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Abstract. Let F be a totally real number field. We define global
L-packets for GSp(2) over F which should correspond to the elliptic tem-
pered admissible homomorphisms from the conjectural Langlands group
of F to the L-group of GSp(2) which are reducible, or irreducible and
induced from a totally real quadratic extension of F . We prove that the
elements of these global L-packets occur in the space of cusp forms on
GSp(2) over F as predicted by Arthur’s conjecture. This can be regarded
as the GSp(2) analogue of the dihedral case of the Langlands-Tunnell
theorem. To obtain these results we prove a nonvanishing theorem for
global theta lifts from the similitude group of a general four dimensional
quadratic space over F to GSp(2) over F .
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Introduction

Let F be a number field with adeles A and Weil group WF , and let ϕ : WF →
GL(n,C) be an irreducible continuous representation. There is a unique real
number t such that the twist of ϕ by the canonical norm function on WF

raised to the t-th power has bounded image, so assume ϕ(WF ) is bounded; if ϕ
factors through Gal(F/F ) this is automatic. For all places v of F , let πv be the
tempered irreducible admissible representation of GL(n, Fv) corresponding to
the restriction ϕv under the local Langlands correspondence; then conjecturally
⊗vπv is an irreducible unitary cuspidal automorphic representation (hereafter,
cuspidal automorphic representation) of GL(n,A). This conjecture is known in
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some cases. For example, if n = 2 and the image of ϕ in PGL(2,C) is not the
icosahedral group A5, then the Langlands-Tunnell theorem asserts π is cuspidal
automorphic.

Inspired by this, one can ask for a complete parameterization of the tempered
cuspidal automorphic representations of GL(n) and of other groups ([Ko], Sec-
tion 12; [LL]). Since there are tempered cuspidal automorphic representations of
GL(2,AQ) which do not correspond to any ϕ : WQ → GL(2,C), the Weil group
is inadequate. Conjecturally, there exists a locally compact group LF , called
the Langlands group of F , which is an extension of WF by a compact group
and is formally similar to the Weil group; locally, if v is an infinite place of F ,
then LFv

= WFv
and if v is finite, then LFv

= WFv
×SU(2,R). Moreover, the

tempered cuspidal automorphic representations of GL(n,A) should be in bijec-
tion with the n dimensional irreducible continuous complex representations of
LF with bounded image. For other connected reductive linear algebraic groups
G over F the conjecture is more intricate, and involves L-packets attached to
appropriate L-parameters LF → LG. In this paper we prove results about local
and global theta lifts which yield parameterizations of some tempered cuspidal
automorphic representations of GSp(2,A) in agreement with this conjecture.

To motivate the results we recall the conjecture, taking into account simplifi-
cations for GSp(2). Assume LF exists. Then for GSp(2) one considers elliptic

tempered admissible homomorphisms from LF to LGSp(2) = ĜSp(2) oWF .
Concretely, since GSp(2) is split and one can fix an isomorphism between the

dual group ĜSp(2) and GSp(2,C), such homomorphisms amount to continu-
ous homomorphisms ϕ : LF → GSp(2,C) such that ϕ(x) is semi-simple for all
x ∈ LF and ϕ(LF ) is bounded and not contained in the Levi subgroup of a
proper parabolic subgroup of GSp(2,C). Since LF should be an extension of
WF a basic example is a continuous homomorphism Gal(F/F ) → GSp(2,C)
which is irreducible as a four dimensional complex representation. Fix such
a ϕ : LF → GSp(2,C). The conjecture first asserts that for each place v
of F one can associate to the restriction ϕv : LFv

→ GSp(2,C) a finite set
Π(ϕv) of irreducible admissible representations of GSp(2, Fv), the L-packet of
ϕv. These packets should have a number of properties [B], but minimally we
require that Π(ϕv) consists of tempered representations, and if v is finite and
ϕv is unramified, then Π(ϕv) consists of a single representation unramified
with respect to GSp(2,OFv

) with Satake parameter ϕv(Frobv) where Frobv is
a Frobenius element at v; also, the common central character of the elements of
Π(ϕv) should correspond to λ◦ϕv, where λ : GSp(2,C)→ C× is the similitude
quasi-character. Define

Π(ϕ) = {Π = ⊗vΠv ∈ Irradmiss(GSp(2,A)) : Πv ∈ Π(ϕv) for all v}
= ⊗vΠ(ϕv).

Arthur’s conjecture ([LL], [Ko], [A1], [A2]) now asserts that if Π ∈ Π(ϕ) then
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Π occurs with multiplicity

m(Π) =
1

|S(ϕ)|
∑

s∈S(ϕ)
〈s,Π〉

in the space of cusp forms on GSp(2,A) with central character λ◦ϕ. Here, S(ϕ)
is the connected component group π0(S(ϕ)/C×), where S(ϕ) is the centralizer
of the image of ϕ, and 〈·, ·〉 : S(ϕ)×Π(ϕ)→ C is defined by

〈s,Π〉 =
∏

v

〈sv, Πv〉v,

where sv is the image of s under the natural map S(ϕ) → S(ϕv) and Π =
⊗vΠv; the 〈·, ·〉v : S(ϕv)×Π(ϕv)→ C should be functions such that 〈·, Πv〉v is
the character of a finite dimensional complex representation of S(ϕv) which is
identically 1 if Πv is unramified.
By looking at cases we can be more specific. Elliptic tempered admissible
homomorphisms ϕ : LF → GSp(2,C) can be divided into three types: (a)
those which are irreducible and induced as a representation; (b) those which
are reducible as a representation; and (c) those which are irreducible and
primitive as a representation, i.e., not induced. Our result is motivated by
what the conjecture predicts for ϕ of the first two types.
Suppose ϕ is of type (a). Then one can show that ϕ is equivalent to ϕ(η, ρ)

for some η and ρ, where ϕ(η, ρ) = IndLF

LE
ρ, E is a quadratic extension of F ,

ρ : LE → GL(2,C) is an irreducible continuous representation with bounded
image such that ρ is not Galois invariant but det ρ is, and η : LF → C× extends
det ρ; the symplectic form on ϕ(η, ρ) (regarded as ρ⊕ ρ) is 〈v1 ⊕ v2, v′1 ⊕ v′2〉 =
η(h)〈v1, v′1〉 + 〈v2, v′2〉 where 〈·, ·〉 is any fixed nondegenerate symplectic form
on C2 (up to multiplication by nonzero scalars there is only one) and h is a
representative for the nontrivial coset of LE \LF . Evidently,

λ ◦ ϕ(η, ρ) = η, S(ϕ(η, ρ)) = 1.

The conjecture thus predicts that every element Π of Π(ϕ) = Π(ϕ(η, ρ)) should
be cuspidal automorphic withm(Π) = 1; that is, Π(ϕ) should be a stable global
L-packet.
Type (b) parameters, however, will in general give unstable L-packets. Suppose
ϕ is of type (b). Then ϕ ∼= ϕ(ρ1, ρ2), where ϕ(ρ1, ρ2) = ρ1 ⊕ ρ2, ρ1, ρ2 :
LF → GL(2,C) are inequivalent irreducible continuous representations with
bounded image and the same determinant, and the symplectic form on ϕ(ρ1, ρ2)
is 〈v1 ⊕ v2, v′1 ⊕ v′2〉 = 〈v1, v′1〉+ 〈v2, v′2〉. We see that

λ ◦ ϕ(ρ1, ρ2) = det ρ1 = det ρ2, Sϕ = {
[

a · I2 0
0 ±a · I2

]

: a ∈ C×}.

Thus,
S(ϕ(ρ1, ρ2)) ∼= Z2.
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Let s ∈ S(ϕ(ρ1, ρ2)) be nontrivial. If Π ∈ Π(ϕ) = Π(ϕ(ρ1, ρ2)), the conjecture
predicts

m(Π) =
1

2
(1 +

∏

v

〈sv, Πv〉v).

Now for each v, S(ϕv) = 1 or Z2; and if S(ϕv) = Z2, then sv is a nontrivial
element of S(ϕv). Thus, if M is the number of times S(ϕv) = Z2 and Πv

induces the nontrivial character of S(ϕv), then

m(Π) =
1

2
(1 + (−1)M ).

By the conjecture, Π is cuspidal automorphic if and only if M is even; if so,
m(Π) = 1. The conjecture thus provides exact predictions for ϕ of types (a)
and (b).
But as precise as they are, these predictions concern conjectural objects. Glob-
ally, the hypothetical Langlands group underlies Arthur’s conjecture; locally,
the existence of L-packets is required. There are at least two approaches to the
avoiding LF and testing the conjecture. One natural alternative is to consider
only L-parameters that factor through the Weil group or the Galois group. An-
other approach is to move matters, when possible, entirely to the automorphic
side of the picture and render Arthur’s conjecture into a statement involving
only automorphic data. Base change and automorphic induction for GL(n) are
important examples of such a shift. There is also a translation for parameters
of type (a) and (b). The reason is that for ϕ of type (a), η corresponds to a
Hecke character χ of A× by Abelian class field theory and ρ should correspond
to a non-Galois invariant tempered cuspidal automorphic representation τ of
GL(2,AE) whose central character factors through NEF via χ; for ϕ of type (b),
ρ1 and ρ2 should correspond to a pair of inequivalent tempered cuspidal auto-
morphic representations τ1 and τ2 of GL(2,A) with the same central character
χ. Our first main result proves the automorphic version of Arthur’s conjecture
for ϕ of types (a) and (b).
To explain this automorphic analogue, suppose we are given, without reference
to the global Langlands group, (A) a quadratic extension E of F and a non-
Galois invariant tempered cuspidal automorphic representation τ of GL(2,AE)
whose central character factors through NEF via a character χ, or (B) a pair
of inequivalent tempered cuspidal automorphic representations τ1 and τ2 of
GL(2,A) with common central character χ. Then we have a corresponding
conjectural ρ or ρ1 and ρ2, a corresponding ϕ of type (a) or (b), and using ϕ,
the statement of Arthur’s conjecture. However, ϕ can be avoided entirely in
arriving at a formulation of Arthur’s conjecture starting from (A) or (B). This
is due to two observations: first, the local L-parameters ϕv are defined via the
local Langlands correspondence for GL(2) independent of the existence of ϕ;
and second, the predictions of Arthur’s conjecture for parameters of type (a)
and (b) only involve local data.
To be specific, let v be a place of F , Ev = Fv ⊗F E, and let τv be the irre-
ducible admissible representation ⊗w|vτw of GL(2, Ev), where w runs over the

Documenta Mathematica 6 (2001) 247–314



Global L-Packets for GSp(2) and Theta Lifts 251

places of E lying over v (in case (B), Ev = Fv × Fv, and τv = τ1,v ⊗ τ2,v).
Then, as mentioned and using no conjecture, we can associate to χv and τv a
canonical local L-parameter ϕ(χv, τv) : LFv

→ GSp(2,C). The automorphic
version of Arthur’s conjecture now presumes that we can further associate to χv
and τv a local L-packet, satisfying certain basic requirements connected with
ϕ(χv, τv), and in the unstable case (B) a local pairing. This we do in Section
8: if F ′ is a local field of characteristic zero, E ′ is a quadratic extension of
F ′ or E′ = F ′ × F ′, and τ ′ is an infinite dimensional irreducible admissible

representation of GL(2, E′) with central character factoring through NE
′

F ′ via
a quasi-character χ′ (if F ′ is nonarchimedean of even residual characteristic
we do also assume τ ′ is tempered; if F ′ is archimedean we assume F ′ = R
and E′ = R × R), then we define a finite set Π(χ′, τ ′) of irreducible admissi-
ble representations of GSp(2, F ′). We show that this local L-packet has the
desired essential properties: the common central character of the elements of
Π(χ′, τ ′) is χ′, the character corresponding to λ ◦ ϕ(χ′, τ ′); if τ ′ is tempered,
then ϕ(χ′, τ ′) and the elements of Π(χ′, τ ′) are tempered; and if τ ′ is unitary
and E′/F ′ and τ ′ are unramified, then Π(χ′, τ ′) is a singleton whose Satake
parameter is ϕ(χ′, τ ′)(FrobF ′) (if E

′ = F ′ × F ′, then we say that E′/F ′ is un-
ramified). We also show |Π(χ′, τ ′)| = 1 or 2 and |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| at
least if F ′ is not of even residual characteristic and E ′ is a field. Additionally,
when E′ = F ′ × F ′ we define a function 〈·, ·〉F ′ : S(ϕ(χ′, τ ′)) × Π(χ′, τ ′) → C,
and show that for all Π ∈ Π(χ′, τ ′), 〈·, Π〉F ′ is a character of S(ϕ(χ′, τ ′)), and
if |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| = 2 then both characters of S(ϕ(χ′, τ ′)) arise in
this way. The following theorem is now the automorphic version of Arthur’s
conjecture for parameters of type (a) and (b).

8.6 Theorem. Let F be a totally real number field and let E be a totally
real quadratic extension of F or E = F × F . Let τ be a non-Galois invari-
ant tempered cuspidal automorphic representation of GL(2,AE) whose central

character factors through the norm NEF via a Hecke character χ of A×. Thus,
if E = F×F , then τ is a pair τ1, τ2 of inequivalent tempered cuspidal automor-
phic representations of GL(2,A) sharing the same central character χ. Define
the global L-packet:

Π(χ, τ) = {Π = ⊗vΠv ∈ Irradmiss(GSp(2,A)) : Πv ∈ Π(χv, τv) for all v}
= ⊗vΠ(χv, τv).

(1) If E is a field, then every element of Π(χ, τ) occurs with multiplicity
one in the space of cusp forms on GSp(2,A) with central character χ.

(2) Suppose E = F × F . Let Π ∈ Π(χ, τ), and let TΠ be the set of places
v such that S(ϕ(χv, τv)) = Z2 and 〈·, Πv〉v is the nontrivial character
of S(ϕ(χv, τv)). If |TΠ | is even, then Π occurs with multiplicity one in
the space of cusp forms on GSp(2,A) with central character χ. Con-
versely, if Π occurs in the space of cusp forms on GSp(2,A) with central
character χ, then |TΠ | is even.
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We hope this result will be of some use to investigators of rank four motives,
four dimensional symplectic Galois representations, Siegel modular forms or
varieties of degree two, or Abelian surfaces. One way to think of this theorem
is as an analogue for GSp(2) of the dihedral case of the Langlands-Tunnell
theorem. Of course, some applications might require more information about
the local L-packets of Theorem 8.6. For example, we still need to prove the
sole dependence of the Π(χv, τv) on the ϕ(χv, τv), i.e., if ϕ(χv, τv) ∼= ϕ(χ′v, τ

′
v),

then Π(χv, τv) = Π(χ′v, τ
′
v). Also, detailed knowledge about the local L-packets

at the ramified places and at infinity would be useful. We will return to these
local concerns in a later work. The intended emphasis of this paper is, as much
as possible, global.
As remarked, the proof of Theorem 8.6 uses theta lifts. Locally, χ and τ give ir-
reducible admissible representations of GO(X,Fv) for various four dimensional
quadratic spaces X over Fv; theta lifts of these define the local L-packets.
Globally, χ and τ induce cuspidal automorphic representations of GO(X,A)
for various four dimensional quadratic spaces X over F . The automorphicity
asserted in Theorem 8.6 is a consequence of our second main result, which
gives a fairly complete characterization of global theta lifts from GO(X,A) to
GSp(2,A) for four dimensional quadratic spaces X over F . In particular, it
shows that the nonvanishing of the global theta lift to GSp(2,A) of a tempered
cuspidal automorphic representation of GO(X,A) is equivalent to the nonvan-
ishing of all the involved local theta lifts; in turn, these local nonvanishings are
equivalent to conditions involving distinguished representations.

8.3 Theorem. Let F be a totally real number field, and let X be a four dimen-
sional quadratic space over F . Let d ∈ F×/F×2 be the discriminant of X(F ),
and assume that the discriminant algebra E of X(F ) is totally real, i.e., either

d = 1 or d 6= 1 and E = F (
√
d) is totally real. Let σ ∼= ⊗vσv be a tempered

cuspidal automorphic representation of GO(X,A) with central character ωσ.
Let Vσ be the unique realization of σ in the space of cusp forms on GO(X,A)
of central character ωσ (Section 7). Then the following are equivalent:

(1) The global theta lift Θ2(Vσ) of Vσ to GSp(2,A) is nonzero.
(2) For all places v of F , σv occurs in the theta correspondence with

GSp(2, Fv).
(3) For all places v of F , σv is not of the form π−v for some distinguished

πv ∈ Irr(GSO(X,Fv)) (Section 3).

Let σ lie over the cuspidal automorphic representation π of GSO(X,A) (Section
7), and let s ∈ O(X,F ) be the element of determinant −1 from Lemma 6.1.
If s · π À π and one of (1), (2) or (3) holds, then Θ2(Vσ) 6= 0, Θ2(Vσ) is
an irreducible unitary cuspidal automorphic representation of GSp(2,A) with
central character ωσ, and

Θ2(Vσ) ∼= ⊗vθ2(σ∨v ) = ⊗vθ2(σv)∨,

where θ2(σv) is the local theta lift of σv. For all v, θ2(σv) is tempered.
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In this theorem we make no assumptions about Howe duality at the even places:
we prove a version of Howe duality for the case at hand in Section 1.

As mentioned, in the proof of Theorem 8.6 we use Theorem 8.3 to show that
those elements of a global L-packet which should occur in the space of cusp
forms really do. Theorem 8.6 also asserts that such elements occur with mul-
tiplicity one, and in the case of an unstable global L-packet, if Π is a cuspidal
automorphic element, then |TΠ | is even. To prove these two remaining claims
the key step is to show that if Π is an element of a global L-packet and V is
a subspace of the space of cusp forms on GSp(2,A) with V ∼= Π, then V has
a nonzero theta lift to GO(X,A) for some four dimensional quadratic space X

with discX = d, where E = F (
√
d) with d = 1 if E = F × F . This step is

a consequence of a theorem of Kudla, Rallis and Soudry, which implies that if
Π1 is a cuspidal automorphic representation of Sp(2,A), V1 is a realization of
Π1 in the space of cusp forms, and some twisted standard partial L-function
LS(s,Π1, χ) has a pole at s = 1, then V1 has a nonzero theta lift to O(X,A) for
some four dimensional quadratic space X with (·,discX)F = χ. Using this key
result, multiplicity one follows from the Rallis multiplicity preservation princi-
ple and multiplicity one for GO(X,A) for four dimensional quadratic spaces X;
our understanding of the involved local theta lifts and especially the relevant
theta dichotomy also plays an important role. The proof of the evenness of
|TΠ | also uses the key step, local theory, and finally the fact that a quaternion
algebra over F must be ramified at an even number of places.

Theorems 8.3 and 8.6 depend on many previous works. Locally, we use the
papers [R1], [R2] and [R3] which dealt with the local nonarchimedean theta
correspondence for similitudes, the nonarchimedean theta correspondence be-
tween GO(X,F ) and GSp(2, F ) for dimF X = 4, and tempered representations
and the nonarchimedean theta correspondence, respectively. Globally, the crit-
ical nonvanishing results for theta lifts of this paper depend on the main result
of [R4]. In turn, the essential idea of [R4] is based on an ingenious insight of
[BSP]; [R4] also uses some strong results and ideas from [KR1] and [KR2]. The
multiplicity one part of Theorem 8.6 uses one of the main results of [KRS],
along with the multiplicity preservation principle of [Ra]. We use nonvanishing
results for L-functions at s = 1 from [Sh] to satisfy the hypothesis of Corollary
1.2 of [R4]. Various results and ideas from [HST] are used in this paper. We
would also like to mention as inspiration the papers of H. Yoshida [Y1] and
[Y2] which first looked at theta lifts of automorphic forms on GSO(X,AQ) for
dimQ X = 4 to GSp(2,AQ). Using results from [HPS], the paper [V] also de-
fined local discrete series L-packets for GSp(2) using theta lifts in the case of
odd residual characteristic.

This paper is organized as follows. In Section 1 we consider the local theta cor-
respondence for similitudes. The first main goal of this section is to extend the
results of [R1] to the even residual characteristic and real cases. This requires
that we prove a version of Howe duality in the even residual characteristic
case: we do this for tempered representations when the underlying quadratic
and symplectic bilinear spaces have the same dimension. The second main goal
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is to prove a case of S.S. Kudla’s theta dichotomy conjecture, which is required
for a complete theta lifting theory for similitudes for the relevant case. In
Section 2 we review the basic theory of four dimensional quadratic spaces and
their similitude groups. In particular, we define the four dimensional quadratic
spaces XD,d of discriminant d over a field F not of characteristic two; here,
D is a quaternion algebra over F and d ∈ F×/F×2. Up to similitude, every
four dimensional quadratic space over F is of the form XD,d. The character-
ization of what irreducible representations of GO(X,F ), dimF X = 4, occur
in the theta correspondence with GSp(2, F ) when F is a local field is given
in Section 3. The case when F is nonarchimedean of odd residual character-
istic was worked out in [R2] and the remaining cases are similar, but require
additional argument. In Section 4 we define the local L-parameters and L-
packets of Theorem 8.6; in fact, the L-parameters and L-packets are associated
to irreducible admissible representations of GSO(XM2×2,d, F ) where XM2×2,d

is the four dimensional quadratic space from Section 2 over the local field F .
The information is summarized in three tables which appear in the Appendix.
Section 5 reviews the theory of global theta lifts for similitudes. Sections 6
and 7 explain the transition from cuspidal automorphic representations of a
quaternion algebra over a quadratic extension to those of similitude groups of
four dimensional quadratic spaces. Finally, in Section 8 we prove the main
theorems.
I would like to thank N. Nygaard for suggesting this line of research, and S.S.
Kudla, S. Rallis and J. Arthur for their interest and encouragement.

Notation. Let F be a field not of characteristic two. A quadratic space over
F is a finite dimensional vector space X over F equipped with a nondegenerate
symmetric bilinear form (·, ·). Let X be a quadratic space over F . In this and
the next two paragraphs, also denote the F points of X by X; the same conven-
tion holds when we are considering quadratic spaces solely over a local field, as
in Sections 1, 3 and 4. The discriminant discX ∈ F×/F×2 of X is (−1)k detX
where dimX = 2k or 2k + 1. If (X ′, (·, ·)′) is another quadratic space over F
then a similitude fromX toX ′ is an F linear map t : X → X ′ such that for some
λ ∈ F×, (tx, tx′) = λ(x, x′) for x, x′ ∈ X; λ is uniquely determined, and we
write λ(t) = λ. The group GO(X,F ) is the set of h ∈ GLF (X) which are simil-
itudes from X to X. The group O(X,F ) is the kernel of λ : GO(X,F )→ F×,
and SO(X,F ) is the subgroup of h ∈ O(X,F ) with deth = 1. Assume dimX
is even. Then GSO(X,F ) is the kernel of sign : GO(X,F ) → {±1} defined
by h 7→ det(h)/λ(h)dimX/2; SO(X,F ) = GSO(X,F ) ∩ O(X,F ). Let n be a
positive integer. Then GSp(n, F ) is the group of g ∈ GL(2n, F ) such that for
some λ ∈ F×

tg

[

0 1n
−1n 0

]

g = λ

[

0 1n
−1n 0

]

;

λ is uniquely determined, and we write λ(h) = λ. The group Sp(n, F ) is the
kernel of λ : GSp(n, F ) → F×. M2×2 = M2×2(F ) is the quaternion algebra of
2× 2 matrices over F with canonical involution ∗.
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Suppose F is a nonarchimedean field of characteristic zero with integers OF ,
prime ideal pF = πFOF ⊂ OF , Hilbert symbol (·, ·)F , and valuation | · | = | · |F
such that if µ is an additive Haar measure on F , then µ(xA) = |x|µ(A) for
x ∈ F and A ⊂ F . Let G be a group of td-type, as in [C]. Then Irr(G) is
the set of equivalence classes of smooth admissible irreducible representations
of G. If π ∈ Irr(G), then π∨ ∈ Irr(G) is the contragredient of π and ωπ is
the central character of π. The trivial representation of G is 1 = 1G. If H
is a closed normal subgroup of G, π ∈ Irr(H) and g ∈ G, then g · π ∈ Irr(H)
has the same space as π and action defined by (g · π)(h) = π(g−1hg). If G
is the F -points of a connected reductive algebraic group defined over F , then
π ∈ Irr(G) is tempered (square integrable) if and only if ωπ is unitary and every
matrix coefficient of π lies in L2+ε(G/Z(G)) for all ε > 0 (lies in L2(G/Z)).
Let X be a quadratic space over F . The quadratic character χX : F× → {±1}
associated to X is (·,discX)F . We say σ ∈ Irr(O(X,F )) (σ ∈ Irr(GO(X,F ))
is tempered if all the irreducible components of σ|SO(X,F ) (σ|GSO(X,F ))) are
tempered. A self-dual lattice L in X is a free OF submodule of rank dimX
such that L = {x ∈ X : (x, y) ∈ OF for all y ∈ L}. Dram is the division
quaternion algebra over F with canonical involution ∗. If E/F is a quadratic
extension the quadratic character of F× associated to E/F is ωE/F .

Suppose F = R. Let | · | = | · |R be the usual absolute value on R, and let
(·, ·)R be the Hilbert symbol of R. If X is quadratic space over R, then the
quadratic character χX : R× → {±1} associated to X is (·,discX)R. Let G be
a real reductive group as in [Wal]. Let K be a maximal compact subgroup of
G, and let g be the Lie algebra G. Let Irr(G) be the set of equivalence classes
of irreducible (g,K) modules. The trivial (g,K) module will be denoted by
1 = 1G. If K1 is a closed normal subgroup of K, π is a (g,K1) module and
s ∈ K, then s · π is the (g,K1) module with the same space as π and action
defined by (s · π)(k) = π(s−1ks) for k ∈ K1 and (s · π)(X) = π(Ad(s)X)
for X ∈ g. When G satisfies Go = o(Go) ([Wal], p. 48-9) the concepts of
tempered and square integrable (g,K) modules are defined in [Wal], 5.5.1;
this includes G = Sp(n,R), O(p, q,R) and SO(p, q,R) for p and q not both
1. When Go = o(Go), then π ∈ Irr(G) is tempered (square integrable) if and
only if π is equivalent to the underlying (g,K) module of an irreducible unitary
representation Π of G such that g 7→ 〈Π(g)v, w〉 lies in L2+ε(G) for all v, w ∈ π
and ε > 0 (lies in L2(G) for all v, w ∈ π). When G = GSp(n,R), GO(p, q,R) or
GSO(p, q,R) with p and q not both 1, then we say that π ∈ Irr(G) is tempered
(square integrable) if π is equivalent to the underlying (g,K) module of an
irreducible unitary representation Π of G such that g 7→ 〈Π(g)v, w〉 lies in
L2(R×\G) for all v, w ∈ π and ε > 0 (lies in L2(R×\G) for all v, w ∈ π);
this is equivalent to the irreducible constituents of π|(g1,K1) being tempered
(square integrable), where g1 is the Lie algebra and K1 ⊂ K is the maximal
compact subgroup of Sp(n,R), O(p, q,R) or SO(p, q,R), respectively. Dram is
the division quaternion algebra over R with canonical involution ∗.
Suppose F is a number field with adeles A and finite adeles Af ; set F∞ =
F ⊗Q R. The Hilbert symbol of F is (·, ·)F . If X is quadratic space over F ,
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then the quadratic Hecke character χX : A×/F× → {±1} associated to X is
(·,discX(F ))F . Let G be a reductive linear algebraic group defined over F ,
let g be the Lie algebra of G(F∞), and let K be a maximal compact subgroup
of G(F∞). Then Irradmiss(G(A)) is the set of equivalence classes of irreducible
admissible G(Af ) × (g,K) modules. If π ∈ Irradmiss(G(A)) then the central
character of π is ωπ and π = ⊗vπv is tempered if πv is tempered for all places v
of F . A cuspidal automorphic representation of G(A) is a π ∈ Irradmiss(G(A))
which is isomorphic to an irreducible submodule of the G(Af )× (g,K) module
of cuspidal automorphic forms on G(A) of central character ωπ; such a π is
unitary.

1. The local theta correspondence for similitudes

In this section we recall and prove results about the local theta correspondence
for similitudes. The paper [R1] dealt with the nonarchimedean odd residual
characteristic case. Here we do the even residual characteristic and real cases
and prove a very special, but adequate, case of S.S. Kudla’s theta dichotomy
conjecture. We also show that the theta correspondence for similitudes is in-
dependent of the additive character, compatible with contragredients, and re-
spects unramified representations.
Fix the following notation. Let F be a local field of characteristic zero, with
F = R if F is archimedean. Let n be a positive integer, and letX be a quadratic
space of nonzero even dimension m over F . To simplify notation, denote the F
points of X by X. Let d = discX. Fix a nontrivial unitary character ψ of F .
The Weil representation ω = ωX = ωn = ωX,n of Sp(n, F ) × O(X,F ) defined
with respect to ψ is the unitary representation on L2(Xn) given by

ω(1, h)ϕ(x) = ϕ(h−1x),

ω(

[

a 0
0 ta−1

]

, 1)ϕ(x) = χX(det a)|det a|m/2ϕ(xa),

ω(

[

1 b
0 1

]

, 1)ϕ(x) = ψ(
1

2
tr(bx, x))ϕ(x),

ω(

[

0 1
−1 0

]

, 1)ϕ(x) = γϕ̂(x).

Here, ϕ̂ is the Fourier transform defined by

ϕ̂(x) =

∫

Xn

ϕ(x′)ψ(tr(x, x′)) dx′

with dx such that ˆ̂ϕ(x) = ϕ(−x) for ϕ ∈ L2(Xn) and x ∈ Xn, and γ is
a certain fourth root of unity depending only on the anisotropic component
of X, n and ψ. If h ∈ O(X,F ), a ∈ GL(n, F ), b ∈ Mn(F ) with tb = b and
x = (x1, . . . , xn), x

′ = (x′1, . . . , x
′
n) ∈ Xn, we write h−1x = (h−1x1, . . . , h

−1xn),
xa = (x1, . . . , xn)(aij), (x, x

′) = ((xi, x
′
j)), bx = bt(x1, . . . , xn). Also, χX is the

Documenta Mathematica 6 (2001) 247–314



Global L-Packets for GSp(2) and Theta Lifts 257

quadratic character of F× defined by χX(t) = (t, d)F ; χX depends only on the
anisotropic component of X.
Suppose F is nonarchimedean. We will work with smooth representations of
groups of td-type such as Sp(n, F ) and O(X,F ). We thus consider the restric-
tion of ω to a smaller subspace. Let S(Xn) be the space of locally constant,
compactly supported functions on Xn. Then ω preserves S(Xn). By ω we
will usually mean ω acting on S(Xn); context will give the meaning. Let
Rn(O(X,F )) be the set of elements of Irr(O(X,F )) which are nonzero quo-
tients of ω, and define RX(Sp(n, F )) similarly.
Suppose F = R. In the analogy to the last case, we will work with Harish-
Chandra modules of real reductive groups. This requires definitions. Fix
K1 = Sp(n,R) ∩ O(2n,R) as a maximal compact subgroup of Sp(n,R). The
Lie algebra of Sp(n,R) is g1 = sp(n,R). Let X have signature (p, q). We
parameterize the maximal compact subgroups of O(X,R) as follows. Let X+

and X− be positive and negative definite subspaces of X, respectively, such
that X = X+ ⊥ X−. Then the maximal compact subgroup J1 = J1(X

+, X−)
associated to (X+, X−) is the set of k ∈ O(X,R) such that k(X+) = X+ and
k(X−) = X−. Of course, J1 = O(X+,R)×O(X−,R) ∼= O(p,R)×O(q,R). Fix
one such J1 = J1(X

+, X−). The Lie algebra of O(X,R) is h1 = o(X,R). Let
S(Xn) = Sψ(X

n) be the subspace of L2(Xn) of functions

p(x) exp[−1

2
|c|(tr(x+, x+)− tr(x−, x−))].

Here, p : Xn → C is a polynomial function on Xn, and (x+, x+) and (x−, x−)
are the n×n matrices with (i, j)-th entries (x+i , x

+
j ) and (x−i , x

−
j ) respectively,

where xi = x+i + x−i , with x
+
i ∈ X+ and x−i ∈ X− for 1 ≤ i ≤ n; c ∈ R× is

such that ψ(t) = exp(ict) for t ∈ R. Then S(Xn) is a (g1×h1,K1×J1) module
under the action of ω. By ω we will usually mean the (g1×h1,K1×J1) module
S(Xn). Let Rn(O(X,R)) be the set of irreducible (g1, J1) modules which are
nonzero quotients of ω, and define RX(Sp(n,R)) similarly. For uniformity,
write HomSp(n,F )×O(X,F )(ω, π ⊗ σ) for Hom(g1×h1,K1×J1)(ω, π ⊗ σ).
We have the following foundational result on the theta correspondence for
isometries.

1.1 Theorem ([H], [W1]). Suppose F is real or nonarchimedean of odd resid-
ual characteristic. The set

{(π, σ) ∈ RX(Sp(n, F ))× Rn(O(X,F )) : HomSp(n,F )×O(X,F )(ω, π ⊗ σ) 6= 0}
is the graph of a bijection between RX(Sp(n, F )) and Rn(O(X,F )), and

dimC HomSp(n,F )×O(X,F )(ω, π ⊗ σ) ≤ 1

for π ∈ RX(Sp(n, F )) and σ ∈ Rn(O(X,F )).

When F is nonarchimedean of even residual characteristic partial results are
known. For us the following unconditional result suffices. If F is nonar-
chimedean and σ ∈ Irr(O(X,F )) we say that σ is tempered if all the ir-
reducible constituents of σ|SO(X,F ) are tempered.
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1.2 Theorem. Suppose F is nonarchimedean of even residual characteristic
and m = 2n. Let RX(Sp(n, F ))temp and Rn(O(X,F ))temp be the subsets of
Rn(O(X,F )) and RX(Sp(n, F )) of tempered elements, respectively. Then the
statement of Theorem 1.1 holds with RX(Sp(n, F ))temp and Rn(O(X,F ))temp
replacing the sets RX(Sp(n, F )) and Rn(O(X,F )), respectively.

Proof. Let σ ∈ Rn(O(X,F ))temp. By 2) a), p. 69 of [MVW], there exists π ∈
RX(Sp(n, F )) such that the homomorphism space of Theorem 1.1 is nonzero; π
is tempered by (1) of Theorem 4.2 of [R3], and is unique by Theorem 4.4 of [R3].
To prove the map from Rn(O(X,F ))temp to RX(Sp(n, F ))temp is injective and
the homomorphism space has dimension at most one, let π ∈ Irr(Sp(n, F ))temp.
By putting together the proofs of Proposition II.3.1 of [Ra] and Theorem 4.4
of [R3] one can show that there is a C linear injection

⊕
σ∈Irr(O(X,F ))
σ unitary

HomSp(n,F )×O(X,F )(ω, π ⊗ σ)

↪→ HomSp(n,F )×Sp(n,F )(S(Sp(n, F )), π ⊗ π∨),

where S(Sp(n, F )) is the space of locally constant compactly supported func-
tions on Sp(n, F ) and the action of Sp(n, F )×Sp(n, F ) on S(Sp(n, F )) is defined
by ((g, g′) · φ)(x) = φ(g−1xg′). The last space is one dimensional as

π ⊗ π∨ ∼= S(Sp(n, F ))/ ∩
f∈HomSp(n,F )(S(Sp(n,F )),π⊗U),

U a C vector space
ker(f);

see the lemma on p. 59 of [MVW]. This proves the claims about injectivity
and dimension. For surjectivity, let π ∈ RX(Sp(n, F ))temp. As above, there
exists σ ∈ Rn(O(X,F )) such that the homomorphism space is nonzero. An
argument as in the proof of (1) of Theorem 4.2 of [R3] shows that σ must be
tempered. See also [Mu]. ¤

It is worth noting the following from the proof of Theorem 1.2: Let m = 2n,
π ∈ Irr(Sp(n, F )) and σ ∈ Irr(O(X,F )). If HomSp(n,F )×O(X,F )(ω, π ⊗ σ) 6= 0,
then π is tempered if and only if σ is tempered.

When F is nonarchimedean of odd residual characteristic or F = R, then the
bijection from Theorem 1.1 and its inverse are denoted by

θ : RX(Sp(n, F ))
∼−→ Rn(O(X,F )), θ : Rn(O(X,F ))

∼−→ RX(Sp(n, F ));

if F is nonarchimedean of even residual characteristic we use the same nota-
tion for the bijections between RX(Sp(n, F ))temp and Rn(O(X,F ))temp from
Theorem 1.2.

Next we recall and prove a special case of a conjecture of S.S. Kudla on the theta
correspondence for isometries. This conjecture has important implications for
the theta correspondence for similitudes.
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1.3 Theta dichotomy conjecture (S.S. Kudla). Assume F is nonar-
chimedean. Let m be a positive even integer, let d ∈ F×/F×2, and let n be a
positive integer such that m ≤ 2n. There exist at most two quadratic spaces Y
and Y ′ over F of dimension m and discriminant d; assume both exist. Then
RY (Sp(n, F )) ∩ RY ′(Sp(n, F )) = ∅.
We can prove the conjecture when m is small in comparison to 2n:

1.4 Lemma. Suppose that the notation is as in Conjecture 1.3, and assume the
two quadratic spaces Y and Y ′ exist. If m ≤ n + 2, then the theta dichotomy
conjecture holds for m and n.

Proof. Let Z be the quadratic space over F of dimension 2m with four di-
mensional anisotropic component. To prove the theta dichotomy conjecture
for m and n it suffices to show that 1Sp(n) /∈ RZ(Sp(n, F )). This reduction
is well known, but we recall the proof for the convenience of the reader. As-
sume 1Sp(n) /∈ RZ(Sp(n, F )), and suppose π ∈ RY (Sp(n, F )) ∩ RY ′(Sp(n, F )).
To get a contradiction, let g0 ∈ GSp(n, F ) be such that λ(g0) = −1. By the
first theorem on p. 91 of [MVW], g0 · π ∼= π∨. Thus, there is a nonzero
Sp(n, F ) × Sp(n, F ) map from ωY,n ⊗ g0 · ωY ′,n to π ⊗ π∨. By Lemma 1.6
below, g0 · ωY ′,n ∼= ω−Y ′,n, where −Y ′ has the same space as Y ′ and form
multiplied by −1. Also, (ωY,n ⊗ω−Y ′,n)|∆Sp(n,F ) ∼= ωY⊥−Y ′,n|Sp(n,F ). Clearly,
Y ⊥ −Y ′ ∼= Z. Since HomSp(n,F )((π ⊗ π∨)|∆Sp(n,F ),1Sp(n,F )) 6= 0, there now
is a nonzero Sp(n, F ) map from ωZ,n to 1Sp(n,F ), i.e., 1Sp(n,F ) ∈ RZ(Sp(n, F )).
We now show 1Sp(n) /∈ RZ(Sp(n, F )) for m ≤ n + 2. Let i be the Witt index
of Z, i.e., i = m − 2, and write Vi = Z to indicate that Z is the orthogonal
direct sum of the four dimensional anisotropic quadratic space over F with i
hyperbolic planes. We must show 1Sp(n) /∈ RVi

(Sp(n, F )) for 0 ≤ i ≤ n; we do
this by induction on n. The case n = 1 follows from Lemma 7.3 of [R2] (see
its proof, which is residual characteristic independent). Let n > 1, and assume
the claim for n − 1. Let i ≤ n, and assume 1Sp(n,F ) ∈ RVi

(Sp(n, F )). To
find a contradiction we reduce dimensions using Jacquet functors and Kudla’s
filtration of the Jacquet module of the Weil representation. We use the notation
of [R3]: write ωi,n = ωVi,n. Since 1Sp(n,F ) ∈ RVi

(Sp(n, F )), by 2) a) of the
Theorem on p. 69 of [MVW], there exists σ ∈ Irr(O(Vi, F )) and a nonzero
Sp(n, F )×O(Vi, F ) map

ωi,n → 1Sp(n,F ) ⊗ σ.

Let N ′1 be the unipotent radical of the standard maximal parabolic of Sp(n, F )
with Levi factor isomorphic to GL(1, F )× Sp(n− 1, F ). Applying the normal-
ized Jacquet functor with respect to N ′1, which is exact, we obtain a nonzero
GL(1, F )× Sp(n− 1, F )×O(Vi, F ) map

RN ′1(ωi,n)→ RN ′1(1Sp(n))⊗ σ = | · |−n ⊗ 1Sp(n−1,F ) ⊗ σ.

Suppose first i = 0, so that V0 is four dimensional and anisotropic. By Kudla’s
computation of the Jacquet functors of ω0,n, (see [R3] for a statement in
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our notation), RN ′1(ω0,n)|Sp(n−1,F ) ∼= ω0,n−1|Sp(n−1,F ). Thus, 1Sp(n−1,F ) ∈
RVi

(Sp(n − 1, F )). Since i = 0 ≤ n − 1, by the induction hypothesis this is a
contradiction.
Suppose i > 0. By Kudla’s filtration (two step, in this case) of RN ′1(ωi,n) either

there exists a nonzero GL(1, F )× Sp(n− 1, F )×O(Vi, F ) map

| · |dimVi/2−n ⊗ ωi,n−1 → | · |−n ⊗ 1Sp(n−1,F ) ⊗ σ,
or there exists a nonzero GL(1, F )×GL(1, F )×Sp(n−1, F )×O(Vi−1, F ) map

ξ1ξ
′
1σ1 ⊗ ωi−1,n−1 → | · |−n ⊗ 1Sp(n−1,F ) ⊗ RN1

(σ);

here, ξ1 and ξ′1 are quasi-characters of GL(1, F ) and σ1 is a represen-
tation of GL(1, F ) × GL(1, F ) whose precise definitions we will not need,
| · |−n is regarded as a quasi-character of GL(1, F ), N1 is the unipotent rad-
ical of the standard parabolic of O(Vi, F ) with Levi factor isomorphic to
GL(1, F ) × O(Vi−1, F ), and RN1

(σ) = RN1
(σ∨)∨. The first case is ruled out

since | · |dimVi/2−n 6= | · |−n. Since the second case must therefore hold, we get
HomSp(n−1,F )(ωi−1,n−1,1Sp(n−1,F )) 6= 0, i.e., 1Sp(n−1,F ) ∈ RVi−1

(Sp(n−1, F )).
This contradicts the induction hypothesis since i− 1 ≤ n− 1. ¤

The real analogue of the theta dichotomy conjecture is known. The assumption
of the evenness of p and q in the following lemma is a consequence of the same
assumptions in [M].

1.5 Lemma. Suppose F = R. Let m be a positive even integer and let n be a
positive integer such that m ≤ 2n. Then the sets RY (Sp(n,R)) as Y runs over
the isometry classes quadratic spaces over R of dimension m and signature of
the form (p, q) with p and q even are mutually disjoint.

Proof. We argue as in the second paragraph of the proof of Lemma 1.8 of
[AB]. Suppose Y and Y ′ are quadratic spaces of dimension m with signa-
tures (p, q) and (p′, q′) with p, q, p′ and q′ even. Assume π ∈ RY (Sp(n,R)) ∩
RY ′(Sp(n,R)). We must show that Y ∼= Y ′, i.e., p = p′ and q = q′. We
have Hom(g1,K1)(ωY,n, π) 6= 0 and Hom(g1,K1)(ωY ′,n, π) 6= 0; as in the proof
of Lemma 1.4 this implies Hom(g1,K1)(ωZ,n, (π ⊗ π∨)|∆(g1,K1)) 6= 0, where
Z = Y ⊥ −Y ′, and −Y ′ is the quadratic space with same space as Y ′

but with form multiplied by −1; Z has signature (p + q′, p′ + q). Hence,
1Sp(n,R) ∈ RZ(Sp(n,R)). We now use [M] to complete the proof. The rep-
resentation 1Sp(n,R) has only one K1-type, namely the trivial representation
of K1. As 1Sp(n,R) ∈ RZ(Sp(n,R)), the trivial representation of K1 appears
in the joint harmonics H(K1,O(p + q′,R) × O(p′ + q,R)) for this theta cor-
respondence (see I.1 and the second paragraph of II.1 of [M]). By Corollaire
I.4 of [M], which computes the representations of K1 occurring in the joint
harmonics, p+ q′ = p′+ q; since p+ q = p′+ q′, we have p = p′ and q = q′. ¤

We now recall the extended Weil representation which will be used to define
the theta correspondence for similitudes; see [R1] for references. Define

R = RX = Rn = RX,n = {(g, h) ∈ GSp(n, F )×GO(X,F ) : λ(g) = λ(h)}.
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The Weil representation ω of Sp(n, F ) × O(X,F ) on L2(Xn) extends to a
unitary representation of R via

ω(g, h)ϕ = |λ(h)|−mn
4 ω(g1, 1)(ϕ ◦ h−1),

where

g1 = g

[

1 0
0 λ(g)

]−1

∈ Sp(n, F ).

Evidently, the group of elements (t, t) = (t·1, t·1) for t ∈ F× is contained in the
center of R, and we have ω(t, t)ϕ = χX(t)nϕ for ϕ ∈ L2(Xn) and t ∈ F×. If
F is nonarchimedean, then the extended Weil representation preserves S(Xn);
when F is nonarchimedean, by ω we shall often mean ω acting on S(Xn).
Suppose F = R; then ω extended to R also preserves S(Xn), but only at the
level of Harish-Chandra modules. We need definitions. As a standard maximal
compact subgroup K of GSp(n,R) take the group generated by K1 and the
order two element

k0 =

[

1 0
0 −1

]

.

The Lie algebra g = gsp(n,R) of GSp(n,R) is the direct sum of its center R
and g1 = sp(n,R). If p 6= q, then any maximal compact subgroup of GO(X,R)
is a maximal compact subgroup of O(X,R), and we let J denote the sub-
group J1 from above. Suppose p = q. Then every maximal compact subgroup
of GO(X,R) contains a unique maximal compact subgroup of O(X,R) as a
subgroup of index two, and any maximal compact subgroup of O(X,R) is con-
tained in a unique maximal compact subgroup of GO(X,R) as a subgroup of
index two. As a maximal compact subgroup for GO(X,R) we take the maxi-
mal compact subgroup J = J(X+, X−) containing J1 = J1(X

+, X−). To get
a coset representative j0 for the nontrivial coset of J1 in J , let i : X+ → X−

be an isomorphism of R vector spaces such that (i(x+), i(x+)) = −(x+, x+) for
x+ ∈ X+ and using X = X+ ⊥ X− set

j0 =

[

0 i−1

i 0

]

.

The Lie algebra h = go(n,R) of GO(X,R) is the direct sum of its center R and
h1 = o(n,R). The group R is a real reductive group containing (Sp(n,R) ×
O(X,R)){(t, t) : t ∈ R×} as an open subgroup of index one if p 6= q, and index
two if p = q. As a maximal compact subgroup L of R we take L = K1 × J1 if
p 6= q; if p = q, then we take L to be generated by K1 × J1 and (k0, j0). The
Lie algebra r of R is the set of pairs (x, y) ∈ g × h such that x = z + x1 and
y = z + y1 for some z ∈ R, x1 ∈ g1 and y1 ∈ h1. The space S(Xn) is evidently
closed under the action of ω restricted to L and r. The (g1 × h1,K1 × J1)
module S(Xn) thus extends to an (r, L) module, which we will also denote by
ω.
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Before discussing the theta correspondence for similitudes it will be useful to
describe the relationship between the extended Weil representations for similar
quadratic spaces, and what happens to the extended Weil representation when
the additive character is changed. For λ ∈ F× and g ∈ GSp(n, F ) write

g[λ] =

[

1 0
0 λ

]

g

[

1 0
0 λ

]−1

.

1.6 Lemma. Let X ′ another quadratic space over F , and suppose t : X → X ′

is a similitude with similitude factor λ. Let ω′ be the Weil representation of
RX′,n on L2(X ′n). Then

ω(g, h)(ϕ′ ◦ t) = [ω′(g[λ], tht−1)ϕ′)] ◦ t

for (g, h) ∈ RX,n and ϕ′ ∈ L2(X ′n).
Proof. By the formulas for the Weil representation the statement holds for
g ∈ Sp(n, F ) and h = 1, up to a factor α(g) in the fourth roots of unity µ4.
The function α : Sp(n, F ) → µ4 is a character. The only normal subgroups of
Sp(n, F ) are {±1} and Sp(n, F ); α must be trivial. It is now easy to check that
the formula holds for all (g, h) ∈ R. ¤

In the next result the dependence of ω on ψ is indicated by a subscript. Its
proof is similar to that of Lemma 1.6.

1.7 Lemma. Let ψ′ be another nontrivial unitary character of F . Let a ∈ F×
be such that ψ′(t) = ψ(at) for t ∈ F . Then there is an isomorphism

(ωψ′ , L
2(Xn))

∼−→ ((

[

1 0
0 ε

]

, 1) · ωψ, L2(Xn))

of representations of R, where ε = a if F is nonarchimedean and ε = sign(a)
if F = R. If F is nonarchimedean, the isomorphism is the identity map; if

F = R, the isomorphism sends ϕ′ to ϕ, where ϕ(x) = ϕ′(
√

|a|−1x). This
isomorphism maps Sψ′(X

n) onto Sψ(X
n) (the subscripts ψ and ψ′ are relevant

when F = R).

With this preparation, we recall the theta correspondence for similitudes from
[R1]. In analogy to the case of isometries, we ask when does HomR(ω, π⊗σ) 6= 0
for π ∈ Irr(GSp(n, F )) and σ ∈ Irr(GO(X,F )) define the graph of a bijec-
tion between appropriate subsets of Irr(GSp(n, F )) and Irr(GO(X,F ))? In
considering this, two initial observations come to mind. First, R only in-
volves GSp(n, F )+, the subgroup of GSp(n, F ) (of at most index two) of
g ∈ GSp(n, F )+ with λ(g) ∈ λ(GO(X,F )); thus, at first it might be bet-
ter to look at representations of GSp(n, F )+ instead of GSp(n, F ). Sec-
ond, there should be a close relationship between HomR(ω, π ⊗ σ) 6= 0 and
HomSp(n,F )×O(X,F )(ω, π1 ⊗ σ1) 6= 0 for π1 and σ1 irreducible constituents of
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π|Sp(n,F ) and σ|O(X,F ), respectively. The basic result that builds on these

remarks is Lemma 4.2 of [R1]. It asserts that if π ∈ Irr(GSp(n, F )+),
σ ∈ Irr(GO(X,F )) and HomR(ω, π ⊗ σ) 6= 0, then

π|Sp(n,F ) = m · π1 ⊕ · · · ⊕m · πM , σ|O(X,F ) = m′ · σ1 ⊕ · · · ⊕m′ · σM

with θ(πi) = σi for 1 ≤ i ≤ M and m = 1 if and only if m′ = 1. Here
the πi ∈ Irr(Sp(n, F )) and σi ∈ Irr(O(X,F )) are mutually nonisomorphic.
Actually, [R1] considers the nonarchimedean case of odd residual characteristic,
but the same proof works if F has even residual characteristic, dimX = 2n
and π and σ are tempered, so that Theorem 1.2 applies, or if F = R; in this
case m = m′ = 1, as [GSp(n,R)+ : R× Sp(n,R)], [GO(X,R) : R×O(X,R)] ≤ 2
(see Table 1 in the appendix for data on GSp(n,R)+). With this in place, [R1]
shows that the condition HomR(ω, π ⊗ σ) 6= 0 defines the graph of a bijection
between RX(GSp(n, F )+) and Rn(GO(X,F )), where RX(GSp(n, F )+) is the
set of π ∈ Irr(GSp(n, F )+) such that π|Sp(n,F ) is multiplicity free and has an
irreducible constituent in RX(Sp(n, F )) and Rn(GO(X,F )) is similarly defined
(again, this also holds if F has even residual characteristic or F = R).
Finally, when GSp(n, F )+ is proper in GSp(n, F ), [R1] shows HomR(ω, π⊗σ) 6=
0 defines the graph of a bijection between suitable subsets of Irr(GSp(n, F ))
and Irr(GO(X,F )) provided m ≤ 2n and the relevant case of Conjecture 1.3
holds. The idea is that if [GSp(n, F ) : GSp(n, F )+] = 2, then X has a certain
companion nonisometric quadratic space X ′ with the same dimension and dis-
criminant (this determines X ′ if F is nonarchimedean; if F = R, then X ′ is the
quadratic space of signature (q, p)). When it holds and m ≤ 2n, Conjecture 1.3
implies that together the two theta correspondences between GSp(n, F )+ and
GO(X,F ) and between GSp(n, F )+ and GO(X ′, F ) give one theta correspon-
dence between GSp(n, F ) and GO(X,F ) (which is the same as that between
GSp(n, F ) and GO(X ′, F ), using GO(X,F ) = GO(X ′, F )). Since [R1] explains
this in somewhat different language, we recall the argument in the proof of the
summary theorem below.
For the statement of the theorem we need some notation. If F is nonar-
chimedean, define Rn(GO(X,F )) and RX(GSp(n, F )+) as above, and let
RX(GSp(n, F )) be the set of π ∈ Irr(GSp(n, F )) such that some irreducible
constituent of π|GSp(n,F )+ is contained in RX(GSp(n, F )+). If F = R, let
Rn(GO(X,R)) be the set of σ ∈ Irr(GO(X,R)) such that σ|O(X,R) has an
irreducible constituent in Rn(O(X,R)), and let RX(GSp(n,R)) be the set
of π ∈ Irr(GSp(n,R)) such that π|Sp(n,R) has an irreducible constituent in
RX(Sp(n,R)). Here σ|O(X,R) and π|Sp(n,R) mean σ|(h1,J1) and π|(g1,K1), re-
spectively. If σ ∈ Irr(GO(X,F )) and F is nonarchimedean we say that σ is
tempered if all the irreducible constituents of σ|GSO(X,F ) are tempered; evi-
dently, σ is tempered if and only if the irreducible constituents of σ|O(X,F ) are
tempered and σ has unitary central character, and this happens if and only
if the irreducible constituents of σ|SO(X,F ) are tempered and σ has unitary
central character.
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1.8 Theorem. Suppose first F is real or nonarchimedean of odd residual char-
acteristic. Then

{(π, σ) ∈ RX(GSp(n, F ))× Rn(GO(X,F )) : HomR(ω, π ⊗ σ) 6= 0}

is the graph of a bijection between RX(GSp(n, F )) and Rn(GO(X,F )), and

dimC HomR(ω, π ⊗ σ) ≤ 1

for π ∈ RX(GSp(n, F )) and σ ∈ Rn(GO(X,F )), in the following cases:

(1) F is nonarchimedean and d = 1;
(2) F is nonarchimedean, d 6= 1, and m ≤ n+ 2;
(3) F = R and p = q;
(4) F = R, p 6= q, p and q are even, and p+ q ≤ 2n.

Now assume F is nonarchimedean of even residual characteristic and m =
2n. As in Theorem 1.2, let the subscript temp denote the subset of tem-
pered elements. Then the above statement holds with RX(GSp(n, F ))temp and
Rn(GO(X,F ))temp in place of RX(GSp(n, F )) and Rn(GO(X,F )), respec-
tively, in the following cases:

(5) d = 1 and m = 2n;
(6) d 6= 1 and m = 2n = n+ 2 = 4.

Proof. (1). Since d = 1, GSp(n, F )+ = GSp(n, F ), and the statement follows
from Theorem 4.4 of [R1].
(2). This is dealt with in [R1], but we shall briefly recall the argument for the
purposes of explanation. In this case we have [GSp(n, F ) : GSp(n, F )+] = 2.
Let g ∈ GSp(n, F ) be a representative for the nontrivial coset of GSp(n, F )+

in GSp(n, F ). As mentioned above, by Theorem 4.4 of [R1] the condi-
tion HomR(ω, π

′ ⊗ σ) 6= 0 defines a bijection between RX(GSp(n, F )+) and
Rn(GO(X,F )), and dimC HomR(ω, π

′ ⊗ σ) ≤ 1 for π′ ∈ RX(GSp(n, F )+)
and σ ∈ Rn(GO(X,F )). To prove the theorem in this case, we first
claim that if π′ ∈ RX(GSp(n, F )+) and σ ∈ Rn(GO(X,F )) are such that

HomR(ω, π
′ ⊗ σ) 6= 0, then g · π′ À π′ (so that π = Ind

GSp(n,F )
GSp(n,F )+ π

′ is irre-

ducible), and HomR(ω, π ⊗ σ) ∼= HomR(ω, π
′ ⊗ σ); also, if π ∈ RX(GSp(n, F ))

then π|GSp(n,F )+ has two irreducible components. Let X ′ be the other qua-
dratic space of dimension m and discriminant d nonisometric to X. We may
assume that X ′ is obtained from X by multiplying the form on X by λ(g); then
GO(X ′, F ) = GO(X,F ) and RX′,n = R = RX,n. Let ω

′ = ωX′ ; by Lemma 1.6,
g ·ω ∼= ω′. Now since HomR(ω, π

′⊗σ) 6= 0 we have HomR(g ·ω, g ·π′⊗σ) 6= 0,
and so HomR(ω

′, g · π′ ⊗ σ) 6= 0. This gives g · π′ ∈ RX′(GSp(n, F )+). If now
π′ ∼= g · π′, then RX(Sp(n, F )) ∩ RX′(Sp(n, F )) 6= ∅ (see Lemma 4.2 of [R1]),
contradicting Lemma 1.4. Thus, g · π′ À π′. Composing with the projection
π → π′ gives a map HomR(ω, π⊗σ)→ HomR(ω, π

′⊗σ); by arguments similar to
those just given, this map is a C linear isomorphism. Let π ∈ RX(GSp(n, F )),
and suppose π|GSp(n,F )+ = π′ is irreducible. Then π′ ∈ RX(GSp(n, F )+), and
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so g · π′ À π′, a contradiction. This completes the proof of our claim. Using
the claim, it is straightforward to prove the theorem in this case via analogous
arguments.
(3) and (4). The arguments are similar to the nonarchimedean case in [R1]. In
fact, they are easier since the indices of the various relevant subgroups are at
most two. Thus, the analogues of the lemmas about induction and restriction
from [GK] used in [R1] take on a simple form. For the convenience of the reader
wishing to look closely at the arguments we present a table of data (See Table
1 in the Appendix). The p = q and p 6= q cases should be regarded as being
analogous to the d = 1 and d 6= 1 nonarchimedean cases, respectively. In the
table K+ is a maximal compact subgroup of GSp(n,R)+.
(5) and (6). The arguments are similar to those for (1) and (2) as we have the
inputs Theorem 1.2 and Lemma 1.4. The proofs of section 4 of [R1] are made
in an abstracted context and thus residual characteristic independent; these
arguments also go through with the restriction to tempered representations.
The arguments in (2) for the case [GSp(n, F ) : GSp(n, F )+] = 2 also work with
the restriction to tempered representations. The reader wishing to go through
the details should note the remark after Theorem 1.2. ¤

The proof of Theorem 1.8 only used Lemmas 1.4 and 1.5 when F is nonar-
chimedean and d 6= 1 and F = R and p 6= q, respectively. However, Lemmas
1.4 and 1.5 have important applications when F is nonarchimedean and d = 1,
and F = R and p = q: see Lemma 8.4 and the proof of Proposition 4.1.
We note that if π ∈ Irr(GSp(n, F )), σ ∈ Irr(GO(X,F )) and HomR(ω, π⊗σ) 6= 0
then χnX = ωπωσ where ωπ and ωσ are the central characters of π and σ,
respectively. Here, if F = R then the central character of π ∈ Irr(GSp(n,R))
is defined by ωπ(e

z) = exp(π(z)) for z ∈ R ⊂ g, and ωπ(−1) = π(−1), where
−1 ∈ K; ωσ is defined similarly.
The theta correspondence for similitudes from Theorem 1.8 is independent of
the choice of character ψ.

1.9 Proposition. Let ψ′ be another nontrivial unitary character of F , and
let ωψ′ be the Weil representation of R on Sψ′(X

n) corresponding to ψ′ (the
subscript ψ′ in Sψ′(X

n) is relevant when F = R). Let σ ∈ Irr(GO(X,F )) and
π ∈ Irr(GSp(n, F )). Then HomR(ωψ, π ⊗ σ) 6= 0 if and only if HomR(ωψ′ , π ⊗
σ) 6= 0.

Proof. This follows from Lemma 1.7. ¤

Assume we are in one of the cases of Theorem 1.8. We then denote the bijection
between RX(GSp(n, F )) and Rn(GO(X,F )) by θ:

θ : RX(GSp(n, F ))
∼−→ Rn(GO(X,F )),

θ : Rn(GO(X,F ))
∼−→ RX(GSp(n, F )).

If π ∈ RX(GSp(n, F )) and σ ∈ Rn(GO(X,F )) then HomR(ω, π ⊗ σ) 6= 0 if
and only if θ(π) = σ and θ(σ) = π; if F has even residual characteristic we
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use RX(GSp(n, F ))temp and Rn(GO(X,F ))temp. If σ ∈ Rn(GO(X,F )) we say
that σ occurs in the theta correspondence with GSp(n, F ); similarly,
if π ∈ RX(GSp(n, F )) we say that π occurs in the theta correspondence with
GO(X,F ). The above definition of θ is not quite compatible with the global
definition; a contragredient must be introduced. If π is a cuspidal automorphic
representation of GSp(X,A), the global theta lift Θ(π) is nonzero and cuspidal,
and Theorem 1.8 applies at every place, then π∨v ∈ RX(GSp(n, F )) for all places
v of F , and Θ(π) = ⊗vθ(π∨v ) (See Section 5). However, we have the following
proposition. It guarantees that if σv = θ(π∨v ) then θ(σ

∨
v ) = πv.

1.10 Proposition. Let π ∈ Irr(GSp(n, F )) and σ ∈ Irr(GO(X,F )) be uni-
tary. Then HomR(ω, π⊗σ) 6= 0 if and only if HomR(ω, π

∨⊗σ∨) 6= 0. Suppose
one of (1)–(6) of Theorem 1.8 holds. Then π ∈ RX(GSp(n, F )) if and only
if π∨ ∈ RX(GSp(n, F )) and if π ∈ RX(GSp(n, F )), then θ(π∨) = θ(π)∨.
Similarly, σ ∈ Rn(GO(X,F )) if and only if σ∨ ∈ Rn(GO(X,F )), and if
σ ∈ Rn(GO(X,F )) then θ(σ∨) = θ(σ)∨. (If F has even residual character-
istic, replace RX(GSp(n, F )) and Rn(GO(X,F )) by RX(GSp(n, F ))temp and
Rn(GO(X,F ))temp, respectively, in these statements.)

Proof. Since π and σ are unitary, there exist C antilinear isomorphisms π
∼−→ π∨

and σ
∼−→ σ∨ intertwining the actions of GSp(n, F ) and GO(X,F ), respectively.

It follows that there is a C antilinear isomorphism π⊗σ ∼−→ π∨⊗σ∨ intertwining
the action of GSp(n, F )×GO(X,F ). Let ω be the representation of R on S(Xn)

defined by ω(r)ϕ = ω(r)ϕ for r ∈ R and ϕ ∈ S(Xn). Let t : ω → π ⊗ σ be
a nonzero R map; then sending ϕ to t(ϕ) gives a nonzero C antilinear R map
ω → π ⊗ σ. Composing, we get a nonzero R map ω → π∨ ⊗ σ∨. On the other
hand, there is an R isomorphism

ω ∼= (

[

1 0
0 −1

]

, 1) · ω.

This implies that there is a nonzero R map ω → π∨ ⊗ σ∨. The remaining
claims of the proposition follow. ¤

Finally, using [H], we consider how the theta correspondence for similitudes
treats unramified representations. This requires some definitions. Assume F
is nonarchimedean, and let H be the hyperbolic plane over F . Then X ∼= H ⊥
· · · ⊥ H ⊥ X0, where X0 is an anisotropic quadratic space over F of dimension
0, 2 or 4. In particular, if dimF X0 = 2, then d 6= 1 and X0 ∼= (E, δNEF ), for a
quadratic extension E/F , where δ = 1 or is a representative for the nontrivial

coset of F×/NEF (E
×). We say that X is unramified if either dimX0 = 0

or dimX0 = 2, E/F is unramified and δ = 1. If X is unramified, then there
exists a lattice L ⊂ X which is self-dual, and if L′ is any other self-dual lattice
in X, then there exists h ∈ SO(X,F ) such that h(L) = L′. If dimF X0 = 0 or
dimF X0 = 2 and E/F is unramified, we define a maximal compact subgroup
J of GO(X,F ) in the following way. First, if X is unramified, we let J be the
stabilizer in GO(X,F ) of a fixed self-dual lattice L, i.e., J is the set of k ∈
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GO(X,F ) such that k(L) = L. Next assume dimF X0 = 2, E/F is unramified
but δ 6= 1. Then there exists a similitude h from X to the unramified quadratic
space of the same dimension and discriminant with anisotropic component
(E,NEF ); we let J be the set of k ∈ GO(X,F ) of the form h−1k′h were k′ is
in the maximal compact subgroup of GO(X ′, F ) we have already defined. The
definition of J depends on choices, but any two subgroups defined by different
choices are conjugate. Let K = GSp(n,OF ).

1.11 Proposition. Suppose F is nonarchimedean of odd residual charac-
teristic and X is such that J is defined. Let σ ∈ Rn(GO(X,F )) and π ∈
RX(GSp(n, F )) and assume HomR(ω, π ⊗ σ) 6= 0. Then π is unramified with
respect to K if and only if σ is unramified with respect to J .

Proof. By Proposition 1.9 we may assume ψ(OF ) = 1 but ψ(π−1F OF ) 6= 1; by

Lemma 1.6 we may assume X is unramified. We have K = O×FK1 ∪ k0O×FK1
and J = O×F J1 ∪ joO×F J1, where K1 = K ∩ Sp(n, F ), J1 = J ∩ O(X,F ),

λ(k0) = λ(j0) = µ, and µ is a representative for the nontrivial coset of O×F /O
×2
F .

For some irreducible component π′ of π|GSp(n,F )+ , we have HomR(ω, π
′⊗σ) 6= 0.

As K ⊂ GSp(n, F )+, it will suffice to show that σ is unramified with respect
to J if and only if π′ is unramified with respect to K. By the proof of Lemma
4.2 of [R1] we can write

π′|Sp(n,F ) = π1 ⊕ · · · ⊕ πM , σ|O(X,F ) = σ1 ⊕ · · · ⊕ σM
where the πi ∈ Irr(Sp(n, F )) and the σi ∈ Irr(O(X,F )) are mutually noniso-
morphic and σi = θ(πi). Let Vi andWi be the spaces of πi and σi, respectively.
Assume σ is unramified with respect to J . Let w1 ∈ σ be nonzero and fixed
by J . Since σ|O(X,F ) has exactly one irreducible constituent unramified with
respect to J1, we may assume, say, w1 ∈ W1. Evidently, σ(j0)W1 = W1. By
(b) of Theorem 7.1 of [H], π1 = θ(σ1) is unramified with respect to K1. Let
v1 ∈ V1 be nonzero and fixed by K1. We will show that v1 is in fact fixed by
K, i.e., π′(k0)v1 = v1. As π′|Sp(n,F ) has exactly one irreducible constituent

unramified with respect to K1 we have π′(k0)V1 = V1. Since V K1
1 is one

dimensional, π′(k0)v1 = εv1 for some ε ∈ {±1}. We must show ε = 1. Let
T : ω → π′⊗σ be a nonzero R map, and let p : π′⊗σ → π1⊗σ1 be projection.
Let T1 = p ◦ T : ω → π1 ⊗ σ1; this is a nonzero Sp(n, F ) × O(X,F ) map. Let
ϕ ∈ ω be such that T1(ϕ) = v1 ⊗ w1; we may assume ϕ is fixed by K1 × J1.
By the top of p. 107 of [MVW], there exists a locally constant compactly
supported K1 bi-invariant function f : Sp(n, F )→ C such that

ϕ =

∫

Sp(n,F )

f(g)ω(g, 1)ϕ0 dg;

here ϕ0 ∈ ω is a certain element fixed by K1 × J1. One can check that ϕ0 is
also fixed by (k0, j0). We have T1(ω(k0, j0)ϕ) = ε(v1 ⊗ w1). However,

ω(k0, j0)ϕ =

∫

Sp(n,F )

f(k−10 gk0)ω(g, 1)ϕ0 dg.
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Let g ∈ Sp(n, F ). We claim f(k−10 gk0) = f(g). Write g = kak′ with k, k′ ∈ K1
and a a diagonal matrix. Since we may assume

k0 =

[

1 0
0 µ

]

,

we have k−10 gk0 = k−10 kk0ak
−1
0 k′k0; hence, f(k

−1
0 gk0) = f(a) = f(g). Thus,

ω(k0, j0)ϕ = ϕ. This implies v1 ⊗ w1 = T1(ϕ) = ε(v1 ⊗ w1), so that ε = 1.

The implication in the other direction has a similar argument. ¤

2. Four dimensional quadratic spaces

In this section we recall background on four dimensional quadratic spaces X
over a base field F and their similitude groups. We begin by characterizing the
special similitude group GSO(X,F ) of X via its even Clifford algebra. We also
obtain canonical coset representatives for the nontrivial coset of GSO(X,F ) in
GO(X,F ); these correspond to quaternion algebras over F contained in the
even Clifford algebra over F , which in turn are in bijection with Galois ac-
tions on the even Clifford algebra. This leads to the concept of a quadratic
quaternion algebra over F , an abstraction of the even Clifford algebra of a four
dimensional quadratic space. We construct examples of four dimensional qua-
dratic spaces from a given quadratic quaternion algebra over F and quaternion
algebras over F contained in the quadratic quaternion algebra, or equivalently,
Galois actions on the quadratic quaternion algebra. We prove that any four
dimensional quadratic space over F is, up to similitude, one of these exam-
ples. We also describe the relationship between the examples that arise from
a given quadratic quaternion algebra. To close the section, we consider four
dimensional quadratic spaces over local and number fields. The material in this
section is essentially well known. As some basic references we use [E], [Sch] and
[Kn].

To begin, let F be a field not of characteristic two, and let (X, (·, ·)) be a four
dimensional quadratic space over F . For simplicity denote the F points of X
by X. Set d = discX. Let x1, x2, x3, x4 be an orthogonal basis for X. Let C
be the Clifford algebra of X, let B = B(X) be the even Clifford algebra of X in
C, let E = E(X) be the center of B, and let C1 = C1(X) be the subspace of C
of odd elements. Then C, B, E and C1 are 16, 8, 2 and 8 dimensional over F ,
respectively. The F algebra E is called the discriminant algebra of X and
is reduced, i.e., has no nonzero nilpotent elements. Hence, E is either a field
or is isomorphic to F × F ; these happen when d 6= 1 and d = 1, respectively.
Let Gal(E/F ) = {1, α}. Let NEF and TEF be the norm and trace from E to F

defined by NEF (z) = zα(z) and TEF (z) = z + α(z), respectively. Let ∗ be the
involution of C which takes a product of the xi to the product of the same xi
in the reverse order. Clearly, ∗ preserves B and C1. If x ∈ B, then x ∈ E if
and only if x∗ = x. For x ∈ C, define N(x) = x∗x. Then N(x) ∈ E for x ∈ B.
We may regard X as contained in C1. Evidently, X is the set of x ∈ C1 such
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that x∗ = x. For x ∈ X, (x, x) = N(x). Also, for z ∈ E and x ∈ C1 we have
xz = α(z)x.
To further describe the structure of B and E, suppose B is an arbitrary F
algebra with center E and involution ∗ which is the identity on E. Then
we say that B is a quadratic quaternion algebra over F if E is two
dimensional over F and reduced, and there exists a quaternion algebra D over
F contained in B such that the natural map E⊗F D → B given by z⊗x 7→ zx
is an isomorphism of E algebras and ∗ induces the canonical involution on D.
Let B be a quadratic quaternion algebra over F with center E and involution
∗. We define the norm N : B → E and trace T : B → E by N(x) = xx∗ = x∗x
and T(x) = x + x∗ respectively. We also define a symmetric E-bilinear form
(·, ·) : B × B → E by (x, y) = T(xy∗)/2. This form is nondegenerate, i.e.,
if x ∈ B is nonzero, there exists y ∈ B such that (x, y) 6= 0. The definition
of a quadratic quaternion algebra B includes a particular quaternion algebra
over F in B, but the next straightforward result shows that all the quaternion
algebras over F in B have equal status.

2.1 Proposition. Let B be a quadratic quaternion algebra over F with center
E and involution ∗. Let D be any quaternion algebra over F in B. The natural
map E⊗FD → B is an isomorphism of E algebras, and ∗ induces the canonical
involution on D.

Given a quadratic quaternion algebra B as above, in general there may be
infinitely many nonisomorphic quaternion algebras D over F in B. However,
if E ∼= F × F , then B ∼= D × D, and any quaternion algebra over F in B is
isomorphic to D.

2.2 Proposition. Let X be a four dimensional quadratic space over X. The
F algebra B(X) is a quadratic quaternion algebra over F .

We characterize GSO(X,F ). Write B = B(X). Define a left action of F××B×
on C1 by ρ(t, g)x = t−1gxg∗. This action preservesX, and a computation shows

that if x ∈ X and (t, g) ∈ F× × B×, then N(ρ(t, g)x) = t−2NEF (N(g))N(x);

thus, ρ(t, g) ∈ GO(X,F ), with similitude factor t−2NEF (N(g)). In fact, if
(t, g) ∈ F× × B×, then ρ(t, g) ∈ GSO(X,F ). For the following see for ex-
ample V (4.6.1) of [Kn], p. 273.

2.3 Theorem. Let X be a four dimensional quadratic space over X, and write
B = B(X) and E = E(X). Define an inclusion of E× into F× × B× by

a 7→ (NEF (a), a). Then the following sequence is exact:

1→ E× → F× ×B× ρ−→ GSO(X,F )→ 1.

This theorem determines GSO(X,F ). We also need to understand GO(X,F ),
and we now explain how to describe certain canonical coset representatives for
the nontrivial coset of GSO(X,F ) in GO(X,F ). These coset representatives
will correspond to choices of quaternion algebras over F in B. The following
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lemma is the key structural result for the construction of the coset represen-
tatives. It is an elaboration of a general result about Clifford algebras of even
dimensional quadratic spaces (Chapter 9, Theorem 2.10 of [Sch], p. 332).

2.4 Lemma. Let X be a four dimensional quadratic space over X, and write
B = B(X) and E = E(X). Let D be a quaternion algebra over F contained
in B. Let D′ be the F algebra of elements of C which commute with all the
elements of D. Then D′ is a quaternion algebra over F and X ∩ D′ is one
dimensional and spanned by an anisotropic vector y, so that D′ = E+Ey. The
map x′ ⊗ x 7→ x′x determines an isomorphism D′ ⊗F D ∼−→ C of F algebras.
Conversely, if y ∈ X is an anisotropic vector, then the set D of elements of B
commuting with y is a quaternion algebra over F in B.

The maps from the previous lemma are evidently inverses of each other; that
is, there is a bijection

Quaternion algebras over F in B ←→ Anisotropic lines in X.

For the description of the nontrivial coset representatives of GSO(X,F ) in
GO(X,F ) we also need the following. Suppose B is any quadratic quaternion
algebra over F with center E with Gal(E/F ) = {1, α}. Then a Galois action
on B is an F -automorphism a : B → B such that a2 = 1 and a(zx) = α(z)a(x)
for z ∈ E and x ∈ B. If a is a Galois action on B, then the fixed points of a are
a quaternion algebra over F contained in B; conversely, if D is a quaternion
algebra over F contained in B, and a : B → B is defined by a(z⊗x) = α(z)⊗x,
then a is a Galois action on B. These two maps are inverses of each other, and
establish a bijection:

Quaternion algebras over F in B ←→ Galois actions on B.

Direct computation gives the following:

2.5 Proposition. Let X be a four dimensional quadratic space over X, and
write B = B(X) and E = E(X). Let D be a quaternion algebra over F
contained in B, and let D′ be as in Lemma 2.4. Let # be the involution of
C obtained via the isomorphism D′ ⊗ D ∼= C from the tensor product of the
canonical involutions on D′ and D. Then X# = X; define s : X → X by
s(x) = −x#. Then s ∈ O(X,F ), s2 = 1, and det s = −1. Moreover, the
following diagram commutes:

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

α





y

1×a





y

conj. by s





y

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

.

Here, a is the Galois action on B determined by D.

When F is a local field we shall deal with representations of GSO(X,F ) dis-
tinguished with respect to subgroups SO(Y, F ), where Y is a three dimensional
subspace of X. The above development leads to a compatible characterization
of such subgroups. For the exactness of the first sequence in the next result see
for example [Kn], p. 264.
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2.6 Proposition. Let X be a four dimensional quadratic space over X, and
write B = B(X) and E = E(X). Let y ∈ X be anisotropic, and set Y = (F ·y)⊥
in X. Let D be the quaternion algebra over F in B corresponding to y. For
g ∈ D× and x ∈ Y , define ρ(g)x = gxg−1. Then ρ(g) ∈ SO(Y, F ) for g ∈ D×,
the sequence

1→ F× → D×
ρ−→ SO(Y, F )→ 1

is exact, there is a commutative diagram

1 −−−−→ F× −−−−→ D×
ρ−−−−→ SO(Y, F ) −−−−→ 1





y





y





y

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

where the inclusion of D× in F××B× is given by g 7→ (N(g), g), and SO(Y, F )
is included in GSO(X,F ) by regarding SO(Y, F ) as the stabilizer of y in
GSO(X,F ). Moreover, the element s from Proposition 2.5 corresponding to D
is such that s(y) = y and s is multiplication by −1 on Y , so that s|Y ∈ O(Y, F ),
with det s|Y = −1.
It will be important to have some explicitly constructed four dimensional
quadratic spaces, and we now reverse matters and construct such examples
from a given quadratic quaternion algebra over F equipped with a Galois ac-
tion. Let B be a quadratic quaternion algebra over F with center E with
Gal(E/F ) = {1, α}, involution ∗, and let a : B → B be a Galois action on
B. Let D be the quaternion algebra over F in B corresponding to a, i.e., the
fixed points of a. We let Xa be the set of x ∈ B such that a(x) = x∗. Then
Xa is a four dimensional vector space over F , and equipped with the symmet-
ric bilinear form induced by the norm of B, Xa is a quadratic space over F .
Define an explicit action of F× × B× on Xa by ρa(t, g)x = t−1gxa(g)∗. Then
ρa(t, g) ∈ GSO(Xa, F ) for (t, g) ∈ F× × B×. The relationship between the
previous characterization of GSO(Xa, F ) and the homomorphism ρa is given
by the following proposition.

2.7 Proposition. Let B be a quadratic quaternion algebra over F with center
E with Gal(E/F ) = {1, α}, involution ∗, and let a : B → B be a Galois action
on B. Then the sequence

1→ E× → F× ×B× ρa−→ GSO(Xa, F )→ 1,

is exact, where the inclusion of E× is defined by z 7→ (NEF (z), z). There exists

a unique F algebra isomorphism B(Xa)
∼−→ B sending E(Xa) onto E so that

the diagram

1 −−−−→ E(Xa)
× −−−−→ F× ×B(Xa)

× ρ−−−−→ GSO(Xa, F )→ 1

o





y

o





y
id





y

1 −−−−→ E× −−−−→ F× ×B× ρa−−−−→ GSO(Xa, F )→ 1
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commutes. The map defined by x 7→ a(x) = x∗ maps Xa onto Xa, and is the
element s ∈ O(Xa, F ) from Proposition 2.5 associated to the quaternion algebra
over F in B(Xa) corresponding to a.

Explicit quadratic quaternion algebras equipped with Galois actions may con-
structed as follows. Let E be a two dimensional reduced F algebra, so that E
is either a quadratic extension of F , or E ∼= F × F . Let Gal(E/F ) = {1, α},
and let D be a quaternion algebra over F with canonical involution ∗. Set
BD,E = E⊗F D, endow BD,E with the involution defined by (z⊗x)∗ = z⊗x∗,
and define a = a(D,E) : BD,E → BD,E by a(z ⊗ x) = α(z)⊗ x. Clearly BD,E
is a quadratic quaternion algebra over F , and a is a Galois action on BD,E ;
we will write XD,E = Xa. To be even more concrete, let d ∈ F×/F×2. If

d 6= 1, let Ed = F (
√
d); if d = 1, let Ed = F × F . We write BD,d = BD,Ed

and
XD,d = XD,Ed

. Evidently discXD,d = d. Assume further d = 1. Then there is

a canonical isomorphismD×D ∼−→ BD,1 of F algebras. With respect to this iso-
morphism, a is given by a(x, x′) = (x′, x), and ∗ is given by (x, x′)∗ = (x∗, x′∗).
Thus, XD,1 is the set of pairs (x, x∗) for x ∈ D, which can be identified with
D. With respect to these identifications, ρa(t, (g, g

′))x = t−1gxg′∗ for t ∈ F×,
x ∈ D, and g, g′ ∈ D×.
Before turning to specific fields we address two natural questions. First, if X is
an arbitrary four dimensional quadratic space over F , when can X be related
to an XD,E?

2.8 Proposition. Let X be a four dimensional quadratic space over F and
write B = B(X) and E = E(X). There exists a quaternion algebra D over F
in B and a similitude T : X → XD,E so that

1 −−−−→ E× −−−−→ F× ×B× ρ−−−−→ GSO(X,F ) −−−−→ 1

id





y

o





y





yT ·T−1

1 −−−−→ E× −−−−→ F× ×B×D,E
ρa(D,E)−−−−−→ GSO(XD,E , F ) −−−−→ 1

commutes, and the element s ∈ O(X,F ) corresponding to D from Proposition
2.5 is mapped to the element of O(XD,E , F ) defined by x 7→ a(x) = x∗, where
a = a(D,E). If X represents 1, then we may further choose T to be an isom-
etry. Conversely, if X is isometric to XD,E for some D, then X represents
1.

Given a quadratic quaternion algebra over F , what is the relationship between
the Xa for different Galois actions a on the quadratic quaternion algebra? The
main ingredient for the following is the Skolem-Noether theorem.

2.9 Proposition. Let B be a quadratic quaternion algebra over F with center
E, let Gal(E/F ) = {1, α}, and let a and a′ be Galois actions on B. There
exists u ∈ B×, uniquely determined up to multiplication by elements of E×,
such that a′(x) = u−1a(x)u for x ∈ B. We have ua(u) = ua′(u) ∈ F×. Let

Documenta Mathematica 6 (2001) 247–314



Global L-Packets for GSp(2) and Theta Lifts 273

µ = ua(u) = ua′(u). Then u can be chosen so that N(u) = µ; choose such a u.
The map T : Xa → Xa′ given by T (x) = xu is a well-defined similitude with
similitude factor λ(T ) = µ. The diagram

1 −−−−→ E× −−−−→ F× ×B× ρa−−−−→ GSO(Xa, F ) −−−−→ 1

id





y
id





y





yT ·T−1

1 −−−−→ E× −−−−→ F× ×B× ρa′−−−−→ GSO(Xa′ , F ) −−−−→ 1

commutes.

To close this section we consider choices of F . Suppose F is nonarchimedean
of characteristic zero. Let d ∈ F×/F×2. Up to isometry, there are two four
dimensional quadratic spaces of discriminant d; these are distinguished by their
Hasse invariant. Both spaces represent 1. One space is isometric to XM2×2,d,
where M2×2 = M2×2(F ) is the quaternion algebra of 2×2 matrices over F ; the
other is isometric to XDram,d, where Dram is the division quaternion algebra
over F . These spaces have Hasse invariant ε(d) and −ε(d), respectively, where
ε(d) = (−1,−d)F . If d = 1, then XM2×2,1 is isometric to M2×2(F ) equipped
with the determinant, and XDram,1 is isometric to Dram equipped with the
norm; see the remarks before Proposition 2.8. Suppose d 6= 1. Then XM2×2,d

and XDram,d are both isotropic. Also, BM2×2,d and BDram,d are both isomorphic
to M2×2(Ed). Explicitly, let δ be a representative for the nontrivial coset of

F×/NEd

F (E×d ). Then we can take

Dram = {
[

e fδ
α(f) α(e)

]

: e, f ∈ Ed} ⊂ M2×2(Ed).

The Galois actions a = a(M2×2, Ed) and a
′ = a(Dram, Ed) on M2×2(Ed) corre-

sponding to M2×2(F ) and Dram are given by

(2.1) a(

[

e f
g h

]

) =

[

α(e) α(f)
α(g) α(h)

]

and a′(

[

e f
g h

]

) =

[

α(h) δα(g)
α(f)/δ α(e)

]

,

respectively, and XM2×2,d and XDram,d are the set of elements in M2×2(Ed)

[

e f
√
d

g
√
d α(e)

]

and

[

f −δe
α(e) g

]

,

respectively, for e ∈ Ed and f, g ∈ F . The element u from Proposition 2.9 can
be taken to be √

d

[

0 δ
1 0

]

.

Evidently, if the residual characteristic of F is odd and Ed/F is unramified,
then XM2×2,d is unramified but XDram,d is not. The quadratic spaces XM2×2,d

and XDram,d have isomorphic similitude groups, and from the point of view
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of the theta correspondence for similitudes, they are grouped together. The
two quadratic spaces with discriminant 1, however, do not have isomorphic
similitude groups and and are distinct from the point of view of the theta
correspondence for similitudes. See the remarks before Theorem 1.8 and the
proof of Theorem 1.8.
Suppose F = R. Let d ∈ R×/R×2. If d = 1, then up to isometry there
are three four dimensional quadratic spaces of discriminant 1, with signatures
(4, 0), (2, 2) or (0, 4). The quadratic space with signature (4, 0) is XDram,1; the
ramified quaternion algebra Dram over R is the Hamilton quaternion algebra.
The quadratic space with signature (2, 2) is XM2×2,1 where M2×2 = M2×2(R).
Finally, the quadratic space with signature (0, 4) is not of the form XD,1. How-
ever, as predicted by Proposition 2.8, there is an intertwining similitude with
the space XDram,1: the quadratic space with signature (0, 4) can be taken to be
XDram,1 with form multiplied by −1. Then the intertwining similitude is just
the identity function. If d = −1, then up to isometry there are two quadrat-
ics spaces of discriminant −1, with signatures (1, 3) or (3, 1). The quadratic
space with signature (3, 1) is XM2×2,−1, while the quadratic space with signa-
ture (1, 3) is XDram,−1. From the point of view of the theta correspondence for
similitudes, the spaces with signature (4, 0) and (0, 4) are grouped together, the
spaces with signature (3, 1) and (1, 3) are grouped together, and the space of
signature (2, 2) is not grouped with another four dimensional quadratic space.
When F = R there are further exact sequences. Let X be a four dimensional
quadratic space over R, with even Clifford algebra B; let E be the center
of B. We regard F = R, E and B as the Lie algebras of F× = R×, E×
and B×, respectively. We take the Lie algebra gso(X,R) of GSO(X,R) to
be the subalgebra of h ∈ EndR X for which there exists a λ ∈ R such that
(hx, x′) + (x, hx′) = λ(x, x′) for x, x′ ∈ X; then λ = tr(h)/2. Define an action
of R×B on X by ρ(r, h)x = −rx+hx+xh∗, and an inclusion of E into R×B
by b 7→ (TEF (b), b). By Theorem 2.3,

(2.2) 0→ E → R×B ρ−→ gso(X,R)→ 0

is an exact sequence of Lie algebras. Any two maximal compact subgroups
of GSO(X,R) are conjugate. Let J0 be a maximal compact subgroup of
GSO(X,R). Then there exists a unique maximal compact subgroup KB of
B× such that ρ({±1} × KB) = J0. The normalizer of J0 is R×J0, and J0 is
contained in a unique maximal compact subgroup of GO(X,R). There is an
exact sequence

(2.3) 1→ KB ∩ E× → {±1} ×KB
ρ−→ J0 → 1.

Suppose that y ∈ X is anisotropic and Y and D are as in Proposition 2.6. We
take the Lie algebra of so(Y,R) of SO(Y,R) to be the subalgebra of h ∈ EndR Y
such that (hx, x′) + (x, hx′) = 0 for x, x′ ∈ Y . We regard D as the Lie algebra
of D×, and define an action of D on X by ρ(h)x = hx − xh. By Proposition

Documenta Mathematica 6 (2001) 247–314



Global L-Packets for GSp(2) and Theta Lifts 275

2.6 there is an exact sequence

0→ R→ D → so(Y,R)→ 0,

and a commutative diagram

0 −−−−→ R −−−−→ D
ρ−−−−→ so(Y,R) −−−−→ 0





y





y





y

0 −−−−→ E −−−−→ R×B ρ−−−−→ gso(X,R) −−−−→ 0

where D is included in R × B via h 7→ (T(h), h) and so(Y,R) is included in
gso(X,R) by setting the elements of so(Y,R) to be 0 on R ·y. Any two maximal
compact subgroups of SO(Y,R) are conjugate. Let JY be a maximal compact
subgroup of SO(Y,R). Then there exists a unique maximal compact subgroup
KD of D× such that JY = ρ(KD), and JY is contained in a unique maximal
compact subgroup J0 = ρ({±1} × KB) of GSO(X,R). Also, KD ⊂ KB , the
diagram

1 −−−−→ {±1} −−−−→ KD
ρ−−−−→ JY −−−−→ 1





y





y





y

1 −−−−→ KB ∩ E× −−−−→ {±1} ×KB
ρ−−−−→ J0 −−−−→ 1

commutes, and the element s ∈ O(X,R) from Proposition 2.6 normalizes JY
and J0. Conversely, if J0 = ρ({±1} ×KB) is a maximal compact subgroup of
GSO(X,R) there exists an anisotropic y ∈ X and a maximal compact subgroup
JY = ρ(KD) ⊂ SO(Y,R) such that JY ⊂ J0; in particular, the unique maximal
compact subgroup of GSO(X,R) which contains J0 is generated by J0 and s.
Finally, suppose F is a number field with adeles A, X is a four dimensional
quadratic space over F , B is the even Clifford algebra of X, and E is the center
of B. Using Theorem 2.3 one can show that the sequence

1→ A×E → A× ×B×(A) ρ−→ GSO(X,A)→ 1

is exact; we identify E×(A) and A×E . Similarly, if B is a quadratic quaternion
algebra over F with center E, and a is a Galois action on B, then the sequence

1→ A×E → A× ×B×(A) ρa−→ GSO(Xa,A)→ 1

is exact. In addition, we have the following useful observation. Suppose D and
D′ are quaternion algebras over F , and E is a two dimensional reduced algebra
over F . Let SD,E be the set of places v of F such that Dv is ramified and v
splits in E; if E ∼= F × F , we will say that every place of F splits in E. Define
SD′,E similarly. Evidently, if SD,E = SD′,E , then BD,E ∼= BD′,E as E algebras.
Thus, if SD,E = SD′,E , then by Proposition 2.9 there exists an intertwining
similitude from XD,E to XD′,E .
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3. Local theta lifts for dimX = 2n = 4

In this section we describe what irreducible representations of GO(X,F ) occur
in the theta correspondence with GSp(2, F ) for X a four dimensional quadratic
space over a local field F . This is needed to define local L-packets for GSp(2, F )
in the next section. The description below involves distinguished representa-
tions, and was given in [R2] when F is a local field of characteristic zero with
odd residual characteristic; we also do the even residual characteristic and real
cases.

Fix the following notation. Let F be a local field of characteristic zero, with
F = R if F is archimedean. Let X be a four dimensional quadratic space
over F ; write X for the F points of X. Let d = discX. As in Section 2,
let B be the even Clifford algebra of X, and let E be the center of B. Let
s ∈ O(X,F ) be an element as in Proposition 2.5, so that s2 = 1, det s = −1,
and s is a representative for the nontrivial coset of GSO(X,F ) in GO(X,F ).
Suppose that F = R. Fix a maximal compact subgroup KB of B×, and
let J0 = ρ({±1} × KB), a maximal compact subgroup of GSO(X,R). As
explained in the penultimate paragraph of Section 2, we may assume that s
normalizes J0, so that the subgroup J generated by J0 and s is a maximal
compact subgroup of GO(X,R). As usual, by Irr(B×) we mean the set of
equivalence classes of irreducible (B,KB) modules, where B is regarded as the
Lie algebra of B×. If τ ∈ Irr(B×), the central character ωτ : E× → C× of τ is
defined by ωτ (e

z) = exp(τ(z)) for z ∈ E ⊂ B = Lie(B×), and ωτ (ε) = τ(ε) for
ε ∈ E× ∩KB .

Using the exact sequences of Section 2, we can describe representations of
GSO(X,F ) in terms of representations of B×. Let Irrf (F

× × B×) be the set
of pairs (χ, τ), where τ ∈ Irr(B×) is such that ωτ is Galois invariant, and χ

is a quasi-character of F× such that ωτ = χ ◦ NEF . The exact sequences from
Theorem 2.3, (2.2) and (2.3) give a bijection

Irrf (F
× ×B×) ∼−→ Irr(GSO(X,F )), (χ, τ) 7→ π(χ, τ).

If F is nonarchimedean, π(χ, τ) has the same space as τ , and is defined by
π(χ, τ)(ρ(t, g)) = χ(t)−1τ(g). Suppose F = R, and let (χ, τ) ∈ Irrf (R××B×).
Since ωτ is Galois invariant, it follows that there exists a unique R linear map
lτ : R → C such that τ(z) = lτ (T

E
R (z)) for z ∈ E ⊂ Lie(B×). We have

χ(ex) = exp lτ (x) for x ∈ R. Then π(χ, τ) has the same space as τ , and
π(χ, τ) is defined by π(χ, τ)(ρ(ε, k)) = χ(ε)−1τ(k) for ρ(ε, k) ∈ J0, and by
π(χ, τ)(ρ(r, h)) = −lτ (r) + τ(h) for ρ(r, h) ∈ gso(X,R). The central character
of π(χ, τ) is χ.

In addition, if X is of the form Xa for some Galois action a on a quadratic
quaternion algebra B (see Section 2), then it may be convenient to write
π = π(χ, τ) with respect to the first exact sequence from Proposition 2.7. By
Proposition 2.7, the difference between using the exact sequences from Propo-
sition 2.7 and Theorem 2.3 is inessential.
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We describe representations of GO(X,F ) via representations of GSO(X,F ).
Let π ∈ Irr(GSO(X,F )). If the induced representation of π to GSO(X,F ) is
irreducible, we say that π is regular, and write π+ for the induced repre-

sentation. Here, if F = R, IndGO(X,R)GSO(X,R) π is the (go(X,R), J) = (gso(X,R), J)
module with space π ⊕ π and action

π+(k)(w ⊕ w′) = π(k)w ⊕ π(sks)w′, k ∈ J0, π+(s)(w ⊕ w′) = w′ ⊕ w,

and Lie algebra action

π+(X)(w ⊕ w′) = π(X)w ⊕ π(Ad(s)X)w′, X ∈ gso(X,R).

If π is not regular, we say that π is invariant. If π is invariant, then s ·π ∼= π
and π extends to exactly two representations of GO(X,F ); if F = R, by s · π
we mean the (gso(X,R), J0) module with same space as π and action defined
by (s ·π)(k)w = π(sks)w for k ∈ J0 and w ∈ π and (s ·π)(X)w = π(Ad(s)X)w
for X ∈ gso(X,R) and w ∈ π. Before we can describe what representations of
GO(X,F ) occur in the theta correspondence with GSp(2, F ) we must be able
to adequately tell apart the two extensions of an invariant representation to
GO(X,F ). To do so we use distinguished representations.
Let π ∈ Irr(GSO(X,F )) be invariant. We say that π is distinguished if there
exists an anisotropic vector y ∈ X such that HomSO(Y,F )(π,1) 6= 0, and if

d 6= 1, then Y is isotropic. Here, Y = (F · y)⊥, as in Proposition 2.6, and 1

is the trivial representation of SO(Y, F ), i.e., the representation with space C
and trivial action. In the case F = R more comments are required. Let y ∈ X
be anisotropic, and let Y = (F · y)⊥. Let JY be a maximal compact subgroup
of SO(Y,R). Then as mentioned in Section 2, JY is contained in a unique
maximal compact subgroup J ′0 of GSO(X,R). Since J ′0 is conjugate to J0, we
may regard the (gso(X,R), J0) module π as a (gso(X,R), J ′0) module, and by
restriction, as an (so(Y,R), JY ) module. Then we say that π is distinguished
if for some y, Hom(so(Y,R),JY )(π,1) 6= 0, and if d 6= 1, then Y is isotropic. It
is easy to verify that the nonvanishing of this homomorphism space does not
depend on the choice of maximal compact subgroup of SO(Y,R) or element
of GSO(X,R) used to conjugate J ′0 into J0 (use that the normalizer of J0 is
R×J0). Also, π is distinguished with respect to all anisotropic y if and only if
it is distinguished with respect to one anisotropic y. If F is nonarchimedean,
then this was pointed out in [R2]; if F = R it follows by a similar argument.

3.1 Proposition. If F = R assume d = 1. Let π ∈ Irr(GSO(X,F )). Assume
π is invariant. Then for all anisotropic y ∈ X such that Y = (F · y)⊥ is
isotropic if d 6= 1, dimC HomSO(Y,F )(π,1) ≤ 1.

Proof. This was proven in Proposition 4.1 of [R2] if F is nonarchimedean.
Suppose F = R. Since the homomorphism spaces for different anisotropic
y are all isomorphic, it suffices to show this for one y. As d = 1, we have
B ∼= D×D for some quaternion algebra D over R. Identify B with D×D, and
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let y ∈ X be an anisotropic vector such that the line R · y corresponds to ∆D,
where ∆D consists of the (x, x) ∈ B with x ∈ D (see Section 2). Let KD be a
maximal compact subgroup of D×; then ∆KD is a maximal compact subgroup
of ∆D×, ∆KD ⊂ KD ×KD, and JY = ρ(KD) ⊂ ρ({±1} ×KD ×KD). Write
π = π(χ, τ), with τ ∼= τ1 ⊗ τ2, τ1, τ2 ∈ Irr(D×), ωτ1 = ωτ2 = χ. Since π is
invariant, τ1 ∼= τ2. We have HomSO(Y,R)(π,1) ∼= Hom(∆D,∆KD)(τ, χ ◦ N) ∼=
Hom(∆D,∆KD)(τ1 ⊗ τ∨1 ,1). This space is one dimensional. ¤

As we shall see in the theorem below, we can now tell the two extensions of in-
variant representations apart to an extent sufficient for our purposes. Suppose
π ∈ Irr(GSO(X,F )) is distinguished with respect to an anisotropic y ∈ X,
with d = 1 if F = R. Since dimC HomSO(Y,F )(π,1) = 1 by Proposition

3.1, it follows that for exactly one extension π+ of π to GO(X,F ) we have
HomO(Y,F )(π

+,1) 6= 0. Denote the other extension of π to GO(X,F ) by π−.

The definitions of π+ and π− do not depend on the choice of y.
Before characterizing R2(GO(X,F )) we require require two more results.

3.2 Lemma. Let F = R; assume d = 1. Then HomSO(X,R)(ω, π1) 6= 0 for
π1 ∈ Irr(SO(X,R)).

Proof. If the signature of X is (2, 2), this follows from (3.6.10) of [P]. If the
signature of X is (4, 0) or (0, 4) this follows by (6.12) of [KV]. ¤

3.3 Proposition. The elements of Irr(GO(X,F )) have multiplicity free re-
strictions to O(X,F ).

Proof. If F = R then the restriction of any element of Irr(GO(X,R)) is mul-
tiplicity free as [GO(X,R) : R×O(X,R)] ≤ 2. If d = 1 and F is nonar-
chimedean then this is Lemma 7.2 of [HPS]. The case d 6= 1 and F nonar-
chimedean remains. If F is of odd residual characteristic then [GO(X,F ) :

F×O(X,F )] = [NEF (E
×) : F×2] = 2 so the proposition follows from Lemma

2.1 of [GK]. We now give an argument for both the even and odd residual
characteristic cases. There are two four dimensional quadratic spaces over F
of discriminant d. By Proposition 2.9 there is a similitude between them; thus,
it suffices to prove the result for one of them. We take X = XM2×2,d. Us-
ing Proposition 3.2 of [R2] it is easy to verify that the finite dimensional, i.e.,
one or two dimensional, elements of Irr(GO(X,F )) have multiplicity free re-
strictions to O(X,F ). To complete the proof it will suffice to show that for

infinite dimensional π ∈ Irr(GSO(X,F )), the representation σ = Ind
GO(X,F )
GSO(X,F ) π

(which may be reducible) has a multiplicity free restriction to O(X,F ). Let
π ∈ Irr(GSO(X,F )) and using the first exact sequence from Proposition 2.7
write π = π(χ, τ) where τ ∈ Irr(GL(2, E)) and χ is a quasi-character of F×

such that χ◦NEF = ωτ ; here and below E = Ed. We make take s to be given by
s(x) = a(x), where a is the usual Galois action on M2×2(E) as given in (2.1).
Let V be the space of τ , i.e., the space of π. As a model for σ use V ⊕ V with

(3.1) σ(h)(v⊕v′) = π(h)v⊕π(shs)v′, h ∈ GSO(X,F ), σ(s)(v⊕v′) = v′⊕v.
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We begin with some remarks about the restriction of π to subgroups. Let
ψE : E → C× be a nontrivial quasi-character of E; we may assume ψE is
Gal(E/F ) invariant. Let N be the subgroup of GSO(X,F ) of elements

n = ρa(1,

[

1 x
0 1

]

)

for x ∈ E. Since the space of Whittaker functionals on τ with respect to ψE is
one dimensional, it follows that dimHomN (π, ψE) = 1, where ψE is the charac-
ter of N defined by ψE(n) = ψE(x). This fact allows us to prove the following
statements just as in the proof of Theorem 4.3 of [R2]. Let H0 be a closed
normal subgroup of GSO(X,F ) such that F×H0 is open, GSO(X,F )/F×H0
is finite and Abelian, and N ⊂ H0. Then the restriction π|H0

is multiplicity
free: π|H0

= V1 ⊕ · · · ⊕ VM , where Vi, 1 ≤ i ≤M are mutually nonisomorphic
irreducible H0 subspaces of π (see [GK] for general results about restrictions),
and, say, dimC HomN (V1, ψE) = 1 and dimC HomN (Vi, ψE) = 0 for 2 ≤ i ≤M .
Suppose additionally s · π ∼= π, and let π̂ be an extension of π to GO(X,F ).
Then π̂(s)V1 = V1.
Now we show σ|O(X,F ) is multiplicity free. Suppose first there is no quasi-

character β of E× such that β|F× = 1 and β ⊗ τ ∼= τ ◦ a. Let W be a
nonzero irreducible O(X,F ) subspace of σ. Then either there is an irreducible
SO(X,F ) subspace U of (π, V ) such thatW = U⊕U , or there is an irreducible
SO(X,F ) subspace U of (π, V ) and i : U → U such that i2 = 1, i(π(h)u) =
π(shs)i(u) for h ∈ SO(X,F ) and W = {u ⊕ i(u) : u ∈ U}. We assert the
second case is impossible; suppose it holds. Then π|SO(X,F ) and (s · π)|SO(X,F )
share an irreducible component. Since π|SO(X,F ) is multiplicity free by the last
paragraph, by Lemma 2.4 of [GK] there is a quasi-character γ : GSO(X,F )→
C× trivial on F× SO(X,F ) such that s · π ∼= γ ⊗ π. Since

1→ F× SO(X,F )
inc−−→ GSO(X,F )

λ−→ NEF (E
×)/F×2 → 1

is exact, γ = η◦λ for some quasi-character η : NEF (E
×)→ C× with η2 = 1. Let

T : (η ◦ λ) ⊗ π → s · π be a GSO(X,F ) isomorphism. Then for g ∈ GL(2, E)
and v ∈ V ,

T (η(λ(ρa(1, g))) · π(ρa(1, g)v)) = π(sρa(1, g)s)T (v)

(η ◦NEF )(det g)T (τ(g)v) = τ(a(g))T (v).

This implies (η ◦ NEF ) ⊗ τ ∼= τ ◦ a, contradicting our assumption; note

(η ◦ NEF )|F× = 1. Thus, W = U ⊕ U . Let W ′ be another nonzero irreducible
O(X,F ) subspace of σ and assume W ′ ∼= W as O(X,F ) representations; to
show σ|O(X,F ) is multiplicity free it will suffice to show W and W ′ are iden-
tical, i.e., W = W ′. Write W ′ = U ′ ⊕ U ′, with U ′ an irreducible SO(X,F )

subspace of (π, V ). Consider the composition U → W
∼−→ W ′ → U ′ where the
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first map sends u to u⊕ 0, the second is our fixed isomorphism W ∼= W ′, and
the last map sends u ⊕ u′ to u. This is an SO(X,F ) map from (U, π|SO(X,F ))
to (U ′, π|SO(X,F )). We claim it is nonzero; suppose not. Then the same com-
position with the last map replaced by the map sending u ⊕ u′ to u′ gives a
nonzero SO(X,F ) map from (U, π|SO(X,F )) to (U ′, (s · π)|SO(X,F )). However,
we just saw that π|SO(X,F ) and (s ·π)|SO(X,F ) have no common irreducible con-
stituents. Thus, the first composition is nonzero, and U and U ′ are isomorphic
irreducible subspaces of π|SO(X,F ). Since π|SO(X,F ) is multiplicity free, U = U ′

and so W =W ′.
Now suppose there is a quasi-character β of E× such that β|F× = 1 and β⊗τ ∼=
τ ◦ a. Let H0 be the subgroup of SO(X,F ) of ρa(1, g) for g ∈ Sl(2, E), and let
H ⊂ O(X,F ) be generated by H0 and s. To prove σ|O(X,F ) is multiplicity free
it will suffice to prove σ|H is multiplicity free. For this, we replace σ with a
more tractable representation via twisting. Since β|F× = 1, there is a quasi-
character µ of E× such that β(x) = µ(x/a(x)) for x ∈ E×. Letting τ ′ = µ⊗ τ ,
we have τ ′ ◦ a ∼= τ ′. Since ωτ is Galois invariant, β2 = 1, which implies µ2 is
Galois invariant. Let ν be a quasi-character of F× such that µ2 = ν ◦NEF , and
set χ′ = νχ; then ωτ ′ = χ′ ◦ NEF . Set π′ = π(χ′, τ ′). Since τ ′ ◦ a ∼= τ ′ we have

s ·π′ ∼= π′. Let σ′ = Ind
GO(X,F )
GSO(X,F ) π

′, and use the same model for σ′ as above, so

the underlying space of σ′ is V ⊕ V . Now σ′ may not be isomorphic to σ, but
it is easy to see that the identity map between the models for σ and σ′ gives an
isomorphism σ|H ∼= σ′|H . We are reduced to showing σ′|H is multiplicity free.
As s ·π′ ∼= π′, we have σ′ ∼= π′1⊕π′2, where π′1 and π′2 are the two extensions of
π′ to GO(X,F ). Since the restrictions π′1|H0

= π′2|H0
= π|H0

are multiplicity
free as N ⊂ H0, it follows that π′1|H and π′2|H are multiplicity free. It will now
suffice to show π′1|H and π′2|H do not share an irreducible component; suppose
they do. By Lemma 2.4 of [GK], π′1|H ∼= π′2|H . Let R : π′1|H → π′2|H be
an H isomorphism. As indicated above, there is an irreducible H0 subspace
V1 ⊂ V such that π′1(s)V1 = π′2(s)V1 = V1, i.e., V1 is also an irreducible H
subspace for π′1|H and π′2|H . Since π′1|H and π′2|H are multiplicity free, we
must have R(V1) = V1. Applying Schur’s lemma to R : V1 → V1, with V1
regarded as an irreducible H0 representation, there exists a nonzero scalar c
such that R(v) = cv for v ∈ V1. This implies π′1(s)v = π′2(s)v for v ∈ V1.
However, π′2(s)v = −π′1(s)v for v ∈ V , a contradiction. ¤

3.4 Theorem. Let σ ∈ Irr(GO(X,F )). If F is nonarchimedean and d 6=
1, assume σ is infinite dimensional; if F = R, assume d = 1. Then σ ∈
R2(GO(X,F )) if and only if σ is not of the form π− for some distinguished
π ∈ Irr(GSO(X,F )).

Proof. Suppose first F is nonarchimedean. Then this theorem was proven in
[R2] in the case F has odd residual characteristic. To verify the theorem if F
has even residual characteristic we proceed as follows. We note first that the
background results of [R2] are valid in any residual characteristic; that is, the
results of sections 2, 3 and 4 hold, and Lemma 6.1, Corollary 6,2, Lemma 6.3
and Lemma 6.4 also hold with the same proofs. We need to show that Lemmas
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6.6 and 6.7 of [R2] also hold if F has even residual characteristic. Consider
first the proof of Lemma 6.6. The first paragraph of the proof of Lemma 6.6 is
independent of the residual characteristic. In the second paragraph, we used a
result from [T] proven only in the case of odd residual characteristic; by [Sa],
this also holds in the case of even residual characteristic. The third paragraph of
the proof is also valid in even residual characteristic (in spite of the unnecessary
mention there of odd residual characteristic). Next, we consider all remaining
paragraphs but the last paragraph: these cover the case d = 1 and ε = −ε(1),
in the notation of [R2]. Letting Dram be the ramified quaternion algebra over
F , we are given τ, τ ′ ∈ Irr(D×ram) with ωτ = ωτ ′ , and we must show that there
exists a quadratic extension E ⊂ Dram of F of such that HomSO(Z)(π,1) 6= 0,

where SO(Z) is the subgroup {ρ(x, x∗−1) : x ∈ E×} and π = π(τ, τ ′). Embed
D×ram into D×ram × D×ram via x 7→ (x, x∗−1), and consider the restriction of
τ ⊗ τ ′ to D×ram. Let τ ′′ be an irreducible component of (τ ⊗ τ ′)|D×ram ; then

ωτ ′′ = 1. By Proposition 18 of [W2], there exists a quadratic extension E of F
in Dram and a nonzero vector v ∈ τ ′′ such that τ ′′(x)v = v for x ∈ E×. This
implies that π(h)v = v for h ∈ SO(Z), proving the required claim. The last
paragraph of the proof of Lemma 6.6 is also valid in the case of even residual
characteristic, thus completing the verification of Lemma 6.6 in this case. Next,
we consider the proof of Lemma 6.7 of [R2]. To make the proof of Lemma
6.7 go through in the case of even residual characteristic it suffices to show
that if K is a quadratic extension of F , τ ∈ Irr(GL(2,K)) is Galois invariant

with ωτ = χ ◦ NKF and HomGL(2,F )(τ, χ ◦ det) = 0, then there exist quasi-

characters ζ and ζ ′ of K× extending χ such that ε(τ ⊗ ζ−1, 1/2, ψK) = χ(−1)
and ε(τ⊗ζ ′−1, 1/2, ψK) = −χ(−1). To show the existence of ζ, pick ζ extending
χ such that ζ is very ramified (this can be done); then by 3 of Lemma 14 of
[HST], ε(τ⊗ζ−1, 1/2, ψK) = χ(−1). On the other hand, since HomGL(2,F )(τ, χ◦
det) = 0, by the equivalence of 1 and 2 of Theorem 5.3 of [R2], there exists a
quasi-character ζ ′ of K× extending χ such that ε(τ⊗ζ ′−1, 1/2, ψK) = −χ(−1).
(Note that the proof of the equivalence of 1 and 2 of Theorem 5.3 of [R2] works
in any residual characteristic; the use of odd residual characteristic in the proof
of Lemma 5.2 is easily seen to be unnecessary.)

Now suppose F = R and d = 1. Suppose σ ∈ R2(GO(X,R)). Then an
argument as in Theorem 4.3 of [R2] shows that σ cannot be of the form π−

for some distinguished π. Conversely, suppose σ is not of the form π− for
some distinguished π. Then σ ∼= π+ for some regular π or distinguished π.
Using Lemma 3.2, an argument as in Theorem 4.4 of [R2] shows that σ ∈
R2(GO(X,R)). ¤

4. Definition of the local L-packets and parameters

Let F be a local field of characteristic zero, with F = R if F is archimedean.
Let d ∈ F×/F×2; assume d = 1 if F = R. Let XM2×2,d be the four dimensional
quadratic space over F defined after Proposition 2.7 and discussed after Propo-
sition 2.9. We will parameterize Irr(GSO(XM2×2,d, F )) as explained at the be-
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ginning of Section 3. However, since we are dealing with the concrete quadratic
spaces XM2×2,d we will use the first exact sequence from Proposition 2.7; by
Proposition 2.7, the difference is trivial. We let s ∈ O(XM2×2,d, F ), det s = −1,
be defined by s(x) = a(x), where a is the Galois action on M2×2(Ed) defin-
ing XM2×2,d; see (2.1). Using the results of the last section, we will associate
to every element [π] of 〈s〉\ Irr(GSO(XM2×2,d, F )) a packet Π([π]) of elements
of Irr(GSp(2, F )) and a GSp(2) L-parameter ϕ([π]) : LF → GSp(2,C) over
F , where LF is the Langlands group of F (i.e., WF ×SU(2,R) if F is nonar-
chimedean and the Weil group WF if F = R). We expect that Π([π]) is the
L-packet associated to ϕ([π]) under the conjectural Langlands correspondence.
Some evidence is provided by Propositions 4.1, 4.2 and 4.3 below which give
some basic properties of the Π([π]) and ϕ([π]). More work on this issue re-
mains to be done: for example, are the packets Π([π]) disjoint, and if ϕ([π])
and ϕ([π′]) are equivalent, does it follow that Π([π]) = Π([π′])? We will return
to this topic in a subsequent work; the thrust of this paper is global results.
To define the L-packets, we begin by noting that there is a surjective map

Irr(GO(XM2×2,d, F ))→ 〈s〉\ Irr(GSO(XM2×2,d, F ))

which sends σ to the components of σ restricted to GSO(XM2×2,d, F ). We
will define the L-packet of elements of Irr(GSp(2, F )) associated to a point
of 〈s〉\ Irr(GSO(XM2×2,d, F )) by considering the fiber over such a point, and
applying the results of Section 3. For π ∈ GSO(XM2×2,d, F ) denote the ele-
ment of 〈s〉\ Irr(GSO(XM2×2,d, F )) determined by π by [π] = {π, s · π}. Let
[π] ∈ 〈s〉\ Irr(GSO(XM2×2,d, F )). We assume that π is infinite dimensional; if
F is nonarchimedean of even residual characteristic, we assume additionally
that π is tempered. Then how [π] gives rise to irreducible representations of
GSp(2, F ) is described in Tables 2 and 3 of the Appendix. In the first step,
using the results of Section 3, π gives rise to representations of various orthog-
onal similitude groups. This is summarized in the tables, but certain aspects
deserve comment. If d 6= 1, then it may happen that π is invariant but not
distinguished. Then the two extensions of π to GO(XM2×2,d, F ) are denoted by
π1 and π2. When d = 1, then π is either regular or invariant and distinguished;
in the first case π induces to give π+, and in the second case π extends to
give π+ and π−. Additionally, if d = 1 and π is essentially square integrable,
then π gives an element πJL ∈ Irr(GSO(XDram,1, F )) via the Jacquet-Langlands
correspondence, and then analogously elements of Irr(GO(XDram,1, F )). Here,
Dram is the ramified quaternion algebra over F , and π is essentially square
integrable if and only if π = (α ◦ λ) ⊗ π′ for some quasi-character α :
F× → C× and square integrable π′ ∈ Irr(GSO(XM2×2,1, F )). To apply the
Jacquet-Langlands correspondence, we write as in Section 3, π = π(χ, τ) for
τ = τ1 ⊗ τ2 ∈ Irr(GL(2, F ) × GL(2, F )); recall that the exact sequence from
Proposition 2.7 is in this case

1→ F× × F× → F× ×GL(2, F )×GL(2, F )→ GSO(XM2×2,1, F )→ 1.
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We define πJL = π(χ, τJL) ∈ Irr(GSO(XDram,1, F )), where τ
JL is the irreducible

representation of D×ram×D×ram corresponding to τ under the Jacquet-Langlands
correspondence (π being essentially square integrable means exactly τ1 and τ2
are essentially square integrable); the exact sequence from Proposition 2.7 for
this is

1→ F× × F× → F× ×D×ram ×D×ram → GSO(XDram,1, F )→ 1.

Next, using Theorem 3.4, the thus constructed representations of orthogonal
similitude groups give representations of GSp(2, F ) via theta correspondences;
note that each theta correspondence used is covered by Theorem 1.8. In Tables
2 and 3 of the Appendix we indicate the appropriate theta correspondences
with a subscript. We also indicate when representations do not have theta
lifts. Finally, in the Table 4 of the Appendix the packets of representations
associated to [π] are defined using the representations constructed in Tables 2
and 3 of the Appendix. Note the introduction of the contragredient.
The next proposition describes a few basic properties of the L-packets Π([π]).

4.1 Proposition. Let π ∈ Irr(GSO(XM2×2,d, F )). Assume π is infinite di-
mensional; if F is nonarchimedean of even residual characteristic, assume π is
tempered. Then

(1) The common central character of the elements of Π([π]) is ωπ.
(2) If d = 1 then |Π([π])| = 1 unless π is essentially square integrable; in

this case |Π([π])| = 2. If d 6= 1, then |Π([π])| = 1 unless π is invariant
but not distinguished; in this case |Π([π])| = 2.

(3) If π is tempered, then all the elements of Π([π]) are tempered.

Proof. (1) This follows from the remark on central characters after Theorem
1.8.
(2) Evidently, |Π([π])| = 1 except possibly if d = 1 and π is essentially square
integrable, or d 6= 1 and π is invariant but not distinguished. If d = 1 and π is
essentially square integrable, then |Π([π])| = 2 by Lemma 8.4 below. If d 6= 1
and π is invariant but not distinguished, then |Π([π])| = 2 because θM2×2,d is a
bijection.
(3) If F is nonarchimedean, this follows from (1) of Theorem 4.2 of [R3]. If
F = R, this follows from IV.3, p. 70 and III.2, p. 49 of [M]. ¤

Next, we associate to each [π] ∈ 〈s〉\ Irr(GSO(XM2×2,d, F )) an L-parameter

ϕ([π]) : LF → LGSp(2). Here LF denotes the Langlands group of F ,
i.e., LF = WF ×SU(2,R) if F is nonarchimedean, and LF = WF if F is
archimedean ([Ko], Section 12); WF is the Weil group of F . As is well known,

the dual group ĜSp(2) of GSp(2, F ) ( LGSp(2)0 in the notation of [B]) is
isomorphic to GSp(2,C), and we shall use such an isomorphism. But since
GSp(2,C) has a non-inner automorphism, we need to be specific (the same
issue arises for other groups, but for, say, GL(2) the choice is established). To
do so, we will specify an isomorphism from the based root datum of LGSp(2)
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to the based root datum of GSp(2,C). As a maximal split torus in GSp(2, F )
we take the group T of elements t = t(a, b, c) = diag(a, b, a−1c, b−1c). The
group X∗ of characters of T is the free Abelian group with generators e1, e2
and e3 defined by e1(t) = a, e2(t) = b and e3(t) = c. The group X∗ of
cocharacters of T is the free Abelian group with generators f1, f2 and f3
defined by f1(x) = t(x, 1, 1), f2(x) = t(1, x, 1) and f3(x) = t(1, 1, x). The
roots of GSp(2, F ) with respect to T are {α1 = e1 − e2, α2 = 2e2 − e3, α1 +
α2, 2α1+α2,−α1,−α2,−(α1+α2),−(2α1+α2)}. The coroots are {α∨1 = γ1 =
f1− f2, α∨2 = γ2 = f2, (α1+α2)

∨ = γ1+2α2, (2α1+α2)
∨ = γ1+ γ2, (−α1)∨ =

−γ1, (−α2)∨ = −γ2, (−(α1+α2))∨ = −(γ1+2γ2), (−(2α1+α2))∨ = −(γ1+γ2)}.
As simple roots we take ∆∗ = {α1, α2}; then ∆∗ = ∆∗∨ = {γ1, γ2}. We have
similar notation for GSp(2,C), which we will indicate with the addition of a
prime. Let Ψ = (X∗,∆∗, X∗,∆∗); the dual of Ψ is Ψ∨ = (X∗,∆∗, X

∗,∆∗);

let Ψ′ = (X ′∗,∆′∗, X ′∗,∆
′
∗). Then an isomorphism Ψ∨

∼−→ Ψ′ amounts to an

isomorphism f : X∗
∼−→ X ′∗ of Abelian groups such that f(∆∗) = ∆′∗ and the

matrix of f with respect to our bases is symmetric. One can check that there
are exactly two such isomorphisms f , with matrices





1 1 −1
1 −1 0
−1 0 c



 , c = 0 or 1.

As is done implicitly in [HST], we shall fix the isomorphism corresponding to the

choice c = 1. Our fixed isomorphism of based root data Ψ∨
∼−→ Ψ′ determines

a T conjugacy class of isomorphisms ĜSp(2)
∼−→ GSp(2,C) ([Sp], Theorem

9.6.2); we fix one such isomorphism in the conjugacy class. Additionally, since

the action of WF on ĜSp(2) is trivial, LGSp(2) is the direct product ĜSp(2)×
WF . Thus, in considering L-parameters we may just as well look at maps into

ĜSp(2), which we identify with GSp(2,C) (always via our fixed isomorphism).
We define a GSp(2) L-parameter over F to be a continuous homomorphism
ϕ : LF → GSp(2,C) such that ϕ(x) is semisimple for x ∈ WF , and if F
is nonarchimedean then ϕ|1×SU(2,R) is a smooth representation. Let ϕ be a
GSp(2) L-parameter over F . The similitude quasi-character of ϕ is the
quasi-character of LF given by λ ◦ ϕ, where λ : GSp(2,C) → C× is the usual
similitude homomorphism. If F is nonarchimedean, we say ϕ is unramified
if ϕ(SU(2,R)) = 1 and ϕ is trivial on the inertia subgroup of WF . We say
that ϕ is tempered if ϕ(LF ) is bounded. If ϕ′ : LF → GSp(2,C) is another
GSp(2) L-parameter over F we say that ϕ and ϕ′ are equivalent if there exists
g ∈ GSp(2,C) such that gϕ(x)g−1 = ϕ′(x) for all x ∈ LF . The connected
component group of ϕ is the group S(ϕ) = π0(S(ϕ)/C×), where S(ϕ) is the
group of g ∈ GSp(2,C) such that gϕ(x) = ϕ(x)g for all x ∈ LF .
The parameter ϕ([π]) will be one of two kinds of examples of GSp(2) L-
parameters over F . To define the first kind of example, suppose E/F is a
quadratic extension and let ρ : LE → GL(2,C) be a GL(2) L-parameter over
E such that det ρ is Galois invariant. Let η : LF → C× be a quasi-character
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extending det ρ; there are two such quasi-characters. Let V = C2, and regard ρ
as a representation on V . Define ϕ(η, ρ) : LF → GSp(W ) by letting the space

and action of ϕ(η, ρ) be W = IndLF

LE
ρ and defining a nondegenerate symplectic

form on W by

〈v1 ⊕ v2, v′1 ⊕ v′2〉 = η(y)〈v1, v′1〉+ 〈v2, v′2〉.
Here, y is a fixed representative for the nontrivial coset of LE in LF , we identify
the space of ϕ(η, ρ) with V ⊕ V via the map f 7→ f(1) ⊕ f(y), and we have
fixed a nondegenerate symplectic form on V (note that up to multiplication
by elements of C×, there is only one nondegenerate symplectic form on a two
dimensional complex vector space). Then ϕ(η, ρ) is a GSp(2) L-parameter over
F , and the similitude quasi-character of ϕ(η, ρ) is λ◦ϕ(η, ρ) = η. Suppose next
that ρ1 : LF → GL(2,C) and ρ2 : LF → GL(2,C) are GL(2) L-parameters over
F with det ρ1 = det ρ2. Regard ρ1 and ρ2 as two dimensional representations
of LF on V1 = C2 and V2 = C2, respectively, and fix nondegenerate symplectic
forms 〈·, ·〉1 and 〈·, ·〉2 on the spaces of ρ1 and ρ2, respectively. Define ϕ(ρ1, ρ2) :
LF → GSp(W ) by letting the space and action of ϕ(ρ1, ρ2) be W = ρ1 ⊕ ρ2
and defining a nondegenerate symplectic form on the space of ϕ(ρ1, ρ2) by

〈v1 ⊕ v2, v′1 ⊕ v′2〉 = 〈v1, v′1〉1 + 〈v2, v′2〉2.
Then ϕ(ρ1, ρ2) is a GSp(2) L-parameter over F , and the similitude quasi-
character of ϕ(ρ1, ρ2) is λ ◦ ϕ(ρ1, ρ2) = det ρ1 = det ρ2.
Now let [π] ∈ 〈s〉\ Irr(GSO(XM2×2,d, F )). Write π = π(χ, τ), with τ ∈
Irr(GL(2, Ed)) and χ a quasi-character of F× such that ωτ = χ ◦ NEd

F . Sup-
pose first that d 6= 1. Let ρ : LEd

→ GL(2,C) be the GL(2) L-parameter
over Ed corresponding to τ , and let η : LF → C× be the quasi-character of
LF corresponding to χ. Then η extends det ρ and the equivalence class of
ϕ(η, ρ) depends only on [π] and not the choice of representative π. We set
ϕ([π]) = ϕ(η, ρ). Suppose next d = 1. Then GL(2, Ed) ∼= GL(2, F )×GL(2, F ).
Let τ ∼= τ1 ⊗ τ2, with τ1, τ2 ∈ Irr(GL(2, F )) such that χ = ωτ1 = ωτ2 . Let
ρ1, ρ2 : LF → GL(2,C) be the GL(2) L-parameters over F corresponding to
ρ1 and ρ2, respectively. Then det ρ1 = det ρ2 and the equivalence class of
ϕ(ρ1, ρ2) depends only on [π] and not the choice of representative π. We set
ϕ([π]) = ϕ(ρ1, ρ2).
The following is an analogue of Proposition 4.1.

4.2 Proposition. Let π ∈ Irr(GSO(XM2×2,d, F )). Assume π is infinite di-
mensional; if F is nonarchimedean of even residual characteristic, assume π is
tempered. Then

(1) The similitude quasi-character of ϕ([π]) corresponds to ωπ.
(2) If d = 1 then |Sϕ([π])| = 1 unless π is a essentially square integrable;

in this case S(ϕ([π])) = Z2. If d 6= 1 and F is not nonarchimedean of
even residual characteristic, then |S(ϕ([π]))| = 1 unless π is invariant
but not distinguished; in this case S(ϕ([π])) = Z2.

(3) If π is tempered, then ϕ([π]) is tempered.
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Proof. (1). This follows from the definitions and above remarks.
(2) This follows by a case by case analysis following Tables 2 and 3 of the
Appendix. We note in particular that by Theorem 5.3 of [R2] if d 6= 1, then
π = π(χ, τ) is distinguished if and only if τ is Galois invariant and τ is the base
change of a τ0 ∈ Irr(GL(2, F )) such that ωτ0 = ωEd/Fχ.
(3) Assume π is tempered. Then ρ and η in the case d 6= 1, and ρ1 and ρ2
in the case d = 1, have bounded image. This implies that ϕ([π]) has bounded
image. ¤

4.3 Proposition. Suppose F is nonarchimedean, Ed/F is unramified (if d = 1
by convention Ed/F is unramified) and π = π(χ, τ) ∈ Irr(GSO(XM2×2,d, F )) is
infinite dimensional with χ and τ unramified. If the residual characteristic of
F is even, assume additionally π is tempered. Then

(1) ϕ([π]) is unramified, |Π([π])| = 1, and if the residual characteristic of
F is odd, then the single element Π of Π([π]) is unramified with respect
to GSp(2,OF ).

(2) ( [HST]) Let Π([π]) = {Π}. If π and Π are unitary (e.g., as in
global applications, or π tempered), then Π is unramified with respect to
GSp(2,OF ) and ϕ([π]) and Π correspond to the same conjugacy class
in GSp(2,C).

Proof. (1) Suppose d = 1. Evidently, ϕ([π]) is unramified. Write π = π(χ, τ).
As mentioned in Section 3 and the beginning of this section, instead of using
the exact sequence of Theorem 2.3, let us use the more convenient sequence
of Proposition 2.7, and let s be the representative for the nontrivial coset of
GSO(XM2×2,1, F ) in GO(XM2×2,1, F ) from Proposition 2.7. Also, make the
identification of XM2×2,1 with M2×2(F ) equipped with the determinant as re-
marked before Proposition 2.8. Then s is given by s(x) = x∗, with ∗ the
canonical involution of matrices, and τ = τ1⊗τ2 with τ1, τ2 ∈ Irr(GL(2, F )) and
ωτ1 = ωτ2 = χ. The lattice M2×2(OF ) ⊂ XM2×2,1 is self-dual, and the maximal
compact subgroups J0 and J of GSO(XM2×2,1, F ) and GO(XM2×2,1, F ) which

are the stabilizers of M2×2(OF ) are ρa(O
×
F ×GL(2,OF )×GL(2,OF )) and the

subgroup generated by ρa(O
×
F × GL(2,OF ) × GL(2,OF )) and s, respectively.

Since π is not essentially square integrable, Π([π]) = {Π = θM2×2,1(π
+)∨} so

that |Π([π])| = 1. By Proposition 1.11 to show Π is unramified it will suffice to

show π+ is unramified. Suppose τ1 À τ2. Then π
+ = Ind

GO(X,F )
GSO(X,F ) π. Using the

model for π+ as in (3.1), we see that if v is an unramified vector with respect
to J0, then v ⊕ v is an unramified vector for π+. Suppose τ1 ∼= τ2, so that
π is distinguished and π+ is the extension to GO(XM2×2,1, F ) of π defined in
Section 3. Let τ = τ1. It will suffice to show π+ = π(χ, τ ⊗ τ)+ is unrami-
fied. Define T : π → π by T (v ⊗ w) = w ⊗ v. To show π+ is unramified it
suffices to show T = π+(s). Let Y = (F · y)⊥, where y ∈ XM2×2,1 is the 2× 2
identity matrix. Then SO(Y, F ), identified as usual with the stabilizer of y
in GSO(XM2×2,1, F ), is the group of ρa(1, g, g

∗−1) for g ∈ GL(2, F ). To show
T = π+(s) it will suffice to show Tπ(shs) = π(h)T for h ∈ GSO(XM2×2,1, F ),
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T 2 = 1, and L◦T = L for any nonzero element L of HomSO(Y,F )(π,1). The first
two statements follow from sρa(t, g, g

′)s = ρa(t, g
′, g) for g, g′ ∈ GL(2, F ). Let

V be the space of τ . Fix a GL(2, F ) isomorphism R : (ω−1τ ⊗ τ, V )→ (τ∨, V ∨).
Let S = 1 ⊗ R : V ⊗ V → V ⊗ V ∨. We have a nonzero GL(2, F ) invariant
linear form V ⊗ V ∨ → 1 given by v ⊗ f 7→ f(v). The composition of this
with S gives us L ∈ HomSO(Y,F )(π,1). Now L ◦ T = εL for some ε = ±1.
We must show ε = 1. Let v ∈ V be nonzero and fixed by GL(2,OF ). Then
L(v ⊗ v) = L(T (v ⊗ v)) = εL(v ⊗ v). To see L(v ⊗ v) 6= 0 and hence ε = 1,
let V = Cv0⊕W be a GL(2,OF ) decomposition, and define f ∈ V ∨ by letting
f be zero on W and setting f(v) = 1. Then τ∨(k)f = f for k ∈ GL(2,OF ).
Evidently, S(v⊗v) = c(v⊗f) for some c ∈ C× so that L(v⊗v) = cf(v) = c 6= 0.
Now suppose d 6= 1. Again, it is clear that ϕ([π]) is unramified. Write
π = π(χ, τ) again using Proposition 2.7. We will also use the notation af-
ter Proposition 2.9 regarding XM2×2,d. The representative s for the nontrivial
coset of GSO(XM2×2,d, F ) in GO(XM2×2,d, F ) is given by s(x) = x∗ = a(x).
The lattice XM2×2,d ∩M2×2(OEd

) is self dual, and the maximal compact sub-
groups J0 and J of GSO(XM2×2,d, F ) and GO(XM2×2,d, F ) which are the sta-

bilizers of XM2×2,d ∩M2×2(OEd
) are ρa(O

×
F × GL(2,OEd

)) and the subgroup

generated by ρa(O
×
F ×GL(2,OEd

)) and s, respectively. Since τ is unramified,

τ ∼= Ind
GL(2,Ed)
P (µ1 ⊗ µ2), where B is the usual Borel subgroup of GL(2, Ed)

and µ1 and µ2 are unramified and Galois invariant so that τ is Galois invariant.
This implies s · π ∼= π. In the proof of Theorem 5.3 of [R2] it was shown that
π is distinguished and that L ∈ HomSO(Y,F )(π,1) is given by

L(f) =

∫

T\GL(2,F )

f(g−10 g)χ(det g)−1 dg

where T and g0 are as in [R2]; here Y = (F · y)⊥, where y is the 2 × 2
identity matrix in XM2×2,d and SO(Y, F ) is the group of ρa(det g, g) for g ∈
GL(2, F ). By definition, we have Π([π]) = {Π = θM2×2,d(π

+)∨}, so that
|Π([π])| = 1. Again, by Proposition 1.11 to show that Π is unramified with
respect to GSp(2,OF ) when has F has odd residual characteristic it will suffice
to show that π+ is unramified. We proceed as in the case d = 1. Define
T : π → π by T (f) = f ◦ a. As in the d = 1 case, it will suffice to show
L ◦ T = L. For f ∈ π,

(L ◦ T )(f) =
∫

T\GL(2,F )

f(a(g−10 g))χ(det g)−1 dg

=

∫

T\GL(2,F )

f(

[

−1 0
0 1

]

g−10 g)χ(det g)−1 dg

= µ1(−1)
∫

T\GL(2,F )

f(g−10 g)χ(det g)−1 dg

= µ1(−1)L(f).

Since µ1(−1) = 1, we have L ◦ T = L, as desired.
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(2) This follows from Lemmas 10 and 11 of [HST] after one reconciles the
definitions. ([HST] for example uses Whittaker models instead of distin-
guished representations to define extensions to GO(XM2×2,d, F ).) Lemma 1.6
and Proposition 2.9 are also useful for the comparison to [HST]. The reader
should be aware that in Lemma 7 of [HST] the Langlands parameter should
be diag(χ3(v), χ1(v)χ3(v), χ1(v)χ2(v)χ3(v), χ2(v)χ3(v)), and in Lemma 10 of
[HST] the L-parameter should be diag(

√
α,−√α,√β,−√β). ¤

5. Global theta lifts for similitudes

In this section we review some foundational results on global theta lifts for
similitudes ([HK], [HST]). We use the following definitions. Let F be a totally
real number field with ring of integers O, and let X be a even dimensional
quadratic space defined over F of positive dimension. For each infinite place v
of F fix maximal compact subgroups J1,v and Jv of O(X,Fv) and GO(X,Fv),
and let h1,v and hv be the Lie algebras of O(X,Fv) and GO(X,Fv), respectively,
as in Section 1. Let J1,∞ and J∞ be the products of J1,v and Jv, respectively,
over the infinite places of F , and let h1,∞ and h∞ be the direct sums of the h1,v
and hv, respectively, over the infinite places of v. Let n be a positive integer.
For each infinite place v of F let K1,v and Kv be the usual maximal compact
subgroups of Sp(n, Fv) and GSp(n, Fv), and let g1,v and gv be the Lie algebras
of Sp(n, Fv) and GSp(n, Fv), respectively, as in Section 1. Define K1,∞, K∞,
g1,∞ and g∞ as in the case of O(X) and GO(X). For v a place of F , define
R(Fv) ⊂ GSp(n, Fv) × GO(X,Fv) as in Section 1. Let R(F ) and R(A) be
the set of pairs (g, h) in GSp(n, F ) × GO(X,F ) and GSp(n,A) × GO(X,A),
respectively, such that λ(g) = λ(h). For v an infinite place of F , let Lv be the
maximal compact subgroup of R(Fv) as defined in Section 1, and let rv be Lie
algebra of R(Fv). Let L∞ and r∞ be defined analogously to the last two cases.
To define global theta lifts we need a global version of the Weil representation.
Fix a nontrivial unitary character ψ of A/F . For v a place of F , let ωv be
the Weil representation of R(Fv) on L2(X(Fv)

n) defined with respect to ψv
as in Section 1. Again, if v is a place of F then S(X(Fv)

n) ⊂ L2(X(Fv)
n)

is an R(Fv) module if v is finite and an (rv, Lv) module if v is infinite. Let
x1, . . . , xm be a vector space basis for X(F ) over F . Let (g, h) ∈ R(A). Then
for almost all finite v, ωv(gv, hv) fixes the characteristic function of Ovx1 + · ·
·+Ovxm. Let ⊗vS(X(Fv)

n) be the algebraic restricted direct product over all
the places of F of the complex vector spaces S(X(Fv)

n) with respect to the
characteristic function of Ovx1 + · · · + Ovxm for v finite. We will denote the
restricted algebraic direct product ⊗vS(X(Fv)

n) by S(X(A)n); then S(X(A)n)
is an R(Af ) × (r∞, L∞) module, where R(Af ) has the obvious meaning. Let
ϕ ∈ S(X(A)n) and (g, h) ∈ R(A); assume ϕ = ⊗vϕv. The function ω(g, h)ϕ :
X(A)n → C given by (ω(g, h)ϕ)(x) =

∏

v(ωv(gv, hv)ϕv)(xv) is well defined
(note that for infinite v, ωv(gv, hv)ϕv is a smooth function though it may not
be in S(X(Fv)

n), so that it can be evaluated at a point). Using the universal
property of the algebraic restricted direct product, this definition extends to
all ϕ ∈ S(X(A)n): if (g, h) ∈ R(A) and ϕ ∈ S(X(A)n), then ω(g, h)ϕ may be
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regarded as a function on X(A)n. In particular, the elements of S(X(A)n) may
be regarded as functions on X(A)n.
Global theta lifts are now defined as follows. For ϕ ∈ S(X(A)n) and (g, h) ∈
R(A), set

θ(g, h;ϕ) =
∑

x∈X(F )n

ω(g, h)ϕ(x).

This series converges absolutely and is left R(F ) invariant. Fix a right O(X,A)
invariant quotient measure on O(X,F )\O(X,A). Let f be a cusp form on
GO(X,A) of central character χ and ϕ ∈ S(X(A)n). Let GSp(n,A)+ be the
subgroup of g ∈ GSp(n,A) such that λ(g) ∈ λ(GO(X,A)). For g ∈ GSp(n,A)+
define

θn(f, ϕ)(g) =

∫

O(X,F )\O(X,A)
θ(g, h1h;ϕ)f(h1h) dh1,

where h ∈ GO(X,A) is any element such that (g, h) ∈ R(A). This inte-
gral converges absolutely, does not depend on the choice of h, and the func-
tion θn(f, ϕ) on GSp(n,A)+ is left GSp(n, F )+ invariant. Moreover, θn(f, ϕ)
extends uniquely to a GSp(n, F ) left invariant function on GSp(n,A) with
support in GSp(n, F )GSp(n,A)+. This extended function, also denoted by
θn(f, ϕ), is an automorphic form on GSp(n,A) of central character χχnX =
χ(·,discX(F ))nF . If V is a GO(X,Af ) × (h∞, J∞) subspace of the space of
cusp forms on GO(X,A) of central character χ, then we denote by Θn(V )
the GSp(n,Af ) × (g∞,K∞) subspace of the space of automorphic forms on
GSp(n,A) of central character χχnX generated by all the θn(f, ϕ) for f ∈ V
and ϕ ∈ S(X(A)n). Similarly, fix a right Sp(n,A) invariant quotient measure
on Sp(n, F )\Sp(n,A), let F be a cusp form on GSp(n,A) of central character
χ′ and ϕ ∈ S(X(A)n). For h ∈ GO(X,A) define

θX(F,ϕ)(h) =

∫

Sp(n,F )\ Sp(n,A)
θ(g1g, h;ϕ)F (g1g) dg

where g ∈ GSp(n,A) is any element such that (g, h) ∈ R(A). Again, this
integral converges absolutely, does not depend on the choice of g, and the
function θX(F,ϕ) is an automorphic form on GO(X,A) of central character
χ′χnX . IfW is a GSp(n,Af )× (g∞,K∞) subspace of the space of cusp forms on
GSp(n,A) of central character χ′, then we denote by ΘX(W ) the GO(X,Af )×
(h∞, J∞) subspace of the space of automorphic forms on GO(X,A) of central
character χ′χnX consisting of the θX(F,ϕ) for F ∈ W and ϕ ∈ S(X(A)n).
We shall also occasionally consider global theta lifts of O(X,Af )× (h1,∞, J1,∞)
subspaces of the space of cusp forms on O(X,A) and of Sp(n,Af )×(g1,∞,K1,∞)
subspaces of the space of cusp forms on Sp(n,A). These have the obvious
analogous definitions.

We will need to know how Θn(V ) and ΘX(W ) behave if X is changed by a
similitude. Let X ′ be another quadratic space over F , and suppose there is a
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similitude t : X(F ) → X ′(F ) with similitude factor λ. Then for each place v
of F , there is an isomorphism

GO(X,Fv)
∼−→ GO(X ′, Fv)

sending h to tht−1. For each infinite v, let J ′1,v and J
′
v be the maximal compact

subgroups of O(X ′, Fv) and GO(X ′, Fv) which are the images under the above
isomorphism of J1,v and Jv, respectively. If v is infinite, then t also determines
an isomorphism

go(X,Fv)
∼−→ go(X ′, Fv)

given by h 7→ tht−1. Via these two isomorphisms and definitions, for each v we
obtain a bijection

Irr(GO(X,Fv))
∼−→ Irr(GO(X ′, Fv)),

and thus a bijection

Irradmiss(GO(X,A)) ∼−→ Irradmiss(GO(X ′,A)).

If f is an automorphic form on GO(X,A), then tf : GO(X ′,A) → C defined
by (tf)(h) = f(t−1ht) is an automorphic form on GO(X ′,A). Under this
map, cusp forms are mapped to cusp forms. Let the right O(X ′,A) invari-
ant quotient measure on O(X ′, F )\O(X ′,A) be obtained from the fixed right
O(X,A) invariant quotient measure on O(X,F )\O(X,A) via the isomorphism
h 7→ tht−1.

5.1 Lemma. Let V be a GO(X,Af )× (h∞, J∞) subspace of the space of cusp
forms on GO(X,A) of central character χ, and let W be a GSp(n,Af ) ×
(g∞,K∞) subspace of the space of cusp forms on GSp(n,A) of central character
χ′. Then Θn(V ) = Θn(tV ) and tΘX(W ) = ΘX′(W ). Moreover, Θn(V ) and
ΘX(W ) do not depend on the choice of nontrivial unitary character ψ of A/F .

Proof. To show Θn(V ) ⊂ Θn(tV ) it will suffice to show that if f ∈ V and
ϕ = ⊗vϕv, then θXn (f, ϕ) ∈ Θn(tV ); here and below the superscript X will
indicate the dependence on X. By Lemma 1.6, if (g, h) ∈ RX,n(A) then

θXn (g, h;ϕ) = θX
′

n (g[λ], tht−1;ϕ ◦ t−1).

Let g = g0g1 ∈ GSp(n, F )GSp(n,A)+ with g0 ∈ GSp(n, F ) and g1 ∈
GSp(n,A)+. A computation shows that

θXn (f, ϕ)(g) = θXn (f, ϕ)(g1) = θX
′

n (tf, ϕ ◦ t−1)(g[λ]1 ).

Write

g
[λ]
1 = g′

[

1 0
0 |λ|−1∞

]

.
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Here |λ|∞ is the element of A× which is 1 at the finite places and |λ|v at the
infinite place v. Then g′ ∈ GSp(n,A)+. Let h′ ∈ GO(X,A) be such that
λ(h′) = λ(g′). We have

θX
′

n (tf, ϕ ◦ t−1)(g[λ]1 ) = θX
′

n (tf, ϕ ◦ t−1)(g′
[

1 0
0 |λ|−1∞

]

)

=

∫

O(X′,F )\O(X′,A)
θX

′

n (g′
[

1 0
0 |λ|−1∞

]

, h1h
′
√

|λ|∞
−1

;ϕ ◦ t−1)

· (tf)(h1h′
√

|λ|∞
−1

) dh1

= χ(
√

|λ|∞
−1

)θX′(tf, ϕ
′)(g′),

where

ϕ′ =
∏

v inf.

|λ|n dimX/4v · (ϕf ◦ t−1)⊗ (ϕ∞ ◦
√

|λ|∞t−1).

Then ϕ′ ∈ S(X ′(A)n), and

θXn (f, ϕ)(g) = χ(
√

|λ|∞
−1

)θX
′

n (tf, ϕ′)(g′)

= χ(
√

|λ|∞
−1

)[

[

1 0
0 λ

]−1

f

[

1 0
0 sign(λ)∞

]−1

θX
′

n (tf, ϕ′)](g).

Here, sign(λ)∞ is the element of A× which is 1 at the finite places and at the
infinite place v is the sign of λ in Fv. If g /∈ GSp(n, F )GSp(n,A)+, then also

g

[

1 0
0 λ

]−1

f

[

1 0
0 sign(λ)∞

]−1

/∈ GSp(n, F )GSp(n,A)+,

so that both sides of the last equality are by definition zero, and hence equal.
Since

[

1 0
0 sign(λ)∞

]−1

∈ K∞,

it now follows that θXn (f, ϕ) ∈ Θn(tV ), so that Θn(V ) ⊂ Θn(tV ). Similarly,
Θn(tV ) ⊂ Θn(V ). The proof of tΘX(W ) = ΘX′(W ) and the independence of
ψ are analogous. ¤

The next two results are due to Rallis [Ra] in the case of isometries. The first
describes when a theta lift is cuspidal. The second result gives the structure of
a theta lift of a space of cusp forms in the case the theta lift is cuspidal. The
proofs are similar to or use the proofs in [Ra]. Section 1 is also a basic input
for the proof of Proposition 5.3.
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5.2 Proposition (Rallis). Let n ≥ 1 be an integer. Let f be a cusp form on
GO(X,A). Suppose that θk(f, ϕ) = 0 for all 0 ≤ k ≤ n− 1 and ϕ ∈ S(X(A)k).
Then θn(f, ϕ) is cuspidal (though possibly zero) for all ϕ ∈ S(X(A)n).

Here, θ0(f, ϕ) = 0 is taken to mean

(5.1) 0 =

∫

O(X,F )\O(X,A)
f(h1h) dh1

for all h ∈ GO(X,A).
An analogous result holds for lifts from GSp(n) to GO(X). In this case, fix
an even dimensional quadratic space X over F such that X(F ) is anisotropic.
For an integer k ≥ 0, let Xk be the orthogonal direct sum of X with k copies
of the hyperbolic plane over F . Let f be a cusp form on GSp(n,A). Let l ≥ 0
be an integer. If l = 0 and dimX = 0, so that Xl = 0, then θXl

(f, ϕ) is not
defined; if l = 0 and dimX > 0 so that Xl = X, then θXl

(f, ϕ) is cuspidal
for all ϕ ∈ S(Xl(A)n) since the cuspidal condition is vacuous. Suppose l ≥ 1.
Suppose θXk

(f, ϕ) = 0 for all 0 ≤ k ≤ l− 1 and ϕ ∈ S(Xk(A)n); then θXl
(f, ϕ)

is cuspidal (though possibly zero) for all ϕ ∈ S(Xl(A)n). Here, if dimX = 0
and k = 0 then the condition θXk

(f, ϕ) = 0 is taken to be empty.

5.3 Proposition (Rallis; Multiplicity preservation). Let 2n = dimX.
Let V be a GO(X,Af )× (h∞, J∞) nonzero subspace of the space of cusp forms
on GO(X,A) of central character χ. Assume that for each place v of F , X(Fv)
satisfies one of the conditions of (1)-(6) of Theorem 1.8. Assume that

V = V1 ⊕ · · · ⊕ VM ,

where each Vi, 1 ≤ i ≤ M , is a GO(X,Af )× (h∞, J∞) subspace of V , and all
the Vi are isomorphic to a single nonzero irreducible GO(X,Af ) × (h∞, J∞)
representation σ. Let σ ∼= ⊗vσv, assume σv|O(X,F ) is multiplicity free for
all v, and σv is tempered for v | 2. Suppose that Θn(V ) is contained in the
space of cusp forms on GSp(n,A) (necessarily of central character χχnX =
χ(·,discX(F ))n), and that for any irreducible nonzero GO(X,Af )× (h∞, J∞)
subspace U of V we have Θn(U) 6= 0. Then σv ∈ Rn(GO(X,Fv)) for all v,

Θn(V ) = Θn(V1)⊕ · · · ⊕Θn(VM ),

and each Θn(Vi), 1 ≤ i ≤ M , is isomorphic to Π = ⊗vθ(σ∨v ). An analogous
result holds if the roles of GSp(n) and GO(X) are interchanged.

6. Tempered cuspidal automorphic representations of B(A)× and
GSO(X,A)

Let F be a totally real number field, and let X be a four dimensional quadratic
space over F . As in Section 2, let B be the even Clifford algebra of X(F ), and
let E be the center of B. Let d = discX(F ). In this section we describe the
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relationship between tempered cuspidal automorphic representations of B×(A)
and GSO(X,A). From Section 2, we have exact sequences

1→ E× → F× ×B×(F ) ρ−→ GSO(X,F )→ 1

and
1→ A×E → A× ×B×(A) ρ−→ GSO(X,A)→ 1.

6.1 Lemma. There exist s ∈ O(X,F ), and for each infinite v, a maximal
compact subgroup J0,v of GSO(X,Fv), such that det s = −1, s2 = 1, and
sJ0,vs = J0,v for all infinite v.

Proof. Let y ∈ X(F ) be anisotropic, and let Y ⊂ X be the three dimensional
quadratic space over F such that Y (F ) = (F ·y)⊥. Let s ∈ O(X,F ) be defined
with respect to y as in Propositions 2.5 and 2.6. Then det s = −1 and s2 = 1.
For each infinite v, choose a maximal compact subgroup JY,v of SO(Y, Fv), and
let J0,v be the unique maximal compact subgroup of GSO(X,Fv) containing
JY,v mentioned in the penultimate paragraph of Section 2. Then s normalizes
JY,v and J0,v for each infinite v. ¤

For the remainder of this paper we fix the following choices of compact sub-
groups. Let s and the maximal compact subgroups J0,v of GSO(X,Fv) be as
in Lemma 6.1. For each infinite place v of F , let KB,v be the unique maximal
compact subgroup of B×(Fv) such that ρ({±1} ×KB,v) = J0,v. Let J0,∞ be
the product of the J0,v over the infinite places v of F , and let h∞ be the direct
sum of the hv = gso(X,Fv) = go(X,Fv) over the infinite places v of F . Let
KB,∞ be the product of the KB,v over the infinite places v of F and let B∞ be
the direct sum over the infinite places v of the Lie algebra B(Fv) of B×(Fv).
We consider B×(Af )× (B∞,KB,∞) and GSO(X,Af )× (h∞, J0,∞) modules.
We will use the following facts about the tempered cuspidal automorphic rep-
resentations of B×(A). Let Irrtempcusp (B

×(A)) be the set of tempered cuspidal

automorphic representations τ of B×(A). It is well known that B×(A) has
the multiplicity one property, i.e., the elements of Irrtempcusp (B

×(A)) of a fixed
central character occur with multiplicity one in the space of cusp forms on
B×(A) of that central character. If τ ∈ Irrtempcusp (B(A)×), then the unique

space of cusp forms on B×(A) isomorphic to τ will be denoted by Vτ . Also,
B×(A) has the strong multiplicity one property: if τ, τ ′ ∈ Irrtempcusp (B

×(A))
share the same central character and τv ∼= τ ′v for all but finitely many v,
then τ ∼= τ ′, so that Vτ = Vτ ′ . In addition, the Jacquet-Langlands corre-
spondence gives an injection of Irrtempcusp (B

×(A)) into Irrtempcusp (GL(2,AE)). This
map is constructed as follows. Suppose E is a field. Since B has center E,
we may regard B as an algebra over E, and by Section 2, B is a quater-
nion algebra over E. There is a canonical isomorphism B×(A) ∼= B×(AE),
and thus a bijection Irrtempcusp (B

×(A)) ∼−→ Irrtempcusp (B
×(AE)). Composing with

the Jacquet-Langlands map from Irrtempcusp (B
×(AE)) to Irrtempcusp (GL(2,AE)), we

get an injection Irrtempcusp (B
×(A)) ↪→ Irrtempcusp (GL(2,AE)) which we also call the
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Jacquet-Langlands correspondence, and denote by τ 7→ τ JL. If E ∼= F ×F , we
get a similar injection, with GL(2,AE) taken to be GL(2,A)×GL(2,A).
Tempered cuspidal automorphic representations of GSO(X,A) and B×(A) may

be related as in the local case. Let Irrtempcusp,f(A× × B×(A)) be the set of pairs

(χ, τ), where τ ∈ Irrtempcusp (B
×(A)) and χ is a Hecke character of A× such that

ωτ = χ ◦ NEF . Let Irrtempcusp (GSO(X,A)) denote the set of tempered cuspidal
automorphic representations of GSO(X,A). The above exact sequences give a
bijection

Irrtempcusp,f(A
× ×B×(A)) ∼−→ Irrtempcusp (GSO(X,A)).

If (χ, τ) ∈ Irrtempcusp,f(A× × B×(A)), then π(χ, τ) ∈ Irrtempcusp (GSO(X,A)) corre-

sponding to (χ, τ) consists of the space of functions F : GSO(X,A) → C for
which there exists f ∈ τ so that F (ρ(t, g)) = χ(t)−1f(g). The central character
of π(χ, τ) is χ. If d = 1, so that E ∼= F × F and B×(A) ∼= D×(A) × D×(A)
(see Section 2), then every element τ ∈ Irrtempcusp (B

×(A)) is of the form τ1 ⊗ τ2
for some τ1, τ2 ∈ Irrtempcusp (D

×(A)), and the condition that ωτ factors through

NEF amounts to ωτ1 = ωτ2 . In this case ωτ factors uniquely through NEF via
χ = ωτ1 = ωτ2 . Also, when dealing with a four dimensional quadratic space
Xa over F defined by a Galois action a on a given quadratic quaternion al-
gebra B over F with center E (Section 2), we will occasionally parameterize
Irrtempcusp (GSO(Xa,A)) with respect to the explicit exact sequence

1→ A×E → A× ×B×(A) ρa−→ GSO(Xa,A)→ 1

derived from Proposition 2.7; by that proposition, the difference between the
two parameterizations is insignificant.
Tempered cuspidal automorphic representations of GSO(X,A) inherit similar
properties from those of B×(A). The elements of Irrtempcusp (GSO(X,A)) have
the multiplicity one property and the strong multiplicity one property. If
π ∈ Irrtempcusp (GSO(X,A)) then the unique space of cusp forms on GSO(X,A)
isomorphic to π will be denoted by Vπ. If π ∈ Irradmiss(GSO(X,A)), then we
denote by s · π the GSO(X,Af ) × (h∞, J0,∞) module with the same space as
π, but with twisted action (s · π)(h) = π(shs) for h ∈ GSO(X,Af ) × J0,∞
and (s · π)(x) = π(Ad(s)x) for x ∈ h∞. Let π ∈ Irrtempcusp (GSO(X,A)).
Then we denote by sVπ the space of cusp forms sf on GSO(X,A) defined
by (sf)(h) = f(shs) for h ∈ GSO(X,A) and f ∈ Vπ. The map f 7→ sf from
Vπ with the twisted action s ·π to sVπ with the usual action is an isomorphism;
by multiplicity one, s · π ∼= π if and only if sVπ = Vπ.

7. From GSO(X,A) to GO(X,A)

In this section F is a totally real number field and X is a four dimensional
quadratic space over F . Let the notation be as in Section 6; following [HST],
we explain how cuspidal automorphic representations of GO(X,A) are obtained
from those of GSO(X,A). For each infinite place v of F let J0,v be the maximal
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compact subgroup of GSO(X,Fv) defined in Section 6, and let Jv denote the
maximal compact subgroup of GO(X,Fv) generated by J0,v and s, where s is
as in Lemma 6.1. Let J∞ be the product of the Jv over the infinite places of
F . We consider GO(X,Af ) × (h∞, J∞) modules. Let Irrtempcusp (GO(X,A)) be
the set of tempered cuspidal automorphic representations of GO(X,A).

7.1 Theorem ([HST]). The group GO(X,A) has the multiplicity one prop-
erty; if σ ∈ Irrtempcusp (GO(X,A)), denote by Vσ the unique space of cusp forms

isomorphic to σ. Let σ ∈ Irrtempcusp (GO(X,A)), and let V 0σ be the nonzero space
of cusp forms on GSO(X,A) obtained by restricting the functions in Vσ to
GSO(X,A). Either V 0σ is irreducible as a GSO(X,Af ) × (h∞, J0,∞) module,

or there exists π ∈ Irrtempcusp (GSO(X,A)) such that s · π À π and V 0σ = Vπ ⊕ sVπ
(internal direct sum). Thus, there is a map

Irrtempcusp (GO(X,A))→ 〈s〉\ Irrtempcusp (GSO(X,A)),

and if σ 7→ [π] = {π, s · π}, then

(7.1) σv ↪→ Ind
GO(X,Fv)
GSO(X,Fv)

πv

for all v. The map σ 7→ [π] is surjective. If [π] ∈ 〈s〉\ Irrtempcusp (GSO(X,A)) and
s · π À π, then the fiber over [π] is the set of all σ ∈ Irradmiss(GO(X,A)) such
that (7.1) holds for all places v of F .

Proof. See Section 1 of [HST]. ¤

8. Proofs of the main theorems

Let F be a totally real number field. In this final section we prove the main re-
sults Theorems 8.3 and 8.6 presented in the Introduction. Besides the general
foundational work of Sections 1, 2 and 5, the main ingredients for Theorem
8.3 are the local results of Section 3 and the general nonvanishing result for
global theta lifts from [R4]. Globally, the result from [R4] requires the nonva-
nishing of a certain L-function at s = 1; in the case at hand, this L-function
turns out to be either a partial GL(2)×GL(2) L-function or a partial twisted
Asai L-function, so that the nonvanishing at s = 1 follows from [Sh]. To
prove Theorem 8.6 we actually first prove a different version, Theorem 8.5.
In this version, using Section 4, a global L-packet Π([π]) of tempered irre-
ducible admissible representations of GSp(2,A) is assigned to every element
π of Irrtempcusp (GSO(XM2×2,d,A)). When s · π À π, Theorem 8.5 determines ex-
actly what elements of Π([π]) are cuspidal automorphic and shows that the
cuspidal automorphic elements occur with multiplicity one. In addition to an
understanding of the local situation, the main tool for showing cuspidality is
Theorem 8.3. For multiplicity one, we use the Rallis multiplicity preservation
principle in the context of similitudes (Proposition 5.3), along with the non-
vanishing result for global theta lifts from Sp(2,A) from [KRS]. This result
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shows that if a twisted partial standard L-function of a cuspidal automorphic
representation of Sp(2,A) has a pole at s = 1, then it has a nonzero theta lift
to the isometry group of a certain four dimensional quadratic space. Theorem
8.6 follows directly from Theorem 8.5.
We begin with a lemma which computes the standard partial L-function of
an O(X,A) component of a cuspidal automorphic representation of GO(X,A)
for a four dimensional quadratic space X over F . In the following lemma,
Lv(s, τ

JL, χ−1,Asai) is the v-th Euler factor of the Asai L-function of τ JL

twisted by χ−1 ([HLR], p. 64–5); and Lv(s, τ
JL
1 × τJL∨2 ) is the v-th Euler

factor of the usual Rankin–Selberg GL(2)×GL(2) L-function of τ JL1 and τJL∨2 ;
here, the superscript JL indicates the corresponding element under the Jacquet-
Langlands correspondence (Section 6). Also, under the assumption that X(Fv)
is unramified (Section 1), when we say that an irreducible admissible represen-
tation of GO(X,Fv) (or of O(X,Fv) and SO(X,Fv)) is unramified we mean
with respect to the stabilizer in GO(X,Fv) ( or in O(X,Fv) and SO(X,Fv),
respectively) of a self-dual lattice in X(Fv).

8.1 Lemma. Let X be a four dimensional quadratic space over F , let B be the
even Clifford algebra of X(F ), and let E be the center of B. Let d = discX(F ).
Let σ ∈ Irrtempcusp (GO(X,A)), and assume that σ lies over [π = π(χ, τ)] (See
Sections 6 and 7). Let v be a finite place of F such that X(Fv) and σv are
unramified. Let σ1,v be the unramified component of σv|O(X,Fv). Then the
standard L-function of σ1,v is

L(s, σ1,v) =

{

Lv(s, τ
JL, χ−1,Asai) if d 6= 1,

Lv(s, τ
JL
1 × τJL2 ∨) if d = 1 and τ ∼= τ1 ⊗ τ2.

Proof. By definition, L(s, σ1,v) (see Section 2 of [KR1]) is the standard L-
function of any irreducible unramified component of σ1,v|SO(X,Fv). It will thus
suffice to show that the standard L-function of any irreducible unramified com-
ponent of σv|SO(X,Fv) has the stated form; and since πv is an irreducible com-
ponent of σv|GSO(X,Fv), it will be enough to show that the standard L-function
of any irreducible unramified component of πv|SO(X,Fv) or (s · πv)|SO(X,Fv) has
the above form (s is as in Lemma 6.1). Since over a local nonarchimedean
field a four dimensional quadratic space represents 1, by Proposition 2.8 there
exists a quaternion algebra D over Fv contained in B(Fv) and an isometry
T : X(Fv)→ XD,Ev

such that

1 −−−−→ E×v −−−−→ F×v ×B×(Fv)
ρ−−−−→ GSO(X,Fv) −−−−→ 1

id





y

o





y





yT ·T−1

1 −−−−→ E×v −−−−→ F×v ×B×D,Ev

ρa(D,Ev)−−−−−→ GSO(XD,Ev
, Fv) −−−−→ 1

commutes, where B×(Fv)
∼−→ B×D,Ev

is the isomorphism induced by the natural

isomorphism B(Fv) ∼= Ev⊗Fv
D of Ev algebras; Ev = E(Fv) = Fv⊗F E. Since
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X(Fv) is unramified, D is in particular split, i.e., there exists an isomorphism

D
∼−→ M2×2(Fv) of quaternion algebras over Fv. From this, we obtain an

isomorphism BD,Ev

∼−→ M2×2(Ev) of Ev algebras and an isometry t : XD,Ev

∼−→
Xa so that

1 −−−−→ E×v −−−−→ F×v ×B×D,Ev

ρa(D,Ev)−−−−−→ GSO(XD,Ev
, Fv) −−−−→ 1

id





y

o





y





yt·t−1

1 −−−−→ E×v −−−−→ F×v ×GL(2, Ev)
ρa−−−−→ GSO(Xa, Fv) −−−−→ 1

commutes. Here, a is the Galois action on M2×2(Ev) defined by the formula

(2.1). Composing, we now have an isomorphism i : B(Fv)
∼−→ M2×2(Ev) of Ev

algebras and isometry r : X(Fv)
∼−→ Xa such that

1 −−−−→ E×v −−−−→ F×v ×B×(Fv)
ρ−−−−→ GSO(X,Fv) −−−−→ 1

id





y

o





y





yr·r−1

1 −−−−→ E×v −−−−→ F×v ×GL(2, Ev)
ρa−−−−→ GSO(Xa, Fv) −−−−→ 1

commutes. Let π′v be the representation of GSO(Xa, Fv) corresponding to πv.
By definition, (τv)

JL = τv ◦ i, and we have π′v = π(χv, (τv)
JL). Since the

standard L-function of any unramified irreducible component of πv|SO(X,Fv) is
the same as the standard L-function of any irreducible unramified component
of π′v|SO(Xa,Fv), and the same holds for (s · πv)|SO(X,Fv) and (s · π′v)|SO(Xa,Fv),
it will now suffice to show that the the standard L-function of any irreducible
unramified component of π′v|SO(Xa,Fv) or (s · π′v)|SO(Xa,Fv) has the above form.
Assume first d 6= 1 (i.e., E is a field) and v stays prime in E; let w be the
place of E lying over v. Then Ew = Ev. Since π′v is unramified, so are χv
and (τJL)w = (τv)

JL ∈ Irr(GL(2, Ew)). Let (τJL)w = Ind
GL(2,Ew)
P (µ1 ⊗ µ2),

where P is the usual upper triangular Borel subgroup of GL(2, Ew), induction
is normalized, µ1 and µ2 are unramified quasi-characters of E×w , and µ1 ⊗ µ2
is defined by

(µ1 ⊗ µ2)(
[

a b
0 c

]

) = µ1(a)µ2(c).

The space Xa was explicitly described in Section 2. With respect to the ordered
basis

[

0
√
d

0 0

]

,

[

1 0
0 1

]

,

[√
d 0
0 −

√
d

]

,

[

0 0
−(2/d)

√
d 0

]

the symmetric bilinear form on Xa, which is given by the determinant, has the
form







0 0 0 1
0 1 0 0
0 0 −d 0
1 0 0 0






.
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The stabilizer in GSO(Xa, Fv) of the isotropic subspace spanned by the first
basis vector is a Borel subgroup P ′ of GSO(Xa, Fv), and P

′ = ρα(F
×
v ×P ). In

particular, we have

ρα(t,

[

a ∗
0 c

]

) = t−1





NEw

Fv
(a) ∗ ∗

0 h ∗
0 0 NEw

Fv
(c)



 ,

with

h =

[

a1c1 − a2c2d (a2c1 − a1c2)d
a2c1 − a1c2 a1c1 − a2c2d

]

,

where a = a1+a2
√
d and c = c1+ c2

√
d. Here, the middle block h corresponds

to multiplication by aα(c) on the two dimensional subspace spanned by the
two middle basis vectors, using the obvious identification of this subspace with
Ew. Recalling that χv ◦NEw

Fv
= µ1µ2, a computation shows that

π′v = π(χv, (τ
JL)w) = Ind

GSO(Xa,Fv)
P ′ µ,

where induction is normalized, and on the typical element of P ′ µ takes the
value

µ(





a ∗ ∗
0 h ∗
0 0 λa−1



) = (µ2/χv)(λa
−1)µ1(h),

where again we identify the elements of the middle block with E×w and a, λ ∈
F×v . There is an SO(Xa, Fv) isomorphism

π′v|SO(Xa,Fv)
∼−→ Ind

SO(Xa,Fv)
P ′∩SO(Xa,Fv)

µ|P ′∩SO(Xa,Fv)

given by restriction of functions. We have

µ|P ′∩SO(Xa,Fv)(





a ∗ ∗
0 h ∗
0 0 a−1



) = (χv/µ2)(a)

since NEw

Fv
(h) = 1, so that h ∈ O×w . By definition, the standard L-function of

any irreducible unramified component of π′v|SO(Xa,Fv) is now

L(s, χv/µ2)L(s, µ2/χv)ζFv
(2s) = det(1− χ(πFv

)−1A|πFv
|s)−1

= Lv(s, τ
JL, χ−1,Asai),

where

A =







µ1(πFv
) 0 0 0

0 0 µ1(πFv
) 0

0 µ2(πFv
) 0 0

0 0 0 µ2(πFv
)






.
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For the last equality, see p. 64-65 of [HLR]. Since s · π′v = π(χv, (τ
JL)w ◦ α),

a similar computation shows that the standard L-function of any irreducible
unramified component of (s · π′v)|SO(Xa,Fv) is also Lv(s, τ

JL, χ−1,Asai).
Now suppose E is a field and v splits in E. Then Fv contains a square root of
d; fix such a square root

√
d in F×v . Define an embedding of fields i1 : E ↪→ Fv

by sending a fixed square root of d in E to
√
d, and define another embedding

i2 : E ↪→ Fv by sending the fixed square root of d in E to−
√
d. We denote by w1

and w2 the places of E determined by i1 and i2, respectively. Then w1 and w2
are the two places of E lying over v, and via i1 and i2 we take Fv to be the com-
pletions Ew1

and Ew2
of E at w1 and w2, respectively. We also have an identifi-

cation of Ev = Fv⊗FE with Ew1
×Ew2

and hence with Fv×Fv. Using the iden-
tification Ev ∼= Fv×Fv we may identify M2×2(Ev) with M2×2(Fv)×M2×2(Fv),
GL(2, Ev) with GL(2, Fv)×GL(2, Fv) and a with the Galois action defined by
(x1, x2) 7→ (x2, x1). Further, as explained after Proposition 2.7, we may identify
Xa with M2×2(Fv) and ρa with ρa(t, (g1, g2))x = t−1g1xg

∗
2 . Using the canonical

isomorphisms B(Fv) ∼= B(Ew1
)×B(Ew2

) ∼= D ×D write τv ∼= τw1
⊗ τw2

with

τw1
, τw2

∈ Irr(D×); then (τv)
JL ∼= τJLw1

⊗ τJLw2
. Let τJLw1

= Ind
GL(2,Fv)
P (µ1 ⊗ µ2)

and τJLw2
= Ind

GL(2,Fv)
P (µ′1 ⊗ µ′2), with the notation analogous to the previous

case. Note that χ = µ1µ2 = µ′1µ
′
2. With respect to the ordered basis

[

0 1
0 0

]

,

[

1 0
0 0

]

,

[

0 0
−2 0

]

,

[

0 0
0 2

]

the symmetric bilinear form on Xa has the matrix







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






.

The stabilizer in GSO(Xa, Fv) of the isotropic flag

Fv ·
[

0 1
0 0

]

⊂ Fv ·
[

0 1
0 0

]

+ Fv ·
[

1 0
0 0

]

is a Borel subgroup P ′, and P ′ = ρα(F
×
v × P × P ). We have

ρα(t,

[

a ∗
0 c

]

,

[

a′ ∗
0 c′

]

) = t−1







aa′ ∗ ∗ ∗
0 ac′ ∗ ∗
0 0 cc′ ∗
0 0 0 a′c






.

Using µ1µ2 = µ′1µ
′
2, a computation shows that

π′v
∼= Ind

GSO(Xa,Fv)
P ′ µ
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with

µ(







a ∗ ∗ ∗
0 b ∗ ∗
0 0 λa−1 ∗
0 0 0 λb−1






) = µ2(λ)(µ

′
1/µ2)(a)(µ

′
2/µ2)(b).

Again there is an SO(Xa, Fv) isomorphism

π′v|SO(Xa,Fv)
∼−→ Ind

SO(Xa,Fv)
P ′∩SO(Xa,Fv)

µ|P ′∩SO(Xa,Fv)

given by restriction of functions. We have

µ|P ′∩SO(Xa,Fv)(







a ∗ ∗ ∗
0 b ∗ ∗
0 0 a−1 ∗
0 0 0 b−1






) = (µ′1/µ2)(a)(µ

′
2/µ2)(b).

We now have that the standard L-function of any irreducible unramified com-
ponent of π′v|SO(Xa,Fv) is

L(s, µ′1/µ2)L(s, µ2/µ
′
1)L(s, µ

′
2/µ2)L(s, µ2/µ

′
2) = det(1− χ(πFv

)−1A|πFv
|s)−1

= Lv(s, τ
JL, χ−1,Asai),

where

A =







(µ1µ
′
1)(πFv

) 0 0 0
0 (µ2µ

′
2)(πFv

) 0 0
0 0 (µ1µ

′
2)(πFv

) 0
0 0 0 (µ2µ

′
1)(πFv

)






;

here we have used χv = µ1µ2 = µ′1µ
′
2. For the last equality, again see p.

64-65 of [HLR]. Since s · π′v = π(χv, τ
JL
w2
⊗ τJLw1

), a similar computation shows
that the standard L-function of any irreducible unramified component of (s ·
π′v)|SO(Xa,Fv) is also Lv(s, τ

JL, χ−1,Asai).
The argument in the case d = 1 is similar to the last case and will be omit-
ted. ¤

To prove the nonvanishing part of the main result Theorem 8.3 we will use the
following theorem, which follows from Corollary 1.2 of [R4]. In the following
LS(s, σ1) is the standard partial L-function of σ1 (see Section 2 of [KR1]).

8.2 Theorem ([R4]). Let F be a totally real number field, and let X be a four
dimensional quadratic space over F . Let d ∈ F×/F×2 be the discriminant of
X(F ), and assume that the discriminant algebra E of X(F ) is totally real, i.e.,

either d = 1 or d 6= 1 and E = F (
√
d) is totally real. Let σ1 be a tempered

cuspidal automorphic representation of O(X,A) with σ1 ∼= ⊗vσ1,v, and let Vσ1

be a realization of σ1 in the space of cusp forms on O(X,A). Assume σ1,v
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occurs in the theta correspondence for O(X,Fv) and Sp(2, Fv) for all places v.
If LS(s, σ1) does not vanish at s = 1 then Θ2(Vσ1

) 6= 0.

Proof. This follows from Corollary 1.2 of [R4] (see also the following remark
below). Note that by the assumption on E, at each infinite place v of F we
have d = 1 in F×v /F

×2
v , so that the signature of X(Fv) is (4, 0), (2, 2) or (0, 4)

and the signature assumptions from Corollary 1.2 of [R4] are satisfied. ¤

We take the opportunity here to make a correction to [R4]. Namely, in Theo-
rem 1.1 of [R4] hypothesis (2) should be replaced with the statement: for all
places v, σv is tempered and if σv first occurs in the theta correspondence with
Sp(n′, Fv) with 2n′ > dimX, then the first occurrence of σv is tempered; in
Corollary 1.2 of [R4] σv should also be assumed to be tempered for infinite
v; and finally in Lemma 2.1 of [R4] the assumption on σ (in both the nonar-
chimedean and real cases) should be that σ is tempered, and if σ first occurs
in the theta correspondence with Sp(n′, F ) with 2n′ > dimX, then the first
occurrence of σ is tempered. The corrections thus also introduce temperedness
assumptions at the infinite places entirely analogous to those at the finite places
(note that in the corrections to Theorem 1.1 and Lemma 2.1 we have actually
weakened the nonarchimedean assumption; this was mentioned in [R4], but not
explicitly stated as part of Theorem 1.1 and Lemma 2.1). The omission of these
temperedness assumptions at infinity was due to a misreading of [M], Corol-
laire IV.5 (ii). The only place where the result from [M] is used in [R4] is in the
proof of Lemma 2.1 of [R4] where it is asserted that, in the terminology of that
lemma, θk+1(σ) = L(χX | · |sX(k+1)⊗ δ2 · · ·⊗δt⊗ τ). The argument for this is as
follows. Assume σ first occurs in the theta correspondence with Sp(n′,R) with
n′ ≤ dimX/2. Then σ occurs in the theta correspondence with Sp(dimX/2,R)
(Lemme I.9, p. 14, [M]) and θdimX/2(σ) = ΨdimX/2(σ) (Théorème IV.3, p. 70,
[M]). Since σ is tempered, by the definition of ΨdimX/2(σ) (III.2, p. 49, [M]),
θdimX/2(σ) = ΨdimX/2(σ) is also tempered. The Langlands data for θk+1(σ)
is obtained from the Langlands data of θdimX/2(σ) by adjoining the quasi-

characters of R×: χX | · |sX(k+1), . . . , χX | · |sX(dimX/2)+2, χX | · |sX(dimX/2)+1

(Corollaire IV.5 (ii), p. 71, [M]). Since θdimX/2(σ) is tempered, this im-
plies θk+1(σ) has the claimed form. Next, assume σ first occurs in the
theta correspondence with Sp(n′,R) with n′ > dimX/2. Then θn′(σ) is
tempered by assumption. Again, the Langlands data of θk+1(σ) is obtained
from the Langlands data of θn′(σ) by adjoining the quasi-characters of R×:
χX | · |sX(k+1), . . . , χX | · |sX(n

′)+2, χX | · |sX(n
′)+1 (Corollaire IV.5 (ii), p. 71,

[M]). Again, since θn′(σ) is tempered, this implies θk+1(σ) has the claimed
form. This completes the corrected argument for the new statement of Lemma
2.1 of [R4]. The corrected statements of Theorem 1.1 and Corollary 1.2 have
exactly the same proofs as in [R4].

Proof of Theorem 8.3. (1) =⇒ (2). Suppose Θ2(Vσ) 6= 0. Suppose Θ2(Vσ)
is contained in the space of cusp forms. Then by Proposition 5.3, (2) holds.
Suppose Θ2(Vσ) is not contained in the space of cusp forms. Since σv is in-
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finite dimensional for at least one v (5.1) holds. By Proposition 5.2, Θ1(Vσ)
is contained in the space cusp forms; also, Θ1(Vσ) is nonzero, for otherwise,
by Proposition 5.2, Θ2(Vσ) would be contained in the space of cusp forms. A
standard argument as in the proof of Proposition 5.3 now shows that for all
v, σv ∈ R1(GO(X,Fv)). This implies (2) (Lemma 4.2 of [R1]; b), p. 67 of
[MVW]; Lemme I.9 of [M]).

(2) ⇐⇒ (3). This is Theorem 3.4. Note that if discX(Fv) 6= 1, then X(Fv)
is isotropic, and so σv is infinite dimensional (as σv is tempered).

(2) =⇒ (1). Suppose (2) holds. Let σ lie over [π] (Section 7). Restrict the
functions in Vσ to O(X,A) to obtain the space of functions V 1σ . Then V 1σ is
nonzero and contained in the space of cusp forms on O(X,A); let W be an
irreducible nonzero O(X,Af )× (h1,∞, J1,∞) component of V 1σ , and denote the
isomorphism class of W by σ1. To show Θ2(Vσ) 6= 0 it will suffice to show
Θ2(W ) 6= 0 (for if θ2(f, ϕ) 6= 0 for some f ∈ W and ϕ ∈ S(X(A)2), then
θ2(F,ϕ)|Sp(2,A) = θ2(f, ϕ) 6= 0 for any F ∈ Vσ with F |O(X,A) = f). For this,
we will use Theorem 8.2. We need to see that the hypotheses of Theorem
8.2 are satisfied. For all places v of F , σ1,v is an irreducible constituent of
σv|O(X,Fv). Since σv is tempered for all v, σ1,v is tempered for all v. Also, it
is a basic consequence of (2) that σ1,v ∈ R2(O(X,Fv)) for all v (Lemma 4.2 of
[R1]; see the discussion before Theorem 1.8). Finally, we need to see that the
partial standard L-function LS(s, σ1) of σ1 does not vanish at s = 1. Writing
π = π(χ, τ), by Lemma 8.1 we have

LS(s, σ1) =

{

LS(s, τJL, χ−1,Asai) if d 6= 1

LS(s, τJL1 × τJL2 ∨) if d = 1 and τ ∼= τ1 ⊗ τ2.

Showing the nonvanishing of LS(s, σ1) at s = 1 is thus reduced to showing the
nonvanishing of these two types of L-functions at s = 1. For the nonvanishing
of LS(s, τJL1 × τJL∨2 ) at s = 1 see Theorem 5.2 of [Sh]. The nonvanishing of
LS(s, τJL, χ−1,Asai) at s = 1 also follows from [Sh]. For an explanation of this,
see p. 296–7 of [F]. Note that LS(s, τJL, χ−1,Asai) is of the form LS(s, τ ′,Asai):
there exists a Hecke character χ̂ of A×E extending χ, and for such a χ̂ we have
LS(s, τ ⊗ χ̂−1,Asai) = LS(s, τJL, χ−1,Asai). By Theorem 8.2 we now have
Θ2(W ) 6= 0, and so Θ2(Vσ) 6= 0.

Now suppose that one of (1), (2) or (3) holds, and s · π À π. By what we have
already shown, Θ2(Vσ) 6= 0. We claim that Θ2(Vσ) is contained in the space of
cusp forms. Suppose not. Then as in the proof of (1) =⇒ (2), Θ1(Vσ) is nonzero
and contained in the space of cusp forms, and in particular σv ∈ R1(GO(X,Fv))
for all v. By Theorem 7.4 of [R2] this implies s · πv ∼= πv at least for all
finite v of odd residual characteristic. However, by strong multiplicity one for
GSO(X,A) (Section 6) and s · π À π, we have s · πv À πv for infinitely many
v, a contradiction. Thus, Θ2(Vσ) is contained in the space of cusp forms. By
Proposition 5.3, Θ2(Vσ) is a cuspidal automorphic representation of GSp(2,A)
of central character ωσ and Θ2(Vσ) = ⊗vθ2(σ∨v ); by Proposition 1.10 this is
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also ⊗vθ2(σv)∨. The proof that θ2(σv) is tempered for all v is as in the proof
of (3) of Proposition 4.1. ¤

The next lemma was used in the proof of Proposition 4.1 to show that the two
elements of an L-packet defined there are in fact distinct. It will also be used
in the proof of Theorem 8.5.

8.4 Lemma. Let v be a place of F . Let Dram be the division quaternion algebra
over Fv, and define the four dimensional quadratic spaces XM2×2,1 and XDram,1

over Fv as in Section 2. Then RXM2×2,1
(GSp(2, Fv))∩RXDram,1

(GSp(2, Fv)) =

∅.

Proof. We will use the notation of Section 1. By Lemmas 1.4 and 1.5 it will
suffice to show that if

RXM2×2,1
(GSp(2, Fv)) ∩ RXDram,1

(GSp(2, Fv)) 6= ∅

then

RXM2×2,1
(Sp(2, Fv)) ∩ RXDram,1

(Sp(2, Fv)) 6= ∅.

Suppose Π ∈ RXM2×2,1
(GSp(2, Fv)) ∩ RXDram,1

(GSp(2, Fv)). Since Π is con-

tained in RXM2×2,1
(GSp(2, Fv)), by definition Π|Sp(2,Fv) is multiplicity free;

let Π|Sp(2,Fv) = W1 ⊕ · · · ⊕ WM with the Wi, 1 ≤ i ≤ M , mutually non-
isomorphic irreducible Sp(2, Fv) subspaces of Π. Also by definition, some
Wi, say W1, is in RXM2×2,1

(Sp(2, Fv)). We assert that all the Wi are con-

tained in RXM2×2,1
(Sp(2, Fv)). Let g ∈ GSp(2, Fv) be such that π(g)W1 = Wi

(if Fv ∼= R then M = 1 or 2 and we may take g = k0 with k0 as in Sec-
tion 1). Since W1 ∈ RXM2×2,1

(Sp(2, Fv)) there exists a nonzero Sp(2, Fv) map

t : ωXM2×2,1
→ W1. Let h ∈ GO(XM2×2,1, Fv) be such that (g, h) ∈ RXM2×2,1

(if Fv ∼= R we take h = j0 so that (g, h) ∈ L). Consider the composition

ωXM2×2,1

ω(g,h)−1

−−−−−−→ ωXM2×2,1

t−→W1
π(g)−−→Wi.

This is a nonzero Sp(2, F ) map. Thus, Wi ∈ RXM2×2,1
(Sp(2, Fv)). On the

other hand, since Π ∈ RXDram,1
(GSp(2, Fv)) we have by definition that some

irreducible component of Π|Sp(2,Fv) is contained in RXDram,1
(Sp(2, Fv)). We

now have RXM2×2,1
(Sp(2, Fv)) ∩ RXDram,1

(Sp(2, Fv)) 6= ∅ as desired. ¤

We come now to the definition and analysis of global L-packets for GSp(2).
We begin by proving Theorem 8.5, a version of the main result Theorem
8.6. In this version, global L-packets for GSp(2) are associated to elements
of Irrtempcusp (GSO(XM2×2,d,A)); Theorem 8.6 will follow easily from Theorem 8.5.

As in Section 2, let d ∈ F×/F×2, and let E = Ed be F (
√
d) if d 6= 1 and

E = Ed = F × F if d = 1. Assume E is totally real, i.e., in the case d 6= 1
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assume E is totally real. Let π ∈ Irrtempcusp (GSO(XM2×2,d,A)). The packet of irre-
ducible admissible representations of GSp(2,A) corresponding to [π] is defined
to be

Π([π]) = {Π = ⊗vΠv ∈ Irradmiss(GSp(2,A)) : Πv ∈ Π([πv]) for all v}.

Here, Π([πv]) is defined in Section 4. By Proposition 4.3, for almost all nonar-
chimedean v, Π([πv]) consists of a single representation unramified with respect
to GSp(2,Ov). Thus,

Π([π]) = ⊗vΠ([πv]).

Also, by (3) of Proposition 4.1, Π([πv]) consists of tempered representations
for all v. If S is any finite set of places such that for v /∈ S, v is nonar-
chimedean and Π([πv]) consists of a single representation unramified with re-
spect to GSp(2,Ov), then the cardinality of Π([π]) is:

|Π([π])| =
∏

v∈S

|Π([πv])| = 2M , where M =
∑

v∈S

(|Π([πv])| − 1).

For Π = ⊗vΠv ∈ Π([π]), let TΠ be the set of places v of F such that v splits
in E (as usual, if d = 1 so that E = F × F we say that every place of F
splits in E) and Πv is of the form θDram,1(π

JL+
v )∨ (so necessarily πv is square

integrable); see Section 4.

8.5 Theorem. Assume F is totally real, d ∈ F×/F×2, and let E = Ed be

F (
√
d) if d 6= 1 and F × F if d = 1. Assume E is totally real, i.e., in the case

d 6= 1 assume E is totally real. Let π ∈ Irrtempcusp (GSO(XM2×2,d,A)) and assume

s · π À π.

(1) If d 6= 1, then all the elements of Π([π]) occur with multiplicity one in
the space of cusp forms on GSp(2,A) with central character ωπ.

(2) Assume d = 1. Let Π ∈ Π([π]). If |TΠ | is even, then Π occurs with
multiplicity one in the space of cusp forms on GSp(2,A) with central
character ωπ. Conversely, if Π occurs in the space of cusp forms on
GSp(2,A) then |TΠ | is even.

Proof. Let Π ∈ Π([π]); if d = 1 assume |TΠ | is even. We begin by showing that
Π occurs in the space of cusp forms on GSp(2,A) of central character ωπ. To
prove this we will construct a four dimensional quadratic space X over F and
a σ ∈ Irrtempcusp (GO(X,A)) such that σv ∈ R2(GO(X,Fv)) and θ2(σv)

∨ = Πv

for all v; we will then apply Theorem 8.3 to show Π is cuspidal automorphic.
To start, let us set up some definitions involving π. As in Section 6, write
π = π(χ, τ); however instead of the abstract exact sequence of Theorem 2.3,
let us use the concrete exact sequence

1→ A×E → A× ×GL(2,AE)
ρa(M2×2,E)−−−−−−−→ GSO(XM2×2,d,A)→ 1
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of Proposition 2.7; by this proposition there is no real distinction. Thus, π =
π(χ, τ), with τ ∈ Irrtempcusp (GL(2,AE)) and χ a Hecke character of A× such that

ωτ = χ ◦ NEF . The X we will use will be of the form XD,d. Specifically, let
D be any quaternion algebra over F which is ramified at the places in TΠ ,
and which is unramified at any other of the places of F which split in E; note
that if d = 1, we use the evenness of |TΠ | for the existence of D (again, our
convention is that if d = 1 so that E = F × F then every place of F is split in
E). Evidently, if d = 1, then D is uniquely determined, but if d 6= 1, then there
will be infinitely many choices for D. Nevertheless, if we let B = E⊗F D, then
B is uniquely determined (in the case d 6= 1, regarded as a quaternion algebra
over E, B is split at any place of E lying over a nonsplit place of F ), and XD,d

is uniquely determined up to similitudes by Proposition 2.9. By Lemma 5.1,
it thus follows that our construction will realize Π as a cuspidal automorphic
representation in exactly one way in spite of the ambiguity in the choice of D
when d 6= 1. To define the σ mentioned above, note that again by Proposition
2.7 we have an exact sequence

1→ A×E → A× ×B×(A) ρa(D,E)−−−−−→ GSO(XD,d,A)→ 1.

By the definition of TΠ , τ is in the image of the Jacquet-Langlands correspon-
dence from B×(A) discussed in Section 6; let τ JL ∈ Irrtempcusp (B

×(A)) correspond
to τ . Let π′ = π(χ, τJL); this is contained in Irrtempcusp (GSO(XD,d,A)). We claim
that for each place v there exists σv ∈ R2(GO(XD,d, Fv)) such that

σv ↪→ Ind
GO(XD,d,Fv)

GSO(XD,d,Fv)
π′v

and θ(σv)
∨ = Πv. This is clear from the definition of Π([πv]) and D if v is not a

nonsplit place withD(Fv) ramified; assume we are in this last case. Let w be the
place of E lying over v. By Proposition 2.9 and the consideration of examples
after this proposition, there exists an isomorphism i : B(Fv)

∼−→ M2×2(Ew) of
Ew algebras and a similitude T : XD,d(Fv)→ XM2×2,d(Fv) such that

1 −−−−→ E×w −−−−→ F×v ×B×(Fv) −−−−→ GSO(XD,d, Fv) −−−−→ 1




y
id





y
id×i





y
T ·T−1=j

1 −−−−→ E×w −−−−→ F×v ×GL(2, Ew) −−−−→ GSO(XM2×2,d, Fv) −−−−→ 1

commutes. By the definition of Π([πv]), there exists π̂v ∈ Irr(GO(XM2×2,d, Fv))
such that πv ↪→ π̂v|GSO(XM2×2,d,Fv) and θ(π̂v) = Π∨v , i.e.,

HomRXM2×2,d
(Fv)(ωXM2×2,d(Fv), Π

∨
v ⊗ π̂v) 6= 0.

By Lemma 1.6, we obtain

HomRXD,d
(Fv)(ωXD,d(Fv), Π

∨
v ⊗ σv) 6= 0,
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where σv = π̂v ◦ j, so that θ(σv) = Π∨v . Since πv ◦ j ↪→ σv|GSO(XD,d,Fv) and
πv ◦ j = π′v by the commutativity of the diagram, we get π′v ↪→ σv|GSO(XD,d,Fv)

as desired. Now Πv is unramified for almost all finite v, and so by Proposition
1.11 σv is unramified for almost all finite v. We may form the restricted direct
product σ = ⊗vσv ∈ Irradmiss(GO(X,A)). Since s · π À π we have s · π′ À π′.

By Theorem 7.1 it follows that σ ∈ Irrtempcusp (GO(X,A)), and σ lies over [π′]. By
Theorem 8.3, Θ2(Vσ) is cuspidal and Θ2(Vσ) ∼= Π.
Having shown that Π occurs in the space of cusp forms on GSp(2,A) of central
character ωπ, we will now show that the multiplicity with which Π occurs is
one. Our strategy will be to use the multiplicity preservation principle of Rallis
(Proposition 5.3) along with the fact that for a four dimensional quadratic space
X over F , GO(X,A) has the (weak) multiplicity one property (Theorem 7.1).
Let W be the GSp(2,Af )× (g∞,K∞) subspace of cusp forms on GSp(2,A) of
central character ωπ generated by the subspaces isomorphic to Π. Let U be
an irreducible nonzero GSp(2,Af ) × (g∞,K∞) subspace of W . Then U ∼= Π.
To be in a position to apply Proposition 5.3 we must show that ΘXD,d

(U)
is nonzero and contained in the space of cusp forms on GO(X,A) of central
character ωπ.
As a first step, we will prove that ΘXD′,d

(U) is nonzero and cuspidal for

some quaternion algebra D′ over F . In the following argument showing that
ΘXD′,d

(U) is nonzero and cuspidal for some D′ we ask the reader to take note

that we only use that Π ∈ Π([π]); this will be germane in a subsequent part
of the proof. We begin with a reduction to isometries. Restrict the func-
tions in U to Sp(2,A). This space of restricted functions is nonzero and is an
Sp(2,Af )×(g1,∞,K1,∞) subspace of the space of cusp forms on Sp(2,A); let U1
be a nonzero Sp(2,Af )×(g1,∞,K1,∞) irreducible subspace of this space, and let
Π1 be the isomorphism class of U1. As in the proof of (2) =⇒ (1) of Theorem
8.3, to show ΘXD′,d

(U) 6= 0 for some D′ it will suffice to show ΘXD′,d
(U1) 6= 0

for some D′. To prove this, we will use Theorem 7.1 of [KRS]. This appli-
cation requires an understanding the behavior of the partial twisted standard
L-function LS(s,Π1, χXD,d

) at s = 1; we now compute this L-function. As
U ∼= Π, Π1,v is an irreducible component of Πv|Sp(n,Fv) for all v. Let S be a fi-
nite set of places of F such that for v /∈ S, v is finite, XM2×2,d(Fv) is unramified
(i.e., v is odd and v is unramified in Ed) and χv and τw for w|v are unramified.
For v /∈ S, by Proposition 4.3 and its proof, |Π([πv])| = 1, Πv is the single el-
ement of Π([πv]), Πv is unramified and Πv = θM2×2,d(σ

′
v)
∨ = θM2×2,d(σ

′
v
∨),

with σ′v = π+v ∈ Irr(GO(XM2×2,d, Fv)) unramified. Let v /∈ S; we assert
that there exists an unramified component σ′1,v of σ′v|O(XM2×2,d,Fv) such that

Π1,v = θ(σ′1,v
∨). To see this let, as in Section 1, GSp(2, Fv)

+ be the subgroup

of g ∈ GSp(2, Fv) such that λ(g) ∈ λ(GO(XD,d, Fv)); again, GSp(2, Fv)
+ has

index one or two in GSp(2, Fv). Let Πv|GSp(2,Fv)+ = Π1
v ⊕ · · · ⊕ ΠM

v , where

the Πi
v ∈ Irr(GSp(2, Fv)

+) are mutually nonisomorphic and M = 1 or 2. We
have by construction

HomRXM2×2,d
(Fv)(ωXM2×2,d(Fv), Πv ⊗ σ′v∨) 6= 0.
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This implies that for some i,

HomRXM2×2,d
(Fv)(ωXM2×2,d(Fv), Π

i
v ⊗ σ′v∨) 6= 0.

By the proof of Proposition 1.11, Π i
v is unramified with respect to GSp(2,Ov)

(which is contained in GSp(2, Fv)
+). As Πv|Sp(2,Fv) has only one irreducible

component unramified with respect to Sp(2,Ov), namely Π1,v, it follows that
Π1,v is an irreducible component of Π i

v|Sp(2,Fv). By Lemma 4.2 of [R1], there
exists an irreducible component σ′1,v of σ′v such that

HomSp(2,Fv)×O(XM2×2,d,Fv)(ωXM2×2,d(Fv), Π1,v ⊗ σ′1,v∨) 6= 0.

By (b) of Theorem 7.1 of [H], σ′1,v is unramified. This proves our assertion.
By Section 7 of [KR2] and Lemma 8.1 (or rather its proof), the twisted partial
standard L-function of Π1 now is

LS(s,Π1, χXD,d
) = ζSF (s)

∏

v/∈S

L(s, σ′1,v)

=

{

ζSF (s)L
S(s, τ, χ−1,Asai) if d 6= 1

ζSF (s)L
S(s, τ1 × τ2∨) if d = 1 and τ ∼= τ1 ⊗ τ2,

where ζSF (s) is the partial zeta function of F . We noted in the proof of Theorem
8.3 that L-functions of the type LS(s, τ, χ−1,Asai) or LS(s, τ1 × τ∨2 ) do not
vanish at s = 1; hence, LS(s,Π1, χXD,d

) has a pole at s = 1 (in fact, by
Corollary 7.2.3 of [KR2] the pole must be simple).
Now we apply [KRS]. By Lemma 1.1 of [L], for some f ∈ U1, f has a nonzero
T -th Fourier coefficient with detT 6= 0. Here, T ∈ M2(F ) is a symmetric
matrix. Define a quadratic Hecke character χ of A× by χXD,d

= χTχ, where
we also write T for the two dimensional quadratic space defined by T . Since
LS(s,Π1, χTχ) = LS(s,Π1, χXD,d

) has a pole at s = 1, by (i) and (ii) of
Theorem 7.1 of [KRS], ΘX′(U1) 6= 0, where X ′ = XT ⊥ X ′′, with X ′′ some
two dimensional quadratic space over F such that χX′′ = χ. We have

χX′ = χXT
· χX′′ = χXT

· χ = χ2XT
· χXD,d

= χXD,d

which implies discX ′(F ) = discXD,d(F ) = d. By Proposition 2.8 and Lemma
5.1, we now know that ΘXD′,d

(U1) 6= 0 for some quaternion algebra D′ over F .

As mentioned, this implies ΘXD′,d
(U) 6= 0.

Next, we claim ΘXD′,d
(U) is contained in the space of cusp forms on

GO(XD′,d,A) of central character ωπ; suppose not. Then by the remark af-
ter Proposition 5.2 there exists a two dimensional quadratic space X0 over
F such that ΘX0

(U) is nonzero and is contained in the space of cusp forms
of central character ωπ on GO(X0,A). By a standard argument as in the
proof of Proposition 5.3, for all but finitely many places v of F , X0(Fv) is
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unramified, Πv is unramified with respect to GSp(2,Ov), there exists a uni-
tary ρv ∈ Irr(GO(X0, Fv)) which is unramified with respect to the stabilizer in
GO(X0, Fv) of a self-dual lattice and

HomRX0
(Fv)(ωX0(Fv), Π

∨
v ⊗ ρv) 6= 0.

Let v be one such place. Let ρ0 be an irreducible unramified component of
ρv|O(X0,Fv). By Lemma 4.2 of [R1], there exists an irreducible component Π0
of Π∨v |Sp(2,Fv) such that

HomSp(2,Fv)×O(X0,Fv)(ωX0(Fv), Π0 ⊗ ρ0) 6= 0.

Now SO(X0, Fv) is Abelian as dimX0 = 2; since ρ0 is unitary, ρ0 is therefore
tempered. (Recall the definition of a tempered representation of O(X0, Fv) pre-
ceding Theorem 1.2). Also, it is not difficult to show that ρ0 ∈ R1(O(X0, Fv))
(in fact, the only element of Irr(O(X0, Fv)) not contained in R1(O(X0, Fv)) is
sign). Applying now Theorem 4.4 of [R3], we conclude that Π0 is not tem-
pered, contradicting the temperedness of Πv (see (3) of Proposition 4.1). We
have shown ΘXD′,d

(U) 6= 0 is nonzero and cuspidal for some D′; as promised,
the argument used only that the cuspidal automorphic representation Π is
contained in Π([π]).
Now we will show that ΘXD,d

(U) is nonzero and contained in the space of
cusp forms of central character ωπ. By Lemma 5.1, it will suffice to show that
there is a similitude between XD,d(F ) and XD′,d(F ). Let B′ = E ⊗F D′. We
assert that B ∼= B′ as E algebras. As in the last paragraph of Section 2, let
SD,E be the set of places v of F such that v splits in E and D(Fv) is ramified;
define SD′,E similarly. As observed in Section 2, it will suffice to show that
SD,E = SD′,E . Let v be a place of F that splits in E. As v splits in E, d = 1
in F×v /F

×2
v . By Proposition 5.3, since ΘXD′,d

(U) is nonzero and cuspidal,

Πv ∈ RXD′,d(Fv)(GSp(2, Fv)); by construction, Πv ∈ RXD,d(Fv)(GSp(2, Fv)).

By Lemma 8.4 we must have XD′,d(Fv) ∼= XD,d(Fv). This implies D′(Fv) ∼=
D(Fv) so that D is ramified at v if and only if D′ is ramified at v. This proves
SD,E = SD′,E . Since B ∼= B′ as E algebras, by Proposition 2.9 there exists a
similitude between XD,d(F ) and XD′,d(F ).
We now apply Proposition 5.3 to conclude that the multiplicity ofΠ inW is the
same as the multiplicity of ΘXD,d

(U) in the space of cusp forms on GO(XD,d,A)
of central character ωπ. By part of Theorem 7.1, this multiplicity is one.
To complete the proof we still must show that if d = 1, Π ∈ Π([π]) and Π
occurs in the space of cusp forms on GSp(2,A), then |TΠ | is even. Let U be a
realization of Π in the space of cusp forms on GSp(2,A) of central character ωπ.
An argument just as above (which just used Π ∈ Π([π]) and nothing about the
parity of |TΠ |) shows that ΘXD′,1

(U) is nonzero and cuspidal for some quater-

nion algebra D′ over F . We claim that TΠ is exactly the set of places where
D′ is ramified; this will show that |TΠ | is even. Let v ∈ TΠ . Then by the defi-
nition of TΠ , Πv ∈ RXDram,1

(GSp(2, Fv)). On the other hand, since ΘXD′,1
(U)
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is nonzero and cuspidal, Πv ∈ RXD′(Fv),1(Fv)(GSp(2, Fv)) (Proposition 5.3). By

Lemma 8.4, XDram,1(Fv)
∼= XD′(Fv),1(Fv), which implies D′(Fv) is ramified.

Suppose next D′(Fv) is ramified. Again, Πv ∈ RXD′(Fv),1(Fv)(GSp(2, Fv)). By

Lemma 8.4 and the definition of Π([πv]), we must have v ∈ TΠ . ¤

Finally, we prove Theorem 8.6. This result is essentially a restatement of
Theorem 8.5, and will follow immediately from that theorem after we make
some definitions.
First we make the definitions mentioned preceding the statement of Theorem
8.6 in the Introduction. Let F ′ be a local field of characteristic zero, and let E ′

be a quadratic extension of F ′ or E′ = F ′ × F ′; if F ′ is archimedean, assume
F ′ = R and E′ = R×R. If E′ is a field, write E′ = F ′(

√
d); otherwise, let d = 1.

Let τ ′ ∈ Irr(GL(2, E′)) be infinite dimensional and assume the central character

of τ ′ factors through NE
′

F ′ via χ
′; if F ′ has even residual characteristic, assume

additionally that τ ′ is tempered. By Proposition 2.7 the following sequence is
exact:

1→ E′× → F ′× ×GL(2, E′)
ρa(M2×2,E′)−−−−−−−→ GSO(XM2×2,d, F

′)→ 1.

Using this exact sequence, define π′ = π(χ′, τ ′) ∈ Irr(GSO(XM2×2,d, F
′)) as in

Section 3. Define ϕ(χ′, τ ′) = ϕ([π′]) and Π(χ′, τ ′) = Π([π′]), where ϕ([π′]) and
Π([π′]) are defined as in Section 4. If E ′ = F ′ × F ′, define

〈·, ·〉F ′ : S(ϕ(χ′, τ ′))×Π(χ′, τ ′)→ C

as follows. If |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| = 1 set 〈·, ·〉F ′ to be identically 1;
if |S(ϕ(χ′, τ ′))| = |Π(χ′, τ ′)| = 2 (see Propositions 4.1 and 4.2) then define
〈·, θM2×2,1(π

′+)∨〉F ′ = 1 and let 〈·, θDram,1(π
′JL+)∨〉F ′ to be the nontrivial char-

acter of S(ϕ(χ′, τ ′)) = Z2 (see Table 4). The claims from the Introduction
concerning these definitions follow from Propositions 4.1, 4.2 and 4.3.
Next, let E, τ and χ be as in the statement of Theorem 8.6. If E is a field, write
E = F (

√
d); otherwise, let d = 1. By Proposition 2.7 the following sequence is

exact:

1→ A×E → A× ×GL(2,AE)
ρa(M2×2,E)−−−−−−−→ GSO(XM2×2,d,A)→ 1.

Using this exact sequence, define π = π(χ, τ) ∈ Irrtempcusp (GSO(XM2×2,d,A)) as
in Section 6.

Proof of Theorem 8.6. This follows from the definitions involved and Theorem
8.5. ¤
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Appendix

p = q p 6= q

λ(GO(X,R)) R× R×>0
[GSp(n,R) : GSp(n,R)+] 1 2

GSp(n,R)+ GSp(n,R) =
R×(Sp(n,R) ∪ Sp(n,R)k0)

Sp(n,R)R×

K+ K = K1 ∪K1k0 K1
GO(X,R) R×(O(X,R) ∪O(X,R)j0) O(X,R)R×

J J1 ∪ J1j0 J1
L (K1 × J1) ∪ (K1 × J1)(k0, j0) K1 × J1

TABLE 1

d6=1

π regular: π → π+ → θM2×2,d(π
+)

π regular or

distinguished

π distinguished:

π+ → θM2×2,d(π
+)

↗

π

↘

π− does not lift to GSp(2,F )

π invariant but

not distinguished

π1 → θM2×2,d(π1)

↗

π

↘

π2 → θM2×2,d(π2)

TABLE 2
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d=1

π regular: π → π+ → θM2×2,1(π
+)

π not

essentially

square

integrable

π+ → θM2×2,1(π
+)

↗

π invariant and

hence distinguished:
π

↘

π− does not lift to GSp(2,F )

π regular:

π → π+ → θM2×2,1(π
+)

↓

πJL → πJL+ → θDram,1(π
JL+)

π essentially

square

integrable

π invariant and

hence distinguished:

π+ → θM2×2,1(π
+)

↗

π → π− does not lift to GSp(2,F )

↓

πJL → πJL+ → θDram,1(π
JL+)

↘

πJL− does not lift to GSp(2,F )

TABLE 3

d [π] Π([π])

1
π not essentially

square integrable
{θM2×2,1(π

+)∨}

1
π essentially

square integrable
{θM2×2,1(π

+)∨,θDram,1(π
JL+)∨}

6=1
π regular or invariant

and distinguished
{θM2×2,d(π

+)∨}

6=1
π invariant but

not distinguished
{θM2×2,d(π1)

∨,θM2×2,d(π2)
∨}

TABLE 4
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