \U , i : U →֒ Y , j : Z →֒ Y the natural
embeddings. Look at the sequence of triangulated categories and functors

Db(CohZ)
j∗−−−−→ Db(CohY )

i∗−−−−→ Db(CohU)

(thus j∗ is extension by 0 outside Z which is exact, and i∗ is the restriction to
U , likewise exact). Suppose Z1, . . . , Zn ∈ objDb(CohZ) generate Db(CohZ).
Then Db(CohY ) is generated by j∗Z1, . . . , j∗Zn, OY .

Proof. Db(CohY ) is generated by CohY so it suffices to prove that each co-
herent sheaf F on Y is isomorphic to an object in the triangulated subcategory
generated by j∗Z1, . . . , j∗Zn, OY . By the Hilbert syzygy theorem i∗F has a
resolution

(∗) 0→ Lt → . . .→ L0 → i∗F → 0

where the Li are finite direct sums of OU . We recall the following facts (cf.
[FuLa] , VI, lemmas 3.5, 3.6, 3.7):

(1) For any coherent sheaf G on U there is a coherent extension G to Y .

(2) Any short exact sequence of coherent sheaves on U is the restriction of
an exact sequence of coherent sheaves on Y .

(3) If G is coherent on U and G1, G2 are two coherent extensions of G to Y ,

then there are a coherent sheaf G on Y and homomorphisms G f−→ G1,

G g−→ G2 which restrict to isomorphisms over U .
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Note that in the set-up of the last item we can write

0→ ker(f)→ G f−→ G1 → coker(f)→ 0 ,

0→ ker(g)→ G g−→ G2 → coker(g)→ 0

and ker(f), coker(f), ker(g), coker(g) are sheaves with support in Z, i.e. in
the image of j∗. Thus they will be isomorphic to an object in the subcate-
gory generated by j∗Z1, . . . , j∗Zn. In conclusion we see that if one coherent
extension G1 of G is isomorphic to an object in the subcategory generated by
j∗Z1, . . . , j∗Zn, OY , the same will be true for any other coherent extension G2.
The rest of the proof is now clear: We split (∗) into short exact sequences
and write down extensions of these to Y by item (2) above. Since the Li are
finite direct sums of OU one deduces from the preceding observation that F is
indeed isomorphic to an object in the triangulated subcategory generated by
j∗Z1, . . . , j∗Zn, OY .

Remark 2.3.3. On Pn it is possible to prove Beilinson’s theorem with the help
of proposition 2.3.1. Indeed the structure sheaves of a flag of linear subspaces
{OPn , OPn−1 , . . . ,OP1 , OP0} admit the Koszul resolutions

0→ O(−1)→ O → OPn−1 → 0

0→ O(−2)→ O(−1)⊕2 → O → OPn−2 → 0

...

0→ O(−n)→ O(−(n− 1))⊕n → . . .→ O(−1)⊕n → O → OP0 → 0

from which one concludes inductively that (O(−n), . . . ,O(−1), O) generates
Db(CohPn).

Next we want to explain a point of view on exceptional sequences that in par-
ticular makes obvious the fact that the number of terms in any complete ex-
ceptional sequence on X = G/P equals the number |WP | of Schubert varieties
in X.

Definition 2.3.4. Let T be a triangulated category. The Grothendieck group
K◦(T ) of T is the quotient of the free abelian group on the isomorphism classes
[A] of objects of T by the subgroup generated by expressions

[A]− [B] + [C]

for every distinguished triangle A −→ B −→ C −→ A[1] in T .

If T = Db(A), A an Abelian category, then we also have K◦(A) the
Grothendieck group of A, i.e. the free abelian group on the isomorphism
classes of objects of A modulo relations [D′] − [D] + [D′′] for every short
exact sequence 0 → D′ → D → D′′ → 0 in A, and it is clear that in
this case K◦(Db(A)) ≃ K◦(A) ( to a complex A ∈ objDb(A) one associates
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∑
i∈Z(−1)i[Hi(A)] ∈ K◦(A) which is a map that is additive on distinguished

triangles by the long exact cohomology sequence and hence descends to a
map K◦(Db(A)) → K◦(A); the inverse map is induced by the embedding
A →֒ Db(A)).
Let now Y be some smooth projective variety. Then to Z1, Z2 ∈ objDb(CohY )
one can assign the integer

∑
i∈Z(−1)i dimC Exti(Z1, Z2), a map which is biad-

ditive on distinguished triangles. Set K◦(Y ) := K◦(CohY ).

Definition 2.3.5. The (in general nonsymmetric) bilinear pairing

χ : K◦(Y )×K◦(Y )→ Z

([Z1], [Z2]) 7→
∑

i∈Z

(−1)i dimC Exti(Z1, Z2)

is called the Euler bilinear form (cf.[Gor]).

Proposition 2.3.6. Suppose that the derived category Db(CohY ) of a smooth
projective variety Y is generated by an exceptional sequence (E1, . . . , En). Then
K◦(Y ) ≃ Zn is a free Z-module of rank n with basis given by ([E1], . . . , [En]).
The Euler bilinear form χ is unimodular with Gram matrix with respect to the
basis ([E1], . . . , [En]): 



1
0 1 ∗
0 0 1
...

...
...

. . .

0 0 0 · · · 1




;

in other words, ([E1], . . . , [En]) is a semi-orthonormal basis w.r.t. χ.

Moreover, n = rkK◦(Y ) =
⊕dimY

r=0 rkAr(Y ), where Ar(Y ) is the group of
codimension r algebraic cycles on Y modulo rational equivalence (so that
A(Y ) =

⊕
r A

r(Y ) is the Chow ring of Y ).

Proof. Since the Ei, i = 1, . . . , n, generate Db(CohY ) in the sense of definition
2.1..2 it is clear that the [Ei] generate K◦(Y ) (note that for X, X ′, X ′′ ∈
objDb(CohY ) we have [X[n]] = (−1)n[X], n ∈ Z, [X ′ ⊕ X ′′] = [X ′] + [X ′′]
and for every distinguished triangle X ′ → X → X ′′ → X ′[1] one has [X ′′] =
[X]− [X ′]).
[E1] 6= 0 because χ([E1], [E1]) = 1 since E1 is exceptional. Assume inductively
that [E1], . . . , [Ei] are linearly independent in K◦(Y ) ⊗ Q. We claim [Ei+1] /∈
〈[E1], . . . , [Ei]〉Q. Indeed otherwise [Ei+1] =

∑i
j=1 λj [Ej ]; since [Ei+1] 6= 0

there is l := min{j | λj 6= 0}. Then

χ([Ei+1], [El]) = χ(

i∑

j=l

λj [Ej ], [El]) = λl 6= 0

(using Extk(Ej , Ei) = 0 ∀k ∈ Z ∀i < j) contradicting the fact that
χ([Ei+1], [El]) = 0 since l < i+ 1. Thus the ([E1], . . . , [En]) form a free Z-basis
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of K◦(Y ). The remaining assertions concerning χ are obvious from the above
arguments.
The last equality follows from the fact that the Grothendieck Chern character
ch gives an isomorphism

ch : K◦(Y )⊗Q→ A(Y )⊗Q

(cf. [Ful], 15.2.16 (b)).

Corollary 2.3.7. If (E1, . . . , En) is an exceptional sequence that generates
Db(CohX), X a rational homogeneous variety, then n = |WP |, the number of
Schubert varieties Xw in X.

Proof. It suffices to show that the [OXw
]’s likewise form a free Z-basis of

K◦(X). One way to see this is as follows: By proposition 2.3.1 it is clear
that the [OXw

] generate K◦(X). K◦(X) is a ring for the product [F ] · [G] :=∑
i∈Z(−1)i[T orXi (F ,G)] and

β : K◦(X)×K◦(X)→ Z

([F ], [G]) 7→
∑

i∈Z

(−1)ihi(X, [F ] · [G])

is a symmetric bilinear form. One can compute that β([OXx
], [OXy (−∂Xy)]) =

δyx (Kronecker delta) for x, y ∈WP , cf. [BL], proof of lemma 6, for details.

It should be noted at this point that the constructions in subsection 2.1 relating
to semi-orthogonal decompositions, mutations etc. all have their counterparts
on the K-theory level and in fact appear more natural in that context (cf. [Gor],
§1).

Remark 2.3.8. Suppose that on X = G/P we have a strong complete excep-
tional sequence (E1, . . . , En). Then the Gram matrix Γ of χ w.r.t. the basis
([E1], . . . , [En]) on K◦(X) ≃ Zn is upper triangular with ones on the diagonal
and (i, j)-entry equal to dimC Hom(Ei, Ej). Thus with regard to conjecture
2.2.1 it would be interesting to know the Gram matrix Γ′ of χ in the basis
given by the [OXw

]’s, w ∈WP , since Γ and Γ′ will be conjugate.
The following computation was suggested to me by M. Brion. Without loss
of generality one may reduce to the case X = G/B using the fibration
π : G/B → G/P : Indeed, the pull-back under π of the Schubert variety XwP ,
w ∈WP , is the Schubert variety Xww0,P

in G/B where w0,P is the element of
maximal length of WP , and π∗OXwP

= OXw w0,P
. Moreover, by the projection

formula and because Rπ∗OG/B = OG/P , we have Rπ∗ ◦π∗ ≃ idDb(CohG/P ) and

χ(π∗E , π∗F) = χ(E ,F)

for any E , F ∈ objDb(CohG/P ).
Therefore, let X = G/B and let x, y ∈ W . The first observation is that
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Xy = w0X
w0y and χ(OXx

,OXy
) = χ(OXx

,OXw0y ). This follows from the
facts that there is a connected chain of rational curves in G joining g to idG
(since G is generated by images of homomorphisms C→ G and C∗ → G) and
that flat families of sheaves indexed by open subsets of A1 yield the same class
in K◦(X), thus [OXw0y ] = [Ow0Xw0y ]. We have

RHom•(OXx
,OXw0y ) ≃ RΓ(X,RHom•(OXx

,OXw0y ))

≃ RΓ(X,RHom•(OXx
,OX)⊗L OXw0y )

(cf. [Ha1], prop. 5.3/5.14). Now Schubert varieties are Cohen-Macaulay, in
fact they have rational singularities (cf. [Ra1]), whence

RHom•(OXx
,OX) ≃ Extcodim(Xx)(OXx

,OX)[−codim(Xx)]

≃ ωXx
⊗ ω−1

X [−codim(Xx)] .

But ωXx
⊗ ω−1

X ≃ L(̺)|Xx
(−∂Xx) (L(̺) is the line bundle associated to the

character ̺), cf. [Ra1], prop. 2 and thm. 4. Now Xx and Xw0y are Cohen-
Macaulay and their scheme theoretic intersection is proper in X and reduced
([Ra1], thm. 3) whence T orXi (OXx

,OXw0y ) = 0 for all i ≥ 1 (cf. [Bri], lemma
1). Since ∂Xx is likewise Cohen-Macaulay by [Bri], lemma 4, we get by the
same reasoning T orXi (O∂Xx

,OXw0y ) = 0 for all i ≥ 1. Thus by the exact
sequence

0→ OXx
(−∂Xx)→ OXx

→ O∂Xx
→ 0

and the long exact sequence of Tor’s we see that T orXi (OXx
(−∂Xx),OXw0y ) =

0 for all i ≥ 1.
Therefore

RHom•(OXx
,OXw0y ) ≃ RΓ(X,L(̺)|Xx

(−∂Xx)[−codim(Xx)]⊗OXw0y )

so that setting Xw0y
x := Xx ∩Xw0y and (∂Xx)w0y := ∂Xx ∩Xw0y

χ(OXx
,OXy

) = (−1)codim(Xx)χ
(
L(̺)|Xw0y

x
(−(∂Xx)w0y)

)
.

This is 0 unless w0y ≤ x (because Xw0y
x is non-empty iff w0y ≤ x, see [BL],

lemma 1); moreover if w0y ≤ x there are no higher hi in the latter Euler
characteristic by [BL], prop. 2. In conclusion

χ(OXx
,OXy

) =

{
(−1)codim(Xx)h0

(
L(̺)|Xw0y

x
(−(∂Xx)w0y)

)
if w0y ≤ x

0 otherwise

though the impact of this on conjecture 2.2.1 ((A) or (B)) is not clear to me.
Cf. also [Bri2] for this circle of ideas.

3 Fibrational techniques

The main idea pervading this section is that the theorem of Beilinson on the
structure of the derived category of coherent sheaves on projective space ([Bei])
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and the related results of Kapranov ([Ka1], [Ka2], [Ka3]) for Grassmannians,
flag varieties and quadrics, generalize without substantial difficulty from the
absolute to the relative setting, i.e. to projective bundles etc. For projective
bundles, Grassmann and flag bundles this has been done in [Or]. We review
these results in subsection 3.1; the case of quadric bundles is dealt with in
subsection 3.2. Aside from being technically a little more involved, the re-
sult follows rather mechanically combining the techniques from [Ka3] and [Or].
Thus armed, we deduce information on the derived category of coherent sheaves
on isotropic Grassmannians and flag varieties in the symplectic and orthogonal
cases; we follow an idea first exploited in [Sa] using successions of projective
and quadric bundles.

3.1 The theorem of Orlov on projective bundles

Let X be a smooth projective variety, E a vector bundle of rank r + 1 on
X. Denote by P(E) the associated projective bundle † and π : P(E) → X
the projection. Set Db(E) := Db(Coh(P(E))), Db(X) := Db(Coh(X)). There
are the functors Rπ∗ : Db(E) → Db(X) (note that Rπ∗ : D+(Coh(P(E))) →
D+(Coh(X)), where D+(−) denotes the derived category of complexes
bounded to the left in an abelian category, maps Db(E) to Db(X) using
Riπ∗(F) = 0∀i > dim P(E) ∀F ∈ ObCoh(P(E)) and the spectral sequence
in hypercohomology) and π∗ : Db(X)→ Db(E) (π is flat, hence π∗ is exact and
passes to the derived category without taking the left derived functor).
We identify Db(X) with a full subcategory in Db(E) via π∗ (cf. [Or], lemma
2.1). More generally we denote by Db(X)⊗OE(m) for m ∈ Z the subcategory of
Db(E) which is the image of Db(X) in Db(E) under the functor π∗(−)⊗OE(m),
where OE(1) is the relative hyperplane bundle on P(E). Then one has the fol-
lowing result (cf. [Or], thm. 2.6):

Theorem 3.1.1. The categories Db(X)⊗OE(m) are all admissible subcategories
of Db(E) and we have a semiorthogonal decomposition

Db(E) =
〈
Db(X)⊗OE(−r), . . . ,Db(X)⊗OE(−1),Db(X)

〉
.

We record the useful

Corollary 3.1.2. If Db(X) is generated by a complete exceptional sequence

(E1, . . . , En) ,

then Db(E) is generated by the complete exceptional sequence

(π∗E1 ⊗OE(−r), . . . , π∗En ⊗OE(−r), π∗E1 ⊗OE(−r + 1),

. . . , π∗E1, . . . , π
∗En) .

†Here and in the following P(E) denotes Proj(Sym•(E∨)), i.e. the bundle of 1-dimensional
subspaces in the fibres of E, and contrary to Grothendieck’s notation not the bundle
Proj(Sym• E) of hyperplanes in the fibres of E which might be less intuitive in the sequel.
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Proof. This is stated in [Or], cor. 2.7; for the sake of completeness and because
the method will be used repeatedly in the sequel, we give a proof. One just
checks that

Extk(π∗Ei ⊗OE(−r1), π∗Ej ⊗OE(−r2)) = 0

∀k,∀1 ≤ i, j ≤ n∀0 ≤ r1 < r2 ≤ r and ∀k, ∀1 ≤ j < i ≤ n, r1 = r2. Indeed,

Extk(π∗Ei ⊗OE(−r1), π∗Ej ⊗OE(−r2)) ≃ Extk(π∗Ei, π
∗Ej ⊗OE(r1 − r2))

≃ Extk(Ei, Ej ⊗Rπ∗(OE(r1 − r2)))

where for the second isomorphism we use that Rπ∗ is right adjoint to π∗, and
the projection formula (cf. [Ha2], II, prop. 5.6). When r1 = r2 and i > j
then Rπ∗OE ≃ OX and Extk(Ei, Ej) = 0 for all k because (E1, . . . , En) is
exceptional. If on the other hand 0 ≤ r1 < r2 ≤ r then −r ≤ r1 − r2 < 0 and
Rπ∗(OE(r1 − r2)) = 0.
It remains to see that each π∗Ei ⊗ OE(−r1) is exceptional. From the above
calculation it is clear that this follows exactly from the exceptionality of Ei.

Remark 3.1.3. From the above proof it is clear that even if we start in
corollary 3.1.2 with a strong complete exceptional sequence (E1, . . . , En) (i.e.
Extk(Ei, Ej) = 0∀i, j ∀k 6= 0), the resulting exceptional sequence on P(E) need
not again be strong: For example takeX = P1 with strong complete exceptional
sequence (O(−1),O) and E = O ⊕ O(h), h ≥ 2, so that P(E) = Fh

π−→ P1 is
a Hirzebruch surface. Then (π∗O(−1)⊗OE(−1),OE(−1), π∗O(−1)⊗OE ,OE)
is an exceptional sequence on Fh that generates Db(Coh(Fh)), but it is not
a strong one since Ext1(OE(−1),OE) ≃ H1(P1, π∗OE(1)) ≃ H1(P1,O ⊕
O(−h)) ≃ Symh−2 C2 6= 0.

Analogous results hold for relative Grassmannians and flag varieties. Specif-
ically, if E is again a rank r + 1 vector bundle on a smooth projective vari-
ety X, denote by GrassX(k, E) the relative Grassmannian of k-planes in the
fibres of E with projection π : GrassX(k, E) → X and tautological subbun-
dle R of rank k in π∗E . Denote by Y (k, r + 1 − k) the set of partitions
λ = (λ1, . . . , λk) with 0 ≤ λk ≤ λk−1 ≤ . . . ≤ λ1 ≤ r + 1 − k or equiv-
alently the set of Young diagrams with at most k rows and no more than
r + 1 − k columns. For λ ∈ V (k, r + 1 − k) we have the Schur functor Σλ

and bundles ΣλR on GrassX(k, E). Moreover, as before we can talk about full
subcategories Db(X) ⊗ ΣλR of Db(Coh(GrassX(k, E))). Choose a total order
≺ on Y (k, r + 1 − k) such that if λ ≺ µ then the Young diagram of λ is not
contained in the Young diagram of µ, i.e. ∃i : µi < λi. Then one has (cf. [Or],
p. 137):

Theorem 3.1.4. There is a semiorthogonal decomposition

Db(Coh(GrassX(k, E))) =
〈
. . . ,Db(X)⊗ ΣλR, . . . ,Db(X)⊗ ΣµR, . . .

〉
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(λ ≺ µ).
If (E1, . . . , En) is a complete exceptional sequence in Db(X), then

(
. . . , π∗E1 ⊗ ΣλR, . . . , π∗En ⊗ ΣλR,

. . . , π∗E1 ⊗ ΣµR, . . . , π∗En ⊗ ΣµR, . . .)

is a complete exceptional sequence in Db(Coh(GrassX(k, E))). Here all π∗Ei⊗
ΣλR, i ∈ {1, . . . , n}, λ ∈ Y (k, r + 1 − k) occur in the list, and π∗Ei ⊗ ΣλR
precedes π∗Ej ⊗ ΣµR iff λ ≺ µ or λ = µ and i < j.

More generally, we can consider for 1 ≤ k1 < . . . < kt ≤ r + 1 the variety
FlagX(k1, . . . , kt; E) of relative flags of type (k1, . . . , kt) in the fibres of E , with
projection π and tautological subbundles Rk1 ⊂ . . . ⊂ Rkt

⊂ π∗E . If we denote
again by Y (a, b) the set of Young diagrams with at most a rows and b columns,
we consider the sheaves Σλ1Rk1⊗. . .⊗ΣλtRkt

on FlagX(k1, . . . , kt; E) with λk ∈
Y (kt, r+1−kt) and λj ∈ Y (kj , kj+1−kj) for j = 1, . . . , t−1 and subcategories
Db(X) ⊗ Σλ1Rk1 ⊗ . . . ⊗ ΣλtRkt

of Db(Coh(FlagX(k1, . . . , kt; E))). Choose a
total order ≺j on each of the sets Y (kj , kj+1 − kj) and ≺t on Y (kt, r+ 1− kt)
with the same property as above for the relative Grassmannian, and endow the
set Y = Y (kt, r+ 1− kt)× . . .×Y (k1, k2− k1) with the resulting lexicographic
order ≺.

Theorem 3.1.5. There is a semiorthogonal decomposition

Db(Coh(FlagX(k1, . . . , kt; E))) =
〈
. . . ,Db(X)⊗ Σλ1Rk1 ⊗ . . .⊗ ΣλtRkt

,

. . . ,Db(X)⊗ Σµ1Rk1 ⊗ . . .⊗ ΣµtRkt
, . . .

〉

((λt, . . . , λ1) ≺ (µt, . . . , µ1)).
If (E1, . . . , En) is a complete exceptional sequence in Db(X), then

(
. . . , π∗E1 ⊗ Σλ1Rk1 ⊗ . . .⊗ ΣλtRkt

, . . . , π∗En ⊗ Σλ1Rk1 ⊗ . . .⊗ ΣλtRkt
, . . . ,

π∗E1 ⊗ Σµ1Rk1 ⊗ . . .⊗ ΣµtRkt
, . . . , π∗En ⊗ Σµ1Rk1 ⊗ . . .⊗ ΣµtRkt

, . . .)

is a complete exceptional sequence in Db(Coh(FlagX(k1, . . . , kt; E))). Here all
π∗Ei ⊗ Σλ1Rk1 ⊗ . . . ⊗ ΣλtRkt

, i ∈ {1, . . . , n}, (λt, . . . , λ1) ∈ Y occur in the
list, and π∗Ei⊗Σλ1Rk1 ⊗ . . .⊗ΣλtRkt

precedes π∗Ej⊗Σµ1Rk1 ⊗ . . .⊗ΣµtRkt

iff (λt, . . . , λ1) ≺ (µt, . . . , µ1) or (λt, . . . , λ1) = (µt, . . . , µ1) and i < j.

Proof. Apply theorem 3.1.4 iteratively to the succession of Grassmann bundles

FlagX(k1, . . . , kt; E) = GrassFlagX(k2,...,kt;E)(k1,Rk2)

→ FlagX(k2, . . . , kt; E) = GrassFlagX(k3,...,kt;E)(k2,Rk3)→ . . .→ X
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3.2 The theorem on quadric bundles

Let us now work out in detail how the methods of Orlov ([Or]) and Kapranov
([Ka2], [Ka3]) yield a result for quadric bundles that is analogous to theorems
3.1.1, 3.1.4, 3.1.5.
As in subsection 3.1, X is a smooth projective variety with a vector bundle E
of rank r + 1 endowed with a symmetric quadratic form q ∈ Γ(X,Sym2 E∨)
which is nondegenerate on each fibre; Q := {q = 0} ⊂ P(E) is the associated
quadric bundle:

Q P(E)

X

→֒
J
J
JĴ ?

π = Π|Q Π

Write Db(X) := Db(CohX), Db(Q) := Db(CohQ), Db(E) := Db(CohP(E)).

Lemma 3.2.1. The functor

π∗ = Lπ∗ : Db(X)→ Db(Q)

is fully faithful.

Proof. Since Q is a locally trivial fibre bundle over X with rational homoge-
neous fibre, we have π∗OQ = OX and Riπ∗OQ = 0 for i > 0. The right adjoint
to Lπ∗ is Rπ∗, and Rπ∗ ◦ Lπ∗ is isomorphic to the identity on Db(X) because
of the projection formula and Rπ∗OQ = OX . Hence Lπ∗ is fully faithful (and
equal to π∗ since π is flat).

Henceforth Db(X) is identified with a full subcategory of Db(Q).
We will now define two bundles of graded algebras, A =

⊕
n≥0

An and B =
⊕
n≥0

Bn, on X. Form the tensor algebra T•(E [h]) where h is an indeterminate

with deg h = 2 and germs of sections in E have degree 1 and take the quotient
modulo the two-sided ideal I of relations with I(x) := 〈e⊗e−q(e)h, e⊗h−h⊗
e〉e∈E(x), (x ∈ X). This quotient is A, the bundle of graded Clifford algebras
of the orthogonal vector bundle E . On the other hand, B is simply defined as⊕
n≥0

π∗OQ(n), the relative coordinate algebra of the quadric bundle Q.

For each graded left A-module M =
⊕

i∈ZMi with Mi vector bundles on X
we get a complex L•(M) of bundles on Q

L•(M) : . . .→ π∗Mj ⊗C OQ(j)
dj

−−−−→ π∗Mj+1 ⊗C OQ(j + 1)→ . . .
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with differentials given as follows: For x ∈ X and e ∈ E(x) we get a family of
mappings

dj(x, e) :Mj(x)→Mj+1(x)

given by left multiplication by e on Mj(x) and linear in e which globalize to
mappings Π∗Mj ⊗OE(j)→ Π∗Mj+1 ⊗OE(j + 1). When restricted to Q two
successive maps compose to 0 and we get the required complex.
We recall at this point the relative version of Serre’s correspondence (cf. e.g.
[EGA], II, §3):

Theorem 3.2.2. Let ModXE be the category whose objects are coherent sheaves
over X of graded Sym•E∨-modules of finite type with morphisms

HomModX
E

(M,N ) := lim
−→
n

HomSym• E∨(
⊕

i≥n
Mi,

⊕

i≥n
Ni)

(the direct limit running over the groups of homomorphisms of sheaves of
graded modules over Sym• E∨ which are homogeneous of degree 0). If F ∈
obj(Coh(P(E))) set

α(F) :=
∞⊕

n=0

Π∗(F(n)) .

Then the functor α : Coh(P(E)))→ModXE is an equivalence of categories with
quasi-inverse (−)∼ which is an additive and exact functor.

The key remark is now that L•(A∨) is exact since it arises by applying the
Serre functor (−)∼ to the complex P • given by

. . .
d−−−−→ A∨

2 ⊗ B[−2]
d−−−−→ A∨

1 ⊗ B[−1]
d−−−−→ A∨

0 ⊗ B → OX → 0.

Here, if (e1, . . . , er+1) is a local frame of E = A1 and (e∨1 , . . . , e
∨
r+1) is the

corresponding dual frame for E∨ = B1, the differential d is
∑r+1
i=1 l

∨
ei
⊗le∨i , where

lei
: A[−1] → A is left multiplication by ei and analogously le∨i : B[−1] → B.

This complex is exact since it is so fibrewise as a complex of vector bundles; the
fibre over a point x ∈ X is just Priddy’s generalized Koszul complex associated
to the dual quadratic algebras B(x) = ⊕iH0(Q(x),OQ(x)(i)) and A(x), the
graded Clifford algebra of the vector space E(x). See [Ka3], 4.1 and [Pri].
Define bundles Ψi, i ≥ 0, on Q by a twisted truncation, i.e., by the requirement
that

0→ Ψi → π∗A∨
i → π∗A∨

i−1 ⊗OQ(1)→ . . .→ π∗A∨
0 ⊗OQ(i)→ 0

be exact. Look at the fibre product

∆ ⊂ Q×X Q p2−−−−→ Q
p1

y π

y

Q π−−−−→ X
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together with the relative diagonal ∆. The goal is to cook up an infinite to
the left but eventually periodic resolution of the sheaf O∆ on Q ×X Q, then
truncate it in a certain degree and identify the remaining kernel explicitly.
Write Ψi ⊠O(−i) for p∗1Ψi ⊗ p∗2OQ(−i) and consider the maps Ψi ⊠O(−i)→
Ψi−1 ⊠O(−i+ 1) induced by the maps of complexes

(π∗A∨
i ⊗O) ⊠O(−i) −−−−→ (π∗A∨

i−1 ⊗O(1)) ⊠O(−i) −−−−→ . . .
y

y

(π∗A∨
i−1 ⊗O) ⊠O(−i+ 1) −−−−→ (π∗A∨

i−2 ⊗O(1)) ⊠O(−i+ 1) −−−−→ . . .

where the vertical arrows are given by
∑r+1
i=1 (π∗r∨ei

⊗ id)⊠ l̃e∨i ; here again we’re
using the local frames (e1, . . . , er+1), resp. (e∨1 , . . . , e

∨
r+1), rei

: A[−1] → A
is right multiplication by ei and l̃e∨i is the map induced by le∨i : B[−1] → B
between the associated sheaves (via the Serre correspondence).
This is truly a map of complexes since right and left Clifford multiplication
commute with each other. Moreover, we obtain a complex, infinite on the left
side

R• : . . .→ Ψi ⊠O(−i)→ . . .→ Ψ2 ⊠O(−2)→ Ψ1 ⊠O(−1)→ OQ×XQ .

Lemma 3.2.3. The complex R• is a left resolution of O∆, ∆ ⊂ Q×X Q being
the diagonal.

Proof. Consider B2 :=
⊕

i Bi ⊗OX
Bi, the “Segre product of B with itself”

(i.e. the homogeneous coordinate ring of Q ×X Q under the (relative) Segre
morphism). Look at the following double complex D•• of B2-modules:

. . .
⊕

iA∨
2 ⊗ Bi ⊗ Bi−2

⊕
iA∨

1 ⊗ Bi ⊗ Bi−1

⊕
i Bi ⊗ Bi

. . .
⊕

iA∨
1 ⊗ Bi+1 ⊗ Bi−2

⊕
i Bi+1 ⊗ Bi−1

. . .
⊕

i Bi+2 ⊗ Bi−2

-

-

-

-

-

-

6 6

6

Here the columns correspond to the right resolutions of Ψ0 ⊠O, Ψ1 ⊠O(−1),
Ψ2⊠O(−2) etc. (starting from the right) if we pass from complexes of coherent
sheaves on Q ×X Q to complexes of graded B2-modules via Serre’s theorem.
For example, the left-most column in the above diagram arises from

(π∗A∨
2 ⊗OQ) ⊠O(−2)→ (π∗A∨

1 ⊗OQ(1)) ⊠O(−2)

→ (π∗A∨
0 ⊗OQ(2)) ⊠O(−2)→ 0
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The horizontal arrows in the above diagram then come from the morphisms of
complexes defining the differentials in R•.
The associated total complex Tot•(D••) has a natural augmentation a :
Tot•(D••) →⊕

i B2i arising from the multiplication maps Bi+j ⊗ Bi−j → B2i

and corresponding to the augmentation R• → O∆.
Claim: a is a quasi-isomorphism. For this note that D•• is the direct sum over
i of double complexes

. . . A∨
2 ⊗ Bi ⊗ Bi−2 A∨

1 ⊗ Bi ⊗ Bi−1 Bi ⊗ Bi

. . . A∨
1 ⊗ Bi+1 ⊗ Bi−2 Bi+1 ⊗ Bi−1

. . . Bi+2 ⊗ Bi−2

-

-

-

-

-

-

6 6

6

which are bounded (B is positively graded) and whose rows are just Priddy’s
resolution P • in various degrees and thus the total complex of the above direct
summand of D•• is quasi-isomorphic to A∨

0 ⊗B2i⊗B0 = B2i. Thus Tot•(D••)
is quasi-isomorphic to

⊕
i B2i.

The next step is to identify the kernel of the map Ψr−2 ⊠O(−r+ 2)→ Ψr−3 ⊠

O(−r + 3). For this we have to talk in more detail about spinor bundles.
Let Cliff(E) = A/(h − 1)A be the Clifford bundle of the orthogonal vector
bundle E . This is just Cliff(E) := T• E/I(E) where I(E) is the bundle of ideals
whose fibre at x ∈ X is the two-sided ideal I(E(x)) in T •(E(x)) generated
by the elements e ⊗ e − q(e)1 for e ∈ E(x). Cliff(E) inherits a Z/2-grading,
Cliff(E) = Cliffeven(E)⊕ Cliffodd(E).

For r + 1 odd we will now make the following assumption (A):

There exists a bundle of irreducible Cliffeven(E)-modules S(E),
self-dual up to twist by a line bundle L on X, i.e.
S(E)∨ ≃ S(E)⊗ L,

together with an isomorphism of sheaves of algebras on X
Cliff(E) ≃ End(S(E))⊕ End(S(E))

such that
Cliffeven(E) ≃ End(S(E)).

For r + 1 even we assume (A’):
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There exist bundles of irreducible Cliffeven(E)-modules

S+(E), S−(E), which for r + 1 ≡ 0(4) satisfy

S+(E)∨ ≃ S+(E)⊗ L
S−(E)∨ ≃ S−(E)⊗ L

and for r + 1 ≡ 2(4) satisfy

S+(E)∨ ≃ S−(E)⊗ L
S−(E)∨ ≃ S+(E)⊗ L, L a line bundle on X,

together with an isomorphism of sheaves on algebras on X
Cliff(E) ≃ End(S+(E)⊕ S−(E))

such that
Cliffeven(E) ≃ End(S+(E))⊕ End(S−(E)).

We will summarize this situation by saying that the orthogonal vector bundle
E admits spinor bundles S(E) resp. S+(E), S−(E).
Conditions (A) resp. (A’) will be automatically satisfied in the applications in
subsection 3.4.
Then for r + 1 even

M− := S−(E)⊕ S+(E)⊕ S−(E)⊕ . . .
and

M+ := S+(E)⊕ S−(E)⊕ S+(E)⊕ . . .
are graded left A-modules (the grading starting from 0); one defines bundles
Σ+, Σ− on Q by the requirement that

0→ (Σ±)∨ → L•(M±) for r + 1 ≡ 0(mod 4) ,

0→ (Σ∓)∨ → L•(M±) for r + 1 ≡ 2(mod 4)

be exact.
For r + 1 odd let M be the graded left A- module (grading starting from 0)

M := S(E)⊕ S(E)⊕ S(E)⊕ . . .
and define the bundle Σ on Q by the requirement that

0→ (Σ)∨ → L•(M)

be exact.
From the definition

Σ± =: Σ±(OQ(−1)⊥/OQ(−1)) resp. Σ =: Σ(OQ(−1)⊥/OQ(−1))

are spinor bundles for the orthogonal vector bundle OQ(−1)⊥/OQ(−1) on Q.

Lemma 3.2.4. The kernel

ker(Ψr−2 ⊠O(−r + 2)→ Ψr−3 ⊠O(−r + 3))

is equal to
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(i) for r + 1 odd:

(Σ(−1)⊗ π∗ L−1) ⊠ Σ(−r + 1)

(ii) for r + 1 ≡ 2(mod 4) :

((Σ+(−1)⊗π∗ L−1)⊠Σ+(−r+ 1))⊕ ((Σ−(−1)⊗π∗ L−1)⊠Σ−(−r+ 1))

(iii) and for r + 1 ≡ 0(mod 4) :

((Σ+(−1)⊗π∗ L−1)⊠Σ−(−r+ 1))⊕ ((Σ−(−1)⊗π∗ L−1)⊠Σ+(−r+ 1))

Proof. For i ≥ r Ai
mult(h)−→ Ai+2 is an isomorphism because (ei1 · . . . · eikhm),

1 ≤ i1 < . . . < ik ≤ r + 1, m ∈ N is a local frame for A if (e1, . . . , er+1) is one

for E , and the map Ai → Cliffpar(i)(E) induced by A → A/(h− 1)A is then an
isomorphism where

par(i) :=

{
even, i ≡ 0(mod 2)
odd, i ≡ 1(mod 2)

.

Because L•(A∨) is exact, Ψi is also the cokernel of

(∗) . . .→ π∗A∨
i+3 ⊗OQ(−3)→ π∗A∨

i+2 ⊗OQ(−2)→ π∗A∨
i+1 ⊗OQ(−1)

Since ker(Ψr−2 ⊠ O(−r + 2) → Ψr−3 ⊠ O(−r + 3)) = coker(Ψr ⊠ O(−r) →
Ψr−1 ⊠ O(−r + 1)) we conclude that a left resolution of the kernel in lemma
3.2.4 is given by Tot•(E••) where E•• is the following double complex:

. . . (π∗Cliffpar(r+1)E∨(−1)) ⊠ O(−r) (π∗Cliffpar(r)E∨(−1)) ⊠ O(−r + 1)

. . . (π∗Cliffpar(r+2)E∨(−2)) ⊠ O(−r) (π∗Cliffpar(r+1)E∨(−2)) ⊠ O(−r + 1)

...
...

-

-

-

-

? ?

??

Here the columns (starting from the right) are the left resolutions (∗) of Ψr−1⊠

O(−r+1), Ψr⊠O(−r), etc. and the rows are defined through the morphisms of
complexes defining the differentials Ψr−1⊠O(−r+1)→ Ψr⊠O(−r) etc. in the

resolution R•. For odd r+1 we have Cliffodd(E) ≃ Cliffeven(E) ≃ End(S(E)) ≃
S(E)∨ ⊗ S(E) whence our double complex becomes
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. . . π∗S(E)∨(−1) ⊠ π∗S(E)(−r) π∗S(E)∨(−1) ⊠ π∗S(E)(−r + 1)

. . . π∗S(E)∨(−2) ⊠ π∗S(E)(−r) π∗S(E)∨(−2) ⊠ π∗S(E)(−r + 1)

...
...

-

-

-

-

? ?

??

and is thus isomorphic as a double complex to L•(M)∨(−1) ⊠ (L•(M)∨(−r+
1)⊗π∗L−1) ≃ (L•(M)∨(−1)⊗π∗L−1)⊠L•(M)∨(−r+1), i.e. quasi-isomorphic
to (Σ(−1) ⊗ π∗L−1) ⊠ Σ(−r + 1). The cases for even r + 1 are considered
similarly.

Lemma 3.2.5. Consider the following two ordered sets of sheaves on Q:

S = {Σ(−r + 1) ≺ OQ(−r + 2) ≺ . . . ≺ OQ(−1) ≺ OQ} (r + 1 odd) ,

S′ =
{

Σ+(−r + 1) ≺ Σ−(−r + 1) ≺ . . . ≺ OQ(−1) ≺ OQ
}

(r + 1 even).

If V, V1, V2 ∈ S (resp.: ∈ S′) with V1 ≺ V2, V1 6= V2, we have the following
identities

Riπ∗(V ⊗ V∨) = 0 , ∀i 6= 0,

Riπ∗(V1 ⊗ V∨
2 ) = 0 ∀i ∈ Z, Riπ∗(V2 ⊗ V∨

1 ) = 0 ∀i 6= 0 .

and the canonical morphism R0π∗(V ⊗ V∨)→ OX is an isomorphism.

Proof. In the absolute case (where the base X is a point) this is a calculation
in [Ka3] , prop. 4.9., based on Bott’s theorem. The general assertion follows
from this by the base change formula because the question is local on X and
we can check this on open sets U ⊂ X which cover X and over which Q is
trivial.

As in subsection 3.1, for V ∈ S (resp. ∈ S′), we can talk about subcategories
Db(X) ⊗ V of Db(Q) as the images of Db(X) in Db(Q) under the functor
π∗(−)⊗ V.

Proposition 3.2.6. Let V, V1,V2 be as in lemma 3.2.5. The subcategories
Db(X) ⊗ V of Db(Q) are all admissible subcategories. Moreover, for A ∈
obj(Db(X)⊗ V2), B ∈ obj(Db(X)⊗ V1) we have RHom(A,B) = 0.

Proof. LetA = π∗A′⊗V2, B = π∗B′⊗V1. Using lemma 3.2.5 and the projection
formula we compute

RiHom(π∗A′ ⊗ V2, π
∗B′ ⊗ V1) ≃ RiHom(π∗A′, π∗B′ ⊗ V1 ⊗ V∨

2 )

≃ RiHom(A′, B′ ⊗Rπ∗(V1 ⊗ V∨
2 )) ≃ 0 .
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If we repeat the same calculation with V instead of V1 and V2 we find that
RiHom(π∗A′⊗V, π∗B′⊗V) ≃ RiHom(A′, B′). This shows that the categories
Db(X)⊗V are all equivalent to Db(X) as triangulated subcategories of Db(Q).
It follows from [BoKa] , prop. 2.6 and thm. 2.14, together with lemma 3.2.1
that the Db(X)⊗ V are admissible subcategories of Db(Q).

Theorem 3.2.7. Let X be a smooth projective variety, E an orthogonal vector
bundle on X, Q ⊂ P(E) the associated quadric bundle, and let assumptions (A)
resp. (A’) above be satisfied.
Then there is a semiorthogonal decomposition

Db(Q) =
〈
Db(X)⊗ Σ(−r + 1),Db(X)⊗OQ(−r + 2),

. . . ,Db(X)⊗OQ(−1),Db(X)
〉

for r + 1 odd and

Db(Q) =
〈
Db(X)⊗ Σ+(−r + 1),Db(X)⊗ Σ−(−r + 1),

Db(X)⊗OQ(−r + 2), . . . ,Db(X)⊗OQ(−1),Db(X)
〉

for r + 1 even.

Proof. By proposition 3.2.6 the categories in question are semiorthogonal and it
remains to see that they generate Db(Q). For ease of notation we will consider
the case of odd r + 1, the case of even r + 1 being entirely similar.
From lemmas 3.2.3 and 3.2.4 we know that in the situation of the fibre product

∆ ⊂ Q×X Q p2−−−−→ Q
p1

y π

y

Q π−−−−→ X

we have a resolution

0→ (Σ(−1)⊗ π∗L−1) ⊠ Σ(−r + 1)→ Ψr−2 ⊠OQ(−r + 2)→ . . .

. . .→ Ψ1 ⊠O(−1)→ OQ×XQ → O∆ → 0

and tensoring this with p∗1F (F a coherent sheaf on Q)

0→ (Σ(−1)⊗ π∗L−1 ⊗F) ⊠ Σ(−r + 1)→ (Ψr−2 ⊗F) ⊠OQ(−r + 2)→ . . .

. . .→ (Ψ1 ⊗F) ⊠O(−1)→ F ⊠OQ → p∗1F|∆ → 0

and applying Rp2 ∗ we obtain a spectral sequence

Eij1 = Rip2 ∗((Ψ−j ⊗F) ⊠OQ(j)) − r + 2 < j ≤ 0

= Rip2 ∗((Σ(−1)⊗ π∗L−1 ⊗F) ⊠ Σ(−r + 1)) j = −r + 1

= 0 otherwise
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and Eij1 ⇒ Ri+jp2 ∗(p∗1F|∆) which is = F for i + j = 0 and = 0 otherwise.
But since cohomology commutes with flat base extension (cf. [EGA], III, §1,
prop. 1.4.15), we have Rip2 ∗p∗1G ≃ π∗Riπ∗G for any coherent G on Q. This
together with the projection formula shows that all Eij1 belong to one of the
admissible subcategories in the statement of theorem 3.2.7. This finishes the
proof because Db(Q) is generated by the subcategory Coh(Q).

Corollary 3.2.8. If Db(X) is generated by a complete exceptional sequence

(E1, . . . , En) ,

then Db(Q) is generated by the complete exceptional sequence

(π∗E1 ⊗ Σ(−r + 1), . . . , π∗En ⊗ Σ(−r + 1), π∗E1 ⊗OQ(−r + 2), . . . , π∗En)

for r + 1 odd and
(
π∗E1 ⊗ Σ+(−r + 1), . . . , π∗En ⊗ Σ+(−r + 1), . . . , π∗E1 ⊗ Σ−(−r + 1),

. . . , π∗En ⊗ Σ−(−r + 1), π∗E1 ⊗OQ(−r + 2), . . . , π∗E1, . . . , π
∗En

)

for r + 1 even.

Proof. Using lemma 3.2.5, one proves this analogously to corollary 3.1.2; we
omit the details.

3.3 Application to varieties of isotropic flags in a symplectic
vector space

We first fix some notation: Let V be a C-vector space of even dimension 2n
with a nondegenerate skew symmetric bilinear form 〈·, ·〉. For 1 ≤ k1 < . . . <
kt ≤ n we denote IFlag(k1, . . . , kt;V ) := {(Lk1 , . . . , Lkt

) | Lk1 ⊂ . . . Lkt
⊂ V

isotropic subspaces of V with dimLkj
= kj , 1 ≤ j ≤ t} the (partial) flag

variety of isotropic flags of type (k1, . . . , kt) in V ; moreover, for 1 ≤ k ≤ n, put
IGrass(k, V ) := IFlag(k;V ), the Grassmann manifold of isotropic k-planes in
V . As usual, we have the tautological flag of subbundles Rk1 ⊂ . . . ⊂ Rkt

⊂
V ⊗OIFlag(k1,...,kt;V ) on IFlag(k1, . . . , kt;V ) and the tautological subbundle R
on IGrass(k, V ).

Remark 3.3.1. Via the projection IFlag(k1, . . . , kt;V ) → IGrass(kt, V ), the
variety IFlag(k1, . . . , kt;V ) identifies with FlagIGrass(kt,V )(k1, . . . , kt−1;R), the
relative variety of flags of type (k1, . . . , kt−1) in the fibres of the tautological
subbundle R on IGrass(kt, V ). Therefore, by theorem 3.1.5, if we want to
exhibit complete exceptional sequences in the derived categories of coherent
sheaves on all possible varieties of (partial) isotropic flags in V , we can reduce
to finding them on isotropic Grassmannians. Thus we will focus on the latter
in the sequel.

Now look at the following diagram (the notation will be explained below)
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IFlag(1;V ) ≃ P(V )

IFlag(1, 2;V ) ≃ P(E1)

IFlag(1, 2, . . . , k − 1;V ) ≃ P(Ek−2)

IFlag(1, 2, . . . , k − 1, k;V ) ≃ P(Ek−1) ≃ FlagIGrass(k,V )(1, 2, . . . , k;R)

...

?

?

?

?

IGrass(k, V )

B
B
B
B
B
B
B
B
B
B
B
B
B
BN

π

π1

π2

πk−2

πk−1

Since for 1 ≤ i ≤ j ≤ k − 1 the i-dimensional tautological subbundle on
IFlag(1, 2, . . . , j;V ) pulls back to the i-dimensional tautological subbundle on
IFlag(1, 2, . . . , j + 1;V ) under πj , we denote all of them by the same symbol
Ri regardless of which space they live on, if no confusion can arise.
Since any line in V is isotropic, the choice of a 1-dimensional isotropic L1 ⊂ V
comes down to picking a point in P(V ) whence the identification IFlag(1;V ) ≃
P(V ) above; the space L⊥

1 /L1 is again a symplectic vector space with skew form
induced from 〈·, ·〉 on V , and finding an isotropic plane containing L1 amounts
to choosing a line L2/L1 in L⊥

1 /L1. Thus IFlag(1, 2;V ) is a projective bundle
P(E1) over IFlag(1;V ) with E1 = R⊥

1 /R1, and on P(E1) ≃ IFlag(1, 2;V ) we
have OE1

(−1) ≃ R2/R1. Of course, rk E1 = 2n− 2.
Continuing this way, we successively build the whole tower of projective bundles
over P(V ) in the above diagram where

Ej ≃ R⊥
j /Rj , j = 1, . . . , k − 1 , rk Ej = 2n− 2j

and OEj
(−1) ≃ Rj+1/Rj .

Moreover, IFlag(1, 2, . . . , k−1, k;V ) is just FlagIGrass(k,V )(1, . . . , k;R), the rel-
ative variety of complete flags in the fibres of the tautological subbundle R
on IGrass(k, V ); the flag of tautological subbundles in V ⊗ OIFlag(1,...,k;V ) on
IFlag(1, . . . , k;V ) and the flag of relative tautological subbundles in π∗R on
FlagIGrass(k,V )(1, 2, . . . , k;R) correspond to each other under this isomorphism,
and we do not distinguish them notationally.
For λ = (λ1, . . . , λk) ∈ Zk define the line bundle L(λ) on the variety
FlagIGrass(k,V )(1, . . . , k;R) by

L(λ) := (R1)⊗(−λ1) ⊗ (R2/R1)⊗(−λ2) ⊗ . . .⊗ (π∗R/Rk−1)⊗(−λk) .

(This notation is consistent with that of L(χ) in subsection 2.2 which will
be further explained in the comment after the proof of lemma 3.3.2 below).
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Repeatedly applying corollary 3.1.2 to the above tower of projective bundles,
we find that the following sheaves constitute a complete exceptional sequence
in Db(Coh (FlagIGrass(k,V )(1, . . . , k;R))):

(L(λ)) with − 2n+ 1 ≤ λ1 ≤ 0,

(♯) − 2n+ 3 ≤ λ2 ≤ 0,

...

−2n+ 2k − 1 ≤ λk ≤ 0.

Here L(λ) precedes L(µ) according to the ordering of the exceptional sequence
iff (λk, λk−1, . . . , λ1) ≺ (µk, µk−1, . . . , µ1) where ≺ is the lexicographic order
on Zk.
Let us record here the simple

Lemma 3.3.2. The set of full direct images Rπ∗L(λ), as L(λ) varies among
the bundles (♯), generates the derived category Db(Coh(IGrass(k, V ))).

Proof. As in lemma 3.2.1, Rπ∗OFlagIGrass(k,V )(1,...,k;R) ≃ OIGrass(k,V ), and

Rπ∗ ◦ π∗ is isomorphic to the identity functor on Db(Coh(IGrass(k, V ))) by
the projection formula. Thus, since the bundles in (♯) generate the derived
category upstairs, if E is an object in Db(Coh(IGrass(k, V ))), π∗E will be
isomorphic to an object in the smallest full triangulated subcategory contain-
ing the objects (♯), i.e. starting from the set (♯) and repeatedly enlarging it
by taking finite direct sums, shifting in cohomological degree and completing
distinguished triangles by taking a mapping cone, we can reach an object iso-
morphic to π∗E. Hence it is clear that the objects Rπ∗L(λ) will generate the
derived category downstairs because Rπ∗π∗E ≃ E.

Now the fibre of FlagIGrass(k,V )(1, . . . , k;R) over a point x ∈ IGrass(k, V ) is
just the full flag variety Flag(1, . . . , k;R(x)) which is a quotient of GLkC by
a Borel subgroup B; the λ ∈ Zk can be identified with weights or characters
of a maximal torus H ⊂ B and the restriction of L(λ) to the fibre over x
is just the line bundle associated to the character λ, i.e. GLkC ×B C−λ,
where C−λ is the one-dimensional B-module in which the torus H acts via
the character −λ and the unipotent radical Ru(B) of B acts trivially, and
GLkC ×B C−λ := GLkC × C−λ/{(g, v) ∼ (gb−1, bv) , b ∈ B}. Thus we can
calculate the Rπ∗L(λ) by the following (relative) version of Bott’s theorem (cf.
[Wey], thm. 4.1.4 or [Akh], §4.3 for a full statement):

Let ̺ := (k−1, k−2, . . . , 0) (the half sum of the positive roots) and let W = Sk,
the symmetric group on k letters (the Weyl group), act on Zk by permutation
of entries:

σ((λ1, . . . , λk)) :=
(
λσ(1), . . . , λσ(k)

)
.

The dotted action of Sk on Zk is defined by

σ•(λ) := σ(λ+ ̺)− ̺ .
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Then the theorem of Bott asserts in our case:

• Either there exists σ ∈ Sk, σ 6= id, such that σ•(λ) = λ. Then
Riπ∗L(λ) = 0 ∀i ∈ Z;

• or there exists a unique σ ∈ Sk such that σ•(λ) =: µ is non-increasing
(i.e., µ is a dominant weight). Then

Riπ∗L(λ) = 0 for i 6= l(σ) ,

Rl(σ)π∗L(λ) = ΣµR∨ ,

where l(σ) is the length of the permutation σ (the smallest number of
transpositions the composition of which gives σ) and Σµ is the Schur
functor.

As a first consequence, note that the objects Rπ∗L(λ) all belong -up to shift
in cohomological degree- to the abelian subcategory of Db(Coh(IGrass(k, V )))
consisting of coherent sheaves. We would like to determine the homogeneous
bundles that arise as direct images of the bundles (♯) in this way. The following
theorem gives us some information (though it is not optimal).

Theorem 3.3.3. The derived category Db(Coh(IGrass(k, V ))) is generated by
the bundles ΣνR, where ν runs over Young diagrams Y which satisfy

(number of columns of Y ) ≤ 2n− k ,
k ≥ (number of rows of Y ) ≥ (number of columns of Y )− 2(n− k) .

Proof. Note that if λ satisfies the inequalities in (♯), then for δ := λ + ̺ we
have

−(2n− k) ≤ δ1 ≤ k − 1 ,

(♯♯) − (2n− k − 1) ≤ δ2 ≤ k − 2 ,

...

−(2n− 2k + 1) ≤ δk ≤ 0 .

First of all one remarks that for σ•(λ) = σ(δ) − ̺ to be non-increasing, it is
necessary and sufficient that σ(δ) be strictly decreasing. We assume this to
be the case in the following. Since the maximum possible value for σ(δ)1 is
k− 1, and the minimum possible value for σ(δ)k is −(2n− k), we find that for
σ•(λ) =: µ

0 ≥ µ1 ≥ . . . ≥ µk ≥ −(2n− k) ;

putting ν = (ν1, . . . , νk) := (−µk,−µk−1, . . . ,−µ1) and noticing that ΣµR∨ ≃
ΣνR, we find that the direct images Riπ∗L(λ), i ∈ Z, L(λ) as in (♯), will form
a subset of the set of bundles ΣνR on IGrass(k, V ) where ν runs over the set of
Young diagrams with no more than 2n− k columns and no more than k rows.
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But in fact we are only dealing with a proper subset of the latter: Suppose
that

σ(δ)k = −(2n− k − a+ 1) , 1 ≤ a ≤ k − 1 .

Then the maximum possible value for σ(δ)a is k − a − 1. For in any case an
upper bound for σ(δ)a is k − a because σ(δ)1 can be at most k − 1 and the
sequence σ(δ) is strictly decreasing. But in case this upper bound for σ(δ)a is
attained, the sequence σ(δ) must start with

σ(δ)1 = k − 1 , σ(δ)2 = k − 2 , . . . , σ(δ)a = k − a ,
in other words, we can only have

σ(δ)1 = δ1 , . . . , σ(δ)a = δa .

But this is impossible since δa+1, . . . , δk are all≥ −(2n−k−a) > −(2n−k−a+1)
and thus we could not have σ(δ)k = −(2n− k− a+ 1). Hence σ(δ)a is at most
k−a−1, that is to say in σ•(λ) = σ(δ)−̺ = µ we have µa = σ(δ)a−(k−a) < 0;
or in terms of ν = (−µk, . . . ,−µ1) we can say that if the Young diagram Y (ν)
of ν has 2n− k− a+ 1 columns, 1 ≤ a ≤ k− 1, it must have at least k− a+ 1
rows; or that the Young diagram Y (ν) satisfies

(number of rows of Y (ν)) ≥ (number of columns of Y (ν))− 2(n− k)

where the inequality is meaningless if the number on the right is ≤ 0. Thus by
lemma 3.3.2 this concludes the proof of theorem 3.3.3.

Remark 3.3.4. By thm. 2.2.2, in Db(Coh(Grass(k, V ))) there is a com-
plete exceptional sequence consisting of the Σν̃R̃ where R̃ is the tautologi-
cal subbundle on Grass(k, V ) and ν̃ runs over Young diagrams with at most
2n − k columns and at most k rows. Looking at IGrass(k, V ) as a subvariety
IGrass(k, V ) ⊂ Grass(k, V ) we see that the bundles in theorem 3.3.3 form a
proper subset of the restrictions of the Σν̃R̃ to IGrass(k, V ).

Before making the next remark we have to recall two ingredients in order to
render the following computations transparent:
The first is the Littlewood-Richardson rule to decompose Σλ ⊗ Σµ into irre-
ducible factors where λ, µ are Young diagrams (cf. [FuHa], §A.1). It says the
following: Label each box of µ with the number of the row it belongs to. Then
expand the Young diagram λ by adding the boxes of µ to the rows of λ subject
to the following rules:

(a) The boxes with labels ≤ i of µ together with the boxes of λ form again a
Young diagram;

(b) No column contains boxes of µ with equal labels.

(c) When the integers in the boxes added are listed from right to left and
from top down, then, for any 0 ≤ s ≤ (number of boxes of µ), the first s
entries of the list satisfy: Each label l (1 ≤ l ≤ (number of rows of µ)−1
) occurs at least as many times as the label l + 1.
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Then the multiplicity of Σν in Σλ ⊗ Σµ is the number of times the Young
diagram ν can be obtained by expanding λ by µ according to the above rules,
forgetting the labels.
The second point is the calculation of the cohomology of the bundles ΣλR
on the variety IGrass(k, V ), V a 2n-dimensional symplectic vector space (cf.
[Wey], cor. 4.3.4). Bott’s theorem gives the following prescription:
Look at the sequence

µ = (−λk,−λk−1, . . . ,−λ1, 0, . . . , 0) ∈ Zn

considered as a weight of the root system of type Cn. Let W be the Weyl
group of this root system which is a semi-direct product of (Z/2Z)n with the
symmetric group Sn and acts on weights by permutation and sign changes of
entries. Let ̺ := (n, n − 1, . . . , 1) be the half sum of the positive roots for
type Cn. The dotted action of W on weights is defined as above by σ•(µ) :=
σ(µ+ ̺)− ̺. Then

• either there is σ ∈W , σ 6= id, such that σ•(µ) = µ. then all cohomology
groups

H•(IGrass(k, V ),ΣλR) = 0 .

• or there is a unique σ ∈ W such that σ•(µ) =: ν is dominant (a non-
increasing sequence of non-negative integers). Then the only non-zero
cohomology group is

H l(σ)(IGrass(k, V ),ΣλR) = Vν ,

where l(σ) is the length of the Weyl group element σ and Vν is the space
of the irreducible representation of Sp2nC with highest weight ν.

Remark 3.3.5. The Riπ∗L(λ), i ∈ Z, L(λ) as in (♯), are not in general
exceptional: For example, take k = n = 3, so that we are dealing with
IGrass(3, V ), the Lagrangian Grassmannian of maximal isotropic subspaces
in a 6-dimensional symplectic space V . Then L((0,−3, 0)) is in (♯). Adding
̺ = (2, 1, 0) to (0,−3, 0) we get (2,−2, 0) and interchanging the last two en-
tries and subtracting ̺ again, we arrive at (0,−1,−2) which is non-increasing
whence

R1π∗L((0,−3, 0)) = Σ2,1,0R ,
all other direct images being 0. To calculate

Ext•
(
Σ2,1,0R,Σ2,1,0R

)
= H• (IGrass(3, V ),Σ2,1,0R⊗ Σ0,−1,−2R

)

= H•
(

IGrass(3, V ),Σ2,1,0R⊗ Σ2,1,0R⊗
(∧3

R∨
)⊗2

)

we use the Littlewood-Richardson rule and Bott’s theorem as recalled above:
One gets that

Σ2,1,0R⊗ Σ0,−1,−2R = Σ2,0,−2R⊕ Σ2,−1,−1R⊕ Σ1,1,−2R
⊕(Σ1,0,−1R)⊕2 ⊕ Σ0,0,0R
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in view of the fact that if we expand λ = (2, 1, 0) by µ = (2, 1, 0) we get the
following Young diagrams according to the Littlewood-Richardson rule:

1 1
2

1 1

2

1
1 2

1
1

2

1

1
2

1

2
1 1

1
2

2

1
1

Thus calculating the cohomology of Σ2,1,0R ⊗ Σ0,−1,−2R by the version of
Bott’s theorem recalled above one finds that

Hom
(
Σ2,1,0R,Σ2,1,0R

)
= C Ext1

(
Σ2,1,0R,Σ2,1,0R

)
= V1,1,0 ⊕ V2,0,0 6= 0

the other Ext groups being 0.

Next we want to show by some examples that, despite the fact that theorem
3.3.3 does not give a complete exceptional sequence on IGrass(k, V ), it is some-
times -for small values of k and n- not so hard to find one with its help.

Example 3.3.6. Choose k = n = 2, i.e. look at IGrass(2, V ), dimV = 4.
Remarking that O(1) on IGrass(2, V ) in the Plücker embedding equals

∧topR∨

and applying theorem 3.3.3 one finds that the following five sheaves generate
Db(Coh(IGrass(2, V ))):

O , R ,
∧2
R = O(−1) , Σ2,1R = R(−1) , O(−2) ;

The real extra credit that one receives from working on the Lagrangian Grass-
mannian IGrass(2, V ) is that R = R⊥ and the tautological factor bundle can
be identified with R∨ ≃ R(1), i.e. one has an exact sequence

0 −−−−→ R −−−−→ V ⊗O −−−−→ R(1) −−−−→ 0 .

Twisting by O(−1) in this sequence shows that of the above five sheaves, R(−1)
is in the full triangulated subcategory generated by the remaining four; more-
over, it is a straightforward computation with Bott’s theorem that

(O(−2), O(−1), R, O)

is a strong exceptional sequence in Db(Coh(IGrass(2, V ))); but this is also com-
plete, i.e., it generates this derived category by the preceding considerations. In
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fact, this does not come as a surprise. IGrass(2, V ) is isomorphic to a quadric
hypersurface in P4, more precisely it is a hyperplane section of the Plücker
quadric Grass(2, V ) ⊂ P5. By [Ott], thm. 1.4 and ex. 1.5, the spinor bun-
dles on the Plücker quadric are the dual of the tautological subbundle and the
tautological factor bundle on Grass(2, V ) and these both restrict to the spinor
bundleR∨ on IGrass(2, V ) ⊂ P4 (let us renew here the warning from subsection
2.2 that the spinor bundles in [Ott] are the duals of the bundles that we choose
to call spinor bundles in this work). We thus recover the result of [Ka3], §4, in a
special case. Note that the identification of IGrass(2, V ) with a quadric hyper-
surface in P4 also follows more conceptually from the isomorphism of marked
Dynkin diagrams

j z��HH

α1 α2

C2

≃ z jHH��

α′
1 α′

2

B2

corresponding to the isomorphism Sp4C/P (α2) ≃ Spin5C/P (α′
1) (cf. [Stei],

prop. p. 16 and [FuHa], §23.3). Recalling the one-to-one correspondence
between conjugacy classes of parabolic subgroups of a simple complex Lie group
G and subsets of the set of simple roots, the notations P (α2) resp. P (α′

1) are
self-explanatory.

Example 3.3.7. Along the same lines which are here exposed in general, A.
V. Samokhin treated in [Sa] the particular case of IGrass(3, V ), dimV = 6,
and using the identification of the tautological factor bundle with R∨ on this
Lagrangian Grassmannian and the exact sequence

0 −−−−→ R −−−−→ V ⊗O −−−−→ R∨ −−−−→ 0 .

together with its symmetric and exterior powers found the following strong
complete exceptional sequence for Db(Coh(IGrass(3, V ))):

(R(−3), O(−3), R(−2), O(−2), R(−1), O(−1), R, O)

and we refer to [Sa] for details of the computation.

In general I conjecture that on any Lagrangian Grassmannian IGrass(n, V ),
dimV = 2n, every “relation” between the bundles in theorem 3.3.3 in the
derived category Db(Coh IGrass(n, V )) (that is to say that one of these bundles
is in the full triangulated subcategory generated by the remaining ones) should
follow using the Schur complexes (cf. [Wey], section 2.4) derived from the exact
sequence 0→ R→ V ⊗O → R∨ → 0 (and the Littlewood-Richardson rule).
Let us conclude this subsection by giving an example which, though we do not
find a complete exceptional sequence in the end, may help to convey the sort
of combinatorial difficulties that one encounters in general.
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Example 3.3.8. For a case of a non-Lagrangian isotropic Grassmannian, look
at IGrass(2, V ), dimV = 6. Theorem 3.3.3 says that Db(Coh IGrass(2, V )) is
generated by the following 14 bundles:

(∗) SymaR(−b) , 0 ≤ a ≤ 3 , 0 ≤ b ≤ 4− a .

By corollary 2.3.7, the number of terms in a complete exceptional sequence must
be 12 in this case (in general for IGrass(k, V ) = Sp2n C/P (αk), dimV = 2n, one
has that WP (αk), the set of minimal representatives of the quotient W/WP (αk)

can be identified with k-tuples of integers (a1, . . . , ak) such that

1 ≤ a1 < a2 < . . . < ak ≤ 2n and

for 1 ≤ i ≤ 2n , if i ∈ {a1, . . . , ak} then 2n+ 1− i /∈ {a1, . . . , ak}

(see [BiLa], §3.3) and these are

2n(2n− 2) . . . (2n− 2(k − 1))

1 · 2 · · · · · k = 2k
(
n

k

)

in number). Without computation, we know by a theorem of Ramanan (cf.
[Ot2], thm 12.3) that the bundles in (∗) are all simple since they are associated
to irreducible representations of the subgroup P (α2) ⊂ Sp6 C.
Moreover the bundles

Σc1,c2R and Σd1,d2R with 0 ≤ c2 ≤ c1 ≤ 3 , 0 ≤ d2 ≤ d1 ≤ 3

have no higher extension groups between each other: By the Littlewood-
Richardson rule, every irreducible summand Σe1,e2R occurring in the decom-
position of Σd1,d2R ⊗ Σc1,c2R∨ satisfies −3 ≤ e2 ≤ e1 ≤ 3 and hence for
µ := (−e2,−e1, 0) ∈ Z3 and ̺ = (3, 2, 1) we find that µ+̺ is either a strictly de-
creasing sequence of positive integers or two entries in µ+̺ are equal up to sign
or one entry in µ+̺ is 0. In each of these cases, Bott’s theorem as recalled before
remark 3.3.5 tells us that Hi(IGrass(2, V ),Σe1,e2R) = 0 ∀i > 0. Combining
this remark with the trivial observation that for SymaR(−b), SymcR(−d) in
the set (∗) with b, d ≥ 1 we have

Exti(SymaR(−b),SymcR(−d)) = Exti(SymaR(−b+ 1),SymcR(−d+ 1)) ∀i

we infer that for A, B bundles in the set (∗) we can only have

Extj(A,B) 6= 0, some j > 0

if A occurs in the set

S1 := {O(−4), R(−3), Sym2R(−2), Sym3R(−1)}

and B is in the set
S2 := {O, R, Sym2R, Sym3R}
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or vice versa. By explicit calculation (which amounts to applying Bott’s theo-
rem another 32 more times) we find that the only non-vanishing higher exten-
sion groups between two bundles in (∗) are the following:

Ext1(Sym3R,R(−3)) = C, Ext1(Sym2R,Sym2R(−2)) = C

Ext1(Sym3R,Sym2R(−2)) = V, Ext1(R,Sym3R(−1)) = C

Ext1(Sym2R,Sym3R(−1)) = V, Ext1(Sym3R,Sym3R(−1)) = V2,0,0.

Thus in this case the set of bundles (∗) does not contain a strong complete
exceptional sequence. It does not contain a complete exceptional sequence,
either, since

Hom(R(−3),Sym3R) 6= 0, Hom(Sym2R(−2),Sym2R) 6= 0

Hom(Sym2R(−2),Sym3R) 6= 0, Hom(Sym3R(−1),R) 6= 0

Hom(Sym3R(−1),Sym2R) 6= 0, Hom(Sym3R(−1),Sym3R) 6= 0.

On the other hand one has on IGrass(2, V ) the following exact sequences of
vector bundles:

0→ R⊥ → V ⊗O → R∨ → 0 (1)

0→ R→ R⊥ → R⊥/R → 0. (2)

The second exterior power of the two term complex 0 → R → R⊥ gives an
acyclic complex resolving

∧2
(R⊥/R) which is isomorphic to OIGrass(2,V ) via

the mapping induced by the symplectic form 〈·, ·〉. Thus we get the exact
sequence

0→ Sym2R → R⊗R⊥ →
∧2
R⊥ → O → 0. (3)

The second symmetric power of the two term complex 0→ R⊥ → V ⊗O yields
the exact sequence

0→
∧2
R⊥ → R⊥ ⊗ V → Sym2 V ⊗O → Sym2R∨ → 0. (4)

Note also that R∨ ≃ R(1) and Sym2R∨ ≃ Sym2R(2). Since R ⊗ R(−1) ≃
Sym2R(−1)⊕O(−2) sequence (1) gives

0→ R⊥ ⊗R(−2)→ V ⊗R(−2)→ Sym2R(−1)⊕O(−2)→ 0 (5)

and
0→ R⊥(−2)→ V ⊗O(−2)→ R(−1)→ 0. (6)

Moreover twisting by O(−2) in (3) and (4) yields

0→ Sym2R(−2)→ R⊗R⊥(−2)→
∧2
R⊥(−2)→ O(−2)→ 0 (7)

0→
∧2
R⊥(−2)→ R⊥ ⊗ V (−2)→ Sym2 V ⊗O(−2)→ Sym2R → 0. (8)
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What (5), (6), (7), (8) tell us is that Sym2R(−2) is in the full triangulated sub-
category generated by O(−2), Sym2R(−1), R(−2), Sym2R, R(−1). Thus
the derived category Db(Coh IGrass(2, V )) is generated by the bundles in (∗)
without Sym2R(−2), which makes a total of 13 bundles.
But even in this simple case I do not know how to pass on to a complete ex-
ceptional sequence because there is no method at this point to decide which
bundles in (∗) should be thrown away and what extra bundles should be let in
to obtain a complete exceptional sequence.

3.4 Calculation for the Grassmannian of isotropic 3-planes in a
7-dimensional orthogonal vector space

In this section we want to show how the method of subsection 3.3 can be
adapted -using theorem 3.2.7 on quadric bundles- to produce sets of vector
bundles that generate the derived categories of coherent sheaves on orthogonal
Grassmannians (with the ultimate goal to obtain (strong) complete exceptional
sequences on them by appropriately modifying these sets of bundles). Since the
computations are more involved than in the symplectic case, we will restrict
ourselves to illustrating the method by means of a specific example:
Let V be a 7-dimensional complex vector space equipped with a non-degenerate
symmetric bilinear form 〈·, ·〉. IFlag(k1, . . . , kt;V ) denotes the flag variety of
isotropic flags of type (k1, . . . , kt), 1 ≤ k1 < · · · < kt ≤ 3, in V and IGrass(k, V ),
1 ≤ k ≤ 3, the Grassmannian of isotropic k-planes in V ; again in this setting
we have the tautological flag of subbundles

Rk1 ⊂ · · · ⊂ Rkt
⊂ V ⊗OIFlag(k1,...,kt;V )

on IFlag(k1, . . . , kt;V ) and the tautological subbundle R on IGrass(k, V ).
Now consider IGrass(3, V ) which sits in the diagram (D)

P6 ⊃ Q ≃ IFlag(1;V )

P(E1) ⊃ Q1 ≃ IFlag(1, 2;V )

P(E2) ⊃ Q2 ≃ IFlag(1, 2, 3;V ) ≃ FlagIGrass(3,V )(1, 2, 3;R)

�
��
π1

�
��
π2

IGrass(3, V )

B
B
B
B
B
B
BN

π (D)

The rank i tautological subbundle on IFlag(1, . . . , j;V ) pulls back to the rank
i tautological subbundle on IFlag(1, . . . , j + 1;V ) under πj , 1 ≤ i ≤ j ≤ 2, and
for ease of notation it will be denoted by Ri with the respective base spaces
being tacitly understood in each case.
The choice of an isotropic line L1 in V amounts to picking a point in the
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quadric hypersurface Q = {[v] ∈ P(V ) | 〈v, v〉 = 0} ⊂ P6. An isotropic plane L2

containing L1 is nothing but an isotropic line L2/L1 in the orthogonal vector
space L⊥

1 /L1. Thus IFlag(1, 2;V ) is a quadric bundle Q1 over IFlag(1;V ) in-
side the projective bundle P(E1) of the orthogonal vector bundle E1 := R⊥

1 /R1

on IFlag(1;V ). Similarly, IFlag(1, 2, 3;V ) is a quadric bundle Q2 ⊂ P(E2) over
IFlag(1, 2;V ) where E2 := R⊥

2 /R2, and at the same time IFlag(1, 2, 3;V ) is
isomorphic to the relative variety of complete flags FlagIGrass(k,V )(1, 2, 3;R) in
the fibres of the tautological subbundle R on IGrass(3, V ).
Moreover, OQ(−1) ≃ R1, OQ1

(−1) ≃ R2/R1, OQ2
(−1) ≃ R3/R2. We want

to switch to a more representation-theoretic picture. For this, put G := Spin7 C
and turning to the notation and set-up introduced at the beginning of subsec-
tion 2.2, rewrite diagram (D) as

G/P (α1)

G/P (α1, α2)

G/P (α1, α2, α3) = G/B

G/P (α3)

?π1

?π2
J
J
J
J
J
J
Ĵ

π (D’)

The orthogonal vector bundles R⊥
1 /R1 on Q = G/P (α1) resp. R⊥

2 /R2 on
IFlag(1, 2;V ) = G/P (α1, α2) admit spinor bundles in the sense of assumption
(A) in subsection 3.2:
In fact, on G/P (α1) we will use the homogeneous vector bundle S(R⊥

1 /R1)
which is associated to the irreducible representation r1 of P (α1) with highest
weight the fundamental weight ω3, and on G/P (α1, α2) we will use the homo-
geneous vector bundle S(R⊥

2 /R2) which is the pull-back under the projection
G/P (α1, α2) → G/P (α2) of the homogeneous vector bundle defined by the
irreducible representation r2 of P (α2) with highest weight ω3.
Therefore we can apply theorem 3.2.7 (or rather its corollary 3.2.8) iteratively
to obtain the following assertion:
The bundles on IFlag(1, 2, 3;V )

(♥) A⊗ B ⊗ C

where A runs through the set

A := {Σ(R⊥
1 /R1)⊗R⊗5

1 , R⊗4
1 , R⊗3

1 , R⊗2
1 , R1, O}

and B runs through

B := {Σ(R⊥
2 /R2)⊗ (R2/R1)⊗3, (R2/R1)⊗2, R2/R1, O}
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and C runs through

C := {Σ(R⊥
3 /R3)⊗ (R3/R2), O}

generate Db(Coh IFlag(1, 2, 3;V )), and in fact form a complete exceptional se-
quence when appropriately ordered.
Here Σ(R⊥

i /Ri), i = 1, 2, 3, denote the bundles on IFlag(1, 2, 3;V ) which are
the pull-backs under the projections G/B → G/P (αi) of the vector bundles on
G/P (αi) which are the duals of the homogeneous vector bundles associated to
the irreducible representations ri of P (αi) with highest weight the fundamental
weight ω3.
We know that the full direct images under π of the bundles in (♥) will generate
Db(Coh IGrass(3, V )) downstairs. When one wants to apply Bott’s theorem to
calculate direct images the trouble is that Σ(R⊥

1 /R1) and Σ(R⊥
2 /R2), though

homogeneous vector bundles on IFlag(1, 2, 3;V ) = Spin7C/B, are not defined
by irreducible representations, i.e. characters of, the Borel subgroup B. There-
fore, one has to find Jordan-Hölder series for these, i.e. filtrations

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VM = Σ(R⊥
1 /R1)

and
0 =W0 ⊂ W1 ⊂ · · · ⊂ WN = Σ(R⊥

2 /R2)

by homogeneous vector subbundles Vi resp. Wj such that the quotients
Vi+1/Vi, i = 0, . . . ,M − 1, resp. Wj+1/Wj , j = 0, . . . , N − 1, are line bundles
defined by characters of B.
Recall that in terms of an orthonormal basis ǫ1, . . . , ǫr of h∗ we can write
the fundamental weights for so2r+1 C as ωi = ǫ1 + . . . ǫi, 1 ≤ i < r,
ωr = (1/2)(ǫ1 + · · · + ǫr), and simple roots as αi = ǫi − ǫi+1, 1 ≤ i < r,
αr = ǫr, and that (cf. [FuHa], §20.1) the weights of the spin representation of
so2r+1 C are just given by

1

2
(±ǫ1 ± · · · ± ǫr)

(all possible 2r sign combinations).
Therefore, on the level of Lie algebras, the weights of dr1, dr2, and dr3 are
given by:

dr1 :
1

2
(ǫ1 ± ǫ2 ± ǫ3), dr2 :

1

2
(ǫ1 + ǫ2 ± ǫ3),

dr3 :
1

2
(ǫ1 + ǫ2 + ǫ3).

(Indeed, if vω3
is a highest weight vector in the irreducible G-module of highest

weight ω3, then the span of P (αi) · vω3
, i = 1, . . . , 3, is the irreducible P (αi)-

module of highest weights ω3, and its weights are therefore those weights of the
ambient irreducible G-module wich can be written as ω3−

∑
j 6=i cjαj , cj ∈ Z+).
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Therefore, the spinor bundle Σ(R⊥
3 /R3) on G/B is just the line bundle L(ω3) =

L(1/2, 1/2, 1/2) associated to ω3 (viewed as a character of B), Σ(R⊥
2 /R2) has

a Jordan-Hölder filtration of length 2 with quotients
L(1/2, 1/2,±1/2), and Σ(R⊥

1 /R1) has a Jordan-Hölder filtration of length 4
with quotients the line bundles L(1/2,±1/2,±1/2).
In conclusion we get that Db(CohG/B) is generated by the line bundles

(♥′) A′ ⊗ B′ ⊗ C′

where A′ runs through the set

A′ :=

{
L(

1

2
,

1

2
,

1

2
)⊗ L(−5, 0, 0), L(

1

2
,−1

2
,−1

2
)⊗ L(−5, 0, 0),

L(
1

2
,−1

2
,

1

2
)⊗ L(−5, 0, 0), L(

1

2
,

1

2
,−1

2
)⊗ L(−5, 0, 0), L(−4, 0, 0),

L(−3, 0, 0), L(−2, 0, 0), L(−1, 0, 0), L(0, 0, 0)}

and B′ runs through

B′ :=

{
L(

1

2
,

1

2
,

1

2
)⊗ L(0,−3, 0), L(

1

2
,

1

2
,−1

2
)⊗ L(0,−3, 0),

L(0,−2, 0), L(0,−1, 0), L(0, 0, 0)}

and C′ runs through

C ′ :=

{
L(

1

2
,

1

2
,

1

2
)⊗ L(0, 0,−1), L(0, 0, 0)

}
.

Then we can calculate Rπ∗(A′ ⊗ B′ ⊗ C′) by applying the relative version of
Bott’s theorem as explained in subsection 3.3 to each of the 90 bundles A′ ⊗
B′ ⊗ C′; here of course one takes into account that L(1/2, 1/2, 1/2) = π∗L,
where for simplicity we denote by L the line bundle on G/P (α3) defined by
the one-dimensional representation of P (α3) with weight −ω3 and one uses the
projection formula. After a lengthy calculation one thus arrives at the following

Theorem 3.4.1. The derived category Db(Coh IGrass(3, V )) is generated as
triangulated category by the following 22 vector bundles:

∧2
R(−1), O(−2), R(−2)⊗ L, Sym2R(−1)⊗ L, O(−3)⊗ L,

∧2
R(−2)⊗ L, Σ2,1R(−1)⊗ L, R(−1), O(−2)⊗ L, O(−1),

R(−1)⊗ L,
∧2
R(−1)⊗ L, Σ2,1R⊗ L, Sym2R∨(−2)⊗ L,

∧2
R, O,

Σ2,1R, Sym2R∨(−2), O(−1)⊗ L, Sym2R∨(−1),
∧2
R⊗ L, R⊗ L.

One should remark that the expected number of vector bundles in a complete
exceptional sequence is 8 in this case since there are 8 Schubert varieties in
IGrass(3, V ) (cf. [BiLa], §3).
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4 Degeneration techniques

Whereas in the preceding section a strategy for proving existence of complete
exceptional sequences on rational homogeneous varieties was exposed which
was based on the method of fibering them into simpler ones of the same type,
here we propose to explain an idea for a possibly alternative approach to
tackle this problem. It relies on a theorem due to M. Brion that provides a
degeneration of the diagonal ∆ ⊂ X × X, X rational homogeneous, into a
union (over the Schubert varieties in X) of the products of a Schubert variety
with its opposite Schubert variety.
We will exclusively consider the example of Pn and the main goal will be to
compare resolutions of the structure sheaves of the diagonal and its degener-
ation product in this case. This gives a way of proving Beilinson’s theorem
on Pn without using a resolution of O∆ but only of the structure sheaf of the
degeneration.

4.1 A theorem of Brion

The notation concerning rational homogeneous varieties introduced at the be-
ginning of subsection 2.2 is retained.
The following theorem was proven by M. Brion (cf. [Bri], thm. 2).

Theorem 4.1.1. Regard the simple roots α1, . . . , αr as characters of the max-
imal torus H and put

X := closure of {(hx, x, α1(h), . . . , αr(h)) |x ∈ X = G/P, h ∈ H}
inX ×X × Ar

with its projection X
π−→ Ar. If H acts on X via its action on the ambient

X ×X × Ar given by

h · (x1, x2, t1, . . . , tr) := (hx1, x2, α1(h)t1, . . . , αr(h)tr)

and acts in Ar with weights α1, . . . , αr, then π is equivariant, surjective, flat
with reduced fibres such that

X0 := π−1((0, . . . , 0)) ≃
⋃

w∈WP

Xw ×Xw ,

and is a trivial fibration over H · (1, . . . , 1), the complement of the union of all
coordinate hyperplanes, with fibre the diagonal ∆ = ∆X ⊂ X ×X.

Now the idea to use this result for our purpose is as follows: In [Bei], Beilinson
proved his theorem using an explicit resolution of O∆Pn . However, on a general
rational homogeneous variety X a resolution of the structure sheaf of the diag-
onal is hard to come up with. The hope may be therefore that a resolution of
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X0 is easier to manufacture (by combinatorial methods) than one for O∆, and
that one could afterwards lift the resolution of OX0

to one of O∆ by flatness.
If we denote by p1 resp. p2 the projections of X ×X to the first resp. second
factor, the preceding hope is closely connected to the problem of comparing
the functors Rp2∗(p∗1(−) ⊗L OX0

) and Rp2∗(p∗1(−) ⊗L O∆) ≃ idDb(CohX). In
the next subsection we will present the computations to clarify these issues for
projective space.

4.2 Analysis of the degeneration of the Beilinson functor on Pn

Look at two copies of Pn, one with homogeneous coordinates x0, . . . , xn, the
other with homogeneous coordinates y0, . . . , yn. In this case X0 =

⋃n
i=0 Pi ×

Pn−i, and X0 is defined by the ideal J = (xiyj)0≤i<j≤n and the diagonal by
the ideal I = (xiyj − xjyi)0≤i<j≤n.
Consider the case of P1. The first point that should be noticed is that
Rp2∗(p∗1(−) ⊗L OX0

) is no longer isomorphic to the identity: By Orlov’s
representability theorem (cf. [Or2], thm. 3.2.1) the identity functor is rep-
resented uniquely by the structure sheaf of the diagonal on the product
(this is valid for any smooth projective variety and not only for P1). Here
one can also see this in an easier way as follows. For d >> 0 the sheaf
p∗1O(d) ⊗ OX0

is p2∗-acyclic and p2∗ commutes with base extension whence
dimC (p2∗(p∗1O(d)⊗OX0

)⊗ CP ) = d + 1 if P is the point {y1 = 0} and = 1
otherwise:

•

•

P1 × P1

?
p2

-
p1

X0

P1

P1

{x0 = 0}

{y1 = 0}

Thus p2∗(p∗1O(d)⊗OX0
) = Rp2∗(p∗1O(d)⊗LOX0

) is not locally free in this case.
We will give a complete description of the functor Rp2∗(p∗1(−)⊗L OX0

) below
for Pn. If one compares the resolutions of OX0

and O∆ on P1:

0 −−−−→ O(−1,−1)
(x0y1)−−−−→ OP1×P1 −−−−→ OX0

−−−−→ 0

0 −−−−→ O(−1,−1)
(x0y1−x1y0)−−−−−−−−→ OP1×P1 −−−−→ O∆ −−−−→ 0
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and on P2:

0→ O(−2,−1)⊕O(−1,−2)
A′−→ O(−1,−1)⊕3 B′−→ OP2×P2 → OX0

→ 0

0→ O(−2,−1)⊕O(−1,−2)
A−→ O(−1,−1)⊕3 B−→ OP2×P2 → O∆ → 0

where

A =




x0 y0
x1 y1
x2 y2


 A′ =




x0 0
x1 y1
0 y2




B = (x2y1 − x1y2, x0y2 − x2y0, x1y0 − x0y1) B = (−x1y2, x0y2, −x0y1)

(these being Hilbert-Burch type resolutions; here X0 is no longer a local com-
plete intersection!) one may wonder if on Pn there exist resolutions of OX0

and
O∆ displaying an analogous similarity. This is indeed the case, but will require
some work.
Consider the matrix (

x0 . . . xn
y0 . . . yn

)

as giving rise to a map between free bigraded modules F and G over
C[x0, . . . , xn; y0, . . . , yn] of rank n+ 1 and 2 respectively. Put Kh :=

∧h+2
F ⊗

SymhG∨ for h = 0, . . . , n − 1. Choose bases f0, . . . , fn resp. ξ, η for F resp.
G∨. Define maps dh : Kh → Kh−1, h = 1, . . . , n− 1 by

dh
(
fj1 ∧ · · · ∧ fjh+2

⊗ ξµ1ηµ2
)

:=

h+2∑

l=1

(−1)l+1xjlfj1 ∧ · · · ∧ f̂jl ∧ · · · ∧ fjh+2

⊗ξ−1(ξµ1ηµ2) +
h+2∑

l=1

(−1)l+1yjlfj1 ∧ · · · ∧ f̂jl ∧ · · · ∧ fjh+2
⊗ η−1(ξµ1ηµ2)

where 0 ≤ j1 < · · · < jh+2 ≤ n, µ1 +µ2 = h and the homomorphism ξ−1 (resp.
η−1) is defined by

ξ−1(ξµ1ηµ2) :=

{
ξµ1−1ηµ2 if µ1 ≥ 1

0 if µ1 = 0

(resp. analogously for η−1). Then

0 −−−−→ Kn−1
dn−1−−−−→ . . .

d1−−−−→ K0 −−−−→ I −−−−→ 0

is a resolution of I which is the Eagon-Northcott complex in our special case
(cf. [Nor], appendix C).

Proposition 4.2.1. The ideal J has a resolution

0 −−−−→ Kn−1

d′n−1−−−−→ . . .
d′1−−−−→ K0 −−−−→ J −−−−→ 0
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where the differential d′h : Kh → Kh−1 is defined by

d′h
(
fj1 ∧ · · · ∧ fjh+2

⊗ ξµ1ηµ2
)

:=

h−µ2+1∑

l=1

(−1)l+1xjlfj1 ∧ · · · ∧ f̂jl ∧ · · · ∧ fjh+2

⊗ξ−1(ξµ1ηµ2) +

h+2∑

l=µ1+2

(−1)l+1yjlfj1 ∧ · · · ∧ f̂jl ∧ · · · ∧ fjh+2
⊗ η−1(ξµ1ηµ2) .

Intuitively the differentials d′h are gotten by degenerating the differentials dh.
To prove proposition 4.2.1 we will use the fact that J is a monomial ideal.
There is a combinatorial method for sometimes writing down resolutions for
these by looking at simplicial or more general cell complexes from topology.
The method can be found in [B-S]. We will recall the results we need in the
following. Unfortunately the resolution of proposition 4.2.1 is not supported
on a simplicial complex, one needs a more general cell complex.
Let X be a finite regular cell complex. This is a non-empty topological space
X with a finite set Γ of subsets of X (the cells of X) such that

(a) X =
⋃
e∈Γ

e,

(b) the e ∈ Γ are pairwise disjoint,

(c) ∅ ∈ Γ,

(d) for each non-empty e ∈ Γ there is a homeomorphism between a closed
i-dimensional ball and the closure ē which maps the interior of the ball
onto e (i.e. e is an open i-cell).

We will also call the e ∈ Γ faces. We will say that e′ ∈ Γ is a face of e ∈ Γ,
e 6= e′, or that e contains e′ if e′ ⊂ ē. The maximal faces of e under containment
are called its facets. 0- and 1-dimensional faces will be called vertices and edges
respectively. The set of vertices is denoted V. A subset Γ′ ⊂ Γ such that for
each e ∈ Γ′ all the faces of e are in Γ′ determines a subcomplex XΓ′ =

⋃
e∈Γ′ e

of X. Moreover we assume in addition

(e) If e′ is a codimension 2 face of e there are exactly two facets e1, e2 of e
containing e′.

The prototypical example of a finite regular cell complex is the set of faces of
a convex polytope for which property (e) is fulfilled. In general (e) is added as
a kind of regularity assumption.
Choose an incidence function ǫ(e, e′) on pairs of faces of e, e′. This means that
ǫ takes values in {0,+1,−1}, ǫ(e, e′) = 0 unless e′ is a facet of e, ǫ(v, ∅) = 1 for
all vertices v ∈ V and moreover

ǫ(e, e1)ǫ(e1, e
′) + ǫ(e, e2)ǫ(e2, e

′) = 0
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for e, e1, e2, e′ as in (e).
Let now M = (mv)v∈V be a monomial ideal (mv monomials) in the polynomial
ring k[T1, . . . , TN ], k some field. For multi-indices a, b ∈ ZN we write a ≤ b to
denote ai ≤ bi for all i = 1, . . . , N . T a denotes T a1

1 · · · · · T aN

N .

The oriented chain complex C̃(X, k) =
⊕

e∈Γ ke (the homological grading is
given by dimension of faces) with differential

∂e :=
∑

e′∈Γ

ǫ(e, e′)e′

computes the reduced cellular homology groups H̃i(X, k) of X.
Think of the vertices v ∈ V as labelled by the corresponding monomials mv.
Each non-empty face e ∈ Γ will be identified with its set of vertices and will
be labelled by the least common multiple me of its vertex labels. The cellular
complex FX,M associated to (X,M) is the ZN -graded k[T1, . . . , TN ]-module⊕

e∈Γ,e 6=∅ k[T1, . . . , TN ]e with differential

∂e :=
∑

e′∈Γ,e′ 6=∅
ǫ(e, e′)

me

me′
e′

(where again the homological grading is given by the dimension of the faces).
For each multi-index b ∈ ZN let X≤b be the subcomplex of X consisting of all
the faces e whose labels me divide T b. We have

Proposition 4.2.2. FX,M is a free resolution of M if and only if X≤b is acyclic

over k for all b ∈ ZN (i.e.H̃i(X≤b, k) = 0 for all i).

We refer to [B-S], prop. 1.2, for a proof.

Next we will construct appropriate cell complexes Y n, n = 1, 2, . . . , that via
the procedure described above give resolutions of J = (xiyj)0≤i<j≤n. We will
apply proposition 4.2.2 by showing that for all b ∈ Z2n+2 the subcomplexes
Y n≤b are contractible.

It is instructive to look at the pictures of Y 1, Y 2, Y 3, Y 4 with their labellings
first:
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Y 1 : •
x0y1

Y 2 : • • •
x0y1

x0y2

x1y2

Y 3 : •
x0y1

• •
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@
@
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• •

•
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@
@

@x0y2

x0y3

x1y2 x1y3

x2y3

Y 4 : •
x0y1

• •
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@
@
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• •

x0y2 x0y3

x1y2 x1y3
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•

•
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•

•
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A

%
%
%
%
%
%
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��

x0y4

x1y4

x2y4

x2y3

x3y4

The general procedure for constructing Y n geometrically is as follows: In Rn−1

take the standard (n−1)-simplex P 1 on the vertex set {x0y1, x0y2, . . . , x0yn}.
Then take an (n − 2)-simplex on the vertex set {x1y2, . . . , x1yn}, viewed as
embedded in the same Rn−1, and join the vertices x1y2, . . . , x1yn, respectively,
to the vertices x0y2, . . . , x0yn,, respectively, of P 1 by drawing an edge be-
tween x0yi and x1yi for i = 2, . . . , n. This describes the process of attaching
a new (n − 1)-dimensional polytope P 2 to the facet of P 1 on the vertex set
{x0y2, . . . , x0yn}.
Assume that we have constructed inductively the (n−1)-dimensional polytope
P i, 2 ≤ i ≤ n− 1, with one facet on the vertex set {xµyν} 0≤µ≤i−1

i+1≤ν≤n
. Then take

an (n−i−1)-simplex on the vertex set {xiyi+1, . . . , xiyn}, viewed as embedded
in the same Rn−1, and for every α with 1 ≤ α ≤ n − i join the vertex xiyi+α
of this simplex to the vertices xµyi+α, 0 ≤ µ ≤ i − 1, of P i by an edge. This
corresponds to attaching a new (n− 1)-dimensional polytope P i+1 to the facet
of P i on the vertex set {xµyν} 0≤µ≤i−1

i+1≤ν≤n
.

In the end we get (n− 1)-dimensional polytopes P1, . . . , Pn in Rn−1 where Pj
and Pj+1, j = 1, . . . , n − 1, are glued along a common facet. These will make
up our labelled cell complex Y n.
The h-dimensional faces of Y n will be called h-faces for short. We need a more
convenient description for them:

Lemma 4.2.3. There are natural bijections between the following sets:

(i) {h-faces of Y n}
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(ii) matrices 


xi1yiµ1+2
· · · xi1yih+2

...
. . .

...
xiµ1+1

yiµ1+2
· · · xiµ1+1

yih+2




with vertex labels of Y n as entries, where 0 ≤ i1 < i2 < . . . < iµ1+1 <
iµ1+2 < . . . < ih+2 ≤ n and 0 ≤ µ1 ≤ h are integers. The (κ, λ)-entry of
the above matrix is thus xiκyiµ1+λ+1

.

(iii) standard basis vectors

fi1 ∧ . . . ∧ fiµ1+1
∧ fiµ1+2

∧ . . . ∧ fih+2
⊗ ξµ1ηµ2 , 0 ≤ µ1 ≤ h,

0 ≤ i1 < i2 < . . . < iµ1+1 < iµ1+2 < . . . < ih+2 ≤ n

of
∧h+2

F ⊗ SymhG∨.

Proof. The bijection between the sets in (ii) and (iii) is obvious: To fi1 ∧ . . .∧
fih+2

⊗ ξµ1ηµ2 in
∧h+2

F ⊗ SymhG∨ one associates the matrix




xi1yiµ1+2
· · · xi1yih+2

...
. . .

...
xiµ1+1

yiµ1+2
· · · xiµ1+1

yih+2


 .

To set up a bijection between the sets under (i) and (ii) the idea is to identify
an h-face e of Y n with its vertex labels and collect the vertex labels in a matrix
of the form given in (ii). We will prove by induction on j that the h-faces
e contained in the polytopes P1, . . . , Pj are exactly those whose vertex labels
may be collected in a matrix of the form written in (ii) satisfying the additional
property iµ1+1 ≤ j − 1. This will prove the lemma.
P1 is an (n − 1)-simplex on the vertex set {x0y1, . . . , x0yn} and its h-faces e
can be identified with the subsets of cardinality h+ 1 of {x0y1, . . . , x0yn}. We
can write such a subset in matrix form

(
x0yi2 x0yi3 · · · x0yih+2

)

with 0 ≤ i2 < i3 < . . . < ih+2 ≤ n. This shows that the preceding claim is true
for j = 1.
For the induction step assume that the h-faces of Y n contained in P1, . . . , Pj
are exactly those whose vertex labels may be collected in a matrix as in (ii)
with iµ1+1 ≤ j − 1. Look at the h-faces e contained in P1, . . . , Pj+1. If e is
contained in P1, . . . , Pj (which is equivalent to saying that none of the vertex
labels of e involves the indeterminate xj) then there is nothing to show. Now
there are two types of h-faces contained in P1, . . . , Pj+1 but not in P1, . . . , Pj :
The first type corresponds to h-faces e entirely contained in the simplex on the
vertex set {xjyj+1, . . . , xjyn}. These correspond to matrices

(
xjyi2 · · · xjyih+2

)
,
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0 ≤ i2 < i3 < . . . < ih+2 ≤ n, of the form given in (ii) which involve the
indeterminate xj and have only one row.
The second type of h-faces e is obtained as follows: We take an (h − 1)-face
e′ contained in the facet on the vertex set {xayb} 0≤a≤j−1

j+1≤b≤n
which Pj and Pj+1

have in common; by induction e′ corresponds to a matrix



xi1yiµ1+2
· · · xi1yih+1

...
. . .

...
xiµ1+1

yiµ1+2
· · · xiµ1+1

yih+1




with 0 ≤ i1 < i2 < . . . < iµ1+1 ≤ j − 1 and j + 1 ≤ iµ1+2 < . . . < ih+1 ≤ n,
0 ≤ µ1 ≤ h − 1. Then by construction of Pj+1 there is a unique h-face e in
P1, . . . , Pj+1, but not in P1, . . . , Pj , which contains the (h − 1)-face e′: It is
the h-face whose vertex labels are the entries of the preceding matrix together
with {xjyiµ1+2

, xjyiµ1+3
, . . . , xjyih+1

}. Thus e corresponds to the matrix



xi1yiµ1+2
· · · xi1yih+1

...
. . .

...
xiµ1+1

yiµ1+2
· · · xiµ1+1

yih+1

xjyiµ1+2
· · · xjyih+1


 .

This proves the lemma.

Now we want to define an incidence function ǫ(e, e′) on pairs of faces e, e′ of
Y n. Of course if e′ is not a facet of e , we put ǫ(e, e′) = 0 and likewise put
ǫ(v, ∅) := 1 for all vertices v of Y n. Let now e be an h-face. Using lemma 4.2.3
it corresponds to a matrix

M(e) =




xi1yiµ1+2
· · · xi1yih+2

...
. . .

...
xiµ1+1

yiµ1+2
· · · xiµ1+1

yih+2


 .

A facet e′ of e corresponds to a submatrix M(e′) of M(e) obtained from M(e)
by erasing either a row or a column. We define ǫ(e, e′) := (−1)l if M(e′) is
obtained from M(e) by erasing the lth row; we define ǫ(e, e′) := (−1)µ1+j if
M(e′) is obtained from M(e) by erasing the jth column.
One must check that then ǫ(e, e1)ǫ(e1, e

′′) + ǫ(e, e2)ǫ(e2, e
′′) = 0 for a codimen-

sion 2 face e′′ of e and e1, e2 the two facets of e containing e′′. This is now a
straightforward computation. There are 3 cases: The matrix M(e′′) is obtained
from M(e) by (i) deleting two rows, (ii) deleting two columns, (iii) erasing one
row and one column:

(i) Let l1 < l2 and assume that M(e1) is M(e) with l1th row erased and
M(e2) is M(e) with l2th row erased. Then

ǫ(e, e1) = (−1)l1 , ǫ(e, e2) = (−1)l2 , ǫ(e1, e
′′) = (−1)l2−1

ǫ(e2, e
′′) = (−1)l1 .
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(ii) This is the same computation as for (i) with the roles of rows and columns
interchanged.

(iii) Assume that M(e1) is M(e) with lth row erased and M(e2) is M(e) with
jth column erased. Then

ǫ(e, e1) = (−1)l, ǫ(e, e2) = (−1)µ1+j , ǫ(e1, e
′′) = (−1)µ1−1+j

ǫ(e2, e
′′) = (−1)l.

Thus ǫ is an incidence function on Y n. Now one has to compute the cellular
complex FY n,J : Indeed by lemma 4.2.3 we know that its term in homological

degree h identifies with
∧h+2

F ⊗ SymhG∨. If e is an h-face recall that the
differential ∂ of FY n,J is given by

∂e =
∑

e′ a facet of e, e′ 6=∅
ǫ(e, e′)

me

me′
e′

and if e corresponds to fi1 ∧ . . . ∧ fih+2
⊗ ξµ1ηµ2 ∈ ∧h+2

F ⊗ SymhG∨ we find

∂
(
fj1 ∧ · · · ∧ fjh+2

⊗ ξµ1ηµ2
)

=

h−µ2+1∑

l=1

(−1)l+1xjlfj1 ∧ · · · ∧ f̂jl ∧ · · · ∧ fjh+2

⊗ξ−1(ξµ1ηµ2) +

h+2∑

l=µ1+2

(−1)l+1yjlfj1 ∧ · · · ∧ f̂jl ∧ · · · ∧ fjh+2
⊗ η−1(ξµ1ηµ2) .

Thus the complex FY n,J is nothing but the complex in proposition 4.2.1. Thus
to prove proposition 4.2.1 it is sufficient in view of proposition 4.2.2 to prove
the following

Lemma 4.2.4. For all b ∈ Z2n+2 the subcomplexes Y n≤b of Y n are contractible.

Proof. Notice that it suffices to prove the following: If

xi1 . . . xikyj1 . . . yjl 0 ≤ i1 < . . . ik ≤ n, 0 ≤ j1 < · · · < jl ≤ n

is a monomial that is the least common multiple of some subset of the vertex
labels of Y n then the subcomplex Ỹ n of Y n that consists of all the faces e
whose label divides xi1 . . . xikyj1 . . . yjl is contractible. This can be done as
follows:
Put κ(id) := min {t : jt > id} for d = 1, . . . , k. Note that we have κ(i1) = 1
and κ(i1) ≤ κ(i2) ≤ · · · ≤ κ(ik). Choose a retraction of the face e0 of Ỹ n

corresponding to the matrix




xi1yjκ(ik)
. . . xi1yjl

...
. . .

...
xikyjκ(ik)

. . . xikyjl
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onto its facet e0
′

corresponding to




xi1yjκ(ik)
. . . xi1yjl

...
. . .

...
xik−1

yjκ(ik)
. . . xik−1

yjl


 .

Then choose a retraction of the face e1 corresponding to




xi1yjκ(ik−1)
. . . xi1yjl

...
. . .

...
xik−1

yjκ(ik−1)
. . . xik−1

yjl




onto its facet e1
′

corresponding to




xi1yjκ(ik−1)
. . . xi1yjl

...
. . .

...
xik−2

yjκ(ik−1)
. . . xik−2

yjl


 .

Notice that e0
′

is contained in e1. Continuing this pattern, one can finally
retract the face corresponding to

(
xi1yjκ(i1)

xi1yjκ(i1)+1
. . . xi1yjl

)
,

i.e. a simplex, onto one of its vertices. Composing these retractions, one gets
a retraction of Ỹ n onto a point.

In conclusion what we get from proposition 4.2.1 is that on Pn × Pn the sheaf
OX0

has a resolution

(∗) 0 −−−−→ ⊕
i+j=n−1

i,j≥0
O(−i− 1,−j − 1)

d′n−1−−−−→ . . .

. . .
d′h+1−−−−→

(⊕
i+j=h

i,j≥0
O(−i− 1,−j − 1)

)⊕(n+1
h+2) d′h−−−−→ . . .

. . .
d′1−−−−→ O(−1,−1)⊕(n+1

2 ) −−−−→ OPn×Pn −−−−→ OX0
−−−−→ 0

where the differentials can be identified with the differentials in the complex of
proposition 4.2.1, and O∆ has a resolution

(∗∗) 0 −−−−→ ⊕
i+j=n−1

i,j≥0
O(−i− 1,−j − 1)

dn−1−−−−→ . . .

. . .
dh+1−−−−→

(⊕
i+j=h

i,j≥0
O(−i− 1,−j − 1)

)⊕(n+1
h+2)

dh−−−−→ . . .

. . .
d1−−−−→ O(−1,−1)⊕(n+1

2 ) −−−−→ OPn×Pn −−−−→ O∆ −−−−→ 0
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which is an Eagon-Northcott complex.
The next theorem gives a complete description of the functor Rp2∗(p∗1(−) ⊗L
OX0

) : Db(CohPn) → Db(CohPn) (recall that in Db(CohPn) one has the
strong complete exceptional sequence (O, O(1), . . . , O(n)) ).

Theorem 4.2.5. Let {pt} = L0 ⊂ L1 ⊂ · · · ⊂ Ln = Pn be a full flag of
projective linear subspaces of Pn (the Schubert varieties in Pn) and let L0 =
Pn ⊃ · · · ⊃ Ln = {pt} form a complete flag in general position with respect to
the Lj (”Lj is the Schubert variety opposite to Lj”).
For d ≥ 0 one has in Db(CohPn)

Rp2∗(p∗1(O(d))⊗L OX0
) ≃

n⊕

j=0

OLj
⊗H0(Lj ,O(d))∨/H0(Lj+1,O(d))∨ .

In terms of the coordinates x0, . . . , xn, y0, . . . , yn introduced above:

Rp2∗(p∗1(O(d))⊗L OX0
) ≃ O ⊕ (O/(yn))⊕d ⊕ (O/(yn, yn−1))⊕

d(d+1)
2 ⊕ . . .

· · · ⊕ (O/(yn, . . . , yn−i))⊕(d+i
d−1) ⊕ · · · ⊕ (O/(yn, . . . , y1))⊕(d+n−1

d−1 ).

Moreover for the map O(e)
·xk−→ O(e+ 1) (e ≥ 0, 0 ≤ k ≤ n) one can describe

the induced map Rp2∗(p∗1(·xk)⊗L OX0
) as follows:

For each d ≥ 0 and each i = −1, . . . , n − 1 choose a bijection between
the set of monomials Md

i in the variables xn−1−i, xn−i, . . . , xn of the form
xα1
n−i−1x

α2
n−i . . . x

αi+2
n with α1 > 0 and

∑
αj = d, and the set of copies of

O/(yn, . . . , yn−i) occuring in the above expression for Rp2∗(p∗1(O(d))⊗LOX0
).

Then the copy of O/(yn, . . . , yn−i) corresponding to a monomial m ∈ Me
i is

mapped under Rp2∗(p∗1(·xk)⊗LOX0
) identically to the copy of O/(yn, . . . , yn−i)

corresponding to the monomial xkm iff xk occurs in m. If xk does not occur in
m then the copy of O/(yn, . . . , yn−i) corresponding to the monomial m ∈Me

i is
mapped to the copy of O/(yn, . . . , yk+1) corresponding to xkm via the natural
surjection

O/(yn, . . . , yn−i)→ O/(yn, . . . , yk+1).

Proof. For d ≥ 0 one tensors the resolution (∗) of OX0
by p∗1O(d) and notes

that then all the bundles occuring in the terms of (∗)⊗p∗1O(d) are p2∗-acyclic
whence Rp2∗(p∗1(O(d))⊗LOX0

) is (as a complex concentrated in degree 0) the
cokernel of the map

Φ :
(
H0(Pn,O(d− 1))⊗O(−1)

)⊕(n+1
2 ) → H0(Pn,O(d))⊗O

which on the various summands H0(Pn,O(d − 1)) ⊗ O(−1) of the domain is
given by the maps

H0(Pn,O(d− 1))⊗O(−1)→ H0(Pn,O(d))⊗O
m⊗ σ 7→ xim⊗ yjσ
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for 0 ≤ i < j ≤ n. For i = −1, . . . , n − 1 let Md
i be as above the set of

monomials in xn−1−i, xn−i, . . . , xn of the form xα1
n−i−1x

α2
n−i . . . x

αi+2
n with α1 > 0

and
∑
αj = d. Then we have the identification

H0(Pn,O(d))⊗O ≃
n−1⊕

i=−1


 ⊕

m∈Md
i

O


 ;

For given m ∈Md
i write cont(m) for the subset of the variables x0, . . . , xn that

occur in m. Then the map Φ above is the direct sum of maps

⊕

xi∈cont(m)

⊕

n≥j>i
O(−1)→ O ∀i = −1, . . . , n− 1 ∀m ∈Md

i

which on the summand O(−1) on the left side of the arrow corresponding to
xi0 ∈ cont(m) and j0 > i0 are multiplication by yj0 . Since Md

i has cardinality

(
d+ i

d− 1

)
=

(
d+ i+ 1

d

)
−
(
d+ i

d

)

one finds that the cokernel of Φ is indeed

O ⊕ (O/(yn))⊕d ⊕ · · · ⊕ (O/(yn, . . . , yn−i))⊕(d+i
d−1)⊕

· · · ⊕ (O/(yn, . . . , y1))⊕(d+n−1
d−1 )

as claimed.
The second statement of the theorem is now clear because Rp2∗(p∗1(·xk)⊗LOX0

)
is induced by the map H0(Pn,O(e)) ⊗ O → H0(Pn,O(e + 1)) ⊗ O which is
multiplication by xk.

Remark 4.2.6. It is possible to prove Beilinson’s theorem on Pn using only
knowledge of the resolution (∗) of OX0

: Indeed by theorem 4.1.1 one knows a
priori that one can lift the resolution (∗) of OX0

to a resolution of O∆ of the
form (∗∗) by flatness (cf. e.g. [Ar], part I, rem. 3.1). Since the terms in the
resolution (∗) are direct sums of bundles O(−k,−l), 0 ≤ k, l ≤ n, we find by the
standard argument from [Bei](i.e., the decomposition id ≃ Rp2∗(p∗1(−)⊗LO∆))
that Db(CohPn) is generated by (O(−n), . . . ,O).

Finally it would be interesting to know if one could find a resolution of OX0
on

X ×X for any rational homogeneous X = G/P along the same lines as in this
subsection, i.e. by first finding a “monomial description” of X0 inside X ×X
(e.g. using standard monomial theory, cf. [BiLa]) and then using the method
of cellular resolutions from [B-S]. Thereafter it would be even more important
to see if one could obtain valuable information about Db(CohX) by lifting the
resolution of OX0

to one of O∆.
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Basel, Switzerland (1995)

[Sa] Samokhin, A. V., The derived category of coherent sheaves on LGC
3 ,

Russ. Math. Surv., 2001, 56 (3), 592-594

[Se1] Serre, J.-P., Lie Algebras and Lie Groups, Springer L.N.M. 1500, Berlin-
Heidelberg-New York: Springer (1992)

[Se2] Serre, J.-P., Complex Semisimple Lie Algebras, Springer monographs in
math., Berlin-Heidelberg-New York: Springer (2001)

[S-T] Siu, Y. T. & Trautmann, G., Deformations of coherent analytic sheaves
with compact supports, Mem. Amer. Math. Soc. 29 (1981), no. 238

[Sp] Springer, T. A., Linear algebraic groups, Progress in Math. 9,
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Abstract. We investigate several topics on a quadratic form Φ over
an algebraic number field including the following three: (A) an equation
ξΦ · tξ = Ψ for another form Ψ of a smaller size; (B) classification of Φ
over the ring of algebraic integers; (C) ternary forms. In (A) we show that
the “class” of such a ξ determines a “class” in the orthogonal group of a
form Θ such that Φ ≈ Ψ⊕Θ. Such was done in [S3] when Ψ is a scalar.
We will treat the case of nonscalar Ψ, and prove a class number formula
and a mass formula, both of new types. In [S5] we classified all genera of
Z-valued Φ. We generalize this to the case of an arbitrary number field,
which is topic (B). Topic (C) concerns some explicit forms of the formulas
in (A) when Φ is of size 3 and Ψ is a scalar.

2000 Mathematics Subject Classification: 11E12 (primary), 11D09, 11E41
(secondary)

Introduction

A quadratic Diophantine equation in the title means an equation of the form
ξΦ · tξ = Ψ, where Φ and Ψ are symmetric matrices of size n and m, and
ξ is an (m × n)-matrix. We assume that n > m, det(Φ) det(Ψ) 6= 0, and all
these matrices have entries in an algebraic number field F. The purpose of this
paper is to present various new ideas and new results on such an equation. In
the simplest case m = 1, we take a vector space V of dimension n over F,
take also a nondegenerate symmetric F -bilinear form ϕ : V × V → F, and put
ϕ[x] = ϕ(x, x) for x ∈ V. Then the equation can be written ϕ[x] = q with
q ∈ F, 6= 0. In our recent book [S3] we formulated a new arithmetic framework
of such an equation. In the present paper we attempt to extend the theory so
that equations of the type ξΦ · tξ = Ψ can be treated along the same line of
ideas, and give essential improvements on the results in [S3], as well as some
new results.
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Let us first recall the basic ideas of [S3] on this topic. Let g denote the ring
of algebraic integers in F. For a g-lattice L in V and a fractional ideal b in F
we put

L[q, b] =
{
x ∈ V |ϕ[x] = q, ϕ(x, L) = b

}
,

Γ (L) =
{
γ ∈ SOϕ(V ) |Lγ = L

}
,

SOϕ(V ) =
{
α ∈ SL(V, F ) |ϕ[xα] = ϕ[x] for every x ∈ V

}
.

We call L integral if ϕ[x] ∈ g for every x ∈ L, and call an integral lattice
maximal if it is the only integral lattice containing itself.

Given h ∈ L[q, b], put G = SOϕ(V ), W = (Fh)⊥, that is,

W =
{
x ∈ V

∣∣ϕ(x, h) = 0
}
,

and H = SOϕ(W ), where we use ϕ also for its restriction to W. Then in [S3]
we proved, for a maximal L, that

(1a) There is a bijection of
⊔
i∈I
{
Li[q, b]/Γ (Li)

}
onto H\HA/(HA∩C), and

consequently

(1b)
∑

i∈I
#
{
Li[q, b]/Γ (Li)

}
= #

{
H\HA/(HA ∩ C)

}
.

Here the subscript A means adelization, C =
{
x ∈ GA

∣∣Lx = L
}
, and {Li}i∈I

is a complete set of representatives for the classes in the genus of L with respect
to G. If F = Q, g = b = Z, L = Z3, and ϕ is the sum of three squares, then
the result is a reformulation of the result of Gauss that connects the number
of primitive representations of an integer q as sums of three squares with the
class number of primitive binary forms of discriminant −q. This result can be
formulated as a statement about #L[q, Z] for such ϕ and L as Gauss did,
and also as another statement concerning #

{
L[q, b]/Γ (L)

}
as in (1b), which

Gauss did not present in a clear-cut form. Though Eisenstein and Minkowski
investigated #L[q, Z] when ϕ is the sum of five squares, neither (1a) nor (1b)
appears in their work. It seems that the idea of L[q, b]/Γ (L) was taken up for
the first time in [S3].

Now the major portion of this paper consists of several types of new results,
which are the fruits of the ideas developed from (1a) and (1b). More explicitly,
they can be described as follows.

I. The main theorems about #
{
L[q, b]/Γ (L)

}
in [S3], formula (1b) in par-

ticular, were proved under the following condition: if n is odd, then det(ϕ)g
is a square ideal. We will show that this condition is unnecessary.

II. The same types of problems about the equation ξΦ·tξ = Ψ for m > 1 were
discussed in [S3] to some extent, but mainly restricted to the case m = n−1. In
Theorem 2.2 we will prove more general results for an arbitrary m formulated
from a new viewpoint. Namely, we present the principle that the class of a
solution ξ determines a class in the orthogonal group in dimension n − m,
which is complementary to that of Ψ. We then obtain generalizations of (1a)
and (1b).
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III. In [S3] we proved a certain mass formula which connects the “mass” of
the set L[q, b] with the mass of H with respect to a subgroup of HA. If F is
totally real and ϕ is totally definite, this can be given in the form

(2)
∑

i∈I
#Li[q, b]/#Γ (Li) =

∑

ε∈E
[H ∩ εCε−1 : 1]−1,

where E is a subset of HA such that HA =
⊔
ε∈E Hε(HA∩C). The right-hand

side may be called the mass of H with respect to HA ∩ C. In Theorem 3.2
we will generalize this to the case of ξΦ · tξ = Ψ with m ≥ 1 and definite
or indefinite ϕ. Our formulas are different from any of the mass formulas of
Siegel. See the remark at the end of Section 3 for more on this point.

IV. For n = 3, the right-hand side of (1b) can be written [HA : H(HA∩C)]. In
[S3] we gave an explicit formula for this index under the condition mentioned
in I. In Theorem 5.7 of the present paper we prove the result without that
condition. In general it is difficult to determine when L[q, b] 6= ∅. We will
investigate this problem for a ternary form.

Every ternary space is isomorphic to a space of type (B◦, β) obtained from
a quaternion algebra B over F as follows. Denote by ι the main involution
of B and put B◦ =

{
x ∈ B

∣∣xι = −x
}

and β[x] = dxxι for x ∈ B◦ with
d ∈ F×. Then we will determine for a maximal L exactly when L[q, Z] 6= ∅ and
give an explicit formula for #L[q, Z] for (B◦, β) over Q under the following
conditions: (i) B is definite and the genus of maximal lattices in B◦ consists of
a single class; (ii) the discriminant e of B is a prime number; (iii) d is one of
the following four types: d = 1, d = e, d is a prime 6= e, d/e is a prime 6= e
(Theorems 6.6 and 6.7). In fact there are exactly 30 positive definite ternary
forms over Q satisfying these three conditions, including of course the case of
the sum of three squares. If we drop conditions (ii) and (iii), then there are
exactly 64 ternary quadratic spaces over Q of type (i). Though our methods
are applicable to those 64 spaces, we impose the last two conditions in order
to avoid complicated analysis.

Indeed, though the results about L[q, Z] are not so complicated, they are not
of the type one can easily guess, even under all three conditions. Also, to make
transparent statements, it is better to consider an equation ξ·λΦ−1·tξ = s = λq
with a suitable λ, where Φ is the matrix representing ϕ with respect to a Z-
basis of L. Take, for example, a ternary form 2x2 + 3y2 − yz + z2. Then we
consider the equation ξ · λΦ−1 · tξ = s for s ∈ Z with λ = 22, which can be
written

(3) 11x2 + 8(y2 + yz + 3z2) = s.

We can show that there is a bijection of L[s/22, Z] for this ϕ onto the set
of solutions (x, y, z) of (3) such that xZ + yZ + zZ = Z. Moreover, such a
solution exists if and only if s = r2m with a squarefree positive integer m such
that m − 3 ∈ 8Z and an odd positive integer r such that 11|r if 11 remains
prime in K, where K = Q(

√−m ). Thus #L[s/22, Z] equals the number of
such solutions of (3), and can be given as
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(4)
23−µ0−µ1c

w
· r
∏

p|r

{
1−

(−m
p

)}
.

Here µ0 = 0 if 2 is unramified in K and µ0 = 1 otherwise; µ1 = 0 if 11|r or
11 ∤m, and µ1 = 1 otherwise; c is the class number of K; w is the number
of roots of unity in K;

∏
p|r is the product over all prime factors p of r. We

can state similar results in the 30 cases mentioned above, and the same can
be said, in principle, even in the 64 cases too, though we will not do so in the
present paper. The condition that the class number is 1 is necessary, as the
left-hand side of (2) has more than one term otherwise.

A much smaller portion of this paper, Section 4, is devoted to the classifi-
cation of Φ over g. In [S5] we classified the genera of matrices that represent
reduced Z-valued quadratic forms. Here a quadratic form is called reduced if
it cannot be represented nontrivially over Z by another Z-valued quadratic
form. This is different from Eisenstein’s terminology for ternary forms. We
will treat the same type of problem over the ring of algebraic integers of an
arbitrary algebraic number field. For this we first have to define the genus of a
symmetric matrix in a proper way, so that every genus of maximal lattices can
be included. The formulation requires new concepts, and the classification has
some interesting features. It should be noted that the obvious definition of a
genus employed by Siegel applies only to a special case.

As a final remark we mention the article [S6], in which the reader will find a
historical perspective of this topic that we do not include here. For example,
[S6] contains a more detailed account of the work of Gauss and his predecessors,
Lagrange and Legendre, and also comparisons of our formulas with Siegel’s
mass formulas. Therefore, [S6] is complementary to the present paper in that
sense.

1. Basic symbols and a crucial local result

1.1. Throughout the paper we denote by V a finite-dimensional vector space
over a field F and by ϕ a nondegenerate F -bilinear symmetric form V ×V → F ;
we put then ϕ[x] = ϕ(x, x) for x ∈ V, n = dim(V ), and

Oϕ(V ) =
{
α ∈ GL(V )

∣∣ϕ[xα] = ϕ[x] for every x ∈ V
}
,

SOϕ(V ) = Oϕ(V ) ∩ SL(V ).

For every subspace U of V on which ϕ is nondegenerate, we denote the re-
striction of ϕ to U also by ϕ, and use the symbols Oϕ(U) and SOϕ(U). We
denote by A(V ) the Clifford algebra of (V, ϕ), and define the canonical au-
tomorphism α 7→ α′ and the canonical involution α 7→ α∗ of A(V ) by the
condition −x′ = x∗ = x for every x ∈ V. We then put

A+(V ) = A+(V, ϕ) =
{
α ∈ A(V )

∣∣α′ = α
}
,

G+(V ) =
{
α ∈ A+(V )×

∣∣α−1V α = V
}
.
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We can define a homomorphism ν : G+(V ) → F× by ν(α) = αα∗ and also
a surjective homomorphism τ : G+(V ) → SOϕ(V ) by xτ(α) = α−1xα for
α ∈ G+(V ) and x ∈ V. Then Ker(τ) = F×. We denote by δ(ϕ) the coset of
F×/F×2 represented by (−1)n(n−1)/2 det(ϕ), where F×2 =

{
a2
∣∣ a ∈ F×}.

We note here an easy fact [S3, Lemma 1.5 (ii)]:

(1.1)
{
k ∈ V

∣∣ϕ[k] = q
}

= h·SOϕ(V ) if n > 1, h ∈ V, and ϕ[h] = q ∈ F×.

1.2. We now consider symbols F and g in the following two cases: (i) F
is an algebraic number field of finite degree and g is its maximal order; (ii)
F and g are the completions of those in Case (i) at a nonarchimedean prime.
We call a field of type (i) a global field, and that of type (ii) a local field. In
this paper, we employ the terms global and local fields only in these senses. If
F is a local field, we denote by p the maximal ideal of g. In both local and
global cases, by a g-lattice (or simply a lattice) in a finite-dimensional vector
space V over F, we mean a finitely generated g-module in V that spans V over
F. When F is a global field, we denote by a and h the sets of archimedean
primes and nonarchimedean primes of F respectively, and put v = a ∪ h. For
each v ∈ v we denote by Fv the v-completion of F. Given an algebraic group
G defined over F, we define an algebraic group Gv over Fv for each v ∈ v and
the adelization GA as usual, and view G and Gv as subgroups of GA. We then
denote by Ga and Gh the archimedean and nonarchimedean factors of GA,
respectively. In particular, F×

A is the idele group of F. For v ∈ v and x ∈ GA

we denote by xv the v-component of x.
Given a g-lattice L in V and another g-lattice M contained in L in both local

and global cases, we can find a finite set {a} of integral ideals a such that L/M
as a g-module is isomorphic to

⊕
a∈{a} g/a. We then put [L/M ] =

∏
a∈{a} a.

For x ∈ GA with G acting on V in the global case, we denote by Lx the
g-lattice in V such that (Lx)v = Lvxv for every v ∈ h. We call the set of all
such Lx the G-genus of L, and call the set of Lα for all α ∈ G the G-class of
L.

In our later treatment we will often use a quaternion algebra over a local or
global field F. Whenever we deal with such an algebra B, we always denote by
ι the main involution of B; we then put

(1.2) B◦ =
{
x ∈ B |xι = −x

}
,

TrB/F (x) = x+ xι, and NB/F (x) = xxι for x ∈ B.
Given (V, ϕ) as in §1.1 over a local or global F, we call a g-lattice L in V

integral if ϕ[x] ∈ g for every x ∈ L, and call such an L maximal if L is the only
integral lattice containing L. For an integral lattice L in V we denote by A(L)
the subring of A(V ) generated by g and L, and put A+(L) = A(L) ∩ A+(V ).
For a g-lattice Λ in V, an element q in F×, and a fractional ideal b in F, we
put

(1.3a) Λ̃ =
{
y ∈ V | 2ϕ(y, Λ) ⊂ g

}
,

(1.3b) Λ[q, b] =
{
x ∈ V |ϕ[x] = q, ϕ(x, Λ) = b

}
,
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(1.3c) D(Λ) =
{
γ ∈ Oϕ(V )

∣∣Λγ = Λ
}
, C(Λ) = D(Λ) ∩ SOϕ(V ) (F local).

Theorem 1.3. If F is local, L is a maximal lattice in V, and n > 2, then
#
{
L[q, b]/C(L)

}
≤ 1.

This was given in [S3, Theorem 10.5] under the condition that if n is odd,
then δ(ϕ) ∩ g× 6= ∅; see [S3, (8.1)]. Our theorem says that this condition
is unnecesary. It is sufficient to prove the case b = 2−1g, since cL[q, b] =
L(c2q, cb] for every c ∈ F×. We devote §§1.4 and 1.5 to the proof. To avoid
possible misunderstandings, we note that a result which looks similar to the
above theorem was stated in [E1, Satz 10.4]. This result of Eichler has no
relevance to our theory, as it does not consider the set ϕ(x, L), an essential
ingredient of our theorem. Besides, we have #

{
L[q, b]/C(L)

}
= 2 for certain

nonmaximal L; see [S7, Theorem 4.2 and (4.3)].

1.4. Given (V, ϕ) over a local field F and a maximal lattice L in V, by
Lemma 6.5 of [S3] we can find decompositions

(1.4a) V = Z ⊕ U, U =
r∑

i=1

(Fei + Ffi), ϕ(Z, U) = 0,

(1.4b) L = M ⊕R, R =

r∑

i=1

(gei + gfi), M =
{
z ∈ Z

∣∣ϕ[z] ∈ g
}
,

(1.4c) 2ϕ(ei, fj) = δij , ϕ(ei, ej) = ϕ(fi, fj) = 0, ϕ[z] 6= 0 for 0 6= z ∈ Z.
We put t = dim(Z), and call it the core dimension of (V, ϕ). To prove Theorem
1.3, we assume hereafter until the end of §1.6 that n is odd and δ(ϕ) contains
a prime element of F. Then t is 1 or 3. We denote by π any fixed prime
element of F. We first note a few auxiliary facts:

(1.5)
{
x ∈ g

∣∣x− 1 ∈ 4pm
}

=
{
a2
∣∣ a− 1 ∈ 2pm

}
if 0 < m ∈ Z.

(1.6) If k ∈ U and 2ϕ(k, R) = g, then kα = e1 + sf1 with some α ∈ D(R)
and s ∈ g; α can be taken from C(R) if r > 1.

(1.7) If h ∈ L[q, 2−1g], /∈ Z, then there exists an element α of C(L) such that
hα = πm(e1 + sf1) + z with 0 ≤ m ∈ Z, s ∈ g, and z ∈M.

The first of these is [S3, Lemma 5.5 (i)]; (1.6) is proven in [S3, §10.7, (A1),
(A2)]. Notice that the proof there is valid even when ϕ[k] = 0. Now let
h = k + w ∈ L[q, 2−1g] with k ∈ U and w ∈ Z. If h /∈ Z, then k 6= 0, and
we can put 2ϕ(k, R) = pm with 0 ≤ m ∈ Z. By (1.6), there exists an element
α0 ∈ D(R) such that π−mkα0 = e1 +sf1 with s ∈ g. Since D(M) contains an
element of determinant −1, we can extend α0 to an element α of C(L) such
that Mα = M. This proves (1.7).

1.5. By virtue of (1.7), it is sufficient to prove Theorem 1.3 when r ≤ 1.
If r = 0, then L = M and SOϕ(V ) = C(L) by [S3, Lemma 6.4]. Therefore,
if n = t = 3 and ϕ[z] = ϕ[w] with z, w ∈ V, then by (1.1), z = wα with
α ∈ C(L), which gives the desired fact. For this reason we hereafter assume that
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r = 1, and write e and f for e1 and f1. We represent the elements of Oϕ(V )
by (n×n)-matrices with respect to {e, g1, , . . . , gt, f}, where {g1, , . . . , gt} is
a g-basis of M.

(A) Case t = 1. In this case M = gg with an element g such that ϕ[g] is a
prime element of F. Thus we can take ϕ[g] as π.

(a1) Suppose L[q, 2−1g]∩Z 6= ∅; let w ∈ L[q, 2−1g]∩Z and h ∈ L[q, 2−1g].
Then we can put w = [0 c 0] with c ∈ F such that 2cp = g. By (1.1),
h = wα with α ∈ SOϕ(V ). Now SOϕ(V ) = PC(L) with the subgroup P of
SOϕ(V ) consisting of the upper triangular elements; see [S3, Theorem 6.13
(ii)]. Put α = βγ with β ∈ P and γ ∈ C(L). The second row of β is of the
form [0 1 j] with j ∈ F. Thus hγ−1 = wβ = [0 c cj], and so cj ∈ g.
Since 2cp = g, we can find an element p of g such that 2cπp = cj. Take the
matrix

(1.8) η =




1 −p −πp2

0 1 2πp
0 0 1


 .

Then η ∈ C(L) and wη = wβ = hγ−1, which gives the desired fact.
(a2) Thus we assume that L[q, 2−1g] ∩ Z = ∅. Let h ∈ L[q, 2−1g]. By (1.7)

we can put h = πm(e + sf) + cg with 0 ≤ m ∈ Z and s, c ∈ g. Then
q = π2ms + πc2 and pm + 2cp = g. Put d = 2πc. Suppose d ∈ g×. Then
by (1.5), we can put d2 + 4π2m+1s = d2

1 with d1 ∈ g×. We easily see that
(2π)−1d1g ∈ L[q, 2−1g], a contradiction, as g ∈ Z. Thus d ∈ p, so that m = 0
and h = e+ sf + (2π)−1dg, and q = s+ (4π)−1d2. Suppose we have another
element h1 = e+s1f+(2π)−1d1g with s1 ∈ g and d1 ∈ p such that ϕ[h1] = q.
Then d2

1 − d2 = 4π(s − s1) ∈ 4p, and so d1 − d ∈ 2p or d1 + d ∈ 2p. Since
−2d ∈ 2p, we have d1 − d ∈ 2p in both cases. Let α be the element of
(1.8) with p = (d1 − d)/(2π). Then α ∈ C(L) and h = h1α ∈ h1C(L). This
completes the proof when t = 1.

(B) Case t = 3. As shown in [S3, §§7.3 and 7.7 (III)], there is a division
quaternion algebra B over F with which we can put Z = B◦ and 2ϕ(x, y) =
dTrB/F (xyι) for x, y ∈ Z, where d is an element of F× that represents the
determinant of the restriction of ϕ to Z. Thus we can take a prime element π
of F as d; then M =

{
x ∈ Z

∣∣πxxι ∈ g
}
. Let K be an unramified quadratic

extension of F, r the maximal order of K, and ρ the generator of Gal(K/F ).
We can put B = K +Kη with an element η such that η2 = π and xη = ηxρ

for every x ∈ K. Take u ∈ r so that r = g[u] and put σ = u − uρ. Then

M = gσ + rη−1 and M̃ = (2p)−1σ + rη−1. Since r = 1, ϕ is represented by a
matrix 


0 0 2−1

0 ζ 0
2−1 0 0


 ,

where ζ is an element of g3
3 that represents the restriction of ϕ to Z. Define

λ = (λij) ∈ g3
3 by λii = ζii, λij = 2ζij if i < j and λij = 0 if i > j. Then

λ+ tλ = 2ζ. Let P be the subgroup of SOϕ(V ) consisting of the elements that
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send Ff onto itself, Then SOϕ(V ) = PC(L); see [S3, Theorem 6.13 (ii)].

(b1) Suppose L[q, 2−1g]∩Z 6= ∅. Let h ∈ L[q, 2−1g] and w ∈ L[q, 2−1g]∩Z.
Identify w with a row vector w = [0 y 0], where y = (yi)

3
i=1 with yi ∈ g. By

(1.1), h = wα with α ∈ SOϕ(V ). Put α = βγ with β ∈ P and γ ∈ C(L). The
middle three rows of β can be written in the form [0 ε j] with ε ∈ SOϕ(Z)
and a column vector j. Replacing γ by diag[1, ε, 1]γ, we may assume that
ε = 1. Then hγ−1 = wβ = [0 y yj] and yj ∈ g. Since w ∈ L[q, 2−1g], we
see that 2yζ is primitive, and so we can find p ∈ g1

3 such that −2yζ · tp = yj.
Let

(1.9) ψ =




1 p −pλ · tp
0 1 −2ζ · tp
0 0 1


 .

Then ψ ∈ C(L) and wψ = wβ = hγ−1, and so h ∈ wC(L) as expected.

(b2) Let h ∈ L[q, 2−1g], /∈ Z. By (1.7) we may assume that h = πm(e +
sf) + z with 0 ≤ m ∈ Z, s ∈ g, and z ∈ Z. Put z = (2π)−1cσ + xη−1

with c ∈ F and x ∈ K. Then g = pm + cg + TrK/F (xr), q = π2ms − πz2,

and πz2 = (4π)−1c2σ2 + xxρ. Suppose m > 0; then c ∈ g× or x ∈ r×. If
c ∈ g×, then by (1.5) we can put c2 − 4π2m+1σ−2s = b2 with b ∈ g×. Put
w = (2π)−1bσ + xη−1. Then we see that w ∈ L[q, 2−1g] ∩ Z. Next suppose
x ∈ r×; then xxρ−π2ms ∈ g×. SinceNK/F (r×) = g×, we can find x1 ∈ r× such

that x1x
ρ
1 = xxρ−π2ms. Put x = (2π)−1cσ+x1η

−1. Then x ∈ L[q, 2−1g]∩Z.
Therefore, if m > 0, then the problem can be reduced to case (b1), which has
been settled.

(b3) Thus if L[q, 2−1g]∩Z = ∅ and h ∈ L[q, 2−1g], then we may assume that
h = e+sf+z with s ∈ g and z ∈ Z. Take another element h1 = e+s1f+z1 ∈
L[q, 2−1g] with s1 ∈ g and z1 ∈ Z. We have z = (2π)−1cσ + xη−1 and
z1 = (2π)−1c1σ+x1η

−1 with c, c1 ∈ g and x, x1 ∈ r. Since s−πz2 = s1−πz2
1 ,

we have (4π)−1(c2 − c21) ∈ g, so that c2 − c21 ∈ 4p. Then c − c1 ∈ 2p or
c+ c1 ∈ 2p. Now the map xσ+ yη−1 7→ −xσ+ yρη−1 is an element of C(M).
Therefore, replacing z1 by its image under this map if necessary, we may
assume that c− c1 ∈ 2p, which implies that z− z1 ∈M. Define ψ by (1.9) by
taking p to be the vector that represents z − z1. Then h1ψ = h, which gives
the desired fact.

1.6. We can now remove condition (8.1) from [S3, Lemma 10.8], which
concerns the case where t = 1 and r > 0. To be precise, that lemma can be
restated, without condition (8.1), as follows:

Let L = ge1+gf1+gg with g such that p ⊂ ϕ[g]g ⊂ g, and let h ∈ L[q, 2−1g]
with q ∈ F×.Then there exists an element γ of C(L) such that hγ = cg with
c satisfying 2cϕ[g]g = g or hγ = ae1 + f1 + cg with a ∈ g and c ∈ 2−1g.

This follows from the discussions of (a1) and (a2) combined with (1.7).

1.7. Still asssuming F to be local, take the symbols as in (1.4a, b, c) with
even or odd n, put C = C(L) for simplicity, and define subgroups T and J of
G+(V ) by
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(1.10) T =
{
α ∈ G+(V )

∣∣ τ(α) ∈ C
}
,

(1.11) J =
{
γ ∈ T

∣∣ ν(γ) ∈ g×
}
.

In [S3], Proposition 8.8, Theorems 8.6, and 8.9 we discussed the structure of
A(L), A+(L), ν(J), and the connection of τ(J) with C under the condition
that δ(ϕ) ∩ g× 6= ∅ if n is odd. Let us now prove the results in the cases in
which the condition is not satisfied.

Theorem 1.8. Suppose F is local, 1 < n − 1 ∈ 2Z, and δ(ϕ) contains a
prime element. Then the following assertions hold.

(i) If t = 1, then there exist an order O in M2(F ) of discriminant p (see
§5.1 for the definition) and an isomorphism θ of A+(V ) onto Ms

(
M2(F )

)
that

maps A+(L) onto Ms(O), where s = 2r−1.
(ii) If t = 3, then there exist a division quaternion algebra B over F and an

isomorphism ξ : B◦ → Z such that ϕ[xξ] = dxxι for every x ∈ B◦ with a prime
element d of F× independent of x, where B◦ is defined by (1.2). Moreover
there exists an isomorphism θ of A+(V ) onto Ms(B) that maps A+(L) onto
Ms(O), where s = 2r and O is the unique maximal order in B.

(iii) In both cases t = 1 and t = 3 we have ν(J) = g×, C = τ(T ), [C :
τ(J)] = 2, and T = F×(J ∪ Jη) with an element η such that η /∈ F×J, η2 ∈
F×, Jη = ηJ, and ν(η)g = p.

This will be proved after the proof of Lemma 5.4.

Theorem 1.9. In the setting of Theorem 1.3 with even or odd n > 2, let t
be the core dimension of (V, ϕ) and let σ : SOϕ(V )→ F×/F×2 be the spinor
norm map of [S3, (3.7)]. Then σ(C) = g×F×2 in the following three cases: (i)

t = 0; (ii) t = 1 and δ(ϕ)∩g× 6= ∅; (iii) t = 2 and L̃ = L. We have σ(C) = F×

in all the remaining cases.

Proof. That σ(C) = g×F×2 in the three cases specified above is shown by
Proposition 8.8 (iii) and Theorem 8.9 (i) of [S3]. Therefore we assume that
those cases do not apply. If δ(ϕ)∩ g× 6= ∅ or n is even, then Theorem 8.9 (ii)
of [S3] shows that σ(C) = F×. If n is odd and δ(ϕ) ∩ g× = ∅, then from (iii)
of Theorem 1.8 we obtain σ(C) = ν(T ) = F×, which completes the proof.

2. Global quadratic Diophantine equations

2.1. Let us now turn to the global case. The main theorems of [S3, Sections
11 through 13] were given under a condition stated in [S3, (9.2)]: if n is odd,
then δ(ϕ), at every nonarchimedean prime, contains a local unit. By virtue of
Theorem 1.3 we can now remove this condition from [S3, Theorem 11.6] and
some others, which we will indicate in Remark 2.4 (3), (5), (6), and (7).

Throughout this section we assume that F is an algebraic number field. Given
a quadratic space (V, ϕ) over F, we can define, for each v ∈ v, the v-localization
(Vv, ϕv) of (V, ϕ) as a quadratic space over Fv by putting Vv = V ⊗F Fv and
extending ϕ to an Fv-valued quadratic form ϕv on Vv in a natural way.
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In [S3, Section 13], we treated the equation ϕ[h] = q not only for a scalar
q, but also for a symmetric matrix q of size n − 1. We now consider a more
general case by taking a new approach. Given tq = q ∈ GLm(F ) and tϕ =
ϕ ∈ GLn(F ), we consider the solutions h ∈ Fmn of the equation hϕ · th = q.
Here and throughout this and the next sections we assume that n > 2 and
n > m > 0. More intrinsically, take (V, ϕ) as before and take also (X, q) with
a nondegenerate quadratic form q on a vector space X over F of dimension
m. We put

(2.1) V = Hom(X, V ),

and consider h ∈ V such that ϕ[xh] = q[x] for every x ∈ X. Since q is
nondegenerate, h must be injective. To simplify our notation, for every k ∈ V

we denote by ϕ[k] the quadratic form on X defined by ϕ[k][x] = ϕ[xk] for
every x ∈ X. Then our problem concerns the solutions h ∈ V of the equation
ϕ[h] = q for a fixed q. If m = 1 and X = F, then q ∈ F×, and an element
h of V defines an element of V that sends c to ch for c ∈ F, and V consists
of all such maps. Thus we can put V = V if m = 1 and the problem about
ϕ[h] = q with q ∈ F× is the one-dimensional special case. For m ≥ 1, if h ∈ V

and det(ϕ[h]) 6= 0, then

(2.2)
{
k ∈ V

∣∣ϕ[k] = ϕ[h]
}

= h · SOϕ(V ).

This is a generalization of (1.1) and follows easily from the Witt theorem; see
[S3, Lemma 1.5 (i)].

For a fixed h ∈ V such that det
(
ϕ[h]

)
6= 0, put W = (Xh)⊥, G = SOϕ(V ),

and H = SOϕ(W ). We identify H with the subgroup of G consisting of the
elements that are the identity map on Xh; thus

(2.3) H =
{
α ∈ G

∣∣hα = h
}
.

For ξ ∈ GA the symbol hξ is meaningful as an element of V A, and so for a
subset Ξ of GA the symbol hΞ is meaningful as a subset of V A.

Theorem 2.2. Let D = D0Ga with an open compact subgroup D0 of Gh.
Then the following assertions hold.

(i) For y ∈ GA we have HA ∩GyD 6= ∅ if and only if V ∩ hDy−1 6= ∅.
(ii) Fixing y ∈ GA, for every ε ∈ HA ∩GyD take α ∈ G so that ε ∈ αyD.

Then the map ε 7→ hα gives a bijection of H\(HA ∩ GyD)/(HA ∩ D) onto
(V ∩ hDy−1)/Γ y, where Γ y = G ∩ yDy−1.

(iii) Take Y ⊂ GA so that GA =
⊔
y∈Y GyD. Then

(2.4) #
{
H
∖
HA

/
(HA ∩D)

}
=
∑

y∈Y
#
{

(V ∩ hDy−1)/Γ y
}
.

(iv) In particular, suppose m = 1 and n > 2. With a fixed maximal lattice
L in V put C =

{
ξ ∈ GA

∣∣Lξ = L
}
, q = ϕ[h], and b = ϕ(h, L). Then

(2.5) V ∩ hCy−1 = (Ly−1)[q, b] for every y ∈ GA.

Note: Since H
∖
HA

/
(HA ∩ D) is a finite set, from (ii) we see that (V ∩

hDy−1)/Γ y is a finite set.
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Proof. Let y, ε, and α be as in (ii); then clearly hα ∈ V ∩ hDy−1. If
ηεζ ∈ βyD with η ∈ H, ζ ∈ HA ∩D, and β ∈ G, then β−1ηα ∈ G∩ yDy−1 =
Γ y, and hence hα = hηα ∈ hβΓ y. Thus our map is well defined. Next let
k ∈ V ∩hDy−1. Then k = hδy−1 with δ ∈ D, and moreover, by (2.2), k = hξ
with ξ ∈ G. Then h = hξyδ−1, so that ξyδ−1 ∈ HA by (2.3). Thus ξyδ−1 ∈
HA ∩ GyD. This shows that k is the image of an element of HA ∩ GyD. To
prove that the map is injective, suppose ε ∈ αyD ∩ HA and δ ∈ βyD ∩ HA

with α, β ∈ G, and hα = hβσ with σ ∈ Γ y. Put ω = βσα−1. Then hω = h,
so that ω ∈ H. Since σ ∈ yDy−1, we have βyD = βσyD = ωαyD, and hence
δ ∈ βyD∩HA = ωαyD∩HA = ω(αyD∩HA) = ω(εD∩HA) = ωε(D∩HA) ⊂
Hε(D ∩ HA). This proves the injectivity, and completes the proof of (ii). At
the same time we obtain (i).

Now HA =
⊔
y∈Y (HA ∩GyD), and so (iii) follows immediately from (ii). As

for (iv), clearly V ∩ hC ⊂ L[q, b]. Conversely, every element of L[q, b] belongs
to hC by virtue of Theorem 1.3. Thus

(2.6) V ∩ hC = L[q, b].

Let k ∈ V ∩ hCy−1 with y ∈ GA; put M = Ly−1. Then ϕ[k] = q, ϕ
(
k, M) =

ϕ(h, L) = b, and kyCy−1 = hCy−1. Taking k, M, and yCy−1 in place of h, L
and C in (2.6), we obtain V ∩ hCy−1 = V ∩ kyCy−1 = M [q, b] = (Ly−1)[q, b].
This proves (2.5) when V ∩ hCy−1 6= ∅. To prove the remaining case, suppose
ℓ ∈ (Ly−1)[q, b]; then ϕ(ℓyv, Lv) = bv = ϕ(h, L)v for every v ∈ h. By
Theorem 1.3, ℓy ∈ hC, and hence ℓ ∈ hCy−1. This shows that if (Ly−1)[q, b] 6=
∅, then V ∩hCy−1 6= ∅, and hence (2.5) holds for every y ∈ GA. This completes
the proof.

If k and ℓ are two elements of V ∩hDy−1, then k = ℓxv with xv ∈ yvDvy
−1
v

for every v ∈ h. Therefore we are tempted to say that k and ℓ belong to the
same genus. Then each orbit of (V ∩ hDy−1)/Γ y may be called a class. Thus
(ii) of Theorem 2.2 connects such classes of elements of V with the classes of
H with respect to HA ∩D.

Combining (2.4) with (2.5), we obtain, in the setting of (iv),

(2.7) #
{
H
∖
HA

/
(HA ∩ C)

}
=
∑

y∈Y
#
{

(Ly−1)[q, b]/Γ y
}
.

This was stated in [S3, (11.7)] under the condition mentioned at the beginning
of this section, which we can now remove.

The above theorem concerns SOϕ
(
(Xh)⊥

)
. Let us now show that we can

formulate a result with respect to SOq(X) instead, when m = n − 1. The
notation being as above, put Y = Xh and J = SOϕ(Y ). We identify J with{
α ∈ G

∣∣α = id. on W
}
. For every δ ∈ J there is a unique element δ′ of

SOq(X) such that δ′h = hδ, and δ 7→ δ′ gives an isomorphism of J onto
SOq(X). In this section we employ the symbol δ′ always in this sense. We
note a simple fact:

(2.8) If m = n− 1 and hξ = hη for ξ, η ∈ GA, then ξ = η.
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Indeed, for each v ∈ v we have hξvη
−1
v = h, and so ξvη

−1
v is the identity map

on Xvh. Since m = n− 1, it must be the identity map on the whole Vv. Thus
ξvη

−1
v = 1 for every v ∈ v, which proves (2.8).

Theorem 2.3. Let D = D0Ga as in Theorem 2.2 and let E = E0Ja with an
open compact subgroup E0 of Jh. Suppose m = n− 1 and JA ∩D ⊂ E. Then
for every z ∈ JA and y ∈ GA there exists a bijection

(2.9) J\(JzE ∩GyD)/(JA ∩D) −→ ∆′\(V ∩ hzEDy−1)/Γ,

where Γ = yDy−1 ∩G and ∆′ =
{
δ′
∣∣ δ ∈ ∆

}
, ∆ = zEz−1 ∩ J.

Proof. Given σ ∈ JzE∩GyD, take α ∈ G and β ∈ J so that σ ∈ βzE∩αyD,
and put k = hβ−1α. Then k ∈ V ∩hzEDy−1. If σ ∈ β1zE∩α1yD with α1 ∈ G
and β1 ∈ J, then β−1

1 β ∈ ∆ and α−1
1 α ∈ Γ, and so σ → hβ−1α is a well-

defined map as in (2.9). To show that it is surjective, take k ∈ V ∩ hzEDy−1;
then ϕ[k] = q, and so k = hα with α ∈ G by (2.2). We have also k = hzεζy−1

with ε ∈ E and ζ ∈ D. By (2.8), zεζy−1 = α, and so zε = αyζ−1 ∈ zE∩αyD.
This shows that k is the image of zε, which proves the surjectivity. To prove
the injectivity, let σ ∈ βzE ∩ αyD and σ1 ∈ β1zE ∩ α1yD with α, α1 ∈ G
and β, β1 ∈ E. Suppose hβ−1

1 α1 = δ′hβ−1αγ with δ ∈ ∆ and γ ∈ Γ. Then
β−1

1 α1 = δβ−1αγ by (2.8). Put λ = αγα−1
1 . Then λ = βδ−1β−1

1 ∈ J. Since
γ ∈ yDy−1, we have σ ∈ αyD = αγyD = λα1yD = λσ1D ⊂ Jσ1D. Also,
since σ, σ1 ∈ JA, we have σ ∈ Jσ1(JA ∩D). This proves the injectivity, and
completes the proof.

Remark 2.4. (1) We can take E = JA ∩ D in the above theorem. Then
(2.9) takes a simpler form

(2.10) J\(JzE ∩GyD)/E −→ ∆′\(V ∩ hzDy−1)/Γ,

(2) Let GA =
⊔
y∈Y GyD as in Theorem 2.2 and let JA =

⊔
z∈Z JzE with a

finite subset Z of JA. Then JA =
⊔
z,y(JzE ∩GyD). For each (z, y) such that

JzE ∩ GyD 6= ∅ pick ξ ∈ JzE ∩ GyD and denote by Ξ the set of all such ξ.
Then JA =

⊔
ξ∈Ξ(JξE ∩GξD), and we obtain

(2.11) #
{
J\JA/(JA ∩D)

}
=
∑

ξ∈Ξ
#
{
∆′
ξ\(V ∩ hξEDξ−1)/Γ ξ

}
,

where Γ ξ = ξDξ−1 ∩G and ∆′
ξ =

{
δ′
∣∣ δ ∈ J ∩ ξEξ−1}.

(3) For ℓ ∈ V let us denote by ϕ(h, ℓ) the element of Hom(X, F ) defined by
xϕ(h, ℓ) = ϕ(xh, ℓ) for x ∈ X; then for a subset S of V let us put ϕ(h, S) ={
ϕ(h, s)

∣∣ s ∈ S
}
. Now, fixing a maximal lattice L in V, put Λ = L̃, B =

ϕ(h, Λ), and E =
{
ε ∈ JA

∣∣ ε′B = B
}
. Since B is a g-lattice in Hom(X, F ),

we see that E is a subgroup of JA of the type considered in Theorem 2.3. Then
we can prove

(2.12) V ∩ hzEDy−1 =
{
k ∈ V

∣∣ϕ[k] = q, ϕ(k, Λy−1) = z′B
}
.
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This is similar to (2.5), and proved in the proof of [S3, Theorem 13.10]. It
should be noted that condition (9.2) imposed in that theorem and also (8.1) in
[S3 Theorem 13.8] are unnecessary for the reason explained at the beginning
of this section.

(4) Suppose m = n − 1 in the setting of Theorem 2.2; then H = {1}.
Therefore HA ∩ GyD 6= ∅ only when GyD = GD. Then (2.4) gives #

{
(V ∩

hD)/(G ∩D)
}

= 1, but this is an immediate consequence of (2.2).

(5) Let us note some more statements in [S3] from which condition (9.2) of
[S3] can be removed. First of all, that is the case with Theorem 9.26 of [S3].
In fact, we can state an improved version of that theorem as follows. Using
the notation employed in the theorem, let I′

ϕ be the subgroup of I generated

by I0 and the prime ideals for which σ(Cv) = F×
v . (Such prime ideals are

determined by Theorem 1.9.) Then #{SOϕ\SOϕA/C) = [I : I′
ϕ] for C of [S3,

(9.15)], which equals C of Theorem 2.2 (iv). The last group index is 1 if F = Q,
and so the genus of maximal lattices consists of a single class. Consequently
we can state a clear-cut result as follows. Let Sn denote the set of symmetric
matrices of GLn(Q) that represent Z-valued quadratic forms on Zn, and S0

n

the subset of Sn consisting of the reduced elements of Sn in the sense of [S5],
that is, the set of Φ ∈ Sn which cannot be represented nontrivially over Z

by another element of Sn. For Φ ∈ Sn put σ(Φ) = p − q where Φ as a real
matrix has p positive and q negative eigenvalues. Now the number of genera
of Φ ∈ S0

n with given σ(Φ) and det(2Φ) was determined in [S5, Theorem 6.6].
If n ≥ 3 and σ(Φ) 6= n, then the number of genera of Φ given there equals the
number of classes, as each genus of maximal lattices consists of a single class
as explained above.

(6) Next, (9.2) is unnecessary in Theorem 12.1 of [S3]. What we need, in
addition to Theorem 1.3, is the following fact: If v ∈ h, ϕ[h]gv = ϕ(h, Lv)

2,
then Lv∩Wv is maximal and C∩Hv =

{
α ∈ Hv

∣∣ (Lv∩Wv)α = Lv∩Wv

}
. Here

the notation is the same as in the proof of Theorem 12.1. The statement is
valid irrespective of the nature of Lv and tv. Indeed, replacing h by an element
of F×h, we may assume that ϕ[h]gv = ϕ(h, Lv) = gv. Then, by Lemma 10.2
(i) of [S3], we have Lv = gvh⊕ (Lv ∩Wv), from which we immediately obtain
the expected facts on Lv ∩Wv. Consequently, g×v ⊂ σ(C ∩ Hv) by Theorem
1.9, as n−1 > 2, and the original proof of Theorem 12.1 is valid without (9.2).

(7) In [S4] we proved a result of type (2.7) in terms of G+(V ), but imposed
the condition that if n is odd, then det(ϕ)g is a square in the ideal group of
F ; see Theorem 1.6 (iv) of [S4]. We can remove this condition by virtue of
Theorem 1.3.

3. New mass formulas

3.1. We first recall the symbols m(G,D) and ν(Γ ) introduced in [S1] and
[S2]. Here G = SOϕ(V ) and D is an open subgroup of GA containing Ga and
such that D∩Gh is compact. Fixing such a D, we put Γ a = G∩aDa−1 for every
a ∈ GA. Let Ca be a maximal compact subgroup of Ga and let Z = Ga/Ca.
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Then Z is a symmetric space on which G acts through its projection into Ga.
Taking a complete set of representatives B for G\GA/D, we put

(3.1) m(G, D) = m(D) =
∑

a∈B

ν(Γ a).

Here ν(Γ ) is a quantity defined by

(3.2) ν(Γ ) =

{
[Γ : 1]−1 if Ga is compact,

vol(Γ\Z )/#(Γ ∩ {±1}) otherwise.

We fix a Haar measure on Ga, which determines a unique Ga-invariant measure
on Z by a well known principle. (In fact, m(D) and ν(Γ ) are the measure of
D∩Ga and that of Γ\Ga; see [S6, Theorem 9].) We easily see that m(D) does
not depend on the choice of B. We call m(G, D) the mass of G relative to D.
If D′ is a subgroup of GA of the same type as D and D′ ⊂ D, then, as proven
in [S1, Lemma 24.2 (1)],

(3.3) m(G, D′) = [D : D′]m(G, D).

Next, in the setting of §2.1 we consider a subset S of V of the form S =⊔
ζ∈Z hζΓ, where h is as in (2.2), Z is a finite subset of G, and Γ = G ∩ D

with D as above. Then we put

(3.4) m(S) =
∑

ζ∈Z
ν(∆ζ)/ν(Γ ), ∆ζ = H ∩ ζΓζ−1,

and call m(S) the mass of S. Here, to define ν(∆ζ), we need to fix a measure
on Ha. Thus m(S) depends on the choice of measures on Ga and Ha, but m(S)
is independent of the choice of Z and Γ. (Let Y =

{
x ∈ V a

∣∣ϕ[x] = q
}
. Since

Y can be identified with Ha\Ga, once a measure on Ga is fixed, a measure
on Y determines a measure on Ha, and vice versa. The replacement of h by
an element of hG changes the group H, but that does not change m(S) if
we start with a fixed measure on Y. Notice also that an identification of V a

with a Euclidean space determines a Ga-invariant measure on Y.) Since the
left-hand side of (2.4) is finite, we see that (V ∩ hDy−1)/Γ y is a finite set for
every y ∈ GA. Thus we can define m(V ∩ hDy−1) for every y ∈ GA.

If Ga is compact, we naturally take the measures of Ga and Ha to be
1. Then m(S) can be defined in a unique way. We easily see that S =⊔
ζ∈Z

⊔
γ∈∆′ζ\Γ

hζγ, where ∆′
ζ = ζ−1∆ζζ, and so #S =

∑
ζ∈Z [Γ : ∆′

ζ ] = m(S)

if Ga is compact. Thus we obtain

(3.5) m(S) = #(S) if Ga is compact.

Theorem 3.2. The notation being the same as in Theorem 2.2, we have

(3.6) m(H, HA ∩D) =
∑

y∈Y
ν(Γ y)m(V ∩ hDy−1).

In particular if m = 1 and the notation is as in (iv) of Theorem 2.2, then

Documenta Mathematica 11 (2006) 333–367



Quadratic Diophantine Equations 347

(3.7) m(H, HA ∩ C) =
∑

y∈Y
ν(Γ y)m

(
(Ly−1)[q, b]

)
.

Proof. Let Ey = H\(HA∩GyD)/(HA∩D). For each ε ∈ Ey take ζε ∈ G so
that ε ∈ ζεyD. By Theorem 2.2 (ii) we have V ∩ hDy−1 =

⊔
ε∈Ey

hζεΓ
y and

H ∩ ε(HA ∩D)ε−1 = H ∩HA ∩ εDε−1 = H ∩ ζεyDy−1ζ−1
ε = H ∩ ζεΓ yζ−1

ε , so
that

ν(Γ y)m(V ∩ hDy−1) =
∑

ε∈Ey

ν(H ∩ ζεΓ yζ−1
ε ) =

∑

ε∈Ey

ν(H ∩ ε(HA ∩D)ε−1).

Since
⊔
y∈Y Ey gives H\HA/(HA ∩D), we obtain

m(H, HA ∩D) =
∑

y∈Y

∑

ε∈Ey

ν(H ∩ ε(HA ∩D)ε−1) =
∑

y∈Y
ν(Γ y)m(V ∩ hDy−1).

This proves (3.6), which combined with (2.5) gives (3.7).

Formula (3.7) was given in [S3, (13.17b)] under the condition mentioned
at the beginning of Section 2. That condition can be removed by the above
theorem.

It should be noted that (3.6) and (3.7) are different from any of the mass
formulas of Siegel. Indeed, the left-hand side of (3.6) concerns an orthogonal
group in dimension n − m, and the right-hand side concerns the space V ,
whereas both sides of Siegel’s formulas are defined with respect to matrices of
the same size. See also [S3, p. 137] for a comment on the connection with the
work of Eisenstein and Minkowski on the sums of five squares.

4. Classification and genera of
quadratic forms in terms of matrices

4.1. Traditionally the genus and class of a quadratic form over Q were
defined in terms of matrices, but it is easy to see that they are equivalent
to those defined in terms of lattices. In the general case, however, there is a
standard definition in terms of lattices, but the definition in terms of matrices
is nontrivial. Also, we treated in [S5] the classification of quadratic forms over
a number field, but gave explicit results in terms of matrices only when Q is
the base field. Let us now discuss how we can handle such problems over an
arbitrary number field, as the generalization is far from obvious and requires
some new concepts. Before proceeding, we recall two basic facts: Given (V, ϕ)
over a global F and a lattice L in V, the Oϕ(V )-genus of L is the same as the
SOϕ(V )-genus of L; all the maximal lattices in V form a single Oϕ(V )-genus;
see [S3, Lemmas 6.8 and 6.9].

We take a global field F, and denote by F 1
n the vector space of all n-

dimensional row vectors with components in F, and by g1
n the set of elements

of F 1
n with components in g. Define subgroups E and Eξ of GLn(F )A by

(4.1) E = GLn(F )a
∏

v∈h

GLn(gv), Eξ = ξ−1Eξ (ξ ∈ GLn(F )A).
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Put L0 = g1
n. An arbitrary g-lattice L in F 1

n can be given as L = L0ξ with
ξ ∈ GLn(F )A; then Eξ =

{
y ∈ GLn(F )A

∣∣Ly = L
}
. It is well known that the

map x 7→ det(x)g gives a bijection of E\GLn(F )A/GLn(F ) onto the ideal class
group of F ; see [S1, Lemma 8.14], for example. Thus the ideal class of det(ξ)g
is determined by the GLn(F )-class of L0ξ, and vice versa. Consequently, L is
isomorphic as a g-module to the direct sum of g1

n−1 and det(ξ)g.
To define the generalization of Z-valued quadratic forms, we denote by Sn

the set of all symmetric elements of GLn(F ), fix an element ξ of GLn(F )A,
and denote by Sn(ξ) the set of all T ∈ Sn such that xT · tx ∈ g for every
x ∈ L0ξ. We call such a T reduced (relative to ξ) if the following condition is
satisfied:

(4.2) T ∈ Sn(ζ−1ξ) with ζ ∈ GLn(F )h ∩
∏
v∈hMn(gv) =⇒ ζ ∈ E.

We denote by S0
n(ξ) the set of all reduced elements of Sn(ξ). These depend

essentially on EξGLn(F ), as will be seen in Proposition 4.3 (i) below.

4.2. To define the genus and class of an element of Sn, put

(4.3) ∆ξ = Eξ ∩GLn(F ), ∆1
ξ = Eξ ∩ SLn(F ).

We say that two elements Φ and Ψ of Sn(ξ) belong to the same genus (relative
to ξ) if there exists an element ε of Eξ such that εΦ · tε = Ψ ; they are said to
belong to the same O-class (resp. SO-class) if αΦ · tα = Ψ for some α ∈ ∆ξ

(resp. α ∈ ∆1
ξ). These depend on the choice of L = L0ξ, or rather, on the

choice of the ideal class of det(ξ)g. There is no reason to think that ξ = 1 is
the most natural choice.

Given Φ ∈ Sn, put V = F 1
n and ϕ[x] = xΦ · tx for x ∈ V. Then we obtain

a quadratic space (V, ϕ), which we denote by [Φ]; we put then O(Φ) = Oϕ(V )
and SO(Φ) = SOϕ(V ). Now put L = L0ξ with ξ ∈ GLn(F )A. Clearly L is
integral if Φ ∈ Sn(ξ), in which case L is maximal if and only if Φ ∈ S0

n(ξ).

Proposition 4.3. (i) If η ∈ Eξα with ξ, η ∈ GLn(F )A and α ∈ GLn(F ),
then Sn(ξ) = αSn(η) · tα and S0

n(ξ) = αS0
n(η) · tα.

(ii) For Φ, Ψ ∈ S0
n(ξ), ξ ∈ GLn(F )A, the spaces [Φ] and [Ψ ] are isomorphic

if and only if they belong to the same genus.
(iii) Let X be a complete set of representatives for E\GLn(F )A/GLn(F )

and for each ξ ∈ GLn(F )A let Yξ be a complete set of representatives for the
genera of the elements of S0

n(ξ). Then the spaces [Φ] obtained from Φ ∈ Yξ for
all ξ ∈ X exhaust all isomorphism classes of n-dimensional quadratic spaces
over F without overlapping.

Proof. Assertion (i) can be verified in a straightforward way. Let Φ and Ψ be
elements of S0

n(ξ) belonging to the same genus. Then there exists an element
ε ∈ Eξ such that εΦ · tε = Ψ, and the Hasse principle guarantees an element
α of GLn(F ) such that Ψ = αΦ · tα. Thus [Ψ ] is isomorphic to [Φ]. Conversely,
suppose [Φ] and [Ψ ] are isomorphic for Φ, Ψ ∈ S0

n(ξ). Then Φ = βΨ ·tβ for some
β ∈ GLn(F ). Now L0ξ is maximal in both [Φ] and [Ψ ], and L0ξβ is maximal
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in [Ψ ]. Thus L0ξβ = L0ξγ with γ ∈ O(Ψ)A. Put ζ = βγ−1. Then ζ ∈ Eξ, and
ζΨ · tζ = Φ. Therefore Ψ belongs to the genus of Φ. This proves (ii). As for
(iii), clearly every n-dimensional quadratic space is isomorphic to [Ψ ] for some
Ψ ∈ Sn. Putting V = F 1

n , pick a maximal lattice L in V and put L = L0η with
η ∈ GLn(F )A. Then η ∈ EξGLn(F ) for some ξ ∈ X, and by (i) we can replace
η by ξ. Take a member Φ of Yξ belonging to the genus of Ψ. Then by (ii), [Ψ ]
is isomorphic to [Φ]. Thus every n-dimensional quadratic space is isomorphic
to [Φ] for some Φ ∈ Yξ with ξ ∈ X. To prove that there is no overlapping, take
Φi ∈ Yξi

with ξi ∈ X, i = 1, 2, and suppose that [Φ1] is isomorphic to [Φ2].
Then Φ1 = αΦ2 · tα with α ∈ GLn(F ). Now L0ξ1 is maximal in [Φ1], and so
L0ξ1α is maximal in [Φ2]. Therefore L0ξ1α = L0ξ2γ with γ ∈ O(Φ2)A. Then
ξ1αγ

−1ξ−1
2 ∈ E, and so det(ξ1ξ

−1
2 ) ∈ F× det(E), which implies that ξ1 = ξ2,

as ξi ∈ X. Thus both Φ1 and Φ2 belong to Yξ1 . By (ii) they must belong to the
same genus. This completes the proof.

4.4. Take Φ ∈ S0
n(ξ) and suppose another member Ψ ofS0

n(ξ) belongs to
the genus of Φ. Put L = L0ξ. Then Ψ = εΦ · tε = αΦ · tα with ε ∈ Eξ
and α ∈ GLn(F ), as observed in the above proof. Clearly ε−1α ∈ O(Φ)A.
Since Lα = Lε−1α, we see that Lα belongs to the genus of L. We associate
the O(Φ)-class of Lα to the O-class of Ψ. We easily see that the class of Lα
is determined by the class of Ψ. Moreover, it gives a bijection of the set of
O-classes in the genus of Φ onto the set of O(Φ)-classes in the genus of L0ξ.
Indeed, let M = Lσ with σ ∈ SO(Φ)A. Then det(σ)g = g, and so σ = τβ
with τ ∈ Eξ and β ∈ GLn(F ). Put Ψ = τ−1Φ · tτ−1. Then Ψ = βΦ · tβ and
M = Lβ, which corresponds to Ψ. This proves the surjectivity. The injectivity
can be easily verified too.

For Φ ∈ S0
n(ξ) we define the SO-genus of Φ to be the set of all Ψ in the

genus of Φ such that det(Ψ) = det(Φ). For Ψ = εΦ · tε = αΦ · tα as above,
suppose det(Ψ) = det(Φ); then det(α)2 = 1. Since −1 ∈ det

(
O(Φ)

)
, changing

α for αγ with a suitable γ ∈ O(Φ), we may assume that det(α) = 1. We
then associate the SO(Φ)-class of Lα to Ψ We can easily verify that the set
of all SO-classes in the SO-genus of Φ contained in S0

n(ξ) are in one-to-one
correspondence with the set of SO(Φ)-classes in the genus of L.

In general, if Ψ = εΦ·tε = αΦ·tα as above, then det(α)2 = det(ε)2 ∈ det(Eξ),
and so det(α) ∈ g×. Therefore, if F = Q, then det(Ψ) = det(Φ), and the SO-
genus of Φ coincides with the genus of Φ.

4.5. Define (V, ϕ) by V = F 1
n and ϕ[x] = xΦ · tx as above with any Φ ∈ Sn.

Put L = L0ξ with ξ ∈ GLn(F )A. We easily see that L̃ = L0(2Φ · tξ)−1, and so

(4.4) [L̃/L] = det(2Φξ2)g if L = L0ξ.

In order to state our main results, we need a basic fact on an algebraic exten-
sion K of F. Let r be the maximal order of K, and d the different of K relative
to F ; let d0 = NK/F (d), m = [K : F ], and d(K/F ) = det

[
(TrK/F (eiej))

m
i,j=1

]

with an F -basis {ei}mi=1 of K. Strictly speaking, d(K/F ) should be viewed as a
coset in F×/F×2 represented by that determinant, but we denote any number
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in that coset by d(K/F ). By the characteristic ideal class for the extension
K/F we understand the ideal class k in F determined by the property that r

is isomorphic as a g-module to g1
m−1⊕ x with an ideal x belonging to k. Then

we have

(4.5) The characteristic ideal class for K/F contains an ideal x such that d0 =
d(K/F )x2.

To prove this, take V = K, ϕ(x, y) = TrK/F (xy) for x, y ∈ K, and L = r in

(4.4). Then L̃ = (2d)−1, and (4.4) shows that d0 = d(K/F )x2 with x = det(ξ)g,
which proves (4.5). This fact was noted, in substance, by Artin in 1949; that
d defines a square ideal class in K is due to Hecke. We can easily generalize
(4.5) to the case of a maximal order o in a simple algebra over F. The ideal
class which is an obvious analogue of k is independent of the choice of o.

We also need a few more symbols. We denote by r the set of all real primes in
a. For T ∈ Sn and v ∈ r we put sv(T ) = pv−qv if T as a real symmetric matrix
in GLn(Fv) = GLv(R) has pv positive and qv negative eigenvalues. Given a
quadratic space (V, ϕ), we denote by Q(ϕ) the characteristic quaternion algebra
of (V, ϕ) in the sense of [S5, §3.1]; if ϕ is obtained from Φ ∈ Sn as above, we
put δ(Φ) = δ(ϕ) and Q(Φ) = Q(ϕ). In [S5, Theorem 4.4] we showed that the
isomorphism class of (V, ϕ) is determined by

{
n, δ(ϕ), Q(ϕ), {sv(ϕ)}v∈r

}
. We

will now state this fact in terms of the matrices Φ in S0
n(ξ).

Theorem 4.6 (The case of even n). Let the symbols n, {σv}v∈r, δ, K0, e0,
e1, and ξ be given as follows: 4 ≤ n ∈ 2Z, σv ∈ 2Z, |σv| ≤ n; δ ∈ F×, K0 =

F (
√
δ ); e0 and e1 are squarefree integral ideals in F ; ξ ∈ GLn(F )A. Let r be

the number of prime factors of e0e1, and d the different of K0 relative to F ;
put d0 = d2∩F. Suppose that e0 divides d0, e1 is prime to d0, (−1)σv/2δ > 0
at each v ∈ r, det(ξ)e−1

1 belongs to the characteristic ideal class for K0/F, and

(4.6) r + #
{
v ∈ r

∣∣σv ≡ 4 or 6 (mod 8)
}
∈ 2Z.

Then there exists an element Φ of S0
n(ξ) such that

(4.7) δ ∈ δ(Φ), det(2Φξ2)g = d0e
2
1, sv(Φ) = σv for every v ∈ r,

and Q(Φ) is ramified at v ∈ h if and only if v|e0e1. Moreover, every element of
S0
n(ξ) is of this type, and its genus is determined by ({σv}v∈r, δ, e0, e1). These

statements are true even for n = 2 under the following additional condition
on e1 : if e1 6= g, then K0 6= F and every prime factor of e1 remains prime in
K0.

Proof. Given the symbols as in our theorem, let B be the quaternion algebra
over F ramified exactly at the prime factos of e0e1 and at those v ∈ r for
which σv ≡ 4 or 6 (mod 8). Such a B exists because of (4.6). By the main
theorem of classification [S5, Theorem 4.4] there exists a quadratic space (V, ϕ)
over F such that B = Q(ϕ), δ ∈ δ(ϕ), and σv = sv(ϕ) for every v ∈ r. By
Proposition 4.3 (ii) we can take (V, ϕ) = [Ψ ] with Ψ ∈ S0

n(η), η ∈ GLn(F )A.

Put L = L0η. By [S5, Theorem 6.2 (ii)] we have [L̃/L] = d0e
2
1, which combined
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with (4.4) shows that det(2Ψη2)g = d0e
2
1. By our assumption on ξ and (4.5)

we have d0e
2
1 = c2δ det(ξ)2g with c ∈ F×. Thus det(2Ψη2)g = c2δ det(ξ)2g.

Since (−1)n/2δ = b2 det(2Ψ) with b ∈ F×, we see that det(η)g = bcdet(ξ)g,
which implies that η ∈ Eξα with α ∈ GLn(F ). Then by Proposition 4.3 (i)
we can replace η by the given ξ, and we obtain the first part of our theorem.

Next, given Φ ∈ S0
n(ξ), put L = L0ξ. Let e be the product of all the prime

ideals in F ramified inQ(Φ) and letK0 = F (
√
δ ) with δ ∈ δ(Φ). By [S5, (4.2b)],

Q(Φ) is ramified at v ∈ r if and only if sv(Φ) ≡ 4 or 6 (mod 8). Put e = e0e1,
where e0 is the product of the prime factors of e ramified in K0. Then in [S5,

Theorem 6.2 (ii)] we showed that [L̃/L] = d0e
2
1, where d0 is defined for this K0

as in our theorem. Combining this with (4.4) we obtain det(2Φξ2)g = d0e
2
1.

We have d0 = δx2 with an ideal x as in (4.5), and so det(ξ)g = xe1, if we take
δ to be (−1)n/2 det(2Φ). This proves the second part of our theorem. The last
part concerning the case n = 2 follows from [S5, Theorem 4.4, (4.4b)].

Theorem 4.7 (The case of odd n). Let the symbols n, {σv}v∈r, δ, K0, e,
and ξ be given as follows: 0 < n − 1 ∈ 2Z, σv − 1 ∈ 2Z, |σv| ≤ n; δ ∈
F×, K0 = F (

√
δ ); e is a squarefree integral ideal in F ; ξ ∈ GLn(F )A. Let r

be the number of prime factors of e; let δg = ab2 with a squarefree integral
ideal a and a fractional ideal b in F ; put e = e0e1 with e1 = a + e. Suppose
(−1)(σv−1)/2δ > 0 at each v ∈ r, det(ξ)b belongs to the ideal class of e0, and

(4.8) r + #
{
v ∈ r

∣∣σv ≡ ±3 (mod 8)
}
∈ 2Z.

Then there exists an element Φ of S0
n(ξ) such that

(4.9) δ ∈ δ(Φ), det(2Φξ2)g = 2ae20, sv(Φ) = σv for every v ∈ r,

and Q(Φ) is ramified at v ∈ h if and only if v|e. Moreover, every element of
S0
n(ξ) is of this type, and its genus is determined by ({σv}v∈r, δ, e).

Proof. In [S5, Theorem 6.2 (iii)] we showed that [L̃/L] = 2a−1e2 ∩ 2a for
a maximal lattice L if δ(ϕ)g = ab2 as above. We easily see that 2a−1e2 ∩
2a = 2ae20. Therefore the proof can be given in exactly the same fashion as for
Theorem 4.6.

Remark. (1) Let x be the ideal belonging to the characteristic ideal class for
K0/F such that d0 = δx2. Suppose Φ has the last two properties of (4.7) and
det(ξ)e−1

1 belongs to the class of x. Then b2 det(2Φ)g = δg with b ∈ F×, and

so (−1)n/2 det(2Φ) = b−2δc with c ∈ g×. Since sv(Φ) = σv for every v ∈ r,
we see that c > 0 at every v ∈ r. Suppose an element of g× positive at every
v ∈ r is always a square. Then we obtain δ ∈ δ(Φ). Thus the first property of
Φ in (4.7) follows from the assumption on det(ξ)g and the last two properties
of (4.7) under that condition on g×. The same comment applies to (4.9).

(2) The last two statements of (1) apply to the case F = Q. Therefore the
above two theorems for F = Q are the same as [S5, Theorems 6.4 and 6.5].
The new features in the general case are that we need ξ ∈ GLn(F )A and we
have to impose a condition on the ideal class of det(ξ)g. In other words, the
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coset EξGLn(F ) is determined by {σv}v∈r, δ, and the characteristic quaternion
algebra.

(3) A g-valued symmetric form is represented by an element of Sn with
entries in g. This is different from the notion of a g-valued quadratic form,
and so the classification of g-valued symmetric forms is different from that of
g-valued quadratic forms. We refer the reader to [S7] for the classification of g-
valued symmetric forms and its connection with the classification of quadratic
forms.

5. Ternary forms

5.1. Before proceeding further, let us recall several basic facts on quaternion
algebras. Let B be a quaternion algebra over a global field F, and O an order
in B containing g. For ξ ∈ B×

A the principle of §1.2 about the lattice Lx
enables us to define Oξ as a g-lattice in B. We call a g-lattice in B of this
form a proper left O-ideal. Thus the B×-genus of O consists of all proper left
O-ideals, and the genus is stable under right multiplication by the elements of
B×, and so a B×-class of proper left O-ideals is meaningful. Define a subgroup
U of B×

A by U = B×
a

∏
v∈h O×

v . Then #(U\B×
A/B

×) gives the number of B×-

classes in this genus, which we call the class number of O. Next, for x ∈ B×
A

we denote by xOx−1 the order O′ in B such that O′
v = xvOvx

−1
v for every

v ∈ h. By the type number of O we mean #S for a minimal set S of such orders
O′ with the property that every order of type xOx−1 can be transformed to a
member of S by an inner automorphism of B.

Given an order O in B over a local or global F, put Õ =
{
x ∈

B
∣∣TrB/F (xO) ⊂ g

}
. It can be shown that [Õ/O] is a square of an integral

ideal t. We call t the discriminant of O. In the local case, if B is a division
algebra, then O is maximal if and only if the disriminant is the prime ideal
of g. In the global case, if O is maximal, then the discriminant of O is the
product of all the prime ideals where B is ramified. Thus we call it the dis-
criminant of B. If F = Q, then writing the discriminant of O or of B in the
form tZ with a positive integer t, we call t the discriminant of O or of B.
Let us quote here a result due to Eichler [E2, Satz 3]:

(5.1) If F is local, B is isomorphic to M2(F ), and the discriminant of an order
O in B is the prime ideal p of g, then there is an isomorphism of B
onto M2(F ) that maps O onto

(5.1a)

{[
a b
c d

]
∈M2(g)

∣∣∣∣ c ∈ p

}
.

If O is the order of (5.1a), then we can easily verify that

(5.1b) Õ = Oη−1 =

{[
a b
c d

] ∣∣∣∣ a, c, d ∈ g, b ∈ p−1

}
, η =

[
0 −1
π 0

]
,

where π is a prime element of F.

Let O be an order in B in the global case, and let e be the discriminant
of B; suppose the discriminant of O is squarefree. Then the discriminant of
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O is of the form a0e with a squarefree integral ideal a0 prime to e. For each
v|a0 the order Ov can be transformed to an order of type (5.1a). We will be
considering such an order O in the following treatment.

5.2. Let us now consider (V, ϕ) with n = 3 over a local or global F. As shown
in [S3, §7.3], we can find a quaternion algebra B over F with which we can
put V = B◦ξ, A(V ) = B + Bξ, A+(V ) =B, ϕ[xξ] = dxxι and 2ϕ(xξ, yξ) =
dTrB/F (xyι) for x, y ∈ B◦, where B◦ is as in (1.2) and ξ is an element

such that ξ2 = −d ∈ δ(ϕ); F + Fξ is the center of A(V ); G+(V ) = B×;
ν(α) = NB/F (α) and xξτ(α) = α−1xαξ for x ∈ B◦ and α ∈ B×.

Given h ∈ V such that ϕ[h] 6= 0, take k ∈ B◦ so that h = kξ. Put W =
(Fh)⊥ and K = F + Fk. It can easily be seen that K =

{
α ∈ B

∣∣αk = kα
}
,

and K is either a quadratic extension of F, or isomorphic to F × F. In either
case we can find an element ω of B such that

(5.2) B = K + ωK, ω2 ∈ F×, ωk = −kω.

Then B◦ = Fk+ωK and TrB/F (kωK) = 0, and so W = ωKξ = Fωξ+Fωkξ,

and ϕ[ωxξ] = −dω2xxρ for x ∈ K, where ρ is the nontrivial automorphism of
K over F. Since −dk2 = ϕ[h], we have K = F × F if −dϕ[h] is a square in F ;
otherwise K = F (κ1/2) with κ = −dϕ[h]. We easily see that

(5.3) A+(W ) = K, G+(W ) = K×.

The group SOϕ(W ) can be identified with {b ∈ K× ∣∣ bbρ = 1
}
, and the map

τ : K× → SOϕ(W ) is given by τ(a) = a/aρ for a ∈ K×. To be precise,
ωxξτ(a) = ω(a/aρ)xξ for x ∈ K.

Clearly the isomorphism class of (V, ϕ) is determined by B and dF×2, and
vice versa. If F is a totally real number field and ϕ is positive definite at every
v ∈ a, then B is totally definite and d is totally positive.

Assuming F to be global, put dg = ax2 with a squarefree integral ideal a and
a fractional ideal x; let e be the product of all the prime ideals of F ramified
in B. In general the pair (e, a) does not necessarily determine (V, ϕ), but it
does if F = Q and ϕ is positive definite.

Lemma 5.3. Suppose F is global; let (V, ϕ), B, a, and e be as above. Put
e1 = a + e, e = e0e1, and a = a0e1. Let L be an integral lattice in V. Then the
following assertions hold:

(i) L is maximal if and only if [L̃/L] = 2ae20.

(ii) If L is maximal, then there is a unique order of B
(

= A+(V )
)

of dis-
criminant a0e containing A+(L).

Proof. Let Λ be a maximal lattice containing L. Since [L̃/L] = [Λ̃/Λ][Λ/L]2,
the “if”-part of (i) follows from the “only if”-part. Clearly the problem can be
reduced to the local case. In the local case, we may assume that dg equals g

or the prime ideal p of g. Let t and M be as in §1.4. Then [L̃/L] = [M̃/M ].

If t = 1, we can easily find [M̃/M ]. Suppose t = 3; if dg = p, then the explicit
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forms of M and M̃ given in §1.5, (B) show that [M̃/M ] = 2p. If dg = g. we

have [M̃/M ] = 2p2 as shown in [S3, (7.9)]. This proves (i).
Next, since all the maximal lattices form a genus, it is sufficient to prove (ii)

for a special choice of L. We take an order O in B of discriminant ae0, and

take the g-lattice M in B such that Mv = Õv if v|a and Mv = Ov if v ∤a. We
then put

(5.4) L = x−1(M ∩B◦)ξ,

Our task is to show that L is maximal and to prove (ii) for this L. The problems
can be reduced to the local case. For simplicity we fix v ∈ h and denote Fv
and gv by F and g, suppressing the subscript v. We can take x = g, and dg

to be g or p. If B = M2(F ) and dg = g, then O = Õ = M2(g). If B = M2(F )

and dg = p, then O and Õ can be given by (5.1a, b). Thus, for either type of
dg we have

(5.5a) L =

{[
a b
c −a

] ∣∣∣∣ a, c ∈ g, b ∈ d−1g

}
· ξ,

(5.5b) L̃ =

{[
a b
c −a

] ∣∣∣∣ a ∈ (2d)−1g, c ∈ g, b ∈ d−1g

}
· ξ,

so that [L̃/L] = 2dg, which together with (i) shows that L is maximal. If v|e,
then there is a unique maximal lattice in V given in the form

{
x ∈ V

∣∣ϕ[x] ∈ g
}
.

It can easily be seen that this coincides with (5.4). Now, in the local case we
easily see that A+(L) = O except when B is a division algebra and dg = g,
in which case B has a unique order of prime discriminant. This completes the
proof.

Lemma 5.4. In the setting of Lemma 5.3 let L be a maximal lattice in V
and let O be the order in B of discriminat a0e established in Lemma 5.3 (ii).
Put

(5.6) C =
{
x ∈ SOϕ(V )A

∣∣Lx = L
}
,

(5.7) T =
{
y ∈ B×

A

∣∣ yO = Oy
}
, Tv = B×

v ∩ T.
Then C = τ(T ); moreover, for v ∈ h we have Tv = B×

v if v|e, Tv = F×
v O×

v if
v ∤a0e, and Tv = F×

v (O×
v ∪O×

v ηv) if v|a0, where ηv is η of (5.1b). Furthermore,

(5.8)
{
γ ∈ SOϕ(V )

∣∣Lγ = L
}

= τ
(
{α ∈ B× ∣∣αO = Oα}

)
.

Proof. The statements about Tv are well known if Ov is maximal, that is, if
v ∤a0. If v|a0, then Ov is of type (5.1a), and the desired fact follows from [E2,
Satz 5]. To prove τ(T ) = C, we first recall the equality SOϕ(V ) = τ

(
G+(V )

)
,

which holds over any field. Thus it is sufficient to show that τ(Tv) = Cv for
every v ∈ h, where Cv = C∩SOϕ(V )v. This is trivial if v|e, as Cv = SOϕ(V )v
and Tv = B×

v then. For v ∈ h put Dv =
{
α ∈ B×

v

∣∣α−1Lvα = Lv
}
. Then

τ(Dv) = Cv. We have seen in the proof of Lemma 5.3 that A+(Lv) = Ov if
v ∤ e. Therefore if α ∈ Dv for such a v, then α−1Ovα = Ov, and so α ∈ Tv.
Conversely, if α ∈ Tv, then αOv = Ovα and we easily see that αÕv = Õvα.
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We may assume that L is of the form (5.4). Since Mv is Ov or Õv, we have
α−1Lvα = Lv, and so α ∈ Dv. Thus Tv = Dv. Since τ(Dv) = Cv, we obtain
τ(T ) = C. Since Ker(τ) = F×

A ⊂ T, if τ(α) ∈ C with α ∈ B×, then α ∈ T∩B×,
from which we obtain (5.8).

Proof of Theorem 1.8. Since τ
(
G+(V )

)
= SOϕ(V ), the equality τ(T ) =

C stated in (iii) is clear from the definition of T. To prove the remaining
statements, we first consider the case n = 3. Then C of §1.7 and Theorem 1.8
is Cv of Lemma 5.4 with a divisor v of a, and A+(L) = Ov as noted at the
end of the proof of Lemma 5.3. Moreover, by Lemma 5.4, we have F×

v ⊂ Tv
and τ(Tv) = Cv, and so Tv coincides with T of our theorem. Thus T = B×

v if
v|e and T = F×

v (O×
v ∪O×

v ηv) if v|a0. The last expression for T is valid even
for v|e, if we take ηv to be an element of Bv such that η2

v is a prime element
of Fv. Clearly J = O×

v and ν(J) = g×v ; also, all the other statements of our
theorem can easily be verified.

Next suppose n > 3; using the symbols of (1.4a, b, c), put W = Z and
N = M if t = 3; put W = Z + Fer + Ffr and N = M + ger + gfr if t = 1.
Then V = W +

∑u
i=1(Fei+Ffi) and L = N +

∑u
i=1(gei+gfi), where u = r if

t = 3 and u = r− 1 if t = 1. Observe that N contains an element g such that
ϕ[g] ∈ g×. Therefore, as shown in [S3, §8.2], there exists an isomorphism θ of
A+(V ) onto M2

(
A+(W )

)
such that θ

(
A+(L)

)
= Ms

(
A+(N)

)
, where s = 2u.

Thus (i) and (ii) of our theorem follow from what we proved in the case n = 3;
namely, A+(L) can be identified with Ms(O) with an order O as stated. As
for (iii) in the general case, clearly ν(J) = g×. We already found an element
η of G+(W ) such that Nτ(η) = N, η2 ∈ F×, and ν(η)g = p; also ηJ = Jη
as can easily be seen. Put T0 = F×(J ∪ Jη). Then T0 is a subgroup of G+(V ),
τ(T0) ⊂ C, and ν(T0) = F×. Let α ∈ T. Take β ∈ T0 so that ν(α) = ν(β).
Then ν(β−1α) = 1, and so β−1α ∈ J. Thus α ∈ βJ ⊂ T0, and we obtain
T = T0 and C = τ(T0) = τ(J) ∪ τ(Jη). If τ(η) ∈ τ(J), then η ∈ F×J, which
is impossible, as ν(η)g = p. Thus τ(η) /∈ τ(J), and so [C : τ(J)] = 2. This
completes the proof.

5.5. We now return to (V, ϕ) over a global F of an odd dimension n > 1,
and fix a maximal lattice L in V. For each v ∈ h we take an element εv ∈ δ(ϕv)
that is either a unit or a prime element of Fv. Then εvg

×2
v is determined by ϕv,

where g×2
v =

{
a2
∣∣ a ∈ g×v

}
. Given h ∈ V such that ϕ[h] 6= 0, take an element

βv ∈ Fv such that ϕ(h, Lv) = βvgv, and put rv(h) = ε−1
v ϕ[h]β−2

v . Then rv(h)
determines a coset of F×

v /g
×2
v , which depends only on ϕv, L, and F×

v hC(Lv).
Strictly speaking, rv(h) should be defined as a coset, but for simplicity we view
it as an element of F×

v , and write rv(h) ∈ X or rv(h) ∈ X for any subset X
of Fv stable under multiplication by the elements of g×2

v . For example, we can
take as X the set

(5.9) Ev =
{
u2 + 4w

∣∣u, w ∈ gv
}
.

Then the condition rv(h) ∈ Ev is meaningful. Obviously Ev = gv if v ∤ 2. We
can also define rv(h) for h ∈ Vv.
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The following lemma concerns the local case, that is, v is fixed, and so we
write r(h) and E for rv(h) and Ev.

Lemma 5.6. Let (V, ϕ), B, ξ, d, and B◦ be as in §5.2 with a local field F
and B = M2(F ); suppose d is a prime element of F ; let O be the order of
(5.1a) and L be as in (5.5a); put C =

{
α ∈ SOϕ(V )

∣∣Lα = L
}
. Fixing h = kξ

as in §5.2, put K = F [k], f = K ∩O, y = Õ ∩K, W = (Fh)⊥, and

(5.10) J =
{
α ∈ SOϕ(W )

∣∣ (L ∩W )α = L ∩W
}
.

Then the following assertions hold:
(i) f is the order of K whose discriminant is r(h)p2.
(ii) There exists an element ω of B× such that (5.2) is satisfied, τ(ω) ∈ C,

W = ωKξ; L ∩W = ωfξ if r(h) /∈ p−1, and L ∩W = ωyξ if r(h) ∈ p−1.
(iii) If r(h) /∈ p−1, then K ∼= F × F, f is the maximal order of K, L ∩W is

a maximal lattice in W, and J = SOϕ(W ) ∩ C = τ(f×).
(iv) If r(h) ∈ E, then y is the order in K whose discriminant is r(h)g, f is

not maximal, J = τ
({
a ∈ K× ∣∣ a/aρ ∈ y×

})
, and SOϕ(W ) ∩ C = τ(f×).

(v) If r(h) ∈ p−1 and r(h) /∈ E, then K is ramified over F, f is the maximal
order of K, J = τ

({
a ∈ K× ∣∣ a/aρ ∈ f×

})
, and SOϕ(W )∩C =

{
x ∈ K

∣∣xxρ =

1
}
, which has τ(f×) as a subgroup of index 2.
(vi) Cases (iii), (iv), and (v) cover all possibilities for h, and mutually ex-

clusive.

Proof. To prove our assertions, we can replace h by any element of F×hC.
Indeed, if we replace h by chτ(α) with c ∈ F× and α in the set Tv of (5.7),
then K, f, and other symbols are replaced by their images under the inner
asutomorphism x 7→ α−1xα of A(V ). Thus we may assume that 2ϕ(h, L) = g.

We can take

[
0 −d−1

0 0

]
ξ,

[
0 0
1 0

]
ξ, and

[
1 0
0 −1

]
ξ as the elements e1, f1,

and g of §1.6. Therefore the result there guaratees an element γ ∈ C such that
hγ = jξ with j of the following two types: (1) j = diag[c, −c], 2cp = g; (2)

j =

[
c b
1 −c

]
with b ∈ p−1 and c ∈ 2−1g. Thus we may assume that k = j

with such a j. Take ω =

[
0 d−1

−1 0

]
for type (1) and ω =

[
−1 2c
0 1

]
for type

(2). Then τ(ω) ∈ C and ω−1kω = −k; also W = ωKξ and L∩W = (Õ∩ωK)ξ.
We now treat our problems according to the type of j.

Type (1). Put ℓ = diag[2c, 0]. Then K = F + Fℓ, as ℓ = j + c. Clearly K
consists of the diagonal matrices, and f is its maximal order. Since 2cp = g, we

have f = g[dℓ]. Now, Õ∩ωK = ω(O∩K) = ωf, so that L∩W = ωfξ, which is
a maximal lattice in W. It can easily be seen that J = SOϕ(W ) ∩ C = τ(f×).
Also, r(h)g = 4c2g = p−2, so that r(h) /∈ p−1, and r(h)p2 = g, which is the
discriminant of f. Since r(h) ∈ p−1 for type (2) as can easily be seen, we have
type (1) if and only if r(h) /∈ p−1.

Type (2). For j of type (2), we have r(h) ∈ p−1. We easily see that r(h) ∈ E

if b ∈ g. Conversely suppose r(h) ∈ E; then we have −4ϕ[h] = d(u2 + 4w)
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with u, w ∈ g. Put h′ = j′ξ with j′ =

[
u/2 w
1 −u/2

]
. Then ϕ[h′] = ϕ[h] and

2ϕ(h′, L) = g = 2ϕ(h, L), so that h′ ∈ hC by Theorem 1.3. Thus if r(h) ∈ E,
then we can put h = jξ with j of the above form such that b ∈ g. Without

assuming b ∈ g, put ℓ =

[
2c b
1 0

]
. Then ℓ = c + j and K = F + Fℓ. For

y, z ∈ F we have y + zℓ =

[
y + 2cz bz

z y

]
. This belongs to O if and only if

y ∈ g and z ∈ p. Thus f = g[dℓ]. This has discriminant 4(b + c2)p2, which

equals r(h)p2. Since ω2 = 1 and ω ∈ O×, we have L ∩W = ω(Õ ∩K)ξ. We

see that y + zℓ ∈ Õ if and only if y ∈ g and z ∈ g. Thus y = g + gℓ and
L ∩W = ωyξ. For x ∈ K and a ∈ K× = G+(W ), we have ωxξτ(a) = ωexξ,
where e = a/aρ. Thus (L ∩W )τ(a) = L ∩W if and only if (a/aρ)y = y. Also
τ(a) ∈ C if and only if τ(a) = τ(s) with s ∈ O×∪O×η−1, as can be seen from
Lemma 5.4. If s ∈ O×, then a ∈ F×O× ∩K× = F×f×, so that τ(a) ∈ τ(f×).
If s ∈ O×η−1, then s ∈ O×η−1 ∩K ⊂ y.

Suppose now r(h) ∈ E; then we may assume that b ∈ g. Since ℓ2 = 2cℓ+ b,
we see that y is an order, and so J is as in (iv). If s ∈ O×η−1, then dssι ∈ g×,
which is impossible as y is an order. Thus SOϕ(W ) ∩ C = τ(f×). Since
f = g[dℓ] 6= g[ℓ] = y, f is not maximal and the discriminant of y is r(h)g. This
proves (iv).

Next suppose r(h) /∈ E; then b /∈ g and bp = g. We easily see that ℓf = y,
and so ey = y if and only if e ∈ f×. Thus J is as in (v). Put π = b−1 and σ =
πℓ. Then K = F [σ]. Since σ2 = 2cπσ+π, K is ramified over F and its maximal
order is g[σ], which coincides with f. Now SOϕ(W ) =

{
x ∈ K× ∣∣xxρ = 1

}
,

which has τ(f×) as a subgroup of index 2 by a general principle [S3, Lemma
5.6 (iii)]. Since ℓ ∈ O×η−1, we have τ(ℓ) ∈ SOϕ(W )∩C. If τ(ℓ) ∈ τ(f×), then
ℓ ∈ F×f×, which is impossible. Thus τ(f×) $ SOϕ(W )∩C ⊂ SOϕ(W ), which
proves (v). Finally (vi) is clear from the above discussion. This completes the
proof, as (i) and (ii) have been proved.

If we apply (2.7) to the present setting, then H =
{
b ∈ K× ∣∣ bbρ = 1

}
with

K = F + Fk as noted in §5.2. Thus H is commutative and the left-hand side
of (2.7) becomes

[
HA : H(HA ∩C)

]
. We can determine this index explicitly as

follows.

Theorem 5.7. In the setting of §5.2 with a global F, let L be a maximal
lattice in V, and e the product of all the prime ideals in F ramified in B; put
dg = ax2 with a squarefree integral ideal a and a fractional ideal x. Let O be
the order in B of discriminant a ∩ e containing A+(L). (See Lemma 5.3 (ii).)
Given h = kξ ∈ V with k ∈ B◦ such that ϕ[h] 6= 0, put K = F + Fk; denote
by r the maximal order of K and by d the different of K relative to F. Let a∗

be the product of the prime factors v of a such that v ∤ e, rv(h) ∈ p−1
v , and

rv(h) /∈ Ev, where pv is the local prime ideal at v. Then the order f in K
given by f = K∩O has conductor c, which can be determined by the condition
that cv = gv if v|a∗e and c2vNK/F (d)v = avϕ[h]ϕ(h, L)−2

v if v ∤ e. Moreover,
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put H = SOϕ(W ) and identify H with
{
α ∈ K× ∣∣ααι = 1

}
; define C by (5.6).

Suppose K is a field; then

(5.11)
[
HA : H(HA ∩ C)

]
= (cK/cF ) · 21−µ−ν[g× : NK/F (r×)

]

· [U : U ′]−1N(c)
∏

p|c

{
1− [K/F, p]N(p)−1

}
.

Here cK resp. cF is the class number of K resp. F ; µ is the number of prime
ideals dividing a∗e and ramified in K; ν is the number of v ∈ a ramified in
K;

U =
{
x ∈ r×

∣∣xxρ = 1
}

and U ′ =
{
x ∈ U

∣∣x− 1 ∈ cvdv for every v ∤a∗e
}

;

p runs over all prime factors of c; [K/F, p] denotes 1, −1, or 0 according as
p splits in K, remains prime in K, or is ramified in K.

Proof. If d ∈ g×, this is [S3, Theorem 12.3]. Our proof here is a modified
version of the proof there. For v|e we have rv ⊂ Ov, so that fv = rv and
cv = gv. Next suppose v ∤e; then we can put Bv = M2(Fv), and so [S3, Lemma
11.11] is applicable if v ∤a; by (i) of that lemma, c2vNK/F (d)v = ϕ[h]ϕ(h, L)−2

v .
If v|a, then we use (i) of Lemma 5.6. If v|a∗, then cv = gv by (v) of Lamma
5.6. Thus we obtain our assertion concerning c.

To prove (5.11), suppose K is a field. Then we have

[HA : HE] = (cK/cF ) · 21−κ[g× : NK/F (r×)],

where E = Ha

∏
v∈hEv with Ev = r×v ∩ Hv and κ is the number of v ∈ v

ramified in K. Indeed, [HA : HE] equals the number of classes in the genus of
g-maximal lattices in W, and in [S3, (9.16)] we noted that it is the right-hand
side of the above equality. Put D = HA∩C and Dv = D∩Hv. If v|e, then ϕv
is anisotropic, so that Cv = Gv; thus Dv = Hv = Ev if v|e. If v ∤a∗e, then, by
[S3, Lemma 11.11 (iv)] and Lemma 5.6 (iii), (iv), we have Dv = τ(f×v ). If v|a∗,
then Dv = Ev by Lemma 5.6 (v). Thus U ∩D =

{
x ∈ U

∣∣x ∈ τ(f×v ) for every

v ∤a∗e
}
. Applying [S3, Lemma 11.10 (iii)] to τ(f×v ), we obtain U ∩D = U ′. Now

we have U = E ∩H,
[HE : HD]=[E : E∩HD]=[E : UD]=[E : D]/[UD : D]=[E : D]/[U : U∩D],

[E : D] =
∏
v∤a∗e[Ev : Dv] =

∏
v∤a∗e

[
Ev : τ(r×v )

][
τ(r×v ) : τ(f×v )

]
.

By [S3, Lemma 5.6 (iii)],
[
Ev : τ(r×v )

]
= 2 if v is ramified in K, and = 1

otherwise. The index
[
τ(r×v ) : τ(f×v )

]
is given by [S3, Lemma 11.10 (i), (iv)].

Thus we obtain

[E : D] = 2bN(c)
∏

p|c
{

1− [K/F, p]N(p)−1
}
,

where b is the number of the primes v ∤a∗e ramified in K. Now [HA : HD] =
[HA : HE][HE : HD]. Combining all these, we obtain (5.11).

Corollary 5.8. The notation and assumption being as in Theorem 5.7, let
c(f) denote the class number of f in the sense of [S3, §12.5] and let Uf = U ∩ f×.
Then U ′ ⊂ Uf and
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(5.12)
[
HA : H(HA∩ C)

]
=
(
c(f)/cF

)
· 21−µ−ν[g× : NK/F (f×)

]
[Uf : U ′]−1.

Proof. By [S3, Lemma 11.10 (ii) ] we have Uf =
{
x ∈ U

∣∣xρ−x ∈ cd
}
. Since

c is prime to a∗e, for x ∈ U we have xρ − x ∈ cd if and only if xρ − x ∈ cvdv
for every v ∤ a∗e. We have also xρ − x = (1 − x)(1 + xρ), and hence U ′ ⊂ Uf.
Now we recall a well known formula (see [S3, (12.3)])

(5.13) c(f) = cK · [r× : f×]−1N(c)
∏

p|c

{
1− [K/F, p]N(p)−1

}
.

As shown in [S3, p. 117, line 7], we have

(5.14) [r× : f×] = [U : Uf]
[
NK/F (r×) : NK/F (f×)

]
.

Combining (5.11), (5.13), and (5.14) together, we obtain (5.12).

Theorem 5.9. In the setting of Lemma 5.4 and Theorem 5.7, the class
number of the genus of maximal lattices in the ternary space (V, ϕ) equals the
type number of O.

Proof. We easily see that the type number of O equals #{B×\B×
A/T

}
with

T of (5.7). By Lemma 5.4, τ(T ) = C and clearly F×
A ⊂ T, and so τ gives a

bijection of B×\B×
A/T onto SOϕ(V )\SOϕ(V )A/C. This proves our theorem.

This theorem should not be confused with the results in [Pe] (Satz 9 and its
corollary), which concern the classes with respect to the group of similitudes.

Theorem 5.10. In the setting of Theorem 5.7, suppose the genus of maximal
lattices consists of a single class (which is the case if O has type number 1).
Put Γ (L) =

{
γ ∈ SOϕ(V )

∣∣Lγ = L
}
. Then

(5.15a) #
{
L[q, b]/Γ (L)

}
=
(
c(f)/cF

)
· 21−µ−ν[g× : NK/F (f×)

]
[Uf : U ′]−1.

Moreover, if B is totally definite, then

(5.15b) #L[q, b]/#Γ (L) =
(
c(f)/cF

)
· 21−µ−ν[g× : NK/F (f×)

]
#(Uf)

−1.

Proof. The left-hand side of (2.7) in the present case is
[
HA : H(HA ∩ C)

]
,

as H is commutative; the right-hand side consists of a single term. Thus (2.7)
combined with (5.12) gives (5.15a). Since H ∩ C = U ∩ D = U ′, we have
m(H, HA ∩ C) =

[
HA : H(HA ∩ C)

]
#(U ′)−1, which together with (3.7) and

(5.15a) proves (5.15b).

Lemma 5.11. Let B be a quaternion algebra over a global field F, and e the
product of all the prime ideals in F ramified in B; let a0 be a squarefree integral
ideal prime to e. Further let K be a quadratic extension of F contained in B
and f an order in K containing g that has conductor c. Then there exists an
order O in B of discriminant a0e such that O∩K = f if and only if c + e = g

and every prime factor of a0 not dividing c does not remain prime in K.

This is due to Eichler [E2, Satz 6].
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Lemma 5.12. Let B, e, a0, K, f and c be as in Lemma 5.11; let O be an
order in B of discriminant a0e. Suppose that O has type number 1, c + e = g

and every prime factor of a0 not dividing c does not remain prime in K. Then
there exists an element α of B× such that α−1Oα ∩K = f.

Proof. Since O has type number 1, every order in B of discriminant a0e is
of the form α−1Oα with α ∈ B×. Therefore our assertion follows from Lemma
5.11.

6. Positive definite ternary forms over Q

6.1. Every positive definite ternary quadratic space (V, ϕ) over Q is obtained
by taking B to be a definite quaternion algebra over Q and d to be a squarefree
positive integer in the setting of §5.2. If we represent ϕ with respect to a Z-
basis of an integral Z-lattice L in V, then we obtain a Z-valued ternary form. If
L is maximal, then the form is reduced in the sense that it cannot be represented
nontrivially by another Z-valued ternary form, and vice versa. This definition
of a reduced form is different from Eisenstein’s terminology for ternary forms.

Define a and e as in §5.2. Then a = dZ and e = eZ with a squarefree
positive integer e. We have e∩a = d0eZ with a positive divisor d0 of d prime
to e. Thus O of Theorem 5.7 is an order of discriminant d0e. The pair (e, d)
determines the isomorphism class of (V, ϕ) and hence the genus of a reduced Z-
valued ternary form. If Φ is a matrix which represents a ternary form belonging
to that genus, then det(2Φ) = 2d2

0e
2/d; this follows from Lemma 5.3 (i). As to

the general theory of reduced forms and det(2Φ) for an arbitrary n, the reader
is referred to [S5]. Taking a maximal lattice L in V, put C =

{
SOϕ(V )A

∣∣Lα =

L
}
. Then we have

Lemma 6.2. m
(
SOϕ(V ), C

)
=

1

12

∏

p|e

p− 1

2

∏

p|d0

p+ 1

2
.

Proof. Define a quadratic form β on B◦ by β[x] = xxι for x ∈ B◦; put
G = SOβ(B◦). Then x 7→ xξ for x ∈ B◦ gives an isomorphism of (B◦, dβ) onto
(V, ϕ), and also an isomorphism of G onto SOϕ(V ). Moreover, for α ∈ B× we
have α−1xαξ = α−1xξα. Thus the symbol τ(α) is consistent. We can identify
C with the subgroup

{
γ ∈ GA

∣∣ (M ∩ B◦)γ = (M ∩ B◦)
}

of GA, where M is
as in (5.4). Let O0 be a maximal order in B containing O; put M = O0 ∩B◦

and D =
{
γ ∈ GA

∣∣Mγ = M
}
. Then M is a maximal lattice with respect to

β, and from [S2, Theorem 5.8] we obtain

(6.1) m(G, D) =
1

12

∏

p|e

p− 1

2
.

By (3.3) we have [C : C ∩ D]m(G, C) = m(G, C ∩ D) = [D : C ∩
D]m(G, D). Clearly Dp = Cp if p ∤ d0. Suppose p|d0; then we can put
Bp = M2(Qp), (O0)p = M2(Zp), Dp = τ

(
GL2(Zp)

)
, and Op is of the type

(5.1a). From Lemma 5.4 we obtain [Cp : Cp∩Dp] = 2 and [Dp : Cp∩Dp] = p+1.
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Thus m(G, C) = m(G, D)
∏
p|d0{(p+1)/2}. Combining this with (6.1), we ob-

tain our lemma.

6.3. Now Eichler gave a formula for the class number of O and also a
formula for the type number of O in [E2, (64)]. However, his formula for the
type number is not completely correct, and correct formulas were given by
Peters in [Pe] and by Pizer in [Pi]. There is a table for the type number of O

for d0e ≤ 30 in [Pe, p. 360]; a larger table for d0e ≤ 210 is given at the end of
[Pi]; in these papers, e and d0 are denoted by q1 and q2. From these tables
we see that the type number of O for d0e ≤ 210 is 1 exactly when (e, d0) is
one of the following 20 pairs:

(2, 1), (2, 3), (2, 5), (2, 7), (2, 11), (2, 23), (2, 15), (3, 1), (3, 2), (3, 5),

(3, 11), (5, 1), (5, 2), (7, 1), (7, 3), (13, 1), (30, 1), (42, 1), (70, 1), (78, 1).

Now d is d0 times a factor of e. Therefore if e has exactly t prime factors,
then there are 2t choices for (e, d) with the same (e, d0). Consequently there
are exactly 64 choices for (e, d) obtained from the above 20 pairs of (e, d0), and
each (e, d) determines (V, ϕ); det(2Φ) = 2d2

0e
2/d as noted in §6.1. By Theorem

5.9, #
{
SOϕ(V )\SOϕ(V )A/C

}
= 1 in all these cases. We have actually

Theorem 6.4. The spaces (V, ϕ) obtained from these 64 pairs (e, d) exhaust
all positive definite ternary quadratic spaces over Q for which the genus of
maximal lattices has class number 1. In other words, there are exactly 64
genera of positive definite, Z-valued, and reduced ternary forms consisting of
a single class.

Proof. Our task is to show that the class number is not 1 for d0e > 210. If
the inverse of the right-hand side of the equality of Lemma 6.2 is not an integer,
then the class number cannot be 1. For d0e > 210, the inverse is an integer
exactly when (e, d0) is one of the following six: (2 · 7 · 17, 1), (2 · 5 · 13, 3), (2 ·
3 · 17, 5), (2 · 3 · 13, 7), (2 · 3 · 5, 23), (2 · 3 · 5, 11). The verification is easy, as
the mass ≤ 1 for relatively few cases of (e, d0). Among those six, the mass is
1/2 for the last one; in the other five cases the mass is 1. Now, by the formula
in [Pe, p. 361] the type number of O (which is the class number in question by
virtue of Theorem 5.9) is given by 2−κ

∑
t Sp{P ∗(t)}, where κ is the number

of prime factors of d0e, t runs over all positive divisors of d0e, and Sp{P ∗(t)}
is given on the same page. From the formulas there we can easily verify that
Sp{P ∗(1)} = 2κ and Sp{P ∗(d0e)} > 0 in the first five cases, and hence the
type number is greater than 1. As for the last case (2 · 3 · 5, 11), computing
Sp{P ∗(t)} for all t|d0e, we find that the type number is 2. Thus we obtain our
theorem.

Remark. In the setting of §6.1, if det(2Φ)/2 is squarefree, then Φ must be
reduced and det(2Φ)/2 = d = d0e with squarefree d0 and e. If the genus of
Φ has class number 1, then in view of the above theorem such a Φ is obtained
from one of the pairs listed in §6.3 by taking d = d0e. Thus there are exactly
20 genera of Z-valued positive definite ternary forms with class number 1 such
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that det(2Φ)/2 is squarefree. This result was obtained by Watson [W], and we
derived it from a stronger result, Theorem 6.4.

6.5. We are going to specialize Theorem 5.7 and (5.15b) to these cases, and
give explicit formulas for #L[q, Z]. For simplicity, we consider only the cases
in which e is a prime, and d0 is 1 or a prime; thus we consider only 15 pairs
(e, d0), and consequently 30 pairs (e, d) with d = d0 or d = d0e. In this setting
we have

(6.2) #{Γ (L)} = 48/[(d0 + 1)(e− 1)].

This is because #{Γ (L)} equals the inverse of the quantity of Lemma 6.2, as
the class number is 1.

To study the nature of q for which L[q, Z] 6= ∅, we consider the localization of
B at e. Let r denote the maximal order in the unramified quadratic extension

of Qe. We can put B◦
e = Qeσ + Qeη, Oe = r + rη, and Õe = r + rη−1 with σ

and η as in (B) of §1.5; we can take η2 = e, though this is often unnecessary.
We have L = (M ∩B◦)ξ, and so

(6.3a) Le = (Zeσ + rη)ξ and L̃e = (2−1Zeσ + rη−1)ξ if e ∤d,

(6.3b) Le = (Zeσ + rη−1)ξ and L̃e = ((2e)−1Zeσ + rη−1)ξ if e|d.
Here is an easy fact: given an element η0 of B×

e such that η2
0 is a prime

element, we can find an element α of B×
e such that (6.3a, b) are true with

(α−1σα, α−1rα, η0) in place of (σ, r, η). Indeed, since η2
0/η

2 ∈ Z×
e , we have

η2
0/η

2 = aaι with a ∈ r×. Then η2
0 = (aη)2, and hence there exists an element

α of B×
e such that α−1aηα = η0. Since α−1Leα = Le and α−1L̃eα = L̃e, we

obtain the desired result.

Theorem 6.6. Given 0 < q ∈ Q in the setting of §6.5, put K0 = Q(
√−dq )

and denote by δ the discriminant of K0. Then the following assertions hold:
(i) L[q, Z] 6= ∅ only if q is as follows:

(6.4a) d0eq = r2m when e 6= 2 or e|d,
(6.4b) d0q = r2m when e = 2 and e ∤d.

Here m is a squarefree positive integer such that e does not split in K0, and
also that m− 3 ∈ 8Z if e = 2 and 2|d; r is a positive integer prime to e.

(ii) Moreover, put a∗ = d0 in the following two cases: (A) d0 ≥ 2, d0|m,
and d0 ∤ r; (B) d0 = 2, r − 2 ∈ 2Z, and 2 is ramified in K0; put a∗ = 1 if
neither (A) nor (B) applies. Let C be the set of all positive integers c prime
to a∗e such that d0|c if d0 is a prime that remains prime in K0. (Thus C

depends on d, e, and q.) Then r/2 ∈ C if 4|δ and e 6= 2; r ∈ C otherwise.
(iii) Conversely, given r and m satisfying all these conditions, determine q

by (6.4a, b). Then L[q, Z] 6= ∅.
Notice that K0 = Q(

√−m ) if e|d or e = 2, and K0 = Q(
√−em ) otherwise.

Also, C = ∅ if a∗ is a prime that remains prime in K0.
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Proof. Suppose h = kξ ∈ L[q, Z] with k ∈ B◦; put K = F [k] as in §5.2 and

f = K ∩ O; let c be the conductor of f. Then K ∼= K0 and h ∈ 2L̃. Then
from (6.3a, b) we see that eq ∈ Ze if e 6= 2 or e|d, and q ∈ Ze otherwise. The

set L̃p for p 6= e can be given by (5.5b), and so dq ∈ Zp. Thus d0eq ∈ Z if
e 6= 2 or e|d; d0q ∈ Z otherwise. Take 0 < r ∈ Z and a squarefree positive
integer m as in (6.4a, b). Define a∗ as in Theorem 5.7 and put a∗ = a∗Z with
0 < a∗ ∈ Z. Clearly a∗ = 1 if d0 = 1. Suppose d0 is a prime number. To make
our exposition easier, denote this prime by s; then s 6= e and rs(h) = −d−1q.
We can easily verify that a∗ = s exactly in Cases (A) and (B) stated in (ii)
above. By Theorem 5.7 and Lemma 5.11, we see that c ∈ C. Notice that s is
ramified in K0 if a∗ = s.

(1) We first consider the case e|d. Then d = d0e and dq = d0eq and so K ∼=
Q(
√−m ). Suppose e|r; put ℓ = e−1k. Then d2ℓℓι = de−2q = (r/e)2m ∈ Z,

and hence dℓ ∈ Oe ∩B◦. Thus ℓ ∈ e−1Oe ∩B◦ = e−1Zeσ+ η−1r, and so ℓξ ∈
2L̃e by (6.3b). Therefore h = eℓξ ∈ 2eL̃e, which implies that ϕ(h, L)e ⊂ eZe,
a contradiction. Thus e ∤r.

(2) Next suppose e ∤ d; then d = d0. Assuming e|r, put ℓ = e−1k. Then

d2ℓℓι = de−2q ∈ e−1Ze, and hence ℓ ∈ Õe ∩B◦ = Zeσ + η−1r. Thus ℓξ ∈ 2L̃e
by (6.3a), which leads to a contradiction for the same reason as in Case (1).
Therefore e ∤r in this case too. This reasoning is valid even when e = 2.

(3) Since K0 must be embeddable in B, the prime e cannot split in K0.
Suppose e = 2, e|d, and e|m. Since kkι = d−2r2m, we have k ∈ η−1O×

e ∩B◦,
so that k = aσ+η−1b with a ∈ Ze and b ∈ r. Since ηk ∈ O×

e , we have b ∈ r×.
By (6.3b), 2ϕ(h, L)e = 2TrB/F

(
k(Zeσ + η−1r)

)
= 4aZe + TrK/Q(br) = Ze, a

contradiction. Therefore m must be odd if e = 2 and e|d. In this case,
k ∈ 2−1O×

e ∩ B◦, so that 2k = xσ + ηy with x ∈ Z×
e and y ∈ r. Thus

2Ze = 2ϕ(h, L)e = 2TrB/F
(
k(Zeσ+η−1r)

)
= 2Ze+TrK/Q(yr), so that y ∈ 2r.

Now r2m = dq = d2kkι = −d2
0(x2σ2 + 2yyι). We can take r ⊂ Q2(

√
5 ) and

σ =
√

5. Therefore we see that m − 3 ∈ 8Z. Thus we obtain the condition on
m as stated in our theorem.

(4) By Theorem 5.7, c is prime to a∗e and c2δZp = d0qZp = r2mZp for
every p 6= e. We have seen that r is prime to e. First suppose 4|δ and e 6= 2.
Then we see that δZp = 4mZp for p 6= e, and so 4c2Zp = r2Zp for p 6= e.
Since both 2c and r are prime to e, we obtain 2c = r. Similarly we easily find
that c = r if 4 ∤ δ or e = 2. Thus we obtain (ii). This completes the proof of
the “if”-part.

(5) Conversely, suppose q is given with r and m as in our theorem; put
c = r/2 or c = r according as r/2 ∈ C or r ∈ C. Let o be the order in K0

whose conductor is c. By Lemma 5.12, our conditions on r and m guarantees
an injection θ of K0 into B such that θ(o) = θ(K0) ∩O. Our task is to find
an element h such that ϕ[h] = q and ϕ(h, L) = Z. Put µ = θ(

√−m ) if
K0 = Q(

√−m ).

(5a) First we consider the case e|d and |δ| = m. Then d = d0e, r = c,
and K0 = Q(

√−m ). Put h = kξ with k = d−1rµ. Then ϕ[h] = q and
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by Theorem 5.7, dqϕ(h, L)−2
p = c2δZp = r2mZp for every p 6= e, so that

ϕ(h, L)p = Zp for every p 6= e. Now 2ϕ(h, L)e = dTrB/F
(
k(Zeσ + η−1r)

)
=

TrB/F
(
µ(Zeσ + η−1r)

)
by (6.3b). If e|m, then we can take µ as η, changing

r by an inner automorphism, as noted after (6.3b). (Since |δ| = m, we have
e 6= 2.) If e ∤ m, then we can take r ⊂ θ(K0)e and σ = µ. In either case
we easily see that 2ϕ(h, L)e = 2Ze. Thus ϕ(h, L) = Z, and L[q, Z] 6= ∅ as
expected.

(5b) Next suppose e|d and |δ| = 4m; then r = 2c if e 6= 2 and r = c if
e = 2. We have K0 = Q(

√−m ) and we again take h = kξ with k = d−1rµ.
Then ϕ[h] = q and ϕ(h, L)p = Zp for every p 6= e for the same reason as in
(5a). If e 6= 2, the same argument as in (5a) shows that ϕ(h, L)e = Ze, which
leads to the desired result. Thus suppose e = 2. Then m−3 ∈ 8Z as stipulated
in our theorem. We can take σ =

√
5 as we did in (3). Put µ = aσ + ηb with

a ∈ Ze and b ∈ r. Then a ∈ Z×
e and −m = a2σ2+2bbρ. Since m+σ2 ∈ 8Ze, we

see that b ∈ 2r. Thus 2ϕ(h, L)e = TrB/F
(
µ(Zeσ+η−1r)

)
= 2Ze+TrK/Q(br) =

2Ze, which gives the expected result.
(5c) Suppose e ∤ d and e = 2. Then d = d0 and K0 = Q(

√−m ); we take
h = kξ with k = d−1rµ. We find that ϕ[h] = q and ϕ(h, L)p = Zp for every
p 6= 2 in the same manner as in (5a). Now 2ϕ(h, L)2 = TrB/F

(
µ(Z2σ +

ηr)
)

by (6.3a). If 2|m, then taking µ as η, we obtain 2ϕ(h, L)2 = 2Z2 as

expected. Suppose 2 ∤m; then µ = aσ + ηb with a ∈ Z×
2 and b ∈ r, and so

TrB/F
(
µ(Z2σ + ηr)

)
= 2Z2, which gives the desired result.

(5d) Finally suppose e ∤ d and e 6= 2. Then d = d0 and K0 = Q(
√−em );

we take h = kξ with k = θ(d−1e−1r
√−em ); then ϕ[h] = q. For p 6= e,

δZp equals mZp or 4mZp, and r = c or r = 2c accordingly. Then we easily
see that ϕ(h, L)p = Zp for every p 6= e in the same manner as in (5a).
Now 2ϕ(h, L)e = TrB/F

(
e−1θ(

√−em )(Z2σ + ηr)
)
. If e|m, then we can put

θ(
√−em ) = e(aσ + ηb) with a ∈ Z×

e and b ∈ r, and obtain ϕ(h, L)e = Ze. If
e ∤m. then taking η = θ(

√−em ), we obtain the desired result. This completes
the proof.

Theorem 6.7. If L[q, Z] 6= ∅ in the setting of Theorem 6.6, then

#L[q, Z] =
21−µ · 48 · c(K0)

(d0 + 1)(e− 1)w
· c
∏

p|c

{
1− [K0/Q, p]p

−1
}
.

Here µ is the number of prime factors of a∗e ramified in K0; c(K0) is the
class number of K0; w is the number of roots of unity in K; c = r/2 if 4|δ
and e 6= 2; c = r otherwise; [K0/Q, p] is defined as in Theorem 5.7.

Proof. Specialize (5.15b) to the present case. Then [U : 1] = w and #Γ (L)
is given by (6.2); c(f) can be connected to c(K0) by (5.13) and (5.14). Thus
we obtain our formula.

6.8. Before discussing examples, let us insert here a remark applicable to
(V, ϕ) over Q with an arbitrary n. If F = Q and g = Z, it is natural to
consider L[q, Z], but it is not always best to formulate the result with respect
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to a Z-basis of L. To see this, first take the standard basis {ei}ni=1 of Zn = L,

and define a matrix Φ by Φ = [ϕ(ei, ej)]
n
i,j=1; put fi = eiΦ

−1. Then 2L̃ =∑n
i=1 Zfi. Let h ∈ L[q, Z]. Then h ∈ 2L̃, and so h =

∑n
i=1 aifi with ai ∈ Z.

We easily see that ϕ(h, L) = Z if and only if
∑n
i=1 aiZ = Z, and also that

Φ−1 = [ϕ(fi, fj)]
n
i,j=1. This means that

(6.5) L[q, Z] =
{∑n

i=1 aifi
∣∣ aΦ−1 · ta = q,

∑n
i=1 aiZ = Z

}
, a = (ai)

n
i=1.

Therefore if we follow the traditional definition of primitivity, we have to use

the matrix Φ−1 instead of Φ. Recall that Γ (L) = Γ (L̃). Thus Γ (L) can be
represented, with respect to the basis {fi}ni=1, by the group

(6.6) Γ ′ =
{
γ ∈ SLn(Z)

∣∣ γΦ−1 · tγ = Φ−1
}
.

Consequently, L[q, Z]/Γ (L) corrresponds to the vectors a such that aΦ−1·ta =
q and

∑n
i=1 aiZ = Z, considered modulo Γ ′. We note here an easy fact:

(6.7) |det(2Φ)| = [L̃ : L].

6.9. Let us now illustrate Theorem 6.6 by considering five examples and
formulating the results in terms of the matrix Φ−1 of §6.8. For (e, d) = (2, 1)
we obtain the result on sums of three squares, which Gauss treated; we do not
include this in our examples, as it is easy and too special. Indeed, in this case we
have Φ = Φ−1, and so the result concerns the primitive solutions of

∑3
i=1 x

2
i =

q. But in all other cases, Φ 6= Φ−1, and the results have more interesting
features. From Lemma 5.3 (i) and (6.7) we obtain det(2Φ) = 2d2

0e
2/d. In each

case we state only the condition for L[q, Z] 6= ∅. We will dispense with the
statement about #L[q, Z], as it is merely a specialization of Theorem 6.7.

(1) We first take e = d = 3 in Theorem 6.6. Then

(6.8) 2Φ = diag

[
2,

[
2 −1
−1 2

] ]
, 3Φ−1 = diag

[
3,

[
4 2
2 4

] ]
.

These forms of matrices can be obtained by analyzing L of (5.4) in the present
case. Alternatively, since det(2Φ) = 6 for Φ of (6.8), we can conclude that Φ is
the matrix representing ϕ by the principle explained in [S5]. Theorem 6.6 (or
the form of Φ−1) in the present case shows that L[q, Z] 6= ∅ only when 3q ∈ Z.
Thus with s = 3q ∈ Z, the principle of §6.8 says that L[s/3, Z] corresponds to
the set of vectors (x, y, z) such that

(6.9) 3x2 + 4(y2 + yz + z2) = s and xZ + yZ + zZ = Z.

Theorem 6.6 specialized to this case means that given 0 < s ∈ Q, we can
find (x, y, z) satisfying (6.9) if and only if s = r2m with a squarefree positive
integer m such that m+ 1 /∈ 3Z and a positive integer r prime to 3 such that
2|r if m+ 1 /∈ 4Z; K0 = Q(

√−m ).
(2) Next we take e = 3 and d = 1. Then

(6.10) 2Φ = diag

[
6,

[
2 −1
−1 2

] ]
, 3Φ−1 = diag

[
1,

[
4 2
2 4

] ]
.

Therefore L[s/3, Z] corresponds to the set of vectors (x, y, z) such that
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(6.11) x2 + 4(y2 + yz + z2) = s and xZ + yZ + zZ = Z.

Such vectors exist if and only if s = r2m with a squarefree positive integer m
such that 3 does not split in K0 = Q(

√
−3m ) and a positive integer r prime

to 3 such that 2|r if 4 divides the discriminant of K0.
In both cases (1) and (2) the group Γ (L) has order 12. Represent (x, y, z) ∈

Z3 by (x, β) with β = y+ zζ, where ζ is a primitive cubic root of unity. Then
Γ ′ of (6.6) consists of the maps (x, β) 7→ (x, εβ) and (x, β) 7→ (−x, εβ), where
ε is a sixth root of unity. Therefore a set of representatives for L[q, Z]/Γ (L)
can be found numerically. For instance, take s = m = 79 in (6.9); then we
easily find that #

{
L[q, Z]/Γ (L)

}
= 5, which combined with (5.15a) confirms

that Q(
√
−79 ) has class number 5.

(3) Our third example concerns the case e = d = 2. We have

(6.12) 2Φ =




2 −1 0
−1 2 −1
0 −1 2


 , 2Φ−1 =




3 2 1
2 4 2
1 2 3


 .

Then L[s/2, Z] corresponds to the set of vectors x = (xi)
3
i=1 ∈ Z3 such that

(6.13) x · 2Φ−1 · tx = s and
∑3
i=1 xiZ = Z.

Such vectors x exist if and only if s = r2m with an odd integer r and
a squarefree positive integer m such that m − 3 ∈ 8Z. In this case, K0 =
Q(
√−m ).

(4) Take e = d = 7. We have then

(6.14) 2Φ = diag

[
2,

[
4 −1
−1 2

] ]
, 7Φ−1 = diag

[
7,

[
4 2
2 8

] ]
,

and L[s/7, Z] with s ∈ Z corresponds to the set of vectors (x, y, z) such that

(6.15) 7x2 + 4(y2 + yz + 2z2) = s and xZ + yZ + zZ = Z.

Such vectors exist if and only if s = r2m with a positive integer r prime
to 7 and a squarefree positive integer m such that 7 does not split in K0 =
Q(
√−m ); 2|r if m+ 1 /∈ 4Z.

(5) Let us finally take e = 2 and d = 22. We have then

(6.16) 2Φ = diag

[
4,

[
6 −1
−1 2

] ]
, 22Φ−1 = diag

[
11,

[
8 4
4 24

] ]
,

and the result about L[s/22, Z] is what we stated in the introduction.
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Abstract. Every three-connected planar graph with n vertices has
a drawing on an O(n2) × O(n2) grid in which all faces are strictly
convex polygons. These drawings are obtained by perturbing (not
strictly) convex drawings on O(n) × O(n) grids. Tighter bounds are
obtained when the faces have fewer sides. In the proof, we derive an
explicit lower bound on the number of primitive vectors in a triangle.
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1 Introduction

A strictly convex drawing of a planar graph is a drawing with straight edges
in which all faces, including the outer face, are strictly convex polygons, i. e.,
polygons whose interior angles are less than 180◦.

Theorem 1. (i) A three-connected planar graph with n vertices in which
every face has at most k edges has a strictly convex drawing on an
O(nw)×O(n2k/w) grid of area O(n3k), for any choice of a parameter w
in the range 1 ≤ w ≤ k.

(ii) In particular, every three-connected planar graph with n vertices has a
strictly convex drawing on an O(n2)×O(n2) grid, and on an O(n)×O(n3)
grid.

(iii) For k ≤ 4, an O(n)×O(n) grid suffices.
The drawings can be constructed in linear time.
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When referring to a W ×H grid of width W and height H, the constant hidden
in the O-notation is on the order of 100 for the width and on the order of 10000
for the height. This is far too much for applications where one wants to draw
graphs on a computer screen, for example. For the case w = 1, the bound
is tighter: the grid size is approximately 14n × 30n2k. For part (iii) of the
theorem, the grid size is at most 14n× 14n, and if the outer face is a triangle,
it is 2n× 2n.
The main idea of the proof is to start with a (non-strictly) convex embedding,
in which angles of 180◦ are allowed, and to perturb the vertices to obtain strict
convexity. We will use an embedding with special properties that is provided
by the so-called Schnyder embeddings, which are introduced in Section 2.

Historic context. The problem of drawing graphs with straight lines has
a long history. It is related to realizing three-connected planar graphs as three-
dimensional polyhedra. By a suitable projection on a plane, one obtains from
a polyhedron a straight-line drawing, a so-called Schlegel diagram. The faces in
such a drawing are automatically strictly convex. By a projective transforma-
tion, it can be arranged that the projection along a coordinate axis is possible,
and hence a suitable realization as a grid polytope gives rise to a grid drawing
of the graph. However, the problem of realizing a graph as a polytope is more
restricted: not every drawing with strictly convex faces is the projection of a
polytope. In fact, there is an exponential gap between the known grid size for
strictly convex planar drawings and for polytopes in space.
The approaches for realizing a graph as a polytope or for drawing it in the plane
come in several flavors. The classical methods of Steinitz (for polytopes) and
Fáry and Wagner (for graphs) work incrementally, making local modifications
to the graph and adapting the geometric structure accordingly. Tutte [15, 16]
gave a “one-shot” approach for drawing graphs that sets up a system of equa-
tions. This method yields also a polytope via the Maxwell-Cremona correspon-
dence, see [11]. All these methods give embeddings that can be drawn on an
integer grid but require an exponential grid size (or even larger, if one is not
careful).
The first methods for straight-line drawings of graphs on an O(n)×O(n) grid
were proposed for triangulated graphs, independently by de Fraysseix, Pach
and Pollack [7] and by Schnyder [13]. The method of de Fraysseix, Pach and
Pollack [7] is incremental: it inserts vertices in a special order, and modifies
a partial grid drawing to accommodate new vertices. In contrast, Schnyder’s
method is another “one-shot” method: it constructs some combinatorial struc-
ture in the graph, from which the coordinates of the embedding can be readily
determined afterwards. Both methods work in linear time. O(n)×O(n) is still
the best known asymptotic bound on the size of planar grid drawings.
If graphs are not triangulated, the first challenge is to get faces which are
convex. (Without the convexity requirement one can just add edges until the
graph becomes triangulated, draw the triangulated supergraph and remove the
extra edges from the drawing.) Many algorithms are now known that construct

Documenta Mathematica 11 (2006) 369–391



Strictly Convex Drawings of Planar Graphs 371

convex (but not necessarily strictly convex) drawings with O(n) × O(n) size,
for example by Chrobak and Kant [5] (à la Fraysseix, Pach and Pollack); or
Schnyder and Trotter [14] and Felsner [8], see also [4] (à la Schnyder). Our
algorithm builds on the output of Felsner’s algorithm, which is described in
the next section. Luckily, this embedding has some special features, which our
algorithm uses.
The idea of getting a strictly convex drawing by perturbing a convex drawing
was pioneered by Chrobak, Goodrich and Tamassia [6]. They claimed to con-
struct strictly convex embeddings on an O(n3) × O(n3) grid, without giving
full details, however. This was improved to O(n7/3)× O(n7/3) in [12]. In this
paper we further improve the “fine perturbation” step of [12] to obtain a bound
of O(n2)×O(n2) for grid drawings. Theorem 1 gives better bounds when the
faces have few sides, and we allow grids of different aspect ratios (keeping the
same total area).
In the course of the proof, we need explicit (not just asymptotic) lower bounds
on the number of primitive vectors in certain triangles. A primitive vector
is an integer vector which is not a multiple of another integer vector; hence,
primitive vectors can be used to characterize the directions of polygon edges.
The existence of many short primitive vectors is the key to constructing strictly
convex polygons with many sides. These lower bounds are derived in Section 5,
based on elementary techniques from the geometry of numbers.

2 Preliminaries: Schnyder Embeddings of Three-Connected
Plane Graphs

Felsner [8] (see also [9, 4]) has extended the straight-line drawing algorithm
of Schnyder, which works for triangulated planar graphs, to arbitrary three-
connected graphs. It constructs a drawing with special properties, beyond just
having convex faces. These properties will be crucial for the perturbation step.
Felsner’s algorithm works roughly as follows. The edges of the graph are covered
by three directed trees which are rooted at three selected vertices a, b, c on
the boundary, forming a Schnyder wood. The three trees define for each vertex
v three paths from v to the respective root, which partition the graph into
three regions. Counting the faces in each region gives three numbers x, y, z
which can be used as barycentric coordinates for the point v with respect to
the points a, b, and c. Selecting abc as an equilateral triangle of side length
f − 1 (the number of interior faces of the graph) yields vertices which lie on a
hexagonal grid formed by equilateral triangles of side length 1, see Figure 1a.
Since f ≤ 2n this yields a drawing on a grid of size 2n× 2n.
This straight-line embedding has the following important property (see [8,
Lemma 4 and Figure 11], [4, Fact 5]):

The Three Wedges Property. Every vertex except the corners a, b, c
has exactly one incident edge in each of the three closed 60◦ wedges
shown in Figure 2a.

Documenta Mathematica 11 (2006) 369–391
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(a) (b)

a b

c

Figure 1: (a) A Schnyder embedding on a hexagonal grid and (b) on the refined
grid after the initial (rough) perturbation

From this it follows immediately that there can be no angle larger than 180◦,
and hence all faces are convex. Moreover, it follows that the interior faces F
have the Enclosing Triangle Property, see Figure 4a ([8, proof of Lemma 7], [4,
Lemma 2]):

The Enclosing Triangle Property. Consider the line x = const
through the point of F with maximum x-coordinate, and similarly
for the other three coordinate directions. These three lines form
a triangle TF which encloses F . Then all vertices of F lie on the
boundary of TF , but F contains none of the vertices of TF .

It follows that interior faces with k ≤ 4 sides are already strictly convex.
Throughout, we will call TF the enclosing triangle of the face F .

The Schnyder wood and the coordinates of the points can be calculated in
linear time. Recently, Bonichon, Felsner, and Mosbah [4], have improved the
grid size to (n−2)× (n−2). However, the resulting drawing does not have the
Three Wedges Property. An alternative algorithm for producing an embedding
with a property similarly to the Enclosing Triangle Property is sketched in
Chrobak, Goodrich and Tamassia [6]. It proceeds incrementally in the spirit of
the algorithm of de Fraysseix, Pach and Pollack [7] and takes linear time. From
the details given in [6] it is not clear whether the embedding has also the Three
Wedges Property, which we need for our algorithm. The original algorithm of
Chrobak and Kant [5] achieves a weak form of the Three Wedges Property,
where F is permitted to contain vertices of TF . Maybe, this algorithm can be
modified to obtain the Three Wedges Property, at the expense of a constant-
factor blow-up in the grid size.
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vv

(a) (b)

150◦

Figure 2: (a) Each closed shaded wedge contains exactly one edge incident to
v. There may be additional edges in the interior of the white sectors. (b) A
typical situation at a vertex which is perturbed.

Figure 3: The three possible new positions for a single vertex in the rough
perturbation. (Only the three boundary vertices a, b, c are pushed in directions
opposite to these.)

3 Rough Perturbation

Before making all faces strictly convex, we perform an initial perturbation on
a refined grid which is smaller by only a constant factor. This preparatory
step will ensure that the subsequent “fine perturbation” can treat each face
independently.
We overlay a triangular grid which is scaled by a factor of 1/7, see Figures 3
and 5. A point may be moved to one of the three possible positions shown in
Figure 3, by a distance of

√
3/7. The precise rules are as follows: A vertex v

on an interior face F is moved if and only if the following two conditions hold.

(i) The interior angle of F at v is larger than 150◦ (including the possibility
of a straight angle of 180◦); and

(ii) v is incident to an edge of F which lies on the enclosing triangle TF .

See Figure 2b for a typical case. Such a vertex is then pushed “out”, perpen-
dicular to the edge of TF . We call the angle between the two edges incident
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FTF

(a) (b) (c)

?

?

?

Figure 4: (a) A typical face F constructed by the convex embedding algorithm.
(b) The new positions of the vertices of F which are pushed out are indicated.
(c) The result of the rough perturbation. The perturbation of the vertices with
question marks depends on the other faces incident to these vertices.

to F and v the critical angle of v. For a boundary vertex different from a, b, c,
the exterior angle is the critical angle, but these vertices are not subject to the
rough perturbation. The three corners a, b, and c are treated specially: they
are pushed straight into the triangle by the rough perturbation, as illustrated
in Figure 1. Examples can be seen in Figure 4b–c and Figure 5. The result of

Figure 5: Example of the rough perturbation.

perturbing the example in Figure 1a is shown in Figure 1b.
There can be no conflict in applying the rules by regarding a vertex v as part
of different faces: the bound of 150◦ on the angle, together with the Three
Wedges Property ensures that there is at most one critical angle for every
vertex (Figure 2b).
The result has the following properties:

Lemma 1. After the rough perturbation, all faces are still convex.
Moreover, if each vertex is additionally perturbed within a disk of radius 1/30,
the only concave angle that might arise at a vertex v is the critical angle of v.
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(a) Case I (b) Case IIa (c) Case IIb

y
y

Figure 6: The cases in the proof of Lemma 1. The figures show possible
locations for the neighbors y and z of x.

Proof. It is evident that no critical angle can become bigger than 180◦. For
non-critical angles, this is also easy to see (cf. Figure 4c). (In fact, the second
statement is a strengthening of this claim.)

We now prove this second statement of the lemma by considering different
cases. The reader who is satisfied with the existence of some small enough
perturbation bound ε > 0 may skip the rest of the proof. We continue to show
that we can choose ε = 1/30.

Consider a non-critical angle yxz at a vertex x in a face F . We assume without
loss of generality that x lies on the lower left edge ℓ of the enclosing triangle TF .

Case I. The point x is incident to a critical angle of another face F ′, and thus
x is pushed out of F ′.
Without loss of generality, we can assume that x lies on the lower right edge
of TF ′ , and thus x is perturbed in the lower right direction, as in Figure 6a.
(The other case, when x lies on the upper edge of TF ′ and is pushed vertically
upward, is symmetric.) By the definition of critical angles, the angle in F ′

must be bigger than 150◦. This excludes from F all points vertically above
x or to the left of x. The upper neighbor z of x, which is a grid point, is
therefore restricted to a closed halfplane right of a vertical line r at distance
1/2 from x. The lower neighbor y must lie on or above the line ℓ that bounds
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the enclosing triangle TF . Thus, y and z are restricted to the shaded area in
Figure 6a. Even if all three points are perturbed by the rough perturbation,
they are still separated by a vertical strip of width d = 1

2 − 2 · 3
14 = 1

14 . An
additional perturbation of 1

30 < 1
2·14 cannot make the angle at x larger than

180◦.
Case II. The point x not perturbed by the initial perturbation.
Case IIa. The point x has a neighbor on ℓ.
We can assume w.l.o.g. that it is the lower neighbor y, see Figure 6b. The angle
yxz must be at most 150◦ because otherwise x would be critical. It means that
z cannot lie to the left of x, and thus y and z are restricted to the shaded area
in Figure 6b. Even if they are perturbed, they remain above the line s, which
is obtained by offsetting the edge of the shaded region that is closest to x. The
distance from x to s is 1/7 ·

√
3/7 ≈ 0.0935 > 2

30 . Thus, there is enough space
to additionally perturb the points x, y and z without creating a concave angle.
(Actually, the vertex x will not even be perturbed in the fine perturbation.)
Case IIb. The point x has no neighbors on ℓ, see Figure 6c.
This means that y and z lie on or beyond the next grid line ℓ′ parallel to ℓ.
The rough perturbation can move them closer to ℓ, but they remain beyond
another parallel line ℓ′′ whose distance from x is 5/7 ·

√
3/4 ≈ 0.618. This

leaves plenty of space for additional perturbations of x, y, and z.

After the rough perturbation, we will subject every vertex v that is incident to
a critical angle to an additional small perturbation of a distance at most 1/30.
The lemma ensures that, in order to achieve convexity at v without destroying
convexity at another place, we only have to take care of one incident face
when we decide the final perturbation of v. We can thus work on each face
independently to make it strictly convex.

4 Fine Perturbation

We will now discuss how we go about achieving strict convexity of all faces.
The rough perturbation helps us to reduce this task to the case of regularly
spaced points on a line (Section 4.1). In Section 4.2, we will describe in detail
how the perturbed strictly convex chain is constructed for this special case.

4.1 The Setting after the Rough Perturbation

After the rough perturbation, we are in the following situation. Consider a
maximal chain v2, v3, . . . , vK−1 of successive critical angles on a face F . These
angles must be made strictly convex by perturbing them inside their little
disks. (The two extreme angles at v2 and vK−1 might already be convex.)
The vertices v2, v3, . . . , vK−1 lie originally on a common edge of the enclosing
triangle TF , We first discuss the case when the vertices lie on the upper edge ℓ
of TF , forming a horizontal chain, as in Figure 7a. (The extension to the
other two cases is discussed in Section 4.3.) According to Lemma 1 we have to
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(a)

(b)

(c)

(d)

v1 v4
v5

v2 v3

v1

v2 v3

v4

v5

1

1
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′
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v
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7

Figure 7: The setting of the fine perturbation process: (a) The initial situation
after the rough perturbation. The angles in which it is necessary to ensure
a convex angle are marked. (b) The circles in which the fine perturbation is
performed. The size of the circles is exaggerated to make the perturbation
more conspicuous. (c) A strictly convex polygon inside the circles. (d) The
final result.

ensure that these critical angles are smaller than 180◦ after the perturbation.
In Figure 7a, these are the vertices v2, v3, and v4. Let us call these vertices
critical vertices. In addition, we look at the two adjacent vertices v1 and vK
on F . By the choice of a maximal chain, they are not critical for F . They
may lie on the same line as the critical vertices, as the vertices v1 and v5 in
Figure 7a, or they might lie below this line. To guide the perturbation of the
points v2, . . . , vK−1, we pretend that v1 and vK are part of the chain, and we
create surrogate positions v′1 and v′K for these neighbors: First we move them
from their original positions vertically upward to ℓ; if they don’t land on a grid
point, we move them outward by 1/2 unit. Since the angles at v2 and vK−1 are
bigger than 150◦, we are sure that v′1, v2, . . . , vK−1, v

′
K lie on ℓ in this order.

Finally, we subject v′1 and v′K to the same rough perturbation as the critical
vertices between them, and move them vertically upward.

We place a disk of radius 1/30 around every perturbed point on this edge,
including the two surrogate positions, see Figure 7b. In the next step, to be
described in Section 4.2, we find a strictly convex chain which selects one vertex
out of each little disk, as shown in Figure 7c.

This will make all angles at v2, . . . , vK−1 strictly convex. Finally, we use these
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perturbed positions for our critical vertices, but for v1 and vK , we ignore their
perturbed surrogate positions, see Figure 7d. The true position of v1 or vK
may be determined by a different face in which it forms a critical angle (as is
the case for v5 in the example), or it might just keep its original position (like
v1 in the example). We only have to check that the angle at the left-most and
right-most critical vertex (v2 and v4 in this case) remains convex:

Lemma 2. Replacing the perturbed surrogate position v′1 and v′K of the points
v1 and vK by their true positions does not destroy convexity at their neighbors
v2 and vK−1 in F .

Proof. We first show that the rough perturbation does not actually perturb v1
and vK to their surrogate positions v′1 or v′K . It is conceivable that, say, v1 lies
on ℓ and is perturbed upwards because of its critical angle in a different face
F ′, see Figure 8. However, this would contradict the Three Wedges Property
for v1 and F , creating two incident edges in a sector in which only a unique
incident edge can exist.

F
′

Fv1 v2 v3

ℓ

Figure 8: A neighbor of a critical vertex cannot be perturbed in the same
direction.

Thus we conclude that v1 and vK lie below or on ℓ, and they are either per-
turbed not at all or in a direction below ℓ.
Vertices v2 and v4 in the example of Figure 7 represent the possible extreme
cases that have to be considered. v5 represents a vertex that is pushed down-
ward in the rough perturbation, and then subjected to a fine perturbation
anywhere in its little circle. For visual clarity, the circles in Figure 7 have been
drawn with a much larger radius than 1/30. Since the circles are actually small
enough, the angle at v4 will be convex no matter where the point v5 is placed
in its own circle. (This position is determined when the critical face of v5 is
considered.) A similar statement holds at v2, where the perturbed surrogate
position of v1 in Figure 7c is replaced by the original position of v1; this will
always turn the edge v2v1 counterclockwise and thus preserve convexity at v2.
The argument works also for a chain of vertices on an exterior edge of the
enclosing triangle. In this case, v2, v3, . . . , vK−1 are perturbed around their
original position on ℓ, whereas the neighbors v1 and vK are moved inside the
triangle and below ℓ. Geometrically, the situation looks similar as for vertex
v1 in Figure 7, except that v1 is not pushed down straight but at a −30◦ angle.
This movement is large enough to ensure convexity at v2.
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(c)(b)(a)

Figure 9: The hexagonal grid (a) is contained in a rectangular grid (b). A
hexagonal grid twice refined (c) contains rectangular grids in three different
directions. One of these rectangular grids is highlighted by thicker points.

4.2 Convex Chains in the Grid

We have a number K of vertices 0 = a1 < a2 < · · · < aK ≤ 2n − 1 on
a horizontal line which form part of an array of 2n consecutive grid points.
We want to perturb them into convex position. If the faces of the embedding
have at most k sides, then K ≤ k. It is more convenient to work with a
rectangular grid. So we extend the hexagonal grid to a rectangular grid as
shown in Figure 9. This grid will be refined sufficiently in order to allow a
strictly convex chain to be drawn inside a sequence of circles. Figure 10 gives
a schematic picture of the situation. (This drawing is not to scale.) It is more
convenient to discuss the construction of an upward convex chain. Inside each
disk (of radius 1/30) we fit a square of side length 1/50, which is subdivided
into a subgrid of width w and height h. More precisely, we are looking for a
sequence of points pi = (xi, yi) in these circles, whose coordinates measure the
distance from the lower left corner of the first circle in units of little grid cells.
Two successive circle centers at distance 1 in terms of the original grid have
a distance of S := 50w when measured in subgrid units. Thus we are looking
for integer coordinates that satisfy ai · S ≤ xi ≤ ai · S + w and 0 ≤ yi ≤ h.
Eventually, when the whole subgrid is scaled to the standard grid Z × Z, xi
and yi will become true distances again. The total size of the resulting integer
grid will be O(nw)×O(nh).

The convex chain p1, p2, . . . , pK has a descending part up to a point with min-
imum y-coordinate and an ascending part. We choose the two points with
minimum y-coordinate to lie in the middle: We define M := ⌊K/2⌋+ 1 and
set yM−1 = yM = 0. We will only describe the construction of the ascending
chain from pM to the right. The left half is constructed symmetrically.

The direction between two grid points is uniquely specified by a primitive vec-
tor, a vector whose components are relatively prime. We now take a sequence
of primitive vectors q1, q2, . . . , qK−M , qi = (ui, vi) with 0 < ui ≤ w and vi > 0,
in order of increasing slope vi/ui. Then we choose the difference vectors ∆p as
appropriate multiples of these vectors, in the following way. We have already
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p2

p3

p1

w

h

S = 50w

y

x

Figure 10: A convex chain formed by grid points in the circles. (Again, the
radius of the circles is drawn much too large compared to their distance.)

defined yM := 0, and we choose xM arbitrarily within the permitted range of
x-coordinates. Having defined pM+i−1, we define

pM+i := pM+i−1 + s · qi
by adding as many copies of qi as are necessary to bring xM+i into the desired
box:

aM+i · S ≤ xM+i ≤ aM+i · S + w

Since this box has width w, and ui ≤ w, this is always possible.
We need K −M ≤ K/2 primitive vectors qi (including the vector (1, 0) from
pM−1 to pM .) The following theorem ensures that we can find these vectors in
a triangle of sufficiently large area.

Theorem 2. The right triangle T = (0, 0), (w, 0), (w, t), where w ≥ 1, w inte-
ger, and t ≥ 2, contains at least wt/4 primitive vectors.

The general proof is given in Section 5. We can however easily give an explicit
solution for the special case t = 2 (corresponding to the choice w = k below,
which leads to the most balanced grid dimensions): In this case, we can simply
take the 1 + ⌊w/2⌋ vectors (w, 1), (w − 1, 1), . . . , (⌈w/2⌉, 1).
We use Theorem 2 as follows. We choose an arbitrary width w ≤ k for the
boxes. By Theorem 2, we can set t := max{2, 2K/w} to ensure that we find
at least K/2 primitive vectors in the triangle T . The slope of these vectors is
bounded by t/w. Let us estimate the necessary height h of the boxes. The
last point pK is connected to pM by a chain of vectors with slope at most t/w.
The distance of x-coordinates is at most the width of the whole grid on which
the graph is embedded, i. e., at most S · 2n = O(wn); hence the difference
in y-coordinates is at most t/w · O(wn) = O(tn) = O(kn/w). It follows that
the height h of the boxes is O(kn/w). The total height of the resulting grid is
O(hn) = O(kn2/w).
This leads to part (i) of Theorem 1. Part (ii) is an easy corollary. As an
extreme case, we can set w = 1 and perform only vertical perturbations. We
get h ≤ 2kn (without any additional constants depending on S).
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(a) (b) (c)

Figure 11: A rectangular grid (a), its 2× 6 refinement (b), and a shearing (c)
of the refined grid. Its grid-points coincide with the untransformed grid.

4.3 Perturbation of Vertices on Diagonal Lines

So far, we have treated only a sequence of vertices on a horizontal straight line.
The same scheme can be applied to lines of the two other directions by applying
the shearing transformation

(
x
y

)
7→
(

x
y+

√
3/2·x

)
or
(
x
y

)
7→
(

x
y−

√
3/2·x

)
which moves

points only in vertical direction. If h is a multiple of w, the transformation will
produce a grid like in Figure 11c which is contained in the original grid of
Figure 11b. For the range of parameters which is interesting for the theorem
(w ≤ k), the height h of the subgrid is never smaller than the width w; thus,
the choice of h as a multiple of w does not change the asymptotic analysis.
One needs to reduce the size of the little square subgrid to ensure that the
sheared square still fits inside the circle, and one has to adjust the quantity
S accordingly. In addition, we have to select h and w as multiples of 14, to
accommodate the grid of the rough perturbation and the refined rectangular
grid of Figure 9b. All of this changes the analysis only by a constant factor.
For the case of a uniform stretching of both dimensions (w = h), one referee
has pointed out a simpler alternative method. After a blow-up by a factor
of two, the original triangular grid contains rectangular grids in all three grid
directions, Figure 9c. Two further refinements by the factor 7 (for the rough
perturbation) and then by the factor w are sufficient to accommodate the fine
perturbation. On the exterior edges, the points must of course be perturbed
to form an outward convex chain.
For part (iii) of the theorem we have already mentioned that interior faces with
k ≤ 4 sides are already strictly convex. If the outer face has 4 edges, it contains
a single vertex on one of the sides of the outer triangle. The rough perturbation
is thus sufficient to make the outer face strictly convex.
The whole procedure, as described above, is quite explicit and can be carried
out with a linear number of arithmetic operations. We calculate the O(k)
primitive vectors qi only once and store them in an array. Then, for every
actual sequence of vertices on an edge, we can construct the perturbation very
easily. The primitive vectors in the triangle (0, 0), (w, 0), (w, t) according to
Theorem 2 can be selected from the O(wt) = O(k) grid points in linear time
with a sieve method.
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optimal greedy
w = h n (w + 1)/n n (w + 1)/n

0 2 0.5000 2 0.5000
1 4 0.5000 4 0.5000
2 6 0.5000 6 0.5000
4 10 0.5000 8 0.6250
6 14 0.5000 12 0.5833
8 16 0.5625 14 0.6429

10 20 0.5500 18 0.6111
12 22 0.5909 18 0.7222
20 32 0.6562 28 0.7500
40 58 0.7069 48 0.8542

100 122 0.8279 96 1.0521
200 212 0.9481 164 1.2256
400 366 1.0956 276 1.4529

1,000 758 1.3206 562 1.7811
2,000 1,292 1.5488 948 2.1108
4,000 2,206 1.8137 1,610 2.4851

10,000 4,468 2.2384 3,230 3.0963
20,000 7,592 2.6345 5,472 3.6552
40,000 9,250 4.3244

100,000 18,484 5.4101
200,000 31,192 6.4119
400,000 52,626 7.6008

1,000,000 105,012 9.5227
2,000,000 177,046 11.2965
4,000,000 299,494 13.3559

Table 1: The length of the longest strictly convex n-gon in a sequence of square
cells of size w × w, regularly spaced at distance S = 50w.

4.4 Numerical Experiments

We have presented a general systematic solution for finding a convex chain
by selecting grid-points from a sequence of boxes. One can find the optimal
(i.e., longest) convex chain in polynomial time by dynamic programming, as
described in more detail below. Results of some experiments are shown in
the first column of Table 1. We restrict ourselves to the standard situation of
selecting an n-gon from n adjacent boxes (K = n) which are squares (w = h).
For several different sizes w, we computed the largest n such that a strictly
convex n-gon can be found in a sequence of cells of size w × w. The factor
(w+1)/n determines the necessary grid size w in terms of n. (By the convention
of Figure 10, a “w×w” grid consists of (w+1)2 vertices; thus we give the fraction
(w + 1)/n instead of w/n.) Since the convex chain consists of a monotone
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decreasing and a monotone increasing part, connected by a horizontal segment
in the middle, the necessary height w + 1 is at least 0.5n. We see that this
trivial lower bound is achieved for small values of n. The factor (w + 1)/n
increases with n, but not very fast. (The rectangular w × h boxes constructed
in the proof of Theorem 1 would have w/n = 1, but h/n = 100.)

The dynamic programming algorithm computes, for each point p in the w × h
box, and for each possible previous point p′ in the adjacent box to the left, the
longest ascending and strictly convex chain (of length i) for which pi−1 = p′

and pi = p. Knowing p′ and p, it can be determined which points in the next
box are candidate endpoints pi+1 of a chain of length i+1. One can argue that,
among these points pi+1 that are reachable as a continuation of p′p, only the
w+ 1 lowest points on each vertical line are candidates for endpoints pi+1 that
form part of an optimal chain. Theoretically, the complexity of this algorithm
is therefore O(w3h2). It turns out that, with few exceptions, every point p has
only one predecessor point p′ that must be considered: all other predecessor
points pi−1 have either a larger slope of the vector p− pi−1 or they are reached
by a shorter chain. Therefore, the algorithm runs in O(w2h) = O(wkn) time,
in practice.

A simple greedy approach for selecting the points pi one by one gives already
a very good solution: we choose pi+1 from the possible grid points in the
appropriate box in such a way that the segment pi+1−pi has the slope as small
as possible while still forming a convex angle at pi. The results in the right
column of Table 1 indicate that this algorithm is quite competitive with the
optimum solution. The running time is O(kw).

5 Grid Points in a Triangle

In this section we prove Theorem 2. We denote by P := { (x, y) | gcd(x, y) = 1 }
the set of primitive vectors in the plane.

It is known that the proportion of primitive vectors among the integer vectors
in some large enough area is approximately 1/ζ(2) = 6/π2 [10, Chapters 16–
18]. Thus, a “large” triangle T should contain roughly 3/π2 · wt ≈ 0.304wt
primitive points. However, for very wide or very high triangles, the fraction of
primitive vectors may be different. In fact, for t = 2, the bound wt/4 is tight
except for an additive slack of at most 2.

We will use special methods for counting primitive vectors when T is “very
high” (i. e., w is fixed and below some threshold and t is unbounded, Sec-
tion 5.1), when T is “very wide” (t is fixed and w is unbounded, Section 5.2),
and for the case when both t and w are large (Section 5.3). We use the help
of the computer for the first two cases, but we use a general bound for the last
case.
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5.1 Fixed width, unbounded height

For a fixed value of w, the function f(t) := |T ∩ P| can be analyzed explicitly.
It is periodically ascending:

f(t+ w) = f(t) + C,

where C =
∑w
i=1 φ(i) is the number of primitive vectors in the triangle (0, 0),

(w, 0), (w,w), excluding the point (1, 1). Euler’s totient function φ(i) denotes
the number of integers 1 ≤ j ≤ i that are relatively prime to i, or equivalently,
the number of primitive vectors (i, j) on the vertical line segment from (i, 0) to
(i, i− 1).
The reason for the periodic behavior is that the unimodular shearing transfor-
mation (x, y) 7→ (x, y+x) maps the triangle (0, 0), (w, 0), (w, t), to the triangle
(0, 0), (w,w), (w,w + t), which is equal to (0, 0), (w, 0), (w,w + t) minus the
triangle (0, 0), (w, 0), (w,w).
Therefore, it is sufficient to check that the “average slope” C/w of f is bigger
than w/4, and to check

f(t) ≥ tw/4 (1)

for the initial interval 2 ≤ t ≤ 2 + w. This can be done by computer: We sort
all primitive vectors (x, y) with 0 ≤ x ≤ w and 0 ≤ y/x ≤ (w + 2)/w by their
slope y/x. We gradually increase t from 2 to w+ 2. The critical values of t for
which (1) must be checked explicitly are when a new primitive vector is just
about to enter the triangle.
We ran a lengthy computer check to establish (1) for w = 1, 2, . . . , 250 and for
2 ≤ t ≤ w + 2 (and hence for all t). In addition, we checked it for the range
w = 251, 252, . . . , 800 and for 2 ≤ t ≤ 250.

5.2 Large width

In this section we prove Theorem 2 for small t and large w. T intersects
each horizontal line y = i in a segment of length w − (w/t)i. In any set of i
consecutive grid points on this line, there are precisely φ(i) primitive vectors.
We can subdivide the grid points on y = i into ⌊(w−(w/t)i)/i⌋ ≥ w/i−w/t−1
groups of i consecutive points, leading to a total of at least (w/i−w/t− 1)φ(i)
primitive vectors:

|T ∩ P| ≥ 1 +

⌊t⌋∑

i=1

(w
i
− w

t
− 1
)
φ(i)

For a given value of ⌊t⌋, one can evaluate the expression

|T ∩ P| ≥ 1 +

⌊t⌋∑

i=1

(w
i
− w

t
− 1
)
φ(i) ≥ 1 +

⌊t⌋∑

i=1

(w
i
− w

⌊t⌋ − 1
)
φ(i) (2)
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explicitly. The right-hand side of this bound is a linear function g(w):

g(w) =

⌊t⌋∑

i=1

(w
i
− w

⌊t⌋ − 1
)
φ(i)

For example, for ⌊t⌋ = 130, we have g(w) = w ·39.514 . . .−5153. It follows that
g(w) > w ·131/4 > wt/4 for w ≥ 762. Performing this calculation by computer
for ⌊t⌋ = 6, 7, . . . , 130 establishes Theorem 2 for 6 ≤ t ≤ 130 and w ≥ 800.
The interval 4 ≤ t < 6 can be split into the ranges 4 ≤ t < 4.5, 4.5 ≤ t < 5,
5 ≤ t < 5.5, and 5.5 ≤ t < 6. For each range, we can use the above method
with a tighter bound in (2) than t ≥ ⌊t⌋, and the estimate goes through in the
same way.
So let us consider the remaining interval 2 ≤ t ≤ 4: For 2 ≤ t < 3, we can
evaluate |T ∩ P| explicitly:

|T ∩ P| = 1 + (w + 1− ⌈wt ⌉) + (⌈w2 ⌉ − ⌈wt − 1
2⌉), (3)

counting the primitive vectors on the lines y = 0, y = 1, and y = 2, respectively.
For t ≥ 3, the right-hand side of (3) is still valid as a lower bound. We get

|T ∩ P| ≥ 1 +
(
w + 1− (wt + 1)

)
+
(
w
2 − (wt − 1

2 + 1)
)
> w( 3

2 − 2
t )

The last expression is ≥ wt/4 for 2 ≤ t ≤ 4.
Thus we have proved the theorem for 2 ≤ t ≤ 130 and w ≥ 800.

5.3 Large triangles

Lemma 3. Let T ′ be an axis-aligned right triangle of width a′ and height b′,
whose right angle lies on a grid point. Then

areaT ′ ≤ |T ′ ∩ Z2| ≤ areaT ′ + ⌊a′⌋+ ⌊b′⌋+ 1

Proof. This is simple. Suppose the right angle is at the right bottom corner
of T ′, see Figure 12a. Each lattice point in T ′ is the right bottom vertex of
a unit square and these squares cover T ′. To bound the area from below, we
must subtract the squares which are not contained in T ′. These squares form a
monotone chain along the longest side of T ′, and their number is ⌊a′⌋+ ⌊b′⌋+
1.

Lemma 4. Let T be the right triangle (0, 0), (a, 0), (a, b), with a, b ≥ 1. Define
T ∗ as T ∩ { (x, y) : y ≥ 1 }. Then

ab

2
− a− b+

a

2b
≤ |T ∗ ∩ Z2| ≤ ab

2
+ b− a

2b
(4)

In particular, ∣∣∣∣
∣∣T ∗ ∩ Z2

∣∣− ab

2

∣∣∣∣ ≤ a+ b
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386 Imre Bárány and Günter Rote

a′

b′

a

b

y

x

T ∗

T

(a)

(b)

T ′

Figure 12: (a) The triangle T ′ in Lemma 3 and its covering by squares. (b)
The triangles T and T ∗ (shaded) in Lemma 4.

Proof. See Figure 12b. The triangle T ∗ has length a − a/b, height b − 1 and
area 1

2 (b− 1)(a− a/b) = ab/2− a+ a/(2b). Let T ′ denote the part of T ∗ that
lies left of the line x = ⌊a⌋. This triangle contains the same grid points as T ∗.
We assume first that T ′ is a nonempty triangle. The difference in areas lies in
a rectangle strip of width < 1 and height b− 1:

areaT ∗ − (b− 1) ≤ areaT ′ ≤ areaT ∗

We can apply Lemma 3 to T ′ and obtain

|T ∗ ∩ Z2| = |T ′ ∩ Z2| ≤
(ab

2
− a+

a

2b

)
+
(
a− a

b

)
+ (b− 1) + 1,

|T ∗ ∩ Z2| = |T ′ ∩ Z2| ≥ areaT ′ ≥
(ab

2
− a+

a

2b

)
− (b− 1),

from which the lemma follows.
The triangle T ′ may not exist, as in Figure 13. In this case, T ∗∩Z2 = ∅. Instead
of arguing why the above derivation is valid also for this case, we establish the
inequalities directly. Let b′ ≥ b−b/a denote the vertical extent of T at x = ⌊a⌋.
Then the fact that T ′ is empty is equivalent to b′ < 1.
Then, from 1 ≥ b′ ≥ b − b/a we conclude that ab < a + b. It follows that the
lower bound in (4) is at most 0:

ab

2
+

a

2b
− a− b ≤ a+ b

2
+
a

2
− a− b ≤ 0

The claimed upper bound in (4) is always nonnegative, by the assumption
b ≥ 1.
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a

b

y

x

T ∗

T

⌊a⌋

b′

Figure 13: If T ∗ (shaded) contains no grid points, the triangle T ′ does not
exist.

The number of primitive vectors can be estimated by an inclusion-exclusion
formula, taking into account vectors which are multiples of single primes
2, 3, 5, 7, . . ., vectors which are jointly multiples of two primes, of three primes,
and so on, see [10, Chapters 16–18]:

|T ∩P| = 1+ |T ∗∩P| = 1+

S∑

i=1

µ(i) ·
∣∣( 1
i · T ∗) ∩ Z2

∣∣ = 1+

S∑

i=1

µ(i) ·
∣∣( 1
i T )∗ ∩ Z2

∣∣

(5)
Here, µ(i) is the Möbius function: µ(i) = (−1)k if i is the product of k distinct

primes and µ(i) = 0 otherwise. It is known that
∑∞
i=1

µ(i)
i2 = 1/ζ(2) = 6/π2,

leading to the fact mentioned above that a fraction of approximately 6/π2 of
the grid points in a large area are primitive vectors.
Our sum in (5) goes to i = ∞, but for i > w or i > t, the set ( 1

i T )∗ ∩ Z2

is empty. Therefore, the formula is valid for S := min{w, ⌊t⌋}. We apply
Lemma 4 and obtain

|T ∩ P| = 1 +

S∑

i=1

µ(i) ·
∣∣( 1
i T )∗ ∩ Z2

∣∣ ≥ wt

2

S∑

i=1

µ(i)

i2
−

S∑

i=1

w + t

i

≥ wt

2

(
6

π2
− 1

S

)
−HS(w + t),

whereHS = 1+1/2+1/3+· · ·+1/S is the harmonic number. The last inequality
comes from bounding the remainder

∑∞
i=S+1 µ(i)/i2 ≤∑∞

i=S+1 1/i2 < 1/S of
the infinite series, whose value is 6/π2.
We distinguish the two cases for S: Case 1: w ≤ t, and S = w. Then

|T ∩ P| ≥ wt

2

(
6

π2
− 1

w

)
−Hw(2t) = wt

(
3

π2
− 1

2w
− 2Hw

w

)

Case 2: w ≥ t, and S = ⌊t⌋.

|T ∩ P| ≥ wt

2

(
6

π2
− 1

⌊t⌋

)
−H⌊t⌋(w + t)

≥ wt
(

3

π2
− 1

2(t− 1)
−H⌊t⌋

(
1

t
+

1

w

))
(6)
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Combining the two cases and setting n := min{w, t} gives

|T ∩ P| ≥ wt
(

3

π2
− 1

2(n− 1)
− 2H⌊n⌋

n

)

Using the estimate Hi ≤ γ + ln(i + 1) with Euler’s constant γ ≈ 0.57721, it
can be checked that this factor is bigger than 1/4 for n ≥ 250, thus proving
the theorem for w, t ≥ 250.
On the other hand, the factor in (6) is bigger than 1/4 for w ≥ 800 and
130 ≤ t ≤ 250, proving the theorem also for this range.

Wrap-up. The proof of Theorem 2 is now complete. On a high level, we
distinguish three ranges for w: 1 ≤ w ≤ 250, 251 ≤ w ≤ 800, and w ≥ 800.

• Range 1: For 1 ≤ w ≤ 250, the theorem has been established in Sec-
tion 5.1.

• Range 2: 251 ≤ w ≤ 800. For 251 ≤ w ≤ 800 and 1 ≤ t ≤ 250, the
theorem has been established in Section 5.1 as well. For 251 ≤ w ≤ 800
and t ≥ 250, it has been proved in Section 5.3.

• Range 3: Finally, for w ≥ 800, there is a division into three cases: Sec-
tion 5.2 takes care of the range 2 ≤ t ≤ 130. Section 5.3 proves the bound
separately for the ranges 130 ≤ t < 250 and t ≥ 250.

6 Conclusion

In practice, the algorithm behaves much better than indicated by the rough
worst-case bounds that we have proved. We have not attempted to optimize
the constants in the proof. For example, if we don’t take a 7×7 subgrid but an
11 × 11 subgrid, and with a more specialized treatment of the outer face, the
permissible amount of perturbation in Lemma 1 increases from 1/30 to 1/9,
but it would make the pictures of the rough perturbation harder to draw.
Bonichon, Felsner, and Mosbah [4] have used a technique of eliminating edges
from the drawing that can later be inserted in order to reduce the necessary
grid size for (non-strictly) convex drawings. This technique can also be applied
in our case: remove interior edges as long as the graph remains three-connected.
These edges can be easily reinserted in the end, after all faces are strictly con-
vex. (For non-strictly convex drawings in [4], the selection of removable edges
and their reinsertion is actually a more complicated issue.) This technique
might be useful in practice for reducing the grid size.

Lower Bounds. The only known lower bound comes from the fact that
a single convex n-gon on the integer grid needs Ω(n3) area, see Bárány and
Tokushige [3], or Acketa and Žunić [1, 2] for the easier case of a square grid.
To achieve this area for an n-gon, one has to draw it in a quite round shape.
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In contrast, the faces that are produced in our algorithm have a very restricted
shape: when viewed from a distance, the look like the triangles, quadrilaterals,
pentagons, or hexagons of the n×n grid drawing from which they were derived.
To reduce the area requirement below O(n4) one has to come up with a new
approach that also produces faces with a “rounder” shape.
Our bounds are however, optimal within the restricted class of algorithms that
start with a Schnyder drawing or an arbitrary non-strictly convex drawing on
an O(n) × O(n) grid and try to make it strictly convex by local perturbations
only. Consider the case where n− 1 vertices lie on the outer face, connected to
a central vertex in the middle. The Schnyder drawing will place these vertices
on the enclosing triangle, and at least n/3 vertices will lie on a common line.
They have to be perturbed into convex position, as in Figures 7 or 10.
Let us focus on the standard situation when we want to perturb n equidistant
vertices on a line, at distance 1 from each other. The n−1 edge vectors pi+1−pi
lie in a 2w × 2h box; they must be non-parallel, and in particular, they must
be distinct. If ∆y is the average absolute vertical increment of these vectors,
it follows that ∆y = Ω(n/w), and the total necessary height h of the boxes is
Ω(n(∆y)) = Ω(n2/w). Therefore, the total necessary area is Ω(hwn2) = Ω(n4).
The argument can be extended to the case when only Ω(n) selected grid vertices
on a line of length O(n) have to be perturbed. It can also be shown that our
bounds in terms of k are optimal in this setting. The worst case occurs when
there is a line of length n with Ω(k) consecutive grid points in the middle and
two vertices at the extremes.

Extensions. The class of three-connected graphs is not the most general
class of graphs which allow strictly convex embeddings. The simplest example
of this is a single cycle. A planar graph, with a specified face cycle C as the
outer boundary, has a strictly convex embedding if and only if it is three-
connected to the boundary, i. e., if every interior vertex (not on C) has three
vertex-disjoint paths to the boundary cycle. Equivalently, the graph becomes
three-connected after adding a new vertex and connecting it to every vertex
of C. These graphs cannot be treated directly by our approach, since the
Schnyder embedding method of Felsner [8] does not apply. Partitioning the
graph into three-connected components and putting them together at the end
might work.
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Received: June 3, 2005

Revised: July 21 2006

Communicated by Günter Ziegler

Abstract. In an Euclideand-space, the container problem asks to pack
n equally sized spheres into a minimal dilate of a fixed container. If the
container is a smooth convex body andd ≥ 2 we show that solutions to the
container problem can not have a “simple structure” for largen. By this we
in particular find that there exist arbitrary smallr > 0, such that packings in
a smooth,3-dimensional convex body, with a maximum number of spheres
of radiusr, are necessarily not hexagonal close packings. This contradicts
Kepler’s famous statement that the cubic or hexagonal closepacking “will
be the tightest possible, so that in no other arrangement more spheres could
be packed into the same container”.

2000 Mathematics Subject Classification: 52C17; 01A45, 05B40
Keywords and Phrases: sphere packing, Kepler, container problem

1 Introduction

How many equally sized spheres can be packed into a given container? In 1611,
KEPLER discussed this question in his booklet [Kep11] and came to the following
conclusion:

“Coaptatio fiet arctissima, ut nullo praeterea ordine plures globuli
in idem vascompingi queant.”

“The (cubic or hexagonal close) packing will be the tightestpossi-
ble, so that in no other arrangement more spherescould be packed
into the same container.”
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In this note we want to show that Kepler’s assertion is false for many containers (see
Section 5, Corollary 2). Even more general we show, roughly speaking, that the set of
solutions to the finite container problem (see below) in an Euclidean space of dimen-
siond ≥ 2 has no “simple structure” (see Definition 1).
To make this precise, we consider the Euclideand-spaceRd endowed with inner prod-
uct 〈·, ·〉 and norm| · |. LetBd = {x ∈ Rd : |x| ≤ 1} denote the (solid) unit sphere
andSd−1 = {x ∈ Rd : |x| = 1} its boundary. Then a discrete setX ⊂ Rd is a
packing setand defines asphere packingX + 1

2B
d = {x + 1

2y : x ∈ X,y ∈ Bd},
if distinct elementsx andx′ of X have distance|x− x′| ≥ 1. The sphere packing is
calledfinite if X is of finite cardinality|X|. Here we consider finite sphere packings
contained in a convex body (container) C, that is, a compact, convex subset ofRd

with nonempty interior. Thefinite container problemmay be stated as follows.

Problem. Givend ≥ 2, n ∈ N and a convex bodyC ⊂ Rd, determine

λ(C, n) = min{λ > 0 : λC ⊃ X + 1
2B

d a packing,X ⊂ Rd with |X| = n }
and packing setsX attaining the minimum.

Many specific instances of this container problem have been considered (see for exam-
ple [Bez87], [BW04], [Fod99], [Mel97], [N̈O97],[Spe04], [SMC+06]). Independent
of the particular choice of the containerC, solutions tend to densest infinite packing
arrangements for growingn (see Section 5, cf. [CS95]). In dimension2 these pack-
ings are known to be arranged hexagonally. Nevertheless, although close, solutions
to the container problem are not hexagonally arranged for all sufficiently largen and
various convex disksC, as shown by the author in [Sch02], Theorem 9 (cf. [LG97]
for corresponding computer experiments). Here we show thata similar phenomenon
is true in arbitrary Euclidean spaces of dimensiond ≥ 2.
We restrict ourselves tosmooth convex bodiesC as containers. That is, we assume
the support functionhC(u) = sup{〈x,u〉 : x ∈ C} of C is differentiable at all
u ∈ Rd \ {0}, or equivalently, we require thatC has a uniquesupporting hyperplane
through each boundary point (see [Sch93], Chapter 1.7).
Our main result shows that families of packing sets with a “simple structure” can
not be solutions to the container problem ifC is smooth andn sufficiently large.
This applies for example to the family of solutions to thelattice restricted container
problem. In it, we only consider packing sets which are isometric to asubset of some
lattice (a discrete subgroup ofRd).

Theorem 1. Let d ≥ 2 andC ⊂ Rd a smooth convex body. Then there exists an
n0 ∈ N, depending onC, such thatλ(C, n) is not attained by any lattice packing set
for n ≥ n0.

2 Packing families of limited complexity

The result of Theorem 1 can be extended to a more general classof packing sets.

Definition 1. A familyF of packing sets inRd is of limited complexity(an lc-
family), if
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(i) there exist isometriesIX , for eachX ∈ F , such that

{x− y : x,y ∈ IX(X) andX ∈ F} (1)

has only finitely many accumulation points in any bounded region.

(ii) there exists a̺ > 0, such that for allx ∈ X withX ∈ F , every affine subspace
spanned by some elements of

{y ∈ X : |x− y| = 1}

either containsx or its distance tox is larger than̺.

Condition (i) shows that point configurations within an arbitrarily large radius around
a point are (up to isometries ofX and up to finitely many exceptions) arbitrarily close
to one out of finitely many possibilities. Condition (ii) limits the possibilities for points
at minimum distance further. Note that the existence of a̺ > 0 in (ii) follows if (1) in
(i) is finite within Sd−1.
An example of an lc-family in which isometries can be chosen so that (1) is finite
in any bounded region, is the family ofhexagonal packing sets. These are isometric
copies of subsets of ahexagonal lattice, in which every point in the plane is at mini-
mum distance1 to six others. For the hexagonal packing sets, condition (ii) is satisfied
for all ̺ < 1

2 . More general, isometric copies of subsets of a fixed latticegive finite
sets (1) in any bounded region and satisfy (ii) for suitable small ̺ > 0. Similar is
true for more general families of packing sets, as for example for thehexagonal close
configurationsin dimension3 (see Section 5).
An example of an lc-family, in which the sets (1) are not necessarily finite in any
bounded region, are the solutions to the lattice restrictedcontainer problem. As shown
at the end of Section 3, condition (ii) in Definition 1 is nevertheless satisfied. Thus we
are able to derive Theorem 1 from the following, more generalresult.

Theorem 2. Let d ≥ 2, C ⊂ Rd a smooth convex body andF an lc-family of
packing sets inRd. Then there exists ann0 ∈ N, depending onF andC, such that
λ(C, n) is not attained by any packing set inF for n ≥ n0.

Proofs are given in the next section. In Section 4 we briefly mention some possible ex-
tensions of Theorem 2. In Section 5 we discuss consequences for the quoted assertion
of Kepler, if interpreted as a container problem (see Corollary 2).

3 Proofs

Idea. The proof of Theorem 2 is subdivided into four preparatory steps and corre-
sponding propositions. These technical ingredients are brought together at the end of
this section. Given an lc-familyF of packing sets, the idea is the following: We show
that packing setsX ∈ F , with |X| sufficiently large, allow the construction of packing
setsX ′ with |X ′| = |X| and withX ′+ 1

2B
d fitting into a smaller dilate ofC. Roughly

speaking, this is accomplished in two steps. First we show that “rearrangements” of
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spheres near the boundary ofC are possible for sufficiently largen. This allows us to
obtain arbitrarily large regions in which spheres have no contact, respectively in which
points ofX ′ have distance greater than1 to all other points (Proposition 2, depending
on property (i) of Definition 1). Such an initial modificationthen allows rearrange-
ments of all spheres (Proposition 3 and 4, depending on property (ii) of Definition 1),
so that the resulting packing fits into a smaller dilate ofC. For example, consider a
hexagonal packing in the plane: It is sufficient to initiallyrearrange (or remove) two
disks in order to subsequently rearrange all other disks, sothat no disk is in contact
with others afterwards (see Figure 1, cf. [Sch02]).

Figure 1: Local rearrangements in a hexagonal circle packing.

How do we know that the new sphere packingsX ′ + 1
2B

d fit into a smaller dilate of
C? Consider

λ(C,X) = min{λ > 0 : λC ⊃ t +X + 1
2B

d for somet ∈ Rd}

for a fixed finite packing setX. Here and in the sequel we uset + X to abbreviate
{t}+X. Clearly

λ(C, n) = min{λ(C,X) : X is a packing set with|X| = n },

andλ(C,X ′) < λ(C,X) whenever theconvex hullconvX ′ of X ′ (and henceX ′

itself) is contained in the interiorint convX of the convex hull ofX. Thus in order
to prove thatX does not attainλ(C, |X|) for any convex containerC, it is sufficient
to describe a way of attaining a packing setX ′ with |X ′| = |X| and

X ′ ⊂ int convX. (2)

I. Let us first consider the “shapes” of packing setsXn attainingλ(C, n). Here and
in what follows,Xn denotes a packing set with|Xn| = n.
In order to define the “shape”, let

R(M) = min{R ≥ 0 : M ⊂ t +RBd for somet ∈ Rd}

denote the circumradius of a compact setM ⊂ Rd and letc(M) denote the center of
its circumsphere. HenceM ⊆ c(M) +R(M)Bd. Then theshapeof M is defined by

S(M) = (conv(M)− c(M)) /R(M) ⊂ Bd.
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The family of nonempty compact subsets inRd can be turned into a metric space, for
example with theHausdorff metric(cf. [Sch93]). Shapes of packing setsXn attaining
λ(C, n) converge to the shape ofC, that is,

lim
n→∞

S (Xn) = S(C). (3)

This is seen by “reorganizing elements” in a hypothetical convergent subsequence of
{Xn}n∈N not satisfying (3).
The convergence of shapes leads for growingn to shrinking sets ofouter (unit) nor-
mals

{v ∈ Sd−1 : 〈v,x〉 ≥ 〈v,y〉 for all y ∈ convXn} (4)

at boundary pointsx of the center polytopeconvXn. For general terminology and
results on convex polytopes used here and in the sequel we refer to [Zie97].
SinceC is smooth, the sets of outer normals (4) at boundary points ofconvXn be-
come uniformly small for largen. Also, within a fixed radius around a boundary point,
the boundary ofconvXn becomes “nearly flat” for growingn.

Proposition 1. Let d ≥ 2 andC ⊂ Rd a smooth convex body. Let{Xn} be a
sequence of packing sets inRd attainingλ(C, n). Then

(i) for ε > 0 there exists ann1 ∈ N, depending onC and ε, such that for all
n ≥ n1, outer normalsv,v′ ∈ Sd−1 of convXn at x ∈ Xn satisfy

|v − v′| < ε;

(ii) for ε > 0 andr > 0 there exists ann1 ∈ N, depending onC, ε andr, such that
for all n ≥ n1, and forx,x′ ∈ bd convXn with |x − x′| ≤ r, outer normals
v ∈ Sd−1 of convXn at x satisfy

〈v,x− x′〉 > −ε.

II. In what follows we use some additional terminology. Given a packing setX, we
sayx ∈ X is in afree position, if the set

NX(x) = {y ∈ X : |x− y| = 1}

is empty. If somex ∈ X is not contained inint convNX(x), then it is possible to
obtain a packing setX ′ = X \ {x} ∪ {x′} in whichx′ is in a free position. We sayx
is moved to a free positionin this case (allowingx′ = x). We sayx is moved into or
within a setM (to a free position), ifx′ ∈ M . Note, in the resulting packing setX ′

less elements may have minimum distance1 to others, and therefore possibly further
elements can be moved to free positions.
AssumingX ∈ F attainsλ(C, |X|) with |X| sufficiently large, the following propo-
sition shows that it is possible to move elements ofX into free positions within an
arbitrarily large region, without changing the center polytopeconvX.
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Proposition 2. Let d ≥ 2 andR > 0. LetC ⊂ Rd a smooth convex body and
F a family of packing sets inRd satisfying (i) of Definition 1. Then there exists an
n2 ∈ N, depending onR, F andC, such that for allX ∈ F attainingλ(C, |X|) with
|X| ≥ n2, there exists atX ∈ Rd with

(i) (tX +RBd) ⊂ convX, and

(ii) all elements ofX ∩ int(tX + RBd) can be moved to free positions by subse-
quently moving elements ofX ∩ int convX to free positions withinint convX.

Proof. Preparations. By applying suitable isometries to the packing sets inF we
may assume that

{y : y ∈ X − x with |y| < r for x ∈ X andX ∈ F} (5)

has only finitely many accumulation points for everyr > 1. For eachX, the container
C is transformed to possibly different isometric copies. This is not a problem though,
since the container is not used aside of Proposition 1, whichis independent of the
chosen isometries. Note that the smoothness ofC is implicitly used here.
We sayx ∈ X is moved in directionv ∈ Sd−1, if it is replaced by anx′ on the ray
{x + λv : λ ∈ R>0}. Note that it is possible to movex in directionv ∈ Sd−1 to a
free position, if

NX(x,v) = {w ∈ NX(x)− x : 〈v,w〉 > 0} (6)

is empty. If we want a fixedx ∈ X to be moved to a free position, in direction
v ∈ Sd−1 say, we have to move the elementsy ∈ x +NX(x,v) first. In order to do
so, we move the elements ofy + NX(y,v) to free positions, and so on. By this we
are lead to the definition of theaccess cone

accF,n(v) = pos{NX(x,v) : x ∈ X for X ∈ F with |X| ≥ n} (7)

of F andn in directionv ∈ Sd−1. Here,

pos(M) = {
m∑

i=1

λixi : m ∈ N, λi ≥ 0 andxi ∈M for i = 1, . . . ,m }

denotes thepositive hullof a setM ⊂ Rd, which is by definition a convex cone.
Note that accF,n(v) is contained in the halfspace{x ∈ Rd : 〈v,x〉 ≥ 0} and that
accF,n(v) ⊆ accF,n′(v) whenevern ≥ n′.
By the assumption that (5) has only finitely many accumulation points forr > 1, there
exist only finitely many limitslimn→∞

(
accF,n(v) ∩Bd

)
. Here, limits are defined

using the Hausdorff metric on the set of nonempty compact subsets ofRd again.

Strategy. We choose av ∈ Sd−1 such that there exists anε > 0 with

lim
n→∞

(
accF,n(v) ∩Bd

)
= lim
n→∞

(
accF,n(v′) ∩Bd

)
,

for all v′ in theε-neighborhoodSε(v) = Sd−1 ∩ (v + εBd) of v ∈ Sd−1.
In order to prove the proposition, we show the following for everyX ∈ F , attaining
λ(C, |X|) with |X| sufficiently large: There exists atX ∈ Rd such that
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(i’) (tX +RBd) + accF,n(v) does not intersectX ∩ bd convX, while

(ii’) (tX +RBd) ⊂ convX.

It follows thatbd convX has to intersect the unbounded set

(tX +RBd) + accF,n(v) (8)

and by the definition of the access cone it is possible to move the elements inX ∩
int(tX + RBd) to free positions as asserted. For example, after choosing adirection
v′ ∈ Sε(v), we may subsequently pick non-free elementsx in (8) with maximal
〈x,v′〉. These elements can be moved to a free position withinint convX, since
NX(x,v′) is empty by the definition of the access cone.

Bounding the boundary intersection.We first estimate the size of the intersection of
(8) with bd convX. Forv′ ∈ Sε(v) andn ∈ N, we consider the sets

M(v′, n) = {x ∈ RBd + accF,n(v) : 〈x,v′〉 = R}.

By the definition of the access cones (7),M(v′, n) ⊆ M(v′, n′) for n ≥ n′. We
choose

r > sup{|x− y| : x,y ∈M(v′, n) with v′ ∈ Sε(v)},
as a common upper bound on the diameter of the setsM(v′, n) with n sufficiently
large, sayn ≥ n′. Note thatR as well asF , v andε have an influence on the size of
r andn′.
By Proposition 1 (ii) we can choosen′ possibly larger to ensure the following for all
X ∈ F attainingλ(C, |X|) with |X| ≥ n′: The intersection of(8) with bd convX
has a diameter less thanr, no matter whichtX ∈ convX at distanceR to bd convX
we choose. Moreover,(tX +RBd) ⊂ convX.

Ensuring an empty intersection. It remains to show that forX ∈ F , attaining
λ(C, |X|) with |X| sufficiently large,tX can be chosen such that (8) does not intersect
X ∩bd convX. For this we prove the following claim:There exists ann′′, depending
on r, v and ε, such that for allX ∈ F with |X| ≥ n′′, there exists a vertexx of
convX with outer normalv′ ∈ Sε(v) and

{x} = X ∩ (bd convX) ∩ (x + rBd). (9)

Thus these verticesx have a distance larger thanr to any other element ofX ∩
bd convX. Therefore, by choosingn2 ≥ max{n′, n′′}, we can ensure that there
exists atX ∈ Rd at distanceR to bd convX such that (i’) and (ii’) are satisfied for all
X ∈ F attainingλ(C, |X|) with |X| ≥ n2. Note thatn′, n′′, and hencen2, depend
on the choice ofv andε. But we may choosev andε, depending onF , so thatn2 can
be chosen as small as possible. In this way we get ann2 which solely depends onR,
F andC.
It remains to prove the claim. Since (5) has only finitely manyaccumulation points, the
set of normalsv′ ∈ Sd−1 with hyperplane{y ∈ Rd : 〈v′,y〉 = 0} running through
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0 and an accumulation pointy of (5) all lie in the unionUr of finitely many linear
subspaces of dimensiond − 1. Thus for anyδ > 0 the normals of these hyperplanes
all lie in Ur,δ = Ur + δBd if we choose|X| sufficiently large, depending onδ. By
choosingδ small enough, we find av′ ∈ Sε(v) with v′ 6∈ Ur,δ. Moreover, there exists
an ε′ > 0 such thatSε′(v′) ∩ Ur,δ = ∅. Since every center polytopeconvX has a
vertexx with outer normalv′, we may choose|X| sufficiently large by Proposition 1
(i) (applied to2ε′), such thatconvX has no outer normal inUr,δ atx.
Moreover, for sufficiently large|X|, faces ofconvX intersectingx + rBd can not
contain any vertex inX ∩ (x + rBd) aside ofx. Thus by construction, there exists
ann′′ such that (9) holds for allX ∈ F with |X| ≥ n′′. This proves the claim and
therefore the proposition.

Note that the proof offers the possibility to loosen the requirement onF a bit, for
the price of introducing another parameter: For suitable larger, depending onF , the
proposition holds, if instead of (i) in Definition 1 we require

(i’) there exist isometriesIX for eachX ∈ F , such that

{x− y : x,y ∈ IX(X) andX ∈ F }

has only finitely many accumulation points withinrBd.

III. For allX ∈ F attainingλ(C, |X|), with |X| sufficiently large, we are able to
obtaincontact free regions(tX + RBd) ⊂ convX, with R as large as we want, by
Proposition 2. That is, we can modify these packing setsX by moving elements to
free positions withinint(tX + RBd). By choosingR large enough, such an initial
contact free region allows to move further elements to free positions. The following
proposition takes care of interior points.

Proposition 3. Let d ≥ 2 andF a family of packing sets inRd satisfying (ii) in
Definition 1 with̺ > 0. LetR ≥ 1

̺ , X ∈ F andx ∈ X ∩ int convX. Let t ∈ Rd

with |t−x| ≤ R+ ̺
2 and with all elements ofX ∩ (t +RBd) in a free position. Then

x can be moved to a free position withinint convX.

Proof. Assumex ∈ int convNX(x). By the assumption onF ,

x + ̺Bd ⊂ int convNX(x).

Thus there exists ay ∈ NX(x), such that the orthogonal projectiony′ of y onto the
line throughx andt satisfies|y′ − x| ≥ ̺ and|y′ − t| ≤ R− ̺

2 . Then

|y − t|2 = |y′ − t|2 + |y − y′|2 ≤
(
R− ̺

2

)2
+
(
1− ̺2

)
< R2.

Thusy is in a free position by the assumptions of the proposition, which contradicts
y ∈ NX(x).
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IV. After Propositions 2 and 3 it remains to take care of points inX ∩ bd convX,
for X ∈ F attainingλ(C, |X|), and with|X| sufficiently large. It turns out that these
points can all be moved to free positions withinint convX. As a consequence we
obtain the following.

Proposition 4. Letd ≥ 2, C ⊂ Rd a smooth convex body andF a family of pack-
ing sets inRd satisfying (ii) of Definition 1. Then there exists ann4 ∈ N, depending on
C andF , such thatX ∈ F with |X| ≥ n4 does not attainλ(C, |X|), if all elements
ofX ∩ int convX are in a free position.

Proof. Let ̺ > 0 as in (ii) of Definition 1. We choosen4 by Proposition 1 (ii),
applied toε = ̺ andr = 1. AssumeX ∈ F with |X| ≥ n4 attainsλ(C, |X|) and
all elements ofX ∩ int convX are in a free position. We show that every element
x ∈ X ∩ bd convX can be moved to a free position intoint convX. This gives the
desired contradiction, because after moving (in an arbitrary order) allX ∩ bd convX
to free positions intoint convX, we obtain a packing setX ′ with |X ′| = |X| and
X ′ ⊂ int convX.
It is possible to move a givenx ∈ X ∩bd convX to a free positionx′ = x+ δv for a
(sufficiently small)δ > 0, if v ∈ Sd−1 is contained in the non-empty polyhedral cone

Cx =
{
v ∈ Rd : 〈v,y − x〉 ≤ 0 for all y ∈ NX(x)

}
.

If v ∈ Cx can be chosen, so thatx′ ∈ int convX, the assertion follows. Otherwise,
becauseCx andconvX are convex, there exists a hyperplane throughx, with normal
w ∈ Sd−1, which separatesconvX andx + Cx. That is, we may assume that

w ∈ pos {y − x : y ∈ NX(x)}

and−w is an outer normal ofconvX atx.
Then for someδ > 0, there exists a pointz = x + δw ∈ bd convNX(x), which is a
convex combination of somey1, . . . ,yk ∈ NX(x). That is, there existαi ≥ 0 with∑k
i=1 αi = 1 andz =

∑k
i=1 αiyi . Therefore

δ = 〈z − x,w〉 =
k∑

i=1

αi〈yi − x,w〉 < ̺,

because〈yi − x,w〉 < ̺ due to|X| ≥ n4 andyi ∈ bd convX. This contradicts the
assumption onF with respect to̺ though.

Finish. The proof of Theorem 2 reduces to the application of Propositions 1, 2,
3 and 4. LetF be an lc-family of packing sets inRd, with a ̺ > 0 as in (ii) of
Definition 1. We chooseR ≥ 1/̺ andn2 andn4 according to Propositions 2 and
4. By Proposition 1 (ii), we choosen1 such that packing setsX attainingλ(C, |X|)
with |X| ≥ n1 satisfy the following: For eachx ∈ X, there exists at ∈ Rd with
|x− t| = R+ ̺

2 andt +RBd ⊂ convX.
We choosen0 ≥ max{n1, n2, n4} and assume thatX ∈ F with |X| ≥ n0 attains
λ(C, |X|). By Proposition 2 we can modify the packing setX to obtain a new packing
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setX ′ with a contact free region(tX + RBd) ⊂ int convX, and with the same
pointsX ′ ∩ bd convX ′ = X ∩ bd convX on the boundary of the center polytope
convX ′ = convX.
The following gives a possible order, in which we may subsequently move non-free
elementsx ∈ X ∩ int convX to free positions: By the choice ofn0 we can guarantee
that for eachx ∈ X ∩ int convX, there exists at with |x − t| ≤ R + ̺

2 andt +
RBd ⊂ convX. Let tx be thet at minimal distance totX . Then among the non-free
x ∈ int convX, the one with minimal distance|tx − tX | satisfies the assumptions
of Proposition 3, because a non-free elementy ∈ X ∩ (tx + Bd) would satisfy
|ty − tX | < |tx − tX | due toconv{tx, tX}+Bd ⊂ convX.
Thus by Proposition 3 we can subsequently move the non-free elements withinX ∩
int convX to free positions. By this we obtain a contradiction to Proposition 4, which
proves the theorem.

The lattice packing case. We end this section with the proof of Theorem
1. We may apply Theorem 2 after showing that the family of solutions to the lattice
restricted container problem is of limited complexity. Thespace of lattices can be
turned into a topological space (see [GL87]). The convergence of a sequence{Λn}
of lattices to a latticeΛ in particular involves that sets of lattice points within radiusr
around a lattice point tend to translates ofΛ∩rBd for growingn. As a consequence, a
convergent sequence of packing lattices, as well as subsetsof them, form an lc-family.
Solutions to the lattice restricted container problem tendfor growingn towards subsets
of translates ofdensest packing lattices(see [Zon99]). These lattices are the solutions
of the lattice (sphere) packing problem. Up to isometries, there exist only finitely
many of these lattices in each dimension (see [Zon99]). Thusthe assertion follows,
since a finite union of lc-families is an lc-family.

4 Extensions

Let us briefly mention some possible extensions of Theorem 2.These have been
treated in [Sch02] for the2-dimensional case and could be directions for further re-
search.

Packings of other convex bodies.Instead of sphere packings, we may consider pack-
ingsX + K for other convex bodiesK. If the difference bodyDK = K − K
is strictly convex, then the proofs can be applied after somemodifications: In-
stead of measuring distances with the norm| · | given byBd, we use the norm
|x|DK = min{λ > 0 : λx ∈ DK} given byDK. The strict convexity ofDK
is then used for the key fact, that elementsx of a packing setX can be moved to a
free position, whenever they are not contained inint convNX(x) (seeII in Section
3). Note though that the sets in (6) and depending definitionshave to be adapted for
general convex bodies.

Packings in other containers.The restriction to smooth convex containers simplifies
the proof, but we strongly believe that Theorem 2 is valid forother containers as
well, e.g. certain polytopes. On the other hand there might exist containers for which
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Theorem 2 is not true. In particular in dimension3 it seems very likely that Theorem
2 is not true for polytopal containersC with all their facets lying in planes containing
hexagonal sublattices of thefcc lattice (see Section 5). That is, for these polytopal
containersC we conjecture the existence of infinitely manyn, for which subsets of
the fcc latticeattainλ(C, n). An example for at least “local optimality” of sphere
packings (with respect to differential perturbations) in suitable sized, but arbitrarily
large tetrahedra was given by Dauenhauer and Zassenhaus [DZ87]. A proof of “global
optimality” seems extremely difficult though, as it would provide a new proof of the
sphere packing problem (“Kepler conjecture”, see Section 5).

Other finite packing problems.Similar “phenomena” occur for other packing prob-
lems. For example, if we consider finite packing setsX with minimum diameter or
surface area ofconvX, or maximum parametric density with large parameter (cf.
[FCG91], [BHW94], [Bör04], [BP05]). This is due to the fact that the shapes of solu-
tions tend to certain convex bodies, e.g. a sphere.

5 Kepler’s assertion

Kepler’s statement, quoted in the introduction, was later referred to as the origin of the
famous sphere packing problem known as theKepler conjecture(cf. e.g. [Hal02] p.5,
[Hsi01] p.4). In contrast to the original statement, this problem asks for the maximum
sphere packing density (see (10) below) of an infinite arrangement of spheres, where
the “container” is the whole Euclidean space. As a part of Hilbert’s famous problems
[Hil01], it attracted many researchers in the past. Its proof by Hales with contributions
of Ferguson (see [Hal02], [Hal05], [Hal06]), although widely accepted, had been a
matter of discussion (cf. [Lag02], [Szp03], [FL06]).

Following Kepler [Kep11], thecubic or hexagonal
close packingsin R3 can be described via two dimen-
sional layers of spheres, in which every sphere center
belongs to a planar square grid, say with minimum
distance1. These layers are stacked (in a unique way)
such that each sphere in a layer touches exactly four
spheres of the layer above and four of the layer below.
The packing attained in this way is the well knownface centered cubic (fcc) lattice
packing. We can build up the fcc lattice by planar hexagonal layers aswell, but then
there are two choices for each new layer to be placed, and onlyone of them yields an
fcc lattice packing. All of them, including the uncountablymany non-lattice packings,
are referred to ashexagonal close packings (hc-packings). Note that the family of hc-
packings is of limited complexity, because up to isometriesthey can be built from a
fixed hexagonal layer.
Let

n(C) = max{|X| : C ⊃ X + 1
2B

d is a packing}.

Then in our terminology Kepler asserts that, inR3, n(C) is attained by hc-packings.
His assertion, if true, would imply an “answer” to the spherepacking problem (Kepler
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conjecture), namely that the density of the densest infinitesphere packing

δd = lim sup
λ→∞

n(λC) · vol(1
2B

d)

vol(λC)
(10)

is attained by hc-packings ford = 3; henceδ3 = π/
√

18. Note that this definition of
density is independent of the chosen convex containerC (see [Hla49] or [GL87]).
As a consequence of Theorem 2, Kepler’s assertion turns out to be false though, even if
we think of arbitrarily large containers. Consider for example the containersλ(C, n)C
for n ≥ n0.

Corollary 1. Let d ≥ 2, C ⊂ Rd a smooth convex body andF an lc-family of
packing sets inRd. Then there exist arbitrarily largeλ such thatn(λC) is not attained
by packing sets inF .

We may as well think of arbitrarily small spheres packed intoa fixed containerC. For
r > 0, we callX + rBd a sphere packing if distinct elementsx andx′ of X have
distance|x − x′| ≥ 2r. Specializing toR3, the following corollary of Theorem 2
refers directly to Kepler’s assertion.

Corollary 2. LetC ⊂ R3 a smooth convex body. Then there exist arbitrarily small
r > 0, such that

max{|X| : C ⊃ X + rBd is a packing}
is not attained by fcc or hexagonal close packing sets.
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Abstract. Let G be a complex semisimple Lie group and τ a com-
plex antilinear involution that commutes with a Cartan involution.
If H denotes the connected subgroup of τ -fixed points in G, and K
is maximally compact, each H-orbit in G/K can be equipped with a
Poisson structure as described by Evens and Lu. We consider sym-
plectic leaves of certain such H-orbits with a natural Hamiltonian
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1. Introduction

In 1982, Atiyah [1] and independently Guillemin and Sternberg [4] discovered
a surprising connection between results in Lie theory and symplectic geometry.
They proved a general symplectic convexity theorem of which Kostant’s linear
convexity theorem (for complex semisimple Lie groups) is a corollary. In this
context, the orbits relevant for Kostant’s theorem carry the natural symplectic
structure of coadjoint orbits. The symplectic convexity theorem states that the
image under the moment map of a compact connected symplectic manifold with
Hamiltonian torus action is a convex polytope. Subsequently, Duistermaat [2]
extended the symplectic convexity theorem in a way that it could be used to
prove Kostant’s linear theorem for real semisimple Lie groups as well.
Lu and Ratiu [10] found a way to put Kostant’s nonlinear theorem into a
symplectic framework. For a complex semisimple Lie group G with Iwasawa
decomposition G = NAK, they regard the relevant K-orbits as symplectic
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leaves of the Poisson Lie group AN , carrying the Lu-Weinstein Poisson struc-
ture. Kostant’s nonlinear theorem for both complex and certain real groups
then follows from the AGS-theorem or Duistermaat’s theorem.
In this paper, we want to give a symplectic interpretation of van den Ban’s
convexity theorem for a complex semisimple symmetric space (g, τ), which is a
generalization of Kostant’s nonlinear theorem for complex groups. The theorem
describes the image of the projection of a coset of Gτ onto a−, the (−1)-
eigenspace of τ . The image is characterized as the sum of a convex polytope
and a convex polyhedral cone. For the precise statement of van den Ban’s result
we refer to Section 2. The main difference in view of our symplectic approach
is that van den Ban’s theorem is concerned with orbits of a certain subgroup
H ⊂ G that are in general neither symplectic nor compact. Since G is complex
we can use a method due to Evens and Lu [3] to equip H-orbits in G/K with
a certain Poisson structure. An H-orbit foliates into symplectic leaves, and on
each leaf some torus acts in a Hamiltonian way. The corresponding moment
map Φ turns out to be proper, and therefore the symplectic convexity theorem
of Hilgert-Neeb-Plank [6] can be applied, which describes the image under Φ in
terms of local moment cones. An analysis of those local moment cones shows
that the image of Φ is the sum of a compact convex polytope and a convex
polyhedral cone, just as in van den Ban’s theorem.
The case of van den Ban’s theorem for a real semisimple symmetric space is
dealt with in a separate paper [12]. It follows the symplectic approach of Lu
and Ratiu towards Kostant’s nonlinear convexity theorem. The main tool is a
generalized version of Duistermaat’s theorem for non-compact manifolds.
Acknowledgments. We are grateful to the referee for the careful reading of the
manuscript and many useful comments and suggestions.

2. Van den Ban’s theorem

The purpose of this section is to fix notation and to recall the statement of van
den Ban’s theorem.
Let G be a real connected semisimple Lie group with finite center, equipped
with an involution τ , i.e. τ is a smooth group homomorphism such that τ2 = id.
Let g be the Lie algebra of G. We write H for an open subgroup of Gτ , the
τ -fixed points in G. Let K be a τ -stable maximal compact subgroup of G.
The corresponding Cartan involution θ on g commutes with τ and induces
the Cartan decomposition g = k + p. If h and q denote the (+1)- and (−1)-
eigenspace of g with respect to τ one obtains

g = (k ∩ h) + (p ∩ h) + (k ∩ q) + (p ∩ q).

We fix a maximal abelian subalgebra a−τ of p ∩ q. (In [14] this subalgebra is
denoted by apq.) In addition, we choose aτ ⊆ p ∩ h such that a := aτ + a−τ

is maximal abelian in p. Let ∆(g, a−τ ) and ∆(g, a) denote the sets of roots
for the root space decomposition of g with respect to a−τ and a, respectively.
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Next, we choose a system of positive roots ∆+(g, a) and define

∆+(g, a−τ ) = {α|a−τ : α ∈ ∆+(g, a), α|a−τ 6= 0}.
This leads to an Iwasawa decomposition

g = n + a + k = n1 + n2 + a + k,

where

n =
∑

α∈∆+(g,a)

gα,

n1 =
∑

α∈∆+(g,a),α|
a−τ 6=0

gα =
∑

β∈∆+(g,a−τ )

gβ ,

n2 =
∑

α∈∆+(g,a),α|
a−τ =0

gα.

Here gα = {X ∈ g : [H,X] = α(H)X ∀H ∈ a} for α ∈ ∆(g, a), and similarly
gβ is defined for β ∈ ∆(g, a−τ ).
Let N and A denote the analytic subgroups of G with Lie algebras n and a,
respectively. The Iwasawa decomposition G = NAK on the group level has
the middle projection µ : G→ A. We write pra−τ : a→ a−τ for the projection
along aτ .
For β ∈ ∆+(g, a−τ ) define Hβ ∈ a−τ such that

Hβ ⊥ kerβ, β(Hβ) = 1,

where ⊥ means orthogonality with respect to the Killing form κ.
Note that the involution θ ◦ τ leaves each root space

gβ =
∑

α∈∆(g,a),α|
a−τ =β

gα

stable. Each gβ = (gβ)+ ⊕ (gβ)− decomposes into (+1)- and (−1)-eigenspace
with respect to θ ◦ τ .
For

∆− := {β ∈ ∆(g, a−τ ) : (gβ)− 6= 0},
let ∆+

− = ∆− ∩∆+(g, a−τ ). Define the closed cone

Γ(∆+
−) =

∑

β∈∆+
−

R+Hβ .

Write WK∩H for the Weyl group

WK∩H = NK∩H(a−τ )/ZK∩H(a−τ ).

The convex hull of a Weyl group orbit through X ∈ a−τ will be denoted by
conv(WK∩H .X).

Remark 2.1. Consider the Lie algebra gθτ of θτ -fixed points in g. It is re-
ductive and its semisimple part g′ = [gθτ , gθτ ] admits a Cartan decomposition
g′ = k′+p′ with k′ ⊂ k, p′ ⊂ p. Due to our choice, a−τ is a maximal abelian sub-
algebra of p′. The set of roots ∆(g′, a−τ ) consists exactly of those reduced roots
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β ∈ ∆(g, a−τ ) for which (gβ)+ 6= 0. Moreover, the Weyl group W ′ associated
to g′ coincides with WK∩H .

We can now state the central theorem.

theorem 2.2. (Van den Ban [14])
Let G be a real connected semisimple Lie group with finite center, equipped with
an involution τ , and H a connected open subgroup of Gτ . For X ∈ a−τ , write
a = expX ∈ A−τ . Then

(pra−τ ◦ log ◦µ)(Ha) = conv(WK∩H .X)− Γ(∆+
−).

Remark 2.3.

• The statement of the theorem above differs from the original in [14]
by a minus sign in front of the conal part Γ(∆+

−). This is due to
the fact that we consider the set Ha and an Iwasawa decomposition
G = NAK, whereas in [14] the set aH ⊂ G = KAN is considered.
Indeed, if we denote the two middle projections by µ : NAK → A and
µ′ : KAN → A, then Γ(∆+

−) = log ◦µ′(H) = − log ◦µ(H).
• Van den Ban proved his theorem under the weaker condition that H

is an essentially connected open subgroup of Gτ (by reducing it to the
connected case).

• If τ = θ one obtains Kostant’s (nonlinear) convexity theorem. Note
that in this case the group H and the orbit Ha are compact.

3. Poisson structure

Let G be a connected and simply connected semisimple complex Lie group with
Lie algebra g. Cartan involutions on both group and Lie algebra level will be
denoted by θ. In addition, let τ be a complex antilinear involution (on G and
g) which commutes with θ.
The Lie algebra g decomposes into (+1)- and (−1)-eigenspaces with respect to
both involutions θ and τ .

g = k + p = h + q,

where k and h denote the (+1)-eigenspaces with respect to θ and τ , respectively,
and p and q denote the (−1)-eigenspaces.
The maximal compact subgroup K of G with Lie algebra k is τ -stable. Let H
denote the connected subgroup of G consisting of τ -fixed points. We will be
interested in certain H-orbits in the symmetric space G/K. Each such orbit
can be equipped with a Poisson structure as introduced by Evens and Lu. We
briefly describe their method which can be found in [3, Section 2.2]. For details
on Poisson Lie groups see e.g. [11].
Let (U, πU ) be a connected Poisson Lie group with tangent Lie bialgebra (u, u∗)
and double Lie algebra d = u ⊲⊳ u∗. The pairing

〈v1 + λ1, v2 + λ2〉 := λ1(v2) + λ2(v1) ∀ v1, v2 ∈ u, λ1, λ2 ∈ u∗,

defines a non-degenerate symmetric bilinear form and turns (d, u, u∗) into a
Manin triple. We will identify d∗ with d via 〈, 〉.

Documenta Mathematica 11 (2006) 407–424



Symplectic Approach to Van Den Ban’s Theorem 411

Consider the following bivector R ∈ ∧2d:

R(v1 + λ1, v2 + λ2) = λ2(v1)− λ1(v2) ∀ v1, v2 ∈ u, λ1, λ2 ∈ u∗.

In terms of a basis {v1, . . . , vn} for u and a dual basis {λ1, . . . , λn} for u∗ the
bivector is represented by R =

∑n
i=1 λi ∧ vi.

Assume that D is a connected Lie group with Lie algebra d, and assume that
U is a connected subgroup of D with Lie algebra u. Then D acts on the
Grassmannian Gr(n, d) of n-dimensional subspaces of d via the adjoint action
of D on d and therefore defines a Lie algebra antihomomorphism

η : d→ X (Gr(n, d)),

into the vector fields on Gr(n, d). Using the symbol η also for its multilinear
extension we can define a bivector field Π on Gr(n, d) by

Π =
1

2
η(R).

Note that Π in general does not define a Poisson structure on the entire Gr(n, d).
However, it does so on the subvariety L(d) of Lagrangian subspaces (with re-
spect to 〈, 〉 ) on d, and on each D-orbit D.l ⊂ L(d).
The bivector R also gives rise to a Poisson structure π− on D that makes
(D,π−) a Poisson Lie group:

(1) π−(d) =
1

2
(rdR− ldR) ∀d ∈ D.

Here rd and ld denote the differentials of right and left translations by d. Note
that the restriction of π− to the subgroup U ⊂ D coincides with the original
Poisson structure πU on U , i.e. (U, πU ) is a Poisson subgroup of (D,π−).
For l ∈ L(d) the D-orbit through l is not only a Poisson manifold with respect
to Π but a homogeneous Poisson space under the action of (D,π−). Moreover,
the U -orbit U.l is a homogeneous (U, πU )-space, since the Poisson tensor Π at
l turns out to be tangent to U.l. In fact, the tangent space at l ∈ D.l can be
identified with d/n(l), where n(l) is the normalizer subalgebra of l. In the case
when n(l) = l, we identify the cotangent space with l itself, and for X,Y ∈ l

one obtains:

(2) Π(l)(X,Y ) = 〈pruX,Y 〉, i.e. Π(l)♯(X) = pruX,

where pru : d→ u denotes the projection along u∗.
Let U∗ be the connected subgroup of D with Lie algebra u∗. What has been
said about the Poisson Lie group U is also true for its dual group U∗, i.e.
(U∗, πU∗) is a Poisson Lie subgroup of (D,−π−) and the orbit U∗.l is a homo-
geneous (U∗, πU∗)-space. It follows in particular that (U.l) ∩ (U∗.l) contains
the symplectic leaf through l.

We now want to apply this construction to our complex semisimple Lie algebra
g. In the above notation we will have d = g, and the pairing 〈, 〉 will be
given by the imaginary part, ℑκ, of the Killing form κ on g. Note that k ∈
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L(d). Throughout the paper, we will identify the G-orbit through k with the
symmetric space G/K. In particular, orbits in G.k are identified with those in
G/K. Then we set u = h, and it remains to define u∗.
First we choose an appropriate Iwasawa decomposition of g. Recall the τ -
stable Cartan decomposition g = k + p. We fix a maximal abelian subalgebra
a−τ in p ∩ q. Then we can find an abelian subalgebra aτ in p ∩ h such that
a = a−τ + aτ is maximal abelian in p. We choose a positive root system,
∆+(g, a) by the lexicographic ordering with respect to an ordering of a basis
of a, which was constructed from a basis of a−τ followed by a basis of aτ . This
yields an Iwasawa decomposition g = n + a + k which is compatible with the
involution τ in the following sense.

Lemma 3.1. For our choice of Iwasawa decomposition g = n + a + k, we have

h ∩ n = {0}.
Besides, the centralizer of a−τ in g is a Cartan subalgebra of g.

Proof. Consider the root space decomposition of g with respect to a,

g = (a + ia) +
∑

α∈∆(g,a)

gα.

It is well-known [7, Proposition 6.70] that there are no real roots for a maximally
compact Cartan subalgebra (ia−τ + aτ ) of h, and therefore there are no α ∈
∆(g, a) such that α|a−τ = 0. By [5, Chapter VI, Lemma 3.3], this implies that
τ(gα) ⊂⊕α∈∆+(g,a) g−α for all α ∈ ∆+(g, a), and the claim h∩n = {0} follows

immediately.
Since each α ∈ ∆(g, a) does not vanish outside a hyperplane of a−τ , it follows
that a−τ contains regular elements and its centralizer in g is a Cartan subal-
gebra of g.

�

Consider the Cartan subalgebra c = z(a−τ ) of g. Lemma 3.1 together with the
properties of κ implies that g = h ⊕ (c−τ ⊕ n) is a Lagrangian splitting with
respect to the bilinear form ℑκ. In other words, (g, h, (c−τ + n)) is a Manin
triple.
We can now define the desired Poisson manifolds using the method of Evens
and Lu outlined above. We set

d = g, u = h, u∗ = c−τ + n, 〈, 〉 = ℑκ.
Let C, C−τ , A and N denote the analytic subgroups of G with Lie algebras
c, c−τ , a and n, respectively. The group H now has the structure of a Poisson
Lie group. Its dual group is H∗ = C−τN . Fix a ∈ A−τ and consider the base
point a.K ∈ G/K. The H-orbit Pa = Ha.K ∈ G/K is a Poisson homogeneous
manifold with respect to the action by (H,πH). Also, the dual group orbit
H∗a.K is Poisson homogeneous with respect to πH∗ . For the symplectic leaf
in Pa through a, denoted by Ma, we have Ma ⊆ Ha.K ∩H∗a.K.
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Lemma 3.2. The Poisson manifold Pa is regular and equals the union of Aτ -
translates of Ma, i.e. each p ∈ Pa can be written p = a′m with unique a′ ∈
Aτ ,m ∈Ma. Moreover, Ma = Ha.K ∩H∗a.K.

Proof. Consider the map M : Aτ ×Ma → Pa.
First we will show that M is injective. The Poisson tensor πH = π− as defined
in (1) vanishes at each element c ∈ Cτ , since Ad(c) leaves both h and h∗ =
c−τ + n stable. Therefore a′ ∈ Aτ acts on Pa by Poisson diffeomorphisms
and maps the symplectic leaf Ma onto the symplectic leaf Ma′a. But Ma1a 6=
Ma2a for a1 6= a2 ∈ Aτ , following from the fact that Ma1a lies in H∗a1a.K =
C−τNa1a.K and the uniqueness of the Iwasawa decomposition.
At each point p ∈ Pa one can explicitly calculate the codimension of the sym-
plectic leaf through p in Pa, for instance by means of an infinitesimal version of
Corollary 7.3 in [9] and Theorem 2.21 in [3]. It follows that the codimension of
the leaf through the point p = ha.K in the orbit Pa equals the dimension of the
intersection of Ad(a)k and Ad(h−1)h∗, which is easily seen to be independent
from the point p ∈ Pa and equal to the dimension of aτ . Here we used the fact
that the dimension of Ad(ha)k∩h∗ cannot exceed the dimension of aτ , since the
Killing form is negative definite on Ad(ha)k and a maximal negative definite
subspace of h∗ is iaτ . This shows that Pa is a regular Poisson manifold, and
that AτMa is a full dimensional subset of Pa. Since Aτ acts freely on Pa and
Pa is a regular Poisson manifold, it can be represented as the union of such
open subsets. The connectedness of Pa then implies that Pa = AτMa.
Since Aτ is connected and the union of Aτ -translates of Ha.K ∩H∗a.K equals
Ha.K and thus is also connected, it is easy to see that Ha.K ∩ H∗a.K is
connected as well. Besides, from the transversality we see that

dim(Ha.K ∩H∗a.K) = dim(Ha.K) + dim(H∗a.K)− dim(G/K).

Note that the first part of the proof implies that Aτa.K ∩ H∗a.K = {a.K}.
Therefore, the codimension of Ha.K ∩ H∗a.K in Ha.K is at least dim(aτ ).
But since Ma has codimension equal to dim(aτ ), and Ma ⊆ Ha.K ∩ H∗a.K,
the last inclusion is actually an equality.

�

Consider the torus T = exp(ia−τ ) ⊂ H. It acts on Ma in a symplectic manner,
since πH vanishes at each t ∈ T . Moreover, the next lemma shows that this
action is Hamiltonian with an associated moment map that is closely related
to the middle projection µ : G = NAK → A of the Iwasawa decomposition.

Lemma 3.3. The action of T = exp(ia−τ ) on Ma is Hamiltonian with a
moment map Φ = pra−τ ◦ log ◦µ. Here, pra−τ : a→ a−τ denotes the projection
along aτ , and t∗ is identified with a−τ via ℑκ.
Moreover, the moment map Φ is proper.

Proof. (1) Φ = pra−τ ◦ log ◦µ is a moment map.
Let b : G = NAK −→ B = NA be the B-projection in the Iwasawa

decomposition. We write pra : g = n + a + k → a for the middle
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projection on the Lie algebra level. Let Z ∈ t = ia−τ , h ∈ H and
X ∈ h. We denote by ΦZ the function obtained by evaluating Φ at Z,
by X̃ha the tangent vector of the vector field generated by X at the
point ha.K ∈Ma (for brevity we will write h.K simply as h henceforth,
without fear of confusion) and by DΦb(ha) the derivative of Φ at the
point b(ha). We have:

dΦZ(ha).X̃ha =
d

ds

∣∣∣
s=0

ΦZ(exp(sX)ha) = 〈 d
ds

∣∣∣
s=0

Φ(exp(sX)ha), Z〉

= 〈 d
ds

∣∣∣
s=0

Φ(b(ha) exp(sAd(b(ha)−1)X)), Z〉

= 〈DΦb(ha)Ad(b(ha)−1)X,Z〉
= 〈pra−τ ◦ praAd(b(ha)−1)X,Z〉 = 〈Ad(b(ha)−1)X,Z〉
= 〈X,Ad(b(ha))Z〉

The second last step follows from the fact that t and k + aτ + n are
orthogonal with respect to 〈, 〉.

Note that Ad(b(ha))Z ∈ Z + n. With (2) this implies

Π(ha)♯(dΦZ(ha)) = prhAd(b(ha))Z = Z.

(2) Φ is proper.
This follows from Lemma 3.3 in [14], which states the properness of

the map

Fa : (H ∩ L0)\H → a−τ , Fa(x) = Φ(xa).

In our case L0 = exp(ia)Aτ (since zg(a−τ ) = c by the argument in the
proof of Lemma 3.1).
Properness of the map Fa : TAτ\H → a−τ implies properness of the
induced maps Fa : Aτ\H → a−τ and Fa : Aτ\H/(H ∩ aKa−1)→ a−τ .
Since Aτ\H/(H ∩ aKa−1) ∼= Ma by Lemma 3.2, and since Fa becomes
Φ under this identification, the claim follows.

�

Remark 3.4. In case τ = θ the Lu-Evens Poisson structure on Pa = Ka.K
coincides with the Lu-Weinstein symplectic structure, and Lemma 3.3 becomes
Theorem 4.13 in [10].

4. Symplectic convexity

Throughout this section we assume G to be complex and the involution τ to
be complex antilinear. In this case we will interpret van den Ban’s theorem
in the symplectic framework developed in Section 3. More precisely, it can be
viewed as a corollary of a symplectic convexity theorem for Hamiltonian torus
actions.
Van den Ban’s theorem describes the image of the group orbit Ha under the
map pra−τ ◦ log ◦µ. Recall from Section 3 the symplectic manifold Ma ⊆
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Ha.K ⊆ G/K on which the torus T = exp(ia−τ ) acts in a Hamiltonian fashion
(Lemma 3.3). The associated moment map is Φ = pra−τ ◦ log ◦µ. From Lemma
3.2 and from the Aτ -invariance of pra−τ ◦ log ◦µ it follows that

(pra−τ ◦ log ◦µ)(Ha) = Φ(Ma).

This means that van den Ban’s theorem can be viewed as a description of the
image of a symplectic manifold under an appropriate moment map.
The description of the image of the moment map is the content of a series of
symplectic convexity theorems. Probably best known are the original theorems
of Atiyah and Guillemin-Sternberg [1, 4]. The result needed here is a gener-
alization of the AGS-theorems to a non-compact setting. Several versions can
be found in the literature, e.g. [8, 13]. We will state the theorem as given
in [6]. Recall that a subset C of a finite dimensional vector space V is called
locally polyhedral iff for each x ∈ C there is a neighborhood Ux ⊆ V such that
C∩Ux = (x+Γx)∩Ux for some cone Γx. A cone Γ is called proper if it contains
no lines, otherwise Γ is called improper.

theorem 4.1. [6, Theorem 4.1(i)] Consider a Hamiltonian torus action of T
on the connected symplectic manifold M . Suppose the associated moment map
Φ : M → t∗ is proper, i.e. Φ is a closed mapping and Φ−1(Z) is compact for
every Z ∈ t∗. Then Φ(M) is a closed, locally polyhedral, convex set.

Remark 4.2. Theorem 4.1 in [6] contains more detailed information, in par-
ticular a description of the cones that span Φ(M) locally (part (v)). More
precisely, for each m ∈ M there is a neighborhood UΦ(m) ⊆ t∗ of Φ(m) such

that Φ(M)∩UΦ(m) = (Φ(m)+ΓΦ(m))∩UΦ(m), where ΓΦ(m) = t⊥m+Cm. Here,
tm denotes the Lie algebra of the stabilizer Tm of m, and Cm ⊆ t∗m denotes
the cone which is spanned by the weights of the linearized action of Tm. The
(nontrivial) fact that the cone ΓΦ(m) = t⊥m +Cm is actually independent of the
choice of a preimage point of Φ(m) is also shown in [6].

Coming back to the symplectic manifold Ma, Lemma 3.3 shows that the mo-
ment map Φ = pra−τ ◦ log ◦µ on Ma is proper. Theorem 4.1 can therefore be
applied and yields

Φ(Ma) is a closed, locally polyhedral, convex set.

We will now give a more detailed description of Φ(Ma). It turns out that the
T -action on Ma has (finitely many) fixed points. At each fixed point we can
calculate the cones that locally span Φ(Ma). From this description it will follow
that the entire set Φ(Ma) lies in a proper cone and can therefore be described
entirely by the local data at the fixed points.
We begin by determining the T -fixed points.

Proposition 4.3. The T -fixed points in Ma are exactly those elements of the
form w(a).K ∈ G/K with w ∈ WK∩H = NK∩H(a−τ )/ZK∩H(a−τ ).

Proof. Recall that for a ∈ A−τ we view the symplectic manifold Ma as a sub-
manifold of the H-orbit in G/K through the base point a.K ∈ G/K. Clearly,
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each element w(a).K ∈ G/K with w ∈ WK∩H is T -fixed. To see that w(a).K
lies in Ma, note that w(a).K ∈ H∗a.K since w(a) ∈ A−τ . On the other hand,
there exists k ∈ K∩H such that w(a) = kak−1, which implies w(a).K ∈ Ha.K.
Therefore, w(a).K ∈ Ha.K ∩H∗a.K = Ma by Lemma 3.2.
Conversely, assume that cpa.K ∈ Ma with c ∈ Kτ , p ∈ exp(pτ ) is T -fixed.
Since Ma lies in the orbit of the dual group H∗ = NC−τ there are elements
n ∈ N, b ∈ A−τ , k ∈ K such that cpa = nbk. Since nb.K ∈ G/K is a T -fixed
point,

tnt−1b ∈ nbK ∀ t ∈ T.
The Lie subalgebra n is T -invariant, so by the uniqueness of the Iwasawa de-
composition tnt−1 = n for all t ∈ T . But since α|a−τ 6= 0 for all α ∈ ∆(g, a)
this can happen only for n = e. This implies cpa = bk.
Symmetrizing the last equation yields

(3) cpaθ(cpa)−1 = cpa2pc−1 = b2.

Applying θ ◦ τ to (3) gives

(4) cp−1a2p−1c−1 = b2.

We multiply (3) by (4) from the right and from the left and obtain

cpa4p−1c−1 = b4 = cp−1a4pc−1.

But then pa4p−1 = p−1a4p, i.e. p2 and a4 commute (and are self-adjoint).
Therefore, p and a2 also commute, and we can combine equations (3) and (4)
to

cp2a2c−1 = b2 = cp−2a2c−1.

This shows p2 = p−2 or p = e. But then (4) implies cac−1 = b. Since both a
and b lie in A−τ and since c ∈ Kτ = K ∩H, there is some element w ∈ WK∩H
such that w(a) = b (Recall from Remark 2.1 that WK∩H is the Weyl group of
the reductive Lie algebra gθτ = (k ∩ h) + (p ∩ q) of θτ -fixed points of g).
The T -fixed point cpa.K ∈ Ma can therefore be written as cpa.K = b.K =
w(a).K for some w ∈ WK∩H . �

Recall our choice of base point a = exp(X) and the identification t∗ ∼= a−τ . We
now describe the image of the moment map Φ(Ma) ∈ a−τ in the neighborhood
of a fixed point image Φ(w(a).K) = w(X). From Theorem 4.1 (and Remark
4.2) we know that locally Φ(Ma) looks like w(X)+Γw(X) for some cone Γw(X) ∈
a−τ . The next Lemma describes Γw(X) in terms of the vectors Hβ for (reduced)

roots β ∈ ∆(g, a−τ ) defined in Section 2.

Lemma 4.4. Let a = expX with X ∈ a−τ and w ∈ WK∩H . The local cone
ΓΦ(w(a).K) = Γw(X) ⊆ a−τ is the cone spanned by the union of the following
two sets.

{−β(w(X))Hβ : β ∈ ∆+(g, a−τ ), (gβ)+ 6= 0}
and {−Hβ : β ∈ ∆+(g, a−τ ), (gβ)− 6= 0}
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Proof. We are adapting the argument from [6, page 155] to our setting. To
determine the local cone Γw(X) it is enough to consider the linearized action of T
on the tangent space Vw(a).K := Tw(a).KMa. Darboux’s theorem guarantees the
existence of a T -equivariant symplectomorphism of a neighborhood of w(a).K ∈
Ma onto a neighborhood of 0 ∈ Vw(a).K . This leads to a local normal form for
the moment map.

ΦZ(Y ) =
1

2
Ωw(a).K(Z.Y, Y ) ∀ Y ∈ Vw(a).K , Z ∈ t.

Here, Ωw(a).K denotes the symplectic form on the symplectic vector space
Vw(a).K . Since T acts symplectically on Vw(a).K the notation Z.Y makes sense
as the linear action of an element Z ∈ sp(Vw(a).K) on a vector Y ∈ Vw(a).K .
In appropriate symplectic coordinates q1, p1, . . . , qn, pn we have Ωw(a).K =∑
i dqi ∧ dpi and the matrix representation for the linear map defined by Z ∈ t

is

Z.(q1, p1, . . . , qn, pn) =




0 α1(Z)
−α(Z) 0

. . .

0 αn(Z)
−αn(Z) 0







q1
p1

...
qn
pn



.

The moment map takes the form

Φ(q1, p1, . . . , qn, pn) = Φ(w(a).K) +

n∑

i=1

αi
1

2
(q2i + p2

i ).

In terms of the symplectic coordinates on Vw(a).K chosen above, the matrix
representations for the symplectic form Ωw(a).K and the corresponding Poisson
tensor Πw(a).K just differ by a factor of (−1). The moment map can then be
expressed in terms of the Poisson tensor.

ΦZ(ϕ) = −Πw(a).K(Z.ϕ, ϕ) ∀ ϕ ∈ V ∗
w(a).K , Z ∈ t.

(Recall the bijection Π♯ : V ∗
w(a).K → Vw(a).K . Then Z.ϕ = (Π♯)−1(Z.(Π♯(ϕ))),

where the dot on the right hand side has been explained above.)
The local cone Γw(X) is just Φ(V ∗

w(a).K), i.e. it consists exactly of the weights

(5) { Z 7→ −Πw(a).K(Z.ϕ, ϕ) : ϕ ∈ V ∗
w(a).K }

Recall that we identify the cotangent space T ∗
w(a).K(G/K) with Ad(w(a)).k.

The formula for the Poisson tensor at w(a).K says that for Y1, Y2 ∈ k,

Πw(a).K(Ad(w(a))Y1, Ad(w(a))Y2) = 〈prhAd(w(a))Y1, Ad(w(a))Y2〉.

Note that T ∗
w(a).K(G/K) = T ∗

w(a).KMa ⊕ (Tw(a).KMa)⊥. Both T ∗
w(a).KMa and

(Tw(a).KMa)⊥ are stable under the action of T . Moreover, Tw(a).KMa =

Π♯
w(a).K(T ∗

w(a).K(G/K)) by the definition of the symplectic leaf Ma. Hence,
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for ϕ ∈ T ∗
w(a).KMa, ψ ∈ (Taw

Maw
)⊥ and Z ∈ t, one obtains

Πw(a).K(Z.(ϕ+ ψ), (ϕ+ ψ)) = (ϕ+ ψ).Π♯
w(a).K(Z.(ϕ+ ψ))

= ϕ.Π♯
w(a).K(Z(ϕ+ ψ))

= Πw(a).K(Zϕ+ Zψ,ϕ)

= −(Zϕ+ Zψ).Π♯
w(a).K(ϕ)

= Πw(a).K(Zϕ,ϕ)

In view of (5) and (2) (from Section 3) it follows that the local cone is given by

(6) Γw(X) = { Z 7→ −〈prh[Z,Ad(w(a))Y ], Ad(w(a))Y 〉 : Y ∈ k }.
In order to determine the weights in (6) we will construct a basis {v1, . . . , vr}
for k with two main features.

(1) For each vi we determine explicitly an element Hi ∈ a−τ such that

〈prh[Z,Ad(w(a))vi], Ad(w(a))vi〉 = ℑκ(Hi, Z) ∀ Z ∈ t.

(2) 〈prh[Z,Ad(w(a))vi], Ad(w(a))vj〉 = 0 for all Z ∈ t whenever i 6= j.

Once such a basis is found each Y ∈ k can be written as a linear combination
Y =

∑N
i=1 civi. Then, for Z ∈ t,

〈prh[Z,Ad(w(a))Y ], Ad(w(a))Y 〉

= 〈prh[Z,Ad(w(a))

N∑

i=1

civi], Ad(w(a))

N∑

i=1

civi〉

=

N∑

i=1

c2i 〈prh[Z,Ad(w(a))vi], Ad(w(a))vi〉

=

N∑

i=1

c2iℑκ(Hi, Z)

In view of (6) it then follows that Γw(X) is the cone spanned by the vectors Hi.

Recall the weight space decomposition of g with respect to a−τ .

g = a−τ ⊕ aτ ⊕ ia−τ ⊕ iaτ ⊕
∑

β∈∆(g,a−τ )

gβ

Each gβ is stable under the involution θτ , hence decomposes into (+1)- and
(−1)-eigenspaces gβ = (gβ)+ ⊕ (gβ)−. We first consider certain bases for gβ =
(gβ)+ and gβ = (gβ)−. Each gβ is stable under the adjoint action of aτ . For
the corresponding weight space decomposition we write

gβ =
∑

η∈∆(gβ ,aτ )

gβ,η
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Note that gβ,η is equal to the eigenspace gα ⊂ n for α ∈ ∆(g, a) if and only if
α|a−τ = β and α|aτ = η. Also, if gβ,η = gα, then β ∈ ∆+(g, a−τ ) if and only if
α ∈ ∆+(g, a). The involutions τ and θ transform the eigenspaces as follows

τ(gβ,η) = g−β,η, θ(gβ,η) = g−β,−η, θτ(gβ,η) = gβ,−η

For each eigenspace gβ,η fix a vector Xβ,η that spans gβ,η as a complex vector
space. If η 6= 0 we define

Aβ,η = Xβ,η + θτXβ,η, Bβ,η = Xβ,η − θτXβ,η.

We obtain the following (complex) basis for the reduced root space gβ

{Xβ,0} ∪ {Aβ,η : η 6= 0} ∪ {Bβ,η : η 6= 0}

The important feature of this basis is that it consists of eigenvectors of the
complex linear involution θτ . Indeed, θτAβ,η = Aβ,η, θτBβ,η = −Bβ,η and
Xβ,0 might be a (+1)- or a (−1)-eigenvector of θτ . Therefore, a basis for (gβ)+
is given by the Aβ,η’s and possibly Xβ,0. A basis for (gβ)− is given by the
Bβ,η’s and possibly Xβ,0 (iff it is not contained in gβ = (gβ)+).
The desired (real) basis for k now consists of a basis for zk(a) = zk(a

−τ ) =
ia−τ + iaτ and the following set.

⋃

β∈∆+(g,a−τ )

(
{Xβ,0 + θXβ,0} ∪ {iXβ,0 + θiXβ,0}

∪ {Aβ,η + θAβ,η : η 6= 0} ∪ {iAβ,η + θiAβ,η : η 6= 0}
∪ {Bβ,η + θBβ,η : η 6= 0} ∪ {iBβ,η + θiBβ,η : η 6= 0}

)
(7)

We can now calculate the weights appearing in (6) for each basis element. We
fix Z = iH ∈ t = ia−τ . Recall that a = expX, therefore w(a) = exp(w(X)).
First we make two short auxiliary calculations. For a vector Cβ ∈ gβ which is
also a θτ -fixed point,

[Z,Ad(w(a)).(Cβ + θCβ)] = iβ(H)w(a)βCβ − iβ(H)w(a)−βθCβ

= β(H)w(a)−β(iCβ + θiCβ) + β(H)(w(a)β − w(a)−β)iCβ

In the second line, the first summand lies in h the second in c−τ + n. For
Dβ ∈ gβ such that θτDβ = −Dβ , the h⊕ (c−τ + n) decomposition is different:

[Z,Ad(w(a)).(Dβ + θDβ)] = iβ(H)w(a)βDβ − iβ(H)w(a)−βθDβ

= β(H)w(a)−β(−iDβ + θiDβ) + β(H)(w(a)β + w(a)−β)iDβ
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Now, for Aβ,η, which lies in gβ and satisfies θτAβ,η = Aβ,η, we compute

(8) 〈prh[Z,Ad(w(a)).(Aβ,η + θAβ,η)], Ad(w(a)).(Aβ,η + θAβ,η)〉
= 〈β(H)w(a)−β(iAβ,η + θiAβ,η), w(a)βAβ,η + w(a)−βθAβ,η〉
= β(H)w(a)−2β〈iAβ,η, θAβ,η〉+ β(H)〈θiAβ,η, Aβ,η〉
= (w(a)−2β − 1) ℜκ(Aβ,η, θAβ,η) β(H)

= (w(a)−2β − 1) ℜκ(Aβ,η, θAβ,η) κ(Hβ ,H)

= (w(a)−2β − 1) ℜκ(Aβ,η, θAβ,η) ℑκ(Hβ , Z)

We can replace Aβ,η with iAβ,η in the above calculation and obtain

〈prh[Z,Ad(w(a)).(iAβ,η + θiAβ,η)], Ad(w(a)).(iAβ,η + θiAβ,η)〉
= (w(a)−2β − 1) ℜκ(iAβ,η, θiAβ,η) β(H)

= (w(a)−2β − 1) ℜκ(Aβ,η, θAβ,η) ℑκ(Hβ , Z)

Carrying out the calculation for Bβ,η (which are (−1)-eigenvectors of θτ) we
obtain a result of a different nature

(9) 〈prh[Z,Ad(w(a)).(Bβ,η + θBβ,η)], Ad(w(a)).(Bβ,η + θBβ,η)〉
= −(w(a)−2β + 1) ℜκ(Bβ,η, θBβ,η) ℑκ(Hβ , Z),

and

〈prh[Z,Ad(w(a)).(iBβ,η + θiBβ,η)], Ad(w(a)).(iBβ,η + θiBβ,η)〉
= −(w(a)−2β + 1) ℜκ(Bβ,η, θBβ,η) ℑκ(Hβ , Z).

If Xβ,0 is fixed by θτ , then

(10) 〈prh[Z,Ad(w(a)).(Xβ,0 + θXβ,0)], Ad(w(a)).(Xβ,0 + θXβ,0)〉
= (w(a)−2β − 1) ℜκ(Xβ,0, θXβ,0) ℑκ(Hβ , Z),

and

〈prh[Z,Ad(w(a)).(iXβ,0 + θiXβ,0)], Ad(w(a)).(iXβ,0 + θiXβ,0)〉
= (w(a)−2β − 1) ℜκ(Xβ,0, θXβ,0) ℑκ(Hβ , Z).

The case that θτXβ,0 = −Xβ,0 leads to

(11) 〈prh[Z,Ad(w(a)).(Xβ,0 + θXβ,0)], Ad(w(a)).(Xβ,0 + θXβ,0)〉
= −(w(a)−2β + 1) ℜκ(Xβ,0, θXβ,0) ℑκ(Hβ , Z),

and

〈prh[Z,Ad(w(a)).(iXβ,0 + θiXβ,0)], Ad(w(a)).(iXβ,0 + θiXβ,0)〉
= −(w(a)−2β) + 1) ℜκ(Xβ,0, θXβ,0) ℑκ(Hβ , Z).

Documenta Mathematica 11 (2006) 407–424



Symplectic Approach to Van Den Ban’s Theorem 421

Moreover, for Y ∈ zk(a) one easily checks that

〈prh[Z,Ad(w(a)).Y ], Ad(w(a)).Y 〉 = 0.

Note that the coefficient of ℑκ(Hβ , Z) in (9) and (11) is always positive. There-
fore, basis vectors of k which are (−1)-eigenvectors of θτ contribute the set
{−Hβ : β ∈ ∆+(g, a−τ ), (gβ)− 6= 0} to Γw(X).
On the other hand, the coefficient of ℑκ(Hβ , Z) in (8) and (10) depends on the
value of β(w(X)). If β(w(X)) = 0 this coefficient is zero. If β(w(X)) > 0 the
coefficient is positive, and if β(w(X)) < 0 it is negative. Therefore, basis vectors
of k which are (+1)-eigenvectors of θτ contribute the set {−β(w(X))Hβ : β ∈
∆+(g, a−τ ), (gβ)+ 6= 0} to Γw(X).
The fact that 〈prh[Z,Ad(w(a))vi], Ad(w(a))vj〉 = 0 holds for all Z ∈ t whenever
i 6= j follows from general properties of the Killing form.
The conclusion is that the cone Γw(X) = Φ(V ∗

w(a).K) is generated by the weights

{−β(w(X))Hβ : β ∈ ∆+(g, a−τ ), (gβ)+ 6= 0}
∪ {−Hβ : β ∈ ∆+(g, a−τ ), (gβ)− 6= 0},

as asserted.
�

Corollary 4.5. The image of the moment map Φ(Ma) is contained in the
set w′(X) + Γ+, where w′ ∈ WK∩H is such that β(w′(X)) ≥ 0 for all β ∈
∆+(g, a−τ ) and Γ+ is the proper cone Γ+ = cone(−Hβ : β ∈ ∆+(g, a−τ )).

Proof. ¿From Theorem 4.1 and Remark 4.2 we know that there is a neighbor-
hood Uw′(X) ⊆ a−τ of w′(X) such that Φ(Ma) ∩ Uw′(X) = (w′(X) + Γw′(X)) ∩
Uw′(X). Lemma 4.4 implies that Γw′(X) ⊆ Γ+. Suppose there exists some
Z ∈ Φ(Ma) such that Z 6∈ w′(X) + Γ+. Since Φ(Ma) is convex the line seg-

ment w′(X)Z lies entirely in Φ(Ma). Fix some Y ∈ w′(X)Z ∩ Uw′(X) with
Y 6= w′(X). Then Y ∈ Φ(Ma) ∩Uw′(X) ⊆ w′(X) + Γw′(X) ⊆ w′(X) + Γ+. But
this implies Z ∈ w′(X)+Γ+ since Γ+ is a cone and Y 6= w′(X), a contradiction.
Therefore, Φ(Ma) ⊆ w′(X) + Γ+. The cone Γ+ is proper since it is spanned by
vectors −Hβ associated to positive roots β. �

The special property of Φ(Ma) stated in the corollary allows us to describe
Φ(Ma) entirely in terms of the local cones Γw(X) associated to the fixed points,
as the following proposition shows.

Proposition 4.6. Let C be a closed, convex, locally polyhedral set (in some
finite dimensional vector space V ). Denote by Γc the local cone at c ∈ C ( i.e.
there is a neighborhood Uc ⊂ V of c such that C ∩Uc = (c+ Γc)∩Uc). Suppose
C ⊂ x+ Γ for some x ∈ V and some proper cone Γ ⊂ V . Then

C =
⋂

Γc proper

(c+ Γc),

i.e. C is completely determined by the local cones that are proper.
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Proof. For any c ∈ C we write dc for the dimension of the maximal subspace
contained in Γc. (In particular, dc = 0 means that Γc is proper.) First we will
show that if dc > 0, then c ∈ c′ + Γc′ for some c′ with dc′ < dc.
If dc > 0, then Γc contains a line, say L. Since C lies in a proper cone, (c+L)∩C
is semi-bounded. We pick an endpoint c′ of (c+L)∩C. Since C is closed c′ ∈ C,
and clearly c ∈ c′ + Γc′ . Convexity of C implies that if a line L′ is contained in
Γc′ then L′ ⊂ Γc̃ for each inner point c̃ of (c+ L) ∩ C. In particular, dc′ ≤ dc.
On the other hand, Γc′ does not contain the line L ⊂ Γc. Therefore, dc′ < dc.
Now, the assumptions on C imply

C =
⋂

c∈C
(c+ Γc)

If we set n = dim(V) the above arguments lead to

C =
⋂

dc≤n
(c+ Γc) =

⋂

dc≤n−1

(c+ Γc) = · · · =
⋂

dc=0

(c+ Γc)

�

We are now ready to give the desired description of Φ(Ma) which is the content
of van den Ban’s theorem.

theorem 4.7. The set Φ(Ma) = (pra−τ ◦ log ◦µ)(Ha) is the sum of a compact
convex set and a closed (proper) cone Γ. More precisely, for a = expX,

Φ(Ma) = conv(WK∩H .X) + Γ,

with
Γ = cone{−Hβ : β ∈ ∆+(g, a−τ ), (gβ)− 6= 0}

Proof. The image Φ(Ma) is closed, convex and locally polyhedral. Moreover,
by Corollary 4.5, it is contained in w′(X) + Γ+ for some proper cone Γ+.
Proposition 4.6 implies that Φ(Ma) is determined by the local cones that are
proper. According to Remark 4.2, a local cone ΓΦ(m) can be proper only if
tm = t, i.e. if m is a T -fixed point. The T -fixed points have been characterized
in Proposition 4.3, so Proposition 4.6 yields

Φ(Ma) =
⋂

w∈WK∩H

(w(X) + Γw(X)),

with Γw(X) as in Lemma 4.4.
The sum conv(WK∩H .X) + Γ is closed, convex and locally polyhedral as well.
As a sum of a compact set and the proper cone Γ it is contained in x+Γ for some
x ∈ a−τ , hence Proposition 4.6 is applicable. First we want to see at which
points in conv(WK∩H .X)+Γ the local cone is proper. Let c ∈ conv(WK∩H .X)
and γ ∈ Γ. Clearly, the local cone at c+ γ is improper unless γ = 0. But then
c+γ = c is contained in a convex set with extremal points {w(X) : w ∈ WK∩H}.
The local cone can be proper only if c + γ is one of those extremal points.
Proposition 4.6 now gives

conv(WK∩H .X) + Γ =
⋂

w∈WK∩H

(w(X) + Γ′
w(X)).
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Here, Γ′
w(X) denotes the local cone of conv(WK∩H .X) + Γ at w(X). To finish

the proof it is sufficient to show that Γ′
w(X) = Γw(X).

Clearly, Γ′
w(X) = Γ′′

w(X) + Γ, where Γ = cone{−Hβ : β ∈ ∆+(g, a−τ ), (gβ)− 6=
0} as before and Γ′′

w(X) = cone{w′(X) − w(X) : w′ ∈ WK∩H}. From Lemma

4.4 we know that Γw(X) contains the cone Γ. Moreover, the set Φ(Ma) is
convex and contains all points w(X), and therefore contains conv(WK∩H .X).
This implies that its local cone at w(X), i.e. Γw(X), contains Γ′′

w(X) as well.

Therefore, Γw(X) ⊇ Γ′′
w(X) + Γ = Γ′

w(X).

Each root β ∈ ∆(g, a−τ ) defines the isomorphism

sβ : a−τ → a−τ , Z 7→ Z − 2
βZ

〈β, β〉Hβ .

In view of Remark 2.1 the Weyl groupW ′ =WK∩H consists exactly of those sβ
for which (gβ)+ 6= 0. In particular, sβ(w(X)) ∈ WK∩H for all β ∈ ∆+(g, a−τ )

for which (gβ)+ 6= 0. The identity sβ(w(X)) − w(X) = −2β(w(X))
〈β,β〉 Hβ implies

cone{−β(w(X))Hβ : β ∈ ∆+(g, a−τ ), (gβ)+ 6= 0} ⊆ Γ′′
X . With Lemma 4.4 we

obtain Γw(X) ⊆ Γ′′
w(X) + Γ = Γ′

w(X). �
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volume of Slk R/Slk Z. We compute the volumes of certain unbounded
regions in Euclidean space by counting lattice points and then appeal
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that the Tamagawa number is 1.
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Introduction

In this paper we show how to use elementary methods to prove that the vol-
ume of Slk R/Slk Z is ζ(2)ζ(3) · · · ζ(k)/k; see Corollary 3.16. Using a version of
reduction theory presented in this paper, we can compute the volumes of cer-
tain unbounded regions in Euclidean space by counting lattice points and then
appeal to the machinery of Dirichlet series to get estimates of the growth rate
of the number of lattice points appearing in the region as the lattice spacing
decreases.

In section 4 we present a proof of the closely related result that the Tama-
gawa number of Slk,Q is 1 that is somewhat simpler and more arithmetic than
Weil’s in [37]. His proof proceeds by induction on k and appeals to the Pois-
son summation formula, whereas the proof here brings to the forefront local
versions (5) of the formula, one for each prime p, which help to illuminate the
appearance of values of zeta functions in formulas for volumes.

The volume computation above is known; see, for example, [26] (with impor-
tant corrections in [30]), formula (24) in [29], and Theorem 10.4 in [22]. The
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methods used in the computation of the volume of Slk R/Slk Z in the book
[31, Lecture XV] have a different flavor from ours and do not involve counting
lattice points. One positive point about the proof there is that it proceeds
by induction on k, making clear how the factor ζ(k) enters in at k-th stage.
See also [36, §14.12, formula (2)]. The proof offered there seems to have a
gap which consists of assuming that a certain region (denoted by T there) is
bounded, thereby allowing the application of [36, §14.4, Theorem 3]1. The re-
gion in Example 2.7 below shows that filling the gap is not easy, hence if we
want to compute the volume by counting lattice points, something like our use
of reduction theory in Section 3 is needed.

An almost equivalent result was proved by Minkowski in formula (85.) of
[16], where he computed the volume of SO(k)\ Slk R/Slk Z. The relationship
between the two volume computations is made clear in the proof of [36, §14.12,
Theorem 2].

Some of the techniques we use were known to Siegel, who used similar meth-
ods in his investigation of representability of integers by quadratic forms in
[24, 25, 27]. See especially [25, Hilfssatz 6, p. 242], which is analogous to our
Lemma 2.5 and the reduction theory of Section 3, where we show how to com-
pute the volume of certain unbounded domains in Euclidean space by counting
lattice points; see also the computations in [24, §9], which have the same gen-
eral flavor as ours. See also [28, p. 581] where Siegel omits the laborious study,
using reduction theory, of points at infinity; it is those details that concern us
here.

We thank Harold Diamond for useful information about Dirichlet series and
Ulf Rehmann for useful suggestions, advice related to Tamagawa numbers, and
clarifications of Siegel’s work. We also thank the National Science Foundation
for support provided by NSF grants DMS 01-00587 and 05-00762 (Gillet), and
99-70085 and 03-11378 (Grayson).

1 Counting with zeta functions

As in [8] we define the zeta function of a group G by summing over the sub-
groups H in G of finite index.

ζ(G, s) =
∑

H⊆G
[G : H]−s (1)

Evidently, ζ(Z, s) = ζ(s) and the series converges for s > 1. For good groups G
the number of subgroups of index at most T grows slowly enough as a function
of T that ζ(G, s) will converge for s sufficiently large.

Let’s pick k ≥ 0 and compute ζ(Zk, s). Any subgroup H of Zk of finite
index is isomorphic to Zk; choosing such an isomorphism amounts to finding
a matrix A : Zk → Zk whose determinant is nonzero and whose image is H.

1called Dirichlet’s Principle in [3, §5.1, Theorem 3]
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Any two matrices A, A′ with the same image H are related by an equation
A′ = AS where S ∈ Glk Z.

Thus the terms in the sum defining ζ(Zk, s) correspond to the orbits for the
action of Glk Z via column operations on the set of k× k-matrices with integer
entries and nonzero determinant. A unique representative from each orbit is
provided by the matrices A that are in Hermite normal form (see [4, p. 66] or
[19, II.6]), i.e., those matrices A with Aij = 0 for i > j, Aii > 0 for all i, and
0 ≤ Aij < Aii for i < j.

Let HNF be the set of integer k×k matrices in Hermite normal form. Given
positive integers n1, . . . , nk, consider the set of matrices A in HNF with Aii = ni
for all i. The number of matrices in it is nk−1

1 nk−2
2 · · ·n1

k−1n
0
k. Using that, we

compute formally as follows.

ζ(Zk, s) =
∑

H⊆Zk

[Zk : H]−s

=
∑

A∈HNF

(detA)−s

=
∑

n1>0,...,nk>0

(nk−1
1 nk−2

2 · · ·n1
k−1n

0
k)(n1 · · ·nk)−s

=
∑

n1>0,...,nk>0

nk−1−s
1 nk−2−s

2 · · ·n1−s
k−1n

−s
k

=
∑

n1>0

nk−1−s
1

∑

n2>0

nk−2−s
2 · · ·

∑

nk−1>0

n1−s
k−1

∑

nk>0

n−sk

= ζ(s− k + 1)ζ(s− k + 2) · · · ζ(s− 1)ζ(s)

(2)

The result ζ(s − k + 1)ζ(s − k + 2) · · · ζ(s − 1)ζ(s) is a product of Dirichlet
series with positive coefficients that converge for s > k, and thus ζ(Zk, s) also
converges for s > k. This computation is old, and appears in various guises.
See, for example: proof 2 of Proposition 1.1 in [8]; Lemma 10 in [15]; formula
(1.1) in [32]; page 64 in [23]; formula (5) and the lines following it in [26],
where the counting argument is attributed to Eisenstein, and its generalization
to number rings is attributed to Hurwitz; and pages 37–38 in [37].

Lemma 1.1. #{H ⊆ Zk | [Zk : H] ≤ T} ∼ ζ(2)ζ(3) · · · ζ(k)T k/k for k ≥ 1.

The right hand side is interpreted as T when k = 1. The notation f(T ) ∼
g(T ) means that limT→∞ f(T )/g(T ) = 1.

Proof. We give two proofs.
The first one is more elementary, and was told to us by Harold Diamond.

Writing ζ(s−k+1) =
∑
nk−1n−s and letting B(T ) =

∑
n≤T n

k−1 be the corre-

sponding coefficient summatory function we see that B(T ) = T k/k+O(T k−1).
If k ≥ 3 we may apply Theorem A.2 to show that the coefficient summatory
function for the Dirichlet series ζ(s)ζ(s−k+1) behaves as ζ(k)T k/k+O(T k−1).
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Applying it several more times shows that the coefficient summatory function
for the Dirichlet series ζ(s)ζ(s − 1) · · · ζ(s − k + 3)ζ(s − k + 1) behaves as
ζ(k)ζ(k − 1) · · · ζ(3)T k/k + O(T k−1). Applying it one more time we see that
the coefficient summatory function for ζ(Zk, s) = ζ(s) · · · ζ(s− k + 1) behaves
as ζ(k)ζ(k − 1) · · · ζ(2)T k/k +O(T k−1 log T ), which in turn implies the result.

The second proof is less elementary, since it uses a Tauberian theorem. From
(2) we know that the rightmost (simple) pole of ζ(Zk, s) occurs at s = k, that
the residue there is the product ζ(2)ζ(3) · · · ζ(k), and that Theorem A.4 can
be applied to get the result.

Now we point out a weaker version of lemma 1.1 whose proof is even more
elementary.

Lemma 1.2. If T > 0 then #{H ⊆ Zk | [Zk : H] ≤ T} ≤ T k.
Proof. As above, we obtain the following formula.

#{H ⊆ Zk | [Zk : H] ≤ T} = #{A ∈ HNF | detA ≤ T}
=

∑

n1>0,...,nk>0

n1·····nk≤T

nk−1
1 nk−2

2 · · ·n1
k−1n

0
k

We use it to prove the desired inequality by induction on k, the case k = 0
being clear.

#{H ⊆ Zk | [Zk : H] ≤ T} =

⌊T⌋∑

n1=1

nk−1
1

∑

n2>0,...,nk>0

n2···nk≤T/n1

nk−2
2 · · ·n1

k−1n
0
k

=

⌊T⌋∑

n1=1

nk−1
1 ·#{H ⊆ Zk−1 | [Zk−1 : H] ≤ T/n1}

≤
⌊T⌋∑

n1=1

nk−1
1 (T/n1)k−1 [by induction on k]

=

⌊T⌋∑

n1=1

T k−1 = ⌊T ⌋ · T k−1 ≤ T k

2 Volumes

Recall that a bounded subset U of Euclidean space Rk is said to have Jordan
content if its volume can be approximated arbitrarily well by unions of boxes
contained in it or by unions of boxes containing it, or in other words, that the
the characteristic function χU is Riemann integrable. Equivalently, the bound-
ary ∂U of U has (Lebesgue) measure zero (see [21, Theorem 105.2, Lemma
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105.2, and the discussion above it]). If U is a possibly unbounded subset of
Rk whose boundary has measure zero, its intersection with any ball will have
Jordan content.

Now let’s consider the Lie group G = Slk R as a subspace of the Euclidean
space MkR of k × k matrices. Siegel defines a Haar measure on G as follows
(see page 341 of [29]). Let E be a subset of G. Letting I = [0, 1] be the unit
interval and considering a number T > 0, we may consider the following cones.

I · E = {t ·B | B ∈ E, 0 ≤ t ≤ 1}
T · I · E = {t ·B | B ∈ E, 0 ≤ t ≤ T}
R+ · E = {t ·B | B ∈ E, 0 ≤ t}

Observe that if B ∈ T · I · E, then 0 ≤ detB ≤ T k.

Definition 2.1. We say that E is measurable if I · E is, and in that case we
define µ∞(E) = vol(I · E) ∈ [0,∞].

The Jacobian of left or right multiplication by a matrix γ onMkR is (detB)k,
so for γ ∈ Slk R volume is preserved. Thus the measure is invariant under G,
by multiplication on either side. According to Siegel, the introduction of such
invariant measures on Lie groups goes back to Hurwitz (see [10, p. 546] or [9]).

Let F ⊆ G be the fundamental domain for the action of Γ = Slk Z on
the right of G presented in [15, section 7]; it’s an elementary construction of
a fundamental domain which is a Borel set without resorting to Minkowski’s
reduction theory. In each orbit they choose the element which is closest to the
identity matrix in the standard Euclidean norm on MkR ∼= Rk

2

, and ties are
broken by ordering MkR lexicographically. This set F is the union of an open
subset of G (consisting of those matrices with no ties) and a countable number
of sets of measure zero.

The intersection of T · I · F with a ball has Jordan content. To establish
that, it is enough to show that the measure of the boundary ∂F in G is zero.
Suppose g ∈ ∂F . Then it is a limit of points gi 6∈ F , each of which has another
point gihi in its orbit which is at least as close to 1. Here hi is in Slk(Z) and is
not 1. The sequence i 7→ gihi is bounded, and thus so is the sequence hi; since
Slk(Z) is discrete, that implies that hi takes only a finite number of values. So
we may assume hi = h is independent of i, and is not 1. By continuity, gh is
at least as close to 1 as g is. Now g is also a limit of points fi in F , each of
which has fih not closer to 1 than fi is. Hence gh is not closer to 1 than g is,
by continuity. Combining, we see that gh and g are equidistant from 1. The
locus of points g in Slk(R) such that gh and g are equidistant from 1 is given by
the vanishing of a nonzero quadratic polynomial, hence has measure zero. The
boundary ∂F is contained in a countable number of such sets, because Slk(Z)
is countable, hence has measure zero, too.

We remark that HNF contains a unique representative for each orbit of the
action of Slk Z on {A ∈ MkZ | detA > 0}. The same is true for R+ · F .
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Restricting our attention to matrices B with detB ≤ T k we see that #(T · I ·
F ∩MkZ) = #{A ∈ HNF | detA ≤ T k}.

Warning: HNF is not contained in R+ · F . To convince yourself of this,

consider the matrix A =

(
5 −8
3 5

)
of determinant 49. Column operations

with integer coefficients reduce it to B =

(
49 18
0 1

)
, but (1/7)A is closer to

the identity matrix than (1/7)B is, so B ∈ HNF , but B 6∈ R+ · F .
We want to approximate the volume of T ·I ·F by counting the lattice points

it contains, i.e., by using the number #(T · I · F ∩MkZ), at least when T is
large. Alternatively, we may use #(I · F ∩ r ·MkZ), when r is small.

Definition 2.2. Suppose U is a subset of Rn. Let

Nr(U) = rn ·#{U ∩ r · Zn}

and let
µZ(U) = lim

r→0
Nr(U),

if the limit exists, possibly equal to +∞. An equation involving µZ(U) is to be
regarded as true only if the limit exists.

Lemma 2.3. µZ(I · F ) = ζ(2)ζ(3) · · · ζ(k)/k

Proof. We replace r above with 1/T :

µZ(I · F ) = lim
T→∞

T−k2 ·#(T · I · F ∩MkZ)

= lim
T→∞

T−k2 ·#{A ∈ HNF | detA ≤ T k}

= lim
T→∞

T−k2 ·#{H ⊆ Zk | [Zk : H] ≤ T k}

= ζ(2)ζ(3) · · · ζ(k)/k [using lemma 1.1]

Lemma 2.4. If U is a bounded subset of Rn with Jordan content, then µZ(U) =
volU .

Proof. Subdivide Rn into cubes of width r (and of volume rn) centered at the
points of rZn. The number #{U ∩ r · Zn} lies between the number of cubes
contained in U and the number of cubes meeting U , so rn · #{U ∩ r · Zn} is
captured between the total volume of the cubes contained in U and the total
volume of the cubes meeting U , hence approaches the same limit those two
quantities do, namely volU .

Lemma 2.5. Let BR be the ball of radius R > 0 centered at the origin, and let
U be a subset of Rn whose boundary has measure zero.

Documenta Mathematica 11 (2006) 425–447



Volumes of Symmetric Spaces via Lattice Points 431

1. For all R, the quantity µZ(U) exists if and only if µZ(U−BR) exists, and
in that case, µZ(U) = vol(U ∩BR) + µZ(U −BR).

2. If µZ(U) exists then µZ(U) = vol(U) + limR→∞ µZ(U −BR).

3. If vol(U) = +∞, then µZ(U) = +∞.

4. If limR→∞ lim supr→0Nr(U −BR) = 0, then µZ(U) = vol(U).

Proof. Writing U = (U ∩BR) ∪ (U −BR) we have

Nr(U) = Nr(U ∩BR) +Nr(U −BR).

For each R > 0, the set U ∩BR is a bounded set with Jordan content, and thus
lemma 2.4 applies to it. We deduce that

lim inf
r→0

Nr(U) = vol(U ∩BR) + lim inf
r→0

Nr(U −BR)

and
lim sup
r→0

Nr(U) = vol(U ∩BR) + lim sup
r→0

Nr(U −BR),

from which we can deduce (1), because vol(U ∩BR) <∞. We deduce (2) from
(1) by taking limits. Letting R→∞ in the equalities above we see that

lim inf
r→0

Nr(U) = vol(U) + lim
R→∞

lim inf
r→0

Nr(U −BR)

and
lim sup
r→0

Nr(U) = vol(U) + lim
R→∞

lim sup
r→0

Nr(U −BR),

in which some of the terms might be +∞. Now (3) follows from
lim infr→0Nr(U) ≥ vol(U), and (4) follows because if

lim
R→∞

lim sup
r→0

Nr(U −BR) = 0,

then
lim
R→∞

lim inf
r→0

Nr(U −BR) = 0

also.

Lemma 2.6. If U is a subset of Rn whose boundary has measure zero, and
µZ(U) = vol(U), then vol(T · U) ∼ #(T · U ∩ Zn) as T →∞.

Proof. The statement follows immediately from the definitions.

Care is required in trying to compute the volume of I ·F by counting lattice

points in it, for it is not a bounded set (even for k = 2, because

(
a 0
0 1/a

)
∈ F ).
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Example 2.7. It’s easy to construct an unbounded region where counting lat-
tice points does not determine the volume, by concentrating infinitely many
very thin spikes along rays of rational slope with small numerator and denom-
inator. Consider, for example, a bounded region B in R2 with Jordan content
and nonzero area v = volB, for which (by Lemma 2.4) µZB = volB. Start by
replacing B by its intersection B′ with the lines through the origin of rational
(or infinite) slope – this doesn’t change the value of µZ, because every lattice
point is contained in a line of rational slope, but now the boundary ∂B′ does
not have measure zero. To repair that, we enumerate the lines M1,M2, . . .
through the origin of rational slope, and for each i = 1, 2, 3, . . . we replace
Ri = B ∩Mi by a suitably scaled and rotated version Li of it contained in the
line Ni of slope i through the origin, with scaling factor chosen precisely so Li
intersects each r ·Z2 in the same number of points as does Ri, for every r > 0.
The scaling factor is the ratio of the lengths of the shortest lattice points in
the lines Mi and Ni. The union L =

⋃
Li has µZL = µZB = v 6= 0, but it and

its boundary have measure zero.

3 Reduction Theory

In this section we apply reduction theory to show that the volume of I · F can
be computed by counting lattice points.

We introduce a few basic notions about lattices. For a more leisurely intro-
duction see [7].

Definition 3.1. A lattice is a free abelian group L of finite rank equipped with
an inner product on the vector space L⊗ R.

We will regard Zk or one of its subgroups as a lattice by endowing it with
the standard inner product on Rk.

Definition 3.2. If L is a lattice, then a sublattice L′ ⊆ L is a subgroup with
the induced inner product. The quotient L/L′, if it’s torsion free, is made into
a lattice by equipping it with the inner product on the orthogonal complement
of L′.

There’s a way to handle lattices with torsion, but we won’t need them.

Definition 3.3. If L is a lattice, then covolL denotes the volume of a funda-
mental domain for L acting on L⊗ R.

The covolume can be computed as |det(θv1, · · · , θvk)|, where θ : L⊗R→ Rk

is an isometry, {v1, . . . , vk} is a basis of L, and (θv1, . . . , θvk) denotes the
matrix whose i-th column is θvi. We have the identity covol(L) = covol(L′) ·
covol(L/L′) when L/L′ is torsion free.

If L is a subgroup of Zk of finite index, then covolL = [Zk : L].

Definition 3.4. If L is a nonzero lattice, then minL denotes the smallest
length of a nonzero vector in L.
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If L is a lattice of rank 1, then minL = covolL.

Proposition 3.5. For any natural number k > 0, there is a constant c such
that for any S ≥ 1 and for any T > 0 the following inequality holds.

cS−kT k
2 ≥ #{L ⊆ Zk | [Zk : L] ≤ T k and minL ≤ T/S}.

Proof. For k = 1 we may take c = 2, so assume k ≥ 2. Letting N be the
number of these lattices L, we bound N by picking within each L a nonzero
vector v of minimal length, and counting the pairs (v, L) instead. For each v
occurring in such pair we write v in the form v = n1v1 where n1 ∈ N and v1 is
a primitive vector of Zk, and then we extend {v1} to a basis B = {v1, . . . , vk}
of Zk. We count the lattices L occurring in such pairs with v by putting a
basis C for L into Hermite normal form with respect to B, i.e., it will have
the form C = {n1v1, A12v1 +n2v2, . . . , A1kv1 + · · ·+Ak−1,kvk−1 +nkvk}, with
ni > 0 and 0 ≤ Aij < ni. Notice that n1 has been determined in the previous
step by the choice of v. The number of vectors v ∈ Zk satisfying ‖v‖ ≤ T/S is
bounded by a number of the form c(T/S)k; for c we may take a large enough
multiple of the volume of the unit ball. With notation as above, and counting
the bases for C in Hermite normal form as before, we see that

N ≤
∑

‖v‖≤T/S

∑

n2>0,...,nk>0

n1···nk≤T k

nk−1
1 nk−2

2 · · ·n1
k−1n

0
k

=
∑

‖v‖≤T/S
nk−1

1

∑

n2>0,...,nk>0

n2···nk≤T k/n1

nk−2
2 · · ·n1

k−1n
0
k

=
∑

‖v‖≤T/S
nk−1

1 ·#{H ⊆ Zk−1 | [Zk−1 : H] ≤ T k/n1}

≤
∑

‖v‖≤T/S
nk−1

1 (T k/n1)k−1 [by Lemma 1.2]

=
∑

‖v‖≤T/S
T k(k−1)

≤ c(T/S)kT k(k−1)

= cS−kT k
2

.

Corollary 3.6. The following equality holds.

0 = lim
S→∞

lim sup
T→∞

T−k2 ·#{L ⊆ Zk | [Zk : L] ≤ T k and minL ≤ T/S}

The following two lemmas are standard facts. Compare them, for example,
with [2, 1.4 and 1.5].

Documenta Mathematica 11 (2006) 425–447



434 Henri Gillet and Daniel R. Grayson

Lemma 3.7. Let L be a lattice and let v ∈ L be a primitive vector. Let L̄ =
L/Zv, let w̄ ∈ L̄ be any vector, and let w ∈ L be a vector of minimal length
among all those that project to w̄. Then ‖w‖2 ≤ ‖w̄‖2 + (1/4)‖v‖2.

Proof. The vectors w and w ± v project to w̄, so ‖w‖2 ≤ ‖w ± v‖2 = ‖w‖2 +
‖v‖2 ± 2〈w, v〉, and thus |〈w, v〉| ≤ (1/2)‖v‖2. We see then that

‖w̄‖2 = ‖w − 〈w, v〉‖v‖2 v‖
2

= ‖w‖2 − 〈w, v〉
2

‖v‖2

≥ ‖w‖2 − 1

4
‖v‖2.

Lemma 3.8. Let L be a lattice of rank 2 with a nonzero vector v ∈ L of minimal
length. Let L′ = Zv and L′′ = L/L′. Then covolL′′ ≥ (

√
3/2) covolL′.

Proof. Let w̄ ∈ L′′ be a nonzero vector of minimal length, and lift it to a
vector w ∈ L of minimal length among possible liftings. By lemma 3.7 ‖w‖2 ≤
‖w̄‖2+(1/4)‖v‖2. Combining that with ‖v‖2 ≤ ‖w‖2 we deduce that covolL′′ =
‖w̄‖ ≥ (

√
3/2)‖v‖ = (

√
3/2) covolL′.

Definition 3.9. If L is a lattice, then minbasisL denotes the smallest value
possible for (‖v1‖2 + · · ·+ ‖vk‖2)1/2, where {v1, . . . , vk} is a basis of L.

Proposition 3.10. Given k ∈ N and S ≥ 1, for all R ≫ 0, for all T > 0,
and for all lattices L of rank k with covolL ≤ T k, if minbasisL ≥ RT then
minL ≤ T/S.

Proof. We show instead the contrapositive: provided covolL ≤ T k, if minL >
T/S then minbasisL < RT . There is an obvious procedure for producing an
economical basis of a lattice L, namely: we let v1 be a nonzero vector in L
of minimal length; we let v2 be a vector in L of minimal length among those
projecting onto a nonzero vector in L/(Zv1) of minimal length; we let v3 be a
vector in L of minimal length among those projecting onto a vector in L/(Zv1)
of minimal length among those projecting onto a nonzero vector in L/(Zv1 +
Zv2) of minimal length; and so on. A vector of minimal length is primitive,
so one can show by induction that the quotient group L/(Zv1 + · · · + Zvi) is
torsion free; the case where i = k tells us that L = Zv1 + · · ·+ Zvk. Let Li =
Zv1+· · ·+Zvi, and let αi = covol(Li/Li−1), so that α1 = ‖v1‖ = minL > T/S.

Applying Lemma 3.8 to the rank 2 lattice Li/Li−2 shows that αi ≥ Aαi−1,
where A =

√
3/2, and repeated application of Lemma 3.7 shows that ‖vi‖2 ≤
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α2
i + (1/4)(α2

i−1 + · · ·+α2
1), so of course ‖vi‖2 ≤ (1/4)(α2

k + · · ·+α2
i+1) +α2

i +
(1/4)(α2

i−1 + · · ·+ α2
1). We deduce that

minbasisL ≤ (

k∑

i=1

‖vi‖2)1/2 ≤
(
k + 3

4

∑
α2
i

)1/2

. (3)

Going a bit further, we see that

T k ≥ covolL

= α1 · · ·αk
≥ A0+1+2+···+(i−2)αi−1

1 ·A0+1+2+···+(k−i)αk−i+1
i

> c1(T/S)i−1αk−i+1
i

where c1 is some constant depending on S which we may take to be independent
of i. Dividing through by T i−1 we get T k−i+1 > c2α

k−i+1
i , from which we

deduce that T > c3αi, where c2 and c3 are new constants (depending only
on S). Combining these latter inequalities for each i, we find that (((k +
3)/4)

∑
α2
i )

1/2 < RT , where R is a new constant (depending only on S);
combining that with (3) yields the result.

Corollary 3.11. The following equality holds.

0 = lim
R→∞

lim sup
T→∞

T−k2 ·#{L ⊆ Zk | [Zk : L] ≤ T k and minbasisL ≥ RT}

Proof. Combine (3.6) and (3.10).

If in the definition of our fundamental domain F we had taken the smallest
element of each orbit, rather than the one nearest to 1, we would have been
almost done now. The next lemma takes care of that discrepancy.

Definition 3.12. If L is a (discrete) lattice of rank k in Rk, then sizeL denotes
the value of (‖w1‖2 + · · ·+ ‖wk‖2)1/2, where {w1, . . . , wk} is the (unique) basis
of L satisfying (w1, . . . , wk) ∈ R+ · F .

Lemma 3.13. For any (discrete) lattice L ⊆ Rk of rank k the inequalities

minbasisL ≤ sizeL ≤ minbasisL+ 2
√
k(covolL)1/k

hold.

Proof. Let {v1, . . . , vk} be the basis envisaged in the definition of minbasisL,
let {w1, . . . , wk} be the basis of L envisaged the definition of sizeL, and let
U = (covolL)1/k = (det(v1, . . . , vk))1/k = (det(w1, . . . , wk))1/k. The following
chain of inequalities gives the result.

minbasisL = ‖(v1, . . . , vk)‖ ≤ sizeL

= ‖(w1, . . . , wk)‖ ≤ ‖(w1, . . . , wk)− U · 1k‖+ U
√
k

≤ ‖(v1, . . . , vk)− U · 1k‖+ U
√
k

≤ ‖(v1, . . . , vk)‖+ 2U
√
k = minbasisL+ 2U

√
k
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Corollary 3.14. The following equality holds.

0 = lim
Q→∞

lim sup
T→∞

T−k2 ·#{L ⊆ Zk | [Zk : L] ≤ T k and sizeL ≥ QT}

Proof. It follows from (3.13) that given R > 0, for all Q ≫ 0 (namely Q ≥
R+ 2

√
k) if covolL ≤ T k and sizeL ≥ QT then minbasisL ≥ RT . Now apply

(3.11).

Theorem 3.15. vol(I · F ) = µZ(I · F ).

Proof. Observe that #{L ⊆ Zk | covolL ≤ T k and sizeL ≥ QT} = #((T · I ·
F−BQT )∩MkZ) = #((I ·F−BQ)∩T−1MkZ), so replacing 1/T by r, Corollary
3.14 implies that limQ→∞ lim supr→0Nr(I · F − BQ) = 0, which allows us to
apply Lemma 2.5 (4).

The theorem allows us to compute the volume of F arithmetically, simulta-
neously showing it’s finite.

Corollary 3.16. µ∞(G/Γ) = ζ(2)ζ(3) · · · ζ(k)/k

Proof. Combine the theorem with lemma 2.3 as follows.

µ∞(G/Γ) = µ∞(F ) = vol(I · F ) = µZ(I · F ) = ζ(2)ζ(3) · · · ζ(k)/k

Remark 3.17. Theorem 10.4 in [22] states that the volume of G/Γ is
ζ(2)ζ(3) · · · ζ(k)

√
k. The difference arises from a different choice of Haar mea-

sure on G. Theirs assigns volume
√
k to slk(R)/ slk(Z), whereas ours assigns

volume 1/k to it, as we see in formula (14) below. The ambiguity is unavoid-
able, because there is no canonical choice of Haar measure. (The Tamagawa
number resolves that ambiguity.)

4 p-adic volumes

In this section we reformulate the computation of the volume of G/Γ to yield
a natural and informative computation of the Tamagawa number of Slk. We
are interested in the form of the proof, not its length, so we incorporate the
proofs of (3.16) and (2) rather than their statements. The standard source for
information about p-adic measures and Tamagawa measures is Chapter II of
[37], and the proof we simplify occurs there in sections 3.1 through 3.4. See
also [11] and [20].

We let µp denote the standard translation invariant measure on Qp normal-
ized so that µp(Zp) = 1. Let µp also denote the product measure on the ring
of k by k matrices, Mk(Qp). Observe that µp(Mk(Zp)) = 1.
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For x ∈ Qp, let |x|p denote the standard valuation normalized so that |p|p =
1/p

If A ∈ Mk(Qp) and U ⊆ Qk
p, then µp(A · U) = |detA|p · µp(U). (To prove

this, first diagonalize A using row and column operations, and then assume that
U is a cube.) It follows that if V ⊆Mk(Qp), then µp(A ·V ) = |detA|kp ·µp(V ).

Consider Glk(Zp) as an open subset of Mk(Zp). The following computation
occurs on page 31 of [37].

µp(Glk(Zp)) = #(Glk(Fp))/pk
2

= (pk − 1)(pk − p) · · · (pk − pk−1)/pk
2

= (1− p−k)(1− p−k+1) · · · (1− p−1)

(4)

Weil considers the open set Mk(Zp)∗ = {A ∈Mk(Zp) | detA 6= 0}.

Lemma 4.1. µp(Mk(Zp)∗) = 1

Proof. Let Z = Mk(Zp) \Mk(Zp)∗ be the set of singular matrices. If A ∈ Z,
then one of the columns of A is a linear combination of the others. (This
depends on Zp being a discrete valuation ring – take any linear dependency with
coefficients in Qp and multiply the coefficients by a suitable power of p to put
all of them in Zp, with at least one of them being invertible.) For each n ≥ 0 we
can get an upper bound for the number of equivalence classes of elements of Z
modulo pn by enumerating the possibly dependent columns, the possible vectors
in the other columns, and the possible coefficients in the linear combination:
µp(Z) ≤ limn→∞ k · (pnk)k−1 · (pn)k−1/(pn)k

2

= limn→∞ k · p−n = 0.

We call rank k submodules J of Zkp lattices. To each A ∈ Mk(Zp)∗ we

associate the lattice J = AZkp ⊆ Zkp. This sets up a bijection between the
lattices J and the orbits of Glk(Zp) acting on Mk(Zp)∗. The measure of the
orbit corresponding to J is µp(A · Glk(Zp)) = |detA|kp · µp(Glk(Zp)) = [Zkp :

J ]−k · µp(Glk(Zp)). Now we sum over the orbits.

1 = µp(Mk(Zp)∗)

=
∑

J

(
[Zkp : J ]−k · µp(Glk(Zp))

)

=
(∑

J

[Zkp : J ]−k
)
· µp(Glk(Zp))

(5)

An alternative way to prove (5) would be to use the local analogue of (2), which
holds and asserts that

∑
J [Zkp : J ]−s = (1 − pk−1−s)−1(1 − pk−2−s)−1 · · · (1 −

p−s)−1; we could substitute k for s and compare with the number in (4). The
approach via lemma 4.1 and (5) is preferable because Mk(Zp)∗ provides natural
glue that makes the computation seem more natural.
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The product
∏
p µp(Glk(Zp)) doesn’t converge because

∏
p(1− p−1) doesn’t

converge, so consider the following formula instead.

1 =
(

(1− p−1)
∑

J

[Zkp : J ]−k
)
·
(

(1− p−1)−1µp(Glk(Zp))
)

Now we can multiply these formulas together.

1 =
(∏

p

(1− p−1)
∑

J

[Zkp : J ]−k
)
·
∏

p

(
(1− p−1)−1µp(Glk(Zp))

)
(6)

We’ve parenthesized the formula above so it has one factor for each place of Q,
and now we connect each of them with a volume involving Slk at that place.

We use the Haar measure on Slk(Zp) normalized to have total volume

# Slk(Fp)/pdim Slk .

The normalization anticipates (13), which shows how a gauge form could be
used to construct the measure, or alternatively, it ensures that the exact se-
quence 1 → Slk(Zp) → Glk(Zp) → Z×

p → 1 of groups leads to the desired
assertion µp(Glk(Zp)) = µp(Z×

p ) · µp(Slk(Zp)) about multiplicativity of mea-
sures. We rewrite the factor of the right hand side of (6) corresponding to the
prime p as follows.

(1− p−1)−1µp(Glk(Zp)) = µp(Z×
p )−1 · µp(Glk(Zp))

= µp(Slk(Zp)).
(7)

To evaluate the left hand factor of the right hand side of (6), we insert the
complex variable s. Because the ring Z is a principal ideal domain, any finitely
generated sub-Z-module H ⊆ Zk is free. Hence a lattice H ⊆ Zk is determined
freely by its localizations Hp = H ⊗Z Zp ⊆ Zkp (where Hp = Zkp for all but
finitely many p), and its index is given by the formula

[Zk : H] =
∏

p

[Zkp : Hp], (8)
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in which only a finite number of terms are not equal to 1.

ress=kζ(Zk, s)

= ress=k
∑

H

[Zk : H]−s [by (1)]

= lim
s→k+

ζ(s− k + 1)−1 ·
∑

H

[Zk : H]−s

= lim
s→k+

(
ζ(s− k + 1)−1

( ∑

H⊆Zk

∏

p

[Zkp : Hp]
−s)
)

[by (8)]

= lim
s→k+

(
ζ(s− k + 1)−1

(∏

p

∑

J⊆Zk
p

[Zkp : J ]−s
))

[positive terms]

= lim
s→k+

∏

p

(
(1− p−s+k−1)

∑

J

[Zkp : J ]−s
)

=
∏

p

(1− p−1)
∑

J

[Zkp : J ]−k

(9)

Starting again we get the following chain of equalities.

ress=k ζ(Zk, s) = ress=k ζ(s− k + 1)ζ(s− k + 2) · · · ζ(s− 1)ζ(s)

= ζ(2) · · · ζ(k − 1)ζ(k)

= k · lim
T→∞

T−k#{H ⊆ Zk | [Zk : H] ≤ T} [by 1.1]

= k · lim
T→∞

T−k2

#{H ⊆ Zk | [Zk : H] ≤ T k}

= k · lim
T→∞

T−k2

#{A ∈ HNF | detA ≤ T k}

= k · µZ(I · F ) [by definition 2.2]

= k · µ∞(Slk(R)/Slk(Z)) [by 3.15 and 2.1]

(10)

Combining (9) and (10) we get the following equation.

∏

p

(1− p−1)
∑

J

[Zkp : J ]−k = k · µ∞(Slk(R)/Slk(Z)) (11)

We combine (6), (7) and (11) to obtain the following equation.

1 = k · µ∞(Slk(R)/Slk(Z)) ·
∏

p

µp(Slk(Zp)) (12)

To relate this to the Tamagawa number we have to introduce a gauge form ω
on the algebraic group Slk over Q, invariant by left translations, as in sections
2.2.2 and 2.4 of [37]. We can even get gauge forms over Z. Let X be a generic

Documenta Mathematica 11 (2006) 425–447



440 Henri Gillet and Daniel R. Grayson

element of Glk. The entries of the matrix X−1dX provide a basis for the 1-
forms invariant by left translation on Glk. On Slk we see that tr(X−1dX) =
d(detX) = 0, so omitting the element in the (n, n) spot will provide a basis of
the invariant forms on Slk. We let ω be the exterior product of these forms.
Just as in the proof of Theorem 2.2.5 in [37] we obtain the following equality.

∫

Slk(Zp)

ωp = µp(Slk(Zp)) (13)

The measure ωp is defined in [37, 2.2.1] in a neighborhood of a point P by
writing ω = f dx1 ∧ · · · ∧ dxn and setting ωp = |f(P )|p(dx1)p . . . (dxn)p, where
(dxi)p is the Haar measure on Qp normalized so that

∫
Zp

(dxi)p = 1, and |c|p is

the p-adic valuation normalized so that d(cx)p = |c|p(dx)p.
Now we want to determine the constant that relates our original Haar mea-

sure µ∞ on Slk(R) to the one determined by ω∞. For this purpose, it will suffice
to evaluate both measures on the infinitesimal parallelepiped B in Slk(R) cen-
tered at the identity matrix and spanned by the tangent vectors εeij for i 6= j
and ε(eii − ekk) for i < k. Here ε is an infinitesimal number, and eij is the
matrix with a 1 in position (i, j) and zeroes elsewhere. For the purpose of this
computation, we may even take ε = 1. We remark that B is a fundamental
domain for slk(Z) acting on the Lie algebra slk(R). We compute easily that∫
B
ω∞ = 1 and

µ∞(B) = vol(I ·B)

= (1/k2) · |det(e11 − ekk, · · · , ek−1,k−1 − ekk,
∑

eii)|
= (1/k2) · |det(e11 − ekk, · · · , ek−1,k−1 − ekk, kekk)|
= (1/k2) · |det(e11, · · · , ek−1,k−1, kekk)|
= 1/k

(14)

We obtain the following equation.

µ∞(Slk(R)/Slk(Z)) =
1

k

∫

Slk(R)/ Slk(Z)

ω∞ (15)

See [36, §14.12, (3)] for an essentially equivalent proof of this equation. We
may now rewrite (12) as follows.

1 =

∫

Slk(R)/ Slk(Z)

ω∞ ·
∏

p

∫

Slk(Zp)

ωp (16)

(If done earlier, this computation would have justified normalizing µ∞ differ-
ently.)

The Tamagawa number τ(Slk,Q) =
∫
Slk(AQ)/ Slk(Q)

ω is the same as the right

hand side of (16) because F × ∏p Slk(Zp) is a fundamental domain for the
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action of Slk(Q) on Slk(AQ). Thus τ(Slk,Q) = 1. This was originally proved by
Weil in Theorem 3.3.1 of [37]. See also [14], [12], and [36, §14.11, Corollary to
Langlands’ Theorem].

See also [33, §8] for an explanation that Siegel’s measure formula amounts
to the first determination that τ(SO) = 2.

A Dirichlet series

Theorem A.1. Suppose we are given a Dirichlet series f(s) :=
∑∞
n=1 ann

−s

with nonnegative coefficients. Let A(T ) :=
∑
n≤T an. If A(T ) = O(T k) as

T → ∞, then
∑∞
n=T ann

−s = O(T k−s) as T → ∞, and thus f(s) converges
for all complex numbers s with Re s > k.

Proof. Write σ = Re s and assume σ > k. We estimate the tail of the series as
follows.

∞∑

n=T

ann
−s =

∫ ∞

T

x−s dA(x)

= x−sA(x)
]∞
T
−
∫ ∞

T

A(x) d(x−s)

= x−sA(x)
]∞
T

+ s

∫ ∞

T

x−s−1A(x) dx

= O(xk−σ)
]∞
T

+ s

∫ ∞

T

x−s−1O(xk) dx

= O(T k−σ) + s

∫ ∞

T

O(xk−σ−1) dx

= O(T k−σ)

Theorem A.2. Suppose we are given two Dirichlet series

f(s) :=

∞∑

n=1

ann
−s g(s) :=

∞∑

n=1

bnn
−s

with nonnegative coefficients and corresponding coefficient summatory func-
tions

A(T ) :=
∑

n≤T
an B(T ) :=

∑

n≤T
bn

Assume that A(T ) = O(T i) and B(T ) = cT k + O(T j), where i ≤ j < k. Let
h(s) := f(s)g(s) =

∑∞
n=1 cnn

−s, and let C(T ) :=
∑
n≤T cn. Then C(T ) =

cf(k)T k +O(T j log T ) if i = j, and C(T ) = cf(k)T k +O(T j) if i < j.
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Proof. The basic idea for this proof was told to us by Harold Diamond.
Observe that Theorem A.1 ensures that f(k) converges. Let’s fix the nota-

tion β(T ) = O(γ(T )) to mean that there is a constant C so that |β(T )| ≤ Cγ(T )
for all T ∈ [1,∞), and simultaneously replace O(T j log T ) in the statement by
O(T j(1 + log T )) in order to avoid the zero of log T at T = 1. We will use the
notation in an infinite sum only with a uniform value of the implicit constant
C.

We examine C(T ) as follows.

C(T ) =
∑

n≤T
cn =

∑

n≤T

∑

pq=n

apbq =
∑

pq≤n
apbq

=
∑

p≤T
ap

∑

q≤T/p
bq =

∑

p≤T
apB(T/p)

=
∑

p≤T
ap{c(T/p)k +O((T/p)j)}

= cT k
∑

p≤T
app

−k +O(T j)
∑

p≤T
app

−j

= cT k{f(k) +O(T i−k)}+O(T j)
∑

p≤T
app

−j

= cf(k)T k +O(T i) +O(T j)
∑

p≤T
app

−j

If i < j then
∑
p≤T app

−j ≤ f(j) = O(1). Alternatively, if i = j, then

∑

p≤T
app

−j =
∑

p≤T
app

−i =

∫ T

1−
p−i d(A(p))

= p−iA(p)
]T
1− −

∫ T

1−
A(p) d(p−i)

= T−iA(T ) + i

∫ T

1−
A(p)p−i−1 dp

= O(1) +O(

∫ T

1−
p−1 dp) = O(1 + log T )

In both cases the result follows.

The proof of the following “Abelian” theorem for generalized Dirichlet series
is elementary.

Theorem A.3. Suppose we are given numbers R, k ≥ 1, and 1 ≤ λ1 ≤ λ2 ≤
· · · → ∞. Suppose that

N(T ) :=
∑

λn≤T
1 = (R+ o(1))

T k

k
(T →∞)
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for some number R. Then the generalized Dirichlet series ψ(s) :=
∑
λ−sn

converges for all real numbers s > k, and lims→k+(s− k)ψ(s) = R.

Proof. In the case R 6= 0, the proof can be obtained by adapting the argument
in the last part of the proof of [3, Chapter 5, Section 1, Theorem 3]: roughly,
one reduces to the case where k = 1 by a simple change of variables, shows
λn ∼ n/R, uses that to compare a tail of

∑
λ−sn to a tail of ζ(s) =

∑
n−s, and

then uses lims→1+(s− 1)ζ(s) = 1.

Alternatively, one can refer to [34, Theorem 10, p. 114] for the statement
about convergence, and then to [34, Theorem 2, p. 219] for the statement about
the limit. Actually, those two theorems are concerned with Dirichlet series of
the form F (s) =

∑
ann

−s, but the first step there is to consider the growth
rate of

∑
n≤x an as x→∞. Essentially the same proof works for F (s) = ψ(s)

by considering the growth rate of N(x) instead.

The result also follows from the following estimate, provided to us by Harold
Diamond. Assume s > k.

ψ(s) :=
∑

λ−sn

=

∫ ∞

1−
x−s dN(x)

= x−sN(x)
]∞
1− + s

∫ ∞

1

x−s−1N(x) dx

= O(xk−s)
]∞

+ s

∫ ∞

1

x−s−1(R+ o(1))
xk

k
dx (x→∞)

=
s(R+ o(1))

k

∫ ∞

1

x−s−1+k dx (s→ k+)

=
s(R+ o(1))

k(s− k)
(s→ k+)

Notice the shift in the meaning of o(1) from one line to the next, verified by

writing
∫∞
1

=
∫ b
1

+
∫∞
b

and letting b go to ∞; it turns out that for sufficiently

small ǫ the major contribution to
∫∞
1
x−1−ǫ dx comes from

∫∞
b
x−1−ǫ dx.

The following Wiener-Ikehara “Tauberian” theorem is a converse to the
previous theorem, but the proof is much harder.

Theorem A.4. Suppose we are given numbers R > 0, k > 0, 1 ≤ λ1 ≤ λ2 ≤
· · · → ∞, and nonnegative numbers a1, a2, . . . . Suppose that the Dirichlet series
ψ(s) =

∑
anλ

−s
n converges for all complex numbers with Re s > k, and that the

function ψ(s)−R/(s−k) can be extended to a function defined and continuous
for Re s ≥ k. Then ∑

λn≤T
an ∼ RT k/k.
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Proof. Replacing s by ks allows us to reduce to the case where k = 1, which can
be deduced directly from the Landau-Ikehara Theorem in [1], from Theorem
2.2 on p. 93 of [35], from Theorem 1 on p. 464 of [17], or from Theorem 1 on
p. 534 of [18]. See also Theorem 17 on p. 130 of [40] for the case where λn = n,
which suffices for our purposes. A weaker prototype of this theorem was first
proved by Landau in 1909 [13, §241]. Other relevant papers include [39], [6],
and [5]. See also Bateman’s discussion in [13, Appendix, page 931] and the
good exposition of Abelian and Tauberian theorems in chapter 5 of [38].
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[33] Tsuneo Tamagawa. Adèles. In Algebraic Groups and Discontinuous Sub-
groups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 113–121.
Amer. Math. Soc., Providence, R.I., 1966.
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1

1. Introduction

In this paper we discuss some extensions of works of Katsura and Oort [5], and
of Li and Oort [8] on the supersingular locus of a mod p Siegel modular variety.
Let p be a rational prime number, N ≥ 3 a prime-to-p positive integer. We
choose a primitive N -th root of unity ζN in Q ⊂ C and an embedding Q →֒
Qp. Let Ag,1,N be the moduli space over Z(p)[ζN ] of g-dimensional principally
polarized abelian varieties (A, λ, η) with a symplectic level-N structure (See
Subsection 2.1).
Let A2,1,N,(p) be the cover of A2,1,N which parametrizes isomorphism classes
of objects (A, λ, η,H), where (A, λ, η) is an object in A2,1,N and H ⊂ A[p] is
a finite flat subgroup scheme of rank p. It is known that the moduli scheme
A2,1,N,(p) has semi-stable reduction and the reduction A2,1,N,(p)⊗Fp modulo p
has two irreducible components. Let S2,1,N,(p) (resp. S2,1,N ) denote the super-

singular locus of the moduli space A2,1,N,(p) ⊗ Fp (resp. A2,1,N ⊗ Fp). Recall

The research is partially supported by NSC 95-2115-M-001-004.
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that an abelian variety A in characteristic p is called supersingular if it is isoge-
nous to a product of supersingular elliptic curves over an algebraically closed
field k; it is called superspecial if it is isomorphic to a product of supersingular
elliptic curves over k.
The supersingular locus S2,1,N of the Siegel 3-fold is studied in Katsura and
Oort [5]. We summarize the main results for S2,1,N (the local results obtained
earlier in Koblitz [7]):

Theorem 1.1.
(1) The scheme S2,1,N is equi-dimensional and each irreducible component is

isomorphic to P1.
(2) The scheme S2,1,N has

(1.1) |Sp4(Z/NZ)| (p
2 − 1)

5760

irreducible components.
(3) The singular points of S2,1,N are exactly the superspecial points and there
are

(1.2) |Sp4(Z/NZ)| (p− 1)(p2 + 1)

5760

of them. Moreover, at each singular point there are p+1 irreducible components
passing through and intersecting transversely.

Proof. See Koblitz [7, p.193] and Katsura-Oort [5, Section 2, Theorem 5.1,
Theorem 5.3].

In this paper we extend their results to S2,1,N,(p). We show

Theorem 1.2.
(1) The scheme S2,1,N,(p) is equi-dimensional and each irreducible component

is isomorphic to P1.
(2) The scheme S2,1,N,(p) has

(1.3) |Sp4(Z/NZ)| · (−1)ζ(−1)ζ(−3)

4

[
(p2 − 1) + (p− 1)(p2 + 1)

]

irreducible components, where ζ(s) is the Riemann zeta function.
(3) The scheme S2,1,N,(p) has only ordinary double singular points and there
are

(1.4) |Sp4(Z/NZ)| · (−1)ζ(−1)ζ(−3)

4
(p− 1)(p2 + 1)(p+ 1)

of them.
(4) The natural morphism S2,1,N,(p) → S2,1,N contracts

(1.5) |Sp4(Z/NZ)| · (−1)ζ(−1)ζ(−3)

4
(p− 1)(p2 + 1)

projective lines onto the superspecial points of S2,1,N .
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Remark 1.3. (1) By the basic fact that

ζ(−1) =
−1

12
and ζ(−3) =

1

120
,

the number (1.5) (of the vertical components) equals the number (1.2) (of
superspecial points), and the number (1.3) (sum of vertical and horizontal
components) equals the sum of the numbers (1.1) (of irreducible components)
and (1.2) (of superspecial points). Thus, the set of horizontal irreducible com-
ponents of S2,1,N,(p) is in bijection with the set of irreducible components of
S2,1,N

(2) Theorem 1.2 (4) says that S2,1,N,(p) is a “desingularization” or a “blow-
up” of S2,1,N at the singular points. Strictly speaking, the desingularization
of S2,1,N is its normalization, which is the (disjoint) union of horizontal com-
ponents of S2,1,N,(p). The vertical components of S2,1,N,(p) should be the ex-
ceptional divisors of the blowing up of a suitable ambient surface of S2,1,N at
superspecial points.

In the proof of Theorem 1.2 (Section 4) we see that

• the set of certain superspecial points (the set Λ in Subsection 4.1) in
S2,p,N (classifying degree-p2 polarized supersingular abelian surfaces)
is in bijection with the set of irreducible components of S2,1,N , and

• the set of superspecial points in S2,1,N is in bijection with the set of
irreducible components of S2,p,N , furthermore

• the supersingular locus S2,1,N,(p) provides the explicit link of this du-
ality as a correspondence that performs simply through the “blowing-
ups” and “blowing-downs”.

In the second part of this paper we attempt to generalize a similar picture to
higher (even) dimensions.

Let g = 2D be an even positive integer. LetH be the moduli space over Z(p)[ζN ]
which parametrizes equivalence classes of objects (ϕ : A1 → A2), where

• A1 = (A1, λ1, η1) is an object in Ag,1,N ,
• A2 = (A2, λ2, η2) is an object in Ag,pD,N , and

• ϕ : A1 → A2 is an isogeny of degree pD satisfying ϕ∗λ2 = pλ1 and
ϕ∗η1 = η2.

The moduli space H with natural projections gives the following correspon-
dence:

H
pr1

||xxxxxxxx
pr2

##HHHHHHHHH

Ag,1,N Ag,pD,N .

Let S be the supersingular locus of H ⊗ Fp, which is the reduced closed sub-
scheme consisting of supersingular points (either A1 or A2 is supersingular, or
equivalently both are so).
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In the special case where g = 2, H is isomorphic to A2,1,N,(p), and S ≃ S2,1,N,(p)

under this isomorphism (See Subsection 4.5).
As the second main result of this paper, we obtain

Theorem 1.4. Let C be the number of irreducible components of Sg,1,N . Then

C = |Sp2g(Z/NZ)| · (−1)g(g+1)/2

2g

{
g∏

i=1

ζ(1− 2i)

}
· Lp ,

where

Lp =

{∏g
i=1

{
(pi + (−1)i

}
if g is odd;∏D

i=1(p4i−2 − 1) if g = 2D is even.

In the special case where g = 2, Theorem 1.4 recovers Theorem 1.1 (2).
We give the idea of the proof. Let Λg,1,N denote the set of superspecial (geo-

metric) points in Ag,1,N ⊗Fp. For g = 2D is even, let Λ∗
g,pD,N denote the set of

superspecial (geometric) points (A, λ, η) inAg,pD,N⊗Fp satisfying kerλ = A[F ],

where F : A→ A(p) is the relative Frobenius morphism on A. These are finite
sets and each member is defined over Fp. By a result of Li and Oort [8] (also
see Section 5), we know

C =

{
|Λg,1,N | if g is odd;

|Λ∗
g,pD,N | if g is even.

One can use the geometric mass formula due to Ekedahl [2] and some others
(see Section 3) to compute |Λg,1,N |. Therefore, it remains to compute |Λ∗

g,pD,N |
when g is even. We restrict the correspondence S to the product Λg,1,N ×
Λ∗
g,pD,N of superspecial points, and compute certain special points in S. This

gives us relation between Λ∗
g,pD,N and Λg,1,N . See Section 6 for details.

Theorem 1.4 tells us how the number C = C(g,N, p) varies when p varies.
For another application, one can use this result to compute the dimension of
the space of Siegel cusp forms of certain level at p by the expected Jacquet-
Langlands correspondence for symplectic groups. As far as the author knows,
the latter for general g is not available yet in the literature.
The paper is organized as follows. In Section 2, we recall the basic definitions
and properties of the Siegel moduli spaces and supersingular abelian varieties.
In Section 3, we state the mass formula for superspecial principally polarized
abelian varieties due to Ekedahl (and some others). The proof of Theorem 1.2
is given in Section 4. In Section 5, we describe the results of Li and Oort on
irreducible components of the supersingular locus. In Section 6, we introduce a
correspondence and use this to evaluate the number of irreducible components
of the supersingular locus.

Acknowledgments. The author is grateful to Katsura, Li and Oort for their
inspiring papers on which the present work relies heavily. He also thanks
C.-L. Chai for his encouragements on this subject for years, and thanks
T. Ibukiyama for his interest of the present work. He is indebted to the referee
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for careful reading and helpful comments that improve the presentation of this
paper.

2. Notation and preliminaries

2.1. Throughout this paper we fix a rational prime p and a prime-to-p positive
integer N ≥ 3. Let d be a positive integer with (d,N) = 1. We choose a
primitive N -th root of unity ζN in Q ⊂ C and an embedding Q →֒ Qp. The
element ζN gives rise to a trivialization Z/NZ ≃ µN over any Z(p)[ζN ]-scheme.

For a polarized abelian variety (A, λ) of degree d2, a full symplectic level-N
structure with respect to the choice ζN is an isomorphism

η : (Z/NZ)2g ≃ A[N ]

such that the following diagram commutes

(Z/NZ)2g × (Z/NZ)2g
(η,η)−−−−→ A[N ]×A[N ]

〈 , 〉
y eλ

y

Z/NZ
ζN−−−−→ µN ,

where 〈 , 〉 is the standard non-degenerate alternating form on (Z/NZ)2g and
eλ is the Weil pairing induced by the polarization λ.
Let Ag,d,N denote the moduli space over Z(p)[ζN ] of g-dimensional polarized

abelian varieties (A, λ, η) of degree d2 with a full symplectic level N structure
with respect to ζN . Let Sg,d,N denote the supersingular locus of the reduction

Ag,d,N ⊗ Fp modulo p, which is the closed reduced subscheme of Ag,d,N ⊗ Fp
consisting of supersingular points in Ag,d,N ⊗ Fp. Let Λg,d,N denote the set of
superspecial (geometric) points in Sg,d,N ; this is a finite set and every member

is defined over Fp.

For a scheme X of finite type over a field K, we denote by Π0(X) the set of
geometrically irreducible components of X.
Let k be an algebraically closed field of characteristic p.

2.2. Over a ground field K of characteristic p, denote by αp the finite group
scheme of rank p that is the kernel of the Frobenius endomorphism from the
additive group Ga to itself. One has

αp = SpecK[X]/Xp, m(X) = X ⊗ 1 + 1⊗X,
where m is the group law.
By definition, an elliptic curve E over K is called supersingular if E[p](K) = 0.
An abelian variety A over K is called supersingular if it is isogenous to a
product of supersingular elliptic curves over K; A is called superspecial if it is
isomorphic to a product of supersingular elliptic curves over K.
For any abelian variety A over K where K is perfect, the a-number of A is
defined by

a(A) := dimK Hom(αp, A).
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The following interesting results are well-known; see Subsection 1.6 of [8] for a
detail discussion.

Theorem 2.1 (Oort). If a(A) = g, then A is superspecial.

Theorem 2.2 (Deligne, Ogus, Shioda). For g ≥ 2, there is only one g-
dimensional superspecial abelian variety up to isomorphism over k.

3. The mass formula

Let Λg denote the set of isomorphism classes of g-dimensional principally po-

larized superspecial abelian varieties over Fp. Write

Mg :=
∑

(A,λ)∈Λg

1

|Aut(A, λ)|

for the mass attached to Λg. The following mass formula is due to Ekedahl [2,
p.159] and Hashimoto-Ibukiyama [3, Proposition 9].

Theorem 3.1. Notation as above. One has

(3.1) Mg =
(−1)g(g+1)/2

2g

{
g∏

k=1

ζ(1− 2k)

}
·
g∏

k=1

{
(pk + (−1)k

}
.

Similarly, we set

Mg,1.N :=
∑

(A,λ,η)∈Λg,1,N

1

|Aut(A, λ, η)| .

Lemma 3.2. We have Mg,1,N = |Λg,1,N | = |Sp2g(Z/NZ)| ·Mg.

Proof. The first equality follows from a basic fact that (A, λ, η) has no
non-trivial automorphism. The proof of the second equality is elementary; see
Subsection 4.6 of [11].

Corollary 3.3. One has

|Λ2,1,N | = |Sp4(Z/NZ)| · (−1)ζ(−1)ζ(−3)

4
(p− 1)(p2 + 1).

4. Proof of Theorem 1.2

4.1. In this section we consider the case where g = 2. Let

Λ := {(A, λ, η) ∈ S2,p,N ; kerλ ≃ αp × αp}.
Note that every member A of Λ is superspecial (because A ⊃ αp×αp), that is,
Λ ⊂ Λ2,p,N . For a point ξ in Λ, consider the space Sξ which parametrizes the
isogenies of degree p

ϕ : (Aξ, λξ, ηξ)→ A = (A, λ, η)

which preserve the polarizations and level structures. Let

ψξ : Sξ → S2,1,N
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be the morphism which sends (ϕ : ξ → A) to A. Let Vξ ⊂ S2,1,N be the image
of Sξ under ψξ.
The following theorem is due to Katsura and Oort [5, Theorem 2.1 and Theorem
5.1]:

Theorem 4.1 (Katsura-Oort). Notation as above. The map ξ 7→ Vξ gives rise
to a bijection Λ ≃ Π0(S2,1,N ) and one has

|Λ| = |Sp4(Z/NZ)|(p2 − 1)/5760.

We will give a different way of evaluating |Λ| that is based on the geometric
mass formula (see Corollary 4.6).

4.2. Dually we can consider the space S′
ξ for each ξ ∈ Λ that parametrizes the

isogenies of degree p

ϕ′ : A = (A, λ, η)→ ξ = (Aξ, λξ, ηξ),

with A ∈ A2,1,N ⊗ Fp, such that ϕ′
∗η = ηξ and ϕ′∗λξ = p λ. Let

ψ′
ξ : S′

ξ → S2,1,N

be the morphism which sends (ϕ′ : A→ ξ) to A. Let V ′
ξ ⊂ S2,1,N be the image

of S′
ξ under ψ′

ξ.

For a degree p isogeny (ϕ : A1 → A2) with A2 in A2,1,N , ϕ∗λ2 = λ1 and
ϕ∗η1 = η2, we define

(ϕ : A1 → A2)∗ = (ϕ′ : A′
2 → A′

1),

where ϕ′ = ϕt and
A′

2 = (At2, λ
−1
2 , λ2 ◦ η2),

A′
1 = (At1, p λ

−1
1 , λ1 ◦ η1).

Note that ϕ′
∗η

′
2 = η′1 as we have the commutative diagram:

(Z/NZ)4
η2−−−−→ A2[N ]

λ2−−−−→ At2[N ]
y=

xϕ
yϕt

(Z/NZ)4
η1−−−−→ A1[N ]

λ1−−−−→ At1[N ].

If A1 ∈ Λ, then A′
1 is also in Λ. Therefore, the map ξ 7→ V ′

ξ also gives rise to a

bijection Λ ≃ Π0(S2,1,N ).

4.3. We use the classical contravariant Dieudonné theory. We refer the reader
to Demazure [1] for a basic account of this theory. Let K be a perfect field
of characteristic p, W := W (K) the ring of Witt vectors over K, B(K) the
fraction field of W (K). Let σ be the Frobenius map on B(K). A quasi-
polarization on a Dieudonné module M here is a non-degenerate (meaning of
non-zero discriminant) alternating pairing

〈 , 〉 : M ×M → B(K),

such that 〈Fx, y〉 = 〈x, V y〉σ for x, y ∈M and 〈M t,M t〉 ⊂W . Here we regard
the dual M t of M as a Dieudonné submodule in M⊗B(K) using the pairing. A
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quasi-polarization is called separable if M t = M . Any polarized abelian variety
(A, λ) over K naturally gives rise to a quasi-polarized Dieudonné module. The
induced quasi-polarization is separable if and only if (p,deg λ) = 1.
Recall (Subsection 2.1) that k denotes an algebraically closed field of charac-
teristic p.

Lemma 4.2.
(1) Let M be a separably quasi-polarized superspecial Dieudonné module over k
of rank 4. Then there exists a basis f1, f2, f3, f4 for M over W := W (k) such
that

Ff1 = f3, Ff3 = pf1, Ff2 = f4, Ff4 = pf2

and the non-zero pairings are

〈f1, f3〉 = −〈f3, f1〉 = β1, 〈f2, f4〉 = −〈f4, f2〉 = β1,

where β1 ∈W (Fp2)× with βσ1 = −β1.
(2) Let ξ be a point in Λ, and let Mξ be the Dieudonné module of ξ. Then there
is a W -basis e1, e2, e3, e4 for Mξ such that

Fe1 = e3, F e2 = e4, F e3 = pe1, F e4 = pe2,

and the non-zero pairings are

〈e1, e2〉 = −〈e2, e1〉 =
1

p
, 〈e3, e4〉 = −〈e4, e3〉 = 1.

Proof. (1) This is a special case of Proposition 6.1 of [8].
(2) By Proposition 6.1 of [8], (Mξ, 〈 , 〉) either is indecomposable or decomposes
into a product of two quasi-polarized supersingular Dieudonné modules of rank
2. In the indecomposable case, one can choose such a basis ei for Mξ. Hence
it remains to show that (Mξ, 〈 , 〉) is indecomposable. Let (Aξ[p

∞], λξ) be the
associated polarized p-divisible group. Suppose it decomposes into (H1, λ1) ×
(H2, λ2). Then the kernel of λ is isomorphic to E[p] for a supersingular elliptic
curve E. Since E[p] is a nontrivial extension of αp by αp, one gets contradiction.
This completes the proof.

4.4. Let (A0, λ0) be a superspecial principally polarized abelian surface and
(M0, 〈 , 〉0) be the associated Dieudonné module. Let ϕ′ : (A0, λ0) → (A, λ)
be an isogeny of degree p with ϕ′∗λ = p λ0. Write (M, 〈 , 〉) for the Dieudonné
module of (A, λ). Choose a basis f1, f2, f3, f4 for M0 as in Lemma 4.2. We
have the inclusions

(F, V )M0 ⊂M ⊂M0.

Modulo (F, V )M0, a module M corresponds a one-dimensional subspace M in
M0 := M0/(F, V )M0. As M0 = k < f1, f2 >, M is of the form

M = k < af1 + bf2 >, [a : b] ∈ P1(k).

The following result is due to Moret-Bailly [9, p.138-9]. We include a proof for
the reader’s convenience.
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Lemma 4.3. Notation as above, kerλ ≃ αp×αp if and only if the corresponding
point [a : b] satisfies ap+1 + bp+1 = 0. Consequently, there are p + 1 isogenies
ϕ′ so that kerλ ≃ αp × αp.
Proof. As ϕ′∗λ = pλ0, we have 〈 , 〉 = 1

p 〈 , 〉0. The Dieudonné module

M(kerλ) of the subgroup kerλ is equal to M/M t. Hence the condition kerλ ≃
αp × αp is equivalent to that F and V vanish on M(kerλ) = M/M t.
Since 〈 , 〉 is a perfect pairing on FM0, that is, (FM0)t = FM0, we have

pM0 ⊂M t ⊂ FM0 ⊂M ⊂M0.

Changing the notation, put M0 := M0/pM0 and let

〈 , 〉0 : M0 ×M0 → k.

be the induced perfect pairing. In M0, the subspace M t is equal to M
⊥

.
Indeed,

M t = {m ∈M0; 〈m,x〉0 ∈ pW ∀x ∈M},
M t = {m ∈M0; 〈m,x〉0 = 0 ∀x ∈M} = M

⊥
.

(4.1)

From this we see that the condition kerλ ≃ αp×αp is equivalent to 〈M,FM〉 =

〈M,VM〉 = 0. Since FM0 = k < f3, f4 >, one has M = k < f ′1, f3, f4 >
where f ′1 = af1 + bf2. The condition 〈M,FM〉 = 〈M,VM〉 = 0, same as
〈f ′1, Ff ′1〉 = 〈f ′1, V f ′1〉 = 0, gives the equation ap+1 + bp+1 = 0. This completes
the proof.

Conversely, fix a polarized superspecial abelian surface (A, λ) such that kerλ ≃
αp × αp. Then there are p2 + 1 degree-p isogenies ϕ′ : (A0, λ0) → (A, λ) such
that A0 is superspecial and ϕ′∗λ = p λ0. Indeed, each isogeny ϕ′ always has the
property ϕ′∗λ = p λ0 for a principal polarization λ0, and there are |P1(Fp2)|
isogenies with A0 superspecial.

4.5. We denote by A′
2,1,N,(p) the moduli space which parametrizes equivalence

classes of isogenies (ϕ′ : A0 → A1) of degree p, where A1 is an object in A2,p,N

and A0 is an object in A2,1,N , such that ϕ′∗λ1 = p λ0 and ϕ′
∗η0 = η1.

There is a natural isomorphism from A2,1,N,(p) to A′
2,1,N,(p). Given an object

(A, λ, η,H) in A2,1,N,(p), let A0 := A, A1 := A/H and ϕ′ : A0 → A1 be the
natural projection. The polarization p λ0 descends to one, denoted by λ1, on
A1. Put η1 := ϕ′

∗η0 and A1 = (A1, λ1, η1). Then (ϕ′ : A0 → A1) lies in
A′

2,1,N,(p) and the morphism

q : A2,1,N,(p) → A′
2,1,N,(p), (A, λ, η,H) 7→ (ϕ′ : A0 → A1)

is an isomorphism.
We denote by S ′2,1,N,(p) the supersingular locus of A′

2,1,N,(p) ⊗ Fp. Thus we

have S ′2,1,N,(p) ≃ S2,1,N,(p). It is clear that S′
ξ ⊂ S ′2,1,N,(p) for each ξ ∈ Λ,

and S′
ξ ∩ S′

ξ′ = ∅ if ξ 6= ξ′. For each γ ∈ Λ2,1,N , let S′′
γ be the subspace of

S ′2,1,N,(p) that consists of objects (ϕ′ : A0 → A1) with A0 = Aγ . One also has

S′′
γ ∩ S′′

γ′ = ∅ if γ 6= γ′.
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Lemma 4.4. (1) Let (M0, 〈 , 〉0) be a separably quasi-polarized supersingular
Dieudonné module of rank 4 and suppose a(M0) = 1. Let M1 := (F, V )M0

and N be the unique Dieudonné module containing M0 with N/M0 = k. Let
〈 , 〉1 := 1

p 〈 , 〉0 be the quasi-polarization for M1. Then one has a(N) = a(M1) =

2, V N = M1, and M1/M
t
1 ≃ k ⊕ k as Dieudonné modules.

(2) Let (M1, 〈 , 〉1) be a quasi-polarized supersingular Dieudonné module of rank
4. Suppose that M1/M

t
1 is of length 2, that is, the quasi-polarization has degree

p2.

(i) If a(M1) = 1, then letting M2 := (F, V )M1, one has that a(M2) = 2
and 〈 , 〉1 is a separable quasi-polarization on M2.

(ii) Suppose (M1, 〈 , 〉1) decomposes as the product of two quasi-polarized
Dieudonné submodules of rank 2. Then there are a unique Dieudonné
submodule M2 of M1 with M1/M2 = k and a unique Dieudonné module
M0 containing M1 with M0/M1 = k so that 〈 , 〉1 (resp. p〈 , 〉1) is a
separable quasi-polarization on M2 (resp. M0).

(iii) Suppose M1/M
t
1 ≃ k ⊕ k as Dieudonné modules. Let M2 ⊂ M1 be

any Dieudonné submodule with M1/M2 = k, and M0 ⊃ M1 be any
Dieudonné overmodule with M0/M1 = k. Then 〈 , 〉1 (resp. p〈 , 〉1) is a
separable quasi-polarization on M2 (resp. M0).

This is well-known; the proof is elementary and omitted.

Proposition 4.5. Notation as above.
(1) One has

S ′2,1,N,(p) =


∐

ξ∈Λ

S′
ξ


 ∪


 ∐

γ∈Λ2,1,N

S′′
γ


 .

(2) The scheme S ′2,1,N,(p) has ordinary double singular points and

(S ′2,1,N,(p))sing =


∐

ξ∈Λ

S′
ξ


 ∩


 ∐

γ∈Λ2,1,N

S′′
γ


 .

Moreover, one has

|(S ′2,1,N,(p))sing| = |Λ2,1,N |(p+ 1) = |Λ|(p2 + 1).

Proof. (1) Let (ϕ′ : A0 → A1) be a point of S ′2,1,N,(p). If a(A0) = 1, then

kerϕ′ is the unique α-subgroup of A0[p] and thus A1 ∈ Λ. Hence this point lies
in S′

ξ for some ξ. Suppose that A1 is not in Λ, then there is a unique lifting

(ϕ′
1 : A′

0 → A1) in S ′2,1,N,(p) and the source A′
0 is superspecial. Hence A0 = A′

0

is superspecial and the point (ϕ′ : A0 → A1) lies in S′′
γ for some γ.

(2) It is clear that the singularities only occur at the intersection of S′
ξ’s and

S′′
γ ’s, as S′

ξ and S′′
γ are smooth. Let x = (ϕ′ : Aγ → Aξ) ∈ S′

ξ ∩ S′′
γ . We know

that the projection pr0 : S ′2,1,N,(p) → S2,1,N induces an isomorphism from S′
ξ to

V ′
ξ . Therefore, pr0 maps the one-dimensional subspace Tx(S′

ξ) of Tx(A′
2,1,N,(p)⊗

Fp) onto the one-dimensional subspace Tpr0(x)
(V ′
ξ ) of Tpr0(x)

(A2,1,N⊗Fp), where
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Tx(X) denotes the tangent space of a variety X at a point x. On the other
hand, pr0 maps the subspace Tx(S′′

γ ) to zero. This shows Tx(S′
ξ) 6= Tx(S′′

γ ) in

Tx(A′
2,1,N,(p)⊗Fp); particularly S ′2,1,N,(p) has ordinary double singularity at x.

Since every singular point lies in both S′
ξ and S′′

γ for some ξ, γ, by Subsection 4.4

each S′
ξ has p2 + 1 singular points and each S′′

γ has p + 1 singular points. We
get

|(S ′2,1,N,(p))sing| = |Λ2,1,N |(p+ 1), and |(S ′2,1,N,(p))sing| = |Λ|(p2 + 1).

This completes the proof.

Corollary 4.6. We have

|(S ′2,1,N,(p))sing| = |Sp4(Z/NZ)| · (−1)ζ(−1)ζ(−3)

4
(p− 1)(p2 + 1)(p+ 1)

and

|Λ| = |Sp4(Z/NZ)| · (−1)ζ(−1)ζ(−3)

4
(p2 − 1).

Proof. This follows from Corollary 3.3 and (2) of Proposition 4.5.

Note that the evaluation of |Λ| here is different from that given in Katsura-Oort
[5]. Their method does not rely on the mass formula but the computation is
more complicated.
Since S2,1,N,(p) ≃ S ′2,1,N,(p) (Subsection 4.5), Theorem 1.2 follows from Propo-

sition 4.5 and Corollary 4.6.
As a byproduct, we obtain the description of the supersingular locus S2,p,N .

Theorem 4.7.
(1) The scheme S2,p,N is equi-dimensional and each irreducible component is
isomorphic to P1.
(2) The scheme S2,p,N has |Λ2,1,N | irreducible components.
(3) The singular locus of S2,p,N consists of superspecial points (A, λ, η) with

kerλ ≃ αp×αp, and thus |Ssing
2,p,N | = |Λ|. Moreover, at each singular point there

are p2 +1 irreducible components passing through and intersecting transversely.
(4) The natural morphism pr1 : S2,1,N,(p) → S2,p,N contracts |Λ| projective lines
onto the singular locus of S2,p,N .

5. The class numbers Hn(p, 1) and Hn(1, p)

In this section we describe the arithmetic part of the results in Li and Oort
[8]. Our references are Ibukiyama-Katsura-Oort [4, Section 2] and Li-Oort [8,
Section 4].
Let B be the definite quaternion algebra over Q with discriminant p, and O
be a maximal order of B. Let V = B⊕n, regarded as a left B-module of
row vectors, and let ψ(x, y) =

∑n
i=1 xiȳi be the standard hermitian form on

V , where yi 7→ ȳi is the canonical involution on B. Let G be the group of
ψ-similitudes over Q; its group of Q-points is

G(Q) := {h ∈Mn(B) |hh̄t = rIn for some r ∈ Q× }.

Documenta Mathematica 11 (2006) 447–466



458 Chia-Fu Yu

Two O-lattices L and L′ in B⊕n are called globally equivalent (denoted by
L ∼ L′) if L′ = Lh for some h ∈ G(Q). For a finite place v of Q, we write
Bv := B ⊗ Qv, Ov := O ⊗ Zv and Lv := L ⊗ Zv. Two O-lattices L and L′ in
B⊕n are called locally equivalent at v (denoted by Lv ∼ L′

v) if L′
v = Lvhv for

some hv ∈ G(Qv). A genus of O-lattices is a set of (global) O-lattices in B⊕n

which are equivalent to each other locally at every finite place v.
Let

Np = O⊕n
p ·

(
Ir 0
0 πIn−r

)
· ξ ⊂ B⊕n

p ,

where r is the integer [n/2], π is a uniformizer in Op, and ξ is an element in
GLn(Bp) such that

ξξ̄t = anti-diag(1, 1, . . . , 1).

Definition 5.1. (1) Let Ln(p, 1) denote the set of global equivalence classes
of O-lattices L in B⊕n such that Lv ∼ O⊕n

v at every finite place v. The genus
Ln(p, 1) is called the principal genus, and let Hn(p, 1) := |Ln(p, 1)|.
(2) Let Ln(1, p) denote the set of global equivalence classes of O-lattices L in
B⊕n such that Lp ∼ Np and Lv ∼ O⊕n

v at every finite place v 6= p. The genus
Ln(p, 1) is called the non-principal genus, and let Hn(1, p) := |Ln(1, p)|.
Recall (Section 3) that Λg is the set of isomorphism classes of g-dimensional

principally polarized superspecial abelian varieties over Fp. When g = 2D > 0
is even, we denote by Λ∗

g,pD the set of isomorphism classes of g-dimensional

polarized superspecial abelian varieties (A, λ) of degree p2D over Fp satisfying
kerλ = A[F ].
Let Ag,1 be the coarse moduli scheme of g-dimensional principally polarized

abelian varieties, and let Sg,1 be the supersingular locus of Ag,1 ⊗ Fp. Recall
(Subsection 2.1) that Π0(Sg,1) denotes the set of irreducible components of
Sg,1.

Theorem 5.2 (Li-Oort). We have

|Π0(Sg,1)| =
{
|Λg| if g is odd;

|Λ∗
g,pD | if g = 2D is even.

The arithmetic part for Π0(Sg,1) is given by the following

Proposition 5.3.
(1) For any positive integer g, one has |Λg| = Hg(p, 1).
(2) For any even positive integer g = 2D, one has |Λ∗

g,pD | = Hg(1, p).

Proof. (1) See [4, Theorem 2.10]. (2) See [8, Proposition 4.7].

6. Correspondence computation

6.1. Let M0 be a superspecial Dieudonné module over k of rank 2g, and call

M̃0 := {x ∈M0;F 2x = px},
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the skeleton of M0 (cf. [8, 5.7]). We know that M̃0 is a Dieudonné module

over Fp2 and M̃0 ⊗W (Fp2 ) W (k) = M0. The vector space M̃0/V M̃0 defines an

Fp2 -structure of the k-vector space M0/VM0.
Let Gr(n,m) be the Grassmannian variety of n-dimensional subspaces in an
m-dimensional vector space. Suppose M1 is a Dieudonné submodule of M0

such that

VM0 ⊂M1 ⊂M0, dimkM1/VM0 = r,

for some integer 0 ≤ r ≤ g. As dimM0/VM0 = g, the subspace M1 :=
M1/VM0 corresponds to a point in Gr(r, g)(k).

Lemma 6.1. Notation as above. Then M1 is superspecial (i.e. F 2M1 = pM1)
if and only if M1 ∈ Gr(r, g)(Fp2).

Proof. If M1 is generated by V M̃0 and x1, x2, . . . , xr, xi ∈ M̃0 over W .
Then M̃1 generates M1 and thus F 2M1 = pM1. Therefore, M1 is superspecial.
Conversely if M1 is superspecial, then we have

V M̃0 ⊂ M̃1 ⊂ M̃0.

Therefore, M̃1 gives rise to an element in Gr(r, g)(Fp2).

6.2. Let L(n, 2n) ⊂ Gr(n, 2n) be the Lagrangian variety of maximal isotropic
subspaces in a 2n-dimensional vector space with a non-degenerate alternating
form.
From now on g = 2D is an even positive integer. Recall (in Introduction
and Section 5) that Λ∗

g,pD,N denotes the set of superspecial (geometric) points

(A, λ, η) in Ag,pD,N ⊗ Fp satisfying kerλ = A[F ].

Lemma 6.2. Let (A2, λ2, η2) ∈ Λ∗
g,pD,N and (M2, 〈 , 〉2) be the associated

Dieudonné module. There is a W -basis e1, . . . , e2g for M2 such that for
1 ≤ i ≤ g

Fei = eg+i, F eg+i = pei,

and the non-zero pairings are

〈ei, eD+i〉2 = −〈eD+i, ei〉2 =
1

p
,

〈eg+i, eg+D+i〉2 = −〈eg+D+i, eg+i〉2 = 1,

for 1 ≤ i ≤ D.

Proof. Use the same argument of Lemma 4.2 (2).

6.3. Let H be the moduli space over Z(p)[ζN ] which parametrizes equivalence
classes of objects (ϕ : A1 → A2), where

• A1 = (A1, λ1, η1) is an object in Ag,1,N ,
• A2 = (A2, λ2, η2) is an object in Ag,pD,N , and

• ϕ : A1 → A2 is an isogeny of degree pD satisfying ϕ∗λ2 = pλ1 and
ϕ∗η1 = η2.
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The moduli space H with two natural projections gives the following corre-
spondence:

H
pr1

||xxxxxxxx
pr2

##HHHHHHHHH

Ag,1,N Ag,pD,N .

Let S be the supersingular locus of H ⊗ Fp, which is the reduced closed sub-
scheme consisting of supersingular points (either A1 or A2 is supersingular, or
equivalently both are supersingular). Restricting the natural projections on S,
we have the following correspondence

S
pr1

||yyyyyyyy
pr2

##GGGGGGGGG

Sg,1,N Sg,pD,N .

Suppose that A2 ∈ Λ∗
g,pD,N . Let (ϕ : A1 → A2) ∈ S(k) be a point in the

pre-image pr−1
2 (A2), and let (M1, 〈 , 〉1) be the Dieudonné module associated

to A1. We have

M1 ⊂M2, p〈 , 〉2 = 〈 , 〉1, FM2 = M t
2.

Since A2 is superspecial and 〈 , 〉1 is a perfect pairing on M1, we get

FM2 = VM2 = M t
2, M t

2 ⊂M t
1 = M1.

Therefore, we have

FM2 = VM2 ⊂M1 ⊂M2, dimkM1/VM2 = D.

Put 〈 , 〉 := p〈 , 〉2. The pairing

〈 , 〉 : M2 ×M2 →W

induces a pairing

〈 , 〉 : M2/VM2 ×M2/VM2 → k

which is perfect (by Lemma 6.2). Furthermore, M1/VM2 is a maximal isotropic
subspace for the pairing 〈 , 〉. This is because 〈 , 〉1 is a perfect pairing on M1

and dimM1/VM2 = D is the maximal dimension of isotropic subspaces. We
conclude that the point (ϕ : A1 → A2) lies in pr−1

2 (A2) if and only if VM2 ⊂
M1 ⊂ M2 and M1/VM2 is a maximal isotropic subspace of the symplectic
space (M2/VM2, 〈 , 〉). By Lemma 6.1, we have proved

Proposition 6.3. Let A2 be a point in Λ∗
g,pD,N .

(1) The pre-image pr−1
2 (A2) is naturally isomorphic to the projective variety

L(D, 2D) over k.
(2) The set pr−1

1 (Λg,1,N ) ∩ pr−1
2 (A2) is in bijection with L(D, 2D)(Fp2), where

the W (Fp2)-structure of M2 is given by the skeleton M̃2.
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6.4. We compute pr−1
1 (A1) ∩ pr−1

2 (Λ∗
g,pD,N ) for a point A1 in Λg,1,N . Let T

be the closed subscheme of S consisting of the points (ϕ : A1 → A2) such that
kerλ2 = A2[F ]. We compute the closed subvariety pr−1

1 (A1) ∩ T first.
Let A1 ∈ Λg,1,N , and let (ϕ : A1 → A2) ∈ S(k) be a point in the pre-image

pr−1
1 (A1). Let (M1, 〈 , 〉1) and (M2, 〈 , 〉2) be the Dieudonné modules associated

to A1 and A2, respectively.
One has

M t
1 = M1 ⊃M t

2 = FM2,

and thus has

FM2 ⊂M1 ⊂M2 ⊂ p−1VM1.

Since M1 is superspecial, p−1VM1 = p−1FM1. Put M0 := p−1VM1 and
〈 , 〉 := p〈 , 〉2. We have

pM0 ⊂M t
2 = FM2 ⊂M1 = VM0 ⊂M2 ⊂M0

and that 〈 , 〉 is a perfect pairing onM0. By Proposition 6.1 of [8] (cf. Lemma 4.2
(1)), there is a W -basis f1 . . . , f2g for M0 such that for 1 ≤ i ≤ g

Ffi = fg+i, Ffg+i = pfi,

and the non-zero pairings are

〈fi, fg+i〉 = −〈fg+i, fi〉 = β1, ∀ 1 ≤ i ≤ g
where β1 ∈W (Fp2)× with βσ1 = −β1. In the vector space M0 := M0/pM0, M2

is a vector subspace over k of dimension g +D with

M2 ⊃ VM0 = k < fg+1, . . . , f2g > and 〈M2, FM2〉 = 0.

We can write

M2 = k < v1, . . . , vD > +VM0, vi =

g∑

r=1

airfr.

One computes

〈vi, Fvj〉 = 〈
g∑

r=1

airfr, F (

g∑

q=1

ajqfq)〉 = 〈
g∑

r=1

airfr,

g∑

q=1

apjqfg+q〉 = β1

g∑

r=1

aira
p
jr.

This computation leads us to the following definition.

6.5. Let V := F2n
p2 . For any field K ⊃ Fp2 , we put VK := V ⊗Fp2 K and define

a pairing on VK

〈 , 〉′ : VK × VK → K, 〈(ai), (bi)〉′ :=

2n∑

i=1

ai b
p
i .

Let X(n, 2n) ⊂ Gr(n, 2n) be the subvariety over Fp2 which parametrizes n-
dimensional (maximal) isotropic subspaces in V with respect to the pairing
〈 , 〉′.
With the computation in Subsection 6.4 and Lemma 6.1, we have proved
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Proposition 6.4. Let A1 be a point in Λg,1,N and g = 2D.

(1) The intersection pr−1
1 (A1) ∩ T is naturally isomorphic to the projective

variety X(n, 2n) over k.
(2) The set pr−1

1 (A1) ∩ pr−1
2 (Λ∗

g,pD,N ) is in bijection with X(D, 2D)(Fp2).

When g = 2, Proposition 6.4 (2) is a result of Moret-Bailly (Lemma 4.3).

6.6. To compute X(n, 2n)(Fp2), we show that it is the set of rational points of
a homogeneous space under the quasi-split group U(n, n).
Let V = F2n

p2 and let x 7→ x̄ be the involution of Fp2 over Fp. Let ψ((xi), (yi)) =∑
i xiȳi be the standard hermitian form on V . For any field K ⊃ Fp, we put

VK := V ⊗Fp
K and extend ψ to a from

ψ : VK ⊗ VK → Fp2 ⊗K
by K-linearity.
Let U(n, n) be the group of automorphisms of V that preserve the hermitian
form ψ. Let LU(n, 2n)(K) be the space of n-dimensional (maximal) isotropic
K-subspaces in VK with respect to ψ. We know that LU(n, 2n) is a projective
scheme over Fp of finite type, and this is a homogeneous space under U(n, n).
It follows from the definition that

LU(n, 2n)(Fp) = X(n, 2n)(Fp2).

However, the space LU(n, 2n) is not isomorphic to the space X(n, 2n) over k.

Let Λ̃ be the subset of S consisting of elements (ϕ : A1 → A2) such that
A2 ∈ Λ∗

g,pD,N and A1 ∈ Λg,1,N . We have natural projections

Λ̃
pr1

}}{{
{{

{{
{{

{
pr2

""FFFFFFFFF

Λg,1,N Λ∗
g,pD,N .

By Propositions 6.3 and 6.4, and Subsection 6.6, we have proved

Proposition 6.5. Notation as above, one has

|Λ̃| = |L(D, 2D)(Fp2)| · |Λ∗
g,pD,N | = |LU(D, 2D)(Fp)| · |Λg,1,N |.

Theorem 6.6. We have

|Λ∗
g,pD,N | = |Sp2g(Z/NZ)| · (−1)g(g+1)/2

2g

{
g∏

i=1

ζ(1− 2i)

}
·
D∏

i=1

(p4i−2 − 1).

Proof. We compute in Section 7 that

|L(D, 2D)(Fp2)| =
D∏

i=1

(p2i + 1),

|LU(D, 2D)(Fp)| =
D∏

i=1

(p2i−1 + 1).
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Using Proposition 6.5, Theorem 3.1 and Lemma 3.2, we get the value of
|Λ∗
g,pD,N |.

6.7. Proof of Theorem 1.4. By a theorem of Li and Oort (Theorem 5.2),
we know

|Π0(Sg,1,N )| =
{
|Λg,1,N | if g is odd;

|Λ∗
g,pD,N | if g = 2D is even.

Note that the result of Li and Oort is formulated for the coarse moduli space
Sg,1. However, it is clear that adding the level-N structure yields a modifica-
tion as above. Theorem 1.4 then follows from Theorem 3.1, Lemma 3.2 and
Theorem 6.6.

7. L(n, 2n)(Fq) and LU(n, 2n)(Fq)

Let L(n, 2n) be the Lagrangian variety of maximal isotropic subspaces in a
2n-dimensional vector space V0 with a non-degenerate alternating form ψ0.

Lemma 7.1. |L(n, 2n)(Fq)| =
∏n
i=1(qi + 1).

Proof. Let e1, . . . , e2n be the standard symplectic basis for V0. The group
Sp2n(Fq) acts transitively on the space L(n, 2n)(Fq). For h ∈ Sp2n(Fq), the
map h 7→ {he1, . . . he2n} induces a bijection between Sp2n(Fq) and the set
B(n) of ordered symplectic bases {v1, . . . , v2n} for V0. The first vector v1 has
q2n − 1 choices. The first companion vector vn+1 has (q2n − q2n−1)/(q − 1)
choices as it does not lie in the hyperplane v⊥1 and we require ψ0(v1, vn+1) = 1.
The remaining ordered symplectic basis can be chosen from the complement
Fq < v1, vn+1 >

⊥. Therefore, we have proved the recursive formula

|Sp2n(Fq)| = (q2n − 1)q2n−1|Sp2n−2(Fq)|.
From this, we get

|Sp2n(Fq)| = qn
2
n∏

i=1

(q2i − 1).

Let P be the stabilizer of the standard maximal isotropic subspace Fq <
e1, . . . , en >. It is easy to see that

P =

{(
A B
0 D

)
;ADt = In, BA

t = ABt
}
.

The matrix BAt is symmetric and the space of n× n symmetric matrices has
dimension (n2 + n)/2. This yields

|P | = q
n2+n

2 |GLn(Fq)| = qn
2
n∏

i=1

(qi − 1)

as one has

|GLn(Fq)| = q
n2−n

2

n∏

i=1

(qi − 1).

Since L(n, 2n)(Fq) ≃ Sp2n(Fq)/P , we get |L(n, 2n)(Fq)| =
∏n
i=1(qi + 1).
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7.1. Let V = F2n
q2 and let x 7→ x̄ = xq be the involution of Fq2 over Fq. Let

ψ((xi), (yi)) =
∑
i xiȳi be the standard hermitian form on V . For any field

K ⊃ Fq, we put VK := V ⊗Fp
K and extend ψ to a from

ψ : VK ⊗ VK → Fq2 ⊗Fq
K

by K-linearity.
Let U(n, n) be the group of automorphisms of V that preserve the hermitian
form ψ. Let LU(n, 2n)(K) be the set of n-dimensional (maximal) isotropic K-
subspaces in VK with respect to ψ. We know that LU(n, 2n) is a homogeneous
space under U(n, n). Let

Im := {a = (a1, . . . , am) ∈ Fmq2 ; Q(a) = 0},

where Q(a) = aq+1
1 + · · ·+ aq+1

m .

Lemma 7.2. We have |Im| = q2m−1 + (−1)mqm + (−1)m−1qm−1.

Proof. For m > 1, consider the projection p : Im → Fm−1
q2 which sends

(a1, . . . , am) to (a1, . . . , am−1). Let Icm−1 be the complement of Im−1 in Fm−1
q2 .

If x ∈ Im−1, then the pre-image p−1(x) consists of one element. If x ∈ Icm−1,
then the pre-image p−1(x) consists of solutions of the equation aq+1

m = −Q(x) ∈
F×
q and thus p−1(x) has q+1 elements. Therefore, |Im| = |Im−1|+(q+1)|Icm−1|.

From this we get the recursive formula

|Im| = (q + 1)q2(m−1) − q|Im−1|.
We show the lemma by induction. When m = 1, |Im| = 1 and the statement
holds. Suppose the statement holds for m = k, i.e. |Ik| = q2k−1 + (−1)kqk +
(−1)k−1qk−1. When m = k + 1,

|Ik+1| = (q + 1)q2k − q[q2k−1 + (−1)kqk + (−1)k−1qk−1]

= q2k+1 + (−1)k+1qk+1 + (−1)kqk.

This completes the proof.

Proposition 7.3. |LU(n, 2n)(Fq)| =
∏n
i=1(q2i−1 + 1).

Proof. We can choose a new basis e1, . . . , e2n for V such that the non-zero
pairings are

ψ(ei, en+i) = ψ(en+i, ei) = 1, ∀ 1 ≤ i ≤ n.
The representing matrix for ψ with respect to {e1, . . . , e2n} is

J =

(
0 In
In 0

)
.

Let P be the stabilizer of the standard maximal isotropic subspace Fq2 <
e1, . . . , en >. It is easy to see that

P =

{(
A B
0 D

)
;AD∗ = In, BA

∗ +AB∗ = 0

}
.
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The matrix BA∗ is skew-symmetric hermitian. The space of n × n skew-
symmetric hermitian matrices has dimension n2 over Fq. Indeed, the diagonal
consists of entries in the kernel of the trace; this gives dimension n. The upper
triangular has (n2 − n)/2 entries in Fq2 ; this gives dimension n2 − n. Hence,

|P | = qn
2 |GLn(Fq2)| = q2n

2−n
n∏

i=1

(q2i − 1).

We compute |U(n, n)(Fq)|. For h ∈ U(n, n)(Fq), the map

h 7→ {he1, . . . , he2n}
gives a bijection between U(n, n)(Fq) and the set B(n) of ordered bases
{v1, . . . , v2n} for which the representing matrix of ψ is J . The first vector
v1 has

|I2n| − 1 = q4n−1 + q2n − q2n−1 − 1 = (q2n − 1)(q2n−1 + 1).

choices (Lemma 7.2). For the choices of the companion vector vn+1 with
ψ(vn+1, vn+1) = 0 and ψ(v1, vn+1) = 1, consider the set

Y := {v ∈ V ;ψ(v1, v) = 1}.
Clearly, |Y | = q4n−2. The additive group Fq2 acts on Y by a · v = v + av1 for
a ∈ Fq2 , v ∈ Y . It follows from

ψ(v + av1, v + av1) = ψ(v, v) + ā+ a

that every orbit O(v) contains an isotropic vector v0 and any isotropic vector
in O(v) has the form v0 + av1 with ā+ a = 0. Hence, the vector vn+1 has

|Y | q
q2

= q4n−3

choices. In conclusion, we have proved the recursive formula

|U(n, n)(Fq)| = (q2n − 1)(q2n−1 + 1)q4n−3|U(n− 1, n− 1)(Fq)|.
It follows that

|U(n, n)(Fq)| = q2n
2−n

n∏

i=1

(q2i − 1)(q2i−1 + 1).

Since LU(n, 2n)(Fq) ≃ U(n, n)(Fq)/P , we get |LU(n, 2n)(Fq)| =
∏n
i=1(q2i−1 +

1).
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Abstract. Let Ω be an open set of Cn and T be a positive closed
current of dimension p ≥ 1 on Ω, we define a capacity associated to
T by :

CT (K,Ω) = CT (K) = sup

{∫

K

T ∧ (ddcv)p, v ∈ psh(Ω), 0 < v < 1

}

where K is a compact set of Ω.
We prove, in the same way as Bedford-Taylor, that a locally boun-
ded plurisubharmonic function is quasi-continuous with respect to CT .
In the second part we define the convergence relatively to CT and we
prove that if (uj) is a family of locally uniformly bounded plurisubhar-
monic functions and u is a locally bounded plurisubharmonic function
such that uj → u relatively to CT then T ∧ (ddcuj)

p → T ∧ (ddcu)p

in the current sense.

2000 Mathematics Subject Classification: 32C30 ; 31C10 ; 31A15 ;
32W20.
Keywords and Phrases: courant positif, plurisousharmonique , capa-
cité, operateur de Monge Ampère.

1 Introduction

Soient Ω un ouvert de Cn, K un compact de Ω et T un courant positif fermé
de dimension p ≥ 1 sur Ω. On note psh(Ω) l’ensemble de fonctions plurisou-
harmonique sur Ω et L∞

loc(Ω) l’ensemble de fonctions localement bornées. On
définit la capacité de K (dans Ω) relativement à T par :

CT (K,Ω) = CT (K) = sup

{∫

K

T ∧ (ddcv)p, v ∈ psh(Ω), 0 < v < 1

}

Dans la prémière partie on montre qu’une fonction plurisousharmonique loca-
lement bornée est continue en dehors d’un ouvert de capacité arbitrairement
petite :
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Théorème 1.1 Soient Ω un ouvert borné de Cn, u ∈ psh(Ω) ∩ L∞
loc(Ω) et T

un courant positif fermé sur Ω de dimension p ≥ 1. Alors pour tout ε > 0, il
existe un ouvert O de Ω tel que CT (O,Ω) < ε et u soit continue sur Ω \ O.

Ce résultat est prouvé dans [Be-Ta] pour T = 1. L’intérêt de ce théorème est
dû en partie au résultat suivant, qui constitue une généralisation d’un théorème
de [Be-Ta].

Théorème 1.2 (théorème de Comparaison) Soient Ω un ouvert borné de
Cn, T un courant positif fermé de dimension p ≥ 1 sur Ω, u et v ∈ psh(Ω) ∩
L∞(Ω). Supposons que :

lim inf
ξ→∂Ω

(u(ξ)− v(ξ)) ≥ 0

Alors on a : ∫

{u<v}
T ∧ (ddcv)p ≤

∫

{u<v}
T ∧ (ddcu)p

Dans la deuxième partie on définit la notion de convergence par rapport à CT .
On dit que uj converge vers u par rapport à CT sur E si pour tout δ > 0, on
a :

lim
j→+∞

CT

({
z ∈ E; |uj(z)− u(z)| > δ

}
,Ω
)

= 0

On montre q’une suite de fonctions psh localement bornée décroissante vers
une fonction psh est convergente par rapport à CT :

Théorème 1.3 Soient Ω un ouvert borné de Cn, T un courant positif fermé
sur Ω de dimension p ≥ 1, uj et u des fonctions psh, localement bornées sur Ω
telles que uj = u sur un voisinage de ∂Ω, (uj) décroissante vers u, alors (uj)
converge vers u par rapport à CT .

Comme application nous généralisons des résultats de [Be-Ta] et de [Xi] sur
l’opérateur de Monge-Ampère. Le théorème principale de cette partie est le
suivant :

Théorème 1.4
Soient (uj)j une suite de fonctions psh localement uniformément bornées et
u ∈ psh(Ω) ∩ L∞

loc(Ω), on a :
a) Si uj converge vers u par rapport à CT sur chaque E ⊂⊂ Ω, alors le courant
T ∧ (ddcuj)

p converge au sens des courants vers T ∧ (ddcu)p.
b) Supposons qu’il existe E ⊂⊂ Ω tel que ∀j, uj = u sur Ω\E et que les suites
uT ∧ (ddcuj)

p, ujT ∧ (ddcu)p et ujT ∧ (ddcuj)
p convergent au sens des courants

vers uT ∧ (ddcu)p alors uj converge vers u par rapport à CT sur E.
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2 Capacité associeé a un courant positif fermé

Définition 2.1
Soient Ω un ouvert de Cn, K un compact de Ω et T un courant positif fermé
de dimension p ≥ 1 sur Ω, on définit la capacité de K (dans Ω) relativement à
T par :

CT (K,Ω) = CT (K) = sup

{∫

K

T ∧ (ddcv)p, v ∈ psh(Ω), 0 < v < 1

}

Pour tout E ⊂ Ω, on pose :

CT (E,Ω) = sup{CT (K), K compact, K ⊂ E}

Proposition 2.2
1) Si E est un borélien, on a :

CT (E,Ω) = CT (E) = sup

{∫

E

T ∧ (ddcv)p, v ∈ psh(Ω), 0 < v < 1

}

2) Si E1 ⊂ E2, alors CT (E1,Ω) ≤ CT (E2,Ω).
3) Si E ⊂ Ω1 ⊂ Ω2, alors CT (E,Ω1) ≥ CT (E,Ω2).
4) Si E1, E2 . . . sont des ensembles boréliens dans Ω, on a :

CT

( ⋃

j≥1

Ej ,Ω
)
≤

+∞∑

j=1

CT (Ej ,Ω).

5) Si E1 ⊂ E2 ⊂ · · · sont des ensembles boréliens dans Ω, alors :

CT

( ⋃

j≥1

Ej ,Ω
)

= lim
j→+∞

CT (Ej ,Ω).

6) Si f : Ω1 7→ Ω2 est une fonction holomorphe, propre sur SuppT et O un
ouvert de Ω2, alors :

Cf∗T (O,Ω2) ≤ CT (f−1(O),Ω1)

et l’égalité a lieu si f est un biholomorphisme.

Démonstration. Pour 1)→ 5), on procède comme [Be-Ta] ; pour 6) on sup-
pose que 0 ≤ v ≤ 1 est psh, de classe C∞ sur Ω2, on a :

∫

O
f∗T ∧ (ddcv)p =

∫

Ω2

f∗T ∧ (1lO(ddcv)p)

=

∫

Ω1

T ∧ (1lO ◦ f)(ddc(v ◦ f))p

=

∫

f−1(O)

T ∧ (ddc(v ◦ f))p ≤ CT (f−1(O),Ω1).
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Pour obtenir ces égalités il suffit de remplacer 1lO par une suite de fonctions
de classe C∞ ϕk ↑ 1lO. Dans le cas général, on prend vε ↑ v une régularisation

de v et en utilisant le fait que :

∫

O
f∗T ∧ (ddcv)p ≤ lim

ε→0

∫

O
f∗T ∧ (ddcvε)

p. Si

f est un biholomorphisme, on a de même

CT (f−1(O),Ω1) = Cf−1
∗ (f∗T )(f

−1(O),Ω1) ≤ Cf∗T (O,Ω2).

Dans 6), l’inégalité peut être stricte, en effet si f est l’éclatement de centre 0,
T = [E] le courant d’intégration sur l’ensemble exceptionnel E = f−1(0). �

Problemes ouverts :

1) Si · · · ⊂ K2 ⊂ K1 est une suite décroissante de compacts de Ω, alors d’après
la proposition 2.2, CT (Kj) est décroissante. A-t-on CT (∩Kj) = lim

j→+∞
CT (Kj)?

2) A-t-on l’égalité : C̃T ≡ CT ?, où on a posé

C̃T (K) = sup

{∫

K

T ∧ (ddcv)p, v ∈ psh(Ω, [0, 1]), v|K∩suppT ≡ 0

}

3) Soit K un compact de Ω, existe-t-il u dans psh(Ω, [0, 1]), telle que l’on ait

CT (K) =

∫

K

T ∧ (ddcu)p ?

4) Définition : Un ensemble A ⊂ Ω est dit T−pluripolaire dans Ω si CT (A,Ω) =
0.
A est dit localement T−pluripolaire si, pour tout a dans A, il existe un voisinage
ouvert V de a dans Ω tel que A ∩ V est T−pluripolaire dans V .
Un ensemble localement T−pluripolaire est-il T−pluripolaire dans Ω ?
Caractériser les ensembles T−pluripolaires dans Ω ?

Remarques.

(i) Si T = [X] est le courant d’intégration sur un sous-ensemble analytique
X de dimension pure p, O un ouvert de Ω et RegX l’ensemble des points

réguliers de X. En utilisant l’égalité

∫

O
[X]∧ (ddcv)p =

∫

O∩RegX

(ddc(i∗v))p où

v ∈ psh(Ω, [0, 1]), et i : X →֒ Ω, est l’injection canonique, on a :

O est localement [X]− pluripolaire⇐⇒
RegX ∩ O est localement pluripolaire dans RegX

On remarque que si T est un courant positif fermé de dimension p ≥ 1 et
νT (x) > 0 ∀x ∈ X, alors un ouvert localement T−pluripolaire coupe RegX en
un ouvert localement pluripolaire dans RegX.

(ii) Si w est une fonction psh, bornée et A un borélien T−pluripolaire, alors A
est T ∧ (ddcw)k−pluripolaire pour tout 0 ≤ k ≤ dimT. En effet, il est facile de
voir qu’il existe α > 0 telle que

CT∧(ddcw)k(A,Ω) ≤ αCT (A,Ω).
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En particulier si T = 1, on retrouve le fait que le courant (ddcw)k ne charge
pas les ensembles pluripolaires.

(iii) Soit ϕ ∈ psh(Ω) et localement bornée sur Ω \K où K = {ϕ = −∞}. Alors

CT∧(ddcϕ)k(K) ≥ CT (K)
(
Cddcϕ(K)

)k
.

En effet, on peut supposer que k = 1 et soit v ∈ psh(Ω, [0, 1]). Posons γ =
Cddcϕ(K) et soit ϕj = max(ϕ, γv − j). Alors ϕj ↓ ϕ et ϕj = γv − j sur
Kj = {ϕ ≤ −j}. De plus Kj ↓ K. Soit j0 fixé, alors

∫

Kj0

T ∧ ddcϕ ∧ (ddcv)p−1 ≥ lim sup
j→+∞

∫

Kj0

T ∧ ddcϕj ∧ (ddcv)p−1

≥ lim sup
j→+∞

(∫

Kj

T ∧ ddcϕj ∧ (ddcv)p−1
)

= γ lim sup
j→+∞

∫

Kj

T ∧ (ddcv)p ,

on fait tendre j0 vers +∞ puis on passe au sup sur tout les fonctions v psh
telle que 0 ≤ v ≤ 1.

(iv) Soient π : ∆n 7→ ∆k (k < p) la projection canonique ; v ∈ psh(∆k, [0, 1])
et w ∈ (psh ∩ C∞)(∆n, [0, 1]). D’après [Bm-El], si O ⊂⊂ ∆n, on a :
∫

a∈π(O)

{∫

O
〈T, π, a〉 ∧ (ddcw)p−k

}
(ddcv)k =

∫

O
T ∧ (ddcw)p−k ∧ (ddcṽ)k

≤ 2p

Ck
p
CT (O,∆n)

où ṽ = v ◦π. Par régularisation, l’inégalité reste vraie pour w ∈ psh(∆n, [0, 1]).
Comme π(O) ⊂⊂ ∆k, on a :

∫

a∈π(O)

C〈T,π,a〉(O)(ddcv)k ≤ 2p

Ckp
CT (O,∆n) ,

O est T − pluripolaire =⇒ ∀v, O est 〈T, π, a〉 − pluripolaire
(ddcv)k − p.p

=⇒ ∃N pluripolaire de π(O) tel que ∀a 6∈ N,
O est 〈T, π, a〉 − pluripolaire .

La réciproque est fausse, il suffit de prendre le courant T = (ddc|z′|2)p.

Le résultat suivant est une conséquencce directe de l’inégalité de Cauchy-
Schwarz qui sera utile dans la suite.

Proposition 2.3 Soient u1, u2, v1, v2, w1, . . . , wp−1 dans psh(Ω) ∩ L∞
loc(Ω) et

T un courant positif fermé sur Ω de dimension p ≥ 1. Supposons que {u1 6=
u2} ⊂⊂ Ω et soit 0 ≤ ψ ∈ D(Ω), ψ = 1 sur {u1 6= u2}. Alors on a :
(∫

Ω

d(u1 − u2) ∧ dc(v1 − v2) ∧ χ
)2

≤
(∫

Ω

d(u1 − u2) ∧ dc(u1 − u2) ∧ χ
)
.

(∫

Ω

ψd(v1 − v2) ∧ dc(v1 − v2) ∧ χ
)
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où χ = T ∧ ddcw1 ∧ . . . ∧ ddcwp−1

Démonstration. On remarque que l’application (u, v) 7→
∫
Ω
ψdu∧dcv∧χ est

une forme bilinéaire symétrique et positive sur C∞(Ω)×C∞(Ω). La proposition
2.3 se justifie alors par application de l’inégalité de Cauchy-Schwarz au couple
(u1 − u2, v1 − v2) où ui, vi ∈ psh(Ω) ∩ C∞(Ω). Dans le cas général, on procède
par régularisation. �

Théorème 2.4 Soient Ω un ouvert borné de Cn, T un courant positif fermé
sur Ω de dimension p ≥ 1, uj et u des fonctions psh, localement bornées sur
Ω telles que uj = u sur un voisinage de ∂Ω, (uj) décroissante vers u, alors
∀ δ > 0 on a :

lim
j→+∞

CT

(
{z ∈ Ω, uj(z) > u(z) + δ}

)
= 0 .

Démonstration. Sans perte de généralité, on peut supposer que δ = 1.
Posons Ωj = {z ∈ Ω, uj(z) > u(z) + 1} et choisissons un ouvert W de sorte
que {uj 6= u} ⊂ W ⊂⊂ Ω. Soit v ∈ psh(Ω, [0, 1]), on a :

∫

Ωj

T ∧(ddcv)p ≤
∫

W
(uj−u)T ∧(ddcv)p = −

∫

W
d(uj−u)∧dcv∧T ∧(ddcv)p−1.

D’après la proposition 2.3, l’intégrale à droite est majorée par

C
( ∫

W
d(uj − u) ∧ dc(uj − u) ∧ T ∧ (ddcv)p−1

) 1
2 ,

où C = (
∫
W T ∧ dv ∧ dcv ∧ (ddcv)p−1)

1
2 ≤ M < ∞ et M est une constante

indépendante de v d’après l’inégalité de Chern.Levine.Nirenberg (cf.[C.L.N]).
Appliquons encore une fois la formule de Stokes, on obtient

∫

W
d(uj − u) ∧ dc(uj − u) ∧ T ∧ (ddcv)p−1

= −
∫

W
(uj − u)T ∧ ddc(uj − u) ∧ (ddcv)p−1

=

∫

W
(u− uj)T ∧ (ddcuj − ddcu) ∧ (ddcv)p−1

≤
∫

W
(uj − u)T ∧ ddcu ∧ (ddcv)p−1

Il s’ensuit alors :
∫

Ωj

T ∧ (ddcv)p ≤ C(

∫

W
(uj − u)T ∧ ddcu ∧ (ddcv)p−1)

1
2

La puissance de ddcv diminue de 1, on répéte ensuite le procédé (p−1)-fois, dans
chaque étape en majorant (u−uj)ddc(uj−u) par (uj−u)ddcu et en appliquant
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la proposition 2.3, on obtient finalement une majoration de

∫

Ωj

T∧(ddcv)p par :

B
(∫

Ω

(uj − u)T ∧ (ddcu)p
) 1

2p

,

où B est une constante indépendante de j et de v.
Donc lim

j→+∞
CT (Ωj) = 0. �

Comme conséquence du théorème 2.4, on montre qu’une fonction psh, locale-
ment bornée sur un ouvert borné Ω est continue si on retire de Ω un ouvert O
de capacité CT−arbitrairement petite. Plus précisement, on a

Théorème 2.5 Soient Ω un ouvert borné de Cn, u ∈ psh(Ω) ∩ L∞
loc(Ω) et T

un courant positif fermé sur Ω de dimension p ≥ 1. Alors pour tout ε > 0, il
existe un ouvert O de Ω tel que CT (O,Ω) < ε et u soit continue sur Ω \ O.

Démonstration. D’après 3) et 4) de la proposition 2.2, on peut supposer que
Ω = {ρ < 0} est strictement pseudoconvexe et u bornée au voisinage de Ω. Soit
(uj) une suite de fonctions psh, de classe C∞ qui décroit vers u dans un voisinage
de Ω. Par rétrécissement de Ω et en remplaçant uj par max(uj , Aρ + B) et u
par max(u,Aρ + B), on peut supposer que uj = u = Aρ + B au voisinage de
∂Ω pour A et B > 0 convenablement choisis (pour plus de détails voir [Be-Ta]).
D’après le théorème 2.4, pour tout l ∈ N∗, il existe jl tel que :

O′
l = {ujl > u+ 1/l} ⊂ Ω ; CT (O′

l) < 2−l .

Fixons un entier k tel que 2−k < ε et posons : Gk = ∪l≥kO′
l . La suite (ujl) est

décroissante vers u uniformément sur Ω \ Gk, donc u est continue sur Ω \ Gk
et d’après 3) de la proposition 2.2, on obtient
CT (Gk,Ω) ≤∑l≥k CT (O′

l,Ω) < 2−k < ε �

Remarques.

1) Si X est un sous-ensemble analytique, alors le théorème classique de [Be-
Ta] ne donne aucune information sur la régularité de la fonction u sur X (i.e u
peut être discontinue sur X tout entier). En appliquant 2.5 au courant T = [X],
nous obtenons un résultat plus précis : u est continue sur X privé de l’ensemble
O ∩X qui est de volume arbitrairement petit dans X.

2) Le théorème 2.5 est faux si on enlève l’hypothèse u ∈ L∞
loc(Ω), et ce au vu

du contre-exemple suivant :

Ω = ∆2 ⊂ C2; T = [z1 = 0]; u(z1, z2) = log |z1| .

3) Si l’on suppose de plus que T est assez régulier, c’est-à-dire pour tout u psh

lim
j→+∞

CT

({
u < −j

}
,Ω
)

= 0 ,
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comme c’est le cas des courants à coéfficients localement bornés, alors on peut
généraliser 2.5 pour u seulement psh sur Ω.

L’intérêt du théorème 2.5 est dû en partie au résultat suivant, qui constitue
une généralisation d’un théorème de [Be-Ta].

Théorème 2.6 (théorème de Comparaison) Soient Ω un ouvert borné de
Cn, T un courant positif fermé de dimension p ≥ 1 sur Ω, u et v ∈ psh(Ω) ∩
L∞(Ω). Supposons que :

lim inf
ξ→∂Ω

(u(ξ)− v(ξ)) ≥ 0

Alors on a : ∫

{u<v}
T ∧ (ddcv)p ≤

∫

{u<v}
T ∧ (ddcu)p

Démonstration. On commence d’abord par l’étude du cas où u et v sont
continues. Quitte à travailler sur l’ouvert {u < v}, on peut supposer que Ω =
{u < v} et u = v sur ∂Ω. Soit vε = max(v − ε, u), vε = u dans un voisinage de
∂Ω.
D’après Stokes, on a :

∫

Ω

T ∧ (ddcvε)
p =

∫

Ω

T ∧ (ddcu)p

quand ε ց 0, vε converge uniformement vers v, donc T ∧ (ddcvε)
p converge

faiblement vers T ∧ (ddcv)p. Soit (ϕn)n∈N une suite dans D(Ω) qui croit vert
la fonction caracteristique de Ω, on trouve :

∫

Ω

ϕnT ∧ (ddcvε)
p ≤

∫

Ω

T ∧ (ddcvε)
p =

∫

Ω

T ∧ (ddcu)p

On finit la preuve en faisant ε→ 0 et n→ +∞ dans cet ordre.
Nous étudions maintenant le cas général. Quitte à remplacer u par u + 2δ et
faire tendre δ vers 0, on peut supposer que :

lim inf
ξ→∂Ω

(u(ξ)− v(ξ)) ≥ 2δ > 0

Dans ce cas, il existe un ouvert O ⊂⊂ Ω tel que : u(z) ≥ v(z) + δ pour tout
z ∈ Ω \ O. Choisissons deux suites de fonctions uk et vj Psh, de classe C∞ qui
décroissent respectivement vers u et v dans un voisinage de O et de sorte que
pour tout j ≥ k, on a uk ≥ vj sur ∂O. D’après ce qui précède, on a :

∫

{uk<vj}
T ∧ (ddcvj)

p ≤
∫

{uk<vj}
T ∧ (ddcuk)p (2.6.1)

Soit ε > 0 et G un ouvert de Ω, tel que CT (G,Ω) < ε et u, v sont continues sur
Ω \G (cf 2.5). On peut écrire v = ϕ+ ψ où ϕ est continue sur Ω et ψ = 0 sur
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Ω \G.
Soit l’ouvert U = {uk < ϕ}, on a :

∫

U

T ∧ (ddcv)p ≤ lim
j→+∞

∫

U

T ∧ (ddcvj)
p (2.6.2)

Comme U ∪G = {uk < v} ∪G, on a :
∫

{uk<v}
T ∧ (ddcv)p ≤

∫

U

T ∧ (ddcv)p +

∫

G

T ∧ (ddcv)p

≤ lim
j→+∞

∫

U

T ∧ (ddcvj)
p +

∫

G

T ∧ (ddcv)p

≤ lim
j→+∞

(∫

{uk<vj}
T ∧ (ddcvj)

p +

∫

G

T ∧ (ddcvj)
p
)

+

∫

G

T ∧ (ddcv)p

≤ lim
j→+∞

∫

{uk<vj}
T ∧ (ddcvj)

p + 2Mpε

≤ lim
j→+∞

∫

{uk<vj}
T ∧ (ddcuk)p + 2Mpε.

La 2ème inégalité résulte de (2.6.2). Comme U ⊂ {uk < vj} ∪G, on obtient la
3ème inégalité. La 4ème résulte du fait que CT (G,Ω) < ε, tandis que la dernière
inégalité se justifie par (2.6.1).
Comme {uk < vj} ↓ {uk ≤ v},{uk < v} ↑ {u < v}, on obtient :

∫

{u<v}
T ∧ (ddcv)p ≤ lim

k→+∞

∫

{uk≤v}
T ∧ (ddcuk)p + 2Mpε (2.6.3)

Les fonctions u et v sont continues sur Ω \ G, donc {u ≤ v} \ G est un fermé

de Ω. Il s’ensuit alors :

∫

{u≤v}\G
T ∧ (ddcu)p ≥ lim

k→+∞

∫

{u≤v}\G
T ∧ (ddcuk)p.

On a alors :
∫

{u≤v}
T ∧ (ddcu)p ≥

∫

{u≤v}\G
T ∧ (ddcu)p

≥ lim
k→+∞

∫

{u≤v}\G
T ∧ (ddcuk)p

≥ lim
k→+∞

(∫

{uk<v}
T ∧ (ddcuk)p −

∫

G

T ∧ (ddcuk)p
)

≥ lim
k→+∞

∫

{uk<v}
T ∧ (ddcuk)p −Mpε

La 3ème inégalité se justifie par l’inclusion {uk < v} \G ⊂ {u < v} \G.
D’après (2.6.3), on obtient :

∫

{u<v}
T ∧ (ddcv)p ≤

∫

{u≤v}
T ∧ (ddcu)p + 3Mpε
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Comme ε est arbitraire, on en déduit l’inégalité
∫

{u<v}
T ∧ (ddcv)p ≤

∫

{u≤v}
T ∧ (ddcu)p

Pour achever la preuve, il suffit de remplaçer u par u + η et d’utiliser le fait
que {u+ η < v} ↑ {u < v} si η ↓ 0 et que {u+ η ≤ v} ↑ {u < v} si η ↓ 0. �

Remarque. Ce théorème reste vrai si on suppose que u et v sont dans
psh(Ω) ∩ L∞(Ω \ K) avec K = {v = −∞} ⊂ {u = −∞} ⊂⊂ Ω. En effet :
On suppose d’abord que u et v sont continues sur Ω \ {v = −∞}. Soient
us = max(u,−s); vs = max(v,−s), alors pour s ≫, us = u, vs = v au voisi-
nage de ∂Ω. D’après 2.6, on a

∫

{us<vs}
T ∧ (ddcvs)

p ≤
∫

{us<vs}
T ∧ (ddcus)

p

Comme {us < vs} = {u < v} \ {v ≤ −s} ↑ {u < v} \K, on a
∫

{u<v}\K
T ∧ (ddcv)p ≤ lim

s→+∞

∫

{us<vs}
T ∧ (ddcvs)

p

D’autre part, l’ensemble {us < vs} ⊂ Fs = {u ≤ v} \ {v < −s} est un fermé de
Ω et vu que Fs ↑ {u ≤ v} \K, on obtient

lim
s→+∞

∫

{us<vs}
T ∧ (ddcus)

p ≤ lim
s→+∞

∫

Fs

T ∧ (ddcus)
p ≤

∫

{u≤v}\K
T ∧ (ddcu)p

Le résultat se déduit aisément, en remplaçant u par u+ η et en faisant tendre
η vers 0. Le cas général se traite par régularisation des fonctions u et v. �

Corollaire 2.7 (principe de domination) Soient Ω un ouvert borné de Cn,
u et v ∈ psh(Ω) ∩ L∞(Ω). Supposons que :
i) lim

ξ→∂Ω
inf(u(ξ)− v(ξ)) ≥ 0 ;

ii) T ∧ (ddcu)p ≤ T ∧ (ddcv)p ;
Alors u ≥ v en dehors d’un ensemble ‖T‖−négligeable.

Démonstration. Sans perte de génératité, on peut supposer que Ω = {ρ <
0} où ρ est une fonction C∞, strictement psh qui définie Ω. Supposons que
‖T‖

(
{u < v}

)
> 0, alors il existe ε > 0 tel que ‖T‖

(
{u < v+ ερ}

)
> 0. D’après

2.6, on a :
∫

{u<v+ερ}
T ∧ (ddcv + ερ)p ≤

∫

{u<v+ερ}
T ∧ (ddcu)p ≤

∫

{u<v+ερ}
T ∧ (ddcv)p

D’où :

εp
∫

{u<v+ερ}
T ∧ (ddcρ)p +

∫

{u<v+ερ}
T ∧ (ddcv)p ≤

∫

{u<v+ερ}
T ∧ (ddcv)p
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cela se contredit avec le fait que ‖T‖
(
{u < v + ερ}

)
> 0. �

Application. Dans plusieurs problèmes on est amené a contrôler la masse

d’un produit de Monge-Ampere mixte (

∫

Ω

T ∧ (ddcu)j ∧ (ddcv)p−j) par celles

des produits homogènes (

∫

Ω

T ∧ (ddcu)p et

∫

Ω

T ∧ (ddcv)p), en appliquant le

théorème de comparaison on a réussit à faire ça dans certains cas (Proposition
2.9).

Soit ϕ une fonction continue, psh sur Ω et semi-exhaustive sur SuppT i.e il
existe un nombre réel R tel que B(R) ∩ SuppT ⊂⊂ Ω, où B(R) = {ϕ < R}.
Pour r ∈ ]−∞, R[, on note :

B(r) = {z ∈ Ω;ϕ(z) < r}, S(r) = {z ∈ Ω;ϕ(z) = r}, ϕr = max(ϕ, r)

L’application r 7→ T ∧(ddcϕr)
p, à valeurs dans l’espace des mesures sur Ω muni

de la topologie faible, est continue sur ]−∞, R[. Comme la mesure T ∧(ddcϕr)
p

est nulle sur B(r) et cöıncide avec T ∧ (ddcϕ)p sur Ω \B(r), on peut associer à
T et ϕ une collection de mesure positives µT,ϕ,r portées par les ensembles S(r)
de la façon suivante :

µT,ϕ,r = T ∧ (ddcϕr)
p − 1lΩ\B(r)T ∧ (ddcϕ)p

Si ϕ est de classe C∞ et r une valeure régulière de ϕ, µT,ϕ,r = T ∧ (ddcϕ)p−1 ∧
dcϕ|S(r). Pour s > r, on a :

∫

B(s)

(
T ∧ (ddcϕr)

p − T ∧ (ddcϕ)p
)

= 0. Donc la

masse totale µT,ϕ,r(S(r)) = µT,ϕ,r(B(s)) cöıncide avec la différence entre les
masses de T ∧ (ddcϕ)p et 1lΩ\B(r)T ∧ (ddcϕ)p sur B(s) i.e :

µT,ϕ,r(S(r)) = µT,ϕ,r(B(s)) =

∫

B(r)

T ∧ (ddcϕ)p

On remarque que si r → r−0 (r0 < R), alors 1lΩ\B(r) converge simplement vers
1lΩ\B(r0). Ceci veut dire que l’application r 7→ µT,ϕ,r est continue faiblement à
gauche.

Pour montrer la Proposition 2.9 on a besoin du lemme suivant

Lemme 2.8 Soit ψ une fonction psh, négative et continue sur Ω, alors pour
tout s ≥ 1, (−ψ)s est µT,ϕ,r−intégrable et on a :

µT,ϕ,r((−ψ)s) =

∫

B(r)

(−ψ)sT ∧ (ddcϕ)p

+

∫

B(r)

(r − ϕ)T ∧ ddc(−ψ)s ∧ (ddcϕ)p−1
(2.8.1)
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Preuve. On procède comme Demailly (cf.[De]). On suppose d’abord que ϕ et
ψ sont de classe C∞, alors comme les deux membres de (2.8.1) sont continus à
gauche, il suffit d’appliquer la formule de Stokes en utilisant l’égalité µT,ϕ,r =
T ∧ (ddcϕ)p−1 ∧ dcϕ|S(r) pour r une valeure régulière de ϕ. Si ϕ est continue
et ψ de classe C∞, on prend ϕk ↓ ϕ psh, de classe C∞. Pour ϕk, on a :

µT,ϕk,r((−ψ)s)−

Z

ϕk<r

(−ψ)s
T ∧(ddc

ϕk)p =

Z

ϕk<r

(r−ϕk)T ∧ddc(−ψ)s∧(ddc
ϕk)p−1

On vérifie aisément que la suite T ∧ddc(−ψ)s∧(ddcϕk)p−1 converge faiblement
vers T ∧ ddc(−ψ)s ∧ (ddcϕ)p−1, et que 1lB(r)(r − ϕ) est une fonction continue

à support compact. Il en résulte que l’intégrale

∫

ϕk<r

(r − ϕk)T ∧ ddc(−ψ)s ∧

(ddcϕk)p−1 converge vers

∫

B(r)

(r−ϕ)T∧ddc(−ψ)s∧(ddcϕ)p−1. De plus, d’après

la définition de µT,ϕk,r, on a :

µT,ϕk,r((−ψ)s)−

Z

ϕk<r

(−ψ)s
T ∧ (ddc

ϕk)p =

Z

Ω

(−ψ)s

„

T ∧ (ddc
ϕk,r)

p−T ∧ (ddc
ϕk)p

«

où ϕk,r = max(ϕk, r). Comme (T ∧ (ddcϕk,r)
p − T ∧ (ddcϕk)p) est à support

dans le compact B(r), il s’ensuit que l’intégrale

∫

Ω

(−ψ)s
(
T ∧ (ddcϕk,r)

p − T ∧ (ddcϕk)p
)

converge vers

∫

Ω

(−ψ)s
(
T ∧(ddcϕr)

p−T∧(ddcϕ)p
)

= µT,ϕ,r((−ψ)s)−
∫

B(r)

(−ψ)sT ∧(ddcϕ)p.

Supposons maintenant que ϕ et ψ sont continues et choisissons ψk ↓ ψ psh, de
classe C∞, d’après ce qui précède, on a :

µT,ϕ,r((−ψk)s) −

Z

B(r)

(−ψk)s
T ∧ (ddc

ϕ)p =

Z

B(r)

(r − ϕ)T ∧ ddc(−ψk)s ∧ (ddc
ϕ)p−1

Le terme à gauche cöıncide avec

∫

Ω

(−ψk)s(T ∧ (ddcϕr)
p−T ∧ (ddcϕ)p) ; cette

intégrale converge vers

∫

Ω

(−ψ)s(T ∧ (ddcϕr)
p − T ∧ (ddcϕ)p) par application

du théorème de la convergence monotone. D’autre part, puisque la fonction
1lB(r)(r−ϕ) est continue à support compact et la suite T∧ddc(−ψk)s∧(ddcϕ)p−1

converge faiblement vers T ∧ddc(−ψ)s∧(ddcϕ)p−1, on en déduit que l’intégrale∫

B(r)

(r − ϕ)T ∧ ddc(−ψk)s ∧ (ddcϕ)p−1 converge vers l’intégrale
∫

B(r)

(r − ϕ)T ∧ ddc(−ψ)s ∧ (ddcϕ)p−1. �
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Proposition 2.9 Soient Ω un ouvert borné de Cn, T un courant positif fermé
de dimension p ≥ 1, u et v ∈ psh(Ω), continues sur Ω. On suppose que :
lim
z→∂Ω

u(z) = lim
z→∂Ω

v(z) = 0 et que
∫
Ω
T ∧

(
(ddcu)p + (ddcv)p

)
<∞ ;

Alors pour tout s ≥ 1, 0 ≤ j ≤ p on a :
∫

Ω

(−u)sT ∧ (ddcu)j ∧ (ddcv)p−j ≤ Dj,s

(∫

Ω

(−u)sT ∧ (ddcu)p
) s+j

s+p

(∫

Ω

(−v)sT ∧ (ddcv)p
) p−j

s+p

Avec Dj,s = s
(s+j)(p−j)

s−1 si s > 1 et Dj,1 = exp{(1 + j)(p− j)}.

Démonstration. On reprend la démonstration de [Ce-Pe], on montre d’abord

que :

∫

Ω

T ∧ (ddc(u + v))p < ∞. En effet : soient µ = T ∧ (ddc(u + v))p, avec

1 < α < 2 tels que µ{u = αv} = 0. D’après le théorème 2.6, on a :

µ(Ω) =

∫

Ω

T ∧ (ddc(u+ v))p

=

∫

{ 1+α
α u<u+v}

T ∧ (ddc(u+ v))p +

∫

{(1+α)v<u+v}
T ∧ (ddc(u+ v))p

≤ ( 1+α
α )p

∫

Ω

T ∧ (ddcu)p + (1 + α)p
∫

Ω

T ∧ (ddcv)p

≤ 3p
∫

Ω

T ∧
(
(ddcu)p + (ddcv)p

)
< +∞

En appliquant le lemme précédent au courant R = T ∧ (ddcv)j , on a :

µR,u,−ε((−v)p) =

∫

B(−ε)
(−v)sR ∧ (ddcu)p−j

+

∫

B(−ε)
(−ε− u)R ∧ (ddc(−v)s) ∧ (ddcu)p−j−1

De plus, on a :

0 ≤ µR,u,−ε((−v)s) ≤ sup{u=−ε}
{

(−v(z))s
}∫

Ω

R ∧ (ddcu)p−j

= sup{u=−ε}
{

(−v(z))s
}∫

Ω

T ∧ (ddcu)p−j ∧ (ddcv)j

≤ sup{u=−ε}
{

(−v(z))s
}∫

Ω

T ∧ (ddc(u+ v))p

D’après l’hypothèse sur u et v et le lemme, on en déduit alors,

0 = lim
ε→0

µR,u,−ε((−v)p) =

∫

Ω

(−v)sT ∧ (ddcv)j ∧ (ddcu)p−j

+

∫

Ω

(−u)T ∧ (ddc(−v)s) ∧ (ddcu)p−j−1 ∧ (ddcv)j
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Par application de l’inégalité de Hölder, on obtient
∫

Ω

(−v)sT ∧ (ddcv)j ∧ (ddcu)p−j

=

∫

Ω

uddc(−v)s ∧ T ∧ (ddcv)j ∧ (ddcu)p−j−1

= s(s− 1)

∫

Ω

u(−v)s−2T ∧ (ddcv)j ∧ (ddcu)p−j−1 ∧ dv ∧ dcv

+ s

∫

Ω

(−u)(−v)s−1T ∧ (ddcv)j+1 ∧ (ddcu)p−j−1

≤ s

∫

Ω

(−u)(−v)s−1T ∧ (ddcv)j+1 ∧ (ddcu)p−j−1

≤
(
s

∫

Ω

(−u)sT ∧ (ddcv)j+1 ∧ (ddcu)p−j−1
) 1

s

(
s

∫

Ω

(−v)sT ∧ (ddcv)j+1 ∧ (ddcu)p−j−1
) s−1

s

En prenant le logarithme, on obtient :
xj ≤ s−1

s xj+1 + 1
syp−j−1 + log s ; yj ≤ s−1

s yj+1 + 1
sxp−j−1 + log s. où :

xj = log

∫

Ω

(−u)sT ∧ (ddcu)j ∧ (ddcv)p−j

yj = log

∫

Ω

(−v)sT ∧ (ddcv)j ∧ (ddcu)p−j

Le reste de la démonstration est réduit à un problème de résolution d’un
système linéaire (cf.[Ce-Pe]). �

3 Convergence par rapport à CT et operateur de monge-ampère

Dans cette partie nous introduisons la notion de la convergence par rapport à
la capacité CT . Comme application nous généralisons des résultats de [Be-Ta]
et de [Xi] sur l’opérateur de Monge-Ampère.

Définition 3.1 Soient T un courant positif fermé de dimension p ≥ 1 sur un
ouvert Ω de Cn et E ⊂ Ω. On dit que uj converge vers u par rapport à CT sur
E si pour tout δ > 0, on a :

lim
j→+∞

CT

({
z ∈ E; |uj(z)− u(z)| > δ

}
,Ω
)

= 0

Théorème 3.2
Soient (uj)j une suite de fonctions psh localement uniformément bornées et
u ∈ psh(Ω) ∩ L∞

loc(Ω), on a :
a) Si uj converge vers u par rapport à CT sur chaque E ⊂⊂ Ω, alors le courant
T ∧ (ddcuj)

p converge au sens des courants vers T ∧ (ddcu)p.
b) Supposons qu’il existe E ⊂⊂ Ω tel que ∀j, uj = u sur Ω\E et que les suites
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uT ∧ (ddcuj)
p, ujT ∧ (ddcu)p et ujT ∧ (ddcuj)

p convergent au sens des courants
vers uT ∧ (ddcu)p alors uj converge vers u par rapport à CT sur E.

Remarques.

1) Si T = 1 ou T = ddc|z|2, on retrouve un résultat de Xing (cf.[Xi]).

2) a) constitue encore une généralisation d’un résultat de [Be-Ta], dans le cas
où la suite (uj)j est décroissante vers u. En effet on montre dans ce cas (cf
théorème2.4) que uj converge vers u par rapport à la capacité CT .

3) Dans b), si on suppose de plus que u ≥ uj ∀j (en particulier si uj ↑ u),
on peut conclure sans utiliser la convergence faible des suites uT ∧ (ddcuj)

p et
ujT ∧(ddcuj)

p. Dans la démonstration de b), on peut en effet utiliser l’inégalité
ddc(u− uj) ≤ ddcu à la place de ddc(uj − u) ≤ ddc(u+ uj).

Démonstration. On procède comme dans [Xi].
a). On raisonne par récurrence sur l’entier p. Le cas p = 1 se déduit si on
montre que ujT converge faiblement vers uT.
Soit ϕ ∈ Dp,p(Ω), suppϕ ⊂ Ω1 ⊂⊂ Ω, alors :

∣∣
∫

Ω

(ujT − uT ) ∧ ϕ
∣∣ ≤ C

∫

Ω1

|uj − u|T ∧ βp

= C

∫

{|uj−u|≤δ}∩Ω1

|uj − u|T ∧ βp

+ C

∫

{|uj−u|>δ}∩Ω1

|uj − u|T ∧ βp

≤ Cδ‖T‖Ω1
+ C‖uj − u‖∞

∫

{|uj−u|>δ}∩Ω1

T ∧ βp

≤ Cδ‖T‖Ω1
+MCT

{
z ∈ Ω1; |uj(z)− u(z)| > δ

}

Comme δ est arbitraire, M est indépendante de j et uj converge vers u par
rapport à la capacité CT sur Ω1, on a donc le résultat pour p = 1. On suppose
que T ∧ (ddcuj)

s converge faiblement vers T ∧ (ddcu)s(s < p), et montrons que
ujT ∧ (ddcuj)

s converge faiblement vers uT ∧ (ddcu)s.
Pour tout ε > 0, il existe d’après le théorème2.5 un ouvertO tel que CT (O,Ω) <
ε, u = φ+ ψ où φ est continue sur Ω et ψ = 0 sur Ω \ O.

ujT ∧ (ddcuj)
s − uT ∧ (ddcu)s = (uj − u)T ∧ (ddcuj)

s

+ ψ
(
T ∧ (ddcuj)

s − T ∧ (ddcu)s
)

+ φ
(
T ∧ (ddcuj)

s − T ∧ (ddcu)s
)

= (1) + (2) + (3)

(3) tend faiblement vers 0 par l’hypothèse de récurrence et le fait que φ est
continue.
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Pour (1), soit ϕ ∈ Dp−s,p−s(Ω), suppϕ ⊂ Ω1 ⊂⊂ Ω, alors :

∣∣
∫

Ω

(uj − u)T ∧ (ddcuj)
s ∧ ϕ

∣∣ ≤ C
∫

Ω1

|uj − u|T ∧ (ddcuj)
s ∧ (ddc|z|2)p−s

≤ C
∫

Ω1

|uj − u|T ∧
(
ddc(uj + |z|2)

)p

= C

∫

{|uj−u|>δ}∩Ω1

uj − u|T ∧
(
ddc(uj + |z|2)

)p

+ C

∫

{|uj−u|≤δ}∩Ω1

uj − u|T ∧
(
ddc(uj + |z|2)

)p

≤ A
∫

{|uj−u|>δ}∩Ω1

T ∧
(
ddc(uj + |z|2)

)p
+ δM‖T‖Ω1

≤ A1CT
{
z ∈ Ω1; |uj(z)− u(z)| > δ

}
+ δM‖T‖Ω1

Comme uj est une suite localement uniformément bornée, A1 et M ne
dépendent pas de j, on a (1) converge faiblement vers 0.
On raisonne de même pour (2), on a :

∫

Ω1∩O
ψT ∧ (ddcuj)

s ∧ βp−s ≤ B

∫

Ω1∩O
T ∧

(
ddc(uj + |z|2)

)p

≤ B1CT (O,Ω) ≤ εB1

De même :

∫

Ω1∩O
ψT ∧ (ddcu)s ∧ βp−s ≤ B2ε.

b) Soient Ω′ un ouvert tel que E ⊂⊂ Ω′ ⊂⊂ Ω, w ∈ psh(Ω, [0, 1]) et δ > 0.
D’après Stokes et l’inégalité de Cauchy-Shawrz, on obtient :

∫

{|uj−u|>δ}
T ∧ (ddcw)p

≤ 1
δ2

∫

Ω′
(uj − u)2T ∧ (ddcw)p

= −1
δ2

∫

Ω′
T ∧ d(uj − u)2 ∧ dcw ∧ (ddcw)p−1

≤ A1

(∫

Ω′
T ∧ d(uj − u)2 ∧ dc(uj − u)2 ∧ (ddcw)p−1

) 1
2

≤ 2A1A2

(∫

Ω′
T ∧ d(uj − u) ∧ dc(uj − u) ∧ (ddcw)p−1

) 1
2

où l’on a posé A1 = 1
δ2

∫
Ω′ T ∧ dw ∧ dcw ∧ (ddcw)p−1 < ∞ (cf.[C.L.N]) et

A2 = ‖uj − u‖∞ <∞.
En appliquant encore (p− 1)−fois la formule de Stokes, l’inégalité de Cauchy-
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Schwarz et en utilisant l’inégalité ddc(uj − u) ≤ ddc(uj + u), on trouve :
∫

Ω′
T ∧ d(uj − u) ∧ dc(uj − u) ∧ (ddcw)p−1

=

∫

Ω′
T ∧ d(uj − u) ∧ dcw ∧ ddc(uj − u) ∧ (ddcw)p−2

≤ B
(∫

Ω′
T ∧ d(uj − u) ∧ dc(uj − u) ∧ ddc(uj + u) ∧ (ddcw)p−2

) 1
2

≤ B1

(∫

Ω′
T ∧ d(uj − u) ∧ dc(uj − u) ∧

(
ddc(uj + u)

)p−1
) 1

2p

≤ B2

(∫

Ω′
T ∧ d(uj − u) ∧ dc(uj − u) ∧

p−1∑

k=0

(ddcuj)
p−k−1 ∧ (ddcu)k

) 1
2p

= B2

(∫

Ω′
(uj − u)T ∧ (ddcuj − ddcu) ∧

p−1∑

k=0

(ddcuj)
p−k−1 ∧ (ddcu)k

) 1
2p

= B2

(∫

Ω′
(uj − u)

(
T ∧ (ddcuj)

p − T ∧ (ddcu)p
)) 1

2p

où la constante B2 est indépendante de j et de w. Comme u = uj sur Ω′ \ E
et uT ∧ (ddcuj)

p, ujT ∧ (ddcu)p, ujT ∧ (ddcuj)
p converge vers la même limite

uT ∧ (ddcu)p, on obtient : lim
j→+∞

∫

Ω′
(uj − u)(T ∧ (ddcuj)

p − T ∧ (ddcu)p) = 0

Il en résulte que : CT (|uj − u| > δ,Ω) = 0 �
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