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is always Eisenstein in the sense of Mazur and Ribet, and Φ(J1(p)) is
trivial: that is, J1(p) has connected fibers. We also compute tables of
arithmetic invariants of optimal quotients of J1(p).
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1 Introduction

Let p be a prime and let X1(p)/Q be the projective smooth algebraic curve
over Q that classifies elliptic curves equipped with a point of exact order p.
Let J1(p)/Q be its Jacobian. One of the goals of this paper is to prove:

Theorem 1.1.1. For every prime p, the Néron model of J1(p)/Q over Z(p) has

closed fiber with trivial geometric component group.
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This theorem is obvious when X1(p) has genus 0 (i.e., for p ≤ 7), and for
p = 11 it is equivalent to the well-known fact that the elliptic curve X1(11) has
j-invariant with a simple pole at 11 (the j-invariant is −212/11). The strategy
of the proof in the general case is to show that X1(p)/Q has a regular proper
model X1(p)/Z(p)

whose closed fiber is geometrically integral. Once we have
such a model, by using the well-known dictionary relating the Néron model of
a generic-fiber Jacobian with the relative Picard scheme of a regular proper
model (see [9, Ch. 9], esp. [9, 9.5/4, 9.6/1], and the references therein), it
follows that the Néron model of J1(p) over Z(p) has (geometrically) connected
closed fiber, as desired. The main work is therefore to prove the following
theorem:

Theorem 1.1.2. Let p be a prime. There is a regular proper model X1(p) of

X1(p)/Q over Z(p) with geometrically integral closed fiber.

What we really prove is that if X1(p)reg denotes the minimal regular reso-
lution of the normal (typically non-regular) coarse moduli scheme X1(p)/Z(p)

,
then a minimal regular contraction X1(p) of X1(p)reg has geometrically integral
closed fiber; after all the contractions of −1-curves are done, the component
that remains corresponds to the component of X1(p)/Fp

classifying étale order-p
subgroups. When p > 7, so the generic fiber has positive genus, such a minimal
regular contraction is the unique minimal regular proper model of X1(p)/Q.

Theorem 1.1.2 provides natural examples of a finite map π between curves
of arbitrarily large genus such that π does not extend to a morphism of the
minimal regular proper models. Indeed, consider the natural map

π : X1(p)/Q → X0(p)/Q.

When p = 11 or p > 13, the target has minimal regular proper model over
Z(p) with reducible geometric closed fiber [45, Appendix], while the source has
minimal regular proper model with (geometrically) integral closed fiber, by
Theorem 1.1.2. If the map extended, it would be proper and dominant (as
source and target have unique generic points), and hence surjective. On the
level of closed fibers, there cannot be a surjection from an irreducible scheme
onto a reducible scheme. By the valuative criterion for properness, π is defined
in codimension 1 on minimal regular proper models, so there are finitely many
points of X1(p) in codimension 2 where π cannot be defined.

Note that the fiber of J1(p) at infinity need not be connected. More specif-
ically, a modular-symbols computation shows that the component group of
J1(p)(R) has order 2 for p = 17 and p = 41. In contrast, A. Agashe has
observed that [47, §1.3] implies that J0(p)(R) is always connected.

Rather than prove Theorem 1.1.2 directly, we work out the minimal regular
model for XH(p) over Z(p) for any subgroup H ⊆ (Z/pZ)×/{±1} and use
this to study the mod p component group of the Jacobian JH(p); note that
JH(p) usually does not have semistable reduction. Our basic method is to
use a variant on the classical Jung–Hirzebruch method for complex surfaces,
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adapted to the case of a proper curve over an arbitrary discrete valuation ring.
We refer the reader to Theorem 2.4.1 for the main result in this direction; this
is the main new theoretical contribution of the paper. This technique will be
applied to prove:

Theorem 1.1.3. For any prime p and any subgroup H of (Z/pZ)×/{±1}, the

natural surjective map JH(p) → J0(p) of Albanese functoriality induces an

injection on geometric component groups of mod-p fibers, with the component

group Φ(JH(p)/Fp
) being cyclic of order |H|/gcd(|H|, 6). In particular, the

finite étale component-group scheme Φ(JH(p)/Fp
) is constant over Fp.

If we view the constant cyclic component group Φ(J0(p)/Fp
) as a quotient of

the cyclic (Z/p)×/{±1}, then the image of the subgroup Φ(JH(p)/Fp
) in this

quotient is the image of H ⊆ (Z/pZ)×/{±1} in this quotient.

Remark 1.1.4. The non-canonical nature of presenting one finite cyclic group
as a quotient of another is harmless when following images of subgroups under
maps, so the final part of Theorem 1.1.3 is well-posed.

The constancy in Theorem 1.1.3 follows from the injectivity claim and the
fact that Φ(J0(p)/Fp

) is constant. Such constancy was proved by Mazur-
Rapoport [45, Appendix], where it is also shown that this component group for
J0(p) is cyclic of the order indicated in Theorem 1.1.3 for H = (Z/pZ)×/{±1}.

Since the Albanese map is compatible with the natural map TH(p) → T0(p)
on Hecke rings and Mazur proved [45, §11] that Φ(J0(p)/Fp

) is Eisenstein as a

T0(p)-module, we obtain:

Corollary 1.1.5. The Hecke module Φ(JH(p)/Fp
) is Eisenstein as a TH(p)-

module (i.e., T` acts as 1 + ` for all ` 6= p and 〈d〉 acts trivially for all

d ∈ (Z/pZ)×).

In view of Eisenstein results for component groups due to Edixhoven [18]
and Ribet [54], [55] (where Ribet gives examples of non-Eisenstein component
groups), it would be of interest to explore the range of validity of Corollary
1.1.5 when auxiliary prime-to-p level structure of Γ0(N)-type is allowed. A
modification of the methods we use should be able to settle this more general
problem. In fact, a natural approach would be to aim to essentially reduce to
the Eisenstein results in [54] by establishing a variant of the above injectivity
result on component groups when additional Γ0(N) level structure is allowed
away from p. This would require a new idea in order to avoid the crutch of
cyclicity (the case of Γ1(N) seems much easier to treat using our methods
because the relevant groups tend to be cyclic, though we have not worked out
the details for N > 1), and preliminary calculations of divisibility among orders
of component groups are consistent with such injectivity.

In order to prove Theorem 1.1.3, we actually first prove a surjectivity result:

Theorem 1.1.6. The map of Picard functoriality J0(p) → JH(p) induces a

surjection on mod p component groups, with the mod p component group for

JH(p) having order |H|/ gcd(|H|, 6).
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In particular, each connected component of JH(p)/Fp
contains a multiple of

the image of (0) − (∞) ∈ J0(p)(Z(p)) in JH(p)(Fp).

Let us explain how to deduce Theorem 1.1.3 from Theorem 1.1.6. Recall [28,
Exposé IX] that for a discrete valuation ring R with fraction field K and an
abelian variety A over K over R, Grothendieck’s biextension pairing sets up a
bilinear pairing between the component groups of the closed fibers of the Néron
models of A and its dual A′. Moreover, under this pairing the component-group
map induced by a morphism f : A → B (to another abelian variety) has as an
adjoint the component-group map induced by the dual morphism f ′ : B′ → A′.
Since Albanese and Picard functoriality maps on Jacobians are dual to each
other, the surjectivity of the Picard map therefore implies the injectivity of the
Albanese map provided that the biextension pairings in question are perfect
pairings (and then the description of the image of the resulting Albanese in-
jection in terms of H as in Theorem 1.1.3 follows immediately from the order
calculation in Theorem 1.1.6).

In general the biextension pairing for an abelian variety and its dual need not
be perfect [8], but once it is known to be perfect for the JH(p)’s then surjectivity
of the Picard map in Theorem 1.1.6 implies the injectivity of the Albanese
map as required in Theorem 1.1.3. To establish the desired perfectness, one
can use either that the biextension pairing is always perfect in case of generic
characteristic 0 with a perfect residue field [6, Thm. 8.3.3], or that surjectivity
of the Picard map ensures that JH(p) has mod p component group of order
prime to p, and the biextension pairing is always perfect on primary components
prime to the residue characteristic [7, §3, Thm. 7].

It is probable that the results concerning the component groups Φ(JH(p)/Fp
)

and the maps between them that are proved in this article via models of XH(p)
over Z(p) can also be proved using [20, 5.4, Rem. 1], and the well-known stable
model of X1(p) over Z(p)[ζp] that one can find for example in [30]. (This
observation was prompted by questions of Robert Coleman.) However, such
an approach does not give information on regular models of XH(p) over Z(p).
Hence we prefer the method of this paper.
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1.2 Outline

Section 1.3 contains a few background notational remarks. In Section 2 we
develop the basic Jung–Hirzebruch resolution technique in the context of tame
cyclic quotient surface singularities. This includes mod-p singularities on many
(coarse) modular curves when p > 3 and the p-power level structure is only
on p-torsion. In Section 3, we recall some general results on moduli problems
for elliptic curves and coarse moduli schemes for such problems. In Section 4,
we use the results of Sections 2 and 3 to locate all the non-regular points on
the coarse moduli scheme XH(p)/Z(p)

(e.g., when H is trivial this is the set
of Fp-rational points (E, 0) with j = 0, 1728). In Section 5, we use the Jung–
Hirzebruch formulas to compute the minimal regular resolution XH(p)reg of
XH(p)/Z(p)

, and we use use a series of intersection number computations to
obtain a regular proper model for XH(p)/Q; from this, the desired results
on component groups follow. We conclude in Section 6 with some computer
computations concerning the arithmetic of J1(p) for small p, where (among
other things) we propose a formula for the order of the torsion subgroup of
J1(p)(Q).

To avoid using Weierstrass equations in proofs, we have sometimes argued
more abstractly than is strictly necessary, but this has the merit of enabling us
to treat cusps by essentially the same methods as the other points. We would
prefer to avoid mentioning j-invariants, but it is more succinct to say “cases
with j = 0” than it is to say “cases such that Aut(E/k) has order 6.”

Because we generally use methods of abstract deformation theory, the same
approach should apply to Drinfeld modular curves, as well as to cases with
auxiliary level structure away from p (including mod p component groups of
suitable Shimura curves associated to indefinite quaternion algebras over Q,
with p not dividing the discriminant). However, since a few additional techni-
calities arise, we leave these examples to be treated at a future time.

1.3 Notation and terminology

Throughout this paper, p denotes an arbitrary prime unless otherwise indicated.
Although the cases p ≤ 3 are not very interesting from the point of view of our
main results, keeping these cases in mind has often led us to more conceptual
proofs. We write Φp(T ) = (T p−1)/(T −1) ∈ Z[T ] to denote the pth cyclotomic
polynomial (so Φp(T + 1) is p-Eisenstein).

We write V ∨ to denote the dual of a vector space V , and we write F∨ to
denote the dual of a locally free sheaf F .

If X and S′ are schemes over a scheme S then X/S′ and XS′ denote X×S S′.
If S is an integral scheme with function field K and X is a K-scheme, by a
model of X (over S) we mean a flat S-scheme with generic fiber X.

By an S-curve over a scheme S we mean a flat separated finitely presented
map X → S with fibers of pure dimension 1 (the fibral dimension condition
need only be checked on generic fibers, thanks to [27, IV3, 13.2.3] and a re-
duction to the noetherian case). Of course, when a map of schemes X → S is
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proper flat and finitely presented with geometrically connected generic fibers,
then the other fibers are automatically geometrically connected (via reduction
to the noetherian case and a Stein factorization argument). For purely techni-
cal reasons, we do not require S-curves to be proper or to have geometrically
connected fibers. The main reason for this is that we want to use étale local-
ization arguments on X without having to violate running hypotheses. The
use of Corollary 2.2.4 in the proof of Theorem 2.4.1 illustrates this point.

2 Resolution of singularities

Our eventual aim is to determine the component groups of Jacobians of inter-
mediate curves between X1(p) and X0(p). Such curves are exactly the quotient
curves XH(p) = X1(p)/H for subgroups H ⊆ (Z/pZ)×/{±1}, where we iden-
tify the group AutQ(X1(p)/X0(p)) = AutQ(X1(p)/X0(p)) with (Z/pZ)×/{±1}

via the diamond operators (in terms of moduli, n ∈ (Z/pZ)× sends a pair (E,P )
to the pair (E,n · P )). The quotient XH(p)/Z(p)

is an arithmetic surface with
tame cyclic quotient singularities (at least when p > 3).

After some background review in Section 2.1 and some discussion of gener-
alities in Section 2.2, in Section 2.3 we will describe a class of curves that give
rise to (what we call) tame cyclic quotient singularities. Rather than work with
global quotient situations X/H, it is more convenient to require such quotient
descriptions only on the level of complete local rings. For example, this is what
one encounters when computing complete local rings on coarse modular curves:
the complete local ring is a subring of invariants of the universal deformation
ring under the action of a finite group, but this group-action might not be
induced by an action on the global modular curve. In Section 2.4 we estab-
lish the Jung–Hirzebruch continued-fraction algorithm that minimally resolves
tame cyclic quotient singularities on curves over an arbitrary discrete valuation
ring. The proof requires the Artin approximation theorem, and for this reason
we need to define the concept of a curve as in Section 1.3 without requiring
properness or geometric connectivity of fibers.

We should briefly indicate here why we need to use Artin approximation to
compute minimal resolutions. Although the end result of our resolution pro-
cess is intrinsic and of étale local nature on the curve, the mechanism by which
the proof gets there depends on coordinatization and is not intrinsic (e.g., we
do not blow-up at points, but rather along certain codimension-1 subschemes).
The only way we can relate the general case to a coordinate-dependent calcu-
lation in a special case is to use Artin approximation to find a common étale
neighborhood over the general case and a special case (coupled with the étale
local nature of the intrinsic minimal resolution that we are seeking to describe).

These resolution results are applied in subsequent sections to compute a
regular proper model of XH(p)/Q over Z(p) in such a way that we can compute
both the mod-p geometric component group of the Jacobian JH(p) and the
map induced by J0(p) → JH(p) on mod-p geometric component-groups. In
this way, we will prove Theorem 1.1.6 (as well as Theorem 1.1.2 in the case of
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trivial H).

2.1 Background review

Some basic references for intersection theory and resolution of singularities for
connected proper flat regular curves over Dedekind schemes are [29, Exposé X],
[13], and [41, Ch. 9].

If S is a connected Dedekind scheme with function field K and X is a normal
S-curve, when S is excellent we can construct a resolution of singularities as
follows: blow-up the finitely many non-regular points of X (all in codimension
2), normalize, and then repeat until the process stops. That this process always
stops is due to a general theorem of Lipman [40]. For more general (i.e., possibly
non-excellent) S, and X/S with smooth generic fiber, the same algorithm works
(including the fact that the non-regular locus consists of only finitely many
closed points in closed fibers). Indeed, when X/K is smooth then the non-
smooth locus of X → S is supported on finitely many closed fibers, so we may
assume S = Spec(R) is local. We can then use Lemma 2.1.1 below to bring

results down from X/R̂ since R̂ is excellent.

See Theorem 2.2.2 for the existence and uniqueness of a canonical minimal
regular resolution Xreg → X for any connected Dedekind S when X/K smooth.
A general result of Lichtenbaum [39] and Shafarevich [61] ensures that when
X/S is also proper (with smooth generic fiber if S isn’t excellent), by beginning
with Xreg (or any regular proper model of X/K) we can successively blow down
−1-curves (see Definition 2.2.1) in closed fibers over S until there are no more
such −1-curves, at which point we have reached a relatively minimal model
among the regular proper models of X/K . Moreover, when X/K is in addition
geometrically integral with positive arithmetic genus (i.e., H1(X/K ,O) 6= 0),
this is the unique relatively minimal regular proper model, up to unique iso-
morphism.

In various calculations below with proper curves, it will be convenient to work
over a base that is complete with algebraically closed residue field. Since pas-
sage from Z(p) to W (Fp) involves base change to a strict henselization followed
by base change to a completion, in order to not lose touch with the situation
over Z(p) it is useful to keep in mind that formation of the minimal regular
proper model (when the generic fiber is smooth with positive genus) is com-
patible with base change to a completion, henselization, and strict henselization
on the base. We will not really require these results, but we do need to use
the key fact in their proof: certain base changes do not destroy regularity or
normality (and so in particular commute with formation of normalizations).
This is given by:

Lemma 2.1.1. Let R be a discrete valuation ring with fraction field K and

let X be a locally finite type flat R-scheme that has regular generic fiber. Let

R → R′ be an extension of discrete valuation rings for which mRR′ = mR′ and

the residue field extension k → k′ is separable. Assume either that the fraction
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field extension K → K ′ is separable or that X/K is smooth (so either way,

X/K′ is automatically regular).

For any x′ ∈ X ′ = X ×R R′ lying over x ∈ X, the local ring OX′,x′ is regular

(resp. normal) if and only if the local ring OX,x is regular (resp. normal).

Proof. Since mRR′ = mR′ , the map π : X ′ → X induces πk : X/k ×k k′ → X/k

upon reduction modulo mR. The separability of k′ over k implies that πk is a
regular morphism. Thus, if x and x′ lie in the closed fibers then OX,x → OX′,x′

is faithfully flat with regular fiber ring OX′,x′/mx. Consequently, X is regular
at x if and only if X ′ is regular at x′ [44, 23.7]. Meanwhile, if x and x′ lie in
the generic fibers then they are both regular points since the generic fibers are
regular. This settles the regular case.

For the normal case, when X ′ is normal then the normality of X follows from
the faithful flatness of π [44, Cor. to 23.9]. Conversely, when X is normal then
to deduce normality of X ′ we use Serre’s “R1 +S2” criterion. The regularity of
X ′ in codimensions ≤ 1 is clear at points on the regular generic fiber. The only
other points of codimension ≤ 1 on X ′ are the generic points of the closed fiber,
and these lie over the (codimension 1) generic points of the closed fiber of X.
Such points on X are regular since X is now being assumed to be normal, so the
desired regularity on X ′ follows from the preceding argument. This takes care
of the R1 condition. It remains to check that points x′ ∈ X ′ in codimensions
≥ 2 contain a regular sequence of length 2 in their local rings. This is clear if
x′ lies on the regular generic fiber, and otherwise x′ is a point of codimension
≥ 1 on the closed fiber. Thus, x = π(x′) is either a generic point of X/k or is a
point of codimension ≥ 1 on X/k. In the latter case the normal local ring OX,x

has dimension at least 2 and hence contains a regular sequence of length 2; this
gives a regular sequence in the faithfully flat extension ring OX′,x′ . If instead
x is a generic point of X/k then OX,x is a regular ring. It follows that OX′,x′

is regular, so we again get the desired regular sequence (since dimOX′,x′ ≥ 2).

We wish to record an elementary result in intersection theory that we will
use several times later on. First, some notation needs to be clarified: if X is
a connected regular proper curve over a discrete valuation ring R with residue
field k, and D and D′ are two distinct irreducible and reduced divisors in the
closed fiber, then

D.D′ := dimk H0(D ∩ D′,O) =
∑

d∈D∩D′

dimk OD∩D′,d.

This is generally larger than the length of the artin ring H0(D ∩ D′,O), and
is called the k-length of D ∩ D′. If F = H0(D,OD), then D ∩ D′ is also an
F -scheme, and so it makes sense to define

D.F D′ = dimF H0(D ∩ D′,O) = D.D′/[F : k].
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We call this the F -length of D∩D′. We can likewise define D.F ′D′ for the field
F ′ = H0(D′,O). If D′ = D, we define the relative self-intersection D.F D to be
(D.D)/[F : k] where D.D is the usual self-intersection number on the k-fiber.

Theorem 2.1.2. Let X be a connected regular proper curve over a discrete

valuation ring, and let P ∈ X be a closed point in the closed fiber. Let C1, C2

be two (possibly equal) effective divisors supported in the closed fiber of X, with

each Cj passing through P , and let C ′
j be the strict transform of Cj under the

blow-up π : X ′ = BlP (X) → X. We write E ' P1
k(P ) to denote the exceptional

divsor.

We have π−1(Cj) = C ′
j + mjE where mj = multP (Cj) is the multiplicity of

the curve Cj at P . Also, mj = (C ′
j).k(P )E and

C1.C2 = C ′
1.C

′
2 + m1m2[k(P ) : k].

Proof. Recall that for a regular local ring R of dimension 2 and any non-zero
non-unit g ∈ R, the 1-dimensional local ring R/g has multiplicity (i.e., leading
coefficient of its Hilbert-Samuel polynomial) equal to the unique integer µ ≥ 1
such that g ∈ m

µ
R, g 6∈ m

µ+1
R .

We have π−1(Cj) = C ′
j + mjE for some positive integer mj that we must

prove is equal to the multiplicity µj = multP (Cj) of Cj at P . We have
E.k(P )E = −1, so E.E = −[k(P ) : k], and we also have π−1(Cj).E = 0,
so mj = (C ′

j .E)/[k(P ) : k] = (C ′
j).k(P )E. The strict transform C ′

j is the blow-
up of Cj at P , equipped with its natural (closed immersion) map into X ′. The
number mj is the k(P )-length of the scheme-theoretic intersection C ′

j ∩E; this
is the fiber of BlP (Cj) → Cj over P . Intuitively, this latter fiber is the scheme
of tangent directions to Cj at P , but more precisely it is Proj(Sj), where

Sj =
⊕

n≥0

m
n
j /m

n+1
j ,

and mj is the maximal ideal of OCj ,P = OX,P /(fj), with fj a local equation
for Cj at P . We have mj = m/(fj) with m the maximal ideal of OX,P . Since
fj ∈ m

µj and fj 6∈ m
µj+1,

Sj ' Symk(P )(m/m
2)/f j = k(P )[u, v]/(f j)

with f j denoting the nonzero image of fj in degree µj . We conclude that
Proj(Sj) has k(P )-length µj , so mj = µj . Thus, we may compute

C1.C2 = π−1(C1).π
−1(C2) = C ′

1.C
′
2 + 2m1m2[k(P ) : k] + m1m2E.E

= C ′
1.C

′
2 + m1m2[k(P ) : k].
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2.2 Minimal resolutions

It is no doubt well-known to experts that the classical technique of resolution
for cyclic quotient singularities on complex surfaces [25, §2.6] can be adapted
to the case of tame cyclic quotient singularities on curves over a complete
equicharacteristic discrete valuation ring. We want the case of an arbitrary
discrete valuation ring, and this seems to be less widely known (it is not ad-
dressed in the literature, and was not known to an expert in log-geometry with
whom we consulted). Since there seems to be no adequate reference for this
more general result, we will give the proof after some preliminary work (e.g.,
we have to define what we mean by a tame cyclic quotient singularity, and we
must show that this definition is applicable in many situations. Our first step
is to establish the existence and uniqueness of a minimal regular resolution in
the case of relative curves over a Dedekind base (the case of interest to us);
this will eventually serve to make sense of the canonical resolution at a point.

Since we avoid properness assumptions, to avoid any confusion we should
explicitly recall a definition.

Definition 2.2.1. Let X → S be a regular S-curve, with S a connected
Dedekind scheme. We say that an integral divisor D ↪→ X in a closed fiber Xs

is a −1-curve if D is proper over k(s), H1(D,OD) = 0, and degkOD(D) = −1,
where k = H0(D,OD) is a finite extension of k(s).

By Castelnuovo’s theorem, a −1-curve D ↪→ X as in Definition 2.2.1 is k-
isomorphic to a projective line over k, where k = H0(D,OD).

The existence and uniqueness of minimal regular resolutions is given by:

Theorem 2.2.2. Let X → S be a normal S-curve over a connected Dedekind

scheme S. Assume either that S is excellent or that X/S has smooth generic

fiber.

There exists a birational proper morphism π : Xreg → X such that Xreg

is a regular S-curve and there are no −1-curves in the fibers of π. Such an

X-scheme is unique up to unique isomorphism, and every birational proper

morphism X ′ → X with a regular S-curve X ′ admits a unique factorization

through π. Formation of Xreg is compatible with base change to SpecOS,s and

Spec ÔS,s for closed points s ∈ S. For local S, there is also compatibility with

ind-étale base change S′ → S with local S′ whose closed point is residually

trivial over that of S.

We remind that reader that, for technical reasons in the proof of Theorem
2.4.1, we avoid requiring curves to be proper and we do not assume the generic
fiber to be geometrically connected. The reader is referred to [41, 9/3.32] for
an alternative discussion in the proper case.

Proof. We first assume S to be excellent, and then we shall use Lemma 2.1.1
and some descent considerations to reduce the general case to the excellent case
by passage to completions.
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As a preliminary step, we wish to reduce to the proper case (to make the
proof of uniqueness easier). By Nagata’s compactification theorem [43] and the
finiteness of normalization for excellent schemes, we can find a schematically
dense open immersion X ↪→ X with X/S normal, proper, and flat over S (hence

a normal S-curve). By resolving singularities along X − X, we may assume
the non-regular locus on X coincides with that on X. Thus, the existence and
uniqueness result for X will follow from that for X. The assertion on regular
resolutions (uniquely) factorizing through π goes the same way. Hence, we
now assume (for excellent S) that X/S is proper. We can also assume X to be
connected.

By Lemma 2.1.1 and resolution for excellent surfaces, there exists a birational
proper morphism X ′ → X with X ′ a regular proper S-curve. If there is a −1-
curve in the fiber of X ′ over some (necessarily closed) point of X, then by
Castelnuovo we can blow down the −1-curve and X ′ → X will factor through
the blow-down. This blow-down process cannot continue forever, so we get the
existence of π : Xreg → X with no −1-curves in its fibers.

Recall the Factorization Theorem for birational proper morphisms between
regular connected S-curves: such maps factor as a composite of blow-ups at
closed points in closed fibers. Using the Factorization Theorem, to prove
uniqueness of π and the (unique) factorization through π for any regular reso-
lution of X we just have to show that if X ′′ → X ′ → X is a tower of birational
proper morphisms with regular S-curves X ′ and X ′′ such that X ′ has no −1-
curves in its fibers over X, then any −1-curve C in a fiber of X ′′ → X is
necessarily contracted by X ′′ → X ′. Also, via Stein factorization we can as-
sume that the proper normal connected S-curves X, X ′, and X ′′ with common
generic fiber over S have geometrically connected fibers over S. We may as-
sume that S is local. Since the map q : X ′′ → X ′ is a composite of blow-ups,
we may assume that C meets the exceptional fiber E of the first blow-down
q1 : X ′′ → X ′′

1 of a factorization of q. If C = E we are done, so we may assume
C 6= E. In this case we will show that X is regular, so again uniqueness holds
(by the Factorization Theorem mentioned above).

The image q1(C) is an irreducible divisor on X ′′
1 with strict transform C,

so by Theorem 2.1.2 we conclude that q1(C) has non-negative self-intersection
number, so this self-intersection must be zero. Since X ′′

1 → S is its own Stein
factorization, and hence has geometrically connected closed fiber, q1(C) must
be the entire closed fiber of X ′′

1 . Thus, X ′′
1 has irreducible closed fiber, and

so the (surjective) proper birational map X ′′
1 → X is quasi-finite and hence

finite. Since X and X ′′
1 are normal and connected (hence integral), it follows

that X ′′
1 → X must be an isomorphism. Thus, X is regular, as desired.

With Xreg unique up to (obviously) unique isomorphism, for the base change
compatibility we note that the various base changes S′ → S being considered
(to completions on S, or to local S′ ind-étale surjective over local S and resid-
ually trivial at closed points), the base change Xreg

/S′ is regular and proper

birational over the normal curve X/S′ (see Lemma 2.1.1). Thus, we just have
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to check that the fibers of Xreg
/S′ → X/S′ do not contain −1-curves. The closed-

fiber situation is identical to that before base change, due to the residually
trivial condition at closed points, so we are done.

Now suppose we do not assume S to be excellent, but instead assume X/S

has smooth generic fiber. In this case all but finitely many fibers of X/S are
smooth. Thus, we may reduce to the local case S = Spec(R) with a discrete

valuation ring R. Consider X/R̂, a normal R̂-curve by Lemma 2.1.1. Since R̂

is excellent, there is a minimal regular resolution

π : (X/R̂)reg → X/R̂.

By [40, Remark C, p. 155], the map π is a blow-up along a 0-dimensional closed

subscheme Ẑ physically supported in the non-regular locus of X/R̂. This Ẑ is

therefore physically supported in the closed fiber of X/R̂, yet Ẑ is artinian and

hence lies in some infinitesimal closed fiber of X/R̂. Since X×R R̂ → X induces

isomorphisms on the level of nth infinitesimal closed-fibers for all n, there is a
unique 0-dimensional closed subscheme Z in X with Z/R̂ = Ẑ inside of X/R̂.

Since the blow-up BlZ(X) satisfies

BlZ(X)/R̂ ' BlẐ(X/R̂) = (X/R̂)reg,

by Lemma 2.1.1 we see that BlZ(X) is a regular S-curve. There are no −1-

curves in its fibers over X since Spec R̂ → Spec R is an isomorphism over
SpecR/m. This establishes the existence of π : Xreg → X, as well as its
compatibility with base change to completions on S. To establish uniqueness
of π, or more generally its universal factorization property, we must prove that
certain birational maps from regular S-curves to Xreg are morphisms. This
is handled by a standard graph argument that can be checked after faithfully
flat base change to R̂ (such base change preserves regularity, by Lemma 2.1.1).

Thus, the uniqueness results over the excellent base R̂ carry over to our original
R. The same technique of base change to R̂ shows compatibility with ind-étale
base change that is residually trivial over closed points.

One mild enhancement of the preceding theorem rests on a pointwise defini-
tion:

Definition 2.2.3. Let X/S be as in Theorem 2.2.2, and let Σ ⊆ X be a finite
set of closed points in closed fibers over S. Let U be an open in X containing Σ
such that U does not contain the finitely many non-regular points of X outside
of Σ. We define the minimal regular resolution along Σ to be the morphism
πΣ : XΣ → X obtained by gluing X − Σ with the part of Xreg lying over U
(note: the choice of U does not matter, and XΣ is not regular if there are
non-regular points of X outside of Σ).
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It is clear that the minimal regular resolution along Σ is compatible with
local residually-trivial ind-étale base change on a local S, as well as with base
change to a (non-generic) complete local ring on S. It is also uniquely charac-
terized among normal S-curves C equipped with a proper birational morphism
ϕ : C → X via the following conditions:

• πΣ is an isomorphism over X − Σ,

• XΣ is regular at points over Σ,

• XΣ has no −1-curves in its fibers over Σ.

This yields the crucial consequence that (under some mild restrictions on
residue field extensions) formation of XΣ is étale-local on X. This fact is
ultimately the reason we did not require properness or geometrically connected
fibers in our definition of S-curve:

Corollary 2.2.4. Let X/S be a normal S-curve over a connected Dedekind

scheme S, and let Σ ⊆ X be a finite set of closed points in closed fibers over

S. Let X ′ → X be étale (so X ′ is an S-curve), and let Σ′ denote the preimage

of Σ. Assume that S is excellent or X/S has smooth generic fiber.

If XΣ → X denotes the minimal regular resolution along Σ, and X ′ → X is

residually trivial over Σ, then the base change XΣ ×X X ′ → X ′ is the minimal

regular resolution along Σ′.

Remark 2.2.5. The residual triviality condition over Σ is satisfied when S is
local with separably closed residue field, as then all points of Σ have separably
closed residue field (and so the étale X ′ → X must induce trivial residue field
extensions over such points).

Proof. Since XΣ ×X X ′ is étale over XΣ, we conclude that XΣ ×X X ′ is an
S-curve that is regular along the locus over Σ′ ⊆ X ′, and its projection to X ′

is proper, birational, and an isomorphism over X ′ − Σ′. It remains to check
that

(2.2.1) XΣ ×X X ′ → X ′

has no −1-curves in the proper fibers over Σ′. Since X ′ → X is residually
trivial over Σ (by hypothesis), so this is clear.

2.3 Nil-semistable curves

In order to compute minimal regular resolutions of the sort that arise on
XH(p)’s, it is convenient to study the following concept before we discuss res-
olution of singularities. Let S be a connected Dedekind scheme and let X be
an S-curve.
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Definition 2.3.1. For a closed point s ∈ S, a closed point x ∈ Xs is nil-

semistable if the reduced fiber-curve Xred
s is semistable over k(s) at x and all

of the analytic branch multiplicities through x are not divisible by char(k(s)).
If Xred

s is semistable for all closed points s ∈ S and all irreducible components
of Xs have multiplicity not divisible by char(k(s)), X is a nil-semistable curve

over S.

Considerations with excellence of the fiber Xs show that the number of an-
alytic branches in Definition 2.3.1 may be computed on the formal completion
at a point over x in Xs/k′ for any separably closed extension k′ of k(s). We will
use the phrase “analytic branch” to refer to such (formal) branches through a
point over x in such a geometric fiber over s.

As is well-known from [34], many fine moduli schemes for elliptic curves are
nil-semistable.

Fix a closed point s ∈ S. From the theory of semistable curves over fields [24,
III, §2], it follows that when x ∈ Xred

s is a semistable non-smooth point then
the finite extension k(x)/k(s) is separable. We have the following analogue of
the classification of semistable curve singularities:

Lemma 2.3.2. Let x ∈ Xs be a closed point and let πs ∈ OS,s be a uniformizer.

If x is a nil-semistable point at which X is regular, then the underlying re-

duced scheme of the geometric closed fiber over s has either one or two analytic

branches at a geometric point over x, with these branches smooth at x. When

moreover k(x)/k(s) is separable and there is exactly one analytic branch at

x ∈ Xs, with multiplicity m1 in Osh
Xs,x, then

(2.3.1) Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(tm1
1 − πs).

If there are two analytic branches (so k(x)/k(s) is automatically separable),
say with multiplicities m1 and m2 in Osh

Xs,x, then

(2.3.2) Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(tm1
1 tm2

2 − πs).

Conversely, if Ôsh
X,x admits one of these two explicit descriptions with the

exponents not divisible by char(k(s)), then x is a nil-semistable regular point

on X with k(x)/k(s) separable.

In view of this lemma, we call the exponents in the formal isomorphisms
(2.3.1) and (2.3.2) the analytic geometric multiplicities of Xs at x (this re-
quires k(x)/k(s) to be separable). We emphasize that these exponents can be
computed after base change to any separably closed extension of k(s) when x
is nil-semistable with k(x)/k(s) separable.

Proof. First assume x ∈ Xred
s is a non-smooth semistable point and X is reg-

ular at x. Since k(x) is therefore finite separable over k(s), we can make a
base change to the completion of a strict henselization of OS,s to reduce to
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the case S = Spec(W ) with a complete discrete valuation ring W having sep-

arably closed residue field k such that x a k-rational point. Since ÔX,x is a
2-dimensional complete regular local W -algebra with residue field k, it is a
quotient of W [[t1, t2]] and hence has the form W [[t1, t2]]/(f) where f is a regular
parameter. The semistability condition and non-smoothness of Xred

/k at x imply

k[[t1, t2]]/rad(f) = (k[[t1, t2]]/(f))red ' ÔXred
/k

,x ' k[[u1, u2]]/(u1u2)

where f = f mod mW , so f has exactly two distinct irreducible factors and
these have distinct (non-zero) tangent directions in Xred

/k through x. We can
choose t1 and t2 to lift these tangent directions, so upon replacing f with a
unit multiple we may assume f = tm1

1 tm2
2 mod mW for some m1,m2 ≥ 1 not

divisible by p = char(k) ≥ 0. Let π be a uniformizer of W , so f = tm1
1 tm2

2 − πg
for some g, and g must be a unit since f is a regular parameter. Since some mj

is not divisible by p, and hence the unit g admits an mjth root, by unit-rescaling
of the corresponding tj we get to the case g = 1.

In the case when Xred
s is smooth at x and k(x)/k(s) is separable, we may

again reduce to the case in which S = SpecW with complete discrete valuation
ring W having separably closed residue field k and k(x) = k. In this case, there
is just one analytic branch and we see by a variant of the preceding argument
that the completion of Osh

X,x has the desired form.
The converse part of the lemma is clear.

In Definition 2.3.6, we shall give a local definition of the class of curve-
singularities that we wish to resolve, but we will first work through some global
considerations that motivate the relevance of the local Definition 2.3.6.

Assume X is regular, and let H be a finite group and assume we are given an
action of H on X/S that is free on the scheme of generic points (i.e., no non-
identity element of H acts trivially on a connected component of X). A good ex-
ample to keep in mind is the (affine) fine moduli scheme over S = Spec(Z(p)) of
Γ1(p)-structures on elliptic curves equipped with auxiliary full level `-structure
for an odd prime ` 6= p, and H = GL2(F`) acting in the usual manner (see
Section 3 for a review of these basic level structures).

We wish to work with a quotient S-curve X ′ = X/H, so we now also assume
that X is quasi-projective Zariski-locally on S. Clearly X → X ′ is a finite H-
equivariant map with the expected universal property; in the above modular-
curve example, this quotient X ′ is the coarse moduli scheme Y1(p) over Z(p).
We also now assume that S is excellent or X/K is smooth, so that there are
only finitely many non-regular points (all in codimension 2) and various results
centering on resolution of singularities may be applied.

The S-curve X ′ has regular generic fiber (and even smooth generic fiber
when X/S has smooth generic fiber), and X ′ is regular away from finitely
many closed points in the closed fibers. Our aim is to understand the minimal

regular resolution X ′reg of X ′, or rather to describe the geometry of the fibers
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of X ′reg → X ′ over non-regular points x′ satisfying a mild hypothesis on the
structure of X → X ′ over x′.

We want to compute the minimal regular resolution for X ′ = X/H at non-
regular points x′ that satisfy several conditions. Let s ∈ S be the image of x′,
and let p ≥ 0 denote the common characteristic of k(x′) and k(s). Pick x ∈ X
over x′.

• We assume that X is nil-semistable at x (by the above hypotheses, X is
also regular at x).

• We assume that the inertia group Hx|x′ in H at x (i.e., the stablizer in
H of a geometric point over x) has order not divisible by p (so this group
acts semi-simply on the tangent space at a geometric point over x).

• When there are two analytic branches through x, we assume Hx|x′ does
not interchange them.

These conditions are independent of the choice of x over x′ and can be checked
at a geometric point over x, and when they hold then the number of analytic
branches through x coincides with the number of analytic branches through
x′ (again, we are really speaking about analytic branches on a geometric fiber
over s).

Since p does not divide |Hx|x′ |, it follows that k(x′) is the subring of invariants
under the action of Hx|x′ on k(x), so a classical theorem of Artin ensures
that k(x)/k(x′) is separable (and even Galois). Thus, k(x)/k(s) is separable
if and only if k(x′)/k(s) is separable, and such separability holds when the
point x ∈ Xred

s is semistable but not smooth. Happily for us, this separability
condition over k(s) is always satisfied (we are grateful to Lorenzini for pointing
this out):

Lemma 2.3.3. With notation and hypotheses as above, particularly with

x′ ∈ X ′ = X/H a non-regular point, the extension k(x′)/k(s) is separable.

Proof. Recall that, by hypothesis, x ∈ Xred
s is either a smooth point or an

ordinary double point. If x is a non-smooth point on the curve Xred
s , then the

desired separability follows from the theory of ordinary double point singular-
ities. Thus, we may (and do) assume that x is a smooth point on Xred

s .
We may also assume S is local and strictly henselian, so k(s) is separably

closed and hence k(x) and k(x′) are separably closed. Thus, k(x) = k(x′)
and Hx|x′ is the physical stabilizer of the point x ∈ X. We need to show
that the common residue field k(x) = k(x′) is separable over k(s). If we let
X ′′ = X/Hx|x′ , then the image x′′ of x in X ′′ has complete local ring isomorphic
to that of x′ ∈ X ′, so we may replace X ′ with X ′′ to reduce to the case when
H has order not divisible by p and x is in the fixed-point locus of H. By [20,
Prop. 3.4], the fixed-point locus of H in X admits a closed-subscheme structure
in X that is smooth over S. On the closed fiber this smooth scheme is finite
and hence étale over k(s), so its residue fields are separable over k(s).
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The following refinement of Lemma 2.3.2 is adapted to the Hx|x′-action, and
simultaneously handles the cases of one and two (geometric) analytic branches
through x′.

Lemma 2.3.4. With hypotheses as above, there is an Ôsh
S,s-isomorphism

Ôsh
X,x ' Ôsh

S,s[[t1, t2]]/(tm1
1 tm2

2 − πs)

(with m1 > 0, m2 ≥ 0) such that the Hx|x′-action looks like h(tj) = χj(h)tj for

characters χ1, χ2 : Hx|x′ → Ôsh
S,s

×
that are the Teichmüller lifts of characters

giving a decomposition of the semisimple Hx|x′-action on the 2-dimensional

cotangent space at a geometric point over x. Moreover, χm1
1 χm2

2 = 1.

The characters χj also describe the action of Hx|x′ on the tangent space at (a
geometric point over) x. There are two closed-fiber analytic branches through
x when m1 and m2 are positive, and then the branch with formal parameter
t2 has multiplicity m1 since

(k[[t1, t2]]/(tm1
1 tm2

2 ))[1/t2] = k((t2))[t1]/(tm1
1 )

has length m1. Likewise, when m2 > 0 it is the branch with formal parameter
t1 that has multiplicity m2.

Proof. We may assume S = SpecW with W a complete discrete valuation ring
having separably closed residue field k and uniformizer π, so x is k-rational. Let

R = Ôsh
X,x = ÔX,x. We have seen in Lemma 2.3.2 that there is an isomorphism

of the desired type as W -algebras, but we need to find better such tj ’s to
linearize the Hx|x′-action.

We first handle the easier case m2 = 0. In this case there is only one minimal
prime (t1) over (π), so h(t1) = uht1 for a unique unit uh ∈ R×. Since tm1

1 = π
is Hx|x′ invariant, we see that uh ∈ µm1

(R) is a Teichmüller lift from k (since
p - m1). Thus, h(t1) = χ1(h)t1 for a character χ1 : Hx|x′ → R× that is a
lift of a character for Hx|x′ on Cotx(X). Since Hx|x′ acts semisimply on the
2-dimensional cotangent space Cotx(X) and there is a stable line spanned by
t1 mod m

2
x, we can choose t2 to lift an Hx|x′ -stable line complementary to the

one spanned by t1 mod m
2
x. If χ2 denotes the Teichmüller lift of the character

for Hx|x′ on this complementary line, then

h(t2) = χ2(h)(t2 + δh)

with δh ∈ m
i
x for some i ≥ 2. It is straightfoward to compute that

h 7→ δh mod m
i+1
x

is a 1-cocycle with values in the twisted Hx|x′ -module χ−1
2 ⊗(mi

x/m
i+1
x ). Chang-

ing this 1-cocycle by a 1-coboundary corresponds to adding an element of
m

i
x/m

i+1
x to t2 mod m

i+1
x . Since

H1(Hx|x′ , χ−1
2 ⊗ (mi

x/m
i+1
x )) = 0,
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we can successively increase i ≥ 2 and pass to the limit to find a choice of t2
such that Hx|x′ acts on t2 through the character χ2. That is, h(t1) = χ1(h)t1
and h(t2) = χ2(h)t2 for all h ∈ Hx|x′ . This settles the case m2 = 0.

Now we turn to the more interesting case when also m2 > 0, so there are
two analytic branches through x. By hypothesis, the Hx|x′ -action preserves the
two minimal primes (t1) and (t2) over (π) in R. We must have h(t1) = uht1,
h(t2) = vht2 for unique units uh, vh ∈ R×. Since tm1

1 tm2
2 = π, by applying h

we get um1

h vm2

h = 1.
Consider what happens if we replace t2 with a unit multiple t′2 = vt2,

and then replace t1 with the unit multiple t′1 = v−m2/m1t1 so as to en-
sure t′m1

1 t′m2

2 = π. Note that an m1th root v−m2/m1 of the unit v−m2

makes sense since k is separably closed and p - m1. The resulting map
W [[t′1, t

′
2]]/(t′m1

1 t′m2

2 − π) → R is visibly surjective, and hence is an isomor-
phism for dimension reasons. Switching to these new coordinates on R has the
effect of changing the 1-cocycle {vh} by a 1-coboundary, and every 1-cocycle
cohomologous to {vh} is reached by making such a unit multiple change on t2.

By separately treating residue characteristic 0 and positive residue charac-
teristic, an inverse limit argument shows that H1(Hx|x′ , U) vanishes, where
U = ker(R×

³ k×). Thus, the natural map H1(Hx|x′ , R×) → H1(Hx|x′ , k×) is
injective. The Hx|x′ -action on k× is trivial since Hx|x′ acts trivially on W , so

H1(Hx|x′ , k×) = Hom(Hx|x′ , k×) = Hom(Hx|x′ , k×
tors),

with all elements in the torsion subgroup k×
tors of order not divisible by p and

hence uniquely multiplicatively lifting into R. Thus,

H1(Hx|x′ , R×) → H1(Hx|x′ , k×)

is bijective, and so replacing t1 and t2 with suitable unit multiples allows us
to assume h(t2) = χ2(h)t2, with χ2 : Hx|x′ → W×

tors some homomorphism of
order not divisible by p (since Hx|x′ acts trivially on k× and p - |Hx|x′ |).

Since
1 = um1

h vm2

h = um1

h χ2(h)m2

and p - m1, we see that uh is a root of unity of order not divisible by p. Viewing
k×
tors ⊆ R× via the Teichmüller lifting, we conclude that uh ∈ k×

tors ⊆ R×.
Thus, we can write h(t1) = χ1(h)t1 for a homomorphism χ1 : Hx|x′ → W×

tors

also necessarily of order not divisible by p. The preceding calculation also
shows that χm1

1 χm2
2 = 1 since um1

h vm2

h = 1.

Although Lemma 2.3.4 provides good (geometric) coordinate systems for
describing the inertia action, one additional way to simplify matters is to reduce
to the case in which the tangent-space characters χ1 and χ2 are powers of each
other. We wish to explain how this special situation is essentially the general
case (in the presence of our running assumption that H acts freely on the
scheme of generic points of X).
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First, observe that Hx|x′ acts faithfully on the tangent space Tx(X) at x.
Indeed, if an element in Hx|x′ acts trivially on the tangent space Tx(X), then

by Lemma 2.3.4 it acts trivially on the completion of Osh
X,x and hence acts

trivially on the corresponding connected component of the normal X. By
hypothesis, H acts freely on the scheme of generic points of X, so we conclude
that the product homomorphism

(2.3.3) χ1 × χ2 : Hx|x′ ↪→ k(x)×sep × k(x)×sep,

is injective (where k(x)sep is the separable closure of k(x) used when construct-
ing Osh

X,x). In particular, Hx|x′ is a product of two cyclic groups (one of which
might be trivial).

Lemma 2.3.5. Let κj = | ker(χj)|. The characters χκ2
1 and χκ1

2 factor through

a common quotient of Hx|x′ as faithful characters. When Hx|x′ is cyclic, this

quotient is Hx|x′ .

In addition, κ2|m1 and κ1|m2.

The cyclicity condition on Hx|x′ will hold in our application to modular
curves, as then even H is cyclic.

Proof. The injectivity of (2.3.3) implies that χ1 is faithful on ker(χ2) and χ2

is faithful on ker(χ1). Since χm1
1 χm2

2 = 1, we get κ2|m1 and κ1|m2 (even if
m2 = 0).

For the proof that the indicated powers of the χj ’s factor as faithful char-
acters of a common quotient of Hx|x′ , it is enough to focus attention on `-
primary parts for a prime ` dividing |Hx|x′ | (so ` 6= p). More specifically, if
G is an finite `-group that is either cyclic or a product of two cyclic groups,
and ψ0, ψ1 : G → Z/`nZ are homomorphisms such that ψ0 × ψ1 is injective
(i.e., ker(ψ0)∩ker(ψ1) = {1}), then we claim that the ψ

κ1−j

j ’s factor as faithful
characters on a common quotient of G, where κj = | ker(ψj)|. If one of the
ψj ’s is faithful (or equivalently, if the `-group G is cyclic), this is clear. This
settles the case in which G is cyclic, so we may assume G is a product of two
non-trivial cyclic `-groups and that both ψj ’s have non-trivial kernel. Since
the `-torsion subgroups ker(ψj)[`] must be non-trivial with trivial intersection,
these must be distinct lines spanning G[`]. Passing to group G/G[`] and the
characters ψ`

j therefore permits us to induct on |G|.

By the lemma, we conclude that the characters χ′
1 = χκ2

1 and χ′
2 = χκ1

1 both
factor faithfully through a common (cyclic) quotient H ′

x|x′ of Hx|x′ . Define

t′1 = tκ2
1 and t′2 = tκ1

2 . Since formation of Hx|x′ -invariants commutes with

passage to quotients on Ôsh
S,s-modules, Lemma 2.3.4 shows that in order to

compute the Hx|x′-invariants of Ôsh
X′,x′ it suffices to compute invariants on the

level of Ôsh
S,s[[t1, t2]] and then pass to a quotient. The subalgebra of invariants in
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Ôsh
S,s[[t1, t2]] under the subgroup generated by ker(χ1) and ker(χ2) is Ôsh

S,s[[t
′
1, t

′
2]],

and Hx|x′ acts on this subalgebra through the quotient H ′
x|x′ via the characters

χ′
1 and χ′

2. Letting m′
1 = m1/κ2 and m′

2 = m2/κ1 (so m′
2 = 0 in the case of

one analytic branch), we obtain the description

(2.3.4) Ôsh
X′,x′ = (Ôsh

S,s[[t
′
1, t

′
2]]/(t′1

m′
1t′2

m′
2 − πs))

H′
x|x′

Obviously χ′
2 = χ′

1
rx|x′ for a unique rx|x′ ∈ (Z/|H ′

x|x′ |Z)×, as the characters

χ′
j are both faithful on H ′

x|x′ .

Since |H ′
x|x′ | and rx|x′ ∈ (Z/|H ′

x|x′ |Z)× are intrinsic to x′ ∈ X ′ = X/H

and do not depend on x (or on a choice of k(x)sep), we may denote these
two integers nx′ and rx′ respectively. We have m′

1 + m′
2r

′
x′ ≡ 0 mod nx′ since

1 = χ′
1
m′

1χ′
2
m′

2 = χ′
1
m′

1+m′
2rx′ with χ′

1 faithful. Theorem 2.3.9 below shows
that nx′ > 1, since x′ is the non-regular.

If S were a smooth curve over C, then the setup in (2.3.4) would be the clas-
sical cyclic surface quotient-singularity situation whose minimal regular resolu-
tion is most readily computed via toric varieties. That case motivates what to
expect for minimal regular resolutions with more general S in §2.4, but rather
than delve into a relative theory of toric varieties we can just use the classical
case as a guide.

To define the class of singularities we shall resolve, let X ′
/S now be a normal

(not necessarily connected) curve over a connected Dedekind scheme S. Assume
moreover that either S is excellent or that X ′

/S has smooth generic fiber, so

there are only finitely many non-regular points (all closed in closed fibers).
Consider a closed point s ∈ S with residue characteristic p ≥ 0, and pick a
closed point x′ ∈ X ′

s such that X ′
s has one or two (geometric) analytic branches

at x′.

Definition 2.3.6. We say that a closed point x′ in a closed fiber X ′
s is a

tame cyclic quotient singularity if there exists a positive integer n > 1 not
divisible by p = char(k(s)), a unit r ∈ (Z/nZ)×, and integers m′

1 > 0 and

m′
2 ≥ 0 satisfying m′

1 ≡ −rm′
2 mod n such that Ôsh

X′,x′ is isomorphic to the

subalgebra of µn(k(s)sep)-invariants in Ôsh
S,s[[t

′
1, t

′
2]]/(t′1

m′
1t′2

m′
2 − πs) under the

action t′1 7→ ζt′1, t′2 7→ ζrt′2.

Remark 2.3.7. Note that when X ′
/S has a tame cyclic quotient singularity at

x′ ∈ X ′
s, then k(x′)/k(s) is separable and x′ is non-regular (by Theorem 2.3.9

below). Also, it is easy to check that the exponents m′
1 and m′

2 are necessarily
the analytic branch multiplicities at x′. Note that the data of n and r is merely
part of a presentation of ÔX′,x′ as a ring of invariants, so it is not clear a priori

that n and r are intrinsic to x′ ∈ X ′. The fact that n and r are uniquely
determined by x′ follows from Theorem 2.4.1 below, where we show that n and
r arise from the structure of the minimal regular resolution of X ′ at x′.
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Using notation as in the preceding global considerations, there is a very
simple criterion for a nil-semistable x′ ∈ X/H to be a non-regular point: there
should not be a line in Tx(X) on which the inertia group Hx|x′ acts trivially.
To prove this, we recall Serre’s pseudo-reflection theorem [57, Thm. 1′]. This
requires a definition:

Definition 2.3.8. Let V be a finite-dimensional vector space over a field k.
An element σ of Autk(V ) is called a pseudo-reflection if rank(1 − σ) ≤ 1.

Theorem 2.3.9 (Serre). Let A be a noetherian regular local ring with maximal

ideal m and residue field k. Let G be a finite subgroup of Aut(A), and let AG

denote the local ring of G-invariants of A. Suppose that:

1. The characteristic of k does not divide the order of G,

2. G acts trivially on k, and

3. A is a finitely generated AG-module.

Then AG is regular if and only if the image of G in Autk(m/m
2) is generated

by pseudo-reflections.

In fact, the “only if” implication is true without hypotheses on the order of

G, provided AG has residue field k (which is automatic when k is algebraically

closed).

Remark 2.3.10. By Theorem 3.7(i) of [44] with B = A and A = AG, hypoth-
esis 3 of Serre’s theorem forces AG to be noetherian. Serre’s theorem ensures
that x′ as in Definition 2.3.6 is necessarily non-regular.

Proof. Since this result is not included in Serre’s Collected Works, we
note that a proof of the “if and only if” assertion can be found in [68,
Cor. 2.13, Prop. 2.15]. The proof of the “only if” implication in [68] works
without any conditions on the order of G as long as one knows that AG has
the same residue field as A. Such equality is automatic when k is algebraically
closed. Indeed, the case of characteristic 0 is clear, and for positive character-
istic we note that k is a priori finite over the residue field of AG, so if equality
were to fail then the residue field of AG would be of positive characteristic
with algebraic closure a finite extension of degree > 1, an impossibility by
Artin-Schreier.

To see why everything still works without restriction on the order of G
when we assume AG is regular, note first that regularity of AG ensures that
AG → A must be finite free, so even without a Reynolds operator we still have
(A ⊗AG A)G = A, where G acts on the left tensor factor. Hence, the proof of
[68, Lemma 2.5] still works. Meanwhile, equality of residue fields for AG and
A makes the proof of [68, Prop. 2.6] still work, and then one easily checks that
the proofs of [68, Thm. 2.8, Prop. 2.15(i)⇒(ii)] go through unchanged.
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The point of the preceding study is that in a global quotient situation
X ′ = X/H as considered above, one always has a tame cyclic quotient sin-
gularity at the image x′ of a nil-semistable point x ∈ Xs when x′ is not regular
(by Lemma 2.3.3, both k(x) and k(x′) are automatically separable over k(s)
when such non-regularity holds). Thus, when computing complete local rings
at geometric closed points on a coarse modular curve (in residue characteristic
> 3), we will naturally encounter a situation such as in Definition 2.3.6. The
ability to explicitly (minimally) resolve tame cyclic quotient singularities in
general will therefore have immediate applications to modular curves.

2.4 Jung–Hirzebruch resolution

As we noted in Remark 2.3.7, it is natural to ask whether the numerical data
of n and r ∈ (Z/nZ)× in Definition 2.3.6 are intrinsic to x′ ∈ X ′. We shall see
in the next theorem that this data is intrinsic, as it can be read off from the
minimal regular resolution over x′.

Theorem 2.4.1. Let X ′
/S be a normal curve over a local Dedekind base S

with closed point s. Assume either that S is excellent or that X ′
/S has smooth

generic fiber. Assume X ′ has a tame cyclic quotient singularity at a closed

point x′ ∈ X ′
s with parameters n and r (in the sense of Definition 2.3.6), where

we represent r ∈ (Z/nZ)× by the unique integer r satisfying 1 ≤ r < n and

gcd(r, n) = 1. Finally, assume either that k(s) is separably closed or that

all connected components of the regular compactification X
′
K of the regular

generic-fiber curve X ′
K have positive arithmetic genus.

Consider the Jung–Hirzebruch continued fraction expansion

(2.4.1)
n

r
= b1 −

1

b2 −
1

· · · −
1

bλ

with integers bj ≥ 2 for all j.
The minimal regular resolution of X ′ along x′ has fiber over k(x′)sep whose

underlying reduced scheme looks like the chain of Ej’s as shown in Figure 1,
where:

• all intersections are transverse, with Ej ' P1
k(x′)sep

;

• Ej .Ej = −bj < −1 for all j;

• E1 is transverse to the strict transform X̃ ′
1 of the global algebraic irre-

ducible component X ′
1 through x′ with multiplicity m′

2 (along which t′1 is

a cotangent direction), and similarly for Eλ and the component X̃ ′
2 with

multiplicity m′
1 in the case of two analytic branches.

Remark 2.4.2. The case X ′
2 = X ′

1 can happen, and there is no X̃ ′
1 in case of

one analytic branch (i.e., in case m′
2 = 0).
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X̃ ′
1

m′
2

E1

−b1

µ1

E2

−b2

µ2
Eλ

−bλ

µλ

m′
1

X̃ ′
2

Eλ−1

Figure 1: Minimal regular resolution of x′

We will also need to know the multiplicities µj of the components Ej in
Figure 1, but this will be easier to give after we have proved Theorem 2.4.1;
see Corollary 2.4.3.

The labelling of the Ej ’s indicates the order in which they arise in the reso-
lution process, with each “new” Ej linking the preceding ones to the rest of the
closed fiber in the case of one initial analytic branch. Keeping this picture in
mind, we see that it is always the strict transform X̃ ′

2 of the initial component
with formal parameter t′2 that occurs at the end of the chain, and this is the
component whose multiplicity is m′

1.

Proof. We may assume S is local, and if S is not already excellent then (by
hypothesis) X ′

K is smooth and all connected components of its regular com-
pactification have positive arithmetic genus. We claim that this positivity
assumption is preserved by extension of the fraction field K. That is, if C is a
connected regular proper curve over a field k with H1(C,OC) 6= 0 and C is a
dense open in C that is k-smooth, then for any extension k′/k we claim that
all connected components C ′

i of the regular k′-curve C ′ = C/k′ have compact-

ification C
′
i with H1(C

′
i,OC

′
i
) 6= 0. Since the field H0(C,OC) is clearly finite

separable over k, by using Stein factorization for C we may assume C is geo-

metrically connected over k. Thus, C
′
= C/k′ is a connected proper k′-curve

with H1(C
′
,OC

′) 6= 0 and there is a dense open C ′ that is k′-smooth, and

we want to show that the normalization of C
′
red has positive arithmetic genus.

Since C
′
is generically reduced, the map from OC

′ to the normalization sheaf
of OC

′
red

has kernel and cokernel supported in dimension 0, and so the map on

H1’s is an isomorphism. Thus, the normalization of C
′
red indeed has positive

arithmetic genus.
We conclude that Lemma 2.1.1 and the base-change compatibility of Defini-

tion 2.2.3 (via Theorem 2.2.2) permit us to base-change to ÔS,s without losing
any hypotheses. Thus, we may assume S = SpecW with W a complete (hence
excellent) discrete valuation ring. This brings us to the excellent case with all
connected components of the regular compactification of X ′

K having positive
arithmetic genus when the residue field is not separably closed. If in addition
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k(s) is not separably closed, then we claim that base-change to SpecW sh pre-
serves all hypotheses, and so we can always get to the case of a separably closed
residue field (in particular, we get to the case with k(x′) separably closed); see
[24, p. 17] for a proof that strict henselization preserves excellence. We need
to show that base change to W sh commutes with the formation of the minimal
regular resolution. This is a refinement on Theorem 2.2.2 because such base
change is generally not residually trivial.

From the proof of Theorem 2.2.2 in the excellent case, we see that if X ′ ↪→ X
′

is a Nagata compactification then the minimal resolution X → X ′ of X ′ is the

part of the minimal regular resolution of X
′
that lies over X ′. Hence, the base-

change problem for W → W sh is reduced to the proper case. We may assume
that X ′ is connected, so W̃ = H0(X ′,OX′) is a complete discrete valuation

ring finite over W . Hence, W̃ sh ' W̃ ⊗W W sh, so we may reduce to the case
when X ′ → SpecW is its own Stein factorization. In this proper case, the
positivity condition on the arithmetic genus of the generic fiber allows us to
use [41, 9/3.28] (which rests on a dualizing-sheaf criterion for minimality) to
conclude that formation of the minimal regular resolution of X ′ is compatible
with étale localization on W . A standard direct limit argument that chases
the property of having a −1-curve in a fiber over X ′ thereby shows that the
formation of the minimal regular resolution is compatible with ind-étale base
change (such as W → W sh). Thus, we may finally assume that W is excellent
and has a separably closed residue field, and so we no longer need to impose a
positivity condition on arithmetic genera of the connected components of the
generic-fiber regular compactification.

The intrinsic numerical data for the unique minimal resolution (that is, the
self-intersection numbers and multiplicities of components in the exceptional
divisor for this resolution) may be computed in an étale neighborhood of x′,
by Corollary 2.2.4 and Remark 2.2.5, and the Artin approximation theorem is
the ideal tool for finding a convenient étale neighborhood in which to do such a
calculation. We will use the Artin approximation theorem to construct a special
case that admits an étale neighborhood that is also an étale neighborhood of
our given x′, and so it will be enough to carry out the resolution in the special
case. The absence of a good theory of minimal regular resolutions for complete
2-dimensional local noetherian rings prevents us from carrying out a proof
entirely on ÔX′,x′ , and so forces us to use the Artin approximation theorem.
It is perhaps worth noting at the outset that the reason we have to use Artin
approximation is that the resolution process to be used in the special case will
not be intrinsic (we blow up certain codimension-1 subschemes that depend on
coordinates).

Here is the special case that we wish to analyze. Let n > 1 be a positive
integer that is a unit in W , and choose 1 ≤ r < n with gcd(r, n) = 1. Pick inte-
gers m1 ≥ 1 and m2 ≥ 0 satisfying m1 ≡ −rm2 mod n. For technical reasons,
we do not require either of the mj ’s to be units in W . To motivate things, let
us temporarily assume that the residue field k of W contains a full set of nth
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roots of unity. Let µn(k) act on the regular domain A = W [t1, t2]/(tm1
1 tm2

2 −π)
via

(2.4.2) [ζ](t1) = ζt1, [ζ](t2) = ζrt2.

Since the µn(k)-action in (2.4.2) is clearly free away from t1 = t2 = π = 0, the
quotient

Z = (Spec(A))/µn(k) = Spec(B)

(with B = Aµn(k)) is normal and also is regular away from the image point
z ∈ Z of t1 = t2 = π = 0.

To connect up the special situation (Z, z) and the tame cyclic quotient sin-
gularity x′ ∈ X ′

/S , note that Lemma 2.3.4 shows that our situation is formally

isomorphic to the algebraic Z = Spec(B) for a suitable such B and n ∈ W×.
By the Artin approximation theorem, there is a common (residually trivial)
connected étale neighborhood (U, u) of (Z, z) and (X ′, x′). That is, there is
a pointed connected affine W -scheme U = Spec(A) that is a residually-trivial
étale neighborhood of x′ and of z. In particular, U is a connected normal W -
curve. We can assume that u is the only point of U over z, and also the only
point of U over x′. Keep in mind (e.g., if gcd(m1,m2) > 1) that the field K
might not be separably closed in the function fields of U or Z, so the generic
fibers of U and Z = Spec(B) over W might not be geometrically connected
and U is certainly not proper over W in general.

The étale-local nature of the minimal regular resolution, as provided by
Corollary 2.2.4 and Remark 2.2.5, implies that the minimal regular resolutions
of (X ′, x′) and (Z, z) have pullbacks to (U, u) that coincide with the minimal
regular resolution of U along {u}. The fibers over u, x′, z are all the same due
to residual-triviality, so the geometry of the resolution fiber at x′ is the same as
that over z. Hence, we shall compute the minimal regular resolution Z ′ → Z
at z, and will see that the fiber of Z ′ over z is as in Figure 1.

Let us now study (Z, z). Since n is a unit in W , the normal domain
B = Aµn(k) is a quotient of W [t1, t2]

µn(k) via the natural map. Since the
action of µn(k) as in (2.4.2) sends each monomial te1

1 te2
2 to a constant multiple

of itself, the ring of invariants W [t1, t2]
µn(k) is spanned over W by the invariant

monomials. Clearly te1
1 te2

2 is µn(k)-invariant if and only if e1 + re2 = nf for
some integer f (so e2 ≤ (n/r)f), in which case te1

1 te2
2 = ufve2 , where u = tn1

and v = t2/tr1 are µn(k)-invariant elements in the fraction field of W [t1, t2].
Note that even though v does not lie in W [t1, t2], for any pair of integers i, j
satisfying 0 ≤ j ≤ (n/r)i we have uivj ∈ W [t1, t2] and

W [t1, t2]
µn(k) =

⊕

0≤j≤(n/r)i

Wuivj .

We have tm1
1 tm2

2 = uµvm2 with m1 + rm2 = nµ (so m2 ≤ (n/r)µ). Thus,

(2.4.3) B =

⊕
0≤j≤(n/r)i Wuivj

(uµvm2 − π)
.
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Observe that (2.4.3) makes sense as a definition of finite-type W -algebra, with-
out requiring n to be a unit and without requiring that k contain any non-trivial
roots of unity. It is clear that (2.4.3) is W -flat, as it has a W -module basis
given by monomials uivj with 0 ≤ j ≤ (n/r)i and either i < µ or j < m2. It
is less evident if (2.4.3) is normal for any n, but we do not need this fact. We
will inductively compute certain blow-ups on (2.4.3) without restriction on n
or on the residue field, and the process will end at a resolution of singularities
for SpecB.

Before we get to the blowing-up, we shall show that SpecB is a W -curve
and we will infer some properties of its closed fiber. Note that the map
K(u, v) → K(t1, t2) defined by u 7→ tn1 , v 7→ t2/tr1 induces a W -algebra in-
jection

(2.4.4)
⊕

0≤j≤(n/r)i

Wuivj → W [t1, t2]

that is finite because tn1 = u and tn2 = urvn. Thus, the left side of
(2.4.4) is a 3-dimensional noetherian domain and passing to the quotient by
uµvm2 − π = tm1

1 tm2
2 − π yields a finite surjection

(2.4.5) Spec(W [t1, t2]/(tm1
1 tm2

2 − π)) → Spec(B).

Passing to the generic fiber and recalling that B is W -flat, we infer that Spec(B)
is a W -curve with irreducible generic fiber, so Spec(B) is 2-dimensional and
connected. We also have a finite surjection modulo π,

(2.4.6) Spec(k[t1, t2]/(tm1
1 tm2

2 )) → Spec(B/π),

so the closed fiber of Spec(B) consists of at most two irreducible components
(or just one when m2 = 0), to be called the images of the t1-axis and t2-axis
(where we omit mention of the t1-axis when m2 = 0). Since the t2-axis is
the preimage of the zero-scheme of u = tn1 under (2.4.6), we conclude that
when m2 > 0 the closed fiber Spec(B/π) does have two distinct irreducible
components.

Inspired by the case of toric varieties, we will now compute the blow-up Z ′

of the W -flat Z = Spec(B) along the ideal (u, uv). Since

Spec(W [t1, t2]/(tm1
1 tm2

2 − π, tn1 , tn−r
1 t2)) → Spec(B/(u, uv))

is a finite surjection and the source is supported in the t2-axis of the closed fiber
over Spec(W ), it follows that Spec(B/(u, uv)) is supported in the image of the
t2-axis of the closed fiber of Spec(B) over Spec(W ). In particular, blowing up
Z along (u, uv) does not affect the generic fiber of Z over W . Since Z is W -flat,
it follows that the proper blow-up map Z ′ → Z is surjective.

There are two charts covering Z ′, D+(u) and D+(uv), where we adjoin the
ratios uv/u = v and u/uv = 1/v respectively. Thus,

D+(u) = Spec(B[v]) = Spec(W [u, v]/(uµvm2 − π))
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is visibly regular and connected, and D+(uv) = Spec(B[1/v]) with

B[1/v] =

⊕
j≤(n/r)i, 0≤i Wuivj

(uµvm2 − π)
.

We need to rewrite this latter expression in terms of a more useful set of vari-
ables. We begin by writing (as one does when computing the Jung–Hirzebruch
continued fraction for n/r)

n = b1r − r′

with b1 ≥ 2 and either r = 1 with r′ = 0 or else r′ > 0 with gcd(r, r′) = 1 (since
gcd(n, r) = 1). We will first treat the case r′ = 0 (proving that B[1/v] is also
regular) and then we will treat the case r′ > 0. Note that there is no reason to
expect that p cannot divide r or r′, even if p - n, and it is for this reason that
we had to recast the definition of B in a form that avoids the assumption that
n is a unit in W . For similar reasons, we must avoid assuming m1 or m2 is a
unit in W .

Assume r′ = 0, so r = 1, b1 = n, and b1µ − m2 = m1. Let i′ = b1i − j
and j′ = i, so i′ and j′ vary precisely over non-negative integers and
uivj = (1/v)i′(uvb1)j′

. Thus, letting u′ = 1/v and v′ = uvb1 yields

B[1/v] = W [u′, v′]/(u′b1µ−m2v′µ − π) = W [u′, v′]/(u′m1v′µ − π),

which is regular. In the closed fiber of Z ′ = Bl(u,uv)(Z) over Spec(W ), let D1

denote the v′-axis in D+(uv) = Spec B[1/v] and when m2 > 0 let D2 denote
the u-axis in D+(u). The multiplicities of D1 and D2 in Z ′

k are respectively
m1 = b1µ−m2 and m2 (with multiplicity m2 = 0 being a device for recording
that there is no D2). The exceptional divisor E is a projective line over k
(with multiplicity µ and gluing data u′ = 1/v) and hence the uniformizer π has
divisor on Z ′ = Bl(u,uv)(Z) given by

divZ′(π) = (b1µ − m2)D1 + µE + m2D2 = m1D1 + µE + m2D2

(when m2 = 0, the final term really is omitted).
It is readily checked that the Dj ’s each meet E transversally at a single

k-rational point (suppressing D2 when m2 = 0). The intersection product
divZ′(π).E makes sense since E is proper over k, even though Z is not proper
over W , and it must vanish because divZ′(π) is principal, so by additivity of
intersection products in the first variable (restricted to effective Cartier divisors
for a fixed proper second variable such as E) we have

0 = divZ′(π).E = b1µ − m2 + µ(E.E) + m2.

Thus, E.E = −b1.
Now assume r′ > 0. Since n = b1r − r′, the condition 0 ≤ j ≤ (n/r)i can

be rewritten as 0 ≤ i ≤ (r/r′)(b1i − j). Letting j′ = i and i′ = b1i − j,
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we have uivj = u′i′v′j′

with u′ = 1/v and v′ = uvb1 . In particular,

uµvm2 = u′b1µ−m2v′µ. Thus,

(2.4.7) B[1/v] =

⊕
0≤j′≤(r/r′)i′ Wu′i′v′j′

(u′b1µ−m2v′µ − π)
.

Note the similarity between (2.4.3) and (2.4.7) up to modification of parame-
ters: replace (n, r,m1,m2, µ) with (r, r′,m1, µ, b1µ − m2). The blow-up along
(u′, u′v′) therefore has closed fiber over Spec(W ) with the following irreducible
components: the v′-axis D1 in D+(uv) with multiplicity b1µ − m2, the u-axis
D2 in D+(u) with multiplicity m2 (so this only shows up when m2 > 0), and
the exceptional divisor E that is a projective line (via gluing u′ = 1/v) having
multiplicity µ and meeting D1 (as well as D2 when m2 > 0) transversally at
a single k-rational point. We will focus our attention on D+(uv) (as we have
already seen that the other chart D+(u) is regular), and in particular we are
interested in the “origin” in the closed fiber of D+(uv) over Spec(W ) where
the projective line E meets D1; near this origin, D+(uv) is an affine open that
is given by the spectrum of (2.4.7).

If r were also a unit in W then D+(uv) would be the spectrum of the ring
of µr(k)-invariants in W [t′1, t

′
2]/(t′1

m1t′2
µ
− π) with the action [ζ](t′1) = ζt′1 and

[ζ](t′1) = ζr′

t′2 (this identification uses the identity m1 + r′µ = r(b1µ − m2)),
and without any restriction on r we at least see that (2.4.7) is an instance of
the general (2.4.3) and that there is a natural finite surjection

Spec(k[t′1, t
′
2]/(t′1

m1t′2
µ
)) → D+(uv)k.

On D+(uv)k, the component E of multiplicity µ is the image of the t′1-axis
and the component D1 with multiplicity m1 is the image of the t′2-axis. As
a motivation for what follows, note also that if r ∈ W× then since r > 1 we
see that the “origin” in D+(uv)k is necessarily a non-regular point in the total
space over Spec(W ) (by Serre’s Theorem 2.3.9).

We conclude (without requiring any of our integer parameters to be units in
W ) that if we make the change of parameters

(2.4.8) (n, r,m1,m2, µ) Ã (r, r′,m1, µ, b1µ − m2)

then D+(uv) is like the original situation (2.4.3) with a revised set of initial
parameters. In particular, n is replaced by the strictly smaller r > 1, so the
process will eventually end. Moreover, since µ > 0 we see that the case m2 = 0
is now “promoted” to the case m2 > 0. When we make the blow-up at the
origin in D+(uv)k, the strict transform E1 of E plays the same role that D2

played above, so E1 is entirely in the regular locus and the new exceptional
divisor E′ has multiplicity b1µ − m2 (this parameter plays the role for the
second blow-up that µ played for the first blow-up, as one sees by inspecting
our change of parameters in (2.4.8)).

Documenta Mathematica 8 (2003) 331–408



360 Conrad, Edixhoven, Stein

As the process continues, nothing more will change around E1, so inductively
we conclude from the descriptions of the regular charts that the process ends
at a regular connected W -curve with closed-fiber Weil divisor

(2.4.9) · · · + (b1µ − m2)E
′ + µE1 + m2D2 + . . .

(where we have abused notation by writing E′ to denote the strict transform
of E′ in the final resolution, and this strict transform clearly has generic mul-
tiplicity b1µ − m2). The omitted terms in (2.4.9) do not meet E1, so we may
form the intersection against E1 to solve

0 = (b1µ − m2) + µ(E1.E1) + m2

just as in the case r′ = 0 (i.e., r = 1), so E1.E1 = −b1. Since

n

r
= b1 −

1

r/r′
,

by induction on the length of the continued fraction we reach a regular resolu-
tion in the expected manner, with Ej .Ej = −bj for all j and the final resolution
having fiber over z ∈ Z looking exactly like in Figure 1. Note also that each
new blow-up separates all of the previous exceptional lines from the (strict
transform of the initial) component through z with multiplicity m1. Since
−bj ≤ −2 < −1 for all j, we conclude that at no stage of the blow-up pro-
cess before the end did we have a regular scheme (otherwise there would be
a −1-curve in a fiber over the original base Z). Thus, we have computed the
minimal regular resolution at z.

We now compute the multiplicity µj in the closed fiber of X ′reg for each
fibral component Ej over x′ ∈ X ′ in Figure 1. In order to compute the µj ’s, we
introduce some notation. Let n/r > 1 be a reduced-form fraction with positive
integers n and r, so we can write

n/r = [b1, b2, . . . , bλ]JH := b1 −
1

b2 −
1

· · · −
1

bλ

as a Jung–Hirzebruch continued fraction, where bj ≥ 2 for all j. Define
Pj = Pj(b1, . . . , bλ) and Qj = Qj(b1, . . . , bλ) by

P−1 = 0, Q−1 = −1, P0 = 1, Q0 = 0,

Pj = bjPj−1 − Pj−2, Qj = bjQj−1 − Qj−2

for all j ≥ 1. Clearly Pj and Qj are universal polynomials in b1, . . . , bj , and by
induction PjQj−1−QjPj−1 = −1 and Qj > Qj−1 for all j ≥ 0, so in particular
Qj > 0 for all j > 0. Thus,

[b1, . . . , bλ]JH =
Pλ(b1, . . . , bλ)

Qλ(b1, . . . , bλ)
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makes sense and Pλ/Qλ is in reduced form. Thus, Pλ = n and Qλ = r since
the Qj ’s are necessarily positive.

Corollary 2.4.3. With hypotheses and notation as in Theorem 2.4.1, let µj

denote the multiplicity of Ej in the fiber of X ′reg over k(x′)sep. The condition

r = 1 happens if and only if λ = 1, in which case µ1 = (m′
1 + m′

2)/n.

If r > 1 (so λ > 1), then the µj’s are the unique solution to the equation

(2.4.10)




b1 −1 0 0 . . . 0 0 0
−1 b2 −1 0 . . . 0 0 0
0 −1 b3 −1 . . . 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 . . . −1 bλ−1 −1
0 0 0 0 . . . 0 −1 bλ







µ1

...

...

µλ




=




m′
2

0
...

0
m′

1




.

Keeping the condition r > 1, define P ′
j = Pj(bλ−j+1, . . . , bλ), so P ′

λ = n and

P ′
λ−1 = Qλ(b1, . . . , bλ) = r. If we let m̃2 = P ′

λ−1m
′
2 + m′

1 = rm′
2 + m′

1, then

the µj’s are also the unique solution to

(2.4.11)




P ′
λ 0 0 . . . 0 0 0

−P ′
λ−2 P ′

λ−1 0 . . . 0 0 0
0 −P ′

λ−3 P ′
λ−2 . . . 0 0 0

...
...

...
...

...
...

...

0 0 0 . . . −P ′
1 P ′

2 0
0 0 0 . . . 0 −1 P ′

1







µ1

...

...

µλ




=




m̃2

m′
1

...

m′
1

m′
1




.

In particular, µ1 = (rm′
2 + m′

1)/n.

Note that in the applications with X ′ = X/H as at the beginning of §2.3,
the condition χ′

1 6= χ′
2 (i.e., H ′

x|x′ does not act through scalars) is equivalent
to the condition r > 1 in Corollary 2.4.3.

Proof. The value of µ1 when r = 1 was established in the proof of Theorem
2.4.1, so now assume r > 1. On X ′reg (or rather, its base change to Osh

S,s) we
have

(2.4.12) div(πs) = m′
1X̃

′
2 +

λ∑

j=1

µjEj + m′
2X̃

′
1 + . . .

where

• the X̃ ′
1-term does not appear if there is only one analytic branch through

x′ (recall we also set m′
2 = 0 in this case),

• the X̃ ′
j-terms are a single term when there are two analytic branches

but only one global irreducible (geometric) component (in which case
m′

1 = m′
2),
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• the omitted terms “. . . ” on the right side of (2.4.12) are not in the fiber
over x′ (and in particular do not intersect the Ej ’s).

Thus, the equations Ej .div(πs) = 0 and the intersection calculations in the
proof of Theorem 2.4.1 (as summarized by Figure 1, including transversalities)
immediately yield (2.4.10). By solving this system of equations by working
up from the bottom row, an easy induction argument yields the reformulation
(2.4.11).

To prove Theorems 1.1.2 and 1.1.6, the preceding general considerations will
provide the necessary intersection-theoretic information on a minimal resolu-
tion. To apply Theorem 2.4.1 and Corollary 2.4.3 to the study of singularities
at points x′ on modular curves, we need to find the value of the parameter rx′

in each case. This will be determined by studying universal deformation rings
for moduli problems of elliptic curves.

3 The Coarse moduli scheme X1(p)

Let p be a prime number. In this section we review the construction of the
coarse moduli scheme X1(p) attached to Γ1(p) in terms of an auxiliary finite
étale level structure which exhibits X1(p) as the compactification of a quotient
of a fine moduli scheme. It is the fine moduli schemes whose completed local
rings are well understood through deformation theory (as in [34]), and this will
provide the starting point for our subsequent calculations of regular models
and component groups.

3.1 Some general nonsense

As in [34, Ch. 4], for a scheme T we let (Ell/T ) be the category whose objects
are elliptic curves over T -schemes and whose morphisms are cartesian diagrams.
The moduli problem [Γ1(p)] is the contravariant functor (Ell) → (Sets) that
to an elliptic curve E/S attaches the set of P ∈ E(S) such that the relative
effective Cartier divisor

[0] + [P ] + [2P ] + · · · + [(p − 1)P ],

viewed as a closed subscheme of E, is a closed subgroup scheme. For any
moduli problem P on (Ell/T ) and any object E/S over a T -scheme, we define
the functor PE/S(S′) = P(E/S′) to classify “P-structures” on base changes of
E/S . If PE/S is representable (with some property P relative to S) for every
E/S , we say that P is relatively representable (with property P). For example,
[Γ1(p)] is relatively representable and finite locally free of degree p2−1 on (Ell)
for every prime p.

For p ≥ 5, the moduli problem [Γ1(p)]/Z[1/p] is representable by a smooth
affine curve over Z[1/p] [34, Cor. 2.7.3, Thm. 3.7.1, and Cor. 4.7.1]. For any

Documenta Mathematica 8 (2003) 331–408



J1(p) Has Connected Fibers 363

elliptic curve E/S over an Fp-scheme S, the point P = 0 is fixed by the auto-
morphism −1 of E/S , and is in [Γ1(p)](E/S) because [0]+[P ]+· · ·+[(p−1)P ] is

the kernel of the relative Frobenius morphism F : E → E(p). Thus, [Γ1(p)]/Z(p)

is not rigid, so it is not representable.

As there is no fine moduli scheme associated to [Γ1(p)]/Z(p)
for any prime

p, we let X1(p) be the compactified coarse moduli scheme M([Γ1(p)]/Z(p)
), as

constructed in [34, Ch. 8]. This is a proper normal Z(p)-model of a smooth
and geometrically connected curve X1(p)/Q, but X1(p) is usually not regular.
Nevertheless, the complete local rings on X1(p) are computable in terms of
abstract deformation theory. Since (Z/pZ)×/{±1} acts on isomorphism classes
of Γ1(p)-structures via

(E,P ) 7→ (E, a · P ) ' (E,−a · P ),

we get a natural action of this group on X1(p) which is readily checked to be a
faithful action (i.e., non-identity elements act non-trivially). Thus, for any sub-
group H ⊆ (Z/pZ)×/{±1} we get the modular curve XH(p) = X1(p)/H which
is a normal proper connected Z(p)-curve with smooth generic fiber XH(p)/Q.
When p > 3, the curve XH(p) has tame cyclic quotient singularities at its
non-regular points.

In order to compute a minimal regular model for these normal curves, we
need more information than is provided by abstract deformation theory: we
need to keep track of global irreducible components on the geometric fiber mod
p, whereas deformation theory will only tell us about the analytic branches
through a point. Fortunately, in the case of modular curves XH(p), distinct
analytic branches through a closed-fiber geometric point always arise from dis-
tinct global (geometric) irreducible components through the point. In order to
review this fact, as well as to explain the connection between complete local
rings on XH(p) and rings of invariants in universal deformation rings, we need
to recall how X1(p) can be constructed from fine moduli schemes. Let us briefly
review the construction process.

Pick a representable moduli problem P that is finite, étale, and Galois over
(Ell/Z(p)) with Galois group GP , and for which M(P) is affine. For example
(cf. [34, §4.5–4.6]) if ` 6= p is a prime with ` ≥ 3, we can take P to be the
moduli problem [Γ(`)]/Z(p)

that attaches to E/S the set of isomorphisms of
S-group schemes

φ : (Z/`Z)2S ' E[`];

the Galois group GP is GL2(F`). Let Y1(p;P) be the fine moduli scheme
M([Γ1(p)]/Z(p)

,P) that classifies pairs consisting of a Γ1(p)-structure and a P-
structure on elliptic curves over variable Z(p)-schemes. The scheme Y1(p;P) is
a flat affine Z(p)-curve. Let Y1(p) be the quotient of Y1(p;P) by the GP -action.

We introduce the global P rather than just use formal deformation theory
throughout because on characteristic-p fibers we need to retain a connection be-
tween closed fiber irreducible components of global modular curves and closed
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fiber “analytic” irreducible components of formal deformation rings. The pre-
cise connection between global P’s and infinitesimal deformation theory is given
by the well-known:

Theorem 3.1.1. Let k be an algebraically closed field of characteristic p and

let W = W (k) be its ring of Witt vectors. Let z ∈ Y1(p)/k be a rational point.

Let Aut(z) denote the finite group of automorphisms of the (non-canonically

unique) Γ1(p)-structure over k underlying z. Choose a P-structure on the el-

liptic curve underlying z, with P as above, and let z′ ∈ Y1(p;P)(k) be the

corresponding point over z.

The ring ÔY1(p;P)W ,z′ is naturally identified with the formal deformation ring

of z. Under the resulting natural action of Aut(z) on ÔY1(p;P)W ,z′ , the subring

of Aut(z)-invariants is ÔY1(p)W ,z.

For any subgroup H ⊆ (Z/pZ)×/{±1} equipped with its natural action on

Y1(p), the stabilizer Hz′|z of z′ in H acts faithfully on the universal deformation

ring ÔY1(p;P)W ,z′ of z in the natural way, with subring of invariants ÔYH(p)W ,z.

Proof. Since P is étale and Y1(p;P)W is a fine moduli scheme, the interpreta-

tion of ÔY1(p;P)W ,z′ as a universal deformation ring is immediate. Since Y1(p)W

is the quotient of Y1(p;P)W by the action of GP , it follows that ÔY1(p)W ,z is

identified with the subring of invariants in ÔY1(p;P)W ,z′ for the action of the
stabilizer of z′ for the GP -action on Y1(p;P)W . We need to compute this
stabilizer subgroup.

If z′ = (Ez, Pz, ι) with supplementary P-structure ι, then g ∈ GP fixes z′

if and only if (Ez, Pz, ι) is isomorphic to (Ez, Pz, g(ι)). This says exactly that
there exists an automorphism αg of (Ez, Pz) carrying ι to g(ι), and such αg is
clearly unique if it exists. Moreover, any two P-structures on Ez are related
by the action of a unique g ∈ GP because of the definition of GP as the Galois
group of P (and the fact that z is a geometric point). Thus, the stabilizer of
z in GP is naturally identified with Aut(Ez, Pz) = Aut(z) (compatibly with
actions on the universal deformation ring of z). The assertion concerning the
H-action is clear.

Since Y1(p;P) is a regular Z(p)-curve [34, Thm. 5.5.1], it follows that its
quotient Y1(p) is a normal Z(p)-curve. Moreover, by [34, Prop. 8.2.2] the natural
map j : Y1(p) → A1

Z(p)
is finite, and hence it is also flat [44, 23.1]. In [34],

X1(p) is defined to be the normalization of Y1(p) over the compactified j-line
P1

Z(p)
. Both X1(p) and Y1(p) are independent of the auxiliary choice of P. The

complex analytic theory shows that X1(p) has geometrically connected fibers
over Z(p), so the same is true for Y1(p) since the complete local rings at the
cusps are analytically irreducible mod p (by the discussion in §4.2, especially
the self-contained Lemma 4.2.4 and Lemma 4.2.5).
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3.2 Formal parameters

To do deformation theory computations, we need to recall some canonical
formal parameters in deformation rings. Fix an algebraically closed field k
of characteristic p and let W = W (k) denote its ring of Witt vectors. Let
z ∈ Y1(p)/k be a k-rational point corresponding to an elliptic curve Ez/k with
Γ1(p)-structure Pz.

For later purposes, it is useful to give a conceptual description of the 1-
dimensional “reduced” cotangent space m/(p,m2) of R0

z, or equivalently the
cotangent space to the equicharacteristic formal deformation functor of Ez:

Theorem 3.2.1. The cotangent space to the equicharacteristic formal defor-

mation functor of an elliptic curve E over a field k is canonically isomorphic

to Cot0(E)⊗2.

Proof. This is just the dual of the Kodaira-Spencer isomorphism. More specif-
ically, the cotangent space is isomorphic to H1(E, (Ω1

E/k)∨)∨, and Serre duality
identifies this latter space with

H0(E, (Ω1
E/k)⊗2) H0(E,Ω1

E/k)⊗2'
oo Cot0(E)⊗2,

the first map being an isomorphism since Ω1
E/k is (non-canonically) trivial.

Let
Ez → Spec(R0

z)

denote an algebraization of the universal deformation of Ez, so non-canonically
R0

z ' W [[t]] and (by Theorem 3.1.1) there is a unique local W -algebra map
R0

z → Rz to the universal deformation ring Rz of (Ez, Pz) such that there is a
(necessarily unique) isomorphism of deformations between the base change of
Ez over Rz and the universal elliptic curve underlying the algebraized universal
Γ1(p)-structure deformation at z.

Now make the additional hypothesis Pz = 0, so upon choosing a formal co-
ordinate x for the formal group of Ez it makes sense to consider the coordinate

x = x(Pz) ∈ Rz

of the “point” Pz in the universal Γ1(p)-structure over Rz. We thereby get a
natural local W -algebra map

(3.2.1) W [[x, t]] → Rz.

Theorem 3.2.2. The natural map (3.2.1) is a surjection with kernel generated

by an element fz that is part of a regular system of parameters of the regular

local ring W [[x, t]]. Moreover, x and t span the 2-dimensional cotangent space

of the target ring.
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Proof. The surjectivity and cotangent-space claims amount to the assertion
that an artinian deformation whose Γ1(p)-structure vanishes and whose t-
parameter vanishes necessarily has p = 0 in the base ring (so we then have
a constant deformation). The vanishing of p in the base ring is [34, 5.3.2.2].
Since the deformation ring Rz is a 2-dimensional regular local ring, the kernel
of the surjection (3.2.1) is a height-1 prime that must therefore be principal
with a generator that is part of a regular system of parameters.

3.3 Closed-fiber description

For considerations in Section 5, we will need some more refined information,
particularly a description of fz mod p in Theorem 3.2.2. To this end, we first
need to recall some specialized moduli problems in characteristic p.

Definition 3.3.1. If E/S is an elliptic curve over an Fp-scheme S, and G ↪→ E
is a finite locally free closed subgroup scheme of order p, we shall say that G is a
(1, 0)-subgroup if G is the kernel of the relative Frobenius map FE/S : E → E(p)

and G is a (0, 1)-subgroup if the order p group scheme E[p]/G ↪→ E/G is the
kernel of the relative Frobenius for the quotient elliptic curve E/G over S.

Remark 3.3.2. This is a special case of the more general concept of (a, b)-cyclic
subgroup which is developed in [34, §13.4] for describing the mod p fibers of
modular curves. On an ordinary elliptic curve over a field of characteristic p,
an (a, b)-cyclic subgroup has connected-étale sequence with connected part of
order pa and étale part of order pb.

Let P be a representable moduli problem over (Ell/Z(p)) that is finite, étale,
and Galois with M(P) affine (as in §3.1). For (a, b) = (1, 0), (0, 1), it makes
sense to consider the subfunctor

(3.3.1) [[Γ1(p)]-(a, b)-cyclic,P]

of points of [Γ1(p)/Fp
,P] whose Γ1(p)-structure generates an (a, b)-cyclic sub-

group. By [34, 13.5.3, 13.5.4], these subfunctors (3.3.1) are represented by
closed subschemes of Y1(p;P)/Fp

that intersect at exactly the supersingular

points and have ordinary loci that give a covering of Y1(p;P)ord/Fp
by open sub-

schemes. Explicitly, we have an Fp-scheme isomorphism

(3.3.2) M([Γ1(p)]-(0, 1)-cyclic,P) ' M([Ig(p)],P)

with a smooth (possibly disconnected) Igusa curve, where [Ig(p)] is the mod-
uli problem that classifies Z/pZ-generators of the kernel of the relative Ver-
schiebung VE/S : E(p) → E, and the line bundle ω of relative 1-forms on the
universal elliptic curve over M(P)/Fp

provides the description

(3.3.3) M([Γ1(p)]-(1, 0)-cyclic,P) ' Spec((SymM(P)/Fp
ω)/ω⊗(p−1))
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as the cover obtained by locally requiring a formal coordinate of the level-p
structure to have (p−1)th power equal to zero. The scheme (3.3.3) has generic
multiplicity p − 1 and has smooth underlying reduced curve M(P)/Fp

.
We conclude that Y1(p;P) is Z(p)-smooth at points in

M([Γ1(p)]-(0, 1)-cyclic,P)ord,

and near points in M([Γ1(p)]-(1, 0)-cyclic,P) we can use a local trivialization
of ω to find a nilpotent function X with a moduli-theoretic interpretation as
the formal coordinate of the point in the Γ1(p)-structure (with Xp−1 arising as
Φp(X + 1) mod p along the ordinary locus). Thus, we get the “ordinary” part
of:

Theorem 3.3.3. Let k be an algebraically closed field of characteristic p, and

z ∈ Y1(p)/k a rational point corresponding to a (1, 0)-subgroup of an elliptic

curve E over k. Choose z′ ∈ Y1(p;P)/k over z. Let fz be a generator of the

kernel of the surjection W [[x, t]] ³ ÔY1(p;P),z′ in (3.2.1).
We can choose fz so that

fz mod p =

{
xp−1 if E is ordinary,

xp−1t′ if E is supersingular,

with p, x, t′ a regular system of parameters in the supersingular case. In par-

ticular, Y1(p;P)red/k has smooth irreducible components, ordinary double point

singularities at supersingular points, and no other non-smooth points.

The significance of Theorem 3.3.3 for our purposes is that it ensures the
regular Z(p)-curve Y1(p;P)Z(p)

is nil-semistable in the sense of Definition 2.3.1.

In particular, for p > 3 and any subgroup H ⊆ (Z/pZ)×/{±1}, the modular
curve XH(p) has tame cyclic quotient singularities away from the cusps.

Proof. The geometric irreducible components of Y1(p,P)red/k are smooth curves

(3.3.2) and (3.3.3) that intersect at exactly the supersingular points, and (3.3.3)
settles the description of fz mod p in the ordinary case. It remains to verify
the description of fz mod p at supersingular points z, for once this is checked
then the two minimal primes (x) and (t′) in the deformation ring at z must
correspond to the k-fiber irreducible components of the smooth curves (3.3.2)
and (3.3.3)red through z′, and these two primes visibly generate the maximal
ideal at z′ in the k-fiber so (3.3.2) and (3.3.3)red intersect transversally at z′ as
desired.

Consider the supersingular case. The proof of [34, 13.5.4] ensures that we
can choose fz so that

(3.3.4) fz mod p = g(1,0)g(0,1),

with k[[x, t]]/g(0,1) the complete local ring at z′ on the closed subscheme (3.3.2)
and likewise for k[[x, t]]/g(1,0) and (3.3.3). By (3.3.3), we can take g(1,0) = xp−1,
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so by (3.3.4) it suffices to check that the formally smooth ring k[[x, t]]/g(0,1) does
not have t as a formal parameter. In the proof of [34, 12.8.2], it is shown that
there is a natural isomorphism between the moduli stack of Igusa structures
and the moduli stack of (p− 1)th roots of the Hasse invariant of elliptic curves
over Fp-schemes. Since the Hasse invariant commutes with base change and
the Hasse invariant on the the universal deformation of a supersingular elliptic
curve over k[[t]] has a simple zero [34, 12.4.4], by extracting a (p − 1)th root
we lose the property of t being a formal parameter if p > 2. We do not need
the theorem for the supersingular case when p = 2, so we leave this case as an
exercise for the interested reader.

4 Determination of non-regular points

Since the quotient XH(p) of the normal proper Z(p)-curve X1(p;P) is normal,
there is a finite set of non-regular points in codimension-2 on XH(p) that we
have to resolve to get a regular model. We will prove that the non-regular points
on the nil-semistable XH(p) are certain non-cuspidal Fp-rational points with
j-invariants 0 and 1728, and that these singularities are tame cyclic quotient
singularities when p > 3, so Jung–Hirzebruch resolution in Theorem 2.4.1 will
tell us everything we need to know about the minimal regular resolution of
XH(p).

4.1 Analysis away from cusps

The only possible non-regular points on XH(p) are closed points in the closed
fiber. We will first consider those points that lie in YH(p), and then we will
study the situation at the cusps. The reason for treating these cases separately
is that the deformation theory of generalized elliptic curves is a little more
subtle than that of elliptic curves. One can also treat the situation at the
cusps by using Tate curves instead of formal deformation theory; this is the
approach used in [34].

In order to determine the non-regular points on YH(p), by Lemma 2.1.1 we
only need to consider geometric points. By Theorem 3.1.1, we need a criterion
for detecting when a finite group acting on a regular local ring has regular
subring of invariants. The criterion is provided by Serre’s Theorem 2.3.9 and
leads to:

Theorem 4.1.1. A geometric point z = (Ez, Pz) ∈ Y1(p) has non-regular image

in YH(p) if and only if it is a point in the closed fiber such that |Aut(Ez)| > 2,
Pz = 0, and 2|H| - |Aut(Ez)|.

In particular, when p > 3 there are at most two non-regular points on YH(p)
and such points are Fp-rational, while for p ≤ 3 (so H is trivial) the unique

(Fp-rational) supersingular point is the unique non-regular point.
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Proof. Let k be an algebraically closed field of characteristic p and define
W = W (k); we may assume that z is a k-rational point. By Lemma 2.1.1,
we may consider the situation after base change by Z(p) → W . A non-regular
point z must be a closed point on the closed fiber. Let z′ be a point over z in
Y1(p;P)(k). Let (Ez, Pz) be the structure arising from z.

First suppose p > 3 and H is trivial. The group Autk(Ez) is cyclic of
order prime to p, so the automorphism group Aut(z) of the Γ1(p)-structure
underlying z is also cyclic of order prime to p. By Theorems 3.1.1 and 2.3.9,
the regularity of ÔY1(p)W ,z is therefore equivalent to the existence of a stable
line under the action of Aut(z) on the 2-dimensional cotangent space to the

regular universal deformation ring Rz = ÔY1(p;P)W ,z′ of the Γ1(p)-structure z.

When the Γ1(p)-structure z is étale (i.e., Pz 6= 0), then the formal defor-
mation theory for z is the same as for the underlying elliptic curve Ez/〈Pz〉,
whence the universal deformation ring is isomorphic to W [[t]]. In such cases, p
spans an Aut(z)-invariant line in the cotangent space of the deformation ring.
Even when H is not assumed to be trivial, this line is stable under the action
of the stabilizer of z′ the preimage of H in (Z/pZ)×). Hence, we get regularity
at z for any H when p > 3 and Pz 6= 0.

Still assuming p > 3, now drop the assumption of triviality on H but suppose
that the Γ1(p)-structure is not étale, so z = (Ez, 0) and Aut(z) = Autk(Ez).
The preimage H ′ ⊆ (Z/pZ)× of H acts on the deformation ring Rz since
Pz = 0. By Theorem 3.1.1 and Theorem 3.2.2, the cotangent space to Rz is
canonically isomorphic to

(4.1.1) Cot0(Ez) ⊕ Cot0(Ez)
⊗2,

where this decomposition corresponds to the lines spanned by the images of x
and t respectively. Conceptually, the first line in (4.1.1) arises from equichar-
acterisitc deformations of the point of order p on constant deformations of the
elliptic curve Ez, and the second line arises from deformations of the elliptic
curve without deforming the vanishing level structure Pz. These identifications
are compatible with the natural actions of Aut(z) = Aut(Ez).

Since p > 3, the action of Aut(Ez) = Aut(z) on the line Cot0(Ez) is given
by a faithful (non-trivial) character χid, and the other line in (4.1.1) is acted
upon by Aut(Ez) via the character χ2

id. The resulting representation of Aut(z)
on Cot0(Ez)

⊗2 is trivial if and only if χ2
id = 1, which is to say (by faithfulness)

that Aut(Ez) has order 2 (i.e., j(Ez) 6= 0, 1728). Since the H ′-action is trivial
on the line Cot0(Ez)

⊗2 (due to H ′ only acting on the level structure) and we
are passing to invariants by the action of the group H ′×Aut(Ez/k), by Serre’s
theorem we get regularity without restriction on H when j(Ez) 6= 0, 1728.

If j(Ez) ∈ {0, 1728} then |Aut(Ez)| > 2 and the cyclic H ′ acts on (4.1.1)
through a representation ψ ⊕ 1 with ψ a faithful character. The cyclic Aut(z)
acts through a representation χ ⊕ χ2 with χ a faithful character, so χ2 6= 1.
The commutative group of actions on (4.1.1) generated by H ′ and Aut(z) is
generated by pseudo-reflections if and only if the action of the cyclic Aut(z) on
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the first line is induced by the action of a subgroup of H ′. That is, the order of
χ must divide the order of ψ, or equivalently |Aut(z)| must divide |H ′| = 2|H|.
This yields exactly the desired conditions for non-regularity when p > 3.

Now suppose p ≤ 3, so H is trivial. If Aut(Ez/k) = {±1}, so z is an ordinary
point, then for p = 3 we can use the preceding argument to deduce regularity
at z. Meanwhile, for p = 2 we see that Rz is formally smooth by Theorem
3.3.3, so the subring of invariants at z is formally smooth (by [34, p. 508]). It
remains to check non-regularity at the unique (supersingular) point z ∈ Y1(p)/k

with j = 0 = 1728 in k.
By Serre’s theorem, it suffices to check that the action of Aut(z) = Aut(Ez)

on (4.1.1) is not generated by pseudo-reflections, where Ez is the unique super-
singular elliptic curve over k (up to isomorphism). The action of Aut(Ez) is
through 1-dimensional characters, so the p-Sylow subgroup must act trivially.
In both cases (p = 2 or 3) the group Aut(Ez) has order divisible by only two
primes p and p′, with the p′-Sylow of order > 2. This p′-Sylow must act through
a faithful character on Cot0(Ez) (use [20, Lemma 3.3] or [68, Lemma 2.16]),
and hence this group also acts non-trivially on Cot0(Ez)

⊗2. It follows that this
action is not generated by pseudo-reflections.

4.2 Regularity along the cusps

Now we check that XH(p) is regular along the cusps, so we can focus our
attention on YH(p) when computing the minimal regular resolution of XH(p).
We will again use deformation theory, but now in the case of generalized elliptic
curves. Throughout this section, p is an arbitrary prime.

Recall that a generalized elliptic curve over a scheme S is a proper flat map
π : E → S of finite presentation equipped with a section e : S → Esm into the
relative smooth locus and a map

+ : Esm ×S E → E

such that

• the geometric fibers of π are smooth genus 1 curves or Néron polygons;

• + restricts to a commutative group scheme structure on Esm with identity
section e;

• + is an action of Esm on E such that on singular geometric fibers with
at least two “sides”, the translation action by each rational point in the
smooth locus induces a rotation on the graph of irreducible components.

Since the much of the basic theory of Drinfeld structures was developed in [34,
Ch. 1] for arbitrary smooth separated commutative group schemes of relative
dimension 1, it can be applied (with minor changes in proofs) to the smooth
locus of a generalized elliptic curve. In this way, one can merge the “affine”
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moduli-theoretic Z-theory in [34] with the “proper” moduli-theoretic Z[1/N ]-
theory in [15]. We refer the reader to [21] for further details on this synthesis.

The main deformation-theoretic fact we need is an analogue of Theorem
3.2.1:

Theorem 4.2.1. An irreducible generalized elliptic curve C1 over a perfect

field k of characteristic p > 0 admits a universal deformation ring that is

abstractly isomorphic to W [[t]], and the equicharacteristic cotangent space of

this deformation ring is canonically isomorphic to Cot0(C
sm
1 )⊗2.

Proof. The existence and abstract structure of the deformation ring are special
cases of [15, III, 1.2]. To describe the cotangent space intrinsically, we wish to
put ourselves in the context of deformation theory of proper flat curves. In-
finitesimal deformations of C1 admit a unique generalized elliptic curve struc-
ture once we fix the identity section [15, II, 2.7], and any two choices of iden-
tity section are uniquely related by a translation action. Thus, the deformation
theory for C1 as a generalized elliptic (i.e., marked) curve coincides with its de-
formation theory as a flat (unmarked) curve. In particular, the tangent space
to this deformation functor is canonically identified with Ext1C1

(Ω1
C1/k,OC1

)

[56, §4.1.1].
Since the natural map Ω1

C1/k → ωC1/k to the invertible relative dualizing

sheaf is injective with finite-length cokernel (supported at the singularity),

Ext1C1
(ωC1/k,OC1

) ' Ext1C1
(ω⊗2

C1/k, ωC1/k) ' H0(C1, ω
⊗2
C1/k)∨,

with the final isomorphism provided by Grothendieck duality. Thus, the cotan-
gent space to the deformation functor is identified with H0(C1, ω

⊗2
C1/k). Since

ωC1/k is (non-canonically) trivial, just as for elliptic curves, we get a canonical
isomorphism

H0(C1, ω
⊗2
C1/k) ' H0(C1, ωC1/k)⊗2 ' Cot0(C

sm
1 )⊗2

(the final isomorphism defined via pullback along the identity section).

Definition 4.2.2. A Γ1(N)-structure on a generalized elliptic curve E → S is
an “S-ample” Drinfeld Z/NZ-structure on Esm; i.e., a section P ∈ Esm[N ](S)
such that the relative effective Cartier divisor

D =
∑

j∈Z/NZ

[jP ]

in Esm is a subgroup scheme which meets all irreducible components of all
geometric fibers.

If E/S admits a Γ1(N)-structure, then the non-smooth geometric fibers must
be d-gons for various d|N . In case N = p is prime, this leaves p-gons and 1-
gons as the only options. The importance of Definition 4.2.2 is the following
analogue of Theorem 3.1.1:
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Theorem 4.2.3. Let k be an algebraically closed field of characteristic p > 0,
and W = W (k). The points of X1(p)/k − Y1(p)/k correspond to isomorphism

classes of Γ1(p)-structures on degenerate generalized elliptic curves over k with

1 or p sides.

For z ∈ X1(p)/k − Y1(p)/k, there exists a universal deformation ring Sz for

the Γ1(p)-structure z, and ÔX1(p)W ,z is the subring of Aut(z)-invariants in Sz.

Proof. In general, Γ1(p)-structures on generalized elliptic curves form a proper
flat Deligne-Mumford stack MΓ1(p) over Z(p) of relative dimension 1, and this
stack is smooth over Q and is normal (as one checks via abstract deformation
theory). For our purposes, the important point is that if we choose an odd
prime ` 6= p then we can define an evident [Γ1(p),Γ(`)]-variant on Definition
4.2.2 (imposing an ampleness condition on the combined level structure), and
the open locus of points with trivial geometric automorphism group is a scheme
(as it is an algebraic space quasi-finite over the j-line). This locus fills up the
entire stack M [Γ1(p),Γ(`)] over Z(p), so this stack is a scheme.

The resulting normal Z(p)-flat proper scheme M [Γ1(p),Γ(`)] is finite over the
j-line, whence it must coincide with the scheme X1(p; [Γ(`)]) as constructed
in [34] by the ad hoc method of normalization of the fine moduli scheme
Y1(p; [Γ(`)]) over the j-line. We therefore get a map

M [Γ1(p),Γ(`)] = X1(p; [Γ(`)]) → X1(p)

that must be the quotient by the natural GL2(F`)-action on the source. Since
complete local rings at geometric points on a Deligne-Mumford stack coincide
with universal formal deformation rings, we may conclude as in the proof of
Theorem 3.1.1.

We are now in position to argue just as in the elliptic curve case: we shall
work out the deformation rings in the various possible cases and for p 6= 2 we
will use Serre’s pseudo-reflection theorem to deduce regularity of X1(p) along
the cusps on the closed fiber. A variant on the argument will also take care of
p = 2.

As in the elliptic curve case, it will suffice to consider geometric points. Thus,
there will be two types of Γ1(p)-structures (E,P ) to deform: E is either a p-gon
or a 1-gon.

Lemma 4.2.4. Let E0 be a p-gon over an algebraically closed field k of char-

acteristic p, and P0 ∈ Esm
0 (k) a Γ1(p)-structure. The deformation theory of

(E0, P0) coincides with the deformation theory of the 1-gon generalized elliptic

curve E0/〈P0〉.

Note that in the p-gon case, the point P0 ∈ Esm
0 (k) generates the order-p

constant component group of Esm
0 , so the group scheme 〈P0〉 generated by P0

is visibly étale and the quotient E0/〈P0〉 makes sense (as a generalized elliptic
curve) and is a 1-gon.
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Proof. For any infinitesimal deformation (E,P ) of (E0, P0), the subgroup
scheme H generated by P is finite étale, and it makes sense to form the quo-
tient E/H as a generalized elliptic curve deformation of the 1-gon E0/H0 (with
H0 = 〈P0〉). Since any finite étale cover of a generalized elliptic curve admits a
unique compatible generalized elliptic curve structure once we fix a lift of the
identity section and demand geometric connectedness of fibers over the base
[15, II, 1.17], we see that the deformation theory of (E0,H0) (ignoring P ) is
equivalent to the deformation theory of the 1-gon E0/H0. The deformation
theory of a 1-gon is formally smooth of relative dimension 1 [15, III, 1.2], and
upon specifying (E,H) deforming (E0,H0) the étaleness of H ensures the exis-
tence and uniqueness of the choice of Γ1(p)-structure P generating H such that
P lifts P0 on E0. That is, the universal deformation ring for (E0, P0) coincides
with that of E0/H0.

In the 1-gon case, there is only one (geometric) possibility up to isomorphism:
the pair (C1, 0) where C1 is the standard 1-gon (over an algebraically closed
field k of characteristic p). For this, we have an analogue of (4.1.1):

Lemma 4.2.5. The universal deformation ring of the Γ1(p)-structure (C1, 0) is

isomorphic to the regular local ring W [[t]][[X]]/Φp(X + 1), with cotangent space

canonically isomorphic to

Cot0(C
sm
1 ) ⊕ Cot0(C

sm
1 )⊗2.

Proof. Since the p-torsion on Csm
1 is isomorphic to µp, upon fixing an isomor-

phism Csm
1 [p] ' µp there is a unique compatible isomorphism Csm[p] ' µp for

any infinitesimal deformation C of C1. Thus, the deformation problem is that
of endowing a Z/pZ-generator to the µp inside of deformations of C1 (as a
generalized elliptic curve). By Theorem 4.2.3, this is the scheme of generators
of µp over the universal deformation ring W [[t]] of C1.

The scheme of generators of µp over Z is Z[Y ]/Φp(Y ), so we obtain
W [[t]][Y ]/Φp(Y ) as the desired (regular) deformation ring. Now just set
X = Y − 1. The description of the cotangent space follows from Theorem
4.2.1.

Since C1 has automorphism group (as a generalized elliptic curve) generated
by the unique extension [−1] of inversion from Csm

1 to all of C1, we conclude
that Aut(C1, 0) is generated by [−1]. This puts us in position to carry over our
earlier elliptic-curve arguments to prove:

Theorem 4.2.6. The scheme XH(p) is regular along its cusps.

Proof. As usual, we may work after making a base change by W = W (k) for
an algebraically closed field k of characteristic p > 0. Let z ∈ X1(p)/k be a
cusp whose image zH in XH(p)/k we wish to study. Let H ′ be the preimage
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of H in (Z/pZ)×, and let H ′
z be the maximal subgroup of H ′ that acts on the

deformation space for z (e.g., H ′
z = H ′ if the level structure Pz vanishes). By

Theorem 4.2.3, the ring ÔXH(p),zH
is the subring of invariants under the action

of Aut(z) × H ′
z on the formal deformation ring for z. By Theorem 4.2.1 and

Lemma 4.2.4 (as well as [34, p. 508]), this deformation ring is regular (even
formally smooth) in the p-gon case. In the 1-gon case, Lemma 4.2.5 ensures
that the deformation ring is regular (and even formally smooth when p = 2).
Thus, for p 6= 2 we may use Theorem 2.3.9 to reduce the problem for p 6= 2 to
checking that the action of Aut(z)×H ′

z on the 2-dimensional cotangent space
to the deformation functor has an invariant line.

In the p-gon case, the deformation ring is W [[t]] and the cotangent line
spanned by p is invariant. In the 1-gon case, Lemma 4.2.5 provides a func-
torial description of the cotangent space to the deformation functor and from
this it is clear that the involution [−1] acts with an invariant line Cot0(z)⊗2

when p 6= 2 and that H ′
z also acts trivially on this line.

To take care of p = 2 (for which H is trivial), we just have to check that any
non-trivial W -algebra involution ι of W [[T ]] has regular subring of invariants.
In fact, for T ′ = Tι(T ) the subring of invariants is W [[T ′]] by [34, p. 508].

5 The Minimal resolution

We now are ready to compute the minimal regular resolution XH(p)reg of
XH(p). Since XH(p)/Q is a projective line when p ≤ 3, both Theorem 1.1.2 and
Theorem 1.1.6 are trivial for p ≤ 3. Thus, from now on we assume p > 3. We
have found all of the non-regular points (Theorem 4.1.1): the Fp-rational points
of (1, 0)-type such that j ∈ {0, 1728}, provided that |H| is not divisible by 3
(resp. 2) when j = 0 (resp. j = 1728). Theorem 3.3.3 provides the necessary lo-
cal description to carry out Jung–Hirzebruch resolution at these points. These
are tame cyclic quotient singularities (since p > 3). Moreover, the closed fiber
of XH(p) is a nil-semistable curve that consists of two irreducible components
that are geometrically irreducible, as one sees by considering the (1,0)-cyclic
and (0,1)-cyclic components.

5.1 General considerations

There are four cases, depending on p ≡ ±1,±5 mod 12 as this determines the
behavior of the j-invariants 0 and 1728 in characteristic p (i.e., supersingular
or ordinary). This dichotomy between ordinary and supersingular cases corre-
sponds to Jung–Hirzebruch resolution with either one or two analytic branches.

Pick a point z = (E, 0) ∈ X1(p)(Fp) with j = 0 or 1728 corresponding
an elliptic curve E over Fp with automorphism group of order > 2. Let
zH ∈ XH(p)(Fp) be the image of z. By Theorem 4.1.1, we know that zH

is non-regular if and only if |H| is odd for j(E) = 1728, and if and only if |H|
is not divisible by 3 for j(E) = 0.
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There is a single irreducible component through zH in the ordinary case
(arising from either (3.3.2) or (3.3.3)), while there are two such (transverse)
components in the supersingular case, and to compute the generic multiplicities
of these components in XH(p)/Fp

we may work with completions because the

irreducible components through zH are analytically irreducible (even smooth)
at zH .

Let C ′ and C denote the irreducible components of XH(p)/Fp
, with C ′ cor-

responding to étale level p-structures. Since the preimage of H in (Z/pZ)×

(of order 2|H|) acts generically freely (resp. trivially) on the preimage of C ′

(resp. of C) in a fine moduli scheme over XH(p)/Fp
obtained by adjoining

some prime-to-p level structure, ramification theory considerations and Theo-
rem 3.3.3 show that the components C ′ and C in XH(p)/Fp

have respective

multiplicities of 1 and (p − 1)/2|H| = [(Z/pZ)×/{±1} : H]. Moreover, by
Theorem 3.3.3 we see that zH lies on C when it is an ordinary point.

5.2 The case p ≡ −1 mod 12

We are now ready to resolve the singularities on XH(p)/W with W = W (Fp).
We will first carry out the calculation in the case p ≡ −1 (mod 12), so 0 and
1728 are supersingular j-values. In this case (p − 1)/2 is not divisible by 2 or
3, so |H| is automatically not divisible by 2 or 3 (so we have two non-regular
points).

Write p = 12k−1 with k ≥ 1. By the Deuring Mass Formula [34, Cor. 12.4.6]
the components C and C ′ meet in (p − 11)/12 = k − 1 geometric points away
from the two supersingular points with j = 0, 1728. Consider one of the two
non-regular supersingular points zH . The complete local ring at zH on XH(p)W

is the subring of invariants for the commuting actions of Aut(z) and the preim-
age H ′ ⊆ (Z/pZ)× of H on the universal deformation ring Rz of the Γ1(p)-
structure z. Note that the actions of H ′ and Aut(z) on Rz have a common
involution. The action of H ′ on the tangent space fixes one line and acting
through a faithful character on the other line (see the proof of Theorem 4.1.1),
so by Serre’s Theorem 2.3.9 the subring of H ′-invariants in Rz is regular. By
Lemma 2.3.5 and the subsequent discussion there, the subring of H ′-invariant

has the form W [[x′, t′]]/(x′(p−1)/|H′|
t′−p) with Aut(z)/{±1} acting on the tan-

gent space via χ|H|⊕χ for a faithful character χ of Aut(z)/{±1}. Let h = |H|,
so ρ := (p − 1)/2h is the multiplicity of C in XH(p)/Fp

.

When j(zH) = 1728 the character χ is quadratic, so we apply Theorem 2.4.1
and Corollary 2.4.3 with n = 2, r = 1, m′

1 = 1, m′
2 = ρ. The resolution has

a single exceptional fiber D′ that is transverse to the strict transforms C and

C
′
, and D′ has self-intersection −2 and multiplicity (m′

1 + m′
2)/2 = (ρ + 1)/2.

When j(zH) = 0 the character χ is cubic, so we apply Theorem 2.4.1 with
n = 3, m′

1 = 1, m′
2 = ρ, and r = h mod 3. That is, r = 1 when h ≡ 1 mod 6

and r = 2 when h ≡ −1 mod 6. In the case r = 1 we get a single exceptional

fiber E′ in the resolution, transverse to C and C
′
with self-intersection −3 and
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(b) h ≡ −1 mod 6

Figure 2: Minimal regular resolution XH(p)′ of XH(p), p = 12k − 1, k ≥ 1,
h = |H|

multiplicity (ρ + 1)/3 (by Corollary 2.4.3). This is illustrated in Figure 2(a).
In the case r = 2 we use the continued fraction 3/2 = 2 − 1/2 to see that the
resolution of zH has exceptional fiber with two components E′

1 and E′
2, and

these have self-intersection −2 and transverse intersections as shown in Figure
2(b) with respective multiplicities (2ρ + 1)/3 and (ρ + 2)/3 by Corollary 2.4.3.
This completes the computation of the minimal regular resolution XH(p)′ of
XH(p) when p ≡ −1 mod 12.

To compute the intersection matrix for the closed fiber of XH(p)′, we need
to compute some more intersection numbers. For h ≡ 1 mod 6 we let µ and
ν denote the multiplicities of D′ and E′ in XH(p)′, and for h ≡ −1 mod 6 we
define µ in the same way and let νj denote the multiplicity of E′

j in XH(p)′.
In other words,

µ = (ρ + 1)/2, ν = (ρ + 1)/3, ν1 = (2ρ + 1)/3, ν2 = (ρ + 2)/3.
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Thus,

(5.2.1) C
′
+ ρC + µD′ + νE′ ≡ 0,

so if we intersect (5.2.1) with C and use the identities

ρ = (6k − 1)/h, C
′
.C = k − 1 = (hρ − 5)/6,

we get
C.C = −1 − (h − ε)/6

where ε = ±1 ≡ h mod 6. In particular, C.C < −1 unless h = 1 (i.e., unless

H is trivial). We can also compute the self-intersection for C
′
, but we do not

need it.
When H is trivial, so C is a −1-curve, we can contract C and then by

Theorem 2.1.2 and Figure 2 the self-intersection numbers for the components
D′ and E′ drop to −1 and −2 respectively. Then we may contract D′, so E′

becomes a −1-curve, and finally we end with a single irreducible component

(coming from C
′
). This proves Theorem 1.1.2 when p ≡ −1 mod 12.

Returning to the case of general H, let us prove Theorem 1.1.6 for

p ≡ −1 mod 12. Since C
′

has multiplicity 1 in the closed fiber of XH(p)′,
we can use the following special case of a result of Lorenzini [9, 9.6/4]:

Lemma 5.2.1 (Lorenzini). Let X be a regular proper flat curve over a com-

plete discrete valuation ring R with algebraically closed residue field and frac-

tion field K. Assume that X/K is smooth and geometrically connected. Let

X1, . . . ,Xm be the irreducible components of the closed fiber X and assume

that some component Xi0 occurs with multiplicity 1 in the closed fiber divisor.

The component group of the Néron model of the Jacobian Pic0
XK/K has order

equal to the absolute value of the (m − 1) × (m − 1) minor of the intersection

matrix (Xi.Xj) obtained by deleting the i0th row and column.

The intersection submatrices formed by the ordered set {C,D′, E′} for
h ≡ 1 mod 6 and by {C,D′, E′

1, E
′
2} for h ≡ −1 mod 6 are given in Figure

3. The absolute value of the determinant is h in each case, so by Lemma 5.2.1
the order of the component group Φ(JH(p)/Fp

) is h = |H| = |H|/ gcd(|H|, 6).
To establish Theorem 1.1.6 for p ≡ −1 mod 12, it remains to show that the

natural Picard map J0(p) → JH(p) induces a surjection on mod-p geometric
component groups. We outline a method that works for general p but that we
will (for now) carry out only for p ≡ −1 mod 12, as we have only computed
the intersection matrix in this case.

The component group for J0(p) is generated by (0)−(∞), where (0) classifies
the 1-gon with standard subgroup µp ↪→ Gm in the smooth locus, and (∞)
classifies the p-gon with subgroup Z/pZ ↪→ (Z/pZ)×Gm in the smooth locus.
The generic-fiber Picard map induced by the coarse moduli scheme map

XH(p)/Z(p)
→ X0(p)/Z(p)
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C D′ E′ C D′ E′
1 E′

2

C
D′

E′



−1 − (h−1)

6 1 1
1 −2 0
1 0 −3




C
D′

E′
1

E′
2




−1 − (h+1)
6 1 1 0

1 −2 0 0
1 0 −2 1
0 0 1 −2




(a) h ≡ 1 mod 6 (b) h ≡ −1 mod 6

Figure 3: Submatrices of intersection matrix for XH(p)′, p ≡ −1 mod 12

pulls (0) − (∞) back to a divisor

(5.2.2) P −

(p−1)/2|H|∑

j=1

P ′
i

where the P ′
i ’s are Q-rational points whose (cuspidal) reduction lies in the

component C
′

classifying étale level-structures and P is a point with residue
field (Q(ζp)

+)H whose (cuspidal) reduction lies in the component C classi-
fying multiplicative level-structures. This description is seen by using the
moduli interpretation of cusps (i.e., Néron polygons) and keeping track of
Gal(Q/Q)-actions, and it is valid for any prime p (e.g., the Γ1(p)-structures on
the standard 1-gon consistute a principal homogenous space for the action of
Gal(Q(µp)/Q), so they give a single closed point P on XH(p)/Q with residue
field (Q(ζp)

+)H).

To apply (5.2.2), we need to recall some general facts (see [9, 9.5/9, 9.6/1])
concerning the relationship between the closed fiber of a regular proper model
X of a smooth geometrically connected curve Xη and the component group
Φ of (the Néron model of) the Jacobian of Xη, with the base equal to the
spectrum of a discrete valuation ring R with algebraically closed residue field.
If {Xi}i∈I is the set of irreducible components in the closed fiber of X, then
we can form a complex

ZI
α

// ZI
β

// Z

where ZI is the free group on the Xi’s, the map α is defined by the intersection
matrix (Xi.Xj), and β sends each standard basis vector to the multiplicity of
the corresponding component in the closed fiber. The cokernel ker(β)/im(α)
is naturally identified with the component group Φ via the map Pic(X) → ZI

that assigns to each invertible sheaf L its tuple of partial degrees degXi
(L).

By using [9, 9.1/5] to compute such line-bundle degrees, one finds that the
Néron-model integral point associated to the pullback divisor in (5.2.2) has
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reduction whose image in Φ(JH(p)/Fp
) is represented by

(5.2.3)
[Q(P ) : Q]

mult(C)
· C −

(p−1)/2|H|∑

i=1

C
′
= C −

p − 1

2|H|
· C

′

when this component group is computed by using the regular model XH(p)′

that we have found for p ≡ −1 mod 12 (the same calculation will work for all
other p’s, as we shall see).

The important property emerging from this calculation is that one of the
coefficients in (5.2.3) is ±1, so an element in ker(β) that is a Z-linear combi-

nation of C and C
′
must be a multiple of (5.2.3) and hence is in the image of

Φ(J0(p)) under the Picard map. Thus, to prove that the component group for
J0(p) surjects onto the component group for JH(p), it suffices to check that
any element in ker(β) can be modified modulo im(α) to lie in the Z-span of C

and C
′
.

Since the matrix for α is the intersection matrix, it suffices (and is even
necessary) to check that the submatrix MC,C

′ of the intersection matrix given

by the rows labelled by the irreducible components other than C and C
′
is a

surjective matrix over Z. Indeed, such surjectivity ensures that we can always
subtract a suitable element of im(α) from any element of ker β to kill coefficients

away from C and C
′
in a representative for an element in Φ ' ker(β)/im(α).

The surjectivity assertion over Z amounts to requiring that the matrix MC,C
′

have top-degree minors with gcd equal to 1. It is enough to check that those

minors that avoid the column coming from C
′
have gcd equal to 1. Thus, it is

enough to check that in Figure 3 the matrix of rows beneath the top row has top-
degree minors with gcd equal to 1. This is clear in both cases. In particular,
this calculation (especially the analysis of (5.2.3)) yields the following result
when p ≡ −1 mod 12:

Corollary 5.2.2. Let ρ = (p − 1)/2|H|. The degree-0 divisor C − ρC
′
repre-

sents a generator of the mod-p component group of JH(p).

The other cases p ≡ 1,±5 mod 12 will behave similarly, with Corollary 5.2.2
being true for all such p. The only differences in the arguments are that cases
with |H| divisible by 2 or 3 can arise and we will sometimes have to use the “one
branch” version of Jung–Hirzebruch resolution to resolve non-regular ordinary
points.

5.3 The case p ≡ 1 mod 12.

We have p = 12k + 1 with k ≥ 1, so (p − 1)/2 = 6k. In this case 0 and
1728 are both ordinary j-invariants, so the number of supersingular points is
(p − 1)/12 = k by the Deuring Mass Formula. The minimal regular resolution
XH(p)′ of XH(p) is illustrated in Figure 4, depending on the congruence class
of h = |H| modulo 6. When h is divisible by 6 there are no non-regular points,
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so XH(p)′ = XH(p)/W is as in Figure 4(a). When h is even but not divisible by
3 there is only the non-regularity at j = 0 to be resolved, as shown in Figures
4(b),(c). The case of odd h is given in Figures 4(d)–(f), and these are all easy
applications of Theorem 2.4.1 and Corollary 2.4.3. We illustrate by working
out the case h ≡ 5 mod 6, for which there are two ordinary singularities to
resolve.

Arguing much as in the case p ≡ −1 mod 12, but now with a “one branch”
situation at ordinary points, the ring to be resolved is formally isomorphic to

the ring of invariants in W [[x′, t′]]/(x′(p−1)/2|H|
−p) under an action of the cyclic

Aut(z)/{±1} with a tangent-space action of χ|H|⊕χ for a faithful character χ.
At a point with j = 1728 we have quadratic χ, n = 2, r = 1. Using the “one
branch” version of Theorem 2.4.1 yields the exceptional divisor D′ as illustrated
in Figure 4(f), transverse to C with self-intersection −2 and multiplicity ρ/2.
At a point with j = 0 we have a cubic χ, so n = 3. Since h ≡ 2 mod 3 when
h ≡ 5 mod 6, we have r = 2. Since 3/2 = 2 − 1/2, we get exceptional divisors
E′

1 and E′
2 with transverse intersections as shown and self-intersections of −2.

The “outer” component E′
1 has multiplicity ρ/3 and the “inner” component

E′
2 has multiplicity 2ρ/3. Once again we will suppress the calculation of C

′
.C

′

since it is not needed.
We now proceed to analyze the component group for each value of h mod 6.

Since C
′

has multiplicity 1 in the closed fiber, we can carry out the same
strategy that was used for p ≡ −1 mod 12, resting on Lemma 5.2.1. When

h ≡ 0 mod 6, there are only the components C and C
′

in the closed fiber of
XH(p)′ = XH(p), with C.C = −h/6. Thus, the component group has the
expected order |H|/6 and since there are no additional components we are
done in this case.

If h ≡ 1 mod 6, one finds that the submatrix of the intersection matrix
corresponding to the ordered set {C,D′, E′} is



−(h + 5)/6 1 1

1 −2 0
1 0 −3




with absolute determinant h = |H|/ gcd(|H|, 6) as desired, and the bottom two
rows have 2×2 minors with gcd equal to 1. Moreover, in the special case h = 1
we see that C is a −1-curve, and after contracting this we contract D′ and E′

in turn, leaving us with only the component C
′
. This proves Theorem 1.1.2 for

p ≡ 1 mod 12.
For h ≡ 2 mod 6, the submatrix indexed by {C,E′

1, E
′
2} is



−(h + 4)/6 0 1

0 −2 1
1 1 −2




with absolute determinant h/2 = |H|/ gcd(|H|, 6), and the bottom two rows
have 2 × 2 minors with gcd equal to 1. The cases h ≡ 3, 4 mod 6 are even
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1
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ρ
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C C
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(a) h ≡ 0 mod 6
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ρ
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ρ
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2ρ
3

2ρ
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(b) h ≡ 2 mod 6

E′ −3

ρ
3

C C
′

(c) h ≡ 4 mod 6

1 ρ
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−2

ρ
2

E′
ρ
3

−3
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′

(d) h ≡ 1 mod 6

1 ρ

D′
−2

ρ
2

C C
′

(e) h ≡ 3 mod 6

D′
−2

ρ
2

C C
′

(f) h ≡ 5 mod 6

k

k

Figure 4: Minimal regular resolution XH(p)′, p = 12k + 1, k ≥ 1, h = |H|,
ρ = (p − 1)/2h
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easier, since there are just two components to deal with, {C,D′} and {C,E′}
with corresponding matrices

(
−(h + 3)/6 1

1 −2

)
,

(
−(h + 2)/6 1

1 −3

)

that yield the expected results.
For the final case h ≡ −1 mod 6, the submatrix indexed by the ordered set

of components {C,D′, E′
1, E

′
2} is




−(h + 7)/6 1 0 1
1 −2 0 0
0 0 −2 1
1 0 1 −2




with absolute determinant h = |H|/ gcd(|H|, 6) and gcd 1 for the 3× 3 minors
along the bottom three rows. The case p ≡ 1 mod 12 is now settled.

5.4 The cases p ≡ ±5 mod 12

With p = 12k + 5 for k ≥ 0, we have (p − 1)/2 = 6k + 2, so h = |H| is not
divisible by 3. Thus, the supersingular j = 0 is always non-regular and the
ordinary j = 1728 is non-regular for even h.

Using Theorem 2.4.1 and Corollary 2.4.3, we obtain a minimal regular reso-
lution depending on the possibilities for h mod 6 not divisible by 3, as given in
Figure 5.

From Figure 5 one easily carries out the computations of the absolute de-
terminant and the gcd of minors from the intersection matrix, just as we have
done in earlier cases, and in all cases one gets |H|/ gcd(|H|, 6) for the absolute
determinant and the gcd of the relevant minors is 1. Also, the case h = 1 has
C as a −1-curve, and successive contractions end at an integral closed fiber, so
we have established Theorems 1.1.2 and 1.1.6 for the case p ≡ 5 mod 12.

When p = 12k − 5 with k ≥ 1, so (p − 1)/2 = 6k − 3 is odd, we have that
h = |H| is odd. Thus, j = 1728 does give rise to a non-regular point, but
the behavior at j = 0 depends on h mod 6. The usual applications of Jung–
Hirzebruch resolution go through, and the minimal resolution has closed-fiber
diagram as in Figure 6, depending on odd h mod 6, and both Theorem 1.1.2
and Theorem 1.1.6 drop out just as in the preceding cases.

6 The Arithmetic of J1(p)

Our theoretical results concerning component groups inspired us to carry out
some arithmetic computations in J1(p), and this section summarizes this work.

In Section 6.1 we recall the Birch and Swinnerton-Dyer conjecture, as this
motivates many of our computations, and then we describe some of the theory
behind the computations that went into computing the tables of Section 6.6.
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Figure 5: Minimal regular resolution XH(p)′, p = 12k + 5, k ≥ 0, h = |H|,
ρ = (p − 1)/2h
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Figure 6: Minimal regular resolution XH(p)′, p = 12k − 5, k ≥ 1, h = |H|,
ρ = (p − 1)/2h

In Section 6.2 we find all p such that J1(p) has rank 0. We next discuss tables
of certain arithmetic invariants of J1(p) and we give a conjectural formula for
|J1(p)(Q)tor|, along with some evidence. In Section 6.3 we investigate Jaco-
bians of intermediate curves JH(p) associated to subgroups of (Z/pZ)×, and in
Section 6.4 we consider optimal quotients Af of J1(p) attached to newforms. In
Section 6.4.1 we describe the lowest-level modular abelian variety that (assum-
ing the Birch and Swinnerton-Dyer conjecture) should have infinite Mordell-
Weil group but to which the general theorems of Kato, Kolyvagin, et al., do
not apply.

6.1 Computational methodology

We used the third author’s modular symbols package for our computations;
this package is part of [10] V2.10-6. See Section 6.5 for a description of how to
use Magma to compute the tables. For the general theory of computing with
modular symbols, see [14] and [63].

Remark 6.1.1. Many of the results of this section assume that a Magma pro-
gram running on a computer executed correctly. Magma is complicated soft-
ware that runs on physical hardware that is subject to errors from both pro-
gramming mistakes and physical processes, such as cosmic radiation. We thus
make the running assumption for the rest of this section that the computa-
tions below were performed correctly. To decrease the chance of hardware
errors such as the famous Pentium bug (see [17]), we computed the tables in
Section 6.6 on three separate computers with different CPU architectures (an
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AMD Athlon 2000MP, a Sun Fire V480 which was donated to the third author
by Sun Microsystems, and an Intel Pentium 4-M laptop).

Let A be a modular abelian variety over Q, i.e., a quotient of J1(N) for
some N . We will make frequent reference to the following special case of the
general conjectures of Birch and Swinnerton-Dyer:

Conjecture 6.1.2 (BSD Conjecture). Let X(A) be the Shafarevich-Tate

group of A, let cp = |ΦA,p(Fp)| be the Tamagawa number at p for A, and let

ΩA be the volume of A(R) with respect to a generator of the invertible sheaf of

top-degree relative differentials on the Néron model A/Z of A over Z. Let A∨

denote the abelian variety dual of A. The group X(A) is finite and

L(A, 1)

ΩA
=

|X(A)| ·
∏

p|N cp

|A(Q)| · |A∨(Q)|
,

where we interpret the right side as 0 in case A(Q) is infinite.

Remark 6.1.3. The hypothesis that A is modular implies that L(A, s) has an
analytic continuation to the whole complex plane and a functional equation of
a standard type. In particular, L(A, 1) makes sense. Also, when L(A, 1) 6= 0,
[32, Cor. 14.3] implies that X(A) is finite.

Let {f1, . . . , fn} be a set of newforms in S2(Γ1(N)) that is Gal(Q/Q)-
stable. Let I be the Hecke-algebra annihilator of the subspace generated by
f1, . . . , fn. For the rest of Section 6.1, we assume that A = AI = J1(N)/IJ1(N)
for such an I. Note that A is an optimal quotient in the sense that
IJ1(N) = ker(J1(N) → A) is an abelian subvariety of J1(N).

6.1.1 Bounding the torsion subgroup

To obtain a multiple of the order of the torsion subgroup A(Q)tor, we proceed
as follows. For any prime ` - N , the algorithm of [3, §3.5] computes the
characteristic polynomial f ∈ Z[X] of Frob` acting on any p-adic Tate module
of A with p 6= `. To compute |A(F`)|, we observe that

|A(F`)| = deg(Frob` −1) = det(Frob` −1),

and this is the value of the characteristic polynomial of Frob` at 1. For any
prime ` - 2N , the reduction map A(Q)tor → A(F`) is injective, so |A(Q)tor|
divides

T = gcd{|A(F`)| : ` < 60 and ` - 2N}.

(If N is divisible by all primes up to 60, let T = 0. In all of the examples in
this paper, N is prime and so T 6= 0.) The injectivity of reduction mod ` on
the finite group A(Q)tor for any prime ` 6= 2 is well known and follows from
the determination of the torsion in a formal group (see, e.g., the appendix to
[33] and [59, §IV.6–9]).
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The cardinality |A(F`)| does not change if A is replaced by a Q-isogenous
abelian variety B, so we do not expect in general that |A(Q)tor| = T . (For
much more on relationships between |A(Q)tor| and T , see [33, p. 499].) When
we refer to an upper bound on torsion, T is the (multiplicative) upper bound
that we have in mind.

The number 60 has no special significance; we had to make some choice to do
computations, and in practice the sequence of partial gcd’s rapidly stabilizes.
For example, if A = J1(37), then the sequence of partial gcd’s is:

15249085236272475, 802583433488025, 160516686697605, . . .

where the term 160516686697605 repeats for all ` < 1000.

6.1.2 The Manin index

Let p be a prime, let ΩA/Z denote the sheaf of relative 1-forms on the Néron
model of A over Z, and let I be the annihilator of A in the Hecke alge-
bra T ⊂ End(J1(N)). For a subring R ⊂ C, let S2(Γ1(N), R) be the R-module
of cusp forms whose Fourier expansion at ∞ lies in R[[q]]. The natural sur-
jective Hecke-equivariant morphism J1(N) → J1(N)/IJ1(N) = A induces (by
pullback) a Hecke-equivariant injection ΨA : H0(A/Z,ΩA/Z) ↪→ S2(Γ1(N),Q)
whose image lies in S2(Γ1(N),Q)[I]. (Here we identify S2(Γ1(N),Q) with
H0(X1(N),ΩX1(N)/Q) = H0(J1(N),ΩJ1(N)/Q) in the usual manner.)

Definition 6.1.4 (Manin index). The Manin index of A is

c = [S2(Γ1(N),Z)[I] : ΨA(H0(A/Z,ΩA/Z))] ∈ Q.

Remark 6.1.5. We name c after Manin, since he first studied c, but only in
the context of elliptic curves. When X0(N) → A is an optimal elliptic-curve
quotient attached to a newform f , the usual Manin constant of A is the rational
number c such that π∗(ωA) = ±c·fdq/q, where ωA is a basis for the differentials
on the Néron model of A. The usual Manin constant equals the Manin index,
since S2(Γ1(N),Z)[I] is generated as a Z-module by f .

A priori, the index in Definition 6.1.4 is only a generalized lattice index in the
sense of [12, Ch. 1, §3], which we interpret as follows. In [12], for any Dedekind
domain R, the lattice index is defined for any two finite free R-modules V
and W of the same rank ρ that are embedded in a ρ-dimensional Frac(R)-
vector space U . The lattice index is the fractional R-ideal generated by the
determinant of any automorphism of U that sends V isomorphically onto W .
In Definition 6.1.4, we take R = Z, U = S2(Γ1(N),Q)[I], V = S2(Γ1(N),Z)[I],
and W = ΨA(H0(A/Z,ΩA/Z)). Thus, c is the absolute value of the determinant
of any linear transformation of S2(Γ1(N),Q)[I] that sends S2(Γ1(N),Z)[I] onto
ΨA(H0(A/Z,ΩA/Z)). In fact, it is not necessary to consider lattice indexes,
as the following lemma shows (note we will use lattices indices later in the
statement of Proposition 6.1.10).
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Lemma 6.1.6. The Manin index c of A is an integer.

Proof. Let Xµ(N) be the coarse moduli scheme over Z that classifies isomor-
phism classes of pairs (E/S, α), with α : µN ↪→ Esm a closed subgroup in the
smooth locus of a generalized elliptic curve E with irreducible geometric fibers
Es. This is a smooth Z-curve that is not proper, and it is readily constructed
by combining the work of Katz-Mazur and Deligne-Rapoport (see §9.3 and
§12.3 of [16]). There is a canonical Z-point ∞ ∈ Xµ(N)(Z) defined by the
standard 1-gon equipped with the canonical embedding of µN into the smooth
locus Gm, and the theory of the Tate curve provides a canonical isomorphism
between Spf(Z[[q]]) and the formal completion of Xµ(N) along ∞.

There is an isomorphism between the smooth proper curves X1(N) and
Xµ(N) over Z[1/N ] because the open modular curves Y1(N) and Yµ(N)
coarsely represent moduli problems that may be identified over the category of
Z[1/N ]-schemes via the map

(E,P ) 7→ (E/〈P 〉, E[N ]/〈P 〉),

where E[N ]/〈P 〉 is identified with µN via the Weil pairing on E[N ]. For our
purposes, the key point (which follows readily from Tate’s theory) is that under
the moduli-theoretic identification of the analytification of the C-fiber of Xµ(N)
with the analytic modular curve X1(N) via the trivialization of µN (C) by

means of ζN = e±2π
√
−1/N , the formal parameter q at the C-point ∞ computes

the standard analytic q-expansion for weight-2 cusp forms on Γ1(N). The
reason we consider Xµ(N) rather than X1(N) is simply because we want a
smooth Z-model in which the analytic cusp ∞ descends to a Z-point.

Let φ : J1(N) → A be the Albanese quotient map over Q, and pass to Néron
models over Z (without changing the notation). Since Xµ(N) is Z-smooth,
there is a morphism Xµ(N) → J1(N) over Z that extends the usual morphism
sending ∞ to 0. We have a map Ψ : H0(A,Ω) → Z[[q]]dq/q of Z-modules defined
by composition

H0(A,Ω) → H0(J1(N),Ω) → H0(Xµ(N),Ω)
q−exp
−−−−→ Z[[q]]

dq

q
.

The map Ψ is injective, since it is injective after base extension to Q and
each group above is torsion free. The image of Ψ in Z[[q]]dq/q is a finite free
Z-module, contained in the image of S = S2(Γ1(N),Z), the sub-Z-module of
S2(Γ1(N),C) of those elements whose analytic q-expansion at ∞ has coeffi-
cients in Z. Since Ψ respects the action of Hecke operators, the image of Ψ is
contained in S[I], so the lattice index c is an integer.

We make the following conjecture:

Conjecture 6.1.7. If A = Af is a quotient of J1(N) attached to a single

Galois-conjugacy class of newforms, then c = 1.
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Manin made this conjecture for one-dimensional optimal quotients of J0(N).
Mazur bounded c in some cases in [46], Stevens considered c for one-dimensional
quotients of J1(N) in [65], González and Lario considered c for Q-curves in [26],
Agashe and Stein considered c for quotients of J0(N) of dimension bigger than 1
in [4], and Edixhoven proved integrality results in [19, Prop. 2] and [22, §2].

Remark 6.1.8. We only make Conjecture 6.1.7 when A is attached to a single

Galois-conjugacy class of newforms, since the more general conjecture is false.
Adam Joyce [31] has recently used failure of multiplicity one for J0(p) to pro-
duce examples of optimal quotients A of J1(p), for p = 431, 503, and 2089,
whose Manin indices are divisible by 2. Here, A is isogenous to a product of
two elliptic curves, so A is not attached to a single Galois-orbit of newforms.

Remark 6.1.9. The question of whether or not c is an isogeny-invariant is not
meaningful in the context of this paper because we only define the Manin index
for optimal quotients.

6.1.3 Computing L-ratios

There is a formula for L(Af , 1)/ΩAf
in [3, §4.2] when Af is an optimal quotient

of J0(N) attached to a single Galois conjugacy class of newforms. In this section
we describe that formula; it applies to our quotient A of J1(N).

Recall our running hypothesis that A = AI is an optimal (new) quotient of
J1(N) attached to a Galois conjugacy class of newforms {f1, . . . , fn}. Let

Ψ : H1(X1(N),Q) → Hom(S2(Γ1(N))[I],C)

be the linear map that sends a rational homology class γ to the functional
∫

γ

on the subspace S2(Γ1(N))[I] in the space of holomorphic 1-forms on X1(N).
Let T ⊂ End(H1(X1(N),Q)) be the ring generated by all Hecke operators.

Since the T-module H = Hom(S2(Γ1(N))[I],C) has a natural R-structure
(and even a natural Q-structure), it admits a natural T-linear and C-semilinear
action by complex conjugation. If M is a T-submodule of H, let M+ denote
the T-submodule of M fixed by complex conjugation.

Let c be the Manin index of A as in Section 6.1.2, let c∞ be the number
of connected components of A(R), let ΩA be the volume of A(R) as in Con-
jecture 6.1.2, and let {0,∞} ∈ H1(X1(N),Q) be the rational homology class
whose integration functional is integration from 0 to i∞ along the i-axis (for
the precise definition of {0,∞} and a proof that it lies in the rational homology
see [38, Ch. IV §1–2]).

Proposition 6.1.10. Let A = AI be an optimal quotient of J1(N) attached to

a Galois-stable collection of newforms. With notation as above, we have

(6.1.1) c∞ · c ·
L(A, 1)

ΩA
= [Ψ(H1(X1(N),Z))+ : Ψ(T{0,∞})],

where the index is a lattice index as discussed in Section 6.1.7 (in particular,

L(A, 1) = 0 if and only if Ψ(T{0,∞}) has smaller rank than H1(X1(N),Z)+).
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Proof. It is straightforward to adapt the argument of [3, §4.2] with J0(N)
replaced by J1(N) (or even JH(N)), but one must be careful when replacing
Af with A. The key observation is that if f1, . . . , fn is the unique basis of
normalized newforms corresponding to A, then L(A, s) = L(f1, s) · · ·L(fn, s).

Remark 6.1.11. This equality (6.1.1) need not hold if oldforms are in-
volved, even in the Γ0(N) case. For example, if A = J0(22), then
L(A, s) = L(J0(11), s)2, but two copies of the newform corresponding to J0(11)
do not form a basis for S2(Γ0(22)).

We finish this section with some brief remarks on how to compute the rational
number c · L(A, 1)/ΩA using (6.1.1) and a computer. Using modular symbols,
one can explicitly compute with H1(X1(N),Z). Though the above lattice index
involves two lattices in a complex vector space, the index is unchanged if we
replace Ψ with any linear map to a Q-vector space such that the kernel is
unchanged (see [3, §4.2]). Such a map may be computed via standard linear
algebra by finding a basis for Hom(H1(X1(N),Q),Q)[I].

To compute c∞, use the following well-known proposition; we include a proof
for lack of an adequate published reference.

Proposition 6.1.12. For an abelian variety A over R,

c∞ = 2dimF2
A[2](R)−d,

where d = dimA and c∞ := |A(R)/A0(R)|.

Proof. Let Λ = H1(A(C),Z), so the exponential uniformization of A(C) pro-
vides a short exact sequence

0 → Λ → Lie(A(C)) → A(C) → 0.

There is an evident action of Gal(C/R) on all terms via the action on A(C), and
this short exact sequence is Galois-equivariant because A is defined over R. Let
Λ+ be the subgroup of Galois-invariants in Λ, so we get an exact cohomology
sequence

0 → Λ+ → Lie(A(R)) → A(R) → H1(Gal(C/R),Λ) → 0

because higher group cohomology for a finite group vanishes on a Q-vector
space (such as the Lie algebra of A(C)). The map Lie(A(R)) → A(R) is the
exponential map for A(R), and so its image is A(R)0. Thus, Λ+ has Z-rank
equal to dimA and

A(R)/A(R)0 ' H1(Gal(C/R),Λ).

To compute the size of this H1, consider the short exact sequence

0 → Λ
2
→ Λ → Λ/2Λ → 0
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of Galois-modules. Since Λ/nΛ ' A[n](C) as Galois-modules for any n 6= 0,
the long-exact cohomology sequence gives an isomorphism

A[2](R)/(Λ+/2Λ+) ' H1(Gal(C/R),Λ).

Remark 6.1.13. Since the canonical isomorphism

A[n](C) ' H1(A(C),Z)/nH1(A(C),Z)

is Gal(C/R)-equivariant, we can identify A[2](R) with the kernel of τ − 1
where τ is the mod-2 reduction of the involution on H1(A(C),Z) induced by
the action τ of complex conjugation on A(C). In the special case when A is
a quotient of some J1(N), and we choose a connected component of C − R

to uniformize Y1(N) in the usual manner, then via the Gal(C/R)-equivariant
isomorphism H1(J1(N)(C),Z) ' H1(X1(N)(C),Z) we see that H1(A(C),Z)
may be computed by modular symbols and that the action of τ on the modular
symbol is {α, β} 7→ {−α,−β}. This makes A[2](R), and hence c∞, readily
computable via modular symbols.

6.2 Arithmetic of J1(p)

6.2.1 The Tables

For p ≤ 71, the first part of Table 1 (on page 399) lists the dimension of J1(p)
and the rational number L = c ·L(J1(p), 1)/ΩJ1(p). Table 1 also gives an upper
bound T (in the sense of divisibility) on |J1(p)(Q)tor| for p ≤ 71, as discussed
in §6.1.1.

When L 6= 0, Conjecture 6.1.2 and the assumption that c = 1 imply that the
numerator of L divides cp · |X(A)|, that in turn divides T 2L. For every p 6= 29
with p ≤ 71, we found that T 2L = 1. For p = 29, we have T 2L = 212; it would
be interesting if the isogeny-invariant T overestimates the order of J1(29)(Q)tor
or if X(J1(29)) is nontrivial.

6.2.2 Determination of positive rank

Proposition 6.2.1. The primes p such that J1(p) has positive rank are the

same as the primes for which J0(p) has positive rank:

p = 37, 43, 53, 61, 67, and all p ≥ 73.

Proof. Proposition 2.8 of [45, §III.2.2, p. 147] says: “Suppose g+ > 0 (which is
the case for all N > 73, as well as N = 37, 43, 53, 61, 67). Then the Mordell-
Weil group of J+ is a torsion-free group of infinite order (i.e. of positive rank).”
Here, N is a prime, g+ is the genus of the Atkin-Lehner quotient X0(N)+ of
X0(N), and J+ is isogenous to the Jacobian of X0(N)+. This is essentially
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correct, except for the minor oversight that g+ > 0 also when N = 73 (this is
stated correctly on page 34 of [45]).

By Mazur’s proposition J0(p) has positive algebraic rank for all p ≥ 73 and
for p = 37, 43, 53, 61, 67. The sign in the functional equation for L(J+, s) is −1,
so

L(J, 1) = L(J+, 1)L(J−, 1) = 0 · L(J−, 1) = 0

for all p such that g+ > 0. Using (6.1.1) we see that L(J, 1) 6= 0 for all p such
that g+ = 0, which by Kato (see [32, Cor. 14.3]) or Kolyvagin–Logachev (see
[36]) implies that J has rank 0 whenever g+ = 0. Thus L(J0(p), 1) = 0 if and
only if J0(p) has positive rank.

Work of Kato (see [32, Cor. 14.3]) implies that if J1(p) has analytic rank 0,
then J1(p) has algebraic rank 0. It thus suffices to check that L(J1(p), 1) 6= 0
for the primes p such that J0(p) has rank 0. We verify this by computing
c · L(J1(p), 1)/ΩJ1(p) using (6.1.1), as illustrated in Table 1.

If we instead consider composite level, it is not true that J0(N) has positive
analytic rank if and only if J1(N) has positive analytic rank. For example,
using (6.1.1) we find that J0(63) has analytic rank 0, but J1(63) has positive
analytic rank. Closer inspection using Magma (see the program below) shows
that there is a two-dimensional new quotient Af with positive analytic rank,
where f = q+(ω−1)q2 +(−ω−2)q3 + · · · , and ω3 = 1. It would be interesting
to prove that that the algebraic rank of Af is positive.

> M := ModularSymbols(63,2);

> S := CuspidalSubspace(M);

> LRatio(S,1); // So J_0(63) has rank 0

1/384

> G<a,b> := DirichletGroup(63,CyclotomicField(6));

> e := a^5*b;

> M := ModularSymbols([e],2,+1);

> S := CuspidalSubspace(M);

> LRatio(S,1); // This step takes some time.

0

> D := NewformDecomposition(S);

> LRatio(D[1],1);

0

> qEigenform(D[1],5);

q + (-2*zeta_6 + 1)*q^2 + (-2*zeta_6 + 1)*q^3 - q^4 + O(q^5)
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6.2.3 Conjectural order of J1(Q)tor

For any Dirichlet character ε modulo N , define Bernoulli numbers B2,ε by

N∑

a=1

ε(a)teat

eNt − 1
=

∞∑

k=0

Bk,ε

k!
tk.

We make the following conjecture.

Conjecture 6.2.2. Let p ≥ 5 be prime. The rational torsion subgroup

J1(p)(Q)tor is generated by the differences of Q-rational cusps on X1(p). Equiv-

alently (see below), for any prime p ≥ 5,

(6.2.1) |J1(p)(Q)tor| =
p

2p−3
·
∏

ε6=1

B2,ε

where the product is over the nontrivial even Dirichlet characters ε of conductor

dividing p.

Due to how we defined X1(p), its Q-rational cusps are exactly its cusps lying
over the cusp ∞ ∈ X0(p)(Q) (corresponding to the standard 1-gon equipped
with the subgroup µp in its smooth locus Gm) via the second standard degen-
eracy map

(E,P ) 7→ (E/〈P 〉, E[p]/〈P 〉).

In [49] Ogg showed that |J1(13)(Q)| = 19, verifying Conjecture 6.2.2 for p = 13.
The results of [37] are also relevant to Conjecture 6.2.2, and suggest that the
rational torsion of J1(p) is cuspidal. Let C(p) be the conjectural order of
J1(p)(Q)tor on the right side of (6.2.1). In [37, p. 153], Kubert and Lang prove
that C(p) is equal to the order of the group generated by the differences of
Q-rational cusps on X1(p) (in their language, these are viewed as the cusps
that lie over 0 ∈ X0(p)(Q) via the first standard degeneracy map

(E,P ) 7→ (E, 〈P 〉)),

and so C(p) is a priori an integer that moreover divides |J1(p)(Q)tor|.
Table 1 provides evidence for Conjecture 6.2.2. Let T (p) be the upper bound

on J1(p)(Q)tor (see Table 1). For all p ≤ 157, we have C(p) = T (p) except for
p = 29, 97, 101, 109, and 113, where T (p)/C(p) is 26, 17, 24, 37, and 212 · 32,
respectively. Thus Conjecture 6.2.2 is true for p ≤ 157, except possibly in these
five cases, where the deviation is consistent with the possibility that T (p) is a
nontrivial multiple of the true order of the torsion subgroup (recall that T (p)
is an isogeny-invariant, and so it is not surprising that it may be too large).

6.3 Arithmetic of JH(p)

For each divisor d of p−1, let H = Hd denote the unique subgroup of (Z/pZ)×

of order (p−1)/d. The group of characters whose kernel contains Hd is exactly
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the group of characters of order dividing d. Since the linear fractional trans-
formation associated to

(−1 0
0 −1

)
acts trivially on the upper half plane, we lose

nothing (for the computations that we will do in this section) if we assume that
−1 ∈ H, and so |H| is even.

For any subgroup H of (Z/pZ)× as above, let JH be the Jacobian of XH(p),
as in Section 1. For each p ≤ 71, Table 2 lists the dimension of JH = JH(p),
the rational number L = c · L(JH , 1)/ΩJH

, an upper bound T on |JH(Q)tor|,
the conjectural multiple T 2L of |X(JH)| · cp, and cp = |Φ(JH)|. We compute
|Φ(JH)(Fp)| = |Φ(JH)(Fp)| using Theorem 1.1.3. Note that Table 2 omits the
data for d = (p − 1)/2, since JH = J1(p) for such d, so the corresponding data
is therefore already contained in Table 1.

When L 6= 0, we have T 2L = |Φ(JH)| in all but one case. The exceptional
case is p = 29 and d = 7, where T 2L = 26, but |Φ(JH)| = 1; probably T
overestimates the torsion in this case. In the following proposition we use this
observation to deduce that |X(JH)| = c = 1 in some cases.

Proposition 6.3.1. Suppose that p ≤ 71 is a prime and d | (p − 1) with

(p − 1)/d even. Let JH be the Jacobian of XH(p), where H is the subgroup

of (Z/pZ)× of order (p − 1)/d. Assume that Conjecture 6.1.2 is true, and if

p = 29 then assume that d 6= 7, 14. If L(JH , 1) 6= 0, then |X(JH)| = 1 and

c = 1.

It is not interesting to remove the condition p ≤ 71 in the statement of the
proposition, since when p > 71 the quantity L(JH , 1) automatically vanishes
(see Proposition 6.2.1). It is probably not always the case that |X(JH)| = 1;
for example, Conjecture 6.1.2 and the main result of [1] imply that 72 divides
|X(J0(1091))|.

Proof. We deduce the proposition from Tables 1–3 as follows. Using Conjec-
ture 6.1.2 we have

(6.3.1) c · |X(JH)| = c ·
L(JH , 1)

ΩJH
· |Φ(JH)|

· |JH(Q)tor|
2.

Let T denote the torsion bound on JH(Q)tor as in Section 6.1.1 and let
L = c · L(JH , 1)/ΩJH

, so the right side of (6.3.1) divides T 2L/|Φ(JH)|. An
inspection of the tables shows that T 2L/|Φ(JH)| = 1 for JH satisfying the
hypothesis of the proposition (in the excluded cases p = 29 and d = 7, 14,
the quotient equals 26 and 212, respectively). Since c ∈ Z, we conclude that
c = |X(JH)| = 1.

Remark 6.3.2. Theorem 1.1.3 is an essential ingredient in the proof of Proposi-
tion 6.3.1 because we used Theorem 1.1.3 to compute the Tamagawa factor cp.
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6.4 Arithmetic of newform quotients

Tables 4–5 at the end of this paper contain arithmetic information about each
newform abelian variety quotient Af of J1(p) with p ≤ 71.

The first column gives a label determining a Galois-conjugacy class of new-
forms {f, . . .}, where A corresponds to the first class, B to the second, etc.,
and the classes are ordered first by dimension and then in lexicographical order
by the sequence of nonegative integers | tr(a2(f))|, | tr(a3(f))|, | tr(a5(f))|, . . ..
(WARNING: This ordering does not agree with the one used by Cremona in
[14]; for example, our 37A is Cremona’s 37B.) The next two columns list the
dimension of Af and the order of the Nebentypus character of f , respectively.
The fourth column lists the rational number L = L(Af , 1)/ΩAf

, and the fifth
lists the product T 2L, where T is an upper bound (as in Section 6.1.1) on the
order of Af (Q)tor. The sixth column, labeled “modular kernel”, lists invariants
of the group of Q-points of the kernel of the polarization A∨

f ↪→ J1(p) → Af ;
this kernel is computed by using an algorithm based on Proposition 6.4.1 be-
low. The elementary divisors of the kernel are denoted with notation such as
[22142] to denote

Z/2Z × Z/2Z × Z/14Z × Z/14Z.

Proposition 6.4.1. Suppose A = AI is an optimal quotient of J = J1(N)
attached to the annihilator I of a Galois-stable collection of newforms. The

group of Q-points of the kernel of the natural map A∨ ↪→ J → A is isomorphic

to the cokernel of the natural map

Hom(H1(X1(N),Z),Z)[I] → Hom(H1(X1(N),Z)[I],Z).

Proof. The proof is the same as [35, Prop. 1].

It is possible to compute the modular kernel by using the formula in this
proposition, together with modular symbols and standard algorithms for com-
puting with finitely generated abelian groups.

We do not give T in Tables 4–5, since in all but six cases T 2L 6= 0, hence
T 2L and L determine T . The remaining six cases are 37B, 43A, 53A, 61A,
61B, and 67C, and in all these cases T = 1.

Remark 6.4.2. If A = Af is an optimal quotient of J1(p) attached to a new-
form, then the tables do not include the toric, additive, and abelian ranks of
the closed fiber of the Néron model of A over Fp, since they are easy to de-
termine from other data about A as follows. If ε(f) = 1, then the toric rank
is dim(A), since A is isogenous to an abelian subvariety of J0(p) and so A has
purely toric reduction over Zp. Now suppose that ε(f) is nontrivial, so A is
isogenous to an abelian subvariety of the abelian variety J1(p)/J0(p) that has
potentially good reduction at p. Hence the toric rank of A is zero, and inertia
Ip ⊂ Gp = Gal(Qp/Qp) acts with finite image on the Q`-adic Tate module V`

of A for any ` 6= p. Hence V` splits as a nontrivial direct sum of simple repre-
sentations of Ip. Let V ′ be a factor of V` corresponding to a simple summand K
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of T ⊗ Q`, where T is the Hecke algebra. Since the Artin conductor of the
2-dimensional K-representation V ′

` is p, the Q`[Ip]-module Q`⊗Q`
V ′ is the di-

rect sum of the trivial representation and the character ε(f) : (Z/pZ)× → Q
×
`

viewed as a character of Gp via the identification Gal(Qp(ζp)/Qp) = (Z/pZ)×.
This implies that the abelian rank as well as the additive rank are both equal
to half of the dimension of A.

6.4.1 The Simplest example not covered by general theory

The prime p = 61 is the only prime p ≤ 71 such that the maximal quotient
of J1(p) with positive analytic rank is not a quotient of J0(p). Let ε be a
Dirichlet character of conductor 61 and order 6. Consider the abelian variety
Af attached to the newform

f = q + (e2πi/3 − 1)q2 − 2q3 + · · ·

that lies in the 6-dimensional C-vector space S2(Γ1(61), ε). Using Proposi-
tion 6.1.10, we see that L(f, 1) = 0.

It would be interesting to show that Af has positive algebraic rank, since
Af is not covered by the general theorems of Kolyvagin, Logachev, and Kato
concerning Conjecture 6.1.2. This example is the simplest example in the
following sense: every elliptic curve over Q is a quotient of some J0(N), and
an inspection of Tables 4–5 for any integer N < 61 shows that the maximal
quotient of J1(N) with positive analytic rank is also a quotient of J0(N).

The following observation puts this question in the context of Q-curves, and
may be of some use in a direct computation to show that Af has positive
algebraic rank. Since f = f ⊗ε−1, Shimura’s theory (see [62, Prop. 8]) supplies
an isogeny ϕ : Af → Af defined over the degree-6 abelian extension of Q cut
out by ker(ε). Using ϕ, one sees that Af is isogenous to a product of two elliptic
curves. According to Enrique Gonzalez-Jimenez (personal communication) and
Jordi Quer, if t6 + t5 − 25t4 + 8t3 + 123t2 − 126t + 27 = 0, so t generates the
degree 6 subfield of Q(ζ61) corresponding to ε, then one of the elliptic-curve
factors of Af has equation y2 = x3 + c4x + c6, where

c4 =
1

3
(−321 + 738t − 305t2 − 196t3 + 47t4 + 13t5),

c6 =
1

3
(−4647 + 6300t + 996t2 − 1783t3 − 432t4 − 14t5).

6.4.2 Can Optimal Quotients Have Nontrivial Component Group?

Let p be a prime. Component groups of optimal quotients of J0(p) are well-
understood in the sense of the following theorem of Emerton [23]:

Theorem 6.4.3 (Emerton). If A1, . . . , An are the distinct optimal quotients

of J0(p) attached the Galois-orbits of newforms, then the product of the or-

ders of the component groups of the Ai’s equals the order of the component
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group of J0(p), i.e., the numerator of (p − 1)/12. Moreover, the natural maps

Φ(J0(p)) → Φ(Ai) are surjective.

Shuzo Takehashi asked a related question about J1(p):

Question 6.4.4 (Takehashi). Suppose A = Af is an optimal quotient of
J1(p) attached to a newform. What can be said about the component group
of A? In particular, is the component group of A necessarily trivial?

Since J1(p) has trivial component group (see Theorem 1.1.1), the triviality
of the component group of A is equivalent to the surjectivity of the natural
map from Φ(J1(p)) to Φ(Af ).

The data in Tables 4–5 sheds little light on Question 6.4.4. The following
are the Af ’s that have nonzero L = c ·L(Af , 1)/Ω with numerator divisible by
an odd prime: 37D, 37F, 43C, 43F, 53D, 61E, 61F, 61G, 61J, 67D, 67E,
and 67G. For each of these, Conjecture 6.1.2 implies that c · X(Af ) · cp is
divisible by an odd prime. However, it seems difficult to deduce which factors
in the product are not equal to 1. We remark that for each Af listed above
such that the numerator of L is exactly divisible by p, there is a rank-1 elliptic
curve E over Q such that E[p] ⊂ A, so methods as in [2] may shed light on
this problem.

6.5 Using Magma to compute the tables

In this section, we describe how to use Magma V2.10-6 (or later) to compute
the entries in Tables 1–5 at the end of this paper.

6.5.1 Computing Table 1: Arithmetic of J1(p)

Let p be a prime. The following Magma code illustrates how to compute the
two rows in Table 1 corresponding to p (= 19). Note that the space of cuspidal
modular symbols has dimension 2 dim J1(p).

> p := 19;

> M := ModularSymbols(Gamma1(p));

> S := CuspidalSubspace(M);

> S;

Modular symbols space of level 19, weight 2, and dimension

14 over Rational Field (multi-character)

> LRatio(S,1);

1/19210689

> Factorization(19210689);

[ <3, 4>, <487, 2> ]

> TorsionBound(S,60);

4383

Remark 6.5.1. It takes less time and memory to compute c · L(J1(p), 1)/Ω in
Q×/2Z, and this is done by replacing M:=ModularSymbols(Gamma1(p)) with
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M:=ModularSymbols(Gamma1(p),2,+1). A similar remark applies to all com-
putations of L-ratios in the sections below.

6.5.2 Computing Tables 2–3: Arithmetic of JH(p)

Let p be a prime, d a divisor of p − 1 such that (p − 1)/d is even, and H the
subgroup of (Z/NZ)× of order (p−1)/d. We use Theorem 1.1.3 and commands
similar to the ones in Section 6.5.1 to fill in the entries in Tables 2–3. The
following code illustrates computation of the second row of Table 2 for p = 19.

> p := 19;

> [d : d in Divisors(p-1) | IsEven((p-1) div d)];

[ 1, 3, 9 ]

> d := 3;

> M := ModularSymbolsH(p,(p-1) div d, 2, 0);

> S := CuspidalSubspace(M);

> S;

Modular symbols space of level 19, weight 2, and dimension 2

over Rational Field (multi-character)

> L := LRatio(S,1); L;

1/9

> T := TorsionBound(S,60); T;

3

> T^2*L;

1

> Phi := d / GCD(d,6); Phi;

1

It takes about ten minutes to compute all entries in Table 2–3 using an Athlon
2000MP-based computer.

6.5.3 Computing Tables 4–5

Let p be a prime number. To compute the modular symbols factors cor-
responding to the newform optimal quotients Af of J1(p), we use the
NewformDecomposition command. To compute the modular kernel, we use
the command ModularKernel. The following code illustrates computation of
the second row of Table 4 corresponding to p = 19.

> p := 19;

> M := ModularSymbols(Gamma1(19));

> S := CuspidalSubspace(M);

> D := NewformDecomposition(S);

> D;

[

Modular symbols space for Gamma_0(19) of weight 2 and

dimension 2 over Rational Field,
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Modular symbols space of level 19, weight 2, and

dimension 12 over Rational Field (multi-character)

]

> A := D[2];

> Dimension(A) div 2;

6

> Order(DirichletCharacter(A));

9

> L := LRatio(A,1); L;

1/2134521

> T := TorsionBound(A,60);

> T^2*L;

1

> Invariants(ModularKernel(A));

[ 3, 3 ]

It takes about 2.5 hours to compute all entries in Tables 4–5, except that the
entries corresponding to p = 71, using an Athlon 2000MP-based computer.
The p = 71 entry takes about 3 hours.
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6.6 Arithmetic tables

The notation in Tables 1–5 below is explained in Section 6.

Table 1: Arithmetic of J1(p)

J1(p) dim c · L(J1(p), 1)/Ω

11 1 1/52

13 2 1/192

17 5 1/26 ·732

19 7 1/34 ·4872

23 12 1/112 ·371812

29 22 1/212 ·32 ·72 ·432 ·178372

31 26 1/24 ·54 ·72 ·112 ·23023812

37 40 0
41 51 1/28 ·52 ·132 ·314 ·4312 ·2501837212

43 57 0
47 70 1/232 ·1392 ·823970872 ·124511968332

53 92 0
59 117 1/292 ·592 ·99885536136913938123587942712

61 126 0
67 155 0
71 176 1/52 ·72 ·312 ·1132 ·2112 ·2812 ·7014 ·127132·

130708499192256557290612

J1(p) Torsion Bound

11 5
13 19
17 23 ·73
19 32 ·487
23 11·37181
29 212 ·3·7·43·17837
31 22 ·52 ·7·11·2302381
37 32 ·5·7·19·37·73·577·17209
41 24 ·5·13·312 ·431·250183721
43 22 ·7·19·29·463·1051·416532733
47 23·139·82397087·12451196833
53 7·13·85411·96331·379549·641949283
59 29·59·9988553613691393812358794271
61 5·72 ·112 ·19·31·2081·2801·40231·411241·514216621
67 11·67·193·6612 ·2861·8009·11287·9383200455691459
71 5·7·31·113·211·281·7012 ·12713 · 13070849919225655729061
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Table 2: Arithmetic of JH(p)

p d dim L = c · L(JH , 1)/Ω T = Torsion Bound T 2L |Φ(JH)|
11 1 1 1/5 5 5 5
13 1 0 1 1 1 1

2 0 1 1 1 1
3 0 1 1 1 1

17 1 1 1/22 22 22 22

2 1 1/23 22 2 2
4 1 1/24 22 1 1

19 1 1 1/3 3 3 3
3 1 1/32 3 1 1

23 1 2 1/11 11 11 11
29 1 2 1/7 7 7 7

2 4 1/32 ·7 3·7 7 7
7 8 1/26 ·72 ·432 26 ·7·43 26 1

31 1 2 1/5 5 5 5
3 6 1/24 ·5·72 22 ·5·7 5 5
5 6 1/54 ·112 52 ·11 1 1

37 1 2 0 3 0 3
2 4 0 3·5 0 3
3 4 0 3·7 0 1
6 10 0 3·5·7·37 0 1
9 16 0 32 ·7·19·577 0 1

41 1 3 1/2·5 2·5 2·5 2·5
2 5 1/26 ·5 23 ·5 5 5
4 11 1/28 ·5·132 24 ·5·13 5 5
5 11 1/2·52 ·4312 2·5·431 2 2
10 21 1/26 ·52 ·314 ·4312 23 ·5·312 ·431 1 1
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Table 3: Arithmetic of JH(p) (continued)

p d dim L = c · L(JH , 1)/Ω T = Torsion Bound T 2L |Φ(JH)|
43 1 3 0 7 0 7

3 9 0 22 ·7·19 0 7
7 15 0 7·29·463 0 1

47 1 4 1/23 23 23 23
53 1 4 0 13 0 13

2 8 0 7·13 0 13
13 40 0 13·96331·379549 0 1

59 1 5 1/29 29 29 29
61 1 4 0 5 0 5

2 8 0 5·11 0 5
3 12 0 5·7·19 0 5
5 16 0 5·2801 0 1
6 26 0 5·72 ·11·19·31 0 5
10 36 0 5·112 ·2081·2801 0 1
15 56 0 5·7·19·2801· 0 1

514216621
67 1 5 0 11 0 11

3 15 0 11·193 0 11
11 45 0 11·661·2861·8009 0 1

71 1 6 1/5·7 5·7 5·7 5·7
5 26 1/52 ·7·312 ·2112 5·7·31·211 7 7
7 36 1/5·72 ·1132 ·127132 5·7·113·12713 5 5
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Table 4: Arithmetic of Optimal Quotients Af of J1(p)

Af dim ord(ε) L = c · L(Af , 1)/Ω T 2L modular kernel
11A 1 1 1/52 1 []
13A 2 6 1/192 1 []
17A 1 1 1/24 1 [22]
17B 4 8 1/22 ·732 1 [22]
19A 1 1 1/32 1 [32]
19B 6 9 1/32 ·4872 1 [32]
23A 2 1 1/112 1 [112]
23B 10 11 1/371812 1 [112]
29A 2 2 1/32 1 [144]
29B 2 1 1/72 1 [22142]
29C 6 7 1/26 ·432 26 [210142]
29D 12 14 1/26 ·178372 26 [28144]
31A 2 1 1/52 1 [32152]
31B 4 5 1/52 ·112 1 [36152]
31C 4 3 1/24 ·72 1 [54154]
31D 16 15 1/23023812 1 [158]
37A 1 1 1/32 1 [122]
37B 1 1 0 0 [362]
37C 2 2 2/52 2 [184]
37D 2 3 3/72 3 [62182]
37E 4 6 1/372 1 [34184]
37F 6 9 3/5772 3 [26621024]
37G 6 9 1/32 ·192 1 [283421022]
37H 18 18 1/732 ·172092 1 [212612]
41A 2 2 1/24 1 [204]
41B 3 1 1/22 ·52 1 [22204]
41C 6 4 1/22 ·132 1 [521010]
41D 8 10 1/314 1 [412204]
41E 8 5 1/4312 1 [412204]
41F 24 20 1/2501837212 1 [2201012]
43A 1 1 0 0 [422]
43B 2 1 2/72 2 [32422]
43C 2 3 3/24 3 [3521052]
43D 4 3 1/192 1 [741054]
43E 6 7 1/292 1 [383922732]
43F 6 7 7/4632 7 [383922732]
43G 36 21 1/10512 ·4165327332 1 [3122112]
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Table 5: Arithmetic of Optimal Quotients Af of J1(p) (continued)

Af dim ord(ε) L = c · L(Af , 1)/Ω T 2L modular kernel
47A 4 1 1/232 1 [236]
47B 66 23 1/1392 ·823970872· 1 [236]

124511968332

53A 1 1 0 0 [522]
53B 3 1 2/132 2 [22262522]
53C 4 2 2/72 2 [268]
53D 36 13 13/963312 ·3795492 13 [266266]
53E 48 26 1/854112 ·6419492832 1 [264268]
59A 5 1 1/292 1 [298]
59B 112 29 1/592· 1 [298]

99885536136913938123587942712

61A 1 1 0 0 [602]
61B 2 6 0 0 [554]
61C 3 1 2/52 2 [62302602]
61D 4 2 2/112 2 [308]
61E 8 3 3/72 ·192 3 [108308]
61F 8 6 112/72 ·312 112 [1083043304]
61G 12 5 5/28012 5 [618306]
61H 16 10 1/112 ·20812 1 [38616308]
61I 32 15 1/5142166212 1 [240683016]
61J 40 30 52/402312 ·4112412 52 [2326123020]
67A 1 1 1 1 [1652]
67B 2 1 22/112 22 [623302]
67C 2 1 0 0 [664]
67D 10 11 11/28612 11 [31675212827312]
67E 10 3 32/1932 32 [11103310]
67F 10 11 1/6612 1 [31646232508532]
67G 20 11 11/80092 11 [3362409994]
67H 100 33 1/672 ·6612 ·112872· 1 [3603320]

93832004556914592

71A 3 1 1/72 1 [523523152]
71B 3 1 1/52 1 [723523152]
71C 20 5 1/312 ·2112 1 [7303510]
71D 30 7 1/1132 ·127132 1 [5503510]
71E 120 35 1/2812 ·7014· 1 [5203540]

130708499192256557290612
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exposé 6, Sém. Th. Nombres, Université Bordeaux, 1987–88.
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