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Abstract. We introduce the notion of rigid embedding in a grid
surface, a new kind of plane drawing for simple triconnected planar
graphs. Rigid embeddings provide methods to (1) find well-structured
(cellular, here) minimal free resolutions for arbitrary monomial ideals
in three variables; (2) strengthen the Brightwell–Trotter bound on the
order dimension of triconnected planar maps by giving a geometric
reformulation; and (3) generalize Schnyder’s angle coloring of planar
triangulations to arbitrary triconnected planar maps via geometry.
The notion of rigid embedding is stable under duality for planar maps,
and has certain uniqueness properties.
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Introduction

Simple triconnected planar graphs admit numerous characterizations. Two
famous examples include Steinitz’ theorem on the edge graphs of 3-polytopes,
and the Koebe–Andreev–Thurston circle packing theorem (see [Zie95] for both).
These results produce “correct” planar (or spherical) drawings of the graphs in
question, from which a great deal of geometric and combinatorial information
flows readily.
This paper introduces a new kind of plane drawing for simple triconnected pla-
nar graphs, from which a great deal of algebraic and combinatorial information
flows readily. These geodesic embeddings inside grid surfaces provide methods
to

• solve the problem of finding well-structured (cellular, in this case) mini-
mal free resolutions for arbitrary monomial ideals in three variables;
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Planar Graphs as Minimal Resolutions 45

• strengthen the Brightwell–Trotter bound on the order dimension of tri-
connected planar maps [BT93] by giving a geometric reformulation; and

• generalize Schnyder’s angle coloring for planar triangulations [Tro92,
Chapter 6] to arbitrary triconnected planar maps via geometry.

We note that Felsner’s generalization of Schnyder’s angle coloring [Fel01] co-
incides with the orthogonal colorings independently discovered here as conse-
quences of geometric considerations. In parallel with circle-packed and polyhe-
dral graph drawings, additional evidence for the naturality of geodesic embed-
dings comes from their stability under duality, and the uniqueness properties
enjoyed by “correct” geodesic embeddings—called rigid embeddings in what
follows—for a given planar map.
The plan of the paper is as follows. Immediately following this Introduction is
a section containing two theorems summarizing the equivalences and construc-
tions forming main results of the paper. After that, the paper is divided into
three Parts.
Part I lays the groundwork for geodesic and rigid embeddings in grid surfaces,
and is geared almost entirely toward proving Theorem 5.1: the rigid embedding
theorem. Terminology for the rest of the paper is set in Section 1, which also
states a standard criterion for triconnectivity under edge contraction that serves
as an inductive tool in the proof of Theorem 5.1. Then Section 2 presents the
definition of grid surfaces, as well as the vertex and edge axioms for geodesic
and rigid embeddings. Their consequences, the region and rigid region axioms,
appear in Propositions 2.3 and 2.4. The first connection with order dimension
comes in Corollary 2.5.
Sections 3 and 4 consist of stepping stones to the rigid embedding theorem. The
basic inductive step for abstract planar maps is Lemma 3.1, which motivates
the preliminary grid surface construction of Lemma 3.2. Induction for grid
surfaces occupies the three Propositions in Section 4. They have been worded
so that their rather technical proofs (particularly that of Proposition 4.2) may
be skipped the first time through; instead, the Figures should provide ample
intuition.
Section 5 completes the induction with a few more arguments about abstract
planar maps. Corollary 5.2 recovers the Brightwell–Trotter bound on order
dimension from rigid embedding.
The focus shifts in Part II to the algebra of monomial ideals in three variables,
specifically their minimal free resolutions. A review of the standard tools oc-
cupies Section 6, while Section 7 recaps the more recent theory of cellular
resolutions, along with a triconnectivity result (Proposition 7.2) suited to the
applications here. Theorem 8.4 says how geodesic embeddings become min-
imal free resolutions. Corollary 8.5 then characterizes triconnectivity as the
condition guaranteeing that a planar map supports a minimal free resolution
of some artinian monomial ideal.
Section 9 displays even more reasons why rigid embeddings are better than
arbitrary geodesic embeddings: they have a strong uniqueness property (Corol-
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lary 9.1), which implies in particular that every minimal cellular resolution of
the corresponding monomial ideal is planar. Surprisingly, there can exist non-
planar cell complexes supporting minimal free resolutions of trivariate artinian
monomial ideals that are sufficiently nonrigid; Example 9.2 illustrates one.

Sections 10–12 are devoted to producing minimal cellular free resolutions of ar-
bitrary monomial ideals in three variables (Theorem 11.1). The deformations
reviewed in Section 10 serve as part of the algorithmic solution pseudocoded in
Algorithm 11.2. The proof of correctness for the algorithm and the theorem,
which occupy Section 12, are rather technical and delicate. As with Section 4,
the pictures may give a better feeling for the methods than the proofs them-
selves, at least upon first reading.

Part III continues where Part I left off, with more combinatorial theory for pla-
nar maps. Section 13 introduces orthogonal coloring, which generalizes Schny-
der’s angle coloring and abstracts the notion of geodesic embedding (Propo-
sition 13.1). Then, Section 14 shows how orthogonal coloring encodes the
abstract versions of the orthogonal flows that played crucial roles in Section 2.
As a consequence, Proposition 14.2 shows that orthogonal flows are examples
of—but somewhat better than—normal families of paths, connecting once again
with the work of Brightwell and Trotter on order dimension. Section 15 demon-
strates how Alexander duality for grid surfaces (or monomial ideals) manifests
itself as duality for planar maps geodesically embedded in grid surfaces.

Finally, Section 16 presents some open problems related to the notions devel-
oped in earlier sections, including a conjecture on orthogonal colorings and
some problems on classifying cell complexes supporting minimal resolutions.
Further questions concern applications of the present results to broader com-
binatorial algebraic problems, notably how to describe the “moduli space” of
all minimal free (or injective) resolutions of ideals generated by a fixed number
of monomials.

After completing an earlier version of this paper, the author was informed that
Stefan Felsner had independently discovered the theory in Sections 13 and 14
[Fel01, Sections 1 and 2]. In addition, Felsner proved Conjecture 16.3 in [Fel02]
after reading the preliminary version of this paper. See Section 16.3 for details
and consequences.

Part III is almost logically independent of Part II, the only exceptions being
Lemmas 8.2 and 8.3. Thus, the reader interested primarily in the combinatorics
of planar graphs (as opposed to resolutions of monomial ideals) can read Parts I
and III, safely skipping everything in Part II except for these two lemmas.
The reader interested primarily in resolutions of monomial ideals should skip
everything in Sections 3–5 except for the statement of Theorem 5.1.

Acknowledgements

This paper grew out of conjectures developed with Bernd Sturmfels during a
memorable train ride through the Alps, and subsequent discussions resulting in
the expository paper [MS99], where some of the results were announced without
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Summary theorems

For the sake of perspective and completeness, we collect the main ideas of
the paper into a pair of precisely stated summary theorems. Their proofs are
included, in the sense that the appropriate results from later on are cited. All
of the notions appearing in Theorems A and B will be introduced formally in
due time; until then, brief descriptions along with Figure 1 should suffice.
Let M be a connected simple planar map—that is, a graph embedded in a
surface S homeomorhpic to the plane R2. All graphs in this paper have finitely
many vertices and edges. Fix a point∞ ∈ S far from M , and define the exterior
region of M to be the connected component of S rM containing ∞. Given
three vertices ẋ, ẏ, ż ∈M bordering the exterior region, form the extended map
M∞(ẋ, ẏ, ż) by connecting ẋ, ẏ, ż to ∞. Call a graph triconnected either if it is
a triangle, or if it has at least four vertices of which deleting any pair along with
their incident edges leaves a connected graph. A set of paths leaving a fixed
vertex ν ∈M is said to be independent if their pairwise intersection is {ν}.
Let k[x, y, z] be the polynomial ring in three variables over a field k, and let I ⊂
k[x, y, z] be an ideal generated by monomials. The grid surface S corresponding
to I is the boundary of the staircase diagram of I, which is drawn (as usual) as
the stack of cubes corresponding to monomials not in I. Rigid embedding of
a planar map M in S involves identifying the edges of M as certain piecewise
linear geodesics in S, and constitutes an inclusion of the vertex-edge-face poset
of M into N3. Orthogonal coloring M involves coloring the angles in M with
three colors according to certain rules. Since it would take too long to do real
justice to the definitions of ‘rigid embedding’ and ‘orthogonal coloring’ here,
Figure 1 will have to do for now. The outer corners in the orthogonal coloring
and the vectors on the axes in S are called axial vertices. The grid surface S
is called axial when I is artinian.
Suppose M is a cell complex (finite CW complex) whose faces are labeled by
vectors in N3, in such a way that the union M¹α of faces whose labels precede
α ∈ N3 is a subcomplex of M for every α. Roughly speaking, M supports a
cellular free resolution of I if the boundary complex of M¹α with coefficients
in k is the N3-degree α piece of a free resolution of I, for every α ∈ N3.

Theorem A Let M be a planar map. The following are equivalent.

1. M has three vertices ẋ, ẏ, ż bordering its exterior region for which
M∞(ẋ, ẏ, ż) is triconnected.

2. M has three vertices ẋ, ẏ, ż bordering its exterior region to which every
vertex of M has independent paths.

3. M has an orthogonal coloring with axial vertices ẋ, ẏ, ż.

4. M can be rigidly embedded in an axial grid surface.
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Figure 1: Orthogonal coloring and rigid embedding of an extended map

5. M supports a cellular minimal free resolution of some artinian monomial
ideal in k[x, y, z].

Every artinian monomial ideal in k[x, y, z] has a minimal cellular resolution
supported on a cell complex M satisfying these conditions; in fact, Algo-
rithm 11.2 produces such an M automatically.

Proof. 4 ⇒ 3 follows from Proposition 13.1.
3 ⇒ 2 follows from Proposition 14.2.
2 ⇒ 1 follows easily from the definitions.
1 ⇒ 4 is Theorem 5.1.
4 ⇒ 5 follows from Theorem 8.4.
5 ⇒ 1 is Proposition 7.2.
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The final statement comes from Theorem 11.1 and Proposition 12.4. 2

Similar—but weaker—statements apply to minimal cellular free resolutions of
arbitrary (not necessarily artinian) monomial ideals in k[x, y, z].

Theorem B Let N be a planar map. The following two conditions are equiv-
alent.

1. N can be rigidly embedded in some grid surface.

2. N can be obtained by deleting ẋ, ẏ, ż and all edges incident to them from
some planar map M satisfying the equivalent conditions in Theorem A.

These conditions imply that

3. N supports a minimal free resolution of some monomial ideal in k[x, y, z].

Every monomial ideal in k[x, y, z] has a minimal free resolution supported on
a planar map N satisfying conditions 1 and 2; such an N can be produced
algorithmically.

Proof. 1 ⇒ 2 follows from Theorem 8.4 and Lemma 8.2.
2 ⇒ 1 follows from Theorem 5.1 and Lemma 8.2.
1 ⇒ 3 follows from Theorem 8.4.
The first half of the final statement is Theorem 11.1 along with the first para-
graph of its proof on p. 80; add in Proposition 12.4 for the algorithmic part. 2

In reality, the more detailed versions later on are considerably more precise,
demonstrating how some of the equivalent descriptions naturally give rise to
others.

Part I
Geodesic embedding in grid surfaces

1 Planar maps

Let V = {ν1, . . . , νr} be a finite set. A graph G with vertex set V is uniquely
determined by a collection E ⊆

(V
2

)
of edges, each consisting of a pair of vertices.

Except for one paragraph at the beginning of Section 15, we consider only
simple graphs—that is, without loops or multiple edges—so G is an abstract
simplicial complex of dimension 1 having vertex set V. Thus G can be regarded
as a topological space, via any geometric realization.
Let S be a surface homeomorphic to the Euclidean plane R2. A plane drawing
of G in S is a continuous morphism G ↪→ S of topological spaces that is a
homeomorphism onto its image. If G is connected, the image M is called
a planar map. Deleting the images of the vertices and edges of G from S
leaves several connected components whose closures are the regions of M . The
unique unbounded region is called the exterior region of M . Two planar maps
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are isomorphic if they result from plane drawings of the same graph G, their
regions have the same boundaries in G, and the boundaries of their exterior
regions correspond. We often blur the distinction between a planar map and
the underlying graph, by not distinguishing a vertex (resp. edge) of G from the
corresponding point (resp. arc) of M in the surface S.
A graph G is k-connected either if G is the complete graph on k vertices, or if
G has at least k + 1 vertices, and given any k − 1 vertices ν1, . . . , νk−1 of G,
the deletion del(G; ν1, . . . , νk−1) is connected. Here, the deletion is obtained
by removing ν1, . . . , νk−1 as well as all edges containing them from G. In case
k = 2 or 3, the graph G is called biconnected or triconnected, respectively.
Suppose that e is an edge of a planar map M , and that none of the (one or two)
regions containing e is a triangle. The contraction M/e of M along e is obtained
by removing the edge e and identifying the two vertices of e. The underlying
graph of M/e is the topological quotient G/e; it is still simple because e is the
only edge connecting its vertices in G (so G/e has no loops) and no triangles
contain e in G (so G/e has no multiple edges). Some plane drawing of M/e
is obtained by literally contracting the edge e in M (technically: there is a
homotopy G× [0, 1]→ S such that G× t→ S is a plane drawing of G for t < 1,
while G× 1→ S is a composition G→ G/e→ S with the second map being a
plane drawing). Contraction will be a crucial inductive tool, via a well-known
criterion for triconnectivity under contraction:

Proposition 1.1 Let M be a triconnected planar map with at least four ver-
tices, and let e be an edge. If there exist two regions F, F ′ of M such that

1. e ∩ F and e ∩ F ′ are the two vertices of e, and

2. F ∩ F ′ is nonempty,

then either e borders a triangle or the contraction M/e fails to be tricon-
nected. Conversely, if e borders no triangles and M/e is triconnected, then
no such F, F ′ exist.

Thinking of the surface S ∼= R2 as the 2-sphere minus ∞, many of the planar
maps M in this paper result by embedding some graph G∞ in the sphere
with ∞ as a vertex, and then considering the induced plane drawing M of
del(G∞;∞). When this is the case, we frequently need to consider the subset
M∞ ⊂ S obtained by omitting the point ∞ from the plane drawing of G∞
in the sphere; thus some of the vertices in M connect to the missing point ∞
by unbounded arcs in S. More generally, define an extended map M∞ ⊂ S
to be the union of a planar map M and a set of infinite nonintersecting arcs
connecting some of its vertices to ∞. The closure M∞ of M∞ in the sphere
need not be a simple graph because it can have doubled edges: some vertex in
M could have two or more unbounded arcs in M∞ containing it.
Suppose the edges contained in the exterior region of M form a simple closed
curve, called the exterior cycle. This occurs, for instance, when M is tricon-
nected. Three vertices ẋ, ẏ, ż ∈ M are called axial if they are encountered
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(in order) proceeding counterclockwise around the exterior cycle. Having cho-
sen axial vertices, define M∞(ẋ, ẏ, ż) ⊂ S to be the union of M and three
unbounded arcs, called the x, y, and z-axes, connecting ẋ, ẏ, ż to∞. We some-
times blur the distinction between M∞(ẋ, ẏ, ż) and its closure M∞(ẋ, ẏ, ż) in
the sphere. For instance, we say that M∞(ẋ, ẏ, ż) is triconnected if the graph
underlying M∞(ẋ, ẏ, ż) is.

2 Grid surfaces

Let R denote the real numbers. Write vectors in R3 as α = (αx, αy, αz), and
partially order R3 by setting α ¹ β (read ‘α precedes β’) whenever αu ≤ βu
for all u ∈ {x, y, z}. Say that α ∈ R3 strongly precedes β ∈ R3 when αu < βu
for all u = x, y, z; this is stronger than saying α ≺ β. (Throughout this paper,
the letter u denotes any one of x, y, z, in the same way that xi denotes one
of x1, . . . , xn.) Use α∨β and α∧β to denote the join (componentwise maximum)
and meet (componentwise minimum) of α, β ∈ R3.
Let V ⊂ N3 ⊂ R3 be a set of pairwise incomparable elements, where N denotes
the set of nonnegative integers. The order filter

〈V〉 = {α ∈ R3 | α º ν for some ν ∈ V}

generated by V is a closed subset of the topological space R3. Its boundary
SV is called a grid surface or staircase. Orthogonal projection onto the plane
x+ y + z = 0 restricts to a homeomorphism SV ∼= R2. (This homeomorphism
gives the correspondence between rhombic tilings of the orthogonal projection
of the |ẋ| × |ẏ| × |ż| parallelepiped and plane partitions of the |ẋ| × |ẏ| grid
with parts at most |ż|. The grid surface in Figure 1 clearly demonstrates
the homeomorphism: the diagram is, after all, drawn faithfully on the two-
dimensional page.)
One of the basic properties of grid surfaces is that α ∈ SV whenever ρ, σ ∈ SV
and ρ ¹ α ¹ σ. Therefore, if ρ, σ ∈ SV and ρ ¹ σ, then SV contains the line
segment in R3 connecting ρ to σ. In particular, if ν, ω ∈ V satisfy ν∨ω ∈ SV ,
then SV contains the union [ν, ω] of the two line segments joining ν and ω to
ν∨ω; we refer to such arcs as elbow geodesics1 in SV . When ν and ω are the
only vectors in V preceding ν∨ω, the arc [ν, ω] is called a rigid geodesic.
Denote the nonnegative rays of the coordinate axes in R3 by X, Y , and Z, and
use the letter U to refer to any of X,Y, Z. The ray ν + U intersects SV in an
oriented line segment Uν called the orthogonal ray leaving ν in the direction
of U . Thus every point in V has precisely three orthogonal rays, one parallel
to each coordinate axis and all contained in SV , although some orthogonal rays
may be unbounded while others are bounded.
If Uν is bounded, so it has an endpoint besides ν, then the other endpoint
of Uν can always be expressed as a join ν∨ω for some ω ∈ V. When there is

1Elbow geodesics do minimize length for the metric on SV induced by the usual metric
on R3, but this fact has no practical application in this paper.
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exactly one such point ω, so [ν, ω] is a rigid geodesic, we say that ν or Uν points
toward ω.
Observe that ν∨ω must share two coordinates with at least one (and perhaps
both) of ν and ω, so every elbow geodesic contains at least one orthogonal ray.
Making compatible choices of elbow geodesics containing all orthogonal rays
yields a planar map. To be precise, a plane drawing M ↪→ SV is a geodesic
grid surface embedding, or simply a geodesic embedding in SV , if the following
two axioms are satisfied:

(Vertex axiom) The vertices of M coincide with V.
(Elbow geodesic axiom) Every edge of M is an elbow geodesic

in SV , and every bounded orthogonal ray in SV is part of
an edge of M .

With the following stronger edge axiom instead, M ↪→ SV is a rigid embedding,
which we sometimes phrase by saying that M is rigidly embedded in SV :

(Rigid geodesic axiom) The elbow geodesic exiom holds, and every
edge of M is a rigid geodesic in SV .

The rigid geodesic axiom really consists of three parts, each of which puts
nontrivial restrictions on SV or M : every bounded orthogonal ray in SV is
part of a rigid geodesic (a priori, this has nothing to do with M); every rigid
geodesic in SV is an edge of M ; and every edge of M is a rigid geodesic in SV .

Lemma 2.1 Let M ↪→ SV be a geodesic or rigid embedding. Suppose V is in
order-preserving bijection with another set Ṽ of vertices via ν ↔ ν̃, so that
νu ≤ ωu ⇔ ν̃u ≤ ω̃u for all ν, ω ∈ V and u ∈ {x, y, z}. Then the elbow
or rigid geodesics in SṼ constitute another geodesic or rigid embedding of M .
In particular, linearly scaling one or more coordinate axes by integer factors
preserves geodesic or rigid embeddings.

Proof. Purely order-theoretic properties of V determine whether ν and ω are
the endpoints of an elbow geodesic, or whether ν points toward ω. 2

Any geodesic embedding M ↪→ SV determines an extended map

M∞ = M ∪ (unbounded orthogonal rays).

A special case occurs when SV is axial, having axial vectors

ẋ = (|ẋ|, 0, 0), ẏ = (0, |ẏ|, 0), and ż = (0, 0, |ż|)

in V for nonzero |ẋ|, |ẏ|, |ż| ∈ N. Thus, if M is geodesically embedded in an
axial grid surface SV , we can define the axial vertices of M to be the axial
vectors in V, and set M∞(ẋ, ẏ, ż) = M ∪Xẋ ∪Yẏ ∪Zż. (Precisely two bounded
orthogonal rays leave each axial vertex, while all three orthogonal rays leaving
any other vertex are bounded). Conversely, if M comes equipped with axial
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vertices ẋ, ẏ, ż, then we require any geodesic embedding M ↪→ SV to send these
axial vertices to axial vectors in V.
Suppose M is geodesically embedded in the axial grid surface SV . The edge
of M leaving any vertex ν 6= ż along the vertical orthogonal ray Zν con-
nects ν to another vertex ω with strictly larger z-coordinate, but weakly smaller
x and y-coordinates. Continuing in this manner constructs an orthogonal flow
[ν, ż] from ν to ż that is increasing in z, but weakly decreasing in x and y.
It follows that [ν, ż] and the similarly constructed paths [ν, ẋ] and [ν, ẏ] are
independent, meaning that they intersect pairwise only at ν itself. Since
[ẋ, ẏ], [ẏ, ż], and [ż, ẋ] partition the exterior cycle of M into three arcs, the
contractible sets bounded by

[ẋ, ν, ẏ] := [ν, ẋ] ∪ [ν, ẏ] ∪ [ẋ, ẏ]

and its cyclically permuted analogues partition the regions of M .

Lemma 2.2 Suppose M ↪→ SV is an axial geodesic embedding, and ν ∈ V
borders a region contained in [ẋ, ω, ẏ]. Then νz ≤ ωz, with strict inequality
if ν 6∈ [ω, ẋ] ∪ [ω, ẏ]. A similar statement holds for arbitrary permutations
of x, y, z.

Proof. The orthogonal flow [ν, ż] must cross [ω, ẋ] or [ω, ẏ], at ν ′ ∈ [ω, ẋ], say.
Concatenating the part of [ω, ẋ] from ω to ν ′ with the part of [ν, ż] from ν ′ to ν
yields a path from ω to ν that is weakly decreasing in z. This path is strictly
decreasing if ν 6∈ [ω, ẋ] ∪ [ω, ẏ], for then it traverses (downwards) the vertical
orthogonal ray Zν . 2

Proposition 2.3 (Region axiom) Let M ↪→ SV be an axial geodesic embed-
ding, and F a bounded region of M . If αF is the join of the vertices of F , then
αF ∈ SV , and every vertex ν ∈ F shares precisely one coordinate with αF .

Proof. If ω ∈ V, then Lemma 2.2 implies there is some u ∈ {x, y, z} such that
νu ≤ ωu for all ν ∈ F . This shows ω cannot strongly precede αF , so αF ∈ SV ;
every vertex ν ∈ F therefore shares at least one coordinate with αF . Suppose by
symmetry that νz = (αF )z. The two edges of F containing ν cannot increase
in z, so they exit ν counterclockwise of Xν and clockwise of Yν . At least
one of these edges strictly increases in x, and another strictly increases in y,
completing the proof. 2

The next proposition says that regions in rigid axial embeddings are 2-
dimensional analogues of rigid geodesics. In addition to its applications
throughout Sections 3 and 4, this fact will play a crucial role in Corollary 5.2,
by way of Corollary 2.5, below. Refer to Figure 2 for an illustration of the rigid
region axiom as well as its failure for nonrigid embeddings; ν and σ are vertices
of an elbow geodesic, but ρ ¹ ν∨σ in the latter case. The diagram is labeled
as in the coming proof of Proposition 2.4.
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Figure 2: The rigid region axiom and its failure for nonrigid embeddings

Proposition 2.4 (Rigid region axiom) Let M ↪→ SV be a rigid axial em-
bedding, and F a region of M∞(ẋ, ẏ, ż). If αF is the join of the vertices of F
and ω ∈ SV , then ω ∈ F ⇔ ω ¹ αF .

Proof. The claim is obvious if F is one of the three unbounded regions, so
assume F is bounded. Since ω ∈ F ⇒ ω ¹ αF by definition, let ω 6∈ F ,
and assume F is contained in [ẋ, ω, ẏ] by symmetry. Either ωz > νz for some
vertex ν ∈ F with maximal z-coordinate νz = (αF )z, in which case the proof
is trivial, or all vertices of F with z-coordinate (αF )z lie on [ω, ẋ] ∪ [ω, ẏ], by
Lemma 2.2. Assume there is one on [ω, ẏ] by transposing x and y if necessary,
and let ν ∈ F ∩ [ω, ẏ] be closest to ω.
The vertex ρ ∈ [ω, ẏ] pointing toward ν has the same z-coordinate as ν (be-
cause ωz ≥ ρz ≥ νz and ωz = νz), so the rigid geodesic [ρ, ν] consists of the
orthogonal rays Yρ and Xν . Of ν’s two neighbors in F , let σ have smaller
y-coordinate. Since ρ 6= σ and σ 6∈ [ω, ẏ], the edge connecting ν to σ exits ν
strictly counterclockwise of Xν and strictly clockwise of Yν . Thus σz < νz,
whence σx = (αF )x by the region axiom (Proposition 2.3). But ρ 6¹ ν∨σ by
the rigid geodesic axiom, while ρz = νz = (ν∨σ)z and ρy < σy = (ν∨σ)y by
construction. Therefore ρx > (ν∨σ)x = σx = (αF )x. The proof is complete
because ω decreases in x along [ω, ẏ] to ρ. 2

Corollary 2.5 Let M ↪→ SV be an axial rigid embedding. If P is a vertex,
edge, or bounded region of M , let αP denote join of the vertices in P . The map
sending P 7→ αP constitutes an embedding in N3 of the vertex-edge-face poset
of M .

Proof. Immediate from the vertex, rigid geodesic, and rigid region axioms. 2

Recall that the order dimension of a partially ordered set (poset) P is the
smallest d ∈ N such that P includes into the poset Rd. The previous corollary
says that the order dimension of an axial rigidly embedded planar map is no
greater than 3. See [Tro92] for more on order dimension.
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3 Gluing geodesic embeddings

Let M be a planar map with axial vertices ẋ, ẏ, ż and extended map M∞ =
M∞(ẋ, ẏ, ż). Suppose C is a simple cycle in M having three counterclockwise
ordered vertices ẍ, ÿ, z̈, and furthermore that C bounds a closed disk R ⊂ S
that is a union of bounded regions in M . Following Brightwell and Trotter
(cf. [Tro92, Chapter 6], although our definition differs slightly), we call C a
ring if every edge of M not contained in R intersects R in a (possibly empty)
subset of {ẍ, ÿ, z̈}. The double-dotted vertices play the roles of axial vertices
for a smaller map N = M ∩ R “glued into” M by external edges emanating
from N at ẍ, ÿ, z̈. Although we allow ü for u ∈ {x, y, z} to equal the original
axial vertex u̇ ∈M , we exclude the case where C is the exterior cycle of M by
referring to a proper ring.
Assume for each u = x, y, z that the vertex ü meets at least one edge in M∞
not contained in R (this occurs when M∞ is triconnected). If there are at least
two such edges then set ü = ü. Otherwise, call the unique edge eü and name
its other endpoint ü. Here, ü = ∞ is allowed because ü = u̇ is; but if C is
a proper ring, then at most one of ẍ, ÿ, z̈ can equal ∞, because there are no
proper rings containing two axial vertices u̇ ∈ {ẋ, ẏ, ż} such that R contains all
of their edges in M . Indeed, it would be impossible to choose the third vertex ü
from the pair of last points on the exterior cycle of M going from the two axial
vertices on C toward the third.
The closure in the 2-sphere of the subset M∞rR is a planar map whose inter-
section with R equals {ẍ, ÿ, z̈}. Construct the contraction M∞/R by leaving off
the edges {eü | ü 6= ü} as well as their endpoints ü on C, and then connecting
ẍ, ÿ, z̈ to a new vertex τ inside R. View M∞/R := (M∞/R)r∞ as being the
extension of a map M/R = del(M∞/R;∞). Thus M∞/R = (M/R)∞ has τ as
a vertex, and still has axes drawn to∞, although τ might replace one of ẋ, ẏ, ż
as an axial vertex. When τ replaces u̇, however, we are free to choose τ = u̇,
so we still write (M/R)∞(ẋ, ẏ, ż).

Lemma 3.1 Let M∞(ẋ, ẏ, ż) be triconnected and M contain a proper ring C as
above. Then both M ∩R and M/R are planar maps, with axial vertices, whose
extended maps (M ∩R)∞(ẍ, ÿ, z̈) and (M/R)∞(ẋ, ẏ, ż) are triconnected. Each
of M ∩R and M/R contains fewer edges and strictly fewer regions than M .

Proof. Deleting from M∞ any pair of vertices in M leaves every remaining
vertex ν ∈M ∩R connected to {ẍ, ÿ, z̈}, because every path connecting ν to∞
in M∞ passes through {ẍ, ÿ, z̈}. By the same argument, every vertex in M∞
that remains after deleting any pair of vertices in M is connected to R—and
hence to τ—in the deletion. (The removal of the edges eü ensures that M/R
has no bivalent vertices on the way to τ .) The fact that ẋ, ẏ, ż and ẍ, ÿ, z̈ can be
chosen as axial vertices follows from the triconnectivity of the extended maps
of M/R and M ∩R.
Now M has at least one region inside (resp. outside) R, because C is a simple
cycle (resp. a proper ring). Thus M/R (resp. M ∩R) has strictly fewer regions
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than M . The edge number inequality is obvious for M ∩ R. For M/R, the
number of edges is at most E + 3, counting the edges to τ , where E is the
number of edges in M r R. But the number of edges in M is at least E + 3,
because R contains the cycle C. 2

Let M and N be planar maps with axial vertices (ẋ, ẏ, ż) and (ẍ, ÿ, z̈), respec-
tively, such that M∞(ẋ, ẏ, ż) and N∞(ẍ, ÿ, z̈) are both triconnected. We now
show how to glue N into M at a vertex τ ∈M that is trivalent in M∞. Let the
counterclockwise ordered neighbors of τ be α, β, γ (one of which might be ∞)
in M∞. (Think of M and N as M/R and M∩R from Lemma 3.1, respectively.)
Start by replacing τ with a small triangle in M∞ (a ‘Y –∆’ transformation),
adding three new vertices in the process. This action requires working in M∞
rather than M if τ ∈ {ẋ, ẏ, ż}. Next, replace the new triangle and its interior
with N , in such a way that α, β, γ ∈M connect to the axial vertices ẍ, ÿ, z̈ ∈ N
via edges eẍ, eÿ, ez̈, called tethers in M∞. The result is an extended map for
M ∪τ N , the tethered gluing of N into M at τ . Contracting some or all of the
tethers yields a gluing of N into M , provided the resulting map is simple and
triconnected.
The construction of the tethered gluing works at the level of grid surfaces. For
instance, the hypotheses in the next lemma can easily be attained by scaling M .
This is a key observation, making the induction in the proof of Theorem 5.1
possible. The left columns of Figures 5 and 4 illustrate examples of SVM ,SVN , τ ,
and M ∪τ N ↪→ SV .

Lemma 3.2 Let M ↪→ SVM and N ↪→ SVN be rigid embeddings with respective
axial vertices ẋ, ẏ, ż and ẍ, ÿ, z̈, and suppose τ ∈M∞(ẋ, ẏ, ż) is trivalent. If Uτ
has length at least m+ 1 for U = X,Y, Z, then τ is the unique vector in VM
preceding τ + m1, where 1 = (1, 1, 1). If, in addition, |ü| ≤ m for u = x, y, z
and

V = (VM r τ) ∪ (τ + VN )

then the rigid geodesics in SV provide a rigid embedding of the map M ∪τ N .

Proof. The orthogonal raysXτ , Yτ , Zτ point toward α, β, γ (one of these may be
∞) in SVM because τ is trivalent. Each vertex ν ∈ VM with ν 6= τ has νx ≥ αx,
νy ≥ βy, or νz ≥ γz. Indeed, if ν lies in [ẋ, τ, ẏ] (say), then considering where
the orthogonal flow [ν, ż] intersects [τ, ẋ] ∪ [τ, ẏ] shows that either νx ≥ αx
or νy ≥ βy. Thus τ ¹ τ + m1 is unique in SVM ; the vertex axiom for V is
immediate.
The part of SV preceding τ +m1 equals τ + (the part of SVN preceding m1),
by the uniqueness in M of τ ¹ τ + m1. Thus every vertex, rigid geodesic, or
bounded orthogonal ray in N ↪→ SVN gets translated by τ to the corresponding
feature in SV . Similarly, the parts of SV and SVM not preceded by τ agree, so
any vertex, rigid geodesic, or bounded orthogonal ray in M ↪→ SVM survives
in SV , as long as it is contained in a (perhaps unbounded) region of M∞ not
containing τ , by the rigid region axiom.
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The only orthogonal rays unaccounted for as yet for the rigid geodesic axiom
are those leaving τ+ü and α, β, γ. Observe that τ+ü is the unique element of V
on the orthogonal ray Uτ ⊂ SVM . Thus an orthogonal ray leaving τ + ü either
points toward the corresponding one of α, β, γ whenever the latter is not∞, or
it points away from VM . An orthogonal ray leaving α, β, γ either points back
toward ü along a rigid geodesic eü, or it points away from τ + VN . We conclude
that the rigid geodesics in SV form a planar map isomorphic to M ∪τ N . 2

4 Contracting rigid geodesics

Proposition 4.1 Let M be a planar map with axial vertices ẋ, ẏ, ż. Suppose e
is the edge in the exterior cycle of M leaving ẋ toward ẏ, and that e borders no
triangles in M∞(ẋ, ẏ, ż). If M/e can be rigidly embedded in some grid surface,
then so can M .

Proof. Letting ν ∈ M be the other endpoint of e, we have ν 6= ẏ because the
unbounded region of M∞ containing e is not a triangle. The edge in M leaving
ν clockwise from e determines an edge f in any rigid embedding N ↪→ SV
isomorphic to M/e. Note that f ∈ N does not contain the orthogonal ray Yẋ
because f 6= e; and f 6⊃ Zẋ because ν sits between ẋ and ẏ. Therefore the
orthogonal ray Xω at the other endpoint ω of f in N points toward ẋ.
Assume all coordinates of vectors in V are even, by scaling. The claim is that
the rigid geodesics in SV∪ν constitute a rigid embedding isomorphic to M ,
where the coordinates of ν are defined by

ν = (νx, νy, νz) = (|ẋ| − 1, ωy, 0).

The addition of ν to V affects at most the rigid geodesics in N containing one
of the following: an orthogonal ray Xσ for some vertex σ ∈ V pointing toward
ẋ; an orthogonal ray at ν; or Yẋ. All other rigid geodesics lie behind the plane
x = |ẋ| − 1.
If σy < ωy, then Xσ is unaffected by ν, while if σy ≥ ωy, then ẋ and ν are the
only elements of V preceding σ∨ẋ = σ∨ν + (1, 0, 0). Thus Xσ points toward ν
if σy ≥ ωy, because ẋ 6¹ σ∨ν. The three orthogonal rays Xν , Zν , and Yν
leaving ν point respectively toward ẋ, ω, and the vertex to which Yẋ ⊂ SV
points in N . Finally, Yẋ ⊂ SV∪ν points toward ν. (Figure 3 illustrates the
transition M/eÃM .) 2

In the situation of Lemma 3.1, gluing M ∩R into M/R may involve contracting
some of the tethers in (M/R) ∪τ (M ∩ R). For the rest of this section, let
M ↪→ SVM and N ↪→ SVN be rigid embeddings having respective axial vertices
ẋ, ẏ, ż and ẍ, ÿ, z̈, with τ ∈ M∞(ẋ, ẏ, ż) a trivalent vertex having neighbors
α, β, γ. Let B be the region of M ∪τ N containing eÿ and ez̈.

Proposition 4.2 Assume that τ 6= ẏ, that Yẋ points toward τ , and that no
edge in M has vertices {ẋ, γ}. Contracting eẍ along with neither, either, or
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Figure 3: Uncontracting the lower-left edge

(if B has at least five vertices) both of ez̈ and eÿ in M ∪τ N yields a planar
map possessing a geodesic grid surface embedding.

Proof. Paragraph headings are included below to make parts of the proof easier
to follow and cross-reference.

Plan of proof

Given the conditions of the present proposition, assume all hypotheses and
notation of Lemma 3.2, as well; this is possible by Lemma 2.1. If |VN | = n,
scale M so that all coordinates of vectors in VM are divisible by n + 1. Until
further notice (see the special construction for (8), below), assume in addition
that the orthogonal rays Xτ , Yτ , Zτ all have length exactly m+ 1. Set

ν′ := τ + ν for ν ∈ VN .

The plan of the proof is to split into a number of cases, each of which demands
slightly different treatment. In every case, Lemma 2.1 allows a judicious choice
of coordinates for vectors in VN . Most often, omitting one or more of the
vertices {ẍ′, ÿ′, z̈′, β} from V leaves a set V such that the desired contraction
of M ∪τ N geodesically embeds into SV ; two of the cases require additional
fiddling with the surviving vertices to get the desired grid surface.

Eight cases

Let A and B be the bounded regions of M ∪τ N containing eẍ and eÿ, respec-
tively. By the region axiom, we think of A = (Ax, Ay, Az) and B = (Bx, By, Bz)
as the vectors given by the joins of their vertices. Denote by A(u) the set of
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vertices of A having u-coordinate Au. For instance, A(x) = {ẋ} = {α}, and
β ∈ B(y).
Here is the list of constructions yielding SV . In each of (1)–(7), choose VN
so that every coordinate of every vector in VN is at most n; we treat the last
case (8) separately later, since it involves somewhat different choices. Construct
V from V = (VM r τ)∪ (τ +VN ) by omitting the indicated vectors, and (in (5)
and (8)) making the specified alterations.

(1) To contract only eẍ: omit ẍ′.

(2) To contract eẍ and eÿ: omit ẍ′, ÿ′.

To contract eẍ and ez̈...

(3) if no edge in N has endpoints {ẍ, z̈}: omit ẍ′, z̈′.

if {ẍ, z̈} are the endpoints of an edge in N ...

(4) and Az > γz: omit ẍ′, z̈′.

(5) and Az = γz: omit ẍ′, z̈′; then add 1 to νz for all ν ∈ A(z)rγ.

To contract eẍ, eÿ, and ez̈...

(6) if no edge in N has endpoints {ÿ, z̈}: omit ÿ′ after (3)–(5).

if {ÿ, z̈} are the endpoints of an edge in N ...

(7) and βx ≥ γx: omit β after (3)–(5).

(8) and βx < γx: make the special construction below.

In general, observe that the only vertices connected to ẍ, ÿ, or z̈ in M ∪τ N are
α, β, γ, and some vertices in N . Also, one of (6)–(8) must occur if B has at least
5 vertices. Representative instances of the cases (1)–(8) appear in Figures 4
and 5.

Omitting vertices

In general, omitting one or more elements from V always leaves a set of pair-
wise incomparable vectors. The vertex axiom will follow immediately in the
applications below, in the sense that the surviving vertex vectors V are in obvi-
ous bijection with the vertices of the desired map. To check the rigid geodesic
axiom after omitting one vertex ν, we must verify that any orthogonal ray U
pointing toward ν before the omission of ν points to some other uniquely deter-
mined surviving vertex afterwards. This will show that the surviving vertices
V define a rigid embedding L ↪→ SV for some map L.
Specifically, L is obtained from M ∪τ N by first deleting ν along with all of
its incident edges, and then reconnecting the neighbors of ν to other surviving
vertices according to where their orthogonal rays point. It is important to
remember that some edges incident to ν may fail to reappear upon reconnecting
its neighbors: these non-reappearing edges are precisely those rigid geodesics
that, before the omission of ν, do not contain any orthogonal ray pointing
toward ν. (There are at most three such edges, because each one must contain
an orthogonal ray leaving ν.)
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Figure 4: Gluing grid surfaces: cases (1)–(6)
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result of case (3)
omit βÃ result in case (7)

SVN and SVM in case (8)
special constructionÃ contraction of ez̈

omit {ẍ′,ÿ′}Ã

result in case (8)

Figure 5: Gluing grid surfaces: cases (7)–(8)

Scale principle

We chose the relative sizes of VN and VM so that some arguments in what
follows can rely on the following principle: If ω, σ are two vectors whose coor-
dinates are all divisible by n+ 1, then ω ¹ σ if and only if ω ¹ σ + n1.

Rays leaving τ + VN
An orthogonal ray leaving ν ′ ∈ τ + VN and pointing toward z̈′ in SV must
be Zν′ ⊂ SV . We claim that after omitting z̈′, the ray Zν′ points toward γ,
regardless of whether or not one or both of ẍ′, ÿ′ has already been omitted.
Moreover, this statement remains valid after permuting the roles of x, y, z.
To see why, suppose that ω ¹ ν ′∨γ for ω ∈ V. We must show that
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ω ∈ {ν′, z̈′, γ}. If ω ∈ τ + VN then ωz ≤ τz + |z̈| and thus ω ¹ ν ′∨z̈′, so
ω ∈ {ν′, z̈′} because [ν ′, z̈′] is a rigid geodesic (Lemma 3.2). When ω ∈ VM r τ ,
apply the scale principle with σ = γ∨z̈′, using the fact that γ∨ν ′ ¹ γ∨z̈′ + n1
because τ ¹ z̈′, ν′ ¹ τ + n1. The argument is invariant under permutation
of x, y, z.

Proof of (1)

The rigid geodesics containing orthogonal rays Xν′ pointing toward ẍ′ before
the omission and toward α afterwards account for all of the necessary edges in
the contraction. It remains only to verify that Yα ⊂ SVrẍ′ points toward the
next vertex after ẍ′ whose z-coordinate is zero—that is, the counterclockwise
next vertex after ẍ′ on the exterior cycle of M ∪τ N . This easy argument is
left to the reader, completing the proof of (1). Until the proof of (8), assume
ẍ′ has been omitted.

Proof of (2)

The orthogonal rays pointing toward ÿ′ in SVrẍ′ are Yν′ for some vertices
ν ∈ VN , the ray Xβ , and possibly Yα (if ẍ and ÿ are the vertices of an edge
in N). The arguments in ‘Rays in τ + VN ’ and ‘Proof of (1)’ apply as well
to the omission of ÿ′, including the fact that the ray Xβ points toward the
next vertex after ÿ′ whose z-coordinate is zero (which may be α). None of
the edges incident to ÿ′ vanish (see ‘omitting vertices’), although Xβ and the
Y -orthogonal ray at height z = 0 pointing toward ÿ′ point toward each other
after omitting ÿ′, effectively contracting eÿ.

Cases (3)–(5)

Every rigid geodesic incident to z̈′ in SVrẍ′ contains an orthogonal ray pointing
toward z̈′, except the geodesic connecting α to z̈′, if there is one (this occurs
in (4) and (5) only, where Xz̈′ points toward α in SVrẍ′), and sometimes the
geodesic connecting γ to z̈′.
After omitting z̈′, we will verify the rigid geodesic axiom at γ separately for
each of (3)–(5), by checking only that an orthogonal ray leaving γ and pointing
toward z̈′ (if there is one) points instead to another surviving vertex after
omitting z̈′. Any other orthogonal ray in SVrẍ′ either leaves some vector in
τ + VN before omitting z̈′ (these have been dealt with in a paragraph above),
or points toward another vertex in VM r τ both before and after omitting z̈′.
Verifying the rigid geodesic axiom will complete the proof unless the edges
connecting α and γ to z̈′ (if these exist) both vanish upon omitting z̈′, for
otherwise all of the edges in the contraction of ez̈ are accounted for as in the
proofs of (1) and (2). Both geodesics vanish in (5) only: in (3), there is no edge
connecting α to z̈′; while in (4), the region axiom implies γy = Ay, whence Xγ

points toward z̈′. In (5), we show that the addition procedure reconstructs a
rigid geodesic connecting α to γ.
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Proof of (3)

If Xγ points toward z̈′ in SVrẍ′ , and ν′ is the vertex to which Xz̈′ points
in SVrẍ′ , then Xγ points toward ν ′ ∈ τ + VN after omitting z̈′ by the scale
principle (the hypothesis for (3) guarantees that ν ′ 6= ẍ′). A similar statement
holds by switching the roles of x and y (but ν ′ ∈ τ + VN is always guaranteed
to exist, since ÿ′ has not been omitted). This verifies the rigid geodesic axiom
at γ.

Proof of (4)

The assumption Az > γz implies Ay = γy, so that Xγ points toward z̈′ in SVrẍ′ .
If ν ∈ V r ẋ and νy < γy, then νz > γz, by the region axiom. The omission of
z̈′ therefore causes the ray Xγ ⊂ SVr{ẍ′,z̈′} to point toward α.

Proof of (5)

The region axiom implies γy < τy, so Xγ does not point toward z̈′. When Yγ
points toward z̈′, the rigid geodesic axiom holds for SVr{ẍ′,z̈′} by the argument
in the proof of (3), although no elbow geodesic connects α to γ in SVr{ẍ′,z̈′}.
Now we verify that the addition procedure outputs a rigid geodesic embedding,
and that an edge connecting α to γ is the only new rigid geodesic. We can
safely ignore all orthogonal rays contained in rigid geodesics on the positive
side of the plane y = γy. All of the vertices ω 6∈ A satisfying ωy ≤ γy must also
satisfy ωz > γz by the rigid region axiom. The adding rule therefore causes
Xγ to point toward α after omitting z̈′. The orthogonal rays leaving vertices
originally in A(z)r γ still point to the same vertices, by the scale principle. If
ω 6∈ A(z) ∪ {α}, then any orthogonal ray Uω pointing toward ν ∈ A(z) before
the addition still points toward the same vertex ν afterwards, because ωz > νz,
whence the join ν∨ω remains unaffected. Finally, if Zα points toward a vertex
in A(z) before the addition procedure, then Zα still points to the same vertex
afterwards, by the scale principle, while Yα remains unaffected.

Proof of (6)

No new phenomena occur here; see Proof of (3).

Technical lemma

The following result will be applied in the proofs of (7) and (8). For the proof
of (8), note that it holds after any rescaling of VM as in Lemma 2.1.

Let ω ∈ VM . If τx ≥ ωx ≥ βx, then ω ∈ {τ, β} or ωz ≥ γz.
Similarly, if τy ≥ ωy ≥ αy = 0, then ω ∈ {τ, α} or ωz ≥ γz.

Proof of technical lemma. Suppose τx ≥ ωx ≥ βx, but ωz < γz. If ω 6= τ , then
ωy ≥ βy by the uniqueness in Lemma 3.2 of τ among vectors preceding τ +m1
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in VM . Thus β ¹ ω, so β = ω. Swap the roles of x and y to prove the other
statement.

Proof of (7)

First claim: The only orthogonal rays pointing toward β are Yÿ′ , and Xν for
some vertices ν ∈M . These vertices ν all have νz < m+ 1.
The final sentence of the first claim is easy, because otherwise γ ¹ β∨ν. For the
rest of the claim, use the inequalities Bx = τx > βx ≥ γx and By = βy > τy ≥
γy, which follow from the hypotheses of (7). These imply γz = m + 1 = Bz,
thanks to the region axiom. By the technical lemma, any orthogonal ray Yν
pointing toward β in SV (and therefore in SVr{ẍ′,z̈′}) must have either νx ≥ τx
or νz ≥ m+ 1. When νx ≥ τx, we get νy < βy and hence ÿ′ ¹ ν∨β, so ν = ÿ′.
The case νz ≥ m + 1 is actually impossible, for it implies γ ¹ ν∨β, so ν = γ
is connected to β by an edge in M ∪τ N ; this cannot happen in (7) if B has
at least five vertices. The fact that βz = 0 rules out Zν pointing toward β,
completing the proof of the first claim.
Now we verify that Xν ⊂ SVr{ẍ′,β,z̈′} points toward ÿ′ whenever Xν ⊂
SVr{ẍ′,z̈′} points toward β. In other words, we need ω ¹ ν∨ÿ′ for ω ∈ V
to imply ω ∈ {ẍ′, z̈′, ÿ′, β, ν}. If ω ∈ τ + VN , then ωx = ÿ′x = τx implies
ω ∈ {ÿ′, z̈′}. If ω ∈ VM r τ , then either ωx ≤ βx, in which case ω ¹ β∨ν
implies ω ∈ {β, ν}, or ωz < m + 1 in addition to τx ≥ ωx ≥ βx, in which case
ω = β by the technical lemma.
It is easy to verify that ÿ′ points toward the next vertex after β having z-
coordinate zero. Note that such a next vertex must exist, since the rigid
geodesic leaving β and containing Zβ strictly decreases in x. This completes
the proof of (7).

Special construction for (8)

The meet (componentwise minimum) of τ and γ is τ∧γ = (γx, γy, 0) = γ −
(0, 0,m+ 1) since Zτ points toward γ in SVM . Observe that

ω ∈ VM and τ∧γ ¹ ω implies ω ∈ {τ, γ}. (9)

Indeed, if τ 6¹ ω but τ∧γ ¹ ω, then either τx ≥ ωx ≥ γx or τy ≥ ωy ≥ γy. The
hypothesis γx > βx of (8) plus the technical lemma imply ωz ≥ γz, whence
γ ¹ ω.
It follows from (9) that the set

VM = (VM r {τ, γ}) ∪ τ∧γ

of vectors determines a grid surface SV
M

. Use the freedom afforded by
Lemma 2.1 to rechoose VM and m so that n + 3 divides all coordinates of
vectors therein, while γz as well as the lengths of the orthogonal rays Xτ∧γ
and Yτ∧γ ⊂ SV

M
equal m+ 2. Applying (9) again, further alter VM by moving
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τ so that τ − τ∧γ equals (1, 0, 0), (0, 1, 0), or (1, 1, 0), depending on whether
τy = γy, τx = γx, or neither.
Now choose VN so that all of its nonzero x and y-coordinates lie in the interval
[m− n,m], but all of its z-coordinates are no greater than n. Let

V = (VM r τ∧γ) ∪ (τ∧γ + VN ),

and denote by ν the vector τ∧γ+ν for ν ∈ VN . Our (final) goal is to show that
the rigid geodesics in SV constitute an embedding of (M ∪τ N)/ez̈. After that,
eẍ and eÿ can be contracted by omitting ẍ and ÿ, using the same arguments
appearing in Scale principle, Rays leaving τ+VN , Proof of (1), and Proof of (2).

Proof of (8)

Begin by mimicking as closely as possible the proof of Lemma 3.2. First, τ∧γ
is the unique vector in VM preceding τ∧γ + m1, by Lemma 3.2 applied to
VM ; this is why τ needs to be so close to τ∧γ. The vertex axiom for SV is
immediate. Moreover, the part of SV that precedes τ∧γ+m1 equals τ∧γ+(the
part of SVN preceding m1). Thus every vertex, rigid geodesic, or bounded
orthogonal ray in N ↪→ SVN gets translated by τ∧γ to the corresponding
feature in SV . Similarly, the parts of SV and SV

M
not preceded by τ∧γ agree,

so any vertex, rigid geodesic, or bounded orthogonal ray in M ↪→ SVM survives
in SV whenever it is contained in a (perhaps unbounded) region of M∞ not
containing τ or γ, by the rigid region axiom.
The only orthogonal rays unaccounted for as yet for the rigid geodesic axiom
are Xẍ, Yÿ, Yα, Xβ , Zz̈, and any orthogonal ray Uν ⊂ SV such that Uν ⊂ SVM
points toward γ and ν 6= τ . (Neither the rigid geodesic connecting τ to γ in M
nor the orthogonal rays leaving γ in SVM play roles in this verification.) The
only case requiring significant effort are the Uν rays, which must point toward
z̈ in SV .
Suppose ω ¹ ν∨z̈ for some ω ∈ V. The technical lemma and (9) imply that
νz ≥ γz for any τ 6= ν ∈ VM pointing toward γ, whence ν∨z̈ = ν∨γ for any
such ν. Therefore ω 6= ν implies ω ∈ τ∧γ + VN . On the other hand, either
νy < βy or νx < αx, because otherwise β or α precedes ν∨γ = ν∨z̈. By the
choice of scaling, ωy ≤ νy < βy forces ωy ≤ νy ≤ βy − (n + 3) < γy + m − n,
whence ω = z̈ whenever ω ∈ τ∧γ + VN . This argument also works with the
roles of x and y switched.
The above reasoning proves that the rigid geodesics in SV embed some planar
map L. To conclude that L ∼= (M ∪τ N)/ez̈, one last item remains: show
that no geodesics in M vanish. More precisely, whenever Xγ or Yγ does not
point toward τ in VM , we require it to point toward a vertex in VM that points
back toward γ in SVM . Suppose Yγ ⊂ SVM does not point toward τ . Then
γx < τx = Bx, whence γz = Bz by the region axiom, because γy < βy = By.
If B(z) = {γ}, then Yγ ⊂ SVM must point toward β, because βx < γx. This
is impossible whenever the region B in M ∪τ N has at least five vertices, by
the hypothesis of (8) stipulating that [ẍ, z̈] is an edge in N . The analogous
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argument works for Xγ , but the reason why Xγ cannot point toward α is
different: it is ruled out by the statement of the Proposition. 2

Recall the conventions set before the statement of Proposition 4.2.

Proposition 4.3 Suppose τ = ẋ is trivalent. Contracting neither, either, or
(if B has at least five vertices) both of ez̈ and eÿ in M ∪τ N yields a planar
map possessing a rigid embedding.

Proof. Pretend eẍ has already been contracted, and apply the constructions
in the proofs of (6)–(8) in Proposition 4.2. (In reality, only (6) and (7) are
required here, given the symmetry switching the roles of y and z). 2

5 Triconnectivity and rigid embedding

Theorem 5.1 (Rigid embedding) A planar map M with given axial vertices
ẋ, ẏ, ż can be rigidly embedded in a grid surface if and only if the extended map
M∞(ẋ, ẏ, ż) is triconnected. In particular, every triconnected planar map can
be rigidly embedded.

Proof. (⇒) Let M ↪→ SV be an axial rigid embedding, and delete two ver-
tices ν, ω from M∞. If {ν, ω} ⊂ {ẋ, ẏ, ż} then each remaining vertex has an
orthogonal flow to the third axial vertex, by independence of the orthogonal
flows to ẋ, ẏ, ż. If {ν, ω} 6⊂ {ẋ, ẏ, ż} then what remains of the exterior cycle is
connected, and every vertex in the deletion still has an orthogonal flow to the
exterior cycle.
(⇐) Induct on the sum of the number of regions and the number of edges in M ,
observing that the minimal sum of five is attained only when M is a triangle.
Assume the notation of Section 3, and suppose M is not a triangle. Letting e
be the edge leaving ẋ towards ẏ on the exterior cycle of M , we claim that at
least one of the following occurs:

1. The endpoints of e are ẋ and ẏ.

2. The edge e does not border a triangle in M∞(ẋ, ẏ, ż), and M/e is tricon-
nected.

3. The edge e does not contain ẏ, and M contains a proper ring C for which
ẍ =∞.

4. The edge e does not contain ẏ, and M contains a proper ring C for which

(a) ẍ = ẍ = ẋ;
(b) ÿ is the other endpoint of e, and ÿ 6= ẏ (that is, ÿ 6=∞); and
(c) z̈ does not lie between ẋ and ż on the exterior cycle of M , and no

single edge outside the region bounded by C has endpoints {ẋ, z̈}.

If the first three cases do not occur, then Proposition 1.1 produces a ring C in
which ẍ and ÿ are the two endpoints of e, while z̈ is a vertex in F ∩ F ′ as in

Documenta Mathematica 7 (2002) 43–90



Planar Graphs as Minimal Resolutions 67

Proposition 1.1.2. Note that C is proper because ÿ 6= ẏ. Let C be a maximal
such ring.
The first half of 4(c) holds; if not, construct a ring satisfying option 3 as follows:
replace the arc of C connecting ẋ to z̈ with the arc traversing the exterior cycle
from ẋ to z̈ and then ez̈ (the latter only if z̈ 6= z̈). The second half of 4(c) also
holds, for if an edge f outside C connects ẋ to z̈, then replace the arc of C
connecting ẋ to z̈ in C by f and ez̈ (if z̈ 6= z̈). The resulting cycle is a larger
ring satisfying the condition defining C, contradicting maximality. Finally,
4(a) holds by the failure of option 3: C does not contain the edge of M leaving
ẋ toward ż on the exterior cycle of M .
Given the first option, M has a proper ring C, with z̈ = z̈ = ż, containing
every bounded region of M except the one containing e. Let M ∩ R ↪→ SV
be a geodesic embedding, where R is the union of regions contained within C.
Leaving ẋ, ẏ fixed while adding 1 to the z-coordinates of every other vector in V
yields a grid surface SV′ whose rigid geodesics constitute an embedding of M ;
the easy proof is omitted.
Given the second option, use Proposition 4.1. Given the third or fourth option,
use Lemma 3.1 with M = M/R and N = M ∩ R, along with Proposition 4.3
for option 3, or Lemma 3.2 and Proposition 4.2 for option 4. The ‘five vertex’
conditions in Propositions 4.2 and 4.3 are always satisfied when reconstruct-
ing M from the tethered gluing (M/R) ∪τ (M ∩ R), because M is simple and
triconnected. 2

The next corollary clarifies the close connection between grid surfaces and order
dimension for posets. It shows that Theorem 5.1 generalizes the three-variable
special case of [BPS98, Theorem 6.4], which is presented in the equivalent
language of monomial ideals.

Corollary 5.2 (Brightwell–Trotter [BT93]) The vertices, edges, and
bounded regions of any triconnected planar map form a partially ordered set of
order dimension ≤ 3.

Proof. Theorem 5.1 and Corollary 2.5. 2

Example 5.3 Theorem 5.1 is stronger than Corollary 5.2, even for triconneted
maps. In general, every inclusion of the vertex-edge poset of M into N3 yields
an inclusion of the vertex set V ↪→ SV such that each edge of M is a rigid
geodesic in SV . What fails is that there may be orthogonal rays in SV that are
not contained in any edges of M . Faces such as the central face in Figure 6 are
then forced to lie off of SV . 2

Remark 5.4 Rigid embeddings give a fresh perspective on a standard fact,
known as Menger’s theorem: If G is a triconnected planar graph and ν, ω ∈ G
are distinct vertices, then there are three independent paths from ν to ω in G.
To explain Menger’s theorem via Theorem 5.1, let M be a plane drawing of G,
and suppose e1, . . . , er are the edges of M containing ν, in cyclic order. Form
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a new map M ′ by drawing a small circle C around ν and adding new ver-
tices ν1, . . . , νr where e1, . . . , er intersect C. Then set Mν = del(M ′; ν), with
underlying graph Gν . Clearly Gν is triconnected.
Choose a plane drawing of Gν in which C is the exterior cycle, and let Gν ↪→ S
be an axial geodesic embedding compatible with some (any) choice of axial
vertices ẋ, ẏ, ż ∈ C. The orthogonal flows from ω to ẋ, ẏ, ż in Gν first intersect
C at points νix , νiy , νiz , giving rise to truncated orthogonal flows [ω, νiu ] for
u ∈ {x, y, z}. Connecting [ω, νiu ] to ν via the arc in G between νiu and ν yields
independent paths in G from ω to ν.

Part II
Monomial ideals

6 Betti numbers

Let k be a field, and consider the polynomial ring R = k[x, y, z] with the Z3-
grading in which deg(x) = (1, 0, 0), deg(y) = (0, 1, 0), and deg(z) = (0, 0, 1).
Use IV = 〈mν | ν ∈ V〉 to denote the ideal generated the monomials
mν = xνxyνyzνz for ν ∈ V. The integer points in 〈V〉 coincide with the expo-
nent vectors on monomials in IV , and V is axial if and only if IV is artinian,
containing a power of each variable.
Any principal monomial ideal 〈m〉 is a free Z3-graded R-module of rank 1.
If φ is Z3-graded homomorphism

⊕〈mq〉 ←−
⊕〈mp〉 of degree zero, then we

can express φ as a monomial matrix. This is a matrix whose entries λpq ∈ k
are scalars, and whose pth row (resp. qth column) is labeled by the monomial
mp (resp. mq) that generates the corresponding pth source (resp. qth target)
summand. Of course, λpq = 0 whenever mq does not divide mp, because then
there are no nonzero Z3-graded maps 〈mq〉 ← 〈mp〉. The map φ is called
minimal if also λpq = 0 whenever mp = mq. See [Mil00a, Section 2] for more
on monomial matrices.
We consider free resolutions of IV that are exact sequences having the form

F. : 0← IV
φ0←− F0

φ1←− F1
φ2←− F2 ← 0, (10)

in which Fi ∼=
⊕

p〈mip〉 for some (finite set of) monomials mip ∈ R. We call F.
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minimal if φ1 and φ2 are minimal (for any such direct sum decomposition). The
Betti number βi,α(IV) is the number of mip equal to mα, when F. is minimal.
This homological data reflects the local properties of SV near the vector α via
the Koszul simplicial complex of V at α ∈ N3,

Kα(V) = {σ ∈ {0, 1}3 | α− σ ∈ 〈V〉},

which is a subcomplex of the abstract triangle ({0, 1}3,¹).

Proposition 6.1 ([Hoc77, Roz70]) βi,α(IV) = dimk H̃i−1(Kα(V); k) is the
dimension of the (i−1)st reduced simplicial homology of Kα(V) with coefficients
in k.

The small number of simplicial complexes on three vertices seriously limits the
possibilities for nonzero Betti numbers.

Lemma 6.2 If V ⊂ N3 and i ∈ N then βi,α(IV) 6= 0 for at most one α ∈ Z3.
If βi,α is nonzero then βi,α = 1 unless Kα(V) has 3 vertices and no edges (so
β1,α = 2).

Proof. Use the previous proposition, and list all simplicial complexes on 3
vertices. 2

7 Cellular resolutions

Suppose M is a cell complex (precisely, a finite CW complex) of dimension 2
whose cells P have vector labels αP ∈ N3, in such a way that αP ¹ αP ′ if
P lies in the closure of P ′. For instance, if the vertices have natural labels,
then define αP to be the join of the labels on the vertices of P . Such a labeled
cell complex determines monomial matrices φvertex, φedge, and φregion for a
cellular free complex FM , by labeling the rows and columns of matrices for the
boundary map of the ordinary chain complex of M with the monomials mαP .
Using P also to denote the basis vector of a rank 1 free R-module 〈mαP 〉, the
cellular free complex FM takes the form

φvertex φedge φregion
0 ← IV ←−−−−

⊕

vertices ν

R · ν ←−−
⊕

edges e

R · e ←−−−−
⊕

regions F

R · F ← 0.

(11)
We say M supports FM ; see [BS98, Mil00a] for more on cellular monomial
matrices.
Our main examples of labeled cell complexes are of course the geodesically
embedded planar maps M ↪→ SV , whose labels are determined by the obvious
vertex labels by taking joins. We shall see in the next section that this cellular
free complex is exact and minimal, so it provides a cellular minimal free res-
olution of IV . Unfortunately, there are monomial ideals whose associated grid
surfaces contain no geodesically embedded map.

Documenta Mathematica 7 (2002) 43–90



70 Ezra Miller

Example 7.1 Let IV = 〈x, y, z〉2 = 〈x2, y2, z2, xy, xz, yz〉. The orthogonal
rays Xyz, Yxz, Zxy meet at a single point not in V, so there can be no planar map
geodesically embedded in SV . However, 〈x, y, z〉2 still has a minimal cellular
resolution: connect the midpoints of the edges of a triangle, and delete any one
of the three interior edges. Label the resulting planar map M with x2, y2, z2

on the corners of the outside triangle; xy between x2 and y2; yz between y2

and z2; and xz between x2 and z2. Label the edges and regions of M by the
joins of their vertex labels. 2

Although the map M in the above example fails to embed geodesically in SV ,
the extended map M∞(x2, y2, z2) is still triconnected. This phenomenon is
general. In the following proposition, we do not require planarity of M , so we
use G∞(ẋ, ẏ, ż) to mean the abstract graph obtained from G by adding a new
vertex ∞ connected to each of ẋ, ẏ, ż.

Proposition 7.2 If the labeled cell complex M supports a minimal free reso-
lution of an artinian ideal IV , and the 1-skeleton of M is a graph G, then the
extended graph G∞(ẋ, ẏ, ż) is triconnected, where ẋ, ẏ, ż are the vertices whose
labels lie on the axes.

Proof. Given ν ∈ V with ν 6= ż, the orthogonal ray Zν leaving ν has its head
at some vector α ∈ N3 for which Kα(V) is disconnected; indeed, the vertex
(0, 0, 1) is isolated in Kα(V). Choose a vertex ω′ 6= ν preceding α, so that
mα−νν − mα−ω′ω′ ∈ ker(φvertex). Since α − ν = Z(ν) lies on the z-axis Z,
there must be an edge e ∈ M connecting ν to a vertex ω (possibly different
from ω′) such that φedge(e) = zdν−mν∨ω−ωω for some d ∈ N. Clearly ωx ¹ νx
and ωy ¹ νy.
Repeating the procedure with ω in place of ν, and with x or y in place of z, we
find that M contains paths analogous to orthogonal flows from ν to each axial
vertex ẋ, ẏ, ż. As in Section 2, these paths are independent, intersecting only
at ν. 2

8 Graphs to minimal resolutions

Lemma 8.1 If M ↪→ SV is a geodesic embedding, then β1,α(IV) 6= 0 if and
only if α = ν∨ω for some elbow geodesic [ν, ω] ∈ M , and β1,ν∨ω(IV) = 1 in
this case.

Proof. Assume β1,α(IV) 6= 0. Then Kα(V) is disconnected by Proposition 6.1,
and this occurs if and only if Kα(V) contains an isolated vertex. An isolated
vertex of Kα(V) occurs if and only if α lies on an orthogonal ray leaving some
vertex ν ∈ V. Therefore, α = ν∨ω for some ω 6= ν by the edge axiom. Since
[ν, ω] is an elbow geodesic, Kν∨ω(V) cannot have three isolated points because
three orthogonal rays cannot meet at the point ν∨ω in the relative interior of
the edge [ν, ω] of M . 2
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Here is a result that sometimes reduces statements about arbitrary geodesic or
rigid embeddings to axial ones. Its straightforward proof is omitted.

Lemma 8.2 Append axial vertices to V by letting V = V ∪ {u̇ | SV ∩ U = ∅}
for sufficiently large |u̇|. A planar map M is geodesically embedded in SV if
and only if N = del(M ;V r V) is geodesically embedded in SV . Furthermore,
M ↪→ SV is rigidly embedded if and only if N ↪→ SV is rigidly embedded.

Lemma 8.3 Let M ↪→ SV be a geodesic embedding, and Smax
V the set of points

in SV maximal under the partial order induced by the relation ¹ on R3. Then
α ∈ Smax

V ⇔ β2,α(IV) 6= 0 ⇔ α = αF is the join of the vertices in a bounded
region F of M .

Proof. For the equivalence α ∈ Smax
V ⇔ β2,α(IV) 6= 0, use the fact that Kα(V)

is the boundary of the triangle; the easy details are omitted. The equivalence
α ∈ Smax

V ⇔ α = αF holds for all vertex sets V if it holds when V is axial.
Indeed, using the notation and result of Lemma 8.2, the maximal points of
SV are still maximal in SV , while the points in Smax

V r Smax
V are exactly those

having u-coordinate |u̇| for some u such that SV ∩U = ∅, by the region axiom
applied to SV . The bounded regions of N having such joins disappear upon
deleting u̇.
Assume henceforth that M ↪→ SV is axial. If ρ ∈ SV has some coordinate
ρu = 0, then ρ 6∈ Smax

V because adding ε to any other coordinate of ρ yields
another point in SV . Therefore each maximal point of SV lies in a bounded
region of M . When F is such a bounded region, the region axiom implies
αF ∈ Smax

V , because some vertex ν ∈ V strongly precedes αF +εu̇ for any ε > 0
and u ∈ {x, y, z}.
Every point ρ on a given elbow geodesic [ν, ω] precedes ν∨ω by definition, so
ρ ¹ ν∨ω ¹ αF whenever [ν, ω] ⊆ F . Any point σ on the line segment in R3

connecting ρ to αF therefore satisfies ρ ¹ σ ¹ αF , whence σ ∈ SV . It follows
that F is the union of such line segments, so every point of F precedes αF . 2

Theorem 8.4 Given a geodesic embedding M ↪→ SV , the cellular free complex
FM is a minimal free resolution of IV .

Proof. Since βi,α(IV) 6= 0 if and only if βi,α(IV) = 1 by Lemmas 6.2 and 8.1,
it makes sense simply to speak of the ith Betti degrees α, for which βi,α = 1.
The zeroth, first, and second Betti degrees are the labels on the vertices, edges,
and regions of M , respectively, by Lemmas 6.2, 8.1, and 8.3. Any minimal
free resolution F. of IV as in (10) therefore takes the form of (11), at least as
a homologically graded module; that is, F. ∼= FM abstractly as modules. We
need to show that some choice of this abstract isomorphism is a homomorphism
of complexes.
Identifying the homological degree zero parts of F. and FM , the zeroth homol-
ogy of FM surjects onto IV because the image of φedge is clearly contained in
the kernel of φ0. Since F. is exact and FM is a complex of free modules, there
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exists a homomorphism ψ : FM → F. lifting the surjection on zeroth homology
and the isomorphism in homological degree zero.
Suppose e ∈ FM maps to ψ(e) =

∑
mje

′
j , where each mj ∈ R is a monomial

with nonzero scalar coefficient, and each e′j denotes the generator of F1 corre-
sponding to the edge ej ∈M . The elbow geodesic e = [ν, ω] in M contains an
orthogonal ray Uν , so that ±φ1(

∑
mje

′
j) = mν∨ω−νν −mν∨ω−ωω, where the

first term is mν∨ω−νν = mU(ν)ν. Thus mU(ν)ν = u|Uν |ν appears with nonzero
scalar coefficient in φ1(mje

′
j) for some j. Since there is a unique first Betti

degree α satisfying α − ν ∈ U , namely αe = ν∨ω, it must be that e′j = e′

and mj is a nonzero scalar. Nakayama’s lemma implies ψ1 : (FM )1 → F1 is
surjective, and hence an isomorphism by rank considerations.
No summand R ·F ⊂ FM can map to zero in F2 because φregion(F ) is nonzero
in FM , and ψ is an isomorphism in homological degree 1. On the other hand,
the second Betti degrees are pairwise incomparable by Lemma 8.3. Thus ψ(F )
is some nonzero scalar multiple of the unique generator of F2 in degree αF .
The map ψ is therefore an isomorphism in homological degree 2, completing
the proof. 2

Corollary 8.5 A planar map M with axial vertices ẋ, ẏ, ż supports a mini-
mal free resolution of an artinian monomial ideal if and only if M∞(ẋ, ẏ, ż) is
triconnected. In particular, every triconnected planar map supports a minimal
free resolution.

Proof. ‘Only if’ is Proposition 7.2; apply Theorem 8.4 to Theorem 5.1 for ‘if’.
2

9 Uniqueness vs. nonplanarity

Continuing with the analogy at the beginning of the Introduction, circle pack-
ings and polytopes that realize planar graphs are unique up to Möbius transfor-
mation and spherical rotation, respectively (see [Zie95] for discussion and ref-
erences). Rigid embeddings M ↪→ SV for a fixed planar map are similarly not
unique: at the very least, any order-preserving bijection of V as in Lemma 2.1
gives another rigid embedding. Of course, such bijections affect neither the
combinatorics nor the algebra. In fact, rigid embeddings are uniquely deter-
mined by the algebraic properties of the grid surface in question, specifically
the minimal free resolution of the corresponding monomial ideal.

Corollary 9.1 When M ↪→ SV is rigidly embedded, M is the unique cell
complex supporting a minimal cellular free resolution of IV .

Proof. Let N be a labeled cell complex supporting a minimal cellular free
resolution of IV . The abstract graph underlying N (the 1-skeleton) coincides
with that of M by Theorem 8.4 and rigidity. The label αF on any region F
of N is a second Betti degree of IV , and hence coincides with the label on a
region F ′ of M by Theorem 8.4. The boundary of F in N is a cycle of edges
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whose degrees precede αF . The only such cycle consists of all the edges whose
degrees precede αF , by the rigid region axiom for F ′ in M (by Lemma 8.2 the
rigid region axiom holds for nonaxial grid surfaces). 2

Nonrigid monomial ideals can have many distinct isomorphism classes of min-
imal cellular resolutions; [MS99, Figure 4] depicts an example of this phe-
nomenon. In fact, the bad behavior gets much worse.

Example 9.2 Minimal cellular resolutions of ideals in k[x, y, z] need not be
supported planar cell complexes. In fact, explicit examples crop up with even
the smallest violations of rigidity. For instance, let

V = {(4, 3, 0), (3, 4, 0), (3, 0, 2), (2, 1, 1), (1, 2, 1), (0, 3, 2)}

and V = V ∪ {(5, 0, 0), (0, 5, 0), (0, 0, 3)}. The cell complex M depicted in
Figure 7 consists of five triangles in addition to the three quadrilaterals with
vertices

{500, 430, 121, 211}, {430, 121, 211, 341}, {050, 121, 211, 340}.

Label the edges and regions by the joins of their vertex labels. That M supports
a minimal free resolution of IV can be checked by verifying for each α ¹ (5, 5, 3)
that M¹α is acyclic [BS98, Corollary 1.3]. That M cannot be planar follows
by contracting the edges labeled 530 and 350 while deleting the edges labeled
312 and 132 to get the complete graph K5 as a minor of the 1-skeleton. 2

10 Deformation and genericity

Given a finite subset W ⊂ R3, write ∨W for the join of the vectors in W, and
set mW = m∨W . Following [BPS98], define the Scarf complex of V,

∆V = {W ⊆ V | if ∨W ′ = ∨W for some W ′ ⊆ V then W ′ =W},

to consist of the subsets whose joins are uniquely attained. It is an easy (but
not obvious) fact that ∆V is a simplicial complex. Each face W ∈ ∆V comes
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with a natural label ∨W, and the resulting cellular free complex F∆V is called
the free Scarf complex of IV . The Scarf complex is planar by virtue of its
containment in the hull complex [BS98], so the union of its edges and vertices
is a planar map. This planar map has already appeared, in Section 2: two
vertices ν, ω ∈ V are connected by a rigid geodesic if and only if {ν, ω} ∈ ∆V .
Under special circumstances, the Scarf complex is rigidly embedded in SV . To
be precise, call V strongly generic if no two distinct elements of V share a
nonzero coordinate. In other words, νu = ωu 6= 0 for some u ∈ {x, y, z} implies
ν = ω.

Corollary 10.1 (Bayer–Peeva–Sturmfels [BPS98, §3]) The free Scarf
complex F∆V minimally resolves IV when V is strongly generic.

Proof. Strong genericity easily implies that every orthogonal ray is contained
in a rigid geodesic, so the Scarf graph rigidly embeds in SV . It is straight-
forward to verify that the labels on triangles (2-dimensional faces) in ∆V are
maximal in SV . Furthermore, every maximal point of SV has exactly three vec-
tors in V preceding it by Lemma 8.3, the region axiom, and strong genericity.
Therefore, all maximal points are labels on regions in ∆V , and the result holds
by Theorem 8.4. 2

Since the definition of the Scarf complex depends only on the coordinatewise
order of the exponents of the generators, it also makes sense for (formal) mono-
mials with real exponents in Rn. This makes way for the following definition.
Let Q denote the rational numbers. A deformation ε of V is a choice of vectors
εν = (ενx, ε

ν
y , ε

ν
z ) ∈ Q3 for each ν ∈ V satisfying

νu < ωu ⇒ νu + ενu < ωu + εωu , and νu = 0 ⇒ ενu = 0

for u ∈ {x, y, z}. In practice, everything we do is invariant under scaling of V,
so we will always assume Vε = {ν + εν | ν ∈ V} consists of integer vectors. Set
νε = ν + εν .
The sole purpose of the ε vectors is to break ties one way or the other between
equal nonzero coordinates of vectors in V. In this manner, deformations of V
are closer to being generic than V is. The verb specialize is used here to indicate
that a deformation (generization) is being reversed; thus V is a specialization
of Vε if the latter is a deformation of the former.
One particular deformation will play a key role in the coming sections. To define
it, let V(u, a) = {ν ∈ V | νu = a} for each 0 < a ∈ N and u ∈ {x, y, z}. Up to
order-preserving bijection (as in Lemma 2.1), there is a unique deformation ε
satisfying the following condition as well as its analogues via cyclic permutation
of x, y, z:

If the elements of V(z, a) satisfy νx > · · · > ωx, then a = νεz < · · · < ωεz. (12)

Note that νx > · · · > ωx is equivalent to νy < · · · < ωy for elements of V(z, a),
by pairwise incomparability. Thus, looking down the x-axis, ε raises the vectors
in V(z, a) higher as they move to the right.
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11 Ideals to graphs: algorithm

Arbitrary monomial ideals in more than three variables need not have minimal
cellular free resolutions [RW01], but limiting to three variables forces better
behavior.

Theorem 11.1 Any monomial ideal IV ⊂ k[x, y, z] has a cellular minimal free
resolution supported on a labeled planar map M .

The proof (at the end of Section 12) will reduce to the artinian case, for which
Algorithm 11.2 produces M . The justification of Algorithm 11.2 appears in
Section 12. Heuristically, the idea is to apply the deformation ε of (12), and
show that specializing Vε Ã V step by step makes the spurious edges in the
Scarf triangulation disappear one at a time.
More precisely, the algorithm specializes V ε back to V by making strict inequal-
ities νεu < ωεu into equalities νu = ωu, judiciously and one at a time. Before
each specialization step, the (already partially specialized) ideal has a cellular
minimal resolution by induction; after each specialization step, the same planar
map still supports a cellular free resolution, although it may not be minimal.
However, in the nonminimal case, minimality is achieved by removing exactly
one edge.

Algorithm 11.2

input an artinian ideal IV ⊂ k[x, y, z]

output a planar map M supporting a cellular minimal free resolution of IV
initialize ε := the deformation of IV in (12) to a strongly generic ideal IVε

M := Scarf complex of Vε
while Vε 6= V do

choose ν ∈ V and u ∈ {x, y, z} such that νεu 6= νu and νεu is minimal;
for ease of notation, assume u = x by applying a cyclic
permutation of {x, y, z} translating u to x, if necessary

γx := νx
γy := νεy + |Yνε |
γz := minω 6=ν{ωεz | ωεx ≤ νx and ωεy < γy}
ρ := the element of {ωε ∈ Vε | ωεy = γy and ωεz < γz} with

maximal ωεz
redefine ε by replacing the x-coordinate ενx with 0

M by changing the label on νε accordingly

if ρx = νx

then redefine M by removing edge labeled γ = (γx, γy, γz)
else leave M unchanged

end if-then-else

end while-do

output M
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Figure 8: The geometry of Algorithm 11.2

Remark 11.3 Here are some elementary observations to aid in parsing the
algorithm. See also Figure 8, which illustrates the geometry.

(i) It may be necessary to scale V in order to choose εν ∈ N3 for all ν, because
of the condition a = νεu.

(ii) Note that γx = νx, not νεx.

(iii) The orthogonal ray Yνε used to define γy is bounded because νε 6= ν, so
that ν cannot be the axial vertex ẏ.

(iv) The set used to define γz is nonempty because the axial vector ż is in the
set; indeed, νε 6= ν implies ν 6= ż.

(v) γz > νεz because Vε consists of pairwise incomparable vectors.

(vi) The set defining ρ is nonempty because νε + Yνε = νε∨ωε for some ωε in
this set. Uniqueness of ρ follows from pairwise incomparability of elements
in Vε.

(vii) Relabeling M at the redefine step yields a cellular free resolution of the
resulting ideal with the new ε by [GPW00, Theorem 3.3], though it need
not be minimal.
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Example 11.4 If IV = 〈x4, x2y2, x2z2, y4, y2z2, z4〉 is obtained from Ex-
ample 7.1 by a scale factor of 2, then the generic deformation IVε =
〈x4, x2y3, x3z2, y4, y2z3, x4〉 satisfies the condition of Algorithm 11.2. Further-
more, the Scarf complex of IVε is the triangle with its edge-midpoints con-
nected, as in Example 7.1. If Algorithm 11.2 is run on this IV , then one of
the three nonminimal edges is removed on the first iteration of the while
loop. Precisely which of the nonminimal edges is removed depends on which
u ∈ {x, y, z} is chosen first; any u will work, not just u = x. In the remaining
two iterations of the while loop, no further edges are removed. It is instructive
to work out this example by hand; see Figure 8 for general pictures. 2

12 Ideals to graphs: proof

The gruntwork in proving that the algorithm accomplishes its goal is contained
in the following two technical lemmas, whose hypotheses are designed to be
satisfied by the deformation taking place in one pass of the while loop (af-
ter a cyclic permutation of (x, y, z) and an order-preserving bijection as in
Lemma 2.1, perhaps).

Lemma 12.1 Suppose IV ⊂ k[x, y, z] is artinian, and that ν ∈ V has νx 6= 0
and satisfies ωy ≥ νy whenever ωx = νx. Suppose further that ε = {εω}ω∈V is a
deformation of V with εω = 0 for ω 6= ν and εν = (1, 0, 0). Let γy = νεy + |Yνε |.
If α ∈ N3 then Kα(Vε) = Kα(V) unless

νz ≤ αz and νy ≤ αy ≤ γy and αx ∈ {νx, 1 + νx}. (13)

If αy 6= γy and α satisfies (13) with αx = νx, then Kα+εν (Vε) = Kα(V) while
both Kα(Vε) and Kα+εν (V) have no reduced homology.

The last sentence takes care of the case where α satisfies (13) and αx = 1 + νx,
because α + εν has x-coordinate 1 + νx; the case αy = γy will be covered in
Lemma 12.2.
The idea comes from Figure 8, where the grey dots represent elements of V ε,
the white dots represent maximal points of SVε (= second syzygies of IVε
= irreducible components of IVε), and the black dots represent first syzygies
of IVε . Looking from far down the x-axis, the vector νε has a vertical plateau
behind it: the big medium-grey wall, parallel to the yz-plane. Pushing νε back
to ν moves that vertical wall back a single unit. The only places where the
topology of Kα(V) can possibly change are at lattice points α that sit either on
the original wall in SVε or its pushed-back image in SV ; these are the vectors
α described in (13).
For vectors α+ εν that sit on the original wall but to the left of its right-hand
edge (i.e. those with αy 6= γy), the Koszul simplicial complex Kα+εν (Vε) gets
carried along for the ride to Kα(V) as the wall gets pushed back; the empty
circles denote where the filled (black and white) dots get moved to. On the
other hand, if α sits on the pushed-back image of the wall in SV (as the empty
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circles strictly to the left of γy do), then SVε is translation-invariant in the
x-direction near α, making Kα(Vε) a cone; the same goes for Kα+εν (V). Cones
have no reduced homology. Having this geometry in mind, here’s the official
proof of the lemma.

Proof. First assume α fails to satisfy (13). Use σ to denote an element
of {0, 1}3. To start off with, ω ¹ α − σ if and only if ωε ¹ α − σ when-
ever ω ∈ V r ν, so the only possible differences in the simplicial complexes
Kα(V) and Kα(Vε) come from the placement of ν and νε relative to the vec-
tors α−σ. If αx 6∈ {νx, 1+νx} then clearly ν ¹ α−σ if and only if νε ¹ α−σ.
And if αy < νy or αz < νz, then neither ν nor νε precedes α − σ. The only
remaining case of α not satisfying (13) has αx ≥ νx and αy > γy and αz ≥ νz.
Suppose νε + Yνε = νε∨ω. Then νε ¹ α⇒ ω ¹ α, and also ν ¹ α⇒ ω ¹ α, so
Kα(V) and Kα(Vε) do not depend on ν or νε.
Now assume α satisfies (13) and αy < γy. Then ω ¹ α − σ if and only if
ω ¹ α − (σ ∪ εν) whenever ω ∈ V r ν by the assumption ‘ωy ≥ νy whenever
ωx = νx’. If αx = νx then νε 6¹ α and thus Kα(Vε) is a cone with vertex εν .
If αx = 1 + νx then ν ¹ α − σ if and only if ν ¹ α − (σ ∪ εν), so Kα(V) is
another cone with vertex εν . Finally, suppose that αx = νx in addition to (13)
and αy < γy. Then ω ¹ α + εν − σ if and only if ω ¹ α − σ for ω ∈ V r ν by
the assumption ‘ωy ≥ νy whenever ωx = νx’. And clearly νε ¹ α + εν − σ if
and only if ν ¹ α−σ, since νε = ν+ εν . Therefore Kα+εν (Vε) = Kα(V) in this
case. 2

Lemma 12.2 Assume the hypotheses and notation from Lemma 12.1, let γx =
νx, and let

γz = min
ω 6=ν
{ωz | ωx ≤ νx and ωy < γy},

which exists because IV is artinian. Denote by F ε. a minimal free resolution of
IVε and by F. the specialized free resolution of IV via [GPW00, Theorem 3.3].
(This amounts to the redefine step applied to any cellular resolution supported
on a complex with vertex set Vε.) Then at most two syzygies of F ε. become
nonminimal in F.: a second syzygy sε2 in degree γ + εν = (1 + γx, γy, γz) and
a first syzygy sε1 in degree γ. Choose the unique ρ ∈ V with ρy = γy such that
ρz < γz is maximal. Then the specializations (s1, s2) of (sε1, s

ε
2) are nonminimal

if and only if ρx = γx.

Proof. The only possible nonminimal summands of F. occur in degrees
(νx, γy, αz) or (νεx, γy, αz) for some value of αz ≥ νz, because the other Betti
numbers of IV and IVε are in bijection by Lemma 12.1. Furthermore, nonmin-
imal summands cannot come from zeroth syzygies of IVε , since these are in
bijection with those of IV (no elements of Vε disappear when the ε is removed).
Therefore, nonminimal syzygies in F. can only be first or second syzygies.
It is a general fact about nonminimal free resolutions that nonminimal sum-
mands come in pairs (s1, s2) consisting of a first and second syzygy. In the
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present case, such pairs arise from minimal first and second syzygies (sε1, s
ε
2)

of IVε . Since deg(s1) = deg(s2) but deg(sε1) 6= deg(sε2), and the only change
is occurring in the x-direction, it must be that deg(sε2) = εν + deg(sε1).
Lemma 12.1 therefore implies that any minimal syzygy sε2 becoming nonmin-
imal in F. must have deg(sε2) along the vertical ray (νεx, γy, αz) for varying
αz ≥ νz. Furthermore, there can be at most one value γz for αz, since there
can be only one second syzygy along any line parallel to an axis. This proves
all but the last sentence.
The two specialized syzygies are nonminimal if and only if either one of them
is. The specialization of sε2 is a second syzygy in degree γ that is minimal if
and only if Kγ(V) is the boundary of a triangle by Proposition 6.1. In any case,
γ−(1, 1, 1) 6∈ 〈V〉 by minimality of γz. Suppose ρx 6= γx. Then (0, 1, 1) ∈ Kγ(V)
because γz > νz and γy > νy. Any vector ω ∈ V whose z-coordinate was used
to define γz has ωx < νx by the assumption ‘ωy ≥ νy whenever ωx = νx’; thus
(1, 1, 0) ∈ Kγ(V). And (1, 0, 1) ∈ Kγ(V) because of ρ. Therefore, Kγ(V) is the
boundary of the triangle when ρx 6= γx (in this case, there is no first syzygy of
IVε in degree γ waiting to cancel sε2 as it specializes to s2). Finally, if ρx = γx,
then (1, 0, 1) 6∈ Kγ(V), whence Kγ(V) cannot be the boundary of a triangle.

2

Example 12.3 Some possible combinatorial types for Kα(V), where α =
deg(s1) is the degree of the specialized first syzygy of Lemma 12.2, are de-
picted in Figure 8. The headings ‘else’ and ‘then’ correspond to the cases
in Algorithm 11.2. Observe that in the single then case, the white dot sε2 at
(1 + γx, γy, γz) gets smashed into the vertical plane during specialization and
cancels the black dot sε1 at (γx, γy, γz). On the other hand, the topology re-
mains constant in the first two else cases. In the final else case, two of the
black dots merge to become a “double” black dot, since the resulting Koszul
simplicial complex (3 disjoint vertices), has 2-dimensional H̃0 after the wall is
pushed back. 2

Proposition 12.4 At every iteration of the line end while-do in Algo-
rithm 11.2, the labeled map M provides a minimal cellular free resolution of IVε .

Proof. This has two parts, of course: then and else. Both follow from
Lemma 12.2, given Remark 11.3(vii). Indeed, removing the unique nonminimal
edge automatically destroys the unique nonminimal region by merging it with
an adjacent region.
This argument implicitly uses Proposition 7.2, which guarantees that the
deleted edge equals the entire intersection of the two regions containing it,
so that matrices for the ordinary boundary complex of the deletion are ob-
tained from those for M by removing the appropriate rows and columns. It
should also be reiterated that we can choose the deformation in Lemma 12.1
to be the one occurring in each pass of the while loop; indeed it is here that
the precise condition (12) on the deformation ε in Algorithm 11.2 is used in an
essential way. 2
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Proof of Theorem 11.1. It remains only to reduce to the artinian case. Let V =
V ∪ {u̇ | SV ∩ U = ∅} for sufficiently large |u̇|, as in Lemma 8.2. Given any
labeled cell complex M supporting a minimal cellular resolution of IV , taking
the subcomplex M ⊆ M whose labels precede the join ∨V} produces a cell
complex supporting a minimal resolution of M . This is the content of [BS98,
Corollary 1.3]. 2

Part III
Planar maps revisited

13 Orthogonal coloring

Let M be a planar map with vertex set V and M∞ an extended map. Since
M∞ is embedded in a surface S homeomorphic to the plane, it makes sense to
order the angles at any of its vertices cyclically, and to say that a list of angles
at a vertex is consecutive. The same comment applies as well to the angles in
any bounded region of M∞, to the four angles having any fixed bounded edge
as a leg (two at each vertex), and to the unbounded edges (read as the hands
on an analog clock). With these cyclically ordered sets in mind, let A be any
finite set of objects arranged cyclically in the surface S. Given three colors
x, y, z, the set A is trichromatic if

• there is an element in A colored u, for each u = x, y, z;

• the elements in A colored u are consecutive, for each u = x, y, z; and

• the block of elements colored z is immediately counterclockwise from the
block of elements colored y.

Deleting ‘counter’ from the last item defines clockwise trichromatic instead.
An orthogonal coloring O of M∞ is a labeling of the angles in M∞ at every
vertex in M by three colors x, y, z such that

(i) all vertices of M are trichromatic in M∞;

(ii) all bounded edges of M are clockwise trichromatic in M∞;

(iii) all bounded regions of M are trichromatic in M∞;

(iv) the two angles adjacent to each unbounded edge have different colors; and

(v) attaching to each unbounded edge the color missing from its two angles
makes the set of unbounded edges in M∞ trichromatic.

Suppose, in addition, that M has axial vertices ẋ, ẏ, ż, so M∞ = M∞(ẋ, ẏ, ż).
The angles interior to the three unbounded regions of M∞ are called exterior
angles of M∞; besides the obvious pair of angles at each of ẋ, ẏ, ż, they include
one angle at each nonaxial vertex lying on the exterior cycle. The interior angles
at vertices on the exterior cycle are the angles lying inside M—that is, the non-
exterior angles. Call an orthogonal coloring ofM axial if the following boundary
conditions, which imply axioms (iv) and (v), are satisfied for u = x, y, z:
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(iv)′ all interior angles at the axial vertex u̇ are colored u;

(v)′ all exterior angles of M∞ in the unbounded region not touching u̇ are
colored u.

For example, the orthogonal coloring in Figure 1 is axial. Roughly speaking,
even axioms (iv)′ and (v)′ say that something is trichromatic: (iv)′ says that the
exterior cycle, thought of as a triangle with vertices ẋ, ẏ, ż, is trichromatic; while
(v)′ says that the set of exterior angles is trichromatic. This observation makes
it particularly easy to remember the axioms defining an orthogonal coloring.
Felsner independently defined what he called Schnyder colorings in [Fel01, Sec-
tion 1]. These are the same thing as axial orthogonal colorings. Felsner also
pointed out that axiom (ii) follows from the others [Fel01, Lemma 1]. When
the planar map is a triangulation of a simplex with no new vertices on the
boundary, axial orthogonal coloring reduces to the angle-coloring of Schnyder
[Tro92, Theorem 6.2.1], justifying Felsner’s terminology. The next result and
its proof justify the adjective “orthogonal”.

Proposition 13.1 Any (axial) geodesic embedding M ↪→ SV induces an (ax-
ial) orthogonal coloring of M∞ = M ∪ (unbounded orthogonal rays).

Proof. Any angle in a geodesic embedding, whether between bounded or
unbounded edges or both, locally lies in a plane u = constant for some
u ∈ {x, y, z}. Color such an angle by u. The orthogonality axioms follow
readily from the definition of axial geodesic embedding and the region axiom
(which holds for nonaxial grid surfaces by Lemma 8.2) in Section 2. 2

14 Orthogonal flows

In this section the planar map M has axial vertices ẋ, ẏ, ż, and M∞(ẋ, ẏ, ż) is
orthogonally colored. We derive properties of orthogonal flows in grid surfaces
(Section 2) from the axioms for axial orthogonal coloring, for comparison with
[BT93]. In an earlier version of this paper, the current section was intended
to serve as a possible proof method for Conjecture 16.3, below. Felsner in fact
carried out this program [Fel02], having independently found the results in this
section already [Fel01].
To begin, interpret an orthogonal coloring as a family of three orthogonal
vector fields on M∞: for each vertex of M∞, assign precisely three arrows
pointing away from it—one of each color—along the edges separating the blocks
of differently colored angles. Thus, for example, the z-colored arrows point
upward along an edge if and only if the angles around the edge have colors
z
y|zx, yy|zx, zy|xx, or y|x (the z-axis). The first of these edges has no arrow pointing
downward from its top vertex, while the second and third have downward
arrows colored x and y, respectively.
The u-colored vector fields for u = x, y, z can be “integrated” to get orthogonal
flow lines: the u-colored flow line from ν ∈ M is a directed path in M∞,
beginning with ν, that is a union of edges underlying u-colored arrows. Thus

Documenta Mathematica 7 (2002) 43–90



82 Ezra Miller

the next vertex after ν is at the other end of the edge whose u-colored arrow
points away from ν.
Orthogonal flow lines can only meet in certain orientations. To make a precise
statement, let L be a directed path passing through a vertex ν, and K a directed
path containing an edge ~e pointing toward ν. Then K approaches L from the
left at ν if ~e is distinct from L’s two arrows at ν, and these three arrows are
oriented as in Eq. (14), below (ignoring the labels for the moment). Similarly,
given the mirror orientations, K approaches L from the right.

Lemma 14.1 A flow line colored x never approaches a flow line colored z from
the left. A flow line colored y never approaches a flow line colored z from the
right. These statements remain true for cyclic permutations of x, y, z.

Proof. Suppose ~e approaches the z-colored flow line L from the left at ν. The
angle coloration around ν looks like the following diagram,

L

y

x
x

c ~e
b

→ ν
a

y

x
x

(14)

in which a 6= x by edge trichromatics. (There may be other edges containing ν
but not shown.) Since none of the angles going clockwise between a and y at ν
can be x-colored (by vertex trichromatics), it is impossible to have {b, c} ⊆
{y, z}, by edge trichromatics. The other case is similar, and the symmetry is
obvious. 2

The observation in Lemma 14.1 imposes useful conditions on flow lines. The
next proposition says that orthogonal flow lines satisfy conditions slightly
stronger than the five “path properties” defining a normal family of paths,
as introduced by Brightwell and Trotter [BT93] (see [Tro92, Chapter 6] for
an exposition). A set of paths whose pairwise intersections consist of a single
vertex is called independent.

Proposition 14.2 (Path Properties) Endow M∞(ẋ, ẏ, ż) with an axial or-
thogonal coloring. Suppose ν ∈M is a vertex and u ∈ {x, y, z} is a color.

1. There is a unique u-colored flow line beginning at ν; it connects ν to ∞
via u̇.

2. If [ν, u̇] denotes the part of the u-colored flow line starting with ν and
ending with u̇, then [ν, ẋ], [ν, ẏ], and [ν, ż] are independent paths from ν.

3. The six paths [ẋ, ẏ], [ẏ, ẋ], [ẏ, ż], [ż, ẏ], [ẋ, ż], [ż, ẋ] are on the exterior cycle
of M .

4. If ω ∈M is a vertex such that ω ∈ [ν, u̇], then [ω, u̇] ⊆ [ν, u̇].
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5. If ω is in the union [ẋ, ν, ẏ] of [ν, ẋ], [ν, ẏ], [ẋ, ẏ], and any regions they
enclose, then [ẋ, ω, ẏ] ⊆ [ẋ, ν, ẏ]; the same holds with ż in place of ẋ or ẏ.

Proof. Existence and uniqueness in part 1 are obvious. Since the only arrows
in M∞ pointing out of M are on the axes by orthogonality axioms (iv)′ and (v)′,
part 1 is equivalent to statement that flow lines contain no cycles. Any flow
cycle C containing a vertex in the interior of the region it bounds contains
an entire flow cycle of some other color in its interior: one of the other colors
cannot escape by Lemma 14.1. Thus we may assume C has no vertices interior
to it. But then the argument in the proof of Lemma 14.1 forces the coloration
of the angles in the interior of C to omit one color entirely, violating region
trichromatics.
Now suppose two flow lines from ν—colored x and y, say—intersect, and con-
sider the cycle C formed by their arcs connecting ν to their first intersection
point. Assume for the moment that ω lies interior to C. Depending on the
orientations of the two flow lines around C, either z-flow lines cannot escape C,
or the u-flow line from ω exits through the u-colored arc of C, for u = x, y.
The first case contradicts acyclicity, while the second case produces a smaller
cycle C. Again, we may therefore assume C contains no vertices interior to it.
In the first orientation, no interior angle of C is colored z, while in the second
orientation, all interior angles of C are colored z.
Part 3 follows easily by applying orthogonality axiom (ii) to the edges on the
exterior cycle of M , each of which has two of its four colors specified by (v)′.
Part 4 is obvious from the definition of flow line.
To prove part 5, first observe that a flow line colored x or y cannot escape
[ẋ, ν, ẏ] if it originates at a vertex ω ∈ [ẋ, ν, ẏ] that is on neither [ν, ẋ] nor [ν, ẏ].
Indeed, if [ω, ẋ] intersects [ν, ẋ], then these two flow lines agree thereafter;
and [ω, ẋ] cannot even approach [ν, ẏ], thanks to Lemma 14.1. On the other
hand, if ν 6= ω ∈ [ν, ẏ], say, then [ω, ẏ] ⊂ [ν, ẏ] by part 4. Moreover, vertex
trichromatics force the first edge of [ω, ẋ] to exit ω clockwise from the y-colored
arrow pointing away ω, but counterclockwise from the other edge leaving ω and
in [ν, ẏ]. Therefore, [ω, ẋ] remains inside [ẋ, ν, ẏ] either by part 4 or the first
sentence of this paragraph. 2

Example 14.3 Orthogonal flow lines are better behaved than arbitrary normal
families of paths, since their strong local properties imply Path Property 2,
and especially the crucial Path Property 5, which are global. Figure 9 depicts
two triples of vector fields determined by trichromatic angle colorings whose
corresponding flow lines satisfy the conclusion of Proposition 14.2, and therefore
constitute normal families of paths. The vector fields in the left diagram are not
orthogonal because of the edge connecting the rightmost interior vertices, the
edge connecting the remaining interior vertex to ẋ, the interior region, and the
bottom region bordering [ẋ, ż]. Recoloring the angles at the leftmost interior
vertices yields the orthogonal vector fields at right. 2
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Figure 9: Nonorthogonal and orthogonal vector fields

Corollary 14.4 Let M be a planar with axial vertices ẋ, ẏ, ż. The extended
map M∞(ẋ, ẏ, ż) can be orthogonally colored if and only if it is triconnected.

Proof. Proposition 14.2.2 proves the ‘only if’ direction, while Theorem 5.1 and
Proposition 13.1 prove the ‘if’ direction. 2

Remark 14.5 The results of this section can be massaged to work for nonaxial
orthogonally colored extended maps M∞, as well. In fact, everything reduces
to the axial case: draw a large triangle containing all of M—not M∞—in its
interior, and call its three vertices ẋ, ẏ, ż, in counterclockwise order. Then
connect each u-colored unbounded edge to u̇. It is straightforward to verify
the axioms for axial orthogonal colorings, given the ordinary axioms for M∞.
Observe the analogy with Lemma 8.2.

15 Duality for geodesic embeddings

Let G be a graph embedded in the sphere S∪{∞}, where S ∼= R2, and assume
that G∩S is a planar map or extended map. For this paragraph only, we allow
graphs and planar maps to have multiple edges, although we assume G has no
loops, and that the edges of G in each one of its regions form a simple cycle.
Define the spherical dual Ĝ of G as usual: place a vertex Â in each region A
of G, and draw an edge connecting Â to B̂ through each edge contained in
A∩B. Then Ĝ also satisfies the no-loop and simple-cycle conditions, which are
dual to each other. Assume that∞ is a vertex of either G or Ĝ. When∞ 6∈ G,
so G is a planar map M ⊂ S, then Ĝ is an extended map that we denote by M̂∞
(with associated planar map del(Ĝ;∞) = M̂) and call the planar dual of M .
When ∞ ∈ G, so G ∩ S = N∞ is an extended map satisfying N = del(G;∞),
then Ĝ is a planar map that we denote by N̂ and call the planar dual of N∞.
For an arbitrary grid surface SV , let α̂ be any vector preceded by 1 + the join
of the vectors in V, where 1 = (1, 1, 1). Define V by throwing in axial vertices
missing from V:

V = V ∪ {u̇ | SV ∩ U = ∅}, where u̇ ∈ U has length |u̇| = α̂u.
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This notation agrees with that in Lemma 8.2, but specifies the length of u̇.
Define the Alexander dual grid surface SV̂ by

V̂ = {α̂− ρ | ρ ∈ Smax
V },

where the notation comes from Lemma 8.3. Neither SV̂ nor SV̂ depends com-
binatorially on α̂, in the sense of Lemma 2.1.
By definition, V = V and α̂ º ẋ+ ẏ + ż + 1 when SV is axial. Define SV to be
radial if νu 6= 0 for all ν ∈ V and u ∈ {x, y, z}. In particular, V = V ∪ {ẋ, ẏ, ż}
is a disjoint union when SV is radial. Although the following duality theorem
is stated only for axial and radial grid surfaces, similar (but slightly harder
to state) considerations apply to arbitrary geodesic and rigid embeddings; the
definition of Alexander dual grid surface extends verbatim. Recall that M∞ =
M ∪ (unbounded orthogonal rays in SV) for geodesic embeddings M ↪→ SV .

Theorem 15.1 Let M ↪→ SV be an axial geodesic embedding, and N ↪→ SW a
radial geodesic embedding.

1. M ∼= N̂ if and only if M̂ ∼= N .

2. There is a natural radial geodesic embedding M̂ ↪→ SV̂ that is rigid if and
only if M ↪→ SV is rigid.

3. There is a natural axial geodesic embedding N̂ ↪→ SŴ that is rigid if and
only if N ↪→ SW is rigid.

Proof. Part 1 is simply duality for spherical maps, as in the first paragraph of
this section. We prove part 2, since part 3 is similar and can even be simplified
by using parts 1 and 2. The vertex axiom for SV̂ follows immediately from
Lemma 8.3. The main point for the rest of the proof is that

{σ ∈ SV̂ | σ ¹ α̂} = {α̂− σ | σ ∈ SV and σ ¹ α̂}.

In other words, {σ ∈ SV | σ ¹ α̂} lies in the topological boundary of R3 r 〈V〉.
Every elbow geodesic [ν, ω] in M borders precisely two regions of M∞ because
M∞ is triconnected (apply Proposition 7.2 along with Theorem 8.4, or Proposi-
tion 13.1 along with Corollary 14.4). If these two regions A and B are bounded,
then the maximal points Â and B̂ in them (Lemma 8.3) connect via straight
line segments in SV to ν∨ω by the region axiom (see the proof of Lemma 8.3).
Furthermore, one of these segments must transform into an orthogonal ray
in SV̂ via σ 7→ α̂ − σ, because ν∨ω = Â∧B̂ (by the region axiom: for each
u ∈ {x, y, z} one of the two vectors ν and ω shares its u-coordinate with one of
the vectors Â and B̂). Thus every bounded edge of M̂∞ is an elbow geodesic
in SV̂ .
If [ν, ω] borders a bounded region A and an unbounded region, then νu = ωu =
0 for some u ∈ {x, y, z}. The vector ν∨ω shares both of its nonzero coordinates
with Â in this case, so Â is the unique maximal point of SV preceded by ν∨ω.
This forces the negative ray Â − U passing through Â and ν∨ω to transform

Documenta Mathematica 7 (2002) 43–90



86 Ezra Miller

axial radial

Figure 10: Duality for geodesic embeddings

into an unbounded orthogonal ray α̂− (Â−U) = (α̂− Â) +U in SV̂ . Thus the

unbounded edges of M̂∞ are unbounded orthogonal rays in SV̂ .

Now we show that every orthogonal ray in SV̂ is contained in an edge of M̂ .

Equivalently, for each maximal point Â ∈ SV and U ∈ {X,Y, Z}, there is an
elbow geodesic [ν, ω] ∈ M such that Â − ν∨ω ∈ U . By symmetry, set U = Z.
Choose the edge [ν, ω] ⊂ A so that νx = Âx and ωy = Ây; such an edge exists
by orthogonality property (iii) and Proposition 13.1.
For the statement about rigidity, use the rigid region axiom: ν∨ω ¹ Â⇔ ν ¹ Â
and ω ¹ Â, and this occurs precisely when ν ∈ A and ω ∈ A. Thus, when
[ν, ω] ⊂ SV is a rigid geodesic, ν∨ω precedes the maximal points in exactly two
regions of M : the regions A and B containing both ν and ω. That ν∨ω = Â∧B̂
was shown above. 2

Example 15.2 Figure 10 illustrates Theorem 15.1 for a particular (nonrigid)
geodesic embedding. Turning the picture upside-down yields two pictures of
the Alexander dual grid surface, with the radial embedding appearing the right
way out and the axial embedding backwards. 2

Considering the Theorem 8.4, the duality result here essentially falls under the
umbrella of duality for resolutions of monomial ideals [Mil00a, Section 4.2].
Although the above proof can be simplified greatly by applying duality for
resolutions, particularly in concert with [Mil00a, Proposition 3.20], it seemed
appropriate to keep Theorem 15.1 as self-contained as possible.

16 Open problems

16.1 Planar maps supporting resolutions of nonartinian ideals

Problem 16.1 Characterize those planar maps that support minimal resolu-
tions of trivariate monomial ideals.
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It would be nice to clean up the statement of Theorem B by proving 3 ⇒ 2.
Unfortunately, the most direct proof attempt fails.
To be precise, suppose the planar map N supports a minimal cellular free
resolution of some ideal IV . Following the procedure in the proof of Proposi-
tion 7.2, the underlying graph H of N has paths analogous to orthogonal flows.
However, since V may not be axial, these flows do not reach axial vertices, but
instead reach unbounded orthogonal rays. As an abstract graph, we can define
H by adding three new vertices ẋ, ẏ, ż to H, and then connecting each vertex
ν ∈ N to u̇ if the orthogonal ray Uν is unbounded. Judging from Theorems A
and B, one might expect that H is planar and triconnected, supporting a min-
imal free resolution of some artinian approximation to IV . But although H is
obviously triconnected, it need not be planar!
Take, for instance, the set V from Example 9.2, without the axial vectors.
Deleting ẋ, ẏ, ż from the nonplanar map M there yields a planar map N sup-
porting a minimal free resolution of IV , but reconnecting to ẋ, ẏ, ż as above
returns M again.

16.2 Nonrigid geodesic embeddings

Conjecture 16.2 Let the axial grid surface SV have vertices ν1, ν2, ν3, ν4 ∈ V,
each with no coordinate zero, such that [νi, νj ] is an elbow geodesic whenever
i 6= j. Then the ideal IV possesses a nonplanar cellular minimal free resolution.

Thus relatively minor violation of rigidity for SV not only implies nonunique-
ness of minimal cellular resolutions (cf. Corollary 9.1), but should even imply
nonplanarity. Intuitively, it should be possible to construct K5 out of elbow
geodesics (two of which cross) using two of the νi and ẋ, ẏ, ż, as in Example 9.2.
Given such a configuration, one is tempted to “fill in” the resulting 1-skeleton
to form a cell complex minimally resolving IV . This is, in fact, how Example 9.2
was constructed.

16.3 Orthogonal coloring to rigid embedding

Conjecture 16.3 (Felsner’s Theorem [Fel02]) Every orthogonal color-
ing on a planar map is induced by a rigid embedding, as in Proposition 13.1.

This converse to Proposition 13.1 reduces easily to the axial case, via Lemma 8.2
and Remark 14.5. Since the axial case was proved by Felsner [Fel02] in response
to seeing the conjecture here, this is in fact no longer an open problem. But see
[Fel02] for Felsner’s open questions regarding the set of orthogonal colorings.
Besides its applications to the questions discussed in the next subsection, the
motivation behind formulating the above statement was that it reduces Theo-
rem 5.1 to verifying that every planar map there has an orthogonal coloring.
This actually follows by the same induction used for rigid embeddings, but
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the details become much simpler; moreover, Felsner already proved existence
of orthogonal colorings in [Fel01]. Thus we get a substantially more palatable
proof of Theorem 5.1 via [Fel01, Fel02].

16.4 The Scarf stratification

Part of the motivation for the results presented here stems from the desire to
understand not just how to assign a minimal free resolution to any particular
monomial ideal, but to understand the collection of all minimal free or injective
resolutions of monomial ideals. Some recent results, notably those in [GPW00],
aim to classify monomial ideals according to whether their minimal resolutions
are in some sense isomorphic, by ascertaining what data determines the minimal
resolutions. Other results, such as those in [MSY00], raise the question of which
deformations (as in Section 10) preserve minimal resolutions. This latter idea
originated from [BPS98, PS98], which was in turn based upon work of H. Scarf
on related classifications for integer programs.
It seems that the most universal approach for minimal resolutions of mono-
mial ideals should combine the two types of classification above. Heuristically,
the question becomes, ‘What are all possible ways of deforming continuously
between monomial ideals having “nearby” isomorphism classes of resolutions?’
Ideally one would like a ‘fine moduli space’ for minimal resolutions, in the sense
that arcs in that space correspond to families of monomial ideals whose min-
imal resolutions deform continuously. Of course, there are only finitely many
deformation classes of minimal resolutions, so the space should interact well
with the poset of monomial ideals under deformation.
One tempting candidate for ‘fine moduli space’ can be defined as follows. Giv-
ing r monomials in n variables is the same as giving an r×nmatrix of exponents.
The generic monomial ideals partition an open dense subset of the nonnegative
orthant in this matrix space, by [BPS98, MSY00]. Taking the cells formed by
intersections of the closures of the generic loci yields a decomposition that we
propose to call the Scarf stratification. It should be a rational polyhedral fan,
if life is fair; but at least there should be a subdividing fan with finitely many
maximal cones such that the maximal Scarf cells are unions of maximal cones.
Any classifying space such as the Scarf stratification will feel rather more like an
algebraic stack than a fine moduli space, because even if it classifies deforma-
tions of minimal resolutions, the actual set of isomorphism classes of minimal
resolutions would be a quotient by some finite group (containing the symmet-
ric group on the variables, at least) of the set of strata: two monomial ideals
differing by a permutation of the variables might be far from each other in the
stratification.
Whatever the correct space of minimal resolutions ends up being, the methods
introduced here can be applied to elucidate its combinatorial structure, for
n = 3. Note that Felsner’s theorem (Conjecture 16.3) classifies the maximal
strata for the case of three variables—that is, the generic trivariate monomial

Documenta Mathematica 7 (2002) 43–90



Planar Graphs as Minimal Resolutions 89

ideals—by [MSY00]:

Corollary 16.4 Deformation classes of generic artinian trivariate monomial
ideals correspond bijectively to orthogonally colored axial planar triangulations.

The triangulations referred to here are orthogonally colored triangulations of
the simplex with new vertices on the boundary, so they are not Schnyder normal
colorings. Corollary 16.4 and Corollary 9.1 prompt the following:

Question 16.5 In terms of monomial ideals, what do deformation classes of
axial rigid embeddings correspond to in general, for non-triangulations?

For instance, do they correspond to certain Scarf strata? If the Scarf stratifi-
cation is a rational polyhedral fan, what linear equations define these cones?
We note that arbitrary geodesic embeddings have considerably more freedom
than do rigid embeddings, from the point of view of deformations (hence the
adjective ‘rigid’). The possible application of the material in this paper to the
classification of deformations of minimal resolutions was one of the motivations
for stating as many results as possible in the context of arbitrary geodesic
embeddings.
Our final remark concerns the bias in this paper toward artinian monomial ide-
als. Combinatorial considerations such as triconnectivity notwithstanding, the
bias also makes sense algebraically. Briefly, the homological characterization of
genericity for arbitrary monomial ideals [MSY00, Theorem 1.5 and Remark 1.7]
is a statement about graded injective resolutions under deformation; and any
result concerning Z3-graded injective resolutions of arbitrary monomial ideals
has an equivalent statement in terms of Z3-graded free resolutions of artinian
monomial ideals, by the duality results in [Mil00a]. We emphasize that the
theory surrounding injective resolutions played a crucial role in properly for-
mulating the graph-theoretic results in Part I, as well as the algebraic results in
Part II (the exposition in Sections 10–12 is based on [Mil00b, Theorem 5.60]).
Moreover, concentrating on injective resolutions (equivalently, artinian mono-
mial ideals) should ease the nonplanarity difficulties raised in Section 16.1, by
applying [Mil00a, Theorem 4.5.5 and Example 4.8.5], which says how to recover
free resolutions from injective resolutions.
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