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Abstract. Let K/k be a finite Galois extension of global function
fields of characteristic p. Let CK denote the smooth projective curve
that has function field K and set G := Gal(K/k). We conjecture a
formula for the leading term in the Taylor expansion at zero of the
G-equivariant truncated Artin L-functions of K/k in terms of the
Weil-étale cohomology of Gm on the corresponding open subschemes
of CK . We then prove the ℓ-primary component of this conjecture for
all primes ℓ for which either ℓ 6= p or the relative algebraic K-group
K0(Zℓ[G], Qℓ) is torsion-free. In the remainder of the manuscript
we show that this result has the following consequences for K/k: if
p ∤ |G|, then refined versions of all of Chinburg’s ‘Ω-Conjectures’ in
Galois module theory are valid; if the torsion subgroup of K× is a
cohomologically-trivial G-module, then Gross’s conjectural ‘refined
class number formula’ is valid; if K/k satisfies a certain natural class-
field theoretical condition, then Tate’s recent refinement of Gross’s
conjecture is valid.
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11R65 19A31 19B28

1. Introduction

Let K/k be a finite Galois extension of global function fields of characteristic p.
Let CK be the unique geometrically irreducible smooth projective curve which
has function field equal to K and set G := Gal(K/k). For each finite non-empty
set S of places of k that contains all places which ramify in K/k, we write OK,S

for the subring of K consisting of those elements that are integral at all places
of K which do not lie above an element of S and we set UK,S := Spec(OK,S).
With R denoting either Z or Zℓ for some prime ℓ and E an extension field
of the field of fractions of R, we write K0(R[G], E) for the relative algebraic
K-group defined by Swan in [46].
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In §2 we formulate a conjectural equality C(K/k) between an element of
K0(Z[G], R) constructed from the leading term in the Taylor expansion at
s = 0 of the G-equivariant Artin L-function of UK,S and the refined Euler
characteristic of a pair comprising the Weil-étale cohomology of Gm on UK,S

(considered as an object of an appropriate derived category) and a natural log-
arithmic regulator mapping. This conjecture is motivated both by the general
approach described by Lichtenbaum in [40, §8] and also by analogy to a spe-
cial case of the equivariant refinement of the Tamagawa Number Conjecture of
Bloch and Kato (which was formulated by Flach and the present author in [13]).
The equality C(K/k) can be naturally reinterpreted as a conjectural equality
in K0(Z[G], Q) involving the leading term at t = 1 of the G-equivariant Zeta-
function of UK,S and in §3 we shall prove the validity, resp. the validity modulo
torsion, of the projection of the latter conjectural equality to K0(Zℓ[G], Qℓ) for
all primes ℓ 6= p, resp. for ℓ = p (this is Theorem 3.1). If ℓ 6= p, then our proof
combines Grothendieck’s formula for the Zeta-function in terms of the action
of frobenius on ℓ-adic cohomology together with a non-commutative generali-
sation of a purely algebraic observation of Kato in [35] (this result may itself be
of some independent interest) and an explicit computation of certain Bockstein
homomorphisms in ℓ-adic cohomology. In the case that ℓ = p we are able to
deduce our result from Bae’s verification of the ‘Strong-Stark Conjecture’ [3]
which in turn relies upon results of Milne [43] concerning relations between
Zeta-functions and p-adic cohomology.
In the remainder of the manuscript we show that C(K/k) provides a universal
approach to the study of several well known conjectures. A key ingredient in all
of our results in this direction is a previous observation of Flach and the present
author which allows an interpretation in terms of Weil-étale cohomology of the
canonical extension classes defined using class field theory by Tate in [49].
In §4 we consider connections between C(K/k) and the central conjectures of
classical Galois module theory. To be specific, we prove that C(K/k) implies
the validity for K/k of a strong refinement of the ‘Ω(3)-Conjecture’ formulated
by Chinburg in [18, §4.2]. Taken in conjunction with Theorem 3.1 this result
allows us to deduce that if K0(Zp[G], Qp) is torsion-free, resp. p ∤ |G|, then the
Ω(3)-Conjecture, resp. the Ω(1)-, Ω(2)- and Ω(3)-Conjectures, formulated by
Chinburg in loc. cit., are valid for K/k. This is a strong refinement of previous
results in this area.
We assume henceforth that G is abelian. In this case Gross has conjectured a
‘refined class number formula’ which expresses an explicit congruence relation
between the values at s = 0 of the Dirichlet L-functions associated to K/k [31].
This conjecture has attracted much attention and indeed Tate has recently for-
mulated a strong refinement in the case that G is cyclic [51]. However, whilst
the conjecture of Gross has already been verified in several interesting cases
[31, 1, 47, 37, 39], much of this evidence is obtained either by careful analysis
of special cases or by induction on |G| and, as yet, no coherent overview of or
systematic approach to these conjectures of Gross and Tate has emerged. In
contrast, in §5 we shall use the general approach of algebraic height pairings
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developed by Nekovář in [44] to interpret the integral regulator mapping of
Gross as a Bockstein homomorphism in Weil-étale cohomology, and we shall
also apply this interpretation to prove that if the torsion subgroup µK of K×

is a cohomologically-trivial G-module (a condition that is automatically satis-
fied if, for example, |µK | is coprime to |G|), then C(K/k) implies the validity
of Gross’s conjecture for K/k. Under a certain natural class-field theoretical
assumption on K/k we shall also show (in §6) that C(K/k) implies the validity
of Tate’s refinement of Gross’s conjecture. When combined with Theorem 3.1
(and earlier results of Tan concerning p-extensions) these observations allow us
to deduce the validity of Gross’s conjecture for all extensions K/k for which µK

is a cohomologically-trivial G-module and also to prove the validity of Tate’s
refinement of Gross’s conjecture for a large family of extensions.
A further development of the approach used here should allow the removal
of any hypothesis on µK (indeed, in special cases this is already achieved in
the present manuscript). However, even at this stage, our results constitute a
strong improvement of previous results in this area and also provide a philo-
sophical underpinning to the conjectures of Gross and Tate that was not hith-
erto apparent. Indeed, the approach presented here leads to the formulation of
natural analogues of these conjectures concerning the values of (higher order)
derivatives of L-functions that vanish at s = 0. These developments have in
turn led to a proof of Tate’s conjecture under the hypothesis only that |µK | is
coprime to |G| and have also provided new insight into Gross’s ‘refined p-adic
abelian Stark conjecture’ as well as several other conjectures due, for example,
to Rubin, to Darmon, to Popescu and to Tan. For more details of this aspect
of the theory the reader is referred to [10, 34].

Acknowledgements. The author is very grateful to J. Tate and B. H. Gross
for their encouragement concerning this project and for their hospitality during
his visits to the Universities of Texas at Austin and Harvard respectively. In
addition, he is most grateful to M. Kurihara for his hospitality during the
author’s visit to the Tokyo Metropolitan University, where a portion of this
project was completed. The author is also grateful to J. Nekovář for a number
of very helpful discussions.

2. The leading term conjecture

2.1. Relative Algebraic K-Theory. In this subsection we quickly recall
certain useful constructions in algebraic K-theory.
If Λ is any ring, then all modules are to be understood as left modules. We
write ζ(Λ) for the centre of Λ, K1(Λ) for the Whitehead group of Λ and
K0(Λ) for the Grothendieck group of the category of finitely generated pro-
jective Λ-modules. We also write D(Λ) for the derived category of complexes
of Λ-modules with only finitely many non-zero cohomology groups, and we
let Dfpd(Λ), resp. Dperf(Λ),denote the full triangulated subcategory of D(Λ)
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consisting of those complexes that are quasi-isomorphic to a bounded com-
plex of projective Λ-modules, resp. to a bounded complex of finitely generated
projective Λ-modules.
We let R denote either Z or Zℓ for some prime ℓ, E and F denote extension fields
of the field of fractions of R and we fix a finite group G. For finitely generated
E[G]-modules V and W we write IsE[G](V,W ) for the set of E[G]-module
isomorphisms from V to W . The relative algebraic K-group K0(R[G], E) is
an abelian group with generators (X,φ, Y ), where X,Y are finitely generated
projective R[G]-modules and φ is an element of IsE[G](X⊗RE, Y ⊗RE). For the
defining relations we refer to [46, p. 215]. We systematically use the following
facts: there is a long exact sequence of relative K-theory (cf. [46, Th. 15.5])

K1(R[G]) → K1(E[G])
∂1

R[G],E
−−−−−→ K0(R[G], E)

∂0
R[G],E

−−−−−→ K0(R[G]) → K0(E[G]);

if E ⊆ F , then there is a natural injective ‘inclusion’ homomorphism
K0(R[G], E) ⊆ K0(R[G], F ); for each rational prime ℓ the assignment
(X,φ, Y ) 7→ (X ⊗Z Zℓ, φ ⊗Q Qℓ, Y ⊗Z Zℓ) induces a homomorphism

ρℓ : K0(Z[G], Q) → K0(Zℓ[G], Qℓ)

and the product of these homomorphisms over all primes ℓ induces an isomor-
phism (cf. the discussion following [26, (49.12)])

(1)
∏

ℓ

ρℓ : K0(Z[G], Q) ∼=
⊕

ℓ

K0(Zℓ[G], Qℓ).

Let A be a finite dimensional central simple F -algebra, F ′ an extension of F
which splits A and e an indecomposable idempotent of A ⊗F F ′. If V is any
finitely generated A-module and φ ∈ EndA(V ), then the ‘reduced determinant’
of φ is defined by setting detredA(φ) := detF ′(φ ⊗F idF ′ |e(V ⊗F F ′)). This is
an element of F which is independent of the choices of F ′ and e. This construc-
tion extends to finite-dimensional semi-simple F -algebras in the obvious way.
In particular, the group K1(E[G]) is generated by symbols of the form [φ] with
φ ∈ AutE[G](V ) and the assignment [φ] 7→ detredE[G](φ) induces a well-defined

injective ‘reduced norm’ homomorphism nrE[G] : K1(E[G]) → ζ(E[G])× [26,
§45A]. For each ℓ the map nrQℓ[G] is bijective and so there exists a unique

homomorphism δℓ : ζ(Qℓ[G])× → K0(Zℓ[G], Qℓ) with ∂1
Zℓ[G],Qℓ

= δℓ ◦ nrQℓ[G].

(When we need to be more precise we write δG,ℓ rather than δℓ.) The map
nrR[G] is not in general surjective, but nevertheless there exists a canonical

‘extended boundary’ homomorphism δ : ζ(R[G])× → K0(Z[G], R) which sat-
isfies ∂1

Z[G],R = δ ◦ nrR[G] and is such that ζ(Q[G])× is the full pre-image of

K0(Z[G], Q) under δ (cf. [13, Lem. 9]).
The map nrE[G] induces an equivalence relation ‘∼’ on each set IsE[G](V,W )

in the following way: φ ∼ φ′ if nrE[G]([φ
′ ◦ φ−1]) = 1. In the sequel we shall

often not distinguish between an element of IsE[G](V,W ) and its associated
equivalence class in IsE[G](V,W )/ ∼.

For each Z-graded module C · we write Call, C− and C+ for the direct
sum of Ci as i ranges over all, all odd and all even integers respectively.
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An ‘E-trivialisation’ of an object C · of Dperf(R[G]) is an element τ of
IsE[G](H

+(C·)⊗R E,H−(C·)⊗R E)/ ∼. In [9] it is shown that a variant of the
classical construction of Whitehead torsion allows one to associate to each such
pair (C·, τ) a canonical ‘refined Euler characteristic’ element χR[G],E(C·, τ)

which belongs to K0(R[G], E) and has image under ∂0
R[G],E equal to the Eu-

ler characteristic of C· in K0(R[G]). Further details of this construction are
recalled in the Appendix.
In the sequel we shall use the following notation and conventions. We ab-
breviate ‘cohomologically-trivial’ to ‘c-t’, ‘χZ[G],R’ to ‘χ’, ‘χZ[G],Q’ to ‘χQ’ and
‘χZℓ[G],Qℓ

’ to ‘χℓ’ (or to ‘χG,ℓ’ when we need to be more precise); if X is any
scheme of finite type over the finite field Fp of cardinality p and F is any étale
(pro-) sheaf, resp. Weil-étale sheaf, on X, then we abbreviate RΓ(Xét,F),
resp. RΓ(XWeil−ét,F) to RΓ(X,F), resp. RΓW(X,F), and we also use similar
abbreviations on cohomology; for any commutative ring Λ we write x 7→ x#

for the Λ-linear involution of ζ(Λ[G]) that is induced by setting g# := g−1 for
each g ∈ G; for any group H and any H-module M we write MH , resp. MH ,
for the maximal submodule, resp. quotient, of M upon which H acts trivially;
for any abelian group A we let Ators denote its torsion subgroup; unless ex-
plicitly indicated otherwise, all tensor products and exterior powers are to be
considered as taken in the category of abelian groups.

2.2. Formulation of the conjecture. We assume henceforth that S is a
finite non-empty set of places of k containing all places which ramify in K/k.
We let IrrC(G) denote the set of irreducible finite dimensional complex charac-
ters of G. For each χ ∈ IrrC(G) we write LS(χ, s) for the associated S-truncated
Artin L-function and L∗

S(χ, 0) for the leading term in the Taylor expansion of
LS(χ, s) at s = 0. Recalling that ζ(C[G]) identifies with

∏

IrrC(G) C, we define

a ζ(C[G])-valued meromorphic function of a complex variable s by setting

θK/k,S(s) := (LS(χ, s))χ∈IrrC(G).

The leading term θ∗K/k,S(0) in the Taylor expansion of θK/k,S(s) at s = 0 is

equal to (L∗
S(χ, 0))χ∈Irr(G) and hence belongs to ζ(R[G])×. In this subsection

we follow the philosophy introduced by Lichtenbaum in [40] to formulate a
conjectural description of δ(θ∗K/k,S(0)#) in terms of Weil-étale cohomology.

For any intermediate field F of K/k we write YF,S for the free abelian group
on the set of places S(F ) of F which lie above those in S and XF,S for the
kernel of the homomorphism YF,S → Z that sends each element of S(F ) to 1.
We write OF,S for the ring of S(F )-integers in F and O×

F,S for its unit group.

We also set UF,S := Spec(OF,S) and AF,S := Pic(OF,S).

Lemma 1.

i) Let j : UK,S → CK denote the natural open immersion. Then there
exists a canonical isomorphism in D(Z[G]) of the form

RΓW(UK,S , Gm) ∼= R HomZ(RΓW(CK , j!Z), Z[−2]).
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ii) There exists a natural distinguished triangle in D(Z[G]) of the form

XK,S ⊗ Q[−2] → RΓ(UK,S , Gm) → RΓW(UK,S , Gm) → XK,S ⊗ Q[−1]

where the map induced on cohomology (in degree 2) by the first mor-
phism is the composite of the projection XK,S ⊗Q → XK,S ⊗Q/Z and
the canonical identification XK,S ⊗ Q/Z ∼= H2(UK,S , Gm).

iii) RΓW(UK,S , Gm) is an object of Dperf(Z[G]) that is acyclic outside de-
grees 0 and 1. One has a canonical identification H0

W(UK,S , Gm) =
O×

K,S and a natural exact sequence of G-modules

0 → AK,S → H1
W(UK,S , Gm) → XK,S → 0.

iv) If J is any normal subgroup of G, then there exists a natural isomor-
phism in Dperf(Z[G/J ]) of the form

RΓW(UKJ ,S , Gm) ∼= R HomZ[J](Z, RΓW(UK,S , Gm)).

With respect to the descriptions of cohomology given in iii) (for both K
and KJ) the displayed isomorphism induces the natural identification
O×

KJ ,S
= (O×

K,S)J and also identifies XKJ ,S with a submodule of XK,S

by means of the map that sends each place v of S(KJ ) to
∑

j∈J j(w)
where w is any place of K lying above v.

Proof. Claim i) is proved by the argument of [40, proof of Th. 6.5].
The existence of the distinguished triangle in claim ii) can be proved by com-
paring the spectral sequences of [40, Prop. 2.3(f)] or by using the approach of
Geisser in [30, Th. 6.1].
The descriptions of the groups Hi

W(UK,S , Gm) given in claim iii) are proved
by Lichtenbaum in [40, Th. 7.1c)]. They follow from the long exact se-
quence of cohomology associated to the triangle in claim ii), the canoni-
cal identifications H0(UK,S , Gm) ∼= O×

K,S ,H1(UK,S , Gm) ∼= Pic(OK,S) and

H2(UK,S , Gm) ∼= XK,S ⊗ Q/Z and the fact that Hi(UK,S , Gm) = 0 if i > 2.
Since each cohomology group of RΓW(UK,S , Gm) is finitely generated, a stan-
dard argument of homological algebra shows that this complex belongs to
Dperf(Z[G]) if and only if it belongs to Dfpd(Z[G]) (cf. [11, proof of Prop.
1.20, Steps 3 and 4]). On the other hand, any G-module that is c-t has fi-
nite projective dimension as a Z[G]-module and so it suffices to show that
RΓW(UK,S , Gm) is isomorphic to a bounded complex of G-modules which are
each c-t. Now the G-module XK,S ⊗ Q is c-t and so the distinguished triangle
of claim ii) implies that we need only prove that RΓ(UK,S , Gm) is isomorphic to
a bounded complex of G-modules which are each c-t. But this is true because
the natural morphism π : UK,S → Uk,S is étale and Gm = π∗Gm on (UK,S)ét
(cf. [11, proof of Prop. 1.20, Steps 1 and 2]).
Claim iv) follows from the triangle of claim ii) and the description of coho-
mology given in iii) (for both K and KJ ) together with an explicit com-
putation of the maps induced on cohomology by the natural isomorphism
RΓ(UKJ ,S , Gm) ∼= R HomZ[J](Z, RΓ(UK,S , Gm)) in D(Z[G/J ]) (for more de-
tails as to the latter see, for example, the proof of [12, Lem. 12]). ¤
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For each place w of K we let | · |w denote the absolute value of w normalised
as in [50, Chap. 0, 0.2]. We write RK,S for the R[G]-equivariant isomorphism
O×

K,S ⊗ R −→ XK,S ⊗ R which at each u ∈ O×
K,S satisfies

(2) RK,S(u) = −
∑

w∈S(K)

log | u |w ·w.

We also denote by RK,S the R-trivialisation of RΓW(UK,S , Gm) that is induced
by RK,S and the descriptions of Lemma 1iii).
We can now state the central conjecture of this paper.

Conjecture C(K/k): In K0(Z[G], R) one has an equality

δ(θ∗K/k,S(0)#) = χ(RΓW(UK,S , Gm),RK,S).

Remark 1. Lemma 1i) shows that C(K/k) can be naturally rephrased in terms
of RΓW(CK , j!Z). We have chosen to work in terms of Gm rather than j!Z for
the purposes of explicit computations that we make in subsequent sections (see
also Remark 3 in this regard).

Remark 2. If G is abelian, then the equality of C(K/k) is equivalent to a
formula for the Z[G]-submodule of R[G] which is generated by θ∗K/k,S(0)# in

terms of the Z[G]-equivariant graded determinant of RΓW(UK,S , Gm) (see Re-
mark A1 in the Appendix). By using this observation in conjunction with
Remark 1 it can be shown that C(k/k) is equivalent to a special case of the
conjecture formulated by Lichtenbaum in [40, Conj. 8.1e)].

Remark 3. Let j : UK,S → CK denote the natural open immersion. Then the
Poincaré Duality Theorem of [42, Chap. II, Th. 3.1] gives rise to a commutative
diagram in D(Z[G]) of the form

XK,S ⊗ Q[−2] −→ RΓ(UK,S , Gm) −→ RΓW(UK,S , Gm)
∥

∥

∥





y

XK,S ⊗ Q[−2] −→ HomZ(RΓ(CK , j!Z), Q/Z[−3])




y

(Ô×
K,S/O×

K,S)[0]

where the top row is as in Lemma 1ii), Ô×
K,S denotes the profinite completion of

O×
K,S and the second column is a distinguished triangle. This diagram implies

that RΓW(UK,S , Gm) is a precise analogue of the complex ΨS that occurs in
[12, Rem. following Prop. 3.1] and [7, Prop. 2.1.1]. For this reason, C(K/k)
is an analogue of the conjectural vanishing of the element TΩ(K/k, 0) defined
in [7, Th. 2.1.2], where K/k is a Galois extension of number fields of group G,
and also coincides in the abelian case with the function field case of [8, Conj.
2.1]. We recall that the vanishing of the element TΩ(K/k, 0) is equivalent to
the validity of the ‘Lifted Root Number Conjecture’ of Gruenberg, Ritter and
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Weiss [33] (see [7, Th. 2.3.3] for a proof of this fact) and also to the validity of
the ‘Equivariant Tamagawa Number Conjecture’ of [13, Conj. 4(iv)] as applied
to the pair (h0(Spec K), Z[G]) where h0(SpecK) is considered as a motive
that is defined over k and has coefficients Q[G] (see [7, Th. 2.4.1] or [14, §3]
for different proofs of this fact). We further recall that [13, Conj. 4(iv)] is
itself a natural equivariant version of the seminal conjecture of Bloch and Kato
from [6], and that if G is abelian, then it refines the ‘Generalized Iwasawa Main
Conjecture’ formulated by Kato in [35, §3.2] (cf. [14, §2] in this regard). Finally
we recall that strong evidence in favour of [13, Conj. 4(iv)] has recently been
obtained in [15, 16].

By a change of variable we now remove all of the transcendental terms which
occur in C(K/k) and then decompose the conjecture according to (1).
To do this we set t := p−s and then define a ζ(C[G])-valued function of the
complex variable t by means of the equality ZK/k,S(t) := θK/k,S(s). For each
place w ∈ S(K) we write valw and k(w) for its valuation and residue field
and let deg(w) denote the degree of the field extension k(w)/Fp. We write
DK,S : O×

K,S → XK,S for the homomorphism which at each u ∈ O×
K,S satisfies

DK,S(u) =
∑

w∈S(K)

valw(u) deg(w) · w.

Lemma 2. Let e : Spec(ζ(R[G])) → Z denote the algebraic order of ZK/k,S(t)

at t = 1 (which we regard as an element of Zπ0(Spec(ζ(R[G]))) in the natural
way). Then the element

Z∗
K/k,S(1) := lim

t→1
(1 − t)−eZK/k,S(t)

belongs to ζ(Q[G])× and C(K/k) is valid if and only if in K0(Z[G], Q) one has

(3) δ(Z∗
K/k,S(1)#) = χQ(RΓW(UK,S , Gm),DK,S ⊗ Q).

Proof. The algebraic order of θK/k,S(s)# at s = 0 is equal to e. In addition,
by an explicit computation one verifies that

θ∗K/k,S(0)# = lim
s→0

s−eθK/k,S(s)#

= (log(p))e · Z∗
K/k,S(1)#.

When combined with the known validity of Stark’s Conjecture for K/k [50,
p. 111], this equality proves that Z∗

K/k,S(1) belongs to ζ(Q[G])×. Also, since

χQ(RΓW(UK,S , Gm),DK,S ⊗ Q) is equal to χ(RΓW(UK,S , Gm),DK,S ⊗ R) in
K0(Z[G], R), the above equality shows that C(K/k) is equivalent to (3) pro-
vided that in K0(Z[G], R) one has

χ(RΓW(UK,S , Gm),RK,S) = χ(RΓW(UK,S , Gm),DK,S ⊗ R) + δ((log(p))e).

The validity of this equality follows directly from [7, Prop. 1.2.1(ii)] in con-
junction with the equality RK,S(u) = log(p) · DK,S(u) for each u ∈ O×

K,S and
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the fact that the reduced rank (as defined in [13, §2.6]) of the R[G]-module
XK,S ⊗ R is equal to e [50, Chap. I, Prop. 3.4]. ¤

From Lemma 2 and the bijectivity of the map (1) it is clear that C(K/k) is
valid if and only if, for each prime ℓ, the following conjecture is valid.

Conjecture Cℓ(K/k): The image of (3) under ρℓ is valid.

Remark 4. There are several useful functorial properties of C(K/k) that can
be proved directly or by combining Remark 3 with the relevant arguments from
either [7] or [13, §4.4-5]. For example, in this way it can be shown that the
validity of C(K/k) is independent of the choice of S (cf. [7, Th. 2.1.2]). In
addition, if ℓ is any prime and H is any subgroup of G, then it can be shown that
the validity of the image of the equality of Cℓ(K/k) under the natural restriction
map K0(Zℓ[G], Qℓ) → K0(Zℓ[H], Qℓ) is equivalent to the validity of Cℓ(K/KH)
(cf. [7, Prop. 2.1.4(i)]). In a similar way, if J is any normal subgroup of
G, then Lemma 1iv) implies that the validity of the image of the equality of
Cℓ(K/k) under the natural coinflation map K0(Zℓ[G], Qℓ) → K0(Zℓ[G/J ], Qℓ)
is equivalent to the validity of Cℓ(K

J/k) (cf. [7, Prop. 2.1.4(ii)]).

3. Evidence

In this section we shall provide the following evidence in support of C(K/k).

Theorem 3.1. Let K/k be a finite Galois extension of global function fields of
characteristic p and set G := Gal(K/k).

i) If ℓ 6= p, then Cℓ(K/k) is valid.
ii) Cp(K/k) is valid modulo the torsion subgroup of K0(Zp[G], Qp).

Corollary 1. C(K/k) is valid modulo the torsion subgroup of K0(Zp[G], Qp).

Proof. Clear. ¤

Remark 5. The group K0(Zp[G], Qp) is torsion-free if p ∤ |G| (cf. [13, proof of
Lem. 11c)]) and also if p = 2 and G is either of order 2 or is dihedral of order
congruent to 2 modulo 4 [5, Lem. 8.2].

3.1. The descent formalism. In this subsection we prepare for the proof
of Theorem 3.1i) by proving a purely algebraic result. This provides a natu-
ral generalisation of several results that have already been used elsewhere (cf.
Remark 6) and so the material of this subsection may well itself be of some
independent interest.
We fix an arbitrary rational prime ℓ and for each Zℓ-module M we set MQℓ

:=
M⊗Zℓ

Qℓ. We say that an endomorphism ψ of a finitely generated Zℓ[G]-module
M is ‘semi-simple at 0’ if the natural composite homomorphism

(4) ker(ψ)
⊆
−→ M ։ cok(ψ)
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has both finite kernel and finite cokernel. We note that this condition is satisfied
if and only if there exists a Qℓ[G][ψ]-equivariant direct complement to the
submodule ker(ψ)Qℓ

of MQℓ
.

Let t be an indeterminate. Then for any element f of ζ(Qℓ[G])[[t]] we write
ef : Spec(ζ(Qℓ[G])) → Z for the algebraic order of f(t) at t = 1. We identify

ef with an element of Zπ0(Spec(ζ(Qℓ[G]))) in the natural way and then set

f∗(1) := lim
t→1

(1 − t)−ef f(t) ∈ ζ(Qℓ[G])×.

In particular, if θ is any endomorphism of a finitely generated Zℓ[G]-module
M for which 1 − θ is semi-simple at 0 and

f(t) = detredQℓ[G](1 − θ · t : MQℓ
),

then we set

detred∗
Qℓ[G](1 − θ : MQℓ

) :=f∗(1)

= detredQℓ[G](1 − θ : D)

where D is any choice of a Qℓ[G][θ]-equivariant direct complement to the sub-
module ker(1 − θ)Qℓ

of MQℓ
.

We now suppose given a bounded complex of finitely generated projective
Zℓ[G]-modules P · and a Zℓ[G]-equivariant endomorphism θ of P · which is such
that the induced endomorphism Hi(1−θ) of Hi(P ·) is semi-simple at 0 in each
degree i.
We let C(θ)· denote the −1-shift of the mapping cone of the endomorphism of
P · induced by 1− θ. Then from the long exact sequence of cohomology that is
associated to the distinguished triangle

P · 1−θ
−−→ P · → C(θ)·[1] → P ·[1]

one obtains in each degree i a short exact sequence

0 → cok(Hi−1(1 − θ)) → Hi(C(θ)·) → ker(Hi(1 − θ)) → 0.

Upon combining these sequences with the isomorphisms

ker(Hi(1 − θ))Qℓ

∼
−→ cok(Hi(1 − θ))Qℓ

induced by (4) (with ψ = Hi(1−θ) and M = Hi(P ·)) one obtains a well-defined
Qℓ-trivialisation τθ of C(θ)·.

Proposition 3.1. Let P · be a bounded complex of finitely generated projective
Zℓ[G]-modules and θ a Zℓ[G]-equivariant endomorphism of P · for which Hi(1−
θ) is semi-simple at 0 in each degree i. Then in K0(Zℓ[G], Qℓ) one has

χℓ(C(θ)·, τθ) =
∑

i∈Z

(−1)iδℓ(detred∗
Qℓ[G](1 − θ : Hi(P ·)Qℓ

)).

Proof. We shall argue by induction on the quantity

|P ·| := max{i : P i 6= 0} − min{j : P j 6= 0}.

We first assume that |P ·| = 0 so that P · has only one non-zero term. To be spe-
cific, we assume that P · = Pn[−n] (so that Hn(P ·) = Pn). In this case C(θ)·
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is equal to the complex Pn 1−θn

−−−→ Pn, where the first term is placed in degree
n. In addition, upon choosing a Qℓ[G][θn]-equivariant direct complement D to
ker(1 − θn)Qℓ

in Pn
Qℓ

, and using (4) to identify Hn(C(θ)·)Qℓ
= ker(1 − θn)Qℓ

with Hn+1(C(θ)·)Qℓ
= cok(1 − θn)Qℓ

, the trivialisation τθ is induced by the
identity map on cohomology. Hence, from Lemma A1, one has

χℓ(C(θ)·, τθ) =(−1)n∂1
Zℓ[G],Qℓ

([idker(1−θn)Qℓ
⊕ (1 − θn) |D])

=(−1)n∂1
Zℓ[G],Qℓ

([1 − θn |D])

=(−1)nδℓ(detredQℓ[G](1 − θn : D))

=(−1)nδℓ(detred∗
Qℓ[G](1 − θ : Hn(Pn[−n])Qℓ

)),

as required.
We now assume that |P ·| = n and, to fix notation, that min{j : P j 6= 0} = 0.
We also assume that the claimed formula is true for any pair of the form (Q·, φ)
where Q· is a bounded complex of finitely generated projective Zℓ[G]-modules
for which |Q·| ≤ n − 1 and φ is a Zℓ[G]-equivariant endomorphism of Q· for
which Hi(1 − φ) is semi-simple at 0 in each degree i. For any complex C ·

and any integer i we write Bi(C·), Zi(C·) and di(C·) for the boundaries, cycles
and differential in degree i. If necessary, we use the argument of [25, Lem.
7.10] to change θ by a homotopy in order to ensure that, in each degree i,
the restriction of 1 − θi to Bi(P ·) induces an automorphism of Bi(P ·)Qℓ

. We
shall make frequent use of this assumption (without explicit comment) in the
remainder of this argument.
We henceforth let Q· denote the naive truncation in degree n − 1 of P · (so
Qi = P i if i ≤ n − 1 and Qn = 0). Then one has a tautological short exact
sequence of complexes 0 → Pn[−n] → P · → Q· → 0. From the associated long
exact cohomology sequence we deduce that Hi(Q·) = Hi(P ·) if i < n − 1 and
that there are commutative diagrams of short exact sequences of the form

0 −−−−→ Hn−1(P ·) −−−−→ Hn−1(Q·) −−−−→ Bn −−−−→ 0

Hn−1(1−θ)





y
Hn−1(1−φ)





y
1−θn





y

0 −−−−→ Hn−1(P ·) −−−−→ Hn−1(Q·) −−−−→ Bn −−−−→ 0

0 −−−−→ Bn −−−−→ Hn(Pn[−n]) −−−−→ Hn(P ·) −−−−→ 0

1−θn





y

Hn(1−θn[−n])





y

Hn(1−θ)





y

0 −−−−→ Bn −−−−→ Hn(Pn[−n]) −−−−→ Hn(P ·) −−−−→ 0.

We write φ, resp. θn[−n], for the endomorphism of Q·, resp. Pn[−n], which
is induced by θ. Then the above diagrams imply that ker(Hi(1 − φ))Qℓ

=
ker(Hi(1−θ))Qℓ

and cok(Hi(1−φ))Qℓ
= cok(Hi(1−θ))Qℓ

for all i < n and also
that ker(Hn(1− θn[−n]))Qℓ

= ker(Hn(1− θ))Qℓ
and cok(Hn(1− θn[−n]))Qℓ

=
cok(Hn(1−θ))Qℓ

. This implies that 1−φ and 1−θn[−n] induce endomorphisms
of Hi(Q·) and Hi(Pn[−n]) respectively which are each semi-simple at 0 in all
degrees i.
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We set C := Cone(1 − θn[−n])[−1], D := C(θ)· = Cone(1 − θ)[−1] and E :=
Cone(1 − φ)[−1] so that there is a natural short exact sequence of complexes

(5) 0 → C
α
−→ D

β
−→ E → 0.

Now, since |Q·| < n, our inductive hypothesis implies that

χℓ(E, τφ) =

n−1
∑

i=0

(−1)iδℓ(detred∗
Qℓ[G](1 − φ : Hi(Q·)Qℓ

))

=(−1)n−1δℓ(detred∗
Qℓ[G](1 − φ : Hn−1(Q·)Qℓ

))

+
n−2
∑

i=0

(−1)iδℓ(detred∗
Qℓ[G](1 − θ : Hi(P ·)Qℓ

)).

In addition, since |Pn[−n]| = 0, our earlier argument proves that

χℓ(C, τθn[−n]) = (−1)nδℓ(detred∗
Qℓ[G](1 − θn[−n] : Hn(Pn[−n])Qℓ

).

From the commutative diagrams displayed above, one also has

detred∗
Qℓ[G](1 − φ : Hn−1(Q·)Qℓ

) =

detred∗
Qℓ[G](1 − θn : Bn

Qℓ
) · detred∗

Qℓ[G](1 − θ : Hn−1(P ·)Qℓ
)

and

detred∗
Qℓ[G](1 − θn[−n] : Hn(Pn[−n])Qℓ

) =

detred∗
Qℓ[G](1 − θn : Bn

Qℓ
) · detred∗

Qℓ[G](1 − θ : Hn(P ·)Qℓ
).

Upon combining the last four displayed formulas we obtain an equality

χℓ(C, τθn[−n]) + χℓ(E, τφ) =
∑

i∈Z

(−1)iδℓ(detred∗
Qℓ[G](1 − θ : Hi(P ·)Qℓ

)),

and so the claimed result will follow if we can show that

(6) χℓ(D, τθ) = χℓ(C, τθn[−n]) + χℓ(E, τφ).

Before discussing the proof of this equality we introduce some convenient no-
tation: for any Zℓ-module A we set A := A ⊗Zℓ

Qℓ, and we use similar abbre-
viations for both complexes and morphisms of Zℓ-modules. For any complex
A we also set H+

A := H+(A) and H−
A := H−(A).

The key to proving (6) is the observation (which is itself straightforward to
verify directly) that one can choose elements κ1, κ2 and κ3 of τθn[−n], τθ and
τφ respectively which together lie in a commutative diagram of short exact
sequences of the form

(7)

0 −−−−→ H+

C

H+(α)
−−−−→ H+

D

H+(β)
−−−−→ H+

E
−−−−→ 0

κ1





y

κ2





y

κ3





y

0 −−−−→ H−

C

H−(α)
−−−−→ H−

D

H−(β)
−−−−→ H−

E
−−−−→ 0.
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Indeed, the equality (6) follows directly upon combining such a diagram with
the exact sequence (5) and the result of [9, Th. 2.8]. However, for the conve-
nience of the reader, we also now indicate a more direct argument.
After taking account of the construction of χℓ(·, ·) given in the Appendix (the
notation of which we now assume) and the definitions of τθn[−n](C), τθ(D) and
τφ(E) it is enough to prove the existence of a commutative diagram

0 −−−−→ C
+ α+

−−−−→ D
+ β

+

−−−−→ E
+

−−−−→ 0




y





y





y

0 −−−−→ BC ⊕ H+

C

(α′,H+(α))
−−−−−−−→ BD ⊕ H+

D

(β′,H+(β))
−−−−−−−→ BE ⊕ H+

E
−−−−→ 0





y

(id,κ1)





y

(id,κ2)





y

(id,κ3)

0 −−−−→ BC ⊕ H−

C

(α′,H−(α))
−−−−−−−→ BD ⊕ H−

D

(β′,H−(β))
−−−−−−−→ BE ⊕ H−

E
−−−−→ 0





y





y





y

0 −−−−→ C
− α−

−−−−→ D
− β

−

−−−−→ E
−

−−−−→ 0,

where BC denotes Ball(C), and similarly for BD and BE , α′ : BC → BD and
β′ : BD → BE are the natural homomorphisms that are induced by α and
β respectively, κ1, κ2 and κ3 are as in (7) and all unlabelled vertical maps
are the isomorphisms induced by a choice of sections to each of the natural

homomorphisms C
i
→ Bi+1(C), Zi(C) → Hi(C),D

i
→ Bi+1(D), Zi(D) →

Hi(D), E
i
→ Bi+1(E) and Zi(E) → Hi(E). Indeed, if such a diagram ex-

ists, then the composite vertical isomorphisms belong to τθn[−n](C), τθ(D)
and τφ(E) respectively, and so the commutativity of the diagram formed
by the first and fourth rows combines with the exactness of the sequences

0 → C+ α+

−−→ D+ β+

−−→ E+ → 0 and 0 → C− α−

−−→ D− β−

−−→ E− → 0 and the
defining relations of K0(Zℓ[G], Qℓ) [46, p. 415] to imply the required equality
(6). Thus, upon noting that the rows of this diagram are all exact (the second
and third as a consequence of the exactness of the rows of (7)), it is enough
to prove that sections of the above form can be chosen in such a way that
the top and bottom two squares of the diagram commute, and this in turn
can be proved by a straightforward and explicit exercise using the following
facts. After choosing Qℓ[G]-equivariant direct sum decompositions Pn−1 =

im(1 − θn−1) ⊕ Sn−1 and Pn = ker(1 − θn) ⊕ Sn, one obtains a direct sum

decomposition D
n

= Pn−1 ⊕Pn = Bn(D)⊕Sn−1,∗ ⊕ (0, ker(1 − θn))⊕ (0, Sn)
where Sn−1,∗ denotes the set of elements (π, π′) where π runs over Sn−1 and π′

denotes the unique element of Bn(P ·) which is such that (π, π′) ∈ Zn(D);

one has Zn(D) = Bn(D) ⊕ Sn−1,∗ ⊕ (0, ker(1 − θn)); the natural projec-
tion maps induce isomorphisms Bn(D) ∼= Bn(E), Zn−1(D) ∼= Zn−1(E) and
Bn−1(D) ∼= Bn−1(E). ¤
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Remark 6. There are two special cases in which the formula of Proposition 3.1
has already been proved: if C(θ)·Qℓ

is acyclic, then Hi(1 − θ) is automatically
semi-simple at 0 in each degree i and the given formula has been proved by
Greither and the present author in [16, proof of Prop. 4.1]; if G is abelian, then
Proposition 3.1 can be reinterpreted in terms of graded determinants and in
this case the given formula has been proved to within a sign ambiguity by Kato
in [35, Lem. 3.5.8]. (This sign ambiguity arises because Kato uses ungraded
determinants - for more details in this regard see [loc cit., Rem. 3.2.3(3) and
3.2.6(3),(5)] and [13, Rem. 9].)

3.2. Zeta functions of varieties. In this subsection we fix a prime ℓ that
is distinct from p. We also fix an algebraic closure Fc

p of Fp, we set Γ :=
Gal(Fc

p/Fp) and we write σ for the (arithmetic) Frobenius element in Γ. For
any scheme X over Fp we write Xc for the associated scheme Fc

p ×Fp
X over

Fc
p.

We let J be a finite group, X and Y separated schemes of finite type over Fp

and π : X → Y an étale morphism that is Galois of group J . For each ℓ-adic
sheaf G on Yét we follow the approach of Deligne [27, Rem. 2.12] to define a
J-equivariant Zeta function by setting

ZJ(Y, π∗π
∗G ⊗Zℓ

Qℓ, t) :=
∏

y

detredQℓ[J](1 − f−1
y · tdeg(y) | (π∗π

∗G ⊗Zℓ
Qℓ)y)−1 ∈ ζ(Qℓ[J ])[[t]],

where y runs over the set of closed points of Y , fy denotes the arithmetic
Frobenius of y, deg(y) the degree of y and subscript y denotes taking stalk at
a geometric point over y.
We now combine the algebraic approach of the previous subsection with a well
known result of Grothendieck from [32] to describe, for each integer r, the image
of the leading term Z∗

J(Y, π∗π
∗Zℓ(r) ⊗Zℓ

Qℓ, 1)# under the homomorphism
δJ,ℓ : ζ(Qℓ[J ])× → K0(Zℓ[J ], Qℓ).
To this end we observe that π∗ is exact and hence that, for each sheaf G as
above, there is a natural isomorphism RΓ(Y, π∗π

∗G) ∼= RΓ(X,π∗G) in D(Zℓ[J ]).
This implies that if G is any étale (pro-)sheaf of finitely generated Zℓ-modules
on Y and we set F := π∗G, then the complexes RΓ(X,F) and RΓ(Xc,F) both
belong to Dperf(Zℓ[J ]) (cf. [29, Th. 5.1]). We may therefore fix a bounded com-
plex of finitely generated projective Zℓ[J ]-modules C· for which there exists an

isomorphism α : C· ∼
−→ RΓ(Xc,F) in Dperf(Zℓ[J ]) and a Zℓ[J ]-endomorphism

θ of C· that induces the action of σ on RΓ(Xc,F) (the existence of such a
θ follows from [41, Chap. VI, Lem. 8.17] - but note that the map ψ in loc.
cit. need not, in general, be a quasi-isomorphism). In this way we obtain a
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commutative diagram in Dperf(Zℓ[J ]) of the form

(8)

C· 1−θ
−−−−→ C·

α





y

α





y

RΓ(X,F) −−−−→ RΓ(Xc,F)
1−σ

−−−−→ RΓ(Xc,F) −−−−→ RΓ(X,F)[1],

where the lower row denotes the natural distinguished triangle. Taken in con-
junction with the Octahedral axiom, this diagram implies the existence of an
isomorphism α′ : C(θ)·

∼
−→ RΓ(X,F) in Dperf(Zℓ[J ]). Further, the hypothesis

that the composite (4) with ψ = Hi(1−θ) and M = Hi(C·) has both finite ker-
nel and finite cokernel is equivalent to the hypothesis that σ acts ‘semi-simply’
on the space Hi(Xc,F)⊗Zℓ

Qℓ and is therefore expected to be true under some
very general conditions [35, Rem. 3.5.4]. In this context, and in terms of the
notation of Lemma A2, we write τX,F,σ for the Qℓ-trivialisation of RΓ(X,F)
which is equal to (τθ)α′ where τθ is the Qℓ-trivialisation of C(θ)· that is defined
just prior to Proposition 3.1 (with P · = C·).

Remark 7. The trivialisation τX,F,σ defined above has an alternative descrip-
tion. To explain this we let C(F)· denote the complex

H0(X,F)
κ
−→ H1(X,F)

κ
−→ H2(X,F)

κ
−→ · · ·

where H0(X,F) occurs in degree 0 and κ denotes cup-product with the element
of H1(X, Zℓ) obtained by pulling back the element φp of H1(Spec(Fp), Zℓ) =
Homcont(Γ, Zℓ) which sends σ to 1. Then the complex C(F)· ⊗Zℓ

Qℓ is acyclic
if and only if σ acts semi-simply on each space Hi(Xc,F) ⊗Zℓ

Qℓ [35, Lem.

3.5.3]. Further, in each degree i the homomorphism Hi(X,F)
κ
→ Hi+1(X,F)

is equal to the ‘Bockstein homomorphism’

βi
X,F,σ : Hi(X,F) → Hi+1(X,F)

that is obtained as the composite

Hi(X,F) → Hi(Xc,F)Γ → Hi(Xc,F)Γ → Hi+1(X,F)

where the first and third maps are induced by the long exact sequence of co-
homology associated to the lower row of (8) and the second map is as in (4).
Indeed, this equality is a consequence of the description of κ on the level of
complexes that is given by Rapaport and Zink in [45, 1.2] (cf. [43, Prop. 6.5]
and [35, §3.5.2] in this regard). These equalities imply in turn that τX,F,σ co-
incides with the Qℓ-trivialisation of RΓ(X,F) that is induced by the acyclicity
of C(F)· ⊗Zℓ

Qℓ together with the assignment τ 7→ τ(C(F)· ⊗Zℓ
Qℓ) which is

described just prior to Lemma A1.

We now state the main result of this subsection.

Theorem 3.2. Let π : X → Y be a finite étale morphism of separated schemes
of dimension d over Fp. If π is Galois of group J and r is any integer for
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which σ acts semi-simply on Hi(Xc, Zℓ(r))) ⊗Zℓ
Qℓ in all degrees i, then in

K0(Zℓ[J ], Qℓ) one has

δJ,ℓ(Z
∗
J(Y, π∗π

∗Zℓ(r) ⊗Zℓ
Qℓ, 1)#) = −χJ,ℓ(RΓ(X, Zℓ(d − r)), τX,Zℓ(d−r),σ).

Proof. We set r′ := d−r and make a choice of morphisms θ and α as in diagram
(8) with F = Zℓ(r

′). Upon applying Lemma A2 to the induced isomorphism

α′ : C(θ)·
∼
−→ RΓ(X, Zℓ(r

′)) and then Proposition 3.1 with P · = C· and G = J ,
we find that

χJ,ℓ(RΓ(X, Zℓ(r
′)), τX,Zℓ(r′),σ)

= χJ,ℓ(C(θ)·, τθ)

=
∑

i∈Z

(−1)iδJ,ℓ(detred∗
Qℓ[J](1 − θ : Hi(C·)Qℓ

))

=
∑

i∈Z

(−1)iδJ,ℓ(detred∗
Qℓ[J](1 − σ : Hi(Xc, Qℓ(r

′)))).

For each integer i we set V i := Hi
c(Y

c, π∗π
∗Zℓ(r) ⊗Zℓ

Qℓ) ∼= Hi
c(X

c, Qℓ(r)),
where subscript ‘c’ denotes cohomology with compact support. Then, by
Poincaré Duality (cf. [41, Chap. VI, Cor. 11.2]), in each degree i one has
an isomorphism of Qℓ[J ]-modules Hi(Xc, Qℓ(r

′)) ∼= HomQℓ
(V 2d−i, Qℓ). This

isomorphism respects the action of Frobenius in the sense that the action of σ
on Hi(Xc, Qℓ(r

′)) corresponds to the inverse of the action of σ that is induced
on HomQℓ

(V 2d−i, Qℓ) by its natural action on V 2d−i (since the linear duality
functor is contravariant). Hence one has

detredQℓ[J](1 − σ · t : Hi(Xc, Qℓ(r
′)))

=detredQℓ[J](1 − σ−1 · t : HomQℓ
(V 2d−i, Qℓ))

=detredQℓ[J](1 − σ−1 · t : V 2d−i)#,

where the involution x 7→ x# acts coefficient-wise on elements of ζ(Qℓ[J ])[[t]]
and the second equality is valid because J acts contragrediently on
HomQℓ

(V 2d−i, Qℓ) (cf. [7, (2.0.5)]). From the above formula one there-
fore has

χJ,ℓ(RΓ(X, Zℓ(r
′)), τX,Zℓ(r′),σ)

= δJ,ℓ(
∏

i∈Z

(detred∗
Qℓ[J](1 − σ−1 : V i))#,(−1)i

)

= − δJ,ℓ((
∏

i∈Z

detred∗
Qℓ[J](1 − σ−1 : V i)(−1)i+1

)#).

To complete the proof it is thus sufficient to observe that, by Grothendieck
[32], one has an equality of functions of the complex variable t

∏

i∈Z

detredQℓ[J](1 − σ−1 · t : V i)(−1)i+1

= ZJ(Y, π∗π
∗Zℓ(r) ⊗Zℓ

Qℓ, t).
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Indeed, the exposition of [41, Chap. VI, proof of Th. 13.3] proves just such an
equality with Qℓ[J ] replaced by an arbitrary finite degree field extension Ω of
Qℓ and π∗π

∗Zℓ(r) ⊗Zℓ
Qℓ by any constructible sheaf of vector spaces over Ω,

and the last displayed equality can be verified by reduction to such cases since
both sides are defined via Galois descent (cf. [27, Rem. 2.12]). ¤

3.3. The case ℓ 6= p. In this subsection we deduce Theorem 3.1i) from a
special case of Theorem 3.2.
To this end we first reinterpret Cℓ(K/k) in the style of Theorem 3.2. We note
that the isomorphism ιℓ constructed in the following result is as predicted by
[30, Conj. 7.2] (with X = UK,S and n = 1).

Lemma 3. There exists a natural isomorphism in Dperf(Zℓ[G]) of the form

ιℓ : RΓW(UK,S , Gm) ⊗ Zℓ
∼
−→ RΓ(UK,S , Zℓ(1))[1] .

Set DK,S,ℓ := H1(ιℓ)◦(DK,S⊗Zℓ)◦H0(ιℓ)
−1. Then the inverse of DK,S,ℓ⊗Zℓ

Qℓ

induces a Qℓ-trivialisation of RΓ(UK,S , Zℓ(1)) and Cℓ(K/k) is valid if and only
if in K0(Zℓ[G], Qℓ) one has

(9) δℓ(Z
∗
K/k,S(1)#) = −χℓ(RΓ(UK,S , Zℓ(1)), (−DK,S,ℓ ⊗Zℓ

Qℓ)
−1).

Proof. Following Lemma 1iii) we fix a bounded complex of finitely gen-
erated projective Z[G]-modules P · that is isomorphic in Dperf(Z[G]) to
RΓW(UK,S , Gm). Since RΓ(UK,S , Zℓ(1)) is an object of Dperf(Zℓ[G]) we may
also fix a bounded complex of finitely generated projective Zℓ[G]-modules Q·

that is isomorphic in Dperf(Zℓ[G]) to RΓ(UK,S , Zℓ(1)).
For each natural number n we consider the following diagram

XK,S ⊗ Q[−2] −−−−→ RΓ(UK,S , Gm) −−−−→ P · −−−−→ XK,S ⊗ Q[−1]

ℓn





y
ℓn





y
ℓn





y

XK,S ⊗ Q[−2] −−−−→ RΓ(UK,S , Gm) −−−−→ P · −−−−→ XK,S ⊗ Q[−1]




y





y





y

0 Q·/ℓn[1] P ·/ℓn.

The first two rows of this diagram are the distinguished triangles that are in-
duced by Lemma 1ii) and the isomorphism P · ∼= RΓW(UK,S , Gm). In addition,
all columns of the diagram are distinguished triangles: the first is obviously
so, the second is the triangle which is induced by the exact sequence of étale

sheaves 1 → µℓn → Gm
ℓn

−→ Gm → 1, the exact sequence of étale pro-sheaves

0 → Zℓ(1)
ℓn

−→ Zℓ(1) → µℓn → 1, the isomorphism Q· ∼= RΓ(UK,S , Zℓ(1)) and

the exact sequence of modules 0 → Qi ℓn

−→ Qi → Qi/ℓn → 0 in each degree i,
and the third column is the distinguished triangle which is induced by the exact

sequence of modules 0 → P i ℓn

−→ P i → P i/ℓn → 0 in each degree i. Since the
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diagram commutes in D(Z[G]) and all rows and columns are distinguished tri-
angles, one can deduce the existence of an isomorphism αn : Q·/ℓn[1] ∼= P ·/ℓn

in Dperf(Z/ℓn[G]). Further, as n varies, the isomorphisms αn may be chosen to
be compatible with the natural transition morphisms (cf. [12, the proof of Prop.
3.3]). The inverse limit of such a compatible system of isomorphisms {αn}n

then gives an isomorphism in Dperf(Zℓ[G]) of the form RΓ(UK,S , Zℓ(1))[1] ∼=
Q·[1] ∼= lim

←−n
Q·/ℓn[1] ∼= lim

←−n
P ·/ℓn ∼= P · ⊗ Zℓ

∼= RΓW(UK,S , Gm) ⊗ Zℓ, as

required.
Taken in conjunction with Lemma A2 the quasi-isomorphism ιℓ implies that

ρℓ(χQ(RΓW(UK,S , Gm),DK,S ⊗ Q))

=χℓ(RΓW(UK,S , Gm) ⊗ Zℓ,DK,S ⊗ Qℓ)

=χℓ(RΓ(UK,S , Zℓ(1))[1],DK,S,ℓ ⊗Zℓ
Qℓ)

= − χℓ(RΓ(UK,S , Zℓ(1)), (−DK,S,ℓ ⊗Zℓ
Qℓ)

−1),

where the last equality follows from [9, Th. 2.1(3)]. To prove the final asser-
tion of the lemma we need therefore only observe that ρℓ(δ(Z

∗
K/k,S(1)#)) =

δℓ(Z
∗
K/k,S(1)#). Indeed, this equality follows from the fact that on ζ(Q[G])×

one has ρℓ ◦ δ = δℓ ◦ iℓ where iℓ denotes the natural inclusion ζ(Q[G])× →
ζ(Qℓ[G])×. ¤

To prove Cℓ(K/k) we need only show that (9) coincides with the formula of
Theorem 3.2 in the case X = UK,S , Y = Uk,S (so that d = 1), π : UK,S → Uk,S

is the natural morphism of spectra, J = G and r = 0.
We first compare the left hand sides of the respective formulas. If y is any
closed point of Uk,S , then, after fixing a y point x of UK,S and writing Gx

for the decomposition subgroup of x in G, the stalk of π∗π
∗Zℓ(0) ⊗Zℓ

Qℓ at
y identifies as a (left) G × Gx-module with Qℓ[G] where elements of the form
(g, id) ∈ G × Gx act via left multiplication by g and elements of the form
(id, gx) ∈ G×Gx act via right multiplication by g−1

x (in this regard compare the
discussion of [7, beginning of §2]). By using this identification one computes
that ZG(Uk,S , π∗π

∗Zℓ(0) ⊗Zℓ
Qℓ, t) has the same Euler factor at y as does

ZK/k,S(t). Since this is true for all closed points y it follows that there is an
equality of functions of the complex variable t

ZK/k,S(t) = ZG(Uk,S , π∗π
∗Zℓ(0) ⊗Zℓ

Qℓ, t).

This implies that the left hand side of (9) is equal to the left hand side of the
relevant special case of the formula in Theorem 3.2. Hence our proof of (9)
will be complete if we can verify the relevant semi-simplicity hypothesis (in
order to apply Theorem 3.2) and then prove that the trivialisation τUK,S ,Zℓ(1),σ

is induced by the isomorphism (−DK,S,ℓ ⊗Zℓ
Qℓ)

−1. Our proof is therefore
completed by combining the description of τUK,S ,Zℓ(1),σ in Remark 7 together
with the following result.

Lemma 4. i) σ acts semi-simply on Hi(U c
K,S , Zℓ(1)) ⊗Zℓ

Qℓ in all degrees i.

ii) β1
UK,S ,Zℓ(1),σ

= −DK,S,ℓ.
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Proof. Lemma 3 combines with Lemma 1iii) to imply that RΓ(UK,S , Zℓ(1))
is acyclic outside degrees 1 and 2. Remark 7 therefore implies claim i) is
equivalent to asserting that the map β1

UK,S ,Zℓ(1),σ
⊗Zℓ

Qℓ is bijective and this

is an immediate consequence of the explicit description given in claim ii).
We now fix an arbitrary place v in S and write cv : YK,S⊗Zℓ →

⊕

w|v Zℓ for the

homomorphism induced by projecting each element of YK,S to its respective
coefficient at each place w of K above v. Then claim ii) will follow if we show
that the composite homomorphism

(10) O×
K,S ⊗ Zℓ

H0(ιℓ)
−−−−→ H1(UK,S , Zℓ(1))

β1
UK,S,Zℓ(1),σ

−−−−−−−−→ H2(UK,S , Zℓ(1))

H1(ιℓ)
−1

−−−−−−→ XK,S ⊗ Zℓ
⊂
−→ YK,S ⊗ Zℓ

cv−→
⊕

w|v

Zℓ

is equal to (−deg(w) · valw(−))w|v. To prove this we set S′ := S \ {v}, let
Z denote the complement of UK,S in UK,S′ and write j : UK,S → UK,S′ ,
resp. i : Z → UK,S′ , for the natural open, resp. closed, immersion. Then
there exists a natural morphism of étale sheaves j∗Gm → i∗i

∗Z on UK,S′

that is induced by taking valuations. In turn this gives rise to a morphism
RΓ(UK,S , Gm) → RΓ(Z, Z) in D(Z[G]) and hence, for each non-negative inte-
ger n, to a morphism RΓ(UK,S , µℓn) → RΓ(Z, Z/ℓn)[−1] in D(Z/ℓn[G]). These
morphisms are compatible with the natural transition maps as n varies and
therefore induce, upon passage to the inverse limit, a morphism in D(Zℓ[G]) of
the form λ : RΓ(UK,S , Zℓ(1)) → RΓ(Z, Zℓ)[−1].
Now H0(Z, Zℓ) =

⊕

w|v Zℓ and each w-component of H1(λ) ◦ H0(ιℓ) is in-

duced by the respective valuation map valw. In addition, if we identify
H1(Z, Zℓ) =

⊕

w|v Homcont(Gal(Fc
p/k(w)), Zℓ) with

⊕

w|v Zℓ by evaluating

each homomorphism at the topological generator σdeg(w) of Gal(Fc
p/k(w)), then

H2(λ) ◦H1(ιℓ) is induced by projection of an element of XK,S to its respective
coefficients at each place w above v.
Upon replacing UK,S and Z by U c

K,S and Zc one obtains in a similar man-

ner a morphism λc : RΓ(U c
K,S , Zℓ(1)) → RΓ(Zc, Zℓ)[−1] in Dperf(Zℓ[G]) that

induces a morphism of distinguished triangles of the form

RΓ(UK,S , Zℓ(1)) −−−−→ RΓ(U c
K,S , Zℓ(1))

1−σ
−−−−→ RΓ(U c

K,S , Zℓ(1))

λ





y
λc





y
λc





y

RΓ(Z, Zℓ)[−1] −−−−→ RΓ(Zc, Zℓ)[−1]
1−σ

−−−−→ RΓ(Zc, Zℓ)[−1].

After passing to cohomology this diagram induces a commutative diagram

H1(UK,S , Zℓ(1))
β1

UK,S,Zℓ(1),σ

−−−−−−−−→ H2(UK,S , Zℓ(1))

H1(λ)





y
H2(λ)





y

H0(Z, Zℓ)
−β0

Z,Zℓ,σ

−−−−−−→ H1(Z, Zℓ),
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where the minus sign in the lower row occurs because of the −1-shift in the
lower row of the previous diagram. Now the pull-back to H1(Z, Zℓ) of φp

is the element (φw)w|v where φw(σdeg(w)) = deg(w) for each w dividing v.

After identifying both H0(Z, Zℓ) and H1(Z, Zℓ) with
⊕

w|v Zℓ in the manner

prescribed above, the description of Remark 7 (with X = Z and F = Zℓ)
therefore implies that β0

Z,Zℓ,σ is given by component-wise multiplication with

the element (deg(w))w|v. Upon combining the commutativity of this diagram

with the explicit descriptions of H1(λ) and H2(λ) given above, it follows that
the composite homomorphism (10) is indeed equal to (−deg(w) · valw(−))w|v,
as required. ¤

3.4. The case ℓ = p. In this subsection we prove Theorem 3.1ii).

For each subgroup H of G we let ρG,∗
H denote the natural restriction of scalars

homomorphism K0(Zp[G], Qp) → K0(Zp[H], Qp). For each abelian group H
and each subgroup J of H we also let qH

H/J,∗ denote the natural coinflation

homomorphism K0(Zp[H], Qp) → K0(Zp[H/J ], Qp). Then one has

K0(Zp[G], Qp)tors =
⋂

ker(qH
H/J,∗ ◦ ρG,∗

H )

where the intersection runs over all cyclic subgroups H of G and over all sub-
groups J of H which are such that p ∤ |H/J | [9, Th. 4.1].
Taken in conjunction with the functorial properties of Cp(K/k) under change
of group (Remark 4), the above displayed equality implies that Cp(K/k) is
valid modulo K0(Zp[G], Qp)tors if and only if Cp(F/E) is valid for each cyclic
extension F/E with k ⊆ E ⊆ F ⊆ K and p ∤ [F : E]. But, for each such
extension F/E, the argument of [7, Lem. 2.2.7] shows that Cp(F/E) is implied
by the Strong-Stark Conjecture for F/E, as formulated by Chinburg (cf. [3,
§3.1]). The required result therefore follows directly from Bae’s proof of the
Strong-Stark Conjecture in this case [3, Th. 3.5.4].
This completes our proof of Theorem 3.1.

4. The conjectures of Chinburg

4.1. Canonical 2-extensions. In the sequel we shall say that two complexes
of G-modules C· and D· are ‘equivalent’ if Hi(C) = Hi(D) in each degree i
and there exists an isomorphism in D(Z[G]) from C · to D· which induces the
identity map in all degrees of cohomology.
If now C· is any complex of G-modules which is acyclic outside degrees 0 and 1,
then C· is naturally isomorphic in D(Z[G]) to its double truncation τ≥0τ≤1C

·.
In addition, the tautological exact sequence

0 → H0(C·) → (τ≥0τ≤1C
·)0 → (τ≥0τ≤1C

·)1 → H1(C·) → 0

determines a unique Yoneda extension class e(C ·) ∈ Ext2G(H1(C·),H0(C·)).

Lemma 5. Let C· and D· be any complexes of G-modules which are acyclic
outside degrees 0 and 1 and are also such that Hi(C·) = Hi(D·) for i = 0, 1.
Then C· and D· are equivalent if and only if one has e(C ·) = e(D·).
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Proof. An easy consequence of the definition of equivalence of Yoneda exten-
sions. ¤

This result implies that RΓW(UK,S , Gm) corresponds to a unique element

cW,S(K/k) of Ext2G(H1
W(UK,S , Gm),H0

W(UK,S , Gm)). In this subsection we
relate cW,S(K/k) to the canonical extension class which is defined in terms of
class field theory by Tate in [49].
To make such a connection we assume that the G-module AK,S is c-t. In
this case the displayed short exact sequence in Lemma 1iii) splits (since
Ext1G(XK,S , AK,S) = 0) and also Ext2G(AK,S ,O×

K,S) = 0 and so there exists
a natural isomorphism

ιS : Ext2G(XK,S ,O×
K,S)

∼
−→ Ext2G(H1

W(UK,S , Gm),H0
W(UK,S , Gm)).

We choose a finite set of places W of k which do not belong to S, are each
totally split in K/k and are such that AK,S is generated by the classes of
places in W (K). We set S′ := S ∪W (so that AK,S′ is trivial) and we observe
that there are natural exact sequences of G-modules of the form

0 → XK,S
⊆
−→ XK,S′ → YK,W → 0

0 → O×
K,S

⊆
−→ O×

K,S′ → YK,W → AK,S → 0.

Since YK,W is a free Z[G]-module these sequences combine to induce an iso-
morphism of extension groups

ιS′,S : Ext2G(XK,S′ ,O×
K,S′)

∼
−→ Ext2G(XK,S ,O×

K,S).

In the sequel we shall identify Yoneda-Ext-groups with derived functor Ext-
groups by means of a projective resolution of the first variable (this convention
differs from that used in [12] - see in particular [loc. cit., Lem. 3]). We
also write cS′(K/k) for the canonical element of Ext2G(XK,S′ ,O×

K,S′) which is

defined in [49].

Proposition 4.1. If the G-module AK,S is c-t, then one has cW,S(K/k) =
ιS ◦ ιS′,S(−cS′(K/k)).

Proof. For each w ∈ S′(K) we set Vw := Spec(Kw). We also let j′ denote the
natural open immersion UK,S′ → CK and we consider the following diagram
in D(Z[G])

XK,S′ ⊗ Q[−2] −−−−→ RΓ(UK,S′ , Gm) −−−−→ RΓW(UK,S′ , Gm)




y





y

YK,S′ ⊗ Q[−2]
α

−−−−→ ⊕w∈S′(K)RΓ(Vw, Gm)




y





y

Q[−2] RΓ(CK , j′!Gm)[1].

The top row of this diagram is the distinguished triangle from Lemma 1ii) (with
S replaced by S′), the first column is the distinguished triangle induced by the
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tautological exact sequence 0 → XK,S′
⊂
−→ YK,S′ → Z → 0 and the second

column is the distinguished triangle from [42, Chap. II, Prop. 2.3]. Further,
under the isomorphism

HomD(Z[G])(YK,S′ ⊗ Q[−2],⊕w∈S′(K)RΓ(Vw, Gm)) ∼=

HomG(YK,S′ ⊗ Q,⊕w∈S′(K)H
2(Vw, Gm))

that is induced by [12, Lem. 7(b)], the morphism α corresponds to the com-
posite of the projection YK,S′ ⊗Q → YK,S′ ⊗Q/Z and the natural identification
YK,S′ ⊗ Q/Z ∼= ⊕w∈S′(K)H

2(Vw, Gm).
It is straightforward to show that the square in the above diagram commutes
(for example, by using [12, Lem. 7(b)] to reduce to cohomological consid-
erations). By comparing this diagram to the diagrams (85) and (88) from
loc. cit., and then using the Octahedral axiom, one may therefore conclude
that RΓW(UK,S′ , Gm) is equivalent to the complex ΨS′ which is defined in
[12, Prop. 3.1]. From the proof of [12, Prop. 3.5] we may thus deduce that
cW,S′(K/k) = −cS′(K/k). (We remark that whilst the results of [12] are
phrased solely in terms of number fields, all of the constructions and argu-
ments of loc. cit. extend directly to the case of global function fields. In
addition, we obtain −cS′(K/k) rather than cS′(K/k) in the present context
because we have changed conventions regarding Yoneda-Ext-groups.)
To conclude that cW,S(K/k) = ιS ◦ ιS′,S(−cS′(K/k)) it suffices to prove that
there exists a morphism RΓW(UK,S , Gm) → RΓW(UK,S′ , Gm) in D(Z[G])

which induces upon cohomology the natural maps O×
K,S

⊆
−→ O×

K,S′ and

H1
W(UK,S , Gm) ։ XK,S

⊆
−→ XK,S′ . But, following [40, the proof of Th. 7.1],

the existence of such a morphism can be seen to be a consequence of the mor-
phism of étale sheaves Gm → j∗Gm on UK,S where j : UK,S′ → UK,S denotes
the natural open immersion. ¤

4.2. Galois module theory. In this subsection we relate C(K/k) to the
conjectures formulated by Chinburg in [18, §4.2]. We recall that the conjectures
of loc. cit. are natural function field analogues of the central conjectures of
Galois module theory which had earlier been formulated by Chinburg in [19, 21].
We write Ω(K/k, 1),Ω(K/k, 2) and Ω(K/k, 3) for the Galois structure invari-
ants defined by Chinburg in [18, the end of §4.1] and WK/k for the so-called
‘Cassou-Noguès-Fröhlich Root Number Class’ (cf. [loc. cit., Rem. 4.18]).

Conjecture Ch(K/k) (Chinburg, [18, §4.2, Conj. 3]): In K0(Z[G]) one has

i) Ω(K/k, 1) = 0,
ii) Ω(K/k, 2) = WK/k,
iii) Ω(K/k, 3) = WK/k.

We now state the main results of this section.

Theorem 4.1. The image under ∂0
Z[G],R of the equality of C(K/k) is equivalent

to the equality of Ch(K/k)iii).
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Proof. Following Remark 4, we may consider C(K/k) with respect to a set S
which is large enough to ensure that AK,S is trivial, and in this case Proposition
4.1 (with S = S′) implies that cW,S = ιS(−cS(K/k)).
Let now C· and D· be any objects of Dperf(Z[G]) which are acyclic outside de-
grees 0 and 1 and are such that Hi(C·) = Hi(D·) for i = 0, 1. It is easily shown
that if e(C·) = −e(D·), then C· and D· have the same Euler characteristic in
K0(Z[G]). This observation combines with the equality cW,S = ιS(−cS(K/k))
and the very definition of Ω(K/k, 3) to imply that the latter element can be
computed as the Euler characteristic of RΓW(UK,S , Gm) in K0(Z[G]). It there-
fore follows that Ω(K/k, 3) = ∂0

Z[G],R(χ(RΓW(UK,S , Gm),RK,S)).

On the other hand, the same argument as used to prove [7, Lem. 2.3.7] shows
that ∂0

Z[G],R(δ(θ∗K/k,S(0)#)) = WK/k. The claimed result is now clear. ¤

Corollary 2. i) Ch(K/k)iii) is valid modulo ∂0
Z[G],R(K0(Zp[G], Qp)tors).

ii) If p ∤ |G|, then Ch(K/k) is valid.

Proof. Claim i) follows directly from Theorem 4.1 and Corollary 1.
We now assume that p ∤ |G|. In this case K0(Zp[G], Qp) is torsion-free [13, proof
of Lem. 11c)] and hence claim i) implies Ω(K/k, 3) = WK/k. In addition, K/k
is tamely ramified and so Ch(K/k)ii) has been proved by Chinburg. Indeed,
the equality Ω(K/k, 2) = WK/k follows directly upon combining [18, §4.2, Th.
4] with [23, Cor. 4.10]. Finally, we observe that the validity of Ch(K/k)i) now
follows immediately from the fact that Ω(K/k, 1) = Ω(K/k, 2)−Ω(K/k, 3) [18,
§4.1, Th. 2 and the remarks which follow it]. ¤

Remark 8. The image of K0(Zp[G], Qp)tors under ∂0
Z[G],R is equal to the group

Dp(Z[G]) that arises in [24, Th. 6.13]. We recall that the arguments of Chin-
burg in loc. cit., and of Bae in [3] (the results of which provided the key
ingredient in our proof of Theorem 3.1ii) in §3.4), rely crucially upon results
of Milne and Illusie concerning p-adic cohomology. In particular, in both cases
the occurrence of the term Dp(Z[G]) reflects difficulties involved in formulating
and proving suitable equivariant refinements of the results of [43].

5. The conjecture of Gross

In this section we assume unless explicitly stated otherwise that G is abelian.
We set G∗ := Hom(G, C×) and for each χ ∈ G∗ we let eχ denote the associated
idempotent |G|−1

∑

g∈G χ(g)g−1 of C[G]. In terms of this notation one has

θK/k,S(s) =
∑

χ∈G∗ eχLS(χ, s).

We let IG denote the kernel of the homomorphism ǫ : Z[G] → Z which sends
each element of G to 1.

5.1. Statement of the conjecture. We set n := |S| − 1 and let |n|, resp.
|n|∗, denote the set of integers j which satisfy 1 ≤ j ≤ n, resp. 0 ≤ j ≤ n.
We henceforth label (and thereby order) the places in S as {vi : i ∈ |n|∗}. For
each j ∈ |n|∗ we fix a place wi of K which restricts to vi on k. For any place
v of k which is unramified in K/k we write σv for its frobenius automorphism
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in G and Nv for the cardinality of the associated residue field. We also fix
a finite non-empty set T of places of k which is disjoint from S and then set
∆T :=

∏

v∈T (1 − σv · Nv) ∈ Q[G]× and

θK/k,S,T (s) = ∆T · θK/k,S(s).

This C[G]-valued function is holomorphic at s = 0 and, by using results of
Weil, Gross has shown that θK/k,S,T (0) belongs to Z[G] [31, Prop. 3.7].
For any intermediate field F of K/k and any place w of K we let w′ denote the
restriction of w to F and then write fK/F,w for the homomorphism F× → G

which is obtained as the composite of the natural inclusion F× → F×
w′ , the reci-

procity map F×
w′ → Gal(Kw/Fw′) and the natural injection Gal(Kw/Fw′) → G.

We also write O×
F,S,T for the subgroup of O×

F,S consisting of those S(F )-units

which are congruent to 1 modulo all places in T (F ). It is known that each such
group O×

F,S,T is torsion-free. In particular, after choosing an ordered Z-basis

{uj : j ∈ |n|} of O×
k,S,T , we may define an element of Z[G] by setting

RegG,S,T := det((fK/k,wi
(uj) − 1)1≤i,j≤n).

At the same time we also define a rational integer mk,S,T by means of the
following equality in ∧nXk,S ⊗ R

(11) (lim
s→0

s−nθk/k,S,T (s)) · ∧j∈|n|(vj − v0) = mk,S,T · λk,S(∧j∈|n|uj),

where λk,S denotes the isomorphism

∧nO×
k,S,T ⊗ R → ∧nXk,S ⊗ R

induced by the n-th exterior power of the map −Rk,S as defined in (2) (cf. [31,
(1.7)]).

Conjecture Gr(K/k) (Gross, [31, Conj. 4.1]): One has

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod In+1
G ).

Remark 9. The term mk,S,T · RegG,S,T belongs to In
G and is, when considered

modulo In+1
G , independent of the chosen ordering of S and of the precise choice

of the places {wi : i ∈ |n|∗} and of the ordered basis {uj : j ∈ |n|}.

5.2. Statement of the main results. At the present time, the best results
concerning Gr(K/k) are due to Tan and to Lee. Specifically, it is known that
Gr(K/k) is valid if either |G| is a power of p [47] or if |G| is coprime to both
|µK | and the order of the group of divisors of degree 0 of the curve Ck [39].
However, these results are proved either by reduction to special cases or by
induction on |G| and so do not provide an insight into why Gr(K/k) should be
true in general. In contrast, in this section we shall show that Gross’s integral
regulator mapping O×

k,S → Xk,S ⊗ G [31, (2.1)] arises as a natural Bockstein
homomorphism in Weil-étale cohomology and we shall use this observation to
prove the following result.
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Theorem 5.1. If the G-module µK is c-t, then C(K/k) implies Gr(K/k).

Corollary 3. If the G-module µK is c-t, then Gr(K/k) is valid.

Proof of Corollary 3. It is easily seen to be enough to prove Gr(K/k) in the case
that |G| is a prime power. The aforementioned result of Tan therefore allows
us to assume that p ∤ |G| (so that K0(Zp[G], Qp) is torsion-free). But since the
G-module µK is assumed to be c-t, in this case the validity of Gr(K/k) follows
directly from Theorem 5.1 and Corollary 1. ¤

Remark 10. The G-module µK is c-t if and only if for each prime divisor ℓ

of |G| one has either ℓ ∤ |µK | or ℓ ∤ [K : k(µ
(ℓ)
K )] where µ

(ℓ)
K is the maximal

subgroup of µK of ℓ-power order. It seems likely that a further development
of the method we use to prove Theorem 5.1 will allow the removal of any such
hypothesis on µK . Indeed, in certain special cases this is already achieved in
the present manuscript (cf. Corollary 5).

The proof of Theorem 5.1 will be the subject of the next three subsections.

5.3. The computation of χ(RΓW(UK,S , Gm),RK,S). In this subsection we
assume that the G-module µK is c-t, but we do not assume that G is abelian.
We set TrG :=

∑

g∈G g ∈ Z[G]. For any abelian group A we write A in place

of A/Ators and for any extension field E of Q we set AE := A ⊗ E. For any
homomorphism of abelian groups φ : A → A′ we also let φE denote the induced
homomorphism φ ⊗ idE : AE → A′

E .
In the following result we let Cone(α) denote the ‘mapping cone’ of a particular
morphism α in Dperf(Z[G]) - our application of this construction can be made
rigorous by the same observation as used in [15, Rem. 5.2].

Lemma 6. There exists an endomorphism φ of a finitely generated free Z[G]-
module F which satisfies both of the following conditions.

Let F · denote the complex F
φ
−→ F , where the first term is placed in degree 0.

i) There exists a distinguished triangle in Dperf(Z[G]) of the form

F · β
−→ Cone(α) → Q[0] → F ·[1]

where α is the morphism µK [0] → RΓW(UK,S , Gm) in Dperf(Z[G]) that
is induced by the inclusion µK ⊂ O×

K,S and Q is a finite G-module of

order coprime to |G|.
ii) The endomorphism φG of FG is semi-simple at 0. Indeed, there exists

an integer d with d ≥ n and an ordered Z[G]-basis {bi : 1 ≤ i ≤ d} of
F which satisfies both of the following conditions.

a) The Z[G]-module F1 which is generated by {bi : i ∈ |n|} satisfies
FG

1 = ker(φG) and, for each i ∈ |n|, the element TrG(bi) is a
pre-image of vi − v0 under the composite map

FG
1 ⊆ FG

։ cok(φG) → H1(R HomZ[G](Z, RΓW(UK,S , Gm)))

∼= H1(RΓW(Uk,S , Gm)) ։ Xk,S ,
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where the third, fourth and fifth maps are induced by H1(β), the
isomorphism of Lemma 1iv) (with J = G) and the short exact
sequence of Lemma 1iii) (with K = k) respectively.

b) The Z[G]-module F2 which is generated by {bi : n < i ≤ d} is such
that φG(FG

2 ) ⊆ FG
2 .

Proof. We set C· := Cone(α). Then, since µK is c-t, Lemma 1iii) implies that
C· is an object of Dperf(Z[G]) which is acyclic outside degrees 0 and 1 and

that H0(C·) = O×
K,S and H1(C·) = H1

W(UK,S , Gm). It is therefore clear that

C· is equivalent to a complex F̂ · of the form P
ψ
−→ F where F , resp. P , is

a finitely generated free Z[G]-module, resp. a finitely generated Z[G]-module
which is both c-t and Z-free, and P is placed in degree 0. Now any such
Z[G]-module P is projective [2, Th. 8]. In addition, since the Q[G]-modules
H0(C·)Q and H1(C·)Q are isomorphic, Wedderburn’s Theorem implies that
the Q[G]-modules PQ and FQ are also isomorphic. From Swan’s Theorem [26,
Th. (32.1)] we may therefore deduce that, for each prime q, the Zq[G]-modules
P ⊗ Zq and F ⊗ Zq are isomorphic. We may thus apply Roiter’s Lemma
[26, (31.6)] to deduce the existence of a Z[G]-submodule P ′ of P for which the
quotient P/P ′ is finite and of order coprime to |G| and one has an isomorphism

of Z[G]-modules ι : F
∼
−→ P ′. We set λ := ψ ◦ ι ∈ EndZ[G](F ).

The Z-module im(λG) is free and so the exact sequence 0 → ker(λG)
⊆
−→

FG λG

−−→ im(λG) → 0 splits. Hence we may choose a submodule D of FG

which λG maps isomorphically to im(λG). We next let T denote the pre-image
under the tautological surjection FG → cok(λG) of the subgroup cok(λG)tors.

Then the exact sequence 0 → T → FG → cok(λG) → 0 is also split and so we

may choose a submodule D′ of FG which is mapped isomorphically to cok(λG)
under the natural surjection. Now D′ and ker(λG) have the same Z-rank since
D′

Q
∼= cok(λG)Q

∼= cok(λ)G
Q

∼= ker(λ)G
Q

∼= ker(λG)Q. The direct sum decom-

positions ker(λG) ⊕ D = FG = T ⊕ D′ therefore imply that there exists an
automorphism ψ′ of FG such that both ψ′(T ) = D and ψ′(D′) = ker(λG). It
is then easily checked that ψ′ ◦ λG(D) ⊆ D and that ker(ψ′ ◦ λG) = ker(λG)

is mapped bijectively to cok(ψ′ ◦ λG) under the composite of the tautological

surjections FG → cok(ψ′ ◦ λG) and cok(ψ′ ◦ λG) → cok(ψ′ ◦ λG).

Since F is a free Z[G]-module we may choose an element ψ̃ of AutZ[G](F ) such

that ψ̃G = ψ′. We now set φ := ψ̃ ◦ λ ∈ EndZ[G](F ) and we let β denote the

morphism in Dperf(Z[G]) which corresponds to the morphism from the complex

F · (as described in the statement of the Lemma) to F̂ · that is induced by ι in

degree 0 and is equal to ψ̃−1 in degree 1. It is then easily checked that this gives
rise to a distinguished triangle of the form stated in i) in which Q := P/P ′.
Now φG = ψ′ ◦ λG and so the above remarks imply both that φG(D) ⊆ D and

that the natural map ker(φG) → cok(φG) is bijective. We next observe that the
decomposition FG = ker(φG) ⊕ D can be lifted to a direct sum decomposition
F = F1 ⊕ F2 in which both F1 and F2 are free Z[G]-modules (of ranks n and
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d−n respectively), FG
1 = ker(φG) and FG

2 = D. We let κ denote the composite
homomorphism described in claim ii)a). Our earlier observations imply that κ
is bijective, and so {κ−1(vi − v0) : i ∈ |n|} is a Z-basis of FG

1 = TrG(F1). It is
then easily shown that there exists a Z[G]-basis {bi : i ∈ |n|} of F1 such that
TrG(bi) = κ−1(vi − v0) for each i ∈ |n|. To complete the proof of claim ii) we
simply let {bi : n < i ≤ d} denote any choice of (ordered) Z[G]-basis of F2. ¤

If M is any finite G-module which is c-t, then M [0] is an object of Dperf(Z[G])
and we set χ(M) := χ(M [0], id0) ∈ K0(Z[G], Q) where id0 denotes the identity

map on the zero space. We also set Rβ
K,S := H1(β)−1

R ◦ RK,S ◦ H0(β)R.
Then upon applying Lemma A2 firstly to the distinguished triangle

µK [0]
α
−→ RΓW(UK,S , Gm) → Cone(α) → µK [1]

and then to the distinguished triangle in Lemma 6i) we obtain equalities

χ(RΓW(UK,S , Gm),RK,S) = χ(Cone(α),RK,S) + χ(µK)

= χ(F ·,Rβ
K,S) + χ(Q) + χ(µK)

= δ(detredR[G](〈R
β
K,S , φ〉ι1,ι2)) + χ(Q) + χ(µK),(12)

where ι1 and ι2 are any choices of R[G]-equivariant sections to the tautological
surjections FR → im(φ)R and FR → cok(φ)R and the last equality follows from
Lemma A1.

5.4. The connection to Gr(K/k). In this subsection we assume that G is
abelian and identify K0(Z[G], R) with the multiplicative group of invertible
Z[G]-lattices in R[G] (see Remark A1). In particular, we note that if M is any
finite G-module which is c-t, then its (initial) Fitting ideal FittZ[G](M) is an
invertible ideal of Z[G] and under the stated identification one has χ(M) =
FittZ[G](M)−1 in R[G].

Now θ∗K/k,S,T (0)# = ∆#
T · θ∗K/k,S(0)# and ∆#

T ∈ AnnZ[G](µK) = FittZ[G](µK).

Hence, in this case, (12) implies that the validity of C(K/k) is equivalent to
the existence of an element xT of Q[G]× which satisfies both

(13) θ∗K/k,S,T (0)# = xT · detR[G](〈R
β
K,S , φ〉ι1,ι2) ∈ R[G]×

and

(14) Z[G] · xT = ∆#
T · FittZ[G](µK)−1 FittZ[G](Q)−1 ⊆ FittZ[G](Q)−1.

We let G∗
(0) denote the set of characters χ ∈ G∗ at which LS(χ, 0) 6= 0, and

we set e0 :=
∑

χ∈G∗
(0)

eχ. Then the criterion of [50, Chap. I, Prop. 3.4] implies

that e0 ∈ Q[G], that e0 · ker(φ)Q = 0 and hence e0detR[G](〈R
β
K,S , φ〉ι1,ι2) =

e0detZ[G](φ), and also that for any χ ∈ G∗ \ G∗
(0) one has eχ · ker(φ)C 6= 0

and so e0detZ[G](φ) = detZ[G](φ). Since θK/k,S,T (0)# = e0θ
∗
K/k,S,T (0)# we

therefore deduce from (13) that

θK/k,S,T (0)# = xT detZ[G](φ).
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Now |Q| is coprime to |G| and In
G/In+1

G is annihilated by a power of |G|, and so

(14) implies that xT acts naturally on In
G/In+1

G . In addition, Lemma 6ii) implies
that the matrix of φ with respect to the ordered Z[G]-basis {bi : 1 ≤ i ≤ d} of
F is a block matrix of the form

(15)

(

A B
C D

)

where A := (Aij)1≤i,j≤n ∈ Mn(IG), D ∈ Md−n(Z[G]) and all entries of both B
and C belong to IG. Since det(A) ∈ In

G one has

det(A)# ≡ (−1)ndet(A) (mod In+1
G )

and so the above matrix representation combines with the previous displayed
equality to imply that

(16) θK/k,S,T (0) ≡ (−1)nǫ(xT )ǫ(det(D)) · det(A) (mod In+1
G ).

To compute the term (−1)nǫ(xT )ǫ(det(D)) we first multiply (13) by TrG and
obtain an equality

lim
s→0

s−nθk/k,S,T (s) = ǫ(xT )detR(〈Rβ
K,S , φ〉ι1,ι2)

G.

For convenience we fix the sections ι1 and ι2 so that ιG1 is equal to the inverse of
the automorphism of FG

2,R induced by φG and ιG2 is the inverse of the composite

map FG
1,R ⊆ FG

R ։ cok(φG)R. Then (〈Rβ
K,S , φ〉ι1,ι2)

G = ψ1 ⊕ ψ2 where ψ2 is

equal to the restriction of φ to FG
2,R and ψ1 is the automorphism of FG

1,R that
is obtained as the composite

FG
1,R = ker(φG)R

H0(β)G
R−−−−−→ (O×

K,S)G
R

RK,S

−−−→ XG
K,S,R

σ
−→ Xk,S,R → FG

1,R

where σ is the bijection induced by the injection Xk,S → XK,S described
in Lemma 1iv) (with J = G), and the final arrow denotes the inverse of the
isomorphism induced by the displayed map in Lemma 6ii)a). Now, with respect
to the ordered Z-basis {TrG(bi) : n < i ≤ d} of FG

2 , each component of the
matrix of ψ2 is the image under ǫ of the corresponding component of D and so

lim
s→0

s−nθk/k,S,T (s) = ǫ(xT ) · detR(ψ1) · ǫ(det(D)).

On the other hand, the commutative diagram

(O×
K,S)G

R

RK,S

−−−−→ XG
K,S,R

⊆

x









y

σ

(O×
k,S)R

Rk,S

−−−−→ Xk,S,R

(cf. [50, Chap. I, §6.5]) combines with the above description of ψ1 to imply
that detR(ψ1) is equal to the determinant of the map ∧n(H0(β)(FG

1 ))R →
(∧nXk,S)R induced by ∧n

RRk,S = (−1)nλk,S , as computed with respect to the
R-bases ∧i∈|n|H

0(β)(TrG(bi)) and ∧i∈|n|(vi − v0). Hence, if we fix an ordered

Z-basis {di : i ∈ |n|} of O×
k,S , regard O×

k,S,T as a subgroup of O×
k,S in the natural
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way, and define elements a := (aij)1≤i,j≤n and b := (bij)1≤i,j≤n of Mn(Z) by
the equalities ui =

∑

j∈|n| aijdj and TrG(H0(β)(bi)) =
∑

j∈|n| bijdj for each

i ∈ |n|, then the last displayed formula implies that

(lim
s→0

s−nθk/k,S,T (s)) · ∧j∈|n|(vj − v0)

= ǫ(xT )ǫ(det(D))detR(ψ1) · ∧j∈|n|(vj − v0)

= (−1)nǫ(xT )ǫ(det(D)) · λk,S(∧j∈|n|H
0(β)(TrG(bj)))

= (−1)nǫ(xT )ǫ(det(D))det(b)det(a)−1 · λk,S(∧j∈|n|uj).

Comparing this equality with (11) implies that

(−1)nǫ(xT )ǫ(det(D))det(b)det(a)−1 = mk,S,T

and hence that

(−1)nǫ(xT )ǫ(det(D)) = mk,S,T det(a)det(b)−1.

In turn, upon substituting this equality into (16) we obtain a congruence

(17) θK/k,S,T (0) ≡ mk,S,T det(a)det(b)−1 · det(A) (mod In+1
G ).

5.5. Bockstein homomorphisms. In this subsection we complete our proof
of Theorem 5.1 by showing that the factor det(a)det(b)−1 ·det(A) which occurs
in (17) is equal to RegG,S,T . The key to our proof of this equality will be the

observation that the ‘regulator map’ O×
k,S → Xk,S ⊗G introduced by Gross in

[31, (2.1)] arises as a natural Bockstein homomorphism in Weil-étale cohomol-
ogy (this is Lemma 8). The material in this subsection is strongly influenced
by the general philosophy of algebraic height pairings that is developed by
Nekovář in [44, §11].
At the outset we let Γ be any finite abelian group and C · any object of
Dfpd(Z[Γ]). Then, upon tensoring C· with the tautological exact sequence
0 → IΓ → Z[Γ] → Z → 0 we obtain a distinguished triangle in D(Z) of the
form

C· → C·
Γ → C ⊗L

Z[Γ] IΓ[1] → C·[1],

where C·
Γ := C·⊗L

Z[Γ]Z. In addition, if C· is acyclic outside degrees 0 and 1, then

there are natural identifications H0(C·
Γ) ∼= H0(C·)Γ (induced by the action of

TrΓ), H1(C·
Γ) ∼= H1(C·)Γ and H1(C· ⊗L

Z[Γ] IΓ) ∼= H1(C·) ⊗Z[Γ] IΓ. In this case

the canonical identification IΓ/I2
Γ
∼= Γ therefore combines with the cohomology

sequence of the above triangle to induce a ‘Bockstein homomorphism’

βC·,Γ : H0(C·)Γ → H1(C· ⊗L
Z[Γ] IΓ) ∼= H1(C·) ⊗Z[Γ] IΓ

→ H1(C·)Γ ⊗Z[Γ] (IΓ/I2
Γ) ∼= H1(C·

Γ) ⊗ Γ

and also an associated pairing

ρC·,Γ : H0(C·)Γ × HomZ(H1(C·
Γ), Z) → IΓ/I2

Γ.

In the remainder of this subsection we shall use these constructions in the
cases that Γ = G and C· is equal to both F · (as described in Lemma 6) and
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RΓW(UK,S , Gm), and also in the case that Γ is equal to a given decomposition
subgroup of G and C· is a local analogue of RΓW(UK,S , Gm). In the course
of so doing we shall always use the Z-basis {vi − v0 : i ∈ |n|} to identify Xk,S

with HomZ(Xk,S , Z).
Before stating our first result we observe that the action of TrG (in each degree)
induces an isomorphism in D(Z) between F ·

G = F · ⊗Z[G] Z and the complex

FG φG

−−→ FG in which the first term is placed in degree 0. We shall use this
isomorphism to identify H1(F ·

G) with Xk,S by means of the map FG → Xk,S

described in Lemma 6ii)a).

Lemma 7. With respect to the ordered Z-bases {TrG(bi) : i ∈ |n|} and {vi−v0 :

i ∈ |n|} of H0(F ·)G and HomZ(H1(F ·
G), Z) respectively, the matrix of ρF ·,G is

equal to A (mod Mn(I2
G)).

Proof. The homomorphism βF ·,G can be computed as the composite of the
connecting homomorphism in the following commutative diagram

H0(F ·)G





y

0 −−−−→ F ⊗Z[G] IG
⊆

−−−−→ F
·TrG−−−−→ FG −−−−→ 0





y

φ⊗Z[G]id





y

φ





y
φG

0 −−−−→ F ⊗Z[G] IG
⊆

−−−−→ F
·TrG−−−−→ FG −−−−→ 0





y

H1(F ·) ⊗Z[G] IG

with the natural surjection H1(F ·) ⊗Z[G] IG → H1(F ·
G) ⊗ IG/I2

G. Upon com-
puting the above connecting homomorphism by using the matrix represen-
tation of φ given in (15), and observing Lemma 6ii) implies that the tauto-

logical surjection FG → cok(φG) ∼= H1(F ·
G) factors through the projection

FG → FG
1 , one finds that the required composite sends each element TrG(bi)

to
∑

j∈|n|(vj − v0) ⊗ Aij (mod I2
G). This implies the stated result. ¤

The construction of the pairing ρC·,G is natural in C· in the following sense: if

µ : C· → D· is any morphism in Dfpd(Z[G]) which induces a bijection H1(µG)

from H1(C·
G) to H1(D·

G), then there is a commutative diagram

H0(C·)G × HomZ(H1(C·
G), Z)

ρC·,G

−−−−→ IG/I2
G

(H0(µ)G,HomZ(H1(µG),Z)−1)





y

∥

∥

∥

H0(D·)G × HomZ(H1(D·
G), Z)

ρD·,G

−−−−→ IG/I2
G.

When taken in conjunction with the computation of Lemma 7 and the fact
that multiplication by det(b) is invertible on In

G/In+1
G (since |QG| is coprime to
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|G|), this observation implies that the term det(a)det(b)−1 ·det(A) (mod In+1
G )

in (17) is equal to the discriminant of the restriction of ρRΓW(UK,S ,Gm),G to

O×
k,S,T × Xk,S as computed with respect to the ordered Z-bases {ui : i ∈ |n|}

and {vi − v0 : i ∈ |n|}.
To prove Theorem 5.1 we therefore need only show that the homomorphism
βRΓW(UK,S ,Gm),G coincides with the regulator mapping O×

k,S → Xk,S ⊗ G de-

fined by Gross in [31, (2.1)]. In turn, this is achieved by the following result
(which, we observe, does not assume that the G-module µK is c-t).

Lemma 8. Set C· := RΓW(UK,S , Gm). Then for each u ∈ O×
k,S,T one has

βC·,G(u) =
∑

i∈|n|(vi − v0) ⊗ fK/k,wi
(u).

Proof. We fix an index i ∈ |n| and set v := vi, w := wi and D := Gal(Kw/kv).
We let βC·,G,v denote the composite of βC·,G with the inclusion Xk,S ⊗ G ⊂
Yk,S ⊗ G and the homomorphism Yk,S ⊗ G → G which is induced by mapping
each element of Yk,S to its coefficient at v. Then we need to show that βC·,G,v =
fK/k,w.
We set Vw := Spec(Kw). Then the result of [12, Lem. 7(b)] combines with
the fact that H1(Vw, Gm) = 0 to imply that there exists a unique morphism
αw from Q[−2] to RΓ(Vw, Gm) in D(Z[D]) for which H2(αw) is equal to the
composite of the natural projection Q → Q/Z and the canonical identification
Q/Z ∼= H2(Vw, Gm). We set C·

w := Cone(αw) (cf. the remark just prior to
Lemma 6). Then, by an argument similar to that used in the proof of Lemma
1iii), one shows that C·

w is an object of Dfpd(Z[D]) which is acyclic outside
degrees 0 and 1 and is such that H0(C·

w) and H1(C·
w) identify canonically with

K×
w and Z respectively. Further, in the notation of §4.1, the result of [12, Prop.

3.5(a)] implies that the associated Yoneda extension class e(C ·
w) is equal to

the element −ew of Ext2D(Z,K×
w ) ∼= H2(D,K×

w ) where invkv
(ew) = 1

|D| (recall

that, following the approach of §4.1, we are here using a different convention
regarding Yoneda-Ext-groups than that used in [12], and hence e(C ·

w) is equal
to −ew rather than ew.)
The natural localisation morphism RΓ(UK,S , Gm) → Z[G] ⊗Z[D] RΓ(Vw, Gm)
in D(Z[G]) induces a morphism C · → Z[G] ⊗Z[D] C·

w and by consideration of
this morphism one finds that βC·,G,v is equal to the composite of the embedding
O×

k,S → k×
v , the homomorphism βC·

w,D and the natural injection D ⊆ G. It
is therefore enough for us to prove that βC·

w,D is equal to the reciprocity map
recw : k×

v → D of the extension Kw/kv.
To this end we first recall that recw is defined to be the map induced by the
inverse of the isomorphism D ∼= Ĥ0(D,K×

w ) which results from the canonical

identifications D ∼= ID/I2
D = Ĥ−1(D, ID), the isomorphism Ĥ−1(D, ID) ∼=

Ĥ−2(D, Z) which is induced by the connecting homomorphism associated to
the tautological exact sequence 0 → ID → Z[D] → Z → 0 and the isomorphism

Ĥ−2(D, Z) ∼= Ĥ0(D,K×
w ) which is given by cup-product with ew.

To proceed we choose an extension of D-modules

0 → K×
w

ι
−→ A

ψ
−→ Z[D]

ǫ
−→ Z → 0
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of Yoneda extension class −ew. Then C·
w is equivalent to the complex A·

which is given by A
ψ
−→ Z[D], where the modules are placed in degrees 0 and 1

and the cohomology is identified with K×
w and Z by means of the given maps.

Taken in conjunction with the description of recw in the preceding paragraph
and the compatibility of cup-products with connecting homomorphisms in Tate
cohomology (cf. [2, Th. 3 and Th. 4(iii),(iv)]), this observation implies that
recw is induced by the canonical isomorphism D ∼= ID/I2

D = (ID)D together
with the inverse of the connecting homomorphism in the following commutative
diagram

(ID)D
∥

∥

∥

(K×
w )D

ιD−−−−→ AD
ψD

−−−−→ (ID)D −−−−→ 0




y

Trw





y

Trw





y

Trw

0 −−−−→ (K×
w )D ιD

−−−−→ AD ψD

−−−−→ (ID)D = 0




y

Ĥ0(D,K×
w )

where Trw :=
∑

d∈D d ∈ Z[D]. On the other hand, the fact that C ·
w is equiv-

alent to A· combines with the definition of βC·
w,D to imply that the latter

homomorphism can be computed as the composite of the natural identification
D ∼= (ID)D and the connecting homomorphism in the following commutative
diagram

k×
v




yιD

A ⊗Z[D] ID −−−−→ A
Trw−−−−→ AD −−−−→ 0





y

ψ⊗Z[G]id





y

ψ





y
ψD

0 −−−−→ ID
⊂

−−−−→ Z[D]
Trw−−−−→ Z · Trw −−−−→ 0





y

(ID)D.

We remark that the upper row of this diagram is exact since the D-module A
is c-t. Our proof now concludes by means of an explicit diagram chase showing
that the connecting homomorphism in the second of these diagrams induces
the inverse of the connecting homomorphism in the first diagram. ¤
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6. The conjecture of Tate

In this section we provide evidence for Tate’s refinement of Gr(K/k). To do so
we continue to use the notation of §5.1. In addition, we fix a prime number ℓ
and assume henceforth that G has order ℓm with m ≥ 1. For each index j in
|n|∗ we let Gj denote the decomposition subgroup of wj in G and we define an
integer mj by the equality |Gj | = ℓm−mj .

6.1. Statement of the conjecture. In this subsection we assume S to be
ordered so that m0 ≤ m1 ≤ · · · ≤ mn.

Conjecture Ta(K/k, S, T ) (Tate, [51]): If G is cyclic of order ℓm, m0 = 0
and mn = m − 1, then one has

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod I
(
∑ n−1

i=0 ℓmi )+1
G ).

For a further discussion of this conjecture see, for example, [38, §4].

6.2. Statement of the main results. We recall from §4.1 that if the G-
module AK,S := Pic(OK,S) is c-t, then one can define a canonical element

cS(K/k) := ιS′,S(cS′(K/k)) of Ext2G(XK,S ,O×
K,S), where S′ is any set as de-

scribed in §4.1 (and cS(K/k) is indeed independent of the choice of S′).
For each index j in |n| we write Ij for the kernel of the natural projection map
Z[G] → Z[G/Gj ]. We consider the following hypothesis on K/k.

Hypothesis (S,T): There exist finite non-empty sets S and T of places of k
which satisfy each of the following conditions:

i) S contains all places which ramify in K/k,
ii) the G-module AK,S is c-t,
iii) G0 = G, n > 0 and Gj is cyclic for each j ∈ |n|,
iv) T is disjoint from S and cS(K/k) lies in the image of the map

Ext2G(XK,S ,O×
K,S,T ) → Ext2G(XK,S ,O×

K,S)

induced by the inclusion O×
K,S,T ⊂ O×

K,S .

Remark 11. If K/k is cyclic, then there always exists a set of places S which
satisfies conditions i), ii) and iii) above. In general however, for a given field
K there are restrictions on the abstract structure of the decomposition group
G0 and therefore (under condition iii)) also on G. Nevertheless, the validity
of Hypothesis (S,T) does not itself imply, for example, that G is abelian. If
ℓ ∤ |µk|, then (since |G| is a power of ℓ) one has ℓ ∤ |µK | and so [50, Chap. IV,
Lem. 1.1] implies that there exists a set T which is disjoint from S and satisfies
ℓ ∤ [O×

K,S : O×
K,S,T ] and hence also condition iv). In fact, condition iv) can be

shown to be satisfied under reasonably general conditions even if ℓ | |µk| (cf.
[17, Lem. 2]).

The following result will be proved in §6.4.
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Theorem 6.1. If S and T are as in Hypothesis (S,T) and G is abelian, then
C(K/k) implies that

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod IG ·
∏

j∈|n|

Ij).

Corollary 4. Assume the notation and hypotheses of Ta(K/k, S, T ). If the
G-module Pic(OK,S) is c-t and cS(K/k) lies in the image of the map

Ext2G(XK,S ,O×
K,S,T ) → Ext2G(XK,S ,O×

K,S)

induced by the inclusion O×
K,S,T ⊂ O×

K,S, then C(K/k) implies that

θK/k,S,T (0) ≡ mk,S,T · RegG,S,T (mod IG ·
∏

j∈|n|

Ij).

In particular, in this case Ta(K/k, S, T ) is valid.

Proof. Since, by assumption, m0 = 0 the sets S and T satisfy all parts of
Hypothesis (S,T). The first assertion thus follows directly from Theorem 6.1.
To prove the second assertion we recall that if ℓ = p, then Ta(K/k, S, T ) has
been proved by Tan [48]. We may therefore assume that ℓ 6= p so that C(K/k)
is valid by Corollary 1. It thus suffices to deduce the validity of Ta(K/k, S, T )
from the stated congruence for θK/k,S,T (0) and this is true because

∏

j∈|n| Ij ⊆

I
∑ n−1

i=0 ℓmi

G . Indeed, since mn = m − 1, the required inclusion follows directly
from the criterion of [8, Lem. 5.11]. ¤

The next result improves upon Corollary 3 and also the main result of Lee in
[37].

Corollary 5. If G has prime exponent, then Gr(K/k) is valid.

Proof. In this case, the functorial properties of θK/k,S,T (0) and RegG,S,T under

change of K/k combine with results on the structure of IG/In+1
G to show that

it is enough to prove Gr(L/k) for each sub-extension L/k of K/k which is of
prime degree. The theorem of Tan [47] also allows us to assume that [L : k]
is a prime number different from p, and in this case the required congruence
can be proved by combining the result of Corollary 4 (with K = L) together
with arguments of Gross from [31, §6]. The precise details of this argument are
presented in joint work of the author with Lee [17]. ¤

6.3. χ(RΓW(UK,S , Gm),RK,S) revisited. In this subsection we prepare for
the proof of Theorem 6.1 by using Hypothesis (S,T) to refine the computation
of χ(RΓW(UK,S , Gm),RK,S) given in §5.3. We do not assume here that G is
abelian or that the G-module µK is c-t.
At the outset we fix sets S and T as in Hypothesis (S,T). Since S is fixed we
abbreviate O×

K,S,T ,XK,S and O×
K,S to O×

K,T ,XK and O×
K respectively. We also

set AK := Pic(OK,S) and write AK,T for the quotient of the group of fractional
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ideals of OK,S that are prime to T by the subgroup of principal ideals with a
generator congruent to 1 modulo all places in T (K).
For each j ∈ |n| we fix a generator gj of Gj and a set of representatives S(j)
of the orbits of Gj on the set of places of K lying above {vi : i ∈ |n|}. We
assume that S(j) contains wi for each i ∈ |n|. For each place w in S(j) we
define δjw to be 1 if w = wj and to be 0 otherwise. For each j ∈ |n| we also
set Trj :=

∑

g∈Gj
g ∈ Z[G] and Kj := KGj .

If d is any strictly positive integer, then in the sequel we shall use the canonical
basis of R[G]d to identify the groups GLd(R[G]) and AutR[G](R[G]d).

Proposition 6.1. Let S and T be as in Hypothesis (S,T). Assume also that
Gj is not trivial for any j ∈ |n|. Then, for each j ∈ |n| there exists an element
ǫj of O×

Kj ,T which satisfies all of the following conditions.

i) For each w ∈ S(j) one has fK/Kj ,w(ǫj) = g
δjw

j .

ii) For each pair of integers i, j in |n| let yji denote the (unique) element
of R[G] · Tri which satisfies

1

|Gj |
RK,S(ǫj) =

∑

i∈|n|

yji(wi − w0).

Then the matrix MT := (δij(gi−1)+yij)1≤i,j≤n belongs to GLn(R[G]).
iii) The G-module E that is generated by the set {ǫj : j ∈ |n|} has finite

index in O×
K,T . The G-modules O×

K,S/E and AK,T are both c-t and in

K0(Z[G], R) one has

χ(RΓW(UK,S , Gm),RK,S) = χ(O×
K,T /E) − χ(AK,T )

+ δ(detredR[G](MT )) − δ(detredR[G](∆
#
T )).

To prove this result we let Ψ̂· denote any complex of G-modules of the

form Ψ̂0 d
−→ Ψ̂1 where Ψ̂0 occurs in degree 0 and e(Ψ̂·) = cW,S(K/k) in

the notation of §4.1. We write Ψ1 for the pullback of the natural sur-
jection Ψ̂1 → H1

W(UK,S , Gm) and a choice of section γ to the surjection
H1

W(UK,S , Gm) → XK provided by Lemma 1iii) (such a section always ex-
ists under Hypothesis (S,T)ii)). In this way we obtain a complex Ψ· of the

form Ψ̂0 d̂
−→ Ψ1 which satisfies e(Ψ·) = ι−1

S (cW,S(K/k)) ∈ Ext2G(XK ,O×
K) and

lies in a distinguished triangle in Dperf(Z[G]) of the form

Ψ· α
−→ RΓW(UK,S , Gm) → AK [−1] → Ψ·[1],

where H0(α) is the identity map and H1(α) = γ. Upon applying Lemma A2
to this triangle we obtain an equality

(18) χ(RΓW(UK,S , Gm),RK,S) = χ(Ψ·,RK,S) − χ(AK).

To compute χ(Ψ·,RK,S) we shall first be more explicit about the computation

of the group Ext2G(XK ,O×
K). For each j ∈ |n| one has an exact sequence

0 → Z[G] · Trj
⊂
−→ Z[G]

dj

−→ Z[G]
θj

−→ Z[G](wj − w0) → 0
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where dj(x) = (gj − 1)x and θj(x) = x(wj − w0) for each x ∈ Z[G]. By tak-
ing the direct sum of these sequences over j in |n| we obtain a resolution of

XK =
⊕

j∈|n| Z[G](wj − w0) of the form 0 → ΣK
⊂
−→ F

d
−→ F

θ
−→ XK → 0

in which ΣK :=
⊕

j∈|n| Z[G] · Trj , F =
⊕

j∈|n| Z[G], d =
⊕

j∈|n| dj and

θ =
⊕

j∈|n| θj . When computing Ext2G(XK ,O×
K) with respect to this reso-

lution, we may choose an injective G-homomorphism φ : ΣK → O×
K which

represents ι−1
S (cW,S(K/k)) [4, Lem. 2.4]. In addition, from Proposition 4.1,

one has ι−1
S (cW,S(K/k)) = −cS(K/k) and so Hypothesis (S,T)iv) allows us to

assume that φ factors through a homomorphism φT : ΣK → O×
K,T . In this

case one has φT =
⊕

i∈|n| φj with φj ∈ HomZ[G](Z[G] · Trj ,O
×
K,T ) and so we

set ǫj := φj(Trj) ∈ (O×
K,T )Gj = O×

Kj ,T . Then, since φ represents −cS(K/k),

the descriptions of [22, Prop. 3.2.1, Prop. 4.5.2] imply that condition i) is
satisfied. (Note that the result of [22, Prop. 4.5.2] should state that ψw(tv(c))
is equal to g−1 rather than g. Indeed, the compatibility of cup-product with
connecting homomorphisms in Tate cohomology implies that (in the notation
of the proof given in loc. cit.) cup-product with β is equal to the negative of
the composite of the connecting homomorphisms H−2(Gv, Z) → H−1(Gv, IΓa)
and H−1(Gv, IΓa) → H0(Gv, Zc) described there. See also the proof of [20,
Cor. 2.1] in this regard.)

We next let F̂ denote the push-out of φ and the inclusion map ΣK
⊆
−→ F , and

we write F · and F̂ · for the complexes F
d
−→ F and F̂

d̂
−→ F where (in both

cases) the modules are placed in degrees 0 and 1 and d̂ denotes the morphism
induced by d. Then Lemma 5 combines with our choice of φ to imply that
the complexes F̂ · and Ψ· are equivalent and hence there exists a distinguished
triangle in D(Z[G]) of the form

F · β
−→ Ψ· → cok(φ)[0] → F ·[1]

in which H0(β) = φ and H1(β) is the identity map. Note that since both F ·

and Ψ· belong to Dperf(Z[G]) this triangle implies that cok(φ)[0] (and hence
also the triangle itself) belongs to Dperf(Z[G]). In particular, it follows that
the G-module cok(φ) is both finite (since φ is injective) and c-t. In addition,
we may apply Lemma A2 to the triangle to deduce that

(19) χ(Ψ·,RK,S) = χ(F ·,RK,S ◦ φ) + χ(cok(φ)).

To compute χ(F ·,RK,S ◦ φ) we observe that the differential of F · is semi-
simple at 0, when considered as an endomorphism of F . Indeed, the submodule
D :=

⊕

j∈|n| Q[G]·(gj−1) is a Q[G][d]-equivariant direct complement to ΣK⊗Q

in F ⊗Q. We may therefore apply Lemma A1 with P = F,R = Z, E = R, φ =
d, λ = RK,S ◦ φ and with ι1, ι2 equal to the sections which are induced by D.
In this context, the definition of the elements yij in the statement of claim
ii) implies that the restriction of the automorphism 〈λ, φ〉ι1,ι2 which occurs in
Lemma A1 to the direct summand ΣK ⊗R, resp. D⊗Q R, of F ⊗R is the map
which sends each Trj to

∑

i∈|n| yji Tri, resp. is the map which is induced by
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multiplication by (gj −1) on each summand R[G] ·(gj −1). It follows that, with
respect to a suitable ordered R[G]-basis of F⊗R, the matrix of 〈λ, φ〉ι1,ι2 is equal
to MT and hence that MT is invertible, as required by claim ii). In addition,
in this case Lemma A1 implies that χ(F ·,RK,S ◦ φ) = δ(detredR[G](MT )). Our
proof of Proposition 6.1 is thus completed by combining this equality with (18),
(19) and the following two results.

Lemma 9. If the G-module cok(φT ) = O×
K,T /E is c-t, then so also are cok(φ) =

O×
K/E , AK and AK,T , and in K0(Z[G], R) one has

χ(cok(φ)) − χ(AK) = χ(cok(φT )) − χ(AK,T ) − δ(detredR[G](∆
#
T )).

Proof. We use the natural exact sequence of finite G-modules

(20) 0 → cok(φT )
⊆
−→ cok(φ) →

⊕

v∈T

F×
(v) → AK,T → AK → 0

where F(v) denotes the direct sum of the residue fields Fw of each place w of
K which lies above v [31, (1.5)]. Let Gw denote the decomposition group of
w in G. Then, if η is any generator of the cyclic group F×

w , there exists a Gw-
equivariant surjection Z[Gw] → F×

w which sends 1 to η. In this way one obtains

an exact sequence 0 → Z[G]
1−σ−1

v Nv
→ Z[G] → F×

(v) → 0 of G-modules. These

sequences combine to imply that the G-module
⊕

v∈T F×
(v) is c-t and moreover

that χ(
⊕

v∈T F×
(v)) =

∑

v∈T χ(F×
(v)) = −

∑

v∈T δ(detredR[G](1 − σ−1
v Nv)) =

−δ(detredR[G](∆
#
T )).

At this stage we know that all of the modules which occur in (20) are c-t,
except possibly for AK,T . The exactness of this sequence therefore implies that
AK,T is also c-t. Finally, the claimed equality follows upon decomposing (20)
into short exact sequences and then using Lemma A2 (repeatedly). ¤

Lemma 10. The G-module cok(φT ) is c-t. Indeed, one has ℓ ∤ | cok(φT )|.

Proof. It suffices to prove that ℓ ∤ | cok(φT )G|. Now E ∼= ΣK so H1(G, E) ∼=
H1(G,ΣK) = 0. This implies cok(φT )G = (O×

K,T /E)G ∼= O×
k,T /EG and also

that EG is generated by {Nj(ǫj) : j ∈ |n|} where, for each j ∈ |n|, we write Nj

for the field theoretic norm map K×
j → k×.

We fix an ordered Z-basis {ui : i ∈ |n|} of Uk,T and define an element b :=

(bij) of Mn(Z) by the equalities Ni(ǫi) =
∏n

j=1 u
bij

j for each i, j in |n|. Then

|O×
k,T /EG| = ±det(b) and so we must show that ℓ ∤ det(b). To prove this we

choose for each i, j in |n|, an integer aij such that fK/k,wi
(uj) = g

aji

i , we set
a := (aij) ∈ Mn(Z) and we show that b · a ≡ In (mod ℓ · Mn(Z)).
For each intermediate field F of K/k we write JF for the idele group of F and
fF : JF → Gal(K/F ) for the global reciprocity map. For each j ∈ |n| we write
fF,j : F× → Gal(K/F ) for the composite of fF and the natural inclusion of
F× into

∏

s F×
s ⊂ JF where the product is taken over the set of places s of F

which lie above vj . We note that if F = k, then fF,j = fK/k,wj
.
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For each pair of elements i, j of |n| we set S(ij) := {w ∈ S(i) : w | vj}.
Then property i) in the statement of the Proposition implies fKi,j(ǫi) =
∏

w∈S(ij) fK/Ki,w(ǫi) =
∏

w∈S(ij) gδiw

i = g
δij

i . After taking account of the

functorial behaviour of Artin maps, this implies g
δij

i = fK/k,wj
(Ni(ǫi)) =

∏

s∈|n| fK/k,wj
(us)

bis =
∏

s∈|n| g
bisasj

j = g
∑

s∈|n| bisasj

j and hence, since by as-

sumption no element gj is trivial, that
∑

s∈|n| bisasj ≡ δij (mod ℓ). It follows

that b · a ≡ In (mod ℓ · Mn(Z)), as required. ¤

6.4. The proof of Theorem 6.1. In this subsection we use Proposition 6.1
to prove Theorem 6.1. We assume throughout that G is abelian. Our argument
is similar to that used in §5.4 and so we continue to use the notation G∗

(0) and

e0 introduced in that subsection.
At the outset we observe that if Gj is trivial for any j ∈ |n|, then θK/k,S,T (0)
and RegG,S,T are both equal to 0 and so the congruence of Theorem 6.1 is valid
trivially. In the sequel we shall therefore assume that Gj is not trivial for any
j ∈ |n|, as is required by Proposition 6.1.
Now, since G is abelian, Proposition 6.1iii) shows that C(K/k) implies the
existence of an element xT of Q[G]× which satisfies both

(21) θ∗K/k,S,T (0)# = xT · det(MT ) ∈ R[G]×

and

(22) Z[G] · xT = FittZ[G](O
×
K,T /E)−1 FittZ[G](AK,T ) ⊆ FittZ[G](O

×
K,T /E)−1.

For all i, j in |n| one has e0 · Trj = 0 so that e0yij = 0 and hence (MT e0)ij =
δij(gi−1)e0. Also, for each χ ∈ G∗\G∗

(0) there exists j ∈ |n| such that χ(gj) = 1

and so
∏

i∈|n|(gi − 1)(1 − e0) = 0. It follows that

e0det(MT ) = det(MT e0)

=
∏

i∈|n|

(gi − 1)e0

=
∏

i∈|n|

(gi − 1).

This combines with (21) to imply that θK/k,S,T (0)# = xT · e0det(MT ) =
xT

∏

i∈|n|(gi − 1). In addition, (22) combines with Lemma 10 to imply that

xT ∈ Zℓ[G] and hence one has

θK/k,S,T (0)# ≡ ǫ(xT )
∏

i∈|n|

(gi − 1) (mod IG ·
∏

i∈|n|

Ii).

Since RegG,S,T ∈
∏

i∈|n| Ii one also has

(RegG,S,T )# ≡ (−1)nRegG,S,T (mod IG ·
∏

i∈|n|

Ii).
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To deduce the congruence of Theorem 6.1 from the previous displayed congru-
ence we therefore need only show that

ǫ(xT )
∏

i∈|n|

(gi − 1) ≡ (−1)nmk,S,T · RegG,S,T (mod IG ·
∏

i∈|n|

Ii)

where mk,S,T is as defined in (11). In addition, with the matrix b as defined in
the proof of Lemma 10, one has

∏

i∈|n|

(gi − 1) ≡ det((fK/k,wj
(Ni(ǫi)) − 1)1≤i,j≤n)

≡ det(b) · det((fK/k,wj
(ui) − 1)1≤i,j≤n)

≡ det(b) · RegG,S,T (mod IG ·
∏

j∈|n|

Ij),

and so it suffices to show that ǫ(xT ) · det(b) = (−1)nmk,S,T . But, just as in
the deduction of (17) from (13), this can be proved by first multiplying (21) by
TrG and then comparing the resulting equality to (11).
This completes our proof of Theorem 6.1.

Appendix

We recall some relevant properties of the refined Euler characteristic construc-
tion discussed in §2.1 (the notation of which we continue to use). For further
details we refer the reader to [9] (or to [7, §1] for a fuller review than that given
here).
We let R denote either Z or Zℓ for some prime ℓ and E an extension of the field
of fractions of R. For any R[G]-module M , resp. homomorphism of R-modules
φ, we set ME := M ⊗R E, resp. φE := φ ⊗R idE .
Let P · be a bounded complex of finitely generated projective R[G]-modules.
For each integer i we let Bi, resp. Zi, denote the submodules of coboundaries,
resp. cocycles, of P ·

E in degree i. After choosing E[G]-equivariant splittings of
the tautological exact sequences 0 → Zi → P i

E → Bi+1 → 0 and 0 → Bi →
Zi → Hi(P ·

E) → 0 one obtains non-canonical isomorphisms

P+
E

∼= Ball ⊕ H+(P ·)E

P−
E

∼= Ball ⊕ H−(P ·)E .

By using the identity map on Ball one can therefore extend each element φ
of IsE[G](H

+(P ·)E ,H−(P ·)E) to give an element φ(P ·
E) of IsE[G](P

+
E , P−

E ).
This construction clearly depends upon the above choice of splittings but nev-
ertheless induces a well-defined map from IsE[G](H

+(P ·)E ,H−(P ·)E)/ ∼ to

IsE[G](P
+
E , P−

E )/ ∼ which is independent of all such choices. We denote this
map by τ 7→ τ(P ·

E) and we obtain a well-defined element of K0(R[G], E) by
setting χR[G],E(P ·, τ) := (P+, φ, P−) for any (and therefore every) φ ∈ τ(P ·

E).
In the following result we record this construction in a special case.

Lemma A1. Let P be a finitely generated projective R[G]-module, φ an R[G]-
endomorphism of P and λ : ker(φ)E → cok(φ)E an E[G]-isomorphism. Choose
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E[G]-equivariant sections ι1 and ι2 to the tautological surjections PE → im(φ)E

and PE → cok(φ)E, and let 〈λ, φ〉ι1,ι2 denote the automorphism of PE which is
equal to ι2 ◦ λ on ker(φ)E and to φE on ι1(im(φ)E). If P · denotes the complex

P
φ
−→ P , where the first term is placed in degree 0, then in K0(R[G], E) one

has χR[G],E(P ·, λ) = ∂1
R[G],E([〈λ, φ〉ι1,ι2 ]).

For each i ∈ {1, 2, 3} let P ·
i be a bounded complex of finitely generated pro-

jective R[G]-modules. We assume that there exists a distinguished triangle in
Dperf(R[G]) of the form

P ·
1

α
−→ P ·

2 → P ·
3 → P ·

1[1]

and that P ·
3,E is acyclic (so that Hi(α)E is bijective in each degree i). For

any E-trivialisation τ of P ·
1 we let τα denote the unique E-trivialisation of P ·

2

that contains H−(α)E ◦ φ ◦H+(α)−1
E for any (and therefore every) φ ∈ τ . The

following result is a special case of [9, Th. 2.8].

Lemma A2. If P ·
3,E is acyclic, then for any E-trivialisation τ of P ·

1 one has

χR[G],E(P ·
2, τα) = χR[G],E(P ·

1, τ) + χR[G],E(P ·
3, id0),

where id0 denotes the identity map on the zero space.

Note that if P ·
3 is acyclic, then χR[G],E(P ·

3, id0) = 0 and so Lemma A2 implies
χR[G],E(·, ·) is well-defined on pairs of the form (X, τ) where X is an object of

Dperf(R[G]) and τ an element of IsE[G](H
+(X)E ,H−(X)E)/ ∼.

Remark A1. The element χR[G],E(X, τ) of K0(R[G], E) constructed above
can be naturally reinterpreted as an isomorphism class of objects in a fibre
product category involving a suitable category of virtual objects as introduced
by Deligne in [28]. (Indeed, this more conceptual approach has important tech-
nical advantages and is used systematically in [13]). As a result, if G is abelian,
then χR[G],E(X, τ) can also be described by using the graded determinant func-
tor of Grothendieck, Knudsen and Mumford (that is described in [36]). In fact,
if G is abelian, then K0(R[G], E) identifies naturally with the multiplicative
group of invertible R[G]-lattices in E[G] (cf. [4, Lem. 2.6]), the reduced norm
map nrE[G] : K1(E[G]) → E[G]× is bijective and, with respect to the stated

identification, for each x ∈ E[G]× one has

∂1
R[G],E(nr−1

E[G](x)) = R[G] · x ⊂ E[G].

This shows in particular that, if K/k is abelian, then the equality of C(K/k)
is equivalent to a formula for the sublattice Z[G] · θ∗K/k,S(0)# of R[G].
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Birkhäuser, Boston, 1990.

[7] D. Burns, Equivariant Tamagawa Numbers and Galois module theory,
Compositio Math. 129 (2001) 203-237.

[8] D. Burns, Equivariant Tamagawa Numbers and refined abelian Stark con-
jectures, J. Math. Soc. Univ. Tokyo. 10 (2003) 225-259.

[9] D. Burns, Equivariant Whitehead torsion and refined Euler characteris-
tics, CRM Proceedings and Lecture Notes 36 (2004) 35-59.

[10] D. Burns, Congruences between derivatives of abelian L-functions at s =
0, manuscript submitted for publication.

[11] D. Burns, M. Flach, Motivic L-functions and Galois module structures,
Math. Ann. 305 (1996) 65-102.

[12] D. Burns, M. Flach, On Galois structure invariants associated to Tate
motives, Amer. J. Math. 120 (1998) 1343-1397.

[13] D. Burns, M. Flach, Tamagawa numbers for motives with (non-
commutative) coefficients, Documenta Math. 6 (2001) 501-570.

[14] D. Burns, M. Flach, Tamagawa numbers for motives with (noncommuta-
tive) coefficients, II, Amer. J. Math. 125 (2003) 475-512.

[15] D. Burns, C. Greither, On the Equivariant Tamagawa Number Conjecture
for Tate motives, Invent. math. 153 (2003) 303-359.

[16] D. Burns, C. Greither, Equivariant Weierstrass Preparation and values
of L-functions at negative integers, Documenta Math., Extra volume:
Kazuya Kato’s Fiftieth Birthday, (2003) 157-185.

[17] D. Burns, J. Lee, On the refined class number formula of Gross, J. Number
Theory 107 (2004) 282-286.

[18] Ph. Cassou-Noguès, T. Chinburg, A. Fröhlich, M. J. Taylor, L-functions
and Galois modules, (notes by D. Burns and N. P. Byott, In: ‘L-functions
and Arithmetic’, J. Coates, M. J. Taylor (eds.), London Math. Soc. Lec-
ture Note Series 153, 75-139, Cam. Univ. Press 1991.

[19] T. Chinburg, On the Galois structure of algebraic integers and S-units,
Invent. math. 74 (1983) 321-349.

[20] T. Chinburg, The Galois structure of S-units, Sém. Th. Nombres Bor-
deaux 1982-1983, exposé 40.
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Sém. Bourbaki vol. 1965-1966, Benjamin (1966), exposé 306.
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