
Documenta Math. 605

Group C∗-Algebras as Compact

Quantum Metric Spaces

Marc A. Rieffel 1

Received: September 26, 2002

Revised: December 20, 2002

Communicated by Joachim Cuntz

Abstract. Let ` be a length function on a group G, and let M`

denote the operator of pointwise multiplication by ` on `2(G). Fol-
lowing Connes, M` can be used as a “Dirac” operator for C∗r (G). It
defines a Lipschitz seminorm on C∗r (G), which defines a metric on
the state space of C∗r (G). We investigate whether the topology from
this metric coincides with the weak-∗ topology (our definition of a
“compact quantum metric space”). We give an affirmative answer for
G = Zd when ` is a word-length, or the restriction to Zd of a norm on
Rd. This works for C∗r (G) twisted by a 2-cocycle, and thus for non-
commutative tori. Our approach involves Connes’ cosphere algebra,
and an interesting compactification of metric spaces which is closely
related to geodesic rays.
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0. Introduction

The group C∗-algebras of discrete groups provide a much-studied class
of “compact non-commutative spaces” (that is, unital C∗-algebras). In [11]
Connes showed that the “Dirac” operator of an unbounded Fredholm mod-
ule over a unital C∗-algebra provides in a natural way a metric on the state
space of the algebra. Unbounded Fredholm modules (i.e. spectral triples) also
provide smooth structure, important homological data and much else. In the
subsequent years Connes has been strongly advocating this use of Dirac oper-
ators as the way to deal with the Riemannian geometry of non-commutative
spaces [12], [15], [14], [13]. The class of examples most discussed in [11] consists

1The research reported here was supported in part by National Science Foundation Grant
DMS–99–70509.

Documenta Mathematica 7 (2002) 605–651



606 Marc A. Rieffel

of the group C∗-algebras of discrete groups, with the Dirac operator coming
in a simple way from a length function on the group. Connes obtained in
[11] strong relationships between the growth of a group and the summability
of Fredholm modules over its group C∗-algebra. However he did not explore
much the metric on the state space.

In [39], [40] I pointed out that, motivated by what happens for ordinary
compact metric spaces, it is natural to desire that the topology from the metric
on the state space coincides with the weak-∗ topology (for which the state space
is compact). This property was verified in [39] for certain examples, notably
the non-commutative tori, with “metric” structure coming from a different
construction. (See [40], [41], [42] for further developments.) But in general I
have found this property to be difficult to verify for many natural examples.

The main purpose of this paper is to examine this property for Connes’
initial class of examples, the group C∗-algebras with the Dirac operator coming
from a length function. To be more specific, let G be a countable (discrete)
group, and let Cc(G) denote the convolution ∗-algebra of complex-valued func-
tions of finite support on G. Let π denote the usual ∗-representation of Cc(G)
on `2(G) coming from the unitary representation of G by left translation on
`2(G). The norm-completion of π(Cc(G)) is by definition the reduced group
C∗-algebra, C∗r (G), of G. We identify Cc(G) with its image in C∗r (G), so that
it is a dense ∗-subalgebra.

Let a length function ` be given on G. We let M` denote the (usually
unbounded) operator on `2(G) of pointwise multiplication by `. Then M`

will serve as our “Dirac” operator. One sees easily [11] that the commutators
[M`, πf ] are bounded operators for each f ∈ Cc(G). We can thus define a
seminorm, L`, on Cc(G) by L`(f) = ‖[M`, πf ]‖.

In general, if L is a seminorm on a dense ∗-subalgebra A of a unital C∗-
algebra Ā such that L(1) = 0, we can define a metric, ρL, on the state space
S(Ā) of Ā, much as Connes did, by

ρL(µ, ν) = sup{|µ(a)− ν(a)| : a ∈ A, L(a) ≤ 1}.
(Without further hypotheses ρL may take value +∞.) In [40] we define L
to be a Lip-norm if the topology on S(Ā) from ρL coincides with the weak-∗
topology. We consider a unital C∗-algebra equipped with a Lip-norm to be a
compact quantum metric space [40].

The main question dealt with in this paper is whether the seminorms L`
coming as above from length functions on a group are Lip-norms. In the end we
only have success in answering this question for the groups Zd. The situation
there is already somewhat complicated because of the large variety of possible
length-functions. But we carry out our whole discussion in the slightly more
general setting of group C∗-algebras twisted by a 2-cocycle (definitions given
later), and so this permits us to treat successfully also the non-commutative
tori [38]. The main theorem of this paper is:

Main Theorem 0.1. Let ` be a length function on Zd which is either the
word-length function for some finite generating subset of Zd, or the restriction
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to Zd of some norm on Rd. Let c be a 2-cocycle on Zd, and let π be the
regular representation of C∗(Zd, c) on `2(Zd). Then the seminorm L` defined
on Cc(Zd) by L`(f) = ‖[M`, πf ]‖ is a Lip-norm on C∗(Zd, c).

The path which I have found for the proof of this theorem is somewhat
long, but it involves some objects which are of considerable independent inter-
est, and which may well be useful in treating more general groups. Specifically,
we need to examine Connes’ non-commutative cosphere algebra [14] for the
examples which we consider. This leads naturally to a certain compactifica-
tion which one can construct for any locally compact metric space. We call
this “the metric compactification”. Actually, this compactification had been
introduced much earlier by Gromov [24], but it is different from the famous
Gromov compactification for a hyperbolic metric space, and it seems not to
have received much study. Our approach gives a new way of defining this
compactification. We also need to examine the strong relationship between
geodesic rays and points in the boundary of this compactification, since this
will provide us with enough points of the boundary which have finite orbits.
For word-length functions on Zd this is already fairly complicated.

The contents of the sections of this paper are as follows. In Section 1 we
make more precise our notation, and we make some elementary observations
showing that on any separable unital C∗-algebra there is an abundance of Lip-
norms, and that certain constructions in the literature concerning groups of
“rapid decay” yield natural Lip-norms on C∗r (G). In Section 2 we begin our
investigation of the Dirac operators for C∗r (G) coming from length functions.
In Section 3 we examine Connes’ cosphere algebra for our situation. We show
in particular that if the action of the group on the boundary of its metric com-
pactification is amenable, then the cosphere algebra has an especially simple
description. Then in Section 4 we study the metric compactification in general,
with attention to the geodesic rays.

In Section 5 we begin our study of specific groups by considering the group
Z. This is already interesting. (Consider a generating set such as {±3,±8}.)
The phenomena seen there for Z indicate some of the complications which we
will encounter in trying to deal with Zd. In Section 6 we study the metric
compactification of Rd for any given norm, and then in Section 7 we apply this
to prove the part of our Main Theorem for length functions on Zd which are the
restrictions of norms on Rd. In Section 8 we study the metric compactification
of Zd for word-length functions, and in Section 9 we apply this to prove the
remaining part of our Main Theorem. We conclude in Section 10 with a brief
examination of the free (non-Abelian) group on two generators, to see both
how far our approach works, and where we become blocked from proving for it
the corresponding version of our Main Theorem.

Last-minute note: I and colleagues believe we have a proof that the Main
Theorem is also true for word-hyperbolic groups with word-length functions,
using techniques which are entirely different from those used here, and which
do not seem to apply to the case of Zd treated here.
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A substantial part of the research reported here was carried out while I
visited the Institut de Mathématique de Luminy, Marseille, for three months.
I would like to thank Gennady Kasparov, Etienne Blanchard, Antony Wasser-
man, and Patrick Delorme very much for their warm hospitality and their
mathematical stimulation during my very enjoyable visit.

1. An abundance of Lip-norms

In this section we establish some of our notation, and show that on any
separable unital C∗-algebra there is an abundance of Lip-norms. In the absence
of further structure these Lip-norms appear somewhat artificial. But we then
show that some known constructions for group C∗-algebras yield somewhat
related but more natural Lip-norms.

Our discussion in the next few paragraphs works in the greater generality
of order-unit spaces which was used in [40]. But we will not use that generality
in later sections, and so the reader can have in mind just the case of dense unital
*-subalgebras of unital C∗-algebras, with the identity element being the order
unit. We recall that a (possibly discontinuous) seminorm L on an order-unit
space is said to be lower semicontinuous if {a ∈ A : L(a) ≤ r} is norm-closed
for any r > 0.

Proposition 1.1. Let A be an order-unit space which is separable. For any
countable subset E of A there are many lower semicontinuous Lip-norms on A
which are defined and finite on E.

Proof. The proof is a minor variation on the fact that the weak-∗ topology on
the unit ball of the dual of a separable Banach space is metrizable (theorem
V.5.1 of [16]). We scale each non-zero element of E so that it is in the unit ball
of A (and 6= 0), and we incorporate E into a sequence, {bn}, of elements of A
which is dense in the unit ball of A. Let {ωn} be any sequence in R such that
ωn > 0 for each n and Σωn < ∞. Define a norm, M , on the dual space A′ of
A by

M(λ) = Σωn|λ(bn)|.
The metric from this norm, when restricted to the unit ball of A′, gives the
weak-∗ topology, because it is easily checked that if a net in the unit ball of
A′ converges for the weak-∗ topology then it converges for the metric from M ,
and then we can apply the fact that the unit ball is weak-∗ compact.

We let S(A) denote the state space of A. Since S(A) is a subset of the unit
ball of A′, the restriction to S(A) of the metric from the norm M gives S(A)
the weak-∗ topology. Let LM denote the corresponding Lipschitz seminorm
on C(S(A)) from this metric, allowing value +∞. View each element of A as
a function on S(A) in the usual way. Then LM (bn) ≤ ω−1

n < ∞ for each n,
because if µ, ν ∈ S(A) then

|bn(µ)− bn(ν)| = |(µ− ν)(bn)| ≤ ω−1
n M(µ− ν) = ω−1

n ρM (µ, ν).

Let B denote the linear span of {bn} together with the order unit. Then B
is a dense subspace of A containing the order-unit, and LM restricted to B is
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a seminorm which can be verified to be lower semicontinuous. The inclusion
of A into C(S(A)) is isometric (on self-adjoint elements if A is a C∗-algebra)
and since LM comes from an ordinary metric, it follows that LM on A is a
Lip-norm. (For example, use theorem 1.9 of [39].) ¤

The considerations above are close to those of theorem 9.8 of [40]. Let me
take advantage of this to mention here that Hanfeng Li showed me by clever
counterexample that theorem 9.8 of [40] is not correct as presented, because
A may not be big enough. However, if A is taken to be norm-complete, then
there is no difficulty. Theorem 9.11 needs to be adjusted accordingly. But this
change does not affect later sections of [40] nor the subsequent papers [41], [42].

We now turn to (twisted) group C∗-algebras, and we use a different ap-
proach, which takes advantage of the fact that the group elements provide a
natural “basis” for the group C∗-algebras. Thus let G be a countable discrete
group, and let c be a 2-cocycle [47] on G with values in the circle group T. We
assume that c is normalized so that c(x, y) = 1 if x = e or y = e. We let C∗(G, c)
denote the full c-twisted group C∗-algebra of G, and we let C∗r (G, c) denote
the reduced c-twisted group C∗-algebra [47], [35] coming from the left regular
representation, π, on `2(G). Both C∗-algebras are completions of Cc(G), the
space of finitely supported C-valued functions on G, with convolution twisted
by c. Our conventions, following [47], are that

(f ∗ g)(x) = Σf(y)g(y−1x)c(y, y−1x),

f∗(x) = f̄(x−1)c̄(x, x−1).

The left regular representation is given by the same formula as the above twisted
convolution, but with g viewed as an element of `2(G). Then C∗r (G, c) is
the completion of Cc(G) for the operator norm coming from the left regular
representation. We will often set A = C∗r (G, c). We note that when π is
restricted to G we have

(πyξ)(x) = ξ(y−1x)c(y, y−1x)

for ξ ∈ `2(G) and x, y ∈ G. In particular πyπz = c(y, z)πyz.
There is a variety of norms on Cc(G) which have been found to be useful in

addition to the C∗-norms. These other norms are not necessarily algebra norms.
To begin with, there is the `1-norm, as well as the `p-norms for 1 < p ≤ ∞.
But let ` be a length function on G, so that `(xy) ≤ `(x) + `(y), `(x−1) = `(x),
`(x) ≥ 0, and `(x) = 0 exactly if x = e, the identity element of G. Then in
connection with groups of “rapid decay” (such as word-hyperbolic groups) one
defines norms on Cc(G) of the following form [30], [29], [27], [28]:

‖f‖p,k = (Σ(|f(x)|(1 + `(x))k)p)1/p.

These norms clearly have the properties that

1) ‖f‖p,k ≤ ‖|f |‖p,k (actually =),
2) if |f | ≤ |g| then ‖|f |‖p,k ≤ ‖|g|‖p,k.
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Their interest lies in the fact that for a rapid-decay group and an appropriate
choice of p and k depending on the group, one has (see the first line of the
proof of theorem 1.3 of [27], combined, in the case of nontrivial cocycle, with
proposition 3.10b of [28]):

3) There is a constant, K, such that ‖f‖C∗r ≤ K‖f‖p,k.

Notice also that if the cocycle c is trivial and if G is amenable [35] then the
C∗-norm itself satisfies the above three properties, because from the trivial
representation we see that for f ∈ Cc(G) we have

‖f‖C∗(G) ≤ ‖f‖1 = ‖|f |‖C∗(G),

while if |f | ≤ |g| then

‖|f |‖C∗(G) = ‖f‖1 ≤ ‖g‖1 = ‖|g|‖C∗(G).

Finally, for any group and any cocycle we always have at least the `1-norm
which satisfies the above three properties.

With these examples in mind, we make

Definition 1.2. Let ‖ · ‖A denote the C∗-norm on A = C∗r (G, c). We will say
that a norm, ‖·‖, on Cc(G) is order-compatible with ‖·‖A if for all f, g ∈ Cc(G)
we have:

1) ‖f‖ ≤ ‖|f |‖.
2) If |f | ≤ |g| then ‖|f |‖ ≤ ‖|g|‖.
3) There is a constant, K, such that ‖f‖A ≤ K‖f‖.
We remark that these conditions are a bit weaker than those required for

a “good norm” in [32].
Suppose now that ω is a real-valued function on G such that ω(e) = 0 and

ω(x) > 0 for x 6= e. Fix an order-compatible norm ‖ · ‖ on Cc(G), and set

L(f) = ‖ω|f |‖.
It is clear that L is a seminorm which is 0 only on the span of the identity
element of the convolution algebra Cc(G, c). (Thus L is a Lipschitz seminorm
as defined in [40].) In the way discussed in the introduction, L defines a metric,
ρL, on S(C∗r (G, c)) by

ρL(µ, ν) = sup{|µ(f)− ν(f)| : L(f) ≤ 1},
which may take value +∞. Denote C∗r (G, c) by A, and its C*-norm by ‖ · ‖A,
as above.

Lemma 1.3. Suppose that there is a constant s > 0 such that ω(x) ≥ s for all
x 6= e. Then ρL gives S(A) finite radius. (In particular, ρL does not take the
value +∞.)

Proof. Let f ∈ Cc(G), and assume that f(e) = 0. Let K be the constant in
the definition of “order-compatible”. Then

‖f‖A ≤ K‖f‖ ≤ K‖|f |‖ ≤ Ks−1‖ω|f |‖ = Ks−1L(f).

The desired conclusion then follows from proposition 2.2 of [40]. ¤

Documenta Mathematica 7 (2002) 605–651



Group C∗-Algebras 611

Lemma 1.4. Suppose that ω(x) = 0 only if x = e and that the function ω is
“proper”, in the sense that for any n the set {x ∈ G : ω(x) ≤ n} is finite (so, in
particular, there exists a constant s as in the above lemma). Then the topology
from the metric ρL on S(A) coincides with the weak-∗ topology. Thus L is a
Lip-norm.

Proof. We apply theorem 1.9 of [39]. As in that theorem, we set

B1 = {f ∈ Cc(G) : ‖f‖A ≤ 1 and L(f) ≤ 1}.
The theorem tells us that it suffices to show that B1 is totally bounded for
‖ · ‖A. So let ε > 0 be given. Adjust K if necessary so that K ≥ 1, and set

E = {x ∈ G : ω(x) ≤ 3K/ε}.
Then E is a finite set because ω is proper. Set AE = {f ∈ Cc(G) : f(x) =
0 for x /∈ E}, so that AE is a finite-dimensional subspace of Cc(G). In partic-
ular, AE ∩ B1 is totally bounded.

Let f ∈ B1. Then f = g + h where g ∈ AE and h(x) = 0 for x ∈ E. Now
|h| ≤ |f |, and ω(x) ≥ 3K/ε on the support of h, and so

‖h‖A ≤ K‖h‖ ≤ K‖|h|‖ ≤ K(ε/3K)‖ω|h|‖
≤ (ε/3)‖ω|f |‖ = (ε/3)L(f) ≤ ε/3.

Thus ‖f − g‖A = ‖h‖A ≤ ε/3. In particular, ‖g‖A ≤ 1 + (ε/3). Note also that
L(g) = ‖ω|g|‖ ≤ ‖ω|f |‖ = L(f) ≤ 1. Thus upon scaling g by (1 + ε/3)−1 if
necessary to obtain an element of B1, we see that f is within distance 2ε/3 of
B1 ∩ AE . Thus a finite subset of B1 ∩ AE which is ε/3 dense in B1 ∩ AE will
be ε-dense in B1. ¤

Lemma 1.5. Even without ω being proper, or satisfying the condition of Lemma
1.3, the seminorm L is lower semicontinuous (with respect to ‖ · ‖A).

Proof. Let {fn} be a sequence in Cc(G) which converges to g ∈ Cc(G) for
‖ · ‖A, and suppose that there is an r ∈ R such that L(fn) ≤ r for all n.
Now πfδ0 = f where on the right f is viewed as an element of `2 and δ0

is the “delta-function” at 0. Consequently ‖f‖A ≥ ‖f‖2 ≥ ‖f‖∞. Thus fn
converges uniformly on G to g. Let S denote the support of g, and let χS be
its characteristic function. Then the sequence ωχS |fn| converges uniformly to
ω|g|. But all norms on a finite-dimensional vector space are equivalent, and so
ωχS |fn| converges to ω|g| for ‖ · ‖. This says that L(χSfn) converges to L(g).
But L(χSfn) = ‖ωχSfn‖ ≤ L(f) ≤ r. Thus L(g) ≤ r. ¤

We combine the above lemmas to obtain:

Proposition 1.6. Let ω be a proper non-negative function on G such that
ω(x) = 0 exactly if x = e. Let ‖ · ‖ be an order-compatible norm on Cc(G), and
set

L(f) = ‖ω|f |‖
for f ∈ Cc(G). Then L is a lower semicontinuous Lip-norm on C∗r (G).
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We remark that when ω is a length function on G and when ‖ · ‖ = ‖ · ‖1,
it is well-known and easily seen that L satisfies the Leibniz rule with respect
to ‖ · ‖1, that is

L(f ∗ g) ≤ L(f)‖g‖1 + ‖f‖1L(g).

But there seems to be no reason why many of the above Lip-norms should
satisfy the Leibniz rule with respect to ‖ · ‖A. And it is not clear to me
what significance the Leibniz rule has for the metric properties which we are
examining.

2. Dirac operators from length functions

In this section we make various preliminary observations about the semi-
norms L which come from using length functions on a group as “Dirac” opera-
tors, as described in the introduction. We also reformulate our main question
as concrete questions concerning C∗r (G) itself.

We use the notation of the previous section, and we let M` denote the (usu-
ally unbounded) operator on `2(G) of pointwise multiplication by the length
function `. We recall from [11] why the commutators [M`, πf ] are bounded for

f ∈ Cc(G). Let y ∈ G and ξ ∈ `2(G). Then we quickly calculate that

([M`, πy]ξ)(x) = (`(x)− `(y−1x))ξ(y−1x)c(y, y−1x).

From the triangle inequality for ` we know that |`(x) − `(y−1x)| ≤ `(y), and
so ‖[M`, πy]‖ ≤ `(y). In fact, this observation indicates the basic property of `
which we need for the elementary part of our discussion, namely that, although
` is usually unbounded, it differs from any of its left translates by a bounded
function.

This suggests that we work in the more general context of functions having
just this latter property, as this may clarify some aspects. Additional motiva-
tion for doing this comes from the importance which Connes has demonstrated
for examining the effect of automorphisms of the C∗-algebra as gauge trans-
formations, and the resulting effect on the metric. In Connes’ approach the
inner automorphisms play a distinguished role, giving “internal fluctuations”
of the metric [9], [10] (called “internal perturbations” in [15]). However, in our
setting we usually do not have available the “first order” condition which is
crucial in Connes’ setting. We discuss this briefly at the end of this section.

Anyway, in our setting the algebra C∗r (G, c) has some special inner auto-
morphisms, namely those coming from the elements of G. The automorphism
corresponding to z ∈ G is implemented on `2(G) by conjugating by πz. When
this automorphism is composed with the representation, the effect is to change
D = M` to Mαz(`), where αz(`) denotes the left translate of ` by z. But αz(`)
need not again be a length function, although it is translation bounded. (In
order to try to clarify contexts, we will from now on systematically use α to de-
note ordinary left translation of functions, especially when those functions are
not to be viewed as being in `2(G). Our convention is that (αz`)(x) = `(z−1x).)
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We will make frequent use of the easily-verified commutation relation that

πyMh = Mαy(h)πy

for any function h on G and any y ∈ G, as long as the domains of definitions
of the product operators are respected. This commutation relation is what we
used above to obtain the stated fact about the effect of inner automorphisms.

In what follows we will only use real-valued functions to define our Dirac
operators, so that the latter are self-adjoint. But much of what follows gen-
eralizes easily to complex-valued functions, or to functions with values in C∗-
algebras such as Clifford algebras. These generalizations deserve exploration.

To formalize our discussion above we make:

Definition 2.1. We will say that a (possibly unbounded) real-valued function,
ω, on G is (left) translation-bounded if ω−αyω is a bounded function for every
y ∈ G. For y ∈ G we set ϕy = ω−αy(ω). So the context must make clear what
ω is used to define ϕ. For each y ∈ G we set `ω(y) = ‖ϕy‖∞.

Thus every length-function on G is translation-bounded. Any group ho-
momorphism from G into R is translation bounded. (E.g., the homomorphism
ω(n) = n from Z to R which is basically the Fourier transform of the usual
Dirac operator on T.) Linear combinations of translation-bounded functions
are translation bounded. In particular, the sum of a translation-bounded func-
tion with any bounded function is translation bounded. (As a more general
context one could consider any faithful unitary representation (π,H) of G to-
gether with an unbounded self-adjoint operator D on H such that D− πzDπ∗z
is densely defined and bounded for each z ∈ G, and D satisfies suitable non-
triviality conditions. Our later discussion will indicate why one may also want
to require that the (πzDπ

∗
z)’s all commute with each other.)

It is simple to check that the ϕy’s satisfy the 1-cocycle identity

(2.2) ϕyz = ϕy + αy(ϕz).

We will make use of this relation a number of times. This type of relation occurs
in various places in the literature in connection with dynamical systems.

Simple calculations show that `ω satisfies the axioms for a length function
except that we may have `ω(x) = 0 for some x 6= e. Notice also that if ω is
already a length function, then `ω = ω. We also remark that in general we can
always add a constant function to ω without changing the corresponding ϕy’s,
`ω, or the commutators [M`, πy]. In particular, we can always adjust ω in this
way so that ω(e) = 0 if desired.

We now fix a translation-bounded function, ω, on G, and we consider the
operator, Mω, of pointwise multiplication on `2(G). It is self-adjoint. We use
it as a “Dirac operator”. The calculation done earlier becomes

[Mω, πy] = Mϕyπy.

From this we see that for each y ∈ G we have

‖[Mω, πy]‖ = `ω(y).
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For any f ∈ Cc(G) we have

[Mω, πf ] = Σf(y)Mϕyπy,

and consequently we have

‖[Mω, πf ]‖ ≤ ‖`ωf‖1,
where `ωf denotes the pointwise product. We set

Lω(f) = ‖[Mω, πf ]‖.
Then Lω is a seminorm on Cc(G) ⊆ C∗r (G, c), and Lω is lower semicontinuous
by proposition 3.7 of [40]. A calculation above tells us that Lω(δx) = `ω(x)
for all x ∈ G. In particular, Lω(δe) = 0, with δe the identity element of the
convolution algebra Cc(G).

If we view δz as the usual basis element at z for `2(G), then for any
f ∈ Cc(G) we have

[Mω, πf ]δz = Σf(y)Mϕyc(y, z)δyz

for each z. From this we easily obtain:

Proposition 2.3. Let f ∈ Cc(G). Then Lω(f) = 0 exactly if ϕy = 0 for
each y in the support of f , that is, exactly if `ωf = 0. Thus if `ω(x) > 0 for
all x 6= e, then Lω is a Lipschitz seminorm in the sense that its null space is
spanned by δe.

We would like to know when Lω is a Lip-norm. Of course, Lω defines, as
earlier, a metric on the state space S(C∗r (G, c)), which may take value +∞.
We denote this metric by ρω. As a first step, we would like to know whether ρω
gives S(C∗r (G, c)) finite radius. We recall from proposition 2.2 of [40] that this
will be the case if there is an r ∈ R such that ‖f‖∼ ≤ rL(f) for all f ∈ Cc(G),
where ‖f‖∼ = inf{‖f − αδe‖ : α ∈ C}. Officially speaking we should work
with self-adjoint f ’s, but by the comments before definition 2.1 of [41] we do
not need to make this restriction because clearly Lω(f∗) = Lω(f) for each f .
However we find it convenient to use the following alternative criterion for finite
radius, which is natural in our situation because we have a canonical tracial
state:

Proposition 2.4. Let L be a Lipschitz seminorm on an order-unit space A,
and let µ be a state of A. If the metric ρL from L gives S(A) finite radius r,
then ‖a‖ ≤ 2rL(a) for all a ∈ A such that µ(a) = 0. Conversely, if there is a
constant k such that

‖a‖ ≤ kL(a)

for all a ∈ A such that µ(a) = 0, then ρL gives S(A) radius no greater than k.

Proof. Suppose the latter condition holds. For any given a ∈ A set b = a −
µ(a)e. (Here e is the order-unit.) Then µ(b) = 0, and so ‖a− µ(a)e‖ ≤ kL(a).
It follows that ‖a‖∼ ≤ kL(a), so that the ρL-radius of S(A) is no greater than
k.
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Suppose conversely that ‖a‖∼ ≤ rL(a) for all a. Let a ∈ A with µ(a) = 0.
There is a t ∈ R such that ‖a− te‖ ≤ rL(a). Then

|t| = |µ(a)− t| = |µ(a− te)| ≤ ‖a− te‖ ≤ rL(a).

Thus
‖a‖ ≤ ‖a− te‖+ ‖te‖ ≤ 2rL(a).

So for k = 2r we have ‖a‖ ≤ kL(a) if µ(a) = 0. ¤

We see that the constant k is not precisely related to the radius. But for
our twisted group algebras there is a very natural state to use, namely the
tracial state τ defined by τ(f) = f(e), which is the vector state for δe ∈ `2(G).

Suppose now that ρω gives S(C∗r (G, c)) finite radius, so that as above, if
τ(f) = 0 then ‖π(f)‖ ≤ 2rL(f). Let x ∈ G with x 6= e. Then τ(δx) = 0, and
so

1 = ‖π(δx)‖ ≤ 2rLω(δx) = 2r`ω(x).

We thus obtain:

Proposition 2.5. If ρω gives S(C∗r (G, c)) finite radius r, then `ω(x) ≥ (2r)−1

for all x 6= e.

Thus, for example, if θ is an irrational number, then neither the (un-
bounded) length function ` defined on Z2 by `(m,n) = |m + nθ|, nor the
homomorphism ω(m,n) = m + nθ, will give metrics for which S(C∗(Z2)) has
finite radius.

But the condition of Proposition 2.5 is not at all sufficient for finite radius.
For example, for any G we can define a length function ` by `(x) = 1 if x 6= e.
Then it is easily checked that if f = f ∗ then

L`(f) = ‖f − τ(f)δe‖2.
If L` gives S(C∗(G)) finite radius, so that there is a constant k such that
‖πf‖ ≤ kL`(f) if f(e) = 0, then it follows that ‖πf‖ ≤ 2k‖f‖2 when f(e) = 0.
Since for any f we have |f(e)| ≤ ‖f‖2, it follows that ‖πf‖ ≤ (2k + 1)‖f‖2, so
that for any g ∈ Cc(G) we have

‖f ∗ g‖2 ≤ (2k + 1)‖f‖2‖g‖2.
This quickly says that the norm on `2(G) can be normalized so that `2(G)
forms an H∗-algebra, as defined in section 27 of [34]. But our algebra is unital,
and the theory of H∗-algebra in [34] shows that G must then have finite-
dimensional square-integrable unitary representations. But Weil pointed out
on page 70 of [46] that this means that G is compact (so finite), because if
x → Ux is the unitary matrix representation for a finite-dimensional square
integrable representation, then the matrix coefficients of

x 7→ I = UxU
∗
x

are integrable.
But beyond these elementary comments it is not clear to me what happens

even for word-length functions. Thus we have the basic:
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Question 2.6. For which finitely generated groups G with cocycle c does the
word-length function ` corresponding to a finite generating subset give a metric
ρ` which gives S(C∗r (G, c)) finite diameter? That is, when is there a constant,
k, such that if f ∈ Cc(G) and f(e) = 0 then

‖π(f)‖ ≤ k‖[M`, π(f)]‖?
(Is the answer independent of the choice of the generating set?)

I do not know the answer to this question when the cocycle c is trivial
and, for example, G is the discrete Heisenberg group, or the free group on two
generators. In later sections we will obtain some positive answers for G = Zd,
but even that case does not seem easy.

Even less do I know answers to the basic:

Question 2.7. For which finitely generated groups G with 2-cocycle c does the
word-length function ` corresponding to a finite generating subset give a metric
ρ` which gives S(C∗r (G, c)) the weak-∗ topology. That is [39], given that ρ` does
give S(C∗r (G, c)) finite diameter, when is

B1 = {f ∈ Cc(G) : ‖πf‖ ≤ 1 and L`(f) ≤ 1}
a totally-bounded subset of C∗r (G)?

But we now make some elementary observations about this second ques-
tion.

Proposition 2.8. Let L be a Lip-norm on an order-unit space A. If L is
continuous for the norm on A, then A is finite-dimensional.

Proof. Much as just above we set

B1 = {a ∈ A : ‖α‖ ≤ 1 and L(a) ≤ 1}.
Since L is a Lip-norm, B1 is totally bounded by theorem 1.9 of [39]. But if L
is also norm-continuous, then there is a constant k ≥ 1 such that L(a) ≤ k‖a‖
for all a ∈ A. Consequently {a : ‖a‖ ≤ k−1} ⊆ B1. It follows that the unit
ball for the norm is totally bounded, and so the unit ball in the completion of
A is compact. But it is well-known that the unit ball in a Banach space is not
norm-compact unless the Banach space is finite-dimensional. ¤

Corollary 2.9. Let A be an order-unit space which is represented faithfully
as operators on a Hilbert space H. Let D be a self-adjoint operator on H, and
set L(a) = ‖[D, a]‖. Assume that L is (finite and) a Lip-norm on A. If D is a
bounded operator, then A is finite-dimensional.

From this we see that in our setting of D = Mω for C∗r (G, c), if we want Lω

to be a Lip-norm, then we must use unbounded ω’s unless G is finite. But it is
not clear to me whether ω must always be a proper function, that is, whether
{x : |ω(x)| ≤ k} must be finite for every k. However, the referee has pointed
out to me that if ω is actually a length function, then ω must be proper if Lω

is to be a Lip-norm. For if it is not proper, then there is a constant, r, with
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0 < r ≤ 1, such that S = {x : ω(x) ≤ r−1} is infinite. But if ω is a length
function then L(δx) = ω(x). Thus {rδx : x ∈ S} is a norm-discrete subset of

B1 = {f ∈ Cc(G) : ‖f‖A ≤ 1 and L(f) ≤ 1},

so that B1 can not be totally bounded. (See the first three sentences of the
proof of Lemma 1.4.)

Finally, we will examine briefly three of Connes’ axioms for a non-
commutative Riemannian geometry [15]. We begin first with the axiom of
“reality” (axiom 7′ on page 163 of [15] and condition 4 on page 483 of [23]).
For any C∗-algebra A with trace τ there is a natural and well-known “charge-
conjugation” operator, J , on the GNS Hilbert space for τ , determined by
Ja = a∗. We are in that setting, and so our J is given by

(Jξ)(x) = ξ̄(x−1)

for ξ ∈ `2(G). For any f ∈ Cc(G) one checks that JπfJ is the operator of right-
convolution by f∗, where f∗(x) = f̄(x−1). In particular, JπfJ will commute
with any πg for g ∈ Cc(G). This means exactly that the axiom of reality is
true if one considers our geometry to have dimension 0.

With the axiom of reality in place, Connes requires that D be a “first-order
operator” (axiom 2′ of [15], or condition 5 on page 484 of [23], where the ter-
minology “first order” is used). This axiom requires that [D, a] commutes with
JbJ for all a, b ∈ A. For our situation, let ρz denote right c-twisted translation
on `2(G) by z ∈ G, so that Jπ∗zJ = ρz. Then in terms of the notation we have
established, the first-order condition requires that ρz commutes with Mϕy for
each z and y. This implies that for each x ∈ G we have

ω(x)− ω(y−1x) = ω(xz)− ω(y−1xz).

If we choose z = x−1 and rearrange, we obtain

ω(x) + ω(y−1) = ω(y−1x) + ω(e).

This says that if we subtract the constant function ω(e), then ω is a group
homomorphism from G into R. Thus the first-order condition is rarely satisfied
in our context. In fact, if we want ω to give S(C∗r (G)) finite radius then it
follows from Proposition 2.5 that G ∼= Z or is finite.

Lastly, we consider the axiom of smoothness (axiom 3 on page 159 of [15],
or condition 2 on page 482 of [23], where it is called “regularity” rather than
“smoothness”). This requires that a and [D, a] are in the domains of all powers
of the derivation T 7→ [|D|, T ]. In our context |D| = M|ω|. But

||ω(x)| − |ω(z−1x)|| ≤ |ω(x)− ω(z−1x)|,

so that |ω| is translation-bounded when ω is. From this it is easily seen that
the axiom of smoothness is always satisfied in our setting.
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3. The cosphere algebra

We now begin to establish some constructions which will permit us to
obtain positive answers to Questions 2.6 and 2.7 for the groups Zd, and which
may eventually be helpful in dealing with other groups.

Connes has shown (section 6 of [13], [22]) how to construct for each spectral
triple (A,H, D) a certain C∗-algebra, denoted S∗A. He shows that if A =
C∞(M) where M is a compact Riemannian spin manifold, and if (H, D) is
the corresponding Dirac operator, then S∗A is canonically isomorphic to the
algebra of continuous functions on the unit cosphere bundle ofM. Thus in the
general case it seems reasonable to call S∗A the cosphere algebra of (A,H, D).
(In [22] S∗A is called the “unitary cotangent bundle”.) In this section we will
explore what this cosphere algebra is for our (almost) spectral triples of form
(Cc(G), `2(G),Mω). (I thank Pierre Julg for helpful comments about this at
an early stage of this project.)

We now review the general construction. But for our purposes we do
not need the usual further hypothesis of finite summability for D. Thus we
just require that we have (A,H, D) such that [D, a] is bounded for all a ∈ A.
But, following Connes, we also make the smoothness requirement that [|D|, a]
be bounded for all a ∈ A. We saw in the previous section that this latter
condition is always satisfied in our setting where D = Mω.

Connes’ construction of the algebra S∗A is as follows. (See also the intro-
duction of [22].) Form the strongly continuous one-parameter unitary group
Ut = exp(it|D|). Let CD be the C∗-algebra of operators on H generated by the
algebra K of compact operators on H together with all of the algebras UtAU−t
for t ∈ R. (Note that usually UtAU−t 6⊆ A.) Clearly the action of conjugating
by Ut carries CD into itself. We denote this action of R on CD by η. Because of
the requirement that [|D|, a] be bounded, the action η is strongly continuous
on CD. (See the first line of the proof of corollary 10.16 of [23].) Since K is an
ideal (η-invariant) in CD, we can form CD/K. Then by definition S∗A = CD/K.
The action η drops to an action of R on S∗A, which Connes calls the “geodesic
flow”.

We now work out what the above says for our case in which we have
(C∗r (G, c), `2(G),Mω). We will write Cω instead of CD. Since only |ω| is perti-
nent, we assume for a while that ω ≥ 0. Set ut(x) = exp(itω(x)) for t ∈ R, so
that the Ut of the above construction becomes Mut . Then for each y ∈ G our
algebra Cω, defined as above, must contain

UtπyU
∗
t = MutMαy(u∗t )πy = Mutαy(u∗t )πy.

But Cω must also contain (πy)−1, and thus it contains each utαy(u∗t ), where
for notational simplicity we omit M . But

(utαy(u∗t ))(x) = exp(it(ω(x)− ω(y−1x))) = exp(itϕy(x)).

Since ϕy is bounded, the derivative of Utαy(U∗t ) at t = 0 will be the norm-limit
of the difference quotients. Thus we see that also ϕy ∈ Cω for each y ∈ G.
But Cω ⊇ K, and so Cω ⊇ C∞(G), the space of continuous functions vanishing
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at infinity, where the elements of C∞(G) are here viewed as multiplication
operators. Note also that Cω contains the identity element.

All of this suggests that we consider, inside the algebra Cb(G) of bounded
functions on G, the unital norm-closed subalgebra generated by C∞(G) to-
gether with {ϕy : y ∈ G}. We denote this subalgebra by Eω. Let Ḡω denote
the maximal ideal space of Eω, with its compact topology, so that Eω = C(Ḡω).
Note that G sits in Ḡω as a dense open subset because Eω ⊇ C∞(G). That
is, Ḡω is a compactification of the discrete set G. We will call it the ω-
compactification of G. Note that C(Ḡω) is separable because G is countable
and so there is only a countable number of ϕy’s. Thus the compact topology
of Ḡω has a countable base.

The action α of G on Cb(G) by left translation clearly carries Eω into
itself. From this we obtain an induced action on Ḡω by homeomorphisms. We
denote this action again by α.

Of course C(Ḡω) is faithfully represented as an algebra of pointwise mul-
tiplication operators on `2(G). This representation, M , together with the
representation π of G on `2(G) form a covariant representation [35], [47] of
(C(Ḡω), G, α, c). We have already seen earlier several instances of the covari-
ance relation πxMf = Mαx(f)πx. The integrated form of this covariant repre-

sentation, which we denote again by π, gives then a representation on `2(G) of
the full twisted crossed product algebra C∗(G,C(Ḡω), α, c). It is clear from the
above discussion that our algebra Cω contains π(C∗(G,C(Ḡω), α, c)). But for
any y ∈ G and t ∈ R we have exp(itϕy) ∈ C(Ḡω). From our earlier calculation
this means that π(C∗(G,C(Ḡω), α, c)) contains UtπyU

∗
t . Thus it also contains

Utπ(Cc(G))U∗t . Consequently:

Lemma 3.1. We have Cω = π(C∗(G,C(Ḡω), α, c)).

Now C(Ḡω) contains C∞(G) as an α-invariant ideal. The following fact
must be known, but I have not found a reference for it.

Lemma 3.2. With notation as above,

C∗(G,C∞(G), α, c) ∼= K(`2(G)),

the algebra of compact operator on `2(G), with the isomorphism given by π.

Proof. If we view elements of Cc(G,C∞(G)) as functions on G×G, and if for
f ∈ Cc(G,C∞(G)) we set (Φf)(x, y) = f(x, y)c(x, x−1y), then

Φ(f ∗c g) = (Φf) ∗ (Φg),

where only here we let ∗c denote convolution (in the crossed product) twisted
by c, while ∗ denotes ordinary convolution. The verification requires using the
2-cocycle identity to see that

c(y, y−1z)c(y−1x, x−1z) = c(y, y−1x)c(x, x−1z).

The untwisted crossed product C∞(G) ×α G is well-known to be carried onto
K(`2(G)) by π. (See [37].) (For non-discrete groups one must be more careful,
because cocycles are often only measurable, not continuous.) ¤

Documenta Mathematica 7 (2002) 605–651



620 Marc A. Rieffel

Because K(`2(G)) is simple, it follows that the reduced C∗-algebra
C∗r (G,C∞(G), α, c) coincides with the full twisted crossed product, even when
G is not amenable. Anyway, the consequence of this discussion is:

Proposition 3.3. With notation as above, the cosphere algebra is

S∗A = π(C∗(G,C(Ḡω), α, c))/K(`2(G)).

For an element of π(C∗(G,C(Ḡω), α, c) it is probably appropriate to call its
image in S∗A its “symbol”, in analogy with the situation for pseudodifferential
operators.

We can use recently-developed technology to obtain a simpler picture in
those cases in which the action α of G on Ḡω is amenable [1], [3], [2], [26], [25].
This action will always be amenable if G itself is amenable, which will be the
case when we consider Zd in detail later. So the following comments will only
be needed there for that case. But we will see in Section 10 that the action can
be amenable also in some situations for which G is not amenable, namely for
the free group on two generators and its standard word-length function.

Let ∂ωG = Ḡω \ G. It is reasonable to call ∂ωG the “ω-boundary” of G.
Notice that α carries ∂ωG into itself. Suppose that the action α of G on ∂ωG
is amenable [2], [3]. One of the equivalent conditions for amenability of α (for
discrete G) is that the quotient map from C∗(G,C(∂ωG)) onto C∗r (G,C(∂ωG))
is an isomorphism (theorem 4.8 of [1] or theorem 3.4 of [2]). (No cocycle c is
involved here.) In proposition 2.4 of [31] it is shown that for situations like this
the amenability of the action on ∂ωG is equivalent to amenability of the action
on Ḡω. (I thank Claire Anantharaman–Delaroche for bringing this reference
to my attention, and I thank both her and Jean Renault for helpful comments
on related matters.) The proof in [31] uses the characterization of amenability
of the action in terms of nuclearity of the crossed product. Here is another
argument which does not use nuclearity. Following remark 4.10 of [36], we
consider the exact sequence of full crossed products

0→ C∗(G,C∞(G), α)→ C∗(G,C(Ḡω), α)→ C∗(G,C(∂ωG), α)→ 0

and its surjective maps onto the corresponding sequence of reduced crossed
products (which initially is not known to be exact). A simple diagram-chase
shows that if the quotient map onto C∗r (G,C(∂ωG), α) is in fact an isomor-
phism, then the sequence of reduced crossed products is in fact exact. Also,
as discussed above, C∗(G,C∞(G), α) is the algebra of compact operators, so
simple, and so the quotient map from it must be an isomorphism. A second
simple diagram-chase then shows that the quotient map from C∗(G,C(Ḡω), α)
must be an isomorphism, so that the action α of G on Ḡω is amenable. (The
verification that if the action on Ḡω is amenable then so is that on ∂ωG follows
swiftly from the equivalent definition of amenability in terms of maps whose
values are probability measures on G. This definition is given further below
and in example 2.2.14(2) of [3].)

For our general functions ω it is probably not reasonable to hope to find
a nice criterion for amenability of the action. But in the case in which ω is a
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length-function ` (in which case we write ∂`G instead of ∂ωG), we will obtain
in the next sections considerable information about ∂`G, and so it is reasonable
to pose:

Question 3.4. Let G be a finitely generated group, and let ` be the word-length
function for some finite set of generators. Under what conditions will the action
of G on ∂`G be amenable? For which class of groups will there exist a finite
set of generators for which the action is amenable? For which class of groups
will this amenability be independent of the choice of generators?

It is known that if G is a word-hyperbolic group, then its action on its
Gromov boundary is amenable. See the appendix of [3], written by E. Germain,
and the references given there. We would have a positive answer to Question
3.4 for word-hyperbolic groups if we had a positive answer to:

Question 3.5. Is it the case that for any word-hyperbolic group G and any
word-length function on G for a finite generating set, there is an equivariant
continuous surjection from ∂`G onto the Gromov boundary of G?

This seems plausible in view of our discussion of geodesic rays in the next
section, since the Gromov boundary considers geodesic rays which stay a finite
distance from each other to be equivalent.

We now explore briefly the consequences of the action being amenable.
The first consequence is that the full and reduced twisted crossed products
coincide. We have discussed the case of a trivial cocycle c above. I have not
seen the twisted case stated in the literature, but it follows easily from what
is now known. We outline the proof. To every 2-cocycle there is associated an
extension, E, of G by T. As a topological space E = T × G, and the product
is given by (s, x)(t, y) = (stc(x, y), xy). (See III.5.12 of [20].) We can compose
the evident map from E onto G with α to obtain an action, α, of E on Ḡω.
Let W be any compact space on which G acts, with the action denoted by α.
If α is amenable, then by definition (example 2.2.14(2) of [3], [2], [26], [25])
there is a sequence {mj} of weak-∗ continuous maps from W into the space
of probability measures on G such that, for α denoting also the corresponding
action on probability measures, we have for every x ∈ G

lim
j

sup
w∈W

‖αx(mj(w))−mj(αx(w))‖1 = 0.

Let h denote normalized Haar measure on T, and for each j and each w ∈ W
let nj(w) be the product measure h ⊗ mj(w) on E. Thus each nj(w) is a
probability measure on E. It is easily verified that the function w 7→ nj(w) is
weak-∗ continuous. Furthermore, a straight-forward calculation shows that

α(s,x)(nj) = h⊗ αx(mj)

for each (s, x) ∈ E and each j. Now E is not discrete. But from this cal-
culation it is easily seen that the action of E on W is amenable, where now
we use definition 2.1 of [2]. Then from theorem 3.4 of [2] (which is a special
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case of proposition 6.1.8 of [3]), it follows that C∗(E,C(W ), α) coincides with
C∗r (E,C(W ), α).

Now let p be the function on T defined by p(t) = exp(2πit), where here
we identify T with R/Z. Since T is an open subgroup of E, we can view
p as a function on E by giving it value 0 off of T. Since T is central in
E, and α is trivial on T, and C(W ) is unital, it follows that p is a central
projection in C∗(E,C(W ), α). From this it follows that the cut-down algebras
pC∗(E,C(W ), α) and pC∗r (E,C(W ), α) coincide. But it is easily seen (see
page 84 of [18] or page 144 of [19]) that pC∗(E,C(W ), α) = C∗(G,C(W ), α, c),
and similarly for C∗r . In this way we obtain:

Proposition 3.6. Let G be a discrete group, let α be an action of G on a
compact space W , and let c be a 2-cocycle on G. If the action α is amenable,
then C∗(G,C(W ), α, c) coincides with C∗r (G,C(W ), α, c).

With some additional care the above proposition can be extended to the
case in which W is only locally compact. In that case the projection p is only
in the multiplier algebras of the twisted crossed products.

We now return to the case in which G acts on Ḡω and ∂ωG. From
the above proposition it follows that if G acts amenably on ∂ωG, and so on
Ḡω, then we can view π as a representation of the reduced crossed product
C∗r (G,C(Ḡω), α, c). This has the benefit that we can apply corollary 4.19 of
[47] to conclude that π is a faithful representation of C∗r (G,C(Ḡω), α, c). The
hypotheses of this corollary 4.19 are that M be a faithful representation of
C(Ḡω), which is clearly true, and that M be G-almost free (definition 1.12 of
[47]). This latter means that for any non-zero subrepresentation N of M and
any x ∈ G with x 6= e there is a non-zero subrepresentation P of N whose
composition with the inner automorphism from x is disjoint from P . But sub-
representations of M correspond to non-empty subsets of G, and for P we can
take any one-point subset of a given subset. Thus our algebra Cω coincides
(under π) with C∗(G,C(Ḡω), α, c).

Now from Lemma 3.2 we know that C∗(G,C∞(G), α, c) coincides with
K(`2(G)), and the process of forming full twisted crossed products preserves
short exact sequences. (See the top of page 149 of [47].) Thus from Proposition
3.3, and on removing our requirement that ω ≥ 0, we obtain:

Theorem 3.7. Let ω be a translation bounded function on G such that the
action of G on ∂|ω|G is amenable. Then the cosphere algebra S∗ωA for

(C∗r (G, c), `2(G),Mω) is (naturally identified with)

S∗ωA = C∗(G,C(∂ωG), α, c) = C∗r (G,C(∂ωG), α, c).

4. The metric compactification

The purpose of this section is to show that when ω is a length-function
on G then geodesic rays in G for the metric on G from ω give points in the
compactification Ḡω. This will be a crucial tool for us in dealing with Zd, since
it will supply us with a sufficient collection of points in the boundary which have
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finite orbits. We will also see that Ḡω is then a special case of a compactification
of complete locally compact metric spaces introduced by Gromov [24] some
time ago. (This is probably related to the comment which Connes makes
about nilpotent groups in the second paragraph after the end of the proof of
proposition 2 of section 6 of [14].) Gromov’s definition appears fairly different
from that which we gave in the previous section, and so our treatment here
can also be viewed as showing how to define Gromov’s compactification as the
maximal ideal space of a unital commutative C∗-algebra. We will refrain from
using here the terms “Gromov compactification” and “Gromov boundary”,
since these terms seem already reserved in the literature for use with hyperbolic
spaces, where they have a different meaning and give objects which depend only
on the coarse quasi-isometry class of the metric. (See IIIH3 of [6].) We will
instead use the terms “metric compactification” and “metric boundary”, and
our notation will often show the dependence on the metric. We will see in
Example 5.2 that for a hyperbolic metric space the metric boundary and the
Gromov boundary can fail to be homeomorphic.

Let (X, ρ) be a metric space, and let Cb(X) denote the algebra of con-
tinuous bounded functions on X, equipped with the supremum norm ‖ · ‖∞.
Motivated by the observations in the previous section, we define ϕy,z on X for
y, z ∈ X by

ϕy,z(x) = ρ(x, y)− ρ(x, z).

Then the triangle inequality tells us that ‖ϕy,z‖∞ ≤ ρ(y, z), so that ϕy,z ∈
Cb(X). But on setting x = z we see that, in fact, ‖ϕy,z‖∞ = ρ(y, z). Let Hρ

denote the linear span in Cb(X) of {ϕy,z : y, z ∈ X}. Suppose that we fix some
base point z0 ∈ X. Then it is easily checked that ϕy,z = ϕz0,z − ϕz0,y. Thus
Hρ is equally well the linear span of {ϕz0,y : y ∈ X}, but is independent of the
choice of z0. (It will be useful to us that we can change base-points at will.) We
often find it convenient to fix z0, and to set ϕy = ϕz0,y, so that Hρ is the linear
span of the ϕy’s. When X is a group, it is natural to choose z0 = e. We were
implicitly doing this in the previous section. We note that ‖ϕy‖∞ = ρ(y, z0).

Much as above, we have ϕy −ϕz = ϕz,y, and so ‖ϕy −ϕz‖∞ = ‖ϕz,y‖∞ =
ρ(y, z). Thus the mapping y 7→ ϕy is an isometry from (X, ρ) into Cb(X). The
latter space is complete, and so this isometry extends to the completion of X.

We desire to obtain a compactification of X to which all of the functions
ϕy extend as continuous functions. We want X to be an open subset of the
compactification, and so we must require that X is locally compact. Then
the various compactifications of X in which X is open are just the maximal-
ideal spaces of the various unital closed *-subalgebras of Cb(X) which contain
C∞(X). Thus we set:

Definition 4.1. Let (X, ρ) be a metric space whose topology is locally com-
pact. Let G(X, ρ) be the norm-closed subalgebra of Cb(X) which is generated
by C∞(X), the constant functions, and Hρ. Let X̄ρ denote the maximal ideal
space of G(X, ρ). We call X̄ρ the metric compactification of X for ρ.
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Then, essentially by construction, X̄ρ is a compactification of X (within
which X is open). We remark that if, instead, we take the norm-closed subal-
gebra of Cb(X) generated by all of the bounded Lipschitz functions, then we
obtain the algebra of all bounded uniformly continuous (for ρ) functions on X.
(See the bottom of page 23 of [45].)

It is natural to think of Xρ\X as a boundary at infinity for X. But
from a metric standpoint this is not always reasonable. Suppose that X is not
complete. Each of the functions ϕy is a Lipschitz function, and so extends to

the completion X̂ρ of X. Each f ∈ C∞(X) extends continuously to X̂ρ by

setting it equal to 0 off X. The constant functions obviously extend to X̂ρ.
Thus the algebraic algebra generated by Hρ, C∞(X) and the constant functions

extends to an algebra of functions on X̂ρ, and the supremum norm is preserved
under this extension. Thus our completed algebra G(X, ρ) can be viewed as a

unital subalgebra of Cb(X̂
ρ). It is easily seen that this algebra separates the

points of X̂ρ. (E.g., use the fact that ρ extends to the completion.) Thus we

obtain a (continuous) injection of X̂ρ into X̄ρ. But there is no reason that X̂ρ

should be open in X̄ρ, notably if the completion is not locally compact. Even
if X̂ρ is locally compact, the points of X̂ρ\X will all be of finite distance from
the points of X, and so are not “at infinity”. For this reason it seems best to
define the “boundary” only for complete locally compact metric spaces. Thus
we make:

Definition 4.2. Let (X, ρ) be a metric space which is complete and locally
compact. Then its metric boundary is X̄ρ\X. We will denote the metric
boundary by ∂ρX.

We now show that the metric compactification and the metric boundary
which we have defined above coincide with those constructed by Gromov [24]
in a somewhat different way. Gromov proceeds as follows. (See also 3.1 of [5],
II.1 of [4] and II.8.12 of [6].) Let (X, ρ) be a complete locally compact metric
space, let C(X) denote the vector space of all continuous (possibly unbounded)
functions on X, and equip X with the topology of uniform convergence on
compact subsets of X. Let C∗(X) denote the quotient of C(X) by the subspace
of constant functions, with the quotient topology. For f ∈ C(X) denote its
image in C∗(X) by f̄ . For y ∈ X set ψy(x) = ρ(x, y). Then x 7→ ψx is an
embedding of X into C(X). Let ι denote the corresponding embedding of X
into C∗(X), and let C`(X) be the closure of ι(X) in C∗(X). Then C`(X) can
be shown to be compact, and ι(X) can be shown to be open in C`(X), so that
C`(X)\X is a boundary at infinity for X.

We now explain the relationship between this construction of Gromov and
our construction given earlier in this section. Fix a base point z0. For any given
u ∈ X̄ρ define the function gu by gu(x) = −ϕx(u), where ϕx is now viewed as
a function on X̄ρ. If u ∈ X then gu(x) = ρ(u, x) − ρ(u, z0). Since ρ(u, z0) is
constant in x, the image of gu in C∗(X) is exactly Gromov’s ι(u). On the other
hand, suppose that u ∈ ∂ρX. Because X is dense in X̄ρ, there is a net {yα} of
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elements of X which converges to u. Then for each x ∈ X we have

gu(x) = −ϕx(u) = − limϕx(yα) = lim gyα(x).

That is, gyα converges to gu pointwise on X. But each gy for y ∈ X is clearly
a Lipschitz function of Lipschitz constant 1, and pointwise convergence of a
net of functions of bounded Lipschitz constant implies uniform convergence
on compact sets. Thus gyα converges uniformly to gu on compact subsets of
X, so that ḡu ∈ C`(X). (In the literature cited above, gu would be called a
horofunction if u ∈ ∂ρX.) In this way we obtain a mapping, u 7→ ḡu, from X̄ρ

to C`(X). If ḡu = ḡv for some u, v ∈ X̄ρ, then there is a constant, k, such that
ϕx(u) = ϕx(v) + k for all x ∈ X. From this it is easily seen that u = v. Thus
the mapping u 7→ ḡu is injective on X̄ρ. Finally, if {uα} is a net in X̄ρ which
converges to u ∈ X̄ρ, then, much as above, guα converges to gu pointwise,
and so uniformly on compact sets. Thus the mapping u 7→ ḡu is continuous
from X̄ρ into C`(X). Since X̄ρ is compact, it follows that this mapping is a
homeomorphism onto its image. But the image of X in C`(X) is dense, and so
the mapping is a homeomorphism from X̄ρ onto C`(X), and so from ∂ρX to
C`(X)\X, as desired.

For our later purposes it is important for us to examine the relationship be-
tween geodesics and points of ∂ρX. Much of the content of the next paragraphs
appears in some form in various places in the literature [5], [4], [6], though usu-
ally not in the generality we consider here. And here we reformulate it in terms
of our approach to the construction of ∂ρX.

We will not assume that our metric spaces are connected. For example,
we will later consider Zd with its Euclidean metric from Rd. Every ray (half-
line) in Rd should give a direction toward infinity for Zd. But if the direction
involves irrational angles, the ray may not meet Zd at an infinite number of
points. So we need a slight generalization of geodesic rays. For perspective we
also include a yet weaker definition.

Definition 4.3. Let (X, ρ) be a metric space, let T be an unbounded subset of
R+ which contains 0, and let γ be a function from T into X. We will say that:

a) γ is a geodesic ray if ρ(γ(t), γ(s)) = |t− s| for all t, s ∈ T .
b) γ is an almost-geodesic ray if it satisfies the condition:

For every ε > 0 there is an integer N such that if t, s ∈ T and
t ≥ s ≥ N , then

|ρ(γ(t), γ(s)) + ρ(γ(s), γ(0))− t| < ε.

c) γ is a weakly-geodesic ray if for every y ∈ X and every ε > 0 there is
an integer N such that if s, t ≥ N then

|ρ(γ(t), γ(0))− t| < ε

and

|ρ(γ(t), y)− ρ(γ(s), y)− (t− s)| < ε.
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It is evident that any geodesic ray is an almost-geodesic ray. (I thank
Simon Wadsley for pointing out to me that my definition of weakly-geodesic
rays in the first version of this paper was defective.)

Lemma 4.4. Let γ be an almost-geodesic ray, and let (ε,N) be as in Definition
4.3b. Then for t ≥ s ≥ N we have:

a) |ρ(γ(t), γ(0))− t| < ε.
b) |ρ(γ(t), γ(s))− (t− s)| < 2ε.
c) ρ(γ(t), γ(s)) < ρ(γ(t), γ(0))− ρ(γ(s), γ(0)) + 2ε.

Proof. For a) set s = t in the condition of Definition 4.3b. For b) we have

|ρ(γ(t)), γ(s))− (t− s)|
= |(ρ(γ(t), γ(s)) + ρ(γ(s), γ(0))− t)− (ρ(γ(s), γ(0))− s)| < 2ε.

Finally, for c) we have

ρ(γ(t), γ(s))

= (ρ(γ(t), γ(s)) + ρ(γ(s), γ(0))− t)− ρ(γ(s), γ(0))

+ρ(γ(t), γ(0))− (ρ(γ(t), γ(0))− t)
< ρ(γ(t), γ(0))− ρ(γ(s), γ(0)) + 2ε.

¤
Lemma 4.5. Any almost-geodesic ray is weakly geodesic. Let γ be a weakly-
geodesic ray. Take γ(0) as the base-point for defining ϕy for any y ∈ X. Then
limt→∞ ϕy(γ(t)) exists for every y ∈ X. If γ is actually a geodesic ray, then
t 7→ ϕy(γ(t)) is a non-decreasing (bounded) function.

Proof. To motivate the rest of the proof, suppose first that γ is a geodesic ray.
We show that t 7→ ϕy(γ(t)) is a non-decreasing function (so has a limit). For
t ≥ s we have

ϕy(γ(t)) − ϕy(γ(s))

= ρ(γ(t), γ(0))− ρ(γ(t), y)− ρ(γ(s), γ(0)) + ρ(γ(s), y)

= t− s+ ρ(γ(s), y)− ρ(γ(t), y)

= ρ(γ(t), γ(s)) + ρ(γ(s), y)− ρ(γ(t), y) ≥ 0

by the triangle inequality.
Next, let γ be an almost-geodesic ray. It is useful and instructive to first

see why limt→∞ ϕy(γ(t)) exists. Given ε > 0, take N as in Definition 4.3b. We
will show first that if t ≥ s ≥ N then ϕy(γ(t)) > ϕy(γ(s))− 3ε. In fact,

ϕy(γ(t)) − ϕy(γ(s))

= ρ(γ(t), γ(0))− ρ(γ(t), y)− ρ(γ(s), γ(0)) + ρ(γ(s), y)

≥ −ρ(γ(t), γ(s)) + ρ(γ(t), γ(0))− ρ(γ(s), γ(0)) > −3ε,

by part c) of Lemma 4.4.
Now let m = limϕy(γ(t)). Since ϕy(x) ≤ ρ(y, γ(0)) for all x ∈ X, we must

have m ≤ ρ(y, γ(0)). Now there is an s0 ≥ N such that ϕy(γ(s0)) ≥ m − ε.
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Set M = s0. Then for t ≥M we must have m ≥ ϕy(γ(t)) ≥ m− 4ε according
to the previous paragraph. It follows that limϕy(γ(t)) = m.

We can now show that γ is weakly-geodesic. Given ε > 0, choose N and
M ≥ N as above. Then for t ≥ s ≥ M the first condition of Definition 4.3c is
satisfied by Lemma 4.4a, while for the second condition we have from above

|ρ(γ(t), y) − ρ(γ(s), y)− (t− s)|
≤ |ρ(γ(t), y)− ρ(γ(t), γ(0))− ρ(γ(s), y) + ρ(γ(s), γ(0))|
+ |ρ(γ(t), γ(0))− t|+ |ρ(γ(s), γ(0))− s|
≤ |ϕy(γ(t))− ϕy(γ(s))|+ 2ε < 6ε.

Finally, suppose that γ is a weakly-geodesic ray. For any y ∈ X we show
that {ϕy(γ(t))} is a Cauchy net. Let ε and N be as in Definition 4.3c. Then
for t, s ≥ N we have

|ϕy(γ(t)) − ϕy(γ(s))|
= |ρ(γ(t), γ(0))− ρ(γ(t), y)− ρ(γ(s), γ(0)) + ρ(γ(s), y)|
≤ |ρ(γ(s), y)− ρ(γ(t), y)− (s− t)|
+ |ρ(γ(t), γ(0))− t|+ |s− ρ(γ(s), γ(0))| < 3ε.

¤

For the next theorem we will need:

Proposition 4.6. Let (X, ρ) be a locally compact metric space. If the topology
of X has a countable base, then so do the topologies of X̄ρ and ∂ρX.

Proof. If (X, ρ) is a locally compact metric space whose topology has a count-
able base, then C∞(X) has a countable dense set. Also, X has a countable
dense set, and the corresponding ϕy’s can be used to construct a countable
dense subset of Hρ. Thus the C∗-algebra G(X, ρ) will have a countable dense
set, and so the underlying spaces will have countable bases for their topolo-
gies. ¤

We recall that a metric is said to be proper if every closed ball of finite
radius is compact.

Theorem 4.7. Let (X, ρ) be a complete locally compact metric space, and let
γ be a weakly-geodesic ray in X. Then limt→∞ f(γ(t)) exists for every f ∈
G(X, ρ), and defines an element of ∂ρX. Conversely, if ρ is proper and if the
topology of (X, ρ) has a countable base, then every point of ∂ρX is determined
as above by a weakly-geodesic ray.

Proof. It is clear that the limit exists for the constant functions. From the
definition of a weakly geodesic ray we see that γ must leave any compact set.
Thus the limit exists and is 0 for all f ∈ C∞(X). Choose γ(0) as the base-point
in defining ϕy for any y ∈ X. Then from Lemma 4.5 we know that limϕy(γ(t))
exists for all y ∈ X.
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Let G̃(X, ρ) denote the subalgebra of Cb(X) generated by C∞(X), the
constant functions, and the ϕy’s, before taking the norm-closure. It is clear

from the above that lim f(γ(t)) exists for every f ∈ G̃(X, ρ), and that

| lim f(γ(t))| ≤ ‖f‖∞. Thus the limit defines a homomorphism from G̃(X, ρ)
to C which is norm-continuous, and so extends to all of G(X, ρ) by continuity.
It thus defines a point, say u, of X̄ρ. But because γ leaves any compact subset
of X, the point defined by the limit must be in ∂ρX. It is easy to check now
that lim f(γ(t)) exists and equals f(u) for all f ∈ G(X, ρ).

Suppose now that the topology of (X, ρ) has a countable base, and that
ρ is proper. Let u ∈ ∂ρX. Then we can apply Proposition 4.6 to conclude
that there is a sequence, {wn}, in X which converges in X̄ρ to u. Since u /∈ X
and ρ is proper, the sequence {wn} must be unbounded. Thus we can find
a subsequence, which we denote again by {wn}, such that if n > m then
ρ(wn, w0) > ρ(wm, w0). Let T denote the set of ρ(wn, w0)’s, and for any t ∈ T
with t = ρ(wn, w0) set γ(t) = wn. Then lim γ(t) = u. We show that γ is
weakly-geodesic. Notice that by construction ρ(γ(t), γ(0)) = t for each t ∈ T ,
so that the first condition of Definition 4.3c is satisfied. Let y ∈ X. Use γ(0)
as the base-point for defining ϕy. Now ϕy(γ(t)) converges to ϕy(u), and so,
given ε > 0, we can find an N such that whenever s, t ∈ T with s, t ≥ N then
|ϕy(t)− ϕy(s)| ≤ ε. Then for such s, t we have

|ρ(γ(t), y)− ρ(γ(s), y)− (t− s)| = |ϕy(γ(t))− ϕy(γ(s))| ≤ ε.
¤

In view of the history of these ideas (see 1.2 of [24]), we make:

Definition 4.8. A point of ∂ρX which is defined as above by an almost-geodesic
ray γ will be called a Busemann point of ∂ρX, and we will denote the point by
bγ .

For any (X, ρ) it is an interesting question as to whether every point of
∂ρX is a Busemann point. This is known to be the case for CAT(0) spaces
(corollary II.8.20 of [6]). But in the next section we will need to deal with
metric spaces which are not CAT(0). We will also see there by example that
two metrics ρ1 and ρ2 on X which are Lipschitz equivalent, in the sense that
there are positive constants k, K such that

kρ1 ≤ ρ2 ≤ Kρ1,

can give metric boundaries for X which are not homeomorphic.
Here is an example of a complete locally compact non-compact metric

space X which has no geodesic rays, but for which every point of ∂ρX is a
Busemann point. Let X be the subset X = {(n, 1/n) : n ≥ 1} of R2, with the
restriction to it of the Euclidean metric on R2. This suggests the usefulness
of almost-geodesic rays. Just before Proposition 5.4 we will give an example
of a proper metric on Z for which there are no almost-geodesic rays, so no
Busemann points (but there are sufficiently many weakly-geodesic rays).

We will later need:
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Proposition 4.9. Let z0 ∈ X and let γ and γ′ be almost-geodesic rays from
z0 (i.e., γ(0) = z0 = γ′(0)). If for any positive integer N and any ε > 0 we
can find s and t in the domains of γ and γ ′ respectively such that s, t ≥ N and
ρ(γ(s), γ′(t)) < ε, then bγ = bγ′ .

Proof. Each ϕy has Lipschitz constant ≤ 2, so

|ϕy(γ(s))− ϕy(γ′(t))| ≤ 2ρ(γ(s), γ′(t)).

The desired result follows quickly from this. ¤
We now briefly consider isometries. Suppose that α is an isometry of (X, ρ)

onto itself. Then for y, z ∈ X we have ϕy,z ◦ α−1 = ϕα(y),α(z). Thus Hρ is
carried onto itself by α. Clearly so are C∞(X) and the constant functions, and
so α gives an automorphism of the algebra G(X, ρ). It follows that α gives a
homeomorphism of X̄ρ onto itself which extends α on X. This homeomorphism
carries ∂ρX onto itself. Thus:

Proposition 4.10. Every isometry of a complete locally compact metric space
(X, ρ) extends uniquely to a homeomorphism of X̄ρ onto itself which carries
∂ρX onto itself.

Later we will need to consider (cartesian) products of metric spaces. There
are many ways to define a metric on a product. One of these ways meshes espe-
cially simply with the construction of the metric compactification. If (X, ρX)
and (Y, ρY ) are metric spaces, we define ρ on X × Y by

ρ((x1, y1), (x2, y2)) = ρX(x1, x2) + ρY (y1, y2).

We will call ρ the “sum of metrics”.

Proposition 4.11. Let (X, ρX) and (Y, ρY ) be locally compact metric spaces,
and let ρ be the sum of metrics on X × Y . Then

(X × Y )−ρ = (X̄ρX )× (Ȳ ρY ).

Proof. We need to show that the evident map from X × Y to (X̄ρX )× (Ȳ ρY )
extends to a homeomorphism from (X × Y )−ρ. For this it suffices to show
that the restriction map from C((X̄ρX ) × (Ȳ ρY )) to Cb(X × Y ) maps into
C((X × Y )−ρ) and is onto. Let x0, y0 be base-points in X and Y respectively,
and use (x0, y0) as a base-point for X × Y . Then for (u, v) ∈ X × Y we have

ϕ(u,v)(x, y) = ρ((x, y), (x0, y0))− ρ((x, y), (u, v))

= ρX(x, x0)− ρX(x, u) + ρY (y, y0)− ρY (y, v)

= ϕu(x) + ϕv(y).

In particular, ϕ(u,y0) = ϕu ⊗ 1Y and ϕ(x0,v) = 1X ⊗ ϕv. Thus the restrictions

of ϕu⊗ 1Y and 1X ⊗ϕv are in C((X ×Y )−ρ). The same is true for any f ⊗ 1Y
and 1X ⊗ g where f ∈ Cc(X) and g ∈ Cc(Y ), or for constant functions. Thus
the range of the restriction map is in C((X × Y )−ρ). But from the calculation
above we also see that any ϕ(u,v) is in the range of the restriction map, and

from this it is easily seen that the restriction map is onto C((X × Y )−ρ). ¤
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5. The case of G = Z

In this section we will see how the constructions of the previous sections
can be used to deal with Questions 2.6 and 2.7 when G = Z. This case already
reveals some phenomena which we will have to deal with later for the case
G = Zd.

Example 5.1. We examine first the case in which ` is the standard length
function on G = Z defined by `(n) = |n|, so that ρ(m,n) = |m− n|. Note that
` is the word-length function for the generating set S = {±1}. We determine
∂`G. For any k ∈ Z we have

ϕk(n) = |n| − |n− k|.
In particular,

ϕk(n) =

{
k for n ≥ 0 and n ≥ k
−k for n ≤ 0 and n ≤ k.

From this it is clear that Z̄` is just Z with the points {±∞} adjoined in the
traditional way. The action α of Z on Z̄` is by translation leaving the points
at infinity fixed. Thus ∂`Z = {±∞} with the trivial action α of Z.

Now let f ∈ Cc(Z) be given. Since Z is amenable, we know that [M`, π(f)]
is in C(Z̄`) ×α Z, and that this crossed product is faithfully represented on
`2(Z), as discussed in Section 3. We can factor by K = C∞(Z) ×α Z, and
so look at the image of [M`, πf ] in the cosphere algebra S∗A, which by the
discussion of Section 3 is exactly C(∂`Z) ×α Z. This latter is isomorphic to
two copies of C∗(Z). The image of Σf(y)Mϕyπy in the copy at +∞ will be
{k 7→ kf(k)}, while the image in the copy at −∞ will be {k → −kf(k)}. Let
us take here the convention that the Fourier series for any g ∈ Cc(Z) is given
by ĝ(t) = Σg(k)eikt, so that ĝ′(t) = iΣkg(k)eikt. Then we see from just above
that

L(f) = ‖Σf(y)Mϕyπy‖ ≥ ‖f̂ ′‖∞.
But ‖f̂ ′‖∞ agrees with the standard Lip-norm on C∗(Z) = C(T) which gives
the circle a circumference of 2π. From the comparison lemma 1.10 of [39]
it follows that L is a Lip-norm, and that it gives T (and so the state space
S(C∗(Z))) radius no larger than π.

Example 5.2. Again we take G = Z, but now we take the word-length function
` corresponding to the generating set {±1,±2}. Then ` is given by

`(n) = [|n|/2],

where [·] denotes “least integer not less than”. Thus for any k ∈ Z
ϕk(n) = [|n|/2]− [|n− k|/2].

From this one finds that if k is even then

ϕk(n) =

{
k/2 for n ≥ 0 and n ≥ k
−k/2 for n ≤ 0 and n ≤ k,
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whereas if k is odd then

ϕk(n) =





(k − 1)/2 for n even
(k + 1)/2 for n odd

}
for n ≥ 0 and n ≥ k

−(k + 1)/2 for n even
−(k − 1)/2 for n odd

}
for n ≤ 0 and n ≤ k.

From this it is easily seen that ∂`Z will consist of 4 points, two at +∞ and two
at −∞, which we can label “even” and “odd”. The action of Z on ∂`Z will at
each end be that of Z on Z2 = Z/2Z. In particular, the boundary contains no
fixed-points for this action.

We learn several things from comparing this example with the one just be-
fore. First, two word-length metrics on a given group can give metric bound-
aries which are not homeomorphic. But it is well-known (e.g., proposition
8.3.18 of [8]) and easily seen that if G is a finitely-generated group and if `1

and `2 are the word-length functions for two finite generating sets, then the
corresponding left-invariant metrics are (Lipschitz) equivalent in the sense de-
fined in the previous section. Thus we see that equivalent metrics which give
(the same) locally compact topologies (even discrete) and for which the set is
complete, can give metric boundaries which are not homeomorphic.

Next, Z is an example of a hyperbolic group [21], and so for the metric
from either of these generating sets it is a hyperbolic metric space. But the
Gromov boundary of a hyperbolic space is independent of the metrics as long
as the metrics are equivalent, or at least coarsely equivalent. The Gromov
boundary for Z is just {±∞}. One way of viewing what is happening is that
for the metric of the Example 5.2 the maps m 7→ 2m and m 7→ 2m + 1 are
geodesic rays which determine Busemann points in the boundary which are our
two points at +∞. But for the Gromov boundary any two geodesic rays which
stay a bounded distance from each other define the same point at infinity. In
particular, our present example shows that for a given hyperbolic metric space
the metric boundary and the Gromov boundary can fail to be homeomorphic.

For our next observation, let (X, ρ) be a proper metric space with base-
point z0, and let T ⊂ R+ be a fixed domain for geodesic rays, so that 0 ∈ T
and T is unbounded. On the set of geodesic rays from z0 whose domain is T we
put the topology of pointwise convergence (which, because geodesic rays are
Lipschitz maps of Lipschitz constant 1, is equivalent to the topology of uniform
convergence on bounded subsets of T ). This is done in various places in the
literature. Because ρ is proper, it is easy to see that the set of all such geodesic
rays is compact. For groups G with a word-length ` (or for graphs in general)
it is natural to take T = Z+. It is reasonable to wonder then whether ∂`G is
the quotient of this compact set of geodesics, with the quotient topology. If
it were, then for each y ∈ G the function which assigns to each such geodesic
ray γ from e the number limϕy(γ(t)) should be a continuous function on this
compact set. But this already fails for Example 5.2. For each k ≥ 1 let γk be
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the geodesic ray from 0 defined by

γk(n) =

{
2n if n ≤ k

2n− 1 if n ≥ k + 1.

Then γk converges pointwise to the geodesic ray defined by γ∞(n) = 2n for all
n. But it is easy to see that bγ∞ is the even point at +∞ while bγk is the odd
point at +∞ for all k. We also remark that in our present example there is no
geodesic line which joins the two points at +∞ (so this example fails to have
the property of “visibility” [21]).

Our Example 5.2 also shows that the metric compactification is not in
general well-related to the Higson compactification, as defined in 5.4 of [43].
For that definition let (X, ρ) be a proper metric space. For any r > 0 we define
the variational function, Vrf , of any function f by

(Vrf)(x) = sup{|f(x)− f(y)| : ρ(y, x) ≤ r}.

The Higson compactification is the maximal ideal space of the unital commu-
tative C∗-algebra of all bounded continuous functions on X such that for each
r > 0 the function Vrf vanishes at infinity. For Example 5.2 let us consider
V2ϕ1. Easy calculation shows that for any n ≥ 1 we have ϕ1(2k) = 0 while
ϕ1(2k + 1) = 1. But ρ(2k, 2k + 1) = `(1) = 1 for all k. Thus (V2ϕ1)(k) ≥ 1
for all k. Consequently ϕ1 does not extend to the Higson compactification.
More generally, if a complete locally compact metric space (X, ρ) has geodesic
rays which determine distinct Busemann points of ∂ρX and yet stay a finite
distance from each other, then X̄ρ is not a quotient of the Higson compactifi-
cation. Indeed, since the ϕy’s separate the points of ∂ρX, there will be some y
such that its ϕy separates the two Busemann points, and Vrϕy will not vanish
at infinity if r is larger than the distance between the two rays.

The situation becomes yet more interesting when we consider generating
sets such as {±3,±8}. But the proof given above that we obtain a Lip-norm
when we use the generating set {±1} extends without too much difficulty to the
case of arbitrary finite generating sets for Z. We do not include this proof here
since in Section 9 we will treat the general case of Zd by similar techniques,
though the details are certainly more complicated.

However we will discuss here another approach for the case of G = Z which
uses a classical argument which was pointed out to me by Michael Christ. (I
thank him for his guidence in this matter). This second approach seems less
likely to generalize to more complicated groups, but it gives a stronger result
for Z. For any β with 0 < β ≤ 1 and any metric ρ on a set, ρβ will again be
a metric, because t → |t|β is a length function on R. In particular, if we set
`β(n) = |n|β then `β is a length function on Z.

Theorem 5.3. Let ω be a translation-bounded function on Z such that ω(0) =
0. If `β/ω is a bounded function (ignoring n = 0) for some β with 1/2 < β ≤ 1,
then Lω is a Lip-norm on C∗(Z) = C(T).
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Proof. For any group G and any ω we have

[Mω, πf ]δe = Σf(y)ϕy(y)δy = Σω(y)f(y)δy,

where {δy} here denotes the standard basis for `2(G). Thus

‖ωf‖2 ≤ ‖[Mω, πf ]‖ = Lω(f).

What is special about Z is that ‖ωf‖2 can control the norms we need. (This
is related to our discussion of “rapid decay” in Section 1.) For this we need
that `−1

β ∈ `2(Z), which happens exactly for β > 1/2. (Here and below we

ignore n = 0 or set `−1
β (0) = 0.) Let f ∈ Cc(Z), with f̂ its Fourier transform

on T = R/Z, viewed as a periodic function on R. For s, t ∈ R with s < t
and |t− s| < 1 let χ[s,t] denote the characteristic function of the interval [s, t],
extended by periodicity. Then

|f̂(s)− f̂(t)| =
∣∣∣∣
∫ t

s

f̂ ′(r)dr

∣∣∣∣ = |〈f̂ ′, χ[s,t]〉| = |〈(f̂ ′)∨, (χ[s,t])
∨〉|.

But (χ[s,t])
∨(n) = (1/i2πn)(e(nt) − e(ns)) if we set e(r) = e2πinr, while

(f̂ ′)∨(n) = −2πinf(n). Thus if we set gs,t(n) = (e(nt) − e(ns)), the above

becomes |〈f, gs,t〉| as a pairing between functions in `1(Z) and `∞(Z). But
(with ω−1(0) = 0) we can rewrite this as

|〈ωf, ω−1gs,t〉| ≤ ‖ωf‖2‖ω−1gs,t‖2,
and notice that

‖ω−1gs,t‖2 = ‖(`β/ω)`−1
β gs,t‖2

≤ ‖`β/ω‖∞‖`−1
β gs,t‖2 <∞,

since `−1
β ∈ `2(Z). Set m(s, t) = ‖`−1

β gs,t‖2. Then putting the above together,
we obtain

|f̂(t)− f̂(s)| ≤ m(s, t)‖`β/ω‖∞‖Lω(f)‖.
A simple estimate using the fact that `−1

β ∈ `2(Z) shows that for each ε > 0

there is a δ > 0 such that if |t−s| < δ thenm(s, t) < ε. From this we see that the

set of f̂ ’s for which Lω(f) ≤ 1 and f(0) = 0 forms a bounded subset of C(T)
which is equicontinuous, so totally bounded by the Arzela–Ascoli theorem.
From this it is clear that Lω gives finite radius and, by theorem 1.9 of [39], that
it is a Lip-norm. ¤

I suspect that when β < 1/2 then L`β fails to be a Lip-norm, but I have
not found a proof of this.

Notice that Theorem 5.3 applies if |ω(n)| ≥ 1 for n 6= 0 and if there are
positive constants c and K such that |ω− c`β | ≤ K, for then |`/ω| ≤ (K + 1)c.
This is the situation which occurs for the various word-length functions on Z
(for β = 1).
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It is interesting to see what the metric compactification of Z is when β < 1.
For any p ∈ Z we have

ϕp(n) = |n|β − |n− p|β =

∫ |n|

|n−p|
βtβ−1 dt.

Since tβ−1 → 0 at +∞ because β < 1, it follows that ϕp(n) → 0 as n → ±∞.
Thus ϕp ∈ C∞(Z), and so the metric compactification is just the one-point
compactification of Z. Note also that [M`β , πf ] is a compact operator for each

f ∈ Cc(Z). Thus the cosphere algebra for (C∗(Z), `2(Z),M`β ) is C∗(Z), and
the image of [M`β , πf ] in it is 0. We also remark that it is easily verified that if

we set γ(nβ) = n, then γ is a weakly-geodesic ray, but that there are no almost-
geodesic rays in Z for this metric, since by parts a) and b) of Lemma 4.4 if γ
were such a ray we would have, for any fixed big r, that |γ(t)|β − |γ(t − r)|b
would be approximately r as t→∞, contradicting our observation above that
it must go to 0.

We conclude this section with the following observation, which applies to
our more general case of Zd.

Proposition 5.4. Let ω be a translation-bounded function on a countable
discrete Abelian group G, let Lω on Cc(G) be defined as earlier by Lω(f) =

‖[Mω, πf ]‖, and let ρω be the corresponding metric on Ĝ (which may not give

the usual topology of Ĝ). Then ρω is invariant under translation on Ĝ.

Proof. Let us denote the pairing between G and Ĝ by 〈m, t〉. Then translation

on Ĝ corresponds to the dual action, β, of Ĝ on C∗(G) given on Cc(G) by
(βt(f))(m) = 〈m, t〉f(m). This is unitarily implemented in `2(G) by Mt, where
(Mtξ)(m) = 〈m, t〉ξ(m). Then

[Mω, βt(πf )] = [Mω,MtπfM
∗
t ]

= Mt[Mω, πf ]M∗t ,

so that Lω(βt(f)) = Lω(f). (In other words, β is an action by isometries as
defined in [41].) ¤

From Theorem 5.3 one begins to see that Td has a bewildering variety of
translation invariant metrics which give its topology. For example, if ρ is such a
metric then so is ρr for any r with 0 < r < 1, as is any convex function of ρ. The
sum of two metrics and the supremum of two metrics are again metrics. More
generally, the “`p-sum” of two metrics is a metric. These operations all preserve
translation invariance. For the case of T, any strictly increasing continuous
function ` on [0, 1/2] such that `(0) = 0 and `(s+ t) ≤ `(s) + `(t) if s+ t ≤ 1/2
gives in an evident way a continuous length function on T = R/Z, and all
continuous length functions on T arise in this way. It would be interesting to
determine which generating sets for Z determine which length functions on T,
but I have not investigated this question.
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6. The metric compactification for norms on Rd

One of our eventual aims is to show that when ` is a length function on
Zd which is the restriction to Zd of a norm on Rd, then L` is a Lip-norm. In
preparation for this we examine here the metric compactification of Rd for any
given norm. We begin by considering the usual `1-norm, both because it is
simple to treat and displays some interesting phenomena, and also because its
restriction to Zd gives the word-length function for the standard generating set.
Following up on Example 5.1, we set R̄ = R∪{±∞} in the usual way, with the
action of R fixing the points ±∞.

Proposition 6.1. The metric compactification of (Rd, ‖ · ‖1) is just (R̄)d with
its product action of Rd. Thus the metric boundary is the set of (x̃j) ∈ (R̄)d

such that at least one entry is +∞ or −∞.

Proof. The metric from ‖ · ‖1 on Rd is easily seen to be the sum of the metrics
on R in the sense used in Proposition 4.11. Thus we just need to apply that
proposition a number of times. ¤

We note that now there are orbits in the boundary which are not finite,
but there are also fixed points (only a finite number of them).

We now investigate what happens for other norms on Rd. It is notationally
convenient for us just to consider a finite-dimensional vector space V with some
given norm ‖ · ‖. We will denote the corresponding metric boundary simply by
∂`V , where `(x) = ‖x‖ for all x ∈ V .

For any v ∈ V with ‖v‖ = 1 it is evident that the function γ(t) = tv
for t ∈ T = [0,∞) is a geodesic ray, and so from our earlier discussion it
will determine a Busemann point, bv, in ∂`V . We now convert to this picture
some of the known elementary facts about tangent functionals of convex sets,
as explained for example in section V.9 of [17]. There is at least one linear
functional, say σ, on V such that ‖σ‖ = 1 = σ(v). We call such a σ a “support
functional” at v. Then for any y ∈ V we have

ϕy(γ(t)) = ‖tv‖ − ‖tv − y‖ ≤ t− σ(tv − y) = σ(y).

In particular, ϕ−y(γ(t)) ≤ −σ(y). On letting t go to +∞ we find that

−ϕ−y(bv) ≥ σ(y) ≥ ϕy(bv).

But theorem 5 of section V.9 of [17] (which uses the Hahn–Banach theorem)
tells us that for any real number r such that −ϕ−y(bv) ≥ r ≥ ϕy(bv) there is a
support functional σ at v such that σ(y) = r. To see that theorem V.9.5 really
applies here, we note that if we set s = t−1 then

‖tv‖ − ‖tv − y‖ = (‖v‖ − ‖v − sy‖)/s,
and that s→ +0 as t→ +∞. From this viewpoint we are thus looking at the
negative of the tangent functional to the unit ball at v in the direction of −y,
which fits the setting of theorem V.9.5.

The point v is called a smooth point of the unit sphere if there is only
one support functional σ at v. We denote this unique σ by σv. Then the
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above considerations tell us that if v is smooth then ϕy(bv) = −ϕ−y(bv). On
combining this with the inequalities found above, we obtain:

Proposition 6.2. Let v be a smooth point of the unit sphere of V . Then

ϕy(bv) = σv(y)

for all y ∈ V .

For us the following proposition will be of considerable importance. We
consider the action of V on itself by translation, and the corresponding action
on ∂`V .

Proposition 6.3. Let v be a smooth point of the unit sphere of V . Then bv is
a fixed point under the action of V on ∂`V .

Proof. We use the 1-cocycle relation 2.2 and Proposition 6.2 to calculate that
for any x, y ∈ V we have

(αxϕy)(bv) = ϕx+y(bv)− ϕx(bv)

= σv(x+ y)− σv(x) = σv(y) = ϕy(bv).

¤

Finally, we note that theorem 8 of section V.9 of [17] says that, for any
norm, the set of smooth points of the unit sphere is dense in the unit sphere.
This does not imply that there are infinitely many fixed points in ∂`V , as the
next example shows. But we will see later that it does show that there are
enough for our purposes.

Example 6.4. We examine the case of R2 with ‖ · ‖1, whose metric compact-
ification is described by Proposition 6.1. Let us see how our considerations
concerning geodesics fit this example. We identify the dual space V ′ in the
usual way with R2 with the norm

‖(r, s)‖∞ = max{|r|, |s|}.
All but 4 points of the unit sphere of V are smooth. However, for any

v = (a, b) with 0 < a, 0 < b and a + b = 1 we see that σv = (1, 1) ∈ V ′.
Thus all these different v’s determine the same Busemann point of ∂`V . This
accords with Proposition 6.2 and the fact that ∂`V has only 4 fixed-points for
the action of R2.

If instead we let v be the non-smooth point (1, 0) and let γ be the corre-
sponding geodesic ray, then for any y = (p, q) ∈ R2 we have

ϕy(γ(t)) = ‖γ(t)‖ − ‖γ(t)− (p, q)‖
= |t| − |t− p| − |q|.

The limit as t→ +∞ is clearly p− |q|, so that

ϕ(p,q)(bv) = p− |q| = ϕp(+∞) + ϕq(0),
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where ϕp and ϕq are for R. Thus bv = (+∞, 0) in the description of ∂`V given
by Proposition 6.1. Clearly bv is not given by an element of V ′. It is easily
seen that this bv is not invariant under translation.

We see in this way that the linear geodesic rays from 0, corresponding to
the points of the unit sphere, determine only 8 Busemann points of ∂`V . But
we can show that every point of ∂`V is determined by at least one (possibly
non-linear) geodesic ray from 0. For example, if we consider (+∞, s) ∈ ∂`V for
some fixed s ∈ R, we can pick any t0 ≥ 0 and let γ consist of the unit-speed
straight-line path from (0, 0) to (t0, 0), followed by that from (t0, 0) to (t0, s),
followed by the linear ray from (t0, s) in the direction (1, 0). (We deal here with
the “Manhattan metric”.) It is easy to check that γ is a geodesic ray whose
Busemann point corresponds to (+∞, s). We see in this way that every point
of ∂`V is a Busemann point. It is also easy to see that for each of the 4 points
(±∞, 0) and (0,±∞) of ∂`V there is only one geodesic ray to them from 0, but
that for every other point of ∂`V there are uncountably many geodesic rays to
it from 0.

Question 6.5. Is it true that, for every finite-dimensional vector space and
every norm on it, every point of ∂`V is a Busemann point?

One says that (V, ‖·‖) is smooth if every point of the unit sphere, S, of V is
a smooth point. Let S′ denote the unit sphere of V ′. Then our earlier mapping
v 7→ σv is defined on all of S. Furthermore it is onto S ′, because V , being finite
dimensional, is reflexive. This mapping σ can also be seen to be continuous.
This is essentially the fact that, as remarked at the bottom of page 60 of [33],
a compactness argument shows that smoothness implies uniform smoothness.
However, if S has “flat spots” then σ will not be injective. It is not difficult to
show that for (V, ‖ · ‖) smooth, ∂`V can be naturally identified with S ′, glued
at ∞ using σ. In this case each point of ∂`V will be fixed by the action of V .

Question 6.6. For a general (V, ‖ · ‖) is there an attractive description of ∂`V
and of the action of V on it?

We have seen in Example 6.4 that the number of support functionals σv
coming from smooth points v of the unit sphere can be finite. The reason that
they nevertheless are adequate for our later purposes is given by the following
proposition (which must be already known):

Proposition 6.7. Let ‖ · ‖ be a norm on a finite-dimensional vector space
V . Let w ∈ V , and suppose that |σv(w)| ≤ r for all smooth points v of the
unit sphere. Then ‖w‖ ≤ r. Furthermore, the closed convex hull of {σv :
v is a smooth point} is the unit ball in the dual space V ′ for the dual norm
‖ · ‖′.
Proof. Let ‖w‖ = s. Because the smooth points are dense in the unit sphere
by theorem 8 of section V.9 of [17], for any ε > 0 we can find a smooth point v
such that ‖w−sv‖ < ε. Then |σv(w)−s| = |σv(w−sv)| < ε. Since |σv(w)| ≤ r
and ε is arbitrary, it follows that ‖w‖ = s ≤ r.
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Suppose now that τ ∈ V ′ and that τ /∈ c̄o{σv : v smooth}. Then by the
Hahn–Banach theorem there is a w ∈ V and an r ∈ R such that |σv(w)| ≤
r < τ(w) for all smooth v. But we have just seen that then ‖w‖ ≤ r. Thus
‖τ‖′ > 1. ¤

7. Restrictions of norms to Zd

In this section we will examine what happens when norms on V = Rd are
restricted to Zd. We begin with the case of the norm ‖ · ‖1. Following up on
Example 6.4 we set Z̄ = Z∪{±∞} in the usual way, with its action of Z leaving
fixed the points at infinity. The proof of the following proposition is basically
the same as that of Proposition 6.1.

Proposition 7.1. For ` = ‖ · ‖1, the metric compactification of (Zd, `) is (Z̄)d

with its product action of Zd. The metric boundary is the set of (ñj) ∈ (Z̄)d

such that at least one entry is +∞ or −∞.

Suppose now that ` = ‖ · ‖ is any norm on V = Rd, and that we restrict
it to Zd. For any y ∈ Zd the function ϕy clearly extends to V̄ `, and then
restricts to the closure of Zd in V̄ `. It is not evident to me whether the ϕy’s
for y ∈ Zd separate the points of this closure. But even if they did, it is not
clear to me that we could then use this to apply the results of the previous
section to show that there are sufficient fixed-points in ∂`Zd for the action of
Zd. It is this supply of fixed-points which we need later. So we take a more
direct tack. We show that every linear geodesic ray in V can be approximated
by an almost-geodesic ray in Zd. The following lemma is closely related to
Kronecker’s theorem [7], so we just sketch the proof.

Lemma 7.2. Let v ∈ V with ‖v‖ = 1. Then there is an unbounded strictly
increasing sequence {sn} of positive real numbers such that for every ε > 0 there
is an N such that if sn > N then there is an x ∈ Zd for which ‖x− snv‖ < ε.

Proof. If there is an r ∈ R+ with rv ∈ Zd then we simply take sn = nr.
Suppose now that no such r exists. Consider the image of Rv in V/Zd. Its
closure is a connected subgroup, and so is a torus. The dimension of this torus
must be ≥ 2 for otherwise there would be an r as above. But for any finite
closed interval I of R the image of Iv is compact, and so must stay away from
0 except at 0. Thus for any neighborhood of 0 there must be a t outside of I
such that the image of tv is in that neighborhood. ¤

Let {sn} be as in the lemma. Then we can find a subsequence, {tk},
of the sequence {sn}, and for each k we can choose a xk ∈ Zd, such that
‖xk − tkv‖ < 1/k for all k.

Lemma 7.3. For v, {tk} and {xk} as above, define γ by γ(0) = 0 and
γ(tk) = xk. Then γ is an almost-geodesic ray in V which determines the
same Busemann point in ∂`V as does the ray t 7→ tv.
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Proof. Given ε > 0, choose N such that 1/N < ε/3. Then for tn ≥ tm ≥ N we
have from the triangle inequality

|‖xn − xm‖ + ‖xm‖ − tn| = |‖xn − xm‖ − ‖(tn − tm)v‖+ ‖xm‖ − tm|
≤ ‖(xn − tnv)− (xm − tmv)‖+ ‖xm − tmv‖ < ε.

From this it follows that γ is an almost-geodesic ray. The fact that it determines
the same Busemann point as does v now follows from Proposition 4.9. ¤

Proposition 7.4. Let v be a smooth point of the unit sphere of V , with support
functional σv. Then there is a Busemann point bv ∈ ∂`Zd such that for any
y ∈ Zd we have

ϕy(bv) = σv(y).

Furthermore, bv is a fixed-point for the action of Zd on ∂`Zd.

Proof. Let γ be an almost-geodesic ray associated with v as in the above lem-
mas. By Proposition 6.2 we know that

limϕy(xk) = σv(y)

for all y ∈ V . But γ is equally well an almost-geodesic ray in Zd, and so defines
a Busemann point bγ ∈ ∂Zd. But for y ∈ Zd its ϕy for Zd is just the restriction
to Zd of its ϕy for V . Thus ϕy(bγ) = σv(y) for y ∈ Zd. The proof that bγ is a
fixed-point for the action is the same as that for Proposition 6.3. ¤

We remark that, just as for V , different smooth points v may have the
same σv, and so determine the same Busemann point of ∂`Zd, and so it can
happen that only a finite number of points of ∂`Zd arise from smooth points v.

We are now ready to prove one part of our Main Theorem 0.1, namely:

Theorem 7.5. Let ` on Zd be defined by `(x) = ‖x‖ for a norm ‖ · ‖ on Rd.
Let L` be defined on Cc(Zd, c) as before by

L`(f) = ‖[M`, πf ]‖.
Then L` is a Lip-norm on C∗(Zd, c).

Proof. Let v be a smooth point of the unit sphere of V for ‖·‖. Let σv denote its
support functional, and bv its corresponding Busemann point as above in ∂`Zd.
Since bv is a fixed-point, it determines a homomorphism from the cosphere
algebra C∗(G,C(∂`G), α, c) onto C∗(G, c) which takes Mϕy to the constant

σv(y). (We use here the amenability of Zd.) Then under this homomorphism
[M`, πf ] is sent to the operator

Σf(y)ϕy(bv)πy = Σf(y)σv(y)πy

in C∗(Zd, c). Let us denote this operator, and the corresponding function, by
Xvf . Of course ‖Xvf‖ ≤ L`(f).

We let β denote the usual dual action [35] of the dual group Ĝ on C∗(G, c)
determined by

(βp(f))(x) = 〈x, p〉f(x)
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for f ∈ Cc(Zd) and p ∈ Ĝ, where 〈·, ·〉 denotes the pairing of G and Ĝ. Each

τ ∈ V ′ determines an element of Ĝ by 〈x, τ〉 = exp(iτ(x)) for x ∈ Zd. Let
Γ denote the lattice in V ′ consisting of elements which on Zd take values in
2πZ. Then we can identify Ĝ with the torus V ′/Γ, and then V ′ is identified

with the Lie algebra of Ĝ, so that the exponential mapping is just the quotient
map from V ′ to V ′/Γ. The action β has an infinitesimal version which is a Lie
algebra homomorphism from the (Abelian) Lie algebra V ′ into the Lie algebra
of derivations on C∗(G, c). We denote it by dβ, and it is determined by

(dβτ (f))(x) = iτ(x)f(x).

Each f ∈ Cc(G) then determines a linear mapping, τ 7→ dβτ (f), from V ′ into
C∗(G, c), which we denote by df , much as done for theorem 3.1 of [39].

In terms of the notation just introduced, we see that for any smooth point
v we have

iXvf = dβσvf = df(σv).

With this notation our earlier inequality becomes

‖df(σv)‖ ≤ L`(f).

Now V ′ has the dual norm ‖ · ‖′, and C∗(G, c) has its C∗-norm. So the norm
of the linear map df between them is well-defined. We denote it by ‖df‖. But
by Proposition 6.7 the closed convex hull of the set of σv’s is the unit ball in
V ′. It follows that

‖df‖ ≤ L`(f).

But in theorem 3.1 of [39] it is shown that f 7→ ‖df‖ is a Lip-norm. Thus we
can apply comparison lemma 1.10 of [39] to conclude that L` is a Lip-norm as
well. ¤

8. The boundary of (Zd, S)

Let S be a finite generating subset of G = Zd such that S = −S and
0 /∈ S. Let ` denote the corresponding word-length function on G. I do
not know how to give a concrete description of ∂`G. (But note that ∂`G
is totally disconnected since each ϕy takes only integer values, in contrast to
what happens if ` comes, for example, from the Euclidean norm on Rd.) We will
show here how to construct a substantial supply of geodesic rays. (Somewhat
related considerations appear in [44], but geodesic rays and compactifications
are not considered there.) In the next section we will show that our supply is
sufficient to prove that when M` is used as the Dirac operator for C∗(G, c),
then the corresponding metric on the state space of C∗(G, c) gives the weak-∗
topology.

Our construction is motivated by several features which we found in Sec-
tions 6 and 7. For convenience we view G = Zd as embedded in Rd. We let
K = KS denote the (closed) convex hull in Rd of S. Because K is balanced
(since S = −S), it determines a norm, ‖·‖S , on Rd, for which it is the unit ball.
(In fact, (Rd, ‖ · ‖S) is the “asymptotic cone” of (Zd, `)—see exercise 8.2.12 of
[8].) We will see later that this norm is relevant. The set of extreme points
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of KS is a subset of S, which we will denote by Se. The faces of KS (of all
dimensions) will have certain subsets of Se as their extreme points, and will
intersect S in certain subsets F . Such an F is characterized by the fact that
there is a linear functional σ on Rn (not necessarily unique) such that σ(s) ≤ 1
for all s ∈ S and F = {s ∈ S : σ(s) = 1}. We call any such σ a support
functional for F . Note that |σ(s)| ≤ 1 for all s ∈ S. By abuse of terminology
we will refer to F itself as a face of KS , and we will not distinguish between F
and the usual face which F determines.

Lemma 8.1. Let σ be a support functional for a face F of KS. Then

|σ(x)| ≤ `(x)

for all x ∈ G.

Proof. Suppose that x = Σq(s)s for some function q from S to Z. Then

σ(x) = Σq(s)σ(s) ≤ Σ|q(s)|.
On considering the minimum for all such q, we see that σ(x) ≤ `(x). But this
holds for −x as well, which gives the desired result. ¤

Let F be a face of KS . Any function γ from Z+ to G which consists of
successively adding elements of F (i.e., γ(n + 1) − γ(n) ∈ F for n ≥ 0) is
a geodesic ray. In fact, for any support functional σ for F the above lemma
tells us that we have n ≥ `(γ(n)) ≥ σ(γ(n)) = n. Since F is finite, some
(perhaps all) elements of F will have to be added in an infinite number of
times. One can see that if the order in which the elements of F are added-in
is changed, but the number of times they ultimately appear is the same, then
one obtains an equivalent geodesic ray. A class of such geodesic rays can be
specified by a function on F which has values either in Z+ or +∞. But it
seems to be tricky to decide when two such functions (possibly for different
faces) determine the same Busemann point. For our present purposes we do
not need to concern ourselves with this issue. It is sufficient for us to associate
a canonical geodesic ray to each face. This will be a special case of forming
geodesic rays by successively adding elements of the semigroup generated by F
(so that the domain of the ray may be a proper subset of Z).

Notation 8.2. For a face F of KS set zf = Σ{s : s ∈ F}, and let γF denote
the geodesic ray whose domain is |F |Z+ (where |F | denotes the number of
elements of F ) and which is defined by γ(|F |n) = nzF . We denote by bF the
corresponding Busemann point. We denote by GF the subgroup of G generated
by F .

Again Lemma 8.1 quickly shows that the above ray is geodesic. The fol-
lowing proposition is analogous to Proposition 6.2.

Proposition 8.3. Let σ be a support functional for a face F of KS. For every
u ∈ GF we have

ϕu(bF ) = σ(u).
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Proof. Since u ∈ GF , there is a positive integer N such that whenever n ≥ N
then nzF −u can be expressed as a sum of elements of F , so that `(nzF −u) =
σ(nzF − u). Of course `(nzF ) = σ(nzF ). Thus for n ≥ N

ϕu(nzF ) = σ(nzF )− σ(nzF − u) = σ(u).

¤

Proposition 8.4. Let F and σ be as above. For any y ∈ G and u ∈ GF we
have

ϕy+u(bF ) = ϕy(bF ) + σ(u).

Proof. Consider the set of u’s such that this equation holds for all y ∈ G. It
is easy to verify that this set is a subsemigroup of G. But for u in this set we
have

ϕy−u(βF ) = ϕ(y−u)+u(βF )− σ(u) = ϕy(βF ) + σ(−u),

so that this set is a group. It thus suffices to verify the above equation for each
u = s ∈ F .

So let s ∈ S. Since n 7→ ϕy(nzF ) is integer-valued, non-decreasing by
Lemma 4.5, and bounded, we can find a positive integer N such that

ϕy(bF ) = `((N +m)zF )− `((N +m)zF − y)

for all m ≥ 0. We can find a larger N such that also

ϕy+s(bF ) = `((N +m)zF )− `((N +m)zF − (y + s))

for all m ≥ 0. Since σ(s) = 1 it is then clear that we need to show that

`((N +m)zF − (y + s)) = `((N +m)zF − y)− 1

for some m ≥ 0. Let ȳ = y −NzF . Then what we need becomes

`(mzF − (ȳ + s)) = `(mzF − ȳ)− 1

for some m ≥ 0. Note that `(mzF ) − `(mzF − ȳ) is independent of m ≥ 0
because of our choice of N , and similarly for ȳ + s instead of ȳ.

Since S = −S and 0 /∈ S, we can find a subset, S+, such that S+∪(−S+) =
S and S+ ∩ (−S+) = ∅. Since F ∩ (−F ) = ∅, we can require that F ⊆ S+.
Index the elements of S+ in such a way that s1 = s, and F = {s1, . . . , s|F |},
where |F | denote the number of elements in F . Since S generates G, we can
express ȳ as ȳ = Σnjsj where nj ∈ Z for each j. Then `(ȳ) will be the minimum
of the sums Σ|nj | over all such expressions for ȳ. We make a specific choice of
such a minimizing set {nj}. (It need not be unique.)

Since `(mzF ) = m|F | by Lemma 8.1, the stability described earlier says
that m|F | − `(mzF − ȳ) is independent of m ≥ 0. We combine this for m = 0
and m = 1 to obtain −`(−ȳ) = |F | − `(zF − ȳ). We use this to calculate

|F | + Σ|nj | = |F |+ `(−ȳ) = `(zF − ȳ)

= `


∑

j≤|F |
(1− nj)sj +

∑

j>|F |
njsj


 ≤

∑

j≤|F |
|1− nj |+

∑

j>|F |
|nj |.
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On comparing the two ends, we see that we must have nj ≤ 0 for j ≤ |F |, and
that the two ends must be equal. Thus

`(zF − ȳ) =
∑

j≤|F |
(1− nj) +

∑

j>|F |
|nj |.

Now

zF − ȳ − s =
∑

j≤|F |
(1− nj)sj +

∑

j>|F |
njsj − s1

= −n1s1 +

|F |∑

2

(1− nj)sj +
∑

j>|F |
njsj .

From the fact that nj ≤ 0 for j ≤ |F | it follows that

`(zF − ȳ − s) ≤ −n1 +

|F |∑

2

(1− nj) +
∑

j>|F |
|nj |

= −1 + `(zF − ȳ).

From the triangle inequality and the fact that `(s) = 1 it follows that

`(zF − ȳ − s) = −1 + `(zF − ȳ),

as needed. ¤

Corollary 8.5. For any y, z ∈ G and any u ∈ GF , and for any support
functional σ for F , we have

ϕy+u(αz(bF )) = ϕy(αz(bF )) + σ(u).

Proof. Using the 1-cocycle identity 2.2 and Proposition 8.4 we obtain

ϕy+u(αz(bF )) = (α−zϕy+u)(bF ) = ϕy−z+u(bF )− ϕ−z(bF )

= ϕy−z(bF ) + σ(u)− ϕ−z(bF )

= (α−zϕy)(bF ) + σ(u) = ϕy(αz(bF )) + σ(u).

¤

Proposition 8.6. Let F be a face of K. For each u ∈ GF the homeomorphism
αu of Ḡ` leaves fixed each point of the α-orbit of bF . That is, for each z ∈ G
we have

αu(αz(bF )) = αz(bF ).

Proof. Because G is Abelian, it suffices to show that αu(bF ) = bF . For this we
must verify that f(αu(bF )) = f(bF ) for all f ∈ C(Ḡ`). It suffices to verify this
for f = ϕy for each y ∈ G. But from the 1-cocycle identity 2.2 and Proposition
8.4 we have

ϕy(αu(bF )) = (α−uϕy)(bF ) = ϕy−u(bF )− ϕ−u(bF )

= ϕy(bF ) + σ(−u) + σ(u) = ϕy(bF ).

¤
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We will also need the following fact:

Proposition 8.7. If y /∈ GF then ϕy is not constant on the G-orbit of bF , and
in fact there is an s ∈ S such that s /∈ F and

ϕy(αs(bF )) = ϕy(bF ) + (1− ϕ−s(bF )),

with ϕ−s(bF ) = 0 or −1.

Proof. Let S+ and the indexing {sj} be as in the proof of Proposition 8.4.
Much as in that proof, we can find a large enough N that ϕy±sj ((N + m)zF )
is constant for m ≥ 0 for all ±sj simultaneously, as is ϕy((N + m)zF ). Set
ȳ = y −NzF . For this ȳ choose {nj} as before so that ȳ = Σnjsj and `(ȳ) =
Σ|nj |. Since y /∈ GF , also ȳ /∈ GF , and so there is a k > |F | such that nk 6= 0.
Suppose that nk ≥ 1. Then

ȳ − sk =
∑

j 6=k
njsj + (nk − 1)sk,

so that
`(ȳ − sk) ≤

∑

j 6=k
|nj |+ nk − 1 = `(ȳ)− 1.

From the triangle inequality we then obtain `(ȳ − sk) = `(ȳ)− 1, that is,

`(NzF − y + sk) = `(NzF − y)− 1.

From our choice of N (and with m = 0) we then get

ϕy−sk(bF ) = ϕy−sk(NzF )

= N |F | − `(NzF − y + sk) = N |F | − `(N |F | − y) + 1

= ϕy(bF ) + 1.

We combine this with the 1-cocycle identity 2.2 to obtain

ϕy(αsk(bF )) = (α−skϕy)(bF )

= ϕy−sk(bF )− ϕ−sk(bF )

= ϕy(bF ) + (1− ϕ−sk(bF )).

Since ϕ−sk takes only the values 0, ±1, the desired conclusion is then
obtained from:

Lemma 8.8. If s ∈ S and ϕs(bF ) = 1 then s ∈ F .

Proof. If ϕs(bF ) = 1, then for large n, and for a support functional σ for F ,
we have

n|F | − 1 = `(nzF )− 1 = `(nzF − s)
≥ σ(nzF − s) = n|F | − σ(s),

so that 1 ≤ σ(s), and so s ∈ F . ¤
The above argument for the proof of Proposition 8.7 was under the as-

sumption that nk ≥ 1. If instead we have nk ≤ −1, then we carry out a similar
argument using −sk instead of sk. This concludes the proof of Proposition
8.7. ¤
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9. Word-length functions give Lip-norms on C∗(Zd, c)

We will now see how to use the results of the previous section to prove the
part of our Main Theorem 0.1 concerning word-length functions. We use the
notation of the previous section, and in particular, the norm ‖·‖S determined by
K = KS . Here we will consider the (proper) faces of K of maximal dimension,
namely of dimension d−1. We will call them “facets” ofK, as is not infrequently
done. The interior points of the facets are the smooth points of the unit sphere
for ‖ · ‖S . Again our terminology and notation will not distinguish between
facets as intersections of K with hyperplanes, and as the corresponding subsets
of S. Because K has only a finite number of extreme points, every point of
the boundary of K is contained in at least one facet, and there are only a
finite number of facets. Each facet F has a unique support functional, which
we denote by σF . Furthermore, F contains a basis for Rd, and consequently
GF is of finite index in G. This has the crucial consequence for us that the
orbit, OF , of bF in ∂`G under the action α, is finite. (Apply Proposition
8.6.) We consider the restriction map from C(∂`G) onto C(OF ). Since it is α-
equivariant, it gives an algebra homomorphism, ΠF , from C∗(G,C(∂`G), α, c)
onto C∗(G,C(OF ), α, c). If we let π and M denote also the corresponding
homomorphisms of G and C(OF ) into this latter algebra, and if for each y ∈ G
we let ψy denote the restriction of ϕy to OF , then

ΠF ([M`, πf ]) = Σf(y)Mψyπy.

Let Q be a set of coset representatives for GF in G containing 0. Then we can
express the above as

Σq∈Q(Σu∈GF f(u+ q)Mψu+q
c̄(u, q)πu)πq.

From Corollary 8.5 we see that ψu+q = ψq + σF (u). For each q let gq be the
function on GF defined by gq(u) = f(u + q)c̄(u, q). We can also view gq as a
function on G by giving it value 0 off GF . Then we can rewrite our previous
expression for ΠF ([M`, πf ]) as

Σq(Σug
q(u)(σF (u) +Mψq )πu)πq.

As in Section 7 let Ĝ = Td be the dual group of G, and denote the pairing
between G and Ĝ by 〈x, s〉. Let β now denote the usual dual action of Ĝ on
C∗(G,C(OF ), α, c), so that

βs(Mψπx) = 〈x, s〉Mψπx.

Then the finite group (G/GF )∧ can be identified with the set of characters on G
which take value 1 on GF . We can thus restrict β to (G/GF )∧ and average over
(G/GF )∧. This gives a projection of norm 1 onto the subalgebra of elements
supported on GF , and this projection on functions on G is just restriction of
functions to GF . If for each fixed q we apply this projection to the product
with π∗q of the above expression for ΠF ([M`, πf ]), we find that

‖[M`, πf ]‖ ≥ ‖Σugq(u)(σF (u) +Mψq )πu‖
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for each q. The norm on the right is that of C∗(G,C(OF ), α, c). But
section 2.27 of [47] tells us that C∗(GF , C(OF ), α, c) is a C∗-subalgebra of
C∗(G,C(OF ), α, c) under the evident identification of functions. Thus we can
view the operator on the right as being in C∗(GF , C(OF ), α, c), where we are
here restricting α and c to GF . But from Proposition 8.6 we know that the
action α of GF on OF is trivial. Thus we have the decomposition

C∗(GF , C(OF ), α, c) ∼= C(OF )⊗ C∗(GF , c).
Let aq = Σgq(u)πu and bq = Σgq(u)σF (u)πu. Then in terms of the above
decomposition we are looking at I ⊗ bq + ψq ⊗ aq. From Proposition 8.7 we
know that ψq is not constant on OF for q 6= 0. Note that ψ0 ≡ 0. For given
q 6= 0 let mj for j = 1, 2 be two distinct values of ψq. Upon evaluating at the
points where ψq takes these values, and using our earlier inequality, we see that

‖bq +mjaq‖ ≤ ‖[M`, πf ]‖ = L`(f)

for j = 1, 2. Upon writing the inequalities as

‖m−1
j bq + aq‖ ≤ |mj |−1L`(f)

and using the triangle inequality to eliminate aq, and simplifying, we find that

‖bq‖ ≤ (|m1|+ |m2|)/|m1 −m2|L`(f).

(If either mj is 0 the path is simpler.) Of course m1 and m2 depend on q. Thus
we see that we have found a constant, kq, such that ‖bq‖ ≤ kqL`(f). For q = 0
we have the same inequality with k0 = 1 since ψ0 = 0. Much as in Section 7
set XF f = ΣσF (x)f(x)πx. Then

XF f = ΣσF (x)f(x)πx = Σq(Σu∈GF σF (u+ q)f(u+ q)c̄(u, q)πu)πq

= ΣqσF (q)(ΣuσF (u)gq(u)πu)πq = ΣσF (q)bqπq.

When we combine this with the inequality obtained earlier for ‖bq‖, we obtain

‖XF f‖ ≤ (Σ|σF (q)|kq)L`(f).

Observe that the σF (q)’s and kq’s do not depend on f , but only on F and the
choice Q of coset representatives. Thus for each facet F we have obtained a
constant, kF , such that

‖XF f‖ ≤ kFL`(f)

for all f ∈ Cc(G). Note that knowing that kF is finite is the crucial place where
we use that the number of coset representatives in Q is finite.

Just as toward the end of Section 7, we have the dual action β of Td on
C∗(G, c), and the corresponding differential df of any f ∈ Cc(G), such that
df(σF ) = iXF f . Then our inequality above gives, much as in Section 7,

‖df(σF )‖ ≤ kFL`(f).

Recall now the norm ‖ · ‖S determined by K = KS . The σF ’s are exactly
the support functionals corresponding to the smooth points of the unit sphere
for ‖ · ‖S . Let ‖df‖S denote the norm of the linear map df using the dual norm
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‖ · ‖′S . Also let k = max{kF : F is a facet}. Then from Proposition 6.7 we
conclude, much as in Section 7, that

‖df‖S ≤ kL`(f).

Then just as in Section 7 we conclude that L` is a Lip-norm. This concludes
the proof of Main Theorem 0.1.

¤
Since the norm ‖ · ‖′S on V ′ does not come from an inner product, and

V ′ can be thought of as the analogue of the tangent space at the non-existent
points of the quantum space C∗(G, c), we can consider that we have here a
non-commutative Finsler geometry (as also in section 3 of [39]). The metric
geometry from L` also, in a vague way, seems Finsler-like.

I imagine that the above considerations can be generalized so that the
Main Theorem can be extended to weighted-word-length functions, where each
generator has been assigned a weight. I imagine that they can also be gener-
alized to deal with extensions of Zd by finite groups. But I have not explored
these possibilities.

Since our estimates for the proof of the Main Theorem depend just on the
behavior of the ϕy’s on the boundary, the conclusions of the Main Theorem will
also be valid if ` is replaced by the translation-bounded function `+h where h
is any function in C∞(Zd).

10. The free group

We briefly discuss here how the ideas developed earlier apply to the free
(non-Abelian) group on two generators, G = F2. Denote the two generators
by a and b, and take them and their inverses as our generating set S. Let `
denote the corresponding length function. It is well-known [21] that F2 is a
hyperbolic group, and that its Gromov boundary, ∂hG, is described as the set
of all infinite (to the right) reduced words in the elements of S. (The “h” in
∂hG is for “hyperbolic”—it does not denote a length function.) The action of
G on ∂hG is the evident one by “left concatenation” (and then reduction). We
can obtain the topology of ∂hG and of the compactification of G as follows.
(See comment ii) on page 104 of [21].) To include the elements of G we need
a “stop” symbol. We denote it by p. We let S ′ denote S with p added, and

we let
∞∏
S′ denote the set of sequences with values in S ′, with its compact

topology of “index-wise” convergence.

Notation 10.1. Let Ḡh be the subset of
∞∏
S′ consisting of all sequences such

that

1) If p occurs in the sequence then all subsequent letters in that sequence
are p.

2) The sequence is reduced, in the sense that a and a−1 are never adjacent
entries, and similarly for b and b−1.
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It is easily seen that Ḡh is a closed subset of
∞∏
S′, so compact. We identify

the elements of G with the words containing p (and in particular, we identify
the identity element of G with the constant sequence with value p). With this
understanding, it is easily seen that G is an open dense subset of Ḡh. We
identify ∂hG with the infinite words which do not contain p.

The group G again acts on Ḡh by left concatenation. It is easily seen that
this action is by homeomorphisms. Consider the function ϕa on G. For any
word w we have `(a−1w) = `(w) + 1 if w begins with the letters a−1, b or b−1,
or is the identity element, while `(a−1w) = `(w)− 1 if w begins with the letter
a. Thus ϕa(w) = `(w) − `(a−1w) has value 1 if w begins with the letter a,
and value −1 otherwise. But we can extend ϕa to Ḡh by exactly this same
prescription, and it is easily seen that this extended ϕa is continuous on Ḡh.
We do the same with ϕb, ϕa−1 and ϕb−1 . By using the 1-cocycle identity 2.2
inductively, we see that each ϕx for x ∈ G extends to a continuous function
on Ḡh (in a unique way since G is dense). Of course the functions in C∞(G)
extend by giving them value 0 on ∂hG, and the constant functions also extend.
In this way we identify C(Ḡ`) with a unital subalgebra of C(Ḡh).

Let us see now that the subalgebra C(Ḡ`) separates the points of Ḡh.
Because the subalgebra contains C∞(G), it is clear that we only need to treat
the points of ∂hG. Let v, w ∈ ∂hG with v 6= w. Then there must be a first
entry where they differ. That is, we can write them as v = xṽ, w = xw̃ where x
is a finite word while ṽ and w̃ differ in their first entry. Suppose the first entry
of ṽ is a while the first entry of w̃ is not a. Then from what we saw above

(αxϕa)(v) = ϕa(x−1v) = ϕa(ṽ) = 1,

while in the same way (αxϕa)(w) = −1. Thus the subalgebra C(Ḡ`) separates
the points of Ḡh, and so by the Stone–Weierstrass theorem C(Ḡ`) = C(Ḡh),
so that Ḡ` = Ḡh. Thus in this case the metric and hyperbolic boundaries
coincide. (The referee has pointed out that if instead we take as generating
set {a±1, a±2, b±1}, then the resulting metric compactification will be different
from that described above, because just as in Example 5.2 we will obtain two
“parallel” geodesic rays, namely (e, a2, a4, . . . ) and (a, a3, a5, . . . ), which will
give different Busemann points.)

Each w ∈ ∂hG specifies a unique geodesic ray to it from e, namely
e, w1, w1w2, w1w2w3, . . . . Thus every point of ∂`G is a Busemann point. It
is well-known [2] that the action of G on ∂hG is amenable. If one uses the
definition of amenability in terms of maps from ∂hG to probability measures
on G which was stated in Section 3, then this is seen by letting the n-th map,
mn, be the map which assigns to w ∈ ∂hG the probability measure which gives
mass 1/n to the first n points of the geodesic ray from e to w [2]. In view of
Theorem 3.7 this implies that the cosphere algebra S∗`A for the spectral triple

(A = C∗r (F2), `2(F2),M`) is C∗(G,C(∂hF2), α).
However, the action α on ∂hF2 does not have any finite orbits, and so I

do not see how to continue along the lines of the previous section to deter-
mine whether the metric on the state space S(C∗r (F2)) coming from the above
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spectral triple gives the state space the weak-∗ topology, or even just finite di-
ameter. The difficulty remains: What information can one obtain about ‖πf‖
if one knows that ‖[M`, πf ]‖ ≤ 1?
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les groupes réductifs sur un corps p-adique et pour certains groupes discrets
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d’automorphismes. J. Math. Pures Appl. (9), 47:101–239, 1968.

Marc Rieffel
Department of Mathematics
University of California
Berkeley, CA 94720-3840, USA
rieffel@math.berkeley.edu

Documenta Mathematica 7 (2002) 605–651



652

Documenta Mathematica 7 (2002)


