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1 Introduction

In [S] Serre defined local Euler factors Lp(H
n(X), s) for the “motives” Hn(X)

where X is a smooth projective variety over a number field k. The definition at
the finite places p involves the Galois action on the l-adic cohomology groups
Hn

ét(X ⊗ kp,Ql). At the infinite places the local Euler factor is a product
of Gamma factors determined by the real Hodge structure on the singular
cohomology Hn

B(X ⊗ kp,R). If p is real then the Galois action induced by
complex conjugation on kp has to be taken into account as well.
Serre also conjectured a functional equation for the completed L-series, defined
as the product over all places of the local Euler factors.
In his definitions and conjectures Serre was guided by a small number of exam-
ples and by the analogy with the case of varieties over function fields which is
quite well understood. Since then many more examples over number fields no-
tably from the theory of Shimura varieties have confirmed Serre’s suggestions.
The analogy between l-adic cohomology with its Galois action and singular
cohomology with its Hodge structure is well established and the definition
of the local Euler factors fits well into this philosophy. However in order to
prove the functional equation in general, a deeper understanding than the one
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70 C. Deninger

provided by an analogy is needed. First steps towards a uniform description
of the local Euler factors were made in [D1], [D2], [D3]. There we constructed
infinite dimensional complex vector spaces Fp(H

n(X)) with a linear flow such
that for all places:

Lp(H
n(X), s) = det∞

( 1

2π
(s · id−Θ) | Fp(H

n(X))
)−1

. (1)

Here Θ is the infinitesimal generator of the flow and det∞ is the zeta-regularized
determinant. Unfortunately the construction of the spaces
Fp(H

n(X)) was not really geometric. They were obtained by formal construc-
tions from étale cohomology with its Galois action and from singular cohomol-
ogy with its Hodge structure.
C. Consani [C] later developed a new infinite-dimensional cohomology theory
Hn

Cons (Y ) with operators N and Θ for varieties Y over R or C such that for
infinite places p:

(Fp(H
n(X)),Θ) ∼= (Hn

Cons (X ⊗ kp)
N=0,Θ) . (2)

Her constructions are inspired by the theory of degenerations of Hodge struc-
ture and her N has to be viewed as a monodromy operator. The formula for
the archimedean local factors obtained by combining (1) and (2) is analogous to
the expression for Lp(H

n(X), s) at a prime p of semistable reduction in terms
of log-crystalline cohomology.
The conjectural approach to motivic L-functions outlined in [D7] suggests the
following: It should be possible to obtain the spaces Fp(H

n(X)) for archime-
dian p together with their linear flow directly by some natural homological
construction on a suitable non-linear dynamical system. Clearly, forming the
intersection of the Hodge filtration with its complex conjugate and running the
resulting filtration through a Rees module construction as in our first construc-
tion of Fp(H

n(X)) in [D1] is not yet what we want: In this construction the
linear flow appears only a posteriori on cohomology but it is not induced from
a flow on some underlying space by passing to cohomology.
In the present paper in Theorems 4.2, 4.3, 4.4 we make a step towards this goal
of a more direct dynamical description of the archimedian Gamma-factors. The
approach is based on a result of Simpson which roughly speaking replaces the
consideration of the Hodge filtration by looking at a relative de Rham complex
with a deformed differential.
In our case, instead of the Hodge filtration F

•
we require the non-algebraic

filtration F
• ∩ F •. This forces us to work in a real analytic context even

for complex p. It seems difficult to carry Simpson’s method over to this new
context. However this is not necessary. By a small miracle – the splitting of a
certain long exact sequence – his result can be brought to bear directly on our
more complicated situation.
In the appendix to section 4 we explain a relation between Simpson’s deformed
complex and a relative de Rham complex on the deformation ofX to the normal
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On the Γ-Factors of Motives II 71

bundle of a base point. This observation probably holds the key for a complete
dynamical understanding of the Gamma-factor.
Our main construction also provides a Cω-vector bundle on R with a flow. Its
fibre at zero can be used for a “dynamical” description of the contribution from
p |∞ in the motivic “explicit formulas” of analytic number theory.
In our investigation we encounter a torsion sheaf whose dimension is to some
extent related to the ε-factor at p of Hn(X).
Using forms with logarithmic singularities one can probably deal more generally
with the motives Hn(X) where X is only smooth and quasiprojective.
It would also be of interest to give a construction for Consani’s cohomology
theory using the methods of the present paper.
I would like to thank J. Wildeshaus for discussions which led to the appendix of
section 4. A substantial part of the work was done at the IUAV in Venice where
I would like to thank U. Zannier and G. Troi very much for their hospitality. I
would also like to thank the referee for a number of suggestions to clarify the
exposition.

2 Preliminaries on the algebraic Rees sheaf

In this section we recall and expand upon a simple construction which to any
filtered complex vector space attaches a sheaf on A1 = A1

C with a Gm-action.
We had used it in earlier work on the Γ-factors [D1], [D3] § 5. Later Simpson
[Si] gave a more elegant treatment and proved some further properties. Most
importantly for us he proved Theorem 5.1 below which was the starting point
for the present paper. In the following we also extend his results to a variant
of the construction where one starts from a filtered vector space with an in-
volution. This is necessary later to deal not only with the complex places but
with the real places as well.
Let FilC be the category of finite dimensional complex vector spaces V with a
descending filtration FilrV such that Filr1V = 0,Filr2V = V for some integers
r1, r2. Let Fil

±
R be the category of finite dimensional complex vector spaces with

a filtration as above and with an involution F∞ which respects the filtration.
Finally let FilR be the full subcategory of Fil±R consisting of objects where F∞
induces multiplication by (−1)• on Gr

•
V .

These additive categories have ⊗-products and internal Hom’s. We define Tate
twists for every integer n by

(V,Fil
•

V )(n) = (V,Fil
•+nV ) in FilC

and by

(V,Fil
•

V, F∞)(n) = (V,Fil
•+nV, (−1)nF∞) in Fil±R and FilR .

Note that the full embedding:

i : FilR ↪→ Fil
±
R
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72 C. Deninger

is split by the functor

s : Fil±R −→ FilR

which sends (V, F̃il
r
V, F∞) to

(V,FilrV = (F̃il
r
V )(−1)

r

+ (F̃il
r+1

V )(−1)
r+1

, F∞)

i.e. s ◦ i = id. Here W±1 denotes the ±1 eigenspace of F∞ on W . For V in
FilC following [Si] § 5 define a locally free sheaf ξC(V ) = ξC(V,Fil

•

V ) over A1

with action of Gm by

ξC(V ) =
∑

p

FilpV ⊗ z−pOA1 ⊂ V ⊗ j∗OGm
.

Here j : Gm ↪→ A1 is the inclusion and z denotes a coordinate on A1 determined
up to a scalar in C∗. Unless stated otherwise the constructions in this paper
are independent of z. The global sections of the “Rees sheaf” ξC(V,Fil

•

V ) form
the “Rees module” over C[z]:

Fil0(V ⊗C C[z, z−1]) =
∑

p

FilpV ⊗ z−pC[z] ⊂ V ⊗ C[z, z−1]

where FilpC[z, z−1] = zpC[z] for p ∈ Z. The natural action of Gm on A1

induces a Gm-action on ξC by pullback

λ∗ : (λ)−1ξC −→ ξC , v ⊗ g(z) 7−→ v ⊗ g(λz) . (3)

Here (λ)−1ξC denotes the inverse image of ξC under the multiplication by λ ∈
C∗ map.
Let sq : A1 → A1 be the squaring map sq(z) = z2 and define F∞ : A1 → A1 as
F∞ = −id. For V in Fil±R the actions of F∞ on V and Gm ⊂ A1 combine to
an action

F ∗∞ : F−1∞ (V ⊗ j∗OGm
) −→ V ⊗ j∗OGm

.

Thus we get an involution F∞ on the sheaf sq∗(V ⊗ j∗Gm) and we define a
locally free sheaf on A1 by:

ξR(V ) = ξR(V,Fil
•

V, F∞) = (sq∗ξC(V,Fil
•

V ))F∞ .

The Gm-action on ξC leads to an action

λ∗ : (λ2)−1ξR −→ ξR .

The global sections of ξR(V,Fil
•

V, F∞) are given by

(∑

p

FilpV ⊗ z−pC[z]
)F∞

⊂ V ⊗ C[z, z−1]

viewed as a C[z2]-module.
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On the Γ-Factors of Motives II 73

Remark 2.1 The global sections of ξ – with the action of the Lie algebra of
Gm – were also considered in [D3] § 5

Γ(A1, ξC(V,Fil
•

V )) = D+(V,Fil
•

V )

Γ(A1, ξR(V,Fil
•

V, F∞)) = D+(V,Fil
•

V, F∞)

in the notation of that paper.

We denote by E = E(V,Fil
•

V ) resp. E = E(V,Fil
•

V, F∞) the vector bundle on
A1 corresponding to the locally free sheaf ξ. It has a contravariant Gm-action
with respect to the action of Gm on A1 by

Gm × A1 −→ A1 , (λ, a) 7−→ λeKa (4)

where eC = 1 and eR = 2.
For K = C resp. R let DK be the category of locally free OA1-modules of
finite rank with contravariant action by Gm with respect to the action (4)
on A1. The category DK has ⊗-products and internal Homs. For M ∈ DK

set M(n) = znM for any integer n. Thus M(n) is isomorphic to M as an
OA1-module but with Gm-action twisted as follows:

λ∗M(n) = λn · λ∗M .

The following construction provides inverses to ξC and ξR. ForM in DK set

ηK(M) = Γ(Gm, j
∗M)Gm = (Γ(A1,M)⊗C[zeK ] C[z, z−1])Gm

with the filtration (and in case K = R the involution) coming from the one on
C[z, z−1].
The main properties of ξ and η are contained in the following proposition.
Recall that a map ϕ : V → W of filtered vector spaces is called strict if
ϕ−1FiliW = FiliV for all i.

Proposition 2.2 a) The functor ξK : FilK → DK is an equivalence of addi-
tive categories with quasi-inverse ηK . It commutes with ⊗-products and internal
Homs and we have that

dimV = rkξK(V ) and dim ηK(M) = rkM

for all V in FilK andM in DK .
The functors ξC and ξR : Fil±R → DR commute with Tate twists.
For (V,Fil

•

V, F∞) ∈ Fil±R there is a canonical isomorphism:

ξR(V,Fil
•

V, F∞)∗ = ξR(V
∗,Fil

•−1V ∗, F ∗∞) .

Here FilpV ∗ := (Fil1−pV )⊥ in V ∗.
b) The diagrams

Fil±R

s

²²

ξR // DR

FilR

ξR

=={{{{{{{{

and Fil±R

s
""EE

EE
EE

EE

ξR // DR

ηR

²²
FilR
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74 C. Deninger

are commutative.
c) If ϕ : U → V is a morphism in FilC resp. Fil±R then
i) ξ(kerϕ) = ker(ξ(U)→ ξ(V ))
and
ii) ξ(cokerϕ) = coker (ξ(U)→ ξ(V ))/T
where T is the subsheaf of torsion elements. We have T = 0 if and only if ϕ
resp. s(ϕ) is strict.

Proof a) is shown in [Si] § 5 for K = C. Every object in Fil±R is the direct sum
of objects C(n)± defined as follows: The underlying vector space of C(n)± is
C, the filtration is given by FilpC(n)± = C(n)± if p ≤ −n and = 0 if p > −n.
Finally F∞ acts on C(n)± by multiplication with ±1. The objects of FilR are
direct sums of objects C(n)(−1)

n

and we have that

s(C(n)(−1)
n

) = C(n)(−1)
n

and s(C(n)(−1)
n+1

) = C(n+ 1)(−1)
n+1

.

Using decompositions into C(n)(−1)
n

’s, one checks that the natural maps

ξR(V )⊗ ξR(W ) −→ ξR(V ⊗W )

and

Hom(ξR(V ), ξR(W )) −→ ξR(Hom(V,W ))

are isomorphisms for all V,W in FilR. Moreover the rank assertions in a) follow.
Commutation with Tate twists follows immediately from the definitions. The
final isomorphism follows from the above and the first diagram in b) since a
short calculation gives that:

(V, sFil
•

V, F∞)∗ = (V ∗, s(Fil
•−1V ∗), F ∗∞) .

The commutativities in b) can be seen using decompositions into C(n)±’s.
In particular ηR ◦ ξR = id for ξR : FilR → DR. The opposite isomorphism
ξR ◦ηR = id follows as in Simpson [Si] § 5. Finally c) is stated in loc. cit. for
K = C and remains true for K = R. Part i) is straightforward. As for ii), by
functoriality of ξ and the fact that ξ(cokerϕ) is torsion-free one is reduced to
proving that the kernel of the natural surjection

coker (ξ(U)→ ξ(V ))³ ξ(cokerϕ)

is torsion. This can be checked using a suitable splitting of ϕ. 2

The following facts about the structure of the Rees bundle were noted for
K = C in [Si] § 5.

Proposition 2.3 i) For all V in FilC resp. Fil±R there are canonical isomor-
phisms of vector bundles over Gm

j∗E(V,Fil
•

V )
∼
−→ V ×Gm
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On the Γ-Factors of Motives II 75

resp.

sq∗j∗E(V,Fil
•

V, F∞)
∼
−→ V ×Gm

functorial in V and compatible with the (contravariant) Gm-action. Thus the
local systems FC and sq∗FR are trivialized functorially in V . Under the iso-
morphism

E(V,Fil
•

V, F∞)1 = (sq∗E(V,Fil
•

V, F∞))1
∼
−→ V

the monodromy representation of π1(C∗, 1) ∼= Z maps n to Fn
∞.

ii) For V in FilC resp. Fil±R there are isomorphisms depending on the choice
of a coordinate z on A1:

E(V,Fil
•

V )0
∼
−→ Gr

•
V

resp.

E(V,Fil
•

V, F∞)0
∼
−→ Gr

•
(sV )

functorial in V . They are compatible with the Gm-action if Gm acts on GrpV
resp. Grp(sV ) by the character z−p.

Proof i) We treat the case K = R. It suffices to check that

sq∗j∗ξ(V,Fil
•

V, F∞)
∼
−→ V ⊗OGm

compatibly with the Gm-action and functorially in V . This can be verified on
global sections. The required maps

A =
(∑

p

FilpV ⊗ z−pC[z]
)F∞
⊗C[z2] C[z, z−1] −→ V ⊗ C[z, z−1]

are obtained by composition:

A −→ (V ⊗ C[z, z−1])⊗C[z2] C[z, z−1]

−→ (V ⊗ C[z, z−1])⊗C[z] C[z, z−1] = V ⊗ C[z, z−1] .

That they are isomorphisms needs to be checked on the generators C(n)(−1)
n

of FilR only. As for the second assertion it suffices to show that the diagram:

(sq∗FR(V ))1

α1 o

²²

= FR(V )1= (sq∗FR(V ))−1

α−1 o

²²
V

F∞ // V

is commutative where the vertical arrows come from the above trivialization.
They are given by setting z = 1 on the left and z = −1 on the right. The value
of a global section of the form

1

2
(v ⊗ zp + F∞(v ⊗ zp)) =

1

2
(v + (−1)pF∞(v))⊗ zp
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76 C. Deninger

in sq∗FR(V )±1 is mapped by α±1 to (−1)p 12 (v + (−1)pF∞(v)). Hence the
composition α−1 ◦ (α1)

−1 maps w = 1
2 (v + (−1)pF∞(v)) to (−1)pw = F∞(w).

Since the w’s generate V we have α−1 ◦ (α1)
−1 = F∞ as claimed.

ii) This is a special case of Proposition 6.1. 2

3 A real-analytic version of the Rees sheaf

A real structure on an object V of FilC leads to a real structure in the algebraic
sense on the vector bundle EC(V,Fil

•

V ) – it is then defined over A1
R. For reasons

explained in section 3 we are interested however in obtaining a real structure in
the topological sense on the Rees bundle. There does not seem to be a natural
real Rees bundle over C = A1(C). However over R ⊂ C a suitable topologically
real bundle can be constructed, and its properties will be important in section
4. We now proceed with the details.
Let FilrealC etc. be categories defined as before but using real instead of complex
vector spaces. Let AY denote the sheaf of real valued real-analytic functions
on a real Cω-manifold or more generally orbifold Y . For V in FilrealC we set

ξωC (V,Fil
•

V ) =
∑

p

FilpV ⊗ r−pAR ⊂ V ⊗ j∗AR∗

where r denotes the coordinate on R and j : R∗ ↪→ R is the inclusion. This is
a free AR-module. With respect to the flow φtC(r) = re−t on R it is equipped
with an action

ψt : (φtC)
−1ξωC −→ ξωC

which is induced by the pullback action:

ψt = (φtC)
∗ : (φtC)

−1j∗AR∗ −→ j∗AR∗ .

Let sq : R → R≥0 be the squaring map sq(r) = r2 and consider the action of
µ2 = {±1} on R by multiplication. Let ρ : R→ R/µ2 be the natural projection.
If we view R≥0 as a Cω-orbifold via the isomorphism

sq : R/µ2
∼
−→ R≥0 , [r] 7−→ r2

we have

AR≥0 = sq∗(ρ∗AR)
µ2 = (sq∗AR)

µ2 .

In the previous situation over C the adjunction map:

sq∗ : OC −→ (sq∗OC)
µ2 , f 7−→ (z 7→ f(z2))

was an isomorphism and we used it to view ξR = (sq∗ξC)
F∞ as an OC-module.

Over R however the corresponding map is not an isomorphism since sq : R→ R
is not even surjective and we will have to work with AR≥0 in the following.
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On the Γ-Factors of Motives II 77

For V in Fil±realR we set

ξωR (V,Fil
•

V, F∞) = (sq∗ξ
ω
C (V,Fil

•

V ))F∞ ⊂ sq∗(V ⊗ j∗AR∗)

viewed as a free AR≥0-module on the orbifold R≥0. With respect to the flow
φtR(r

′) = r′e−2t on R≥0 where r′ = r2 we have an action

ψt : (φtR)
−1ξωR −→ ξωR

induced by the action ψt on ξωC .
Let Dω

K be the category of locally free AR- resp. AR≥0 -modules M with an
action

ψt : (φtK)−1M−→M .

Then Dω
K has ⊗-products and internal Hom’s and we define the Tate twist by

an integer n asM(n) = rnM. ThenM(n) is canonically isomorphic toM as
a module but equipped with the twisted action:

ψt
M(n) = e−tnψt

M .

As before ξωC and ξωR : Fil±realR → Dω
R commute with Tate twists.

The relation with the previous algebraic construction is the following. For Y
as above set OY = AY ⊗R C. Let i : R ↪→ C denote the inclusion. Then we
have OR = i−1OC and OR≥0 = (sq∗OR)

µ2 = i−1(sq∗OC)
µ2 . Moreover:

ξωK(V )⊗R C = i−1ξanK (V ⊗ C) . (5)

Here ξanK (V ⊗ C) is obtained from ξK(V ⊗ C) by analytification. It carries a
natural involution J coming from the real structures V of V ⊗C and R[z, z−1] of
C[z, z−1]. The involution id⊗c on the left of (5), where c is complex conjugation
corresponds to i−1(J) on the right.
These facts can be used to see that the analytic version ξωK over R resp. R≥0
of ξK has analogous properties as the algebraic ξK on A1

C.
An object of FilC resp. Fil±R may be viewed as an object of FilrealC resp. Fil±realR

by considering the underlying R-vector space. We write this functor as V 7→ VR.
It is clear from the definitions that

ξωK(VR) = i−1ξanK (V ) (6)

as AR- resp. AR≥0 -modules.
Looking at associated Cω-vector bundles we get:

Corollary 3.1 To every V in FilrealC resp. Fil±realR there is functorially at-
tached a real Cω-bundle Eω over R resp. R≥0 together with a Cω-action

ψt : φt∗KE
ω −→ Eω .

The rank of Eω equals the dimension of V and there are functorial isomor-
phisms:

Eω(V,Fil
•

V )0
∼
−→ Gr

•
V resp. Eω(V,Fil

•

V, F∞)0
∼
−→ Gr

•
(sV )

such that ψt
0 corresponds to e

•t.
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78 C. Deninger

4 The relation of Rees sheaves and Rees bundles with archime-
dian invariants of motives

In this section we first recall briefly the definition of the spaces Fp(M) for
archimedian primes using Rees sheaves. We then describe the local contribution
from p in the motivic “explicit formulas” of analytic number theory in terms of
a suitable Rees bundle. This formula is new. We also explain the motivation
for considering Cω-Rees bundles over R or R≥0 in the preceeding section.
Consider the category of (mixed) motivesMk over a number field k, for exam-
ple in the sense of Deligne [De2] or Jannsen [J].
For an infinite place p letMp be the real Hodge structure ofM⊗k kp. In case p

is realMp carries the action of an R-linear involution Fp which maps the Hodge

filtration F
•
Mp,C on Mp,C = Mp ⊗R C to F

•

Mp,C. Consider the descending
filtration

γνMp =Mp ∩ F
νMp,C =Mp ∩ F

νMp,C ∩ F
ν
Mp,C

on Mp and set

nν(Mp) = dimGrνγMp .

For real p write

n±ν (Mp) = dim(GrνγMp)
±

where ± denotes the ±1 eigenspace of Fp.
Set VνMp = γνMp if p is complex and

VνMp = (F νMp,C ∩Mp)
(−1)ν ⊕ (F ν+1Mp,C ∩Mp)

(−1)ν+1

if p is real. In other words:

(Mp,V
•
Mp, F∞) = s(Mp, γ

•
Mp, F∞) .

In the real case there is an exact sequence

0 −→ (Grν+1
γ Mp)

(−1)ν −→ GrνVMp −→ (GrνγMp)
(−1)ν −→ 0 .

We set dν(Mp) = dimGrνVMp and ΓC(s) = (2π)−sΓ(s) and ΓR(s) =
2−1/2π−s/2Γ(s/2).
In [F-PR] the local Euler factors of M for the infinite places were defined as
follows:

Lp(M, s) =
∏

ν

ΓC(s− ν)
nν(Mp) if p is complex

and

Lp(M, s) =
∏

ν

ΓR(s+ εν − ν)
n+
ν (Mp)ΓR(s+ 1− εν − ν)

n−ν (Mp)
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On the Γ-Factors of Motives II 79

if p is real. Here εν ∈ {0, 1} is determined by εν ≡ ν mod 2.
Using the above exact sequence we get an alternative formula for real p:

Lp(M, s) =
∏

ν

ΓR(s− ν)
dν(Mp) .

See also [D4] for background. It follows from remark 2.1 that for p |∞ the
space Fp(M) of [D3] § 5 is given as follows:

Fp(M) = Γ(A1, ξC(MpC, γ
•
MpC)) if p is complex

and

Fp(M) = Γ(A1, ξR(MpC, γ
•
MpC, F∞))

= Γ(A1, ξR(MpC,V
•
MpC, F∞)) if p is real.

According to [D3] Cor. 6.5 we have:

Lp(M, s) = det∞

( 1

2π
(s · id−Θ) | Fp(M)

)−1
.

Here Θ is the infinitesimal generator of the Gm-action of Fp(M), i.e. the
induced action by 1 ∈ C = LieGm.
We define the real analytic version of Fp(M) as follows:

Fω
p (M) = Γ(R, ξωC (Mp, γ

•
Mp)) if p is complex

and

Fω
p (M) = Γ(R≥0, ξωR (Mp, γ

•
Mp, F∞))

= Γ(R≥0, ξωR (Mp,V
•
Mp, F∞)) if p is real.

It follows from the above formula for Lp(M, s) in terms of Fp(M) and the
relation between ξωK and ξK that we have for all p |∞:

Lp(M, s) = det∞

( 1

2π
(s · id−Θ) | Fω

p (M)
)−1

. (7)

Here Θ denotes the infinitesimal generator of the flow ψt∗ induced on Fω
p (M)

by the actions ψt and φtkp
which were defined in section 2.

In the next section we will express Fω
p (H

n(X)) for smooth projective varieties
X/k in “dynamical” terms. Via formula (7) we then get formulas for the
archimedian L-factors Lp(H

n(X), s) which come from the geometry of a simple
dynamical system.
Let us now turn to the motivic “explicit formulas” of analytic number theory.
To every motive M inMk one can attach local Euler factors Lp(M, s) for all
the places p in k and global L-functions:

L(M, s) =
∏

p-∞

Lp(M, s) and L̂(M, s) =
∏

p

Lp(M, s) ,
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c.f. [F-PR], [D4]. Assuming standard conjectures about the analytical be-
haviour of L(M, s) and L(M∗, s) proved in many interesting cases the following
explicit formula in the analytic number theory of motives holds for every ϕ in
D(R+) = C∞0 (R+) c.f. [D-Sch] (2.2.1):

−
∑

ρ

Φ(ρ)ords=ρL̂(M, s) =
∑

p

Wp(ϕ) . (8)

Here Φ(s) =
∫

R
ϕ(t)ets dt and p runs over all places of k.

For finite p we have

Wp(ϕ) = logNp

∞∑

k=1

Tr(Frkp |M
Ip

l )ϕ(k logNp) (9)

where Frp denotes a geometric Frobenius at p and M
Ip

l is the fixed module
under inertia of the l-adic realization of M with p - l.

The terms Wp for the infinite places are given as follows: For complex p we
have:

Wp(ϕ) =
∑

ν

nν(Mp)

∫ ∞

0

ϕ(t)
eνt

1− e−t
dt (10)

whereas for real p:

Wp(ϕ) =
∑

ν

dν(Mp)

∫ ∞

0

ϕ(t)
eνt

1− e−2t
dt . (11)

The distributions Wp for p |∞ can be rewritten as follows:

Wp =
Tr(e

•t |Gr
•

VMp)

1− e−κpt
(12)

where e
•t is the map eνt on Grν and κp = 2 resp. 1 according to whether p is

real or complex.
In terms of our conjectural cohomology theory c.f. [D3] § 7, equation (8) can
thus be reformulated as an equality of distributions on R+:

∑

i

(−1)iTr(ψ∗ |Hi(“spec ok”,F(M)))dis (13)

=
∑

p-∞

logNp

∞∑

k=1

Tr(Frkp |M
Ip

l )δk logNp +
∑

p |∞

Tr(e
•t |Gr

•

VMp)

1− e−κpt
.

Compare [D-Sch] (3.1.1) for the elementary notion of distributional trace used
on cohomology here. In the rest of this section we will be concerned with a
deeper understanding of the function Tr(e

•t |Gr
•

VMp).
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Certain dynamical trace formulas for vector bundles E over a manifold X with
a flow φt and an action ψt : φt∗E → E involve local contributions at the fixed
points x of the form:

Tr(ψt
x |Ex)

1− e−κxt
some κx > 0 .

This is explained in [D7] § 4. These formulas bear a striking resemblance to
the “explicit formulas” and they suggest that infinite places correspond to fixed
points of a flow. Incidentially the finite places would correspond to the periodic
orbits. This analogy suggests that for the infinite places it should be possible
to attach toM a real vector bundle E in the topological sense over a dynamical
system with fixed points. If 0 denotes the fixed point corresponding to p, we
should have:

Tr(ψt
0 |E0) = Tr(e

•t |Gr
•

VMp) .

At least over one flowline this is achieved by Corollary 3.1 as follows.
Define as follows a real Cω-bundle Eω

p (M) over R resp. R≥0 together with a
Cω-action

ψt : φt∗KE
ω
p (M) −→ Eω

p (M) .

Set

Eω
p (M) = Eω(Mp, γ

•
Mp) if p is complex

and

Eω
p (M) = Eω(Mp, γ

•
Mp, F∞)

= Eω(Mp,V
•
Mp, F∞) if p is real.

Note that this is just the Cω-bundle corresponding to the locally free sheaf
Fω

p (M) defined earlier. According to Corollary 3.1 we then have:

Proposition 4.1 There are functorial isomorphisms

Eω
p (M)0

∼
−→ Gr

•

VMp

for all p |∞ such that ψt
0 corresponds to e

•t. In particular we find:

Tr(ψt
0 |E

ω
p (M)0) = Tr(e

•t |Gr
•

VMp)

= (1− e−κpt)Wp .

5 A geometrical construction of Fω
p (M) and Eω

p (M) for M =
Hn(X)

In this section we express the locally free sheaf Fω
p (H

n(X)) over R resp. R≥0
of section 3 in terms of higher direct image sheaves modulo torsion. The con-
struction is based on the following result of Simpson [Si] Prop. 5.1, 5.2. For a
variety X/C we write Xan for the associated complex space.
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Theorem 5.1 (Simpson) Let X/C be a smooth proper variety and let F
•
be

the Hodge filtration on Hn(Xan,C). Then we have:

ξC(H
n(Xan,C), F

•
) = Rnπ∗(Ω

•

X×A1/A1 , zd)

where π : X × A1 → A1 denotes the projection.

Remarks (1) The Gm-action on the deformed complex (Ω
•

X×A1/A1 , zd) given

by sending a homogenous form ω to λ− degω · λ∗(ω) for λ ∈ Gm induces a
Gm-action on Rnπ∗(Ω

•

X×A1/A1 , zd). Under the isomorphism of the theorem it

corresponds to the Gm-action on ξC(H
n(X,C), F

•
) defined by formula (4).

(2) In the appendix to this section we relate the complex (Ω
•

X×A1/A1 , zd) to the

complex of relative differential forms on a suitable deformation of X × A1.

In the situation of the theorem consider the natural morphism from the spectral
sequence:

Epq
1 = (Rqπ∗(Ω

p
X×A1/A1))

an =⇒ (Rnπ∗(Ω
•

X×A1/A1 , zd))an

to the spectral sequence

Epq
1 = Rqπ∗(Ω

p
Xan×C/C) =⇒ Rnπ∗(Ω

•

Xan×C/C, zd) .

By GAGA it is an isomorphism on the E1-terms and hence on the end terms
as well. Thus we get a natural isomorphism of locally free OC-modules:

ξanC (Hn(Xan,C), F
•
) = Rnπ∗(Ω

•

Xan×C/C, zd) . (14)

Let id× i : Xan × R ↪→ Xan × C be the inclusion and set

Ωp
Xan×R/R = (id× i)−1Ωp

Xan×C/C .

It is the subsheaf of C-valued smooth relative differential forms on Xan ×
R/R which are holomorphic in the Xan-coordinates and real analytic in the
R-variable. We then have an equality of complexes

(Ω
•

Xan×R/R, rd) = (id× i)−1(Ω
•

Xan×C/C, zd) .

We define an action ψt of R on (Ω
•

Xan×R/R, rd) by sending a homogenous form

ω to et degω · (id× φtC)
∗ω:

ψt : (id× φtC)
−1(Ω

•

Xan×R/R, rd) −→ (Ω
•

Xan×R/R, rd) .

This induces an action:

ψt : (φtC)
−1Rnπ∗(Ω

•

Xan×R/R, rd) −→ Rnπ∗(Ω
•

Xan×R/R, rd)
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and hence an AR-linear action

ψt : φt∗C R
nπ∗(Ω

•

Xan×R/R, rd) −→ Rnπ∗(Ω
•

Xan×R/R, rd) .

By proper base change we obtain from (14) that

i−1ξanC (Hn(Xan,C), F
•
) = Rnπ∗(Ω

•

Xan×R/R, rd) . (15)

According to (6) this gives an isomorphism

ξωC ((H
n(Xan,C), F

•
)R) = Rnπ∗(Ω

•

Xan×R/R, rd) (16)

of locally free AR-modules which is compatible with the action ψt relative to
φtC.
Let DRX/C be the cokernel of the natural inclusion of complexes of π−1AR-
modules on Xan × R with action ψt

π−1AR −→ (Ω
•

Xan×R/R, rd) .

Here π−1AR is viewed as a complex concentrated in degree zero and on it ψt

acts by pullback via id× φtC. The projection formula gives us

Rnπ∗(π
−1AR) = Hn(Xan,R)⊗AR = ξωC (H

n(Xan,R),Fil
•

0) (17)

where

Filp0H
n(Xan,R) = Hn(Xan,R)

for p ≤ 0 and Filp0 = 0 for p > 0. We thus get a long exact ψt-equivariant
sequence of coherent AR-modules:

. . . → ξωC (H
n(Xan,R),Fil

•

0) → ξωC ((H
n(Xan,C), F

•
)R) →

→ Rnπ∗DRX/C → ξωC (H
n+1(Xan,R),Fil

•

0) → . . .
(18)

For any n the natural map

ξωC (H
n(Xan,R),Fil

•

0) −→ ξωC ((H
n(Xan,C), F

•
)R)

is injective by the ξωC -analogue of Prop. 2.2 c), part i) since it is induced by
the inclusion of objects in FilrealC :

(Hn(Xan,R),Fil
•

0) ↪→ (Hn(Xan,C), F
•
)R . (19)

The injectivity can also be seen by noting that the fibres of the associated
Cω-vector bundles for r ∈ R∗ are naturally isomorphic to Hn(Xan,R) resp.
Hn(Xan,C), the map being the inclusion c.f. the ξωC -analogue of Proposition
2.3 i).
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Therefore the long exact sequence (18) splits into the short exact sequences:

0→ ξωC (H
n(Xan,R),Fil

•

0) → ξωC ((H
n(Xan,C), F

•
)R) (20)

α
→ Rnπ∗DRX/C → 0 .

Using the ξωC -version of Proposition 3.1 c) ii) we therefore get a ψt-equivariant
isomorphism of AR-modules:

Rnπ∗(DRX/C)/AR-torsion
∼
−→ ξωC (H

n(Xan,R(1)), π1(F
•
)) . (21)

Here we have used the exact sequence:

0 −→ Hn(Xan,R) −→ Hn(Xan,C)
π1−→ Hn(Xan,R(1)) −→ 0 ,

where π1(f) =
1
2 (f − f).

Let us now indicate the necessary amendments for the caseK = R. We consider
a smooth and proper variety X/R. Its associated complex manifold Xan is
equipped with an antiholomorphic involution F∞, which in turn gives rise to
an involution F

∗

∞ of Hn(Xan,R(1)) which maps the filtration π1(F
•
) to itself.

By definition of ξωR we have

ξωR (H
n(Xan,R(1)), π1(F

•
), F

∗

∞) = (sq∗ξ
ω
C (H

n(Xan,R(1)), π1(F
•
)))

F∞ (22)

where F∞ =̂ F
∗

∞ ⊗ (−id)∗.
To deal with the other side of (21) consider the µ2-action on Xan × R by
F∞ × (−id) and let

λ : Xan × R −→ Xan ×µ2
R = (Xan × R)/µ2

be the canonical projection.
The map

λ∗(π
−1AR) −→ λ∗(Ω

•

Xan×R/R, rd)

becomes µ2-equivariant if −1 ∈ µ2 acts by (F∞ × (−id))∗ on the left and by
sending a homogenous form ω to (−1)degω(F∞ × (−id))∗ω on the right. We
set

Ω
•

Xan×µ2
R/(R/µ2)

=
(
λ∗(Ω

•

Xan×R/R, rd)
)µ2

and

DRX/R = (λ∗DRX/C)
µ2 .

Let π be the composed map

π : Xan ×µ2
R −→ R/µ2

sq
∼
−→ R≥0 .
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Combining the isomorphisms (21) and (22) we obtain an isomorphism of free
AR≥0-modules on R≥0:

Rnπ∗(DRX/R)/AR≥0 -torsion
∼
−→ ξωR (H

n(Xan,R(1)), π1(F
•
), F

∗

∞) . (23)

The left hand side carries a natural action ψt with respect to the flow φtR on
R≥0 and the isomorphism (23) is ψt-equivariant.
As before we have a short exact sequence:

0→ ξωR (H
n(Xan,R),Fil

•

0, F
∗
∞) → ξωR ((H

n(Xan,C), F
•
, F
∗

∞)R)(24)
α
→ Rnπ∗DRX/R → 0 .

The first main result of this section is the following:

Theorem 5.2 Fix a smooth and proper variety X/K of dimension d where
K = C or R. Assume that n+m = 2d. Then we have natural isomorphisms:

1) ξC(H
m(Xan,R), γ

•
) = (2πi)1−dHomAR

(Rnπ∗DRX/C,AR(−d))
in case K = C and

2) ξR(H
m(Xan,R),V•, F∞)

= (2πi)1−dHom
A
≥0
R
(Rnπ∗DRX/R,AR≥0(1− d))

if K = R.

These isomorphisms respect the AR-resp. AR≥0-module structure and the flow
ψt.

Proof Consider the perfect pairing of R-Hodge structures:

〈, 〉 : Hn(Xan)×Hm(Xan)
∪
−→ H2d(Xan)

tr
∼
−→ R(−d) (25)

given by ∪-product followed by the trace isomorphism

tr(c) =
1

(2πi)d

∫

Xan

c .

It says in particular that

F iHn(Xan,C)⊥ = F d+1−iHm(Xan,C) . (26)

Moreover it leads to a perfect pairing of R-vector spaces:

〈, 〉 : Hn(Xan,R(1))×Hm(Xan,R(d− 1)) −→ R . (27)

Now according to the ω-version of Proposition 2.2 a) we have:

HomAR
(ξωC (H

n(Xan,R(1)), π1(F
•
)),AR)

= ξωC
(
Hn(Xan,R(1))∗, π1(F

1−•)⊥
)

(27)
= ξωC

(
Hm(Xan,R(d− 1)),Fil

•)
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where Filp consists of those elements u ∈ Hm(Xan,R(d− 1)) with

〈π1(F
1−p), u〉 = πd〈F

1−p, u〉 = 0

i.e. with

〈F 1−p, u〉 = 0 .

Using (26) we find:

Filp = Hm(Xan,R(d− 1)) ∩ F p+dHm(Xan,C)

= (2πi)d−1γp+dHm(Xan,R)

and therefore:

HomAR
(ξωC (H

n(Xan,R(1)), π1(F
•
)),AR)

= (2πi)d−1ξωC ((H
m(Xan,R), γ

•
)(d))

= (2πi)d−1ξωC (H
m(Xan,R), γ

•
)(d) .

Combining this with the isomorphism (21) we get the first assertion. As for
the second note that by Proposition 2.2 a) we have:

HomAR≥0
(ξωR (H

n(Xan,R(1)), π1(F
•
), F

∗

∞),AR≥0)

= ξωR (H
n(Xan,R(1))∗, π1(F

2−•)⊥ , dual of F
∗

∞) .

Since for X/R the pairing (25) is F
∗

∞-equivariant this equals

ξωR (H
m(Xan,R(d− 1)),Fil

•

, F
∗

∞)

where Filp consists of those elements u with:

〈π1(F
2−p), u〉 = 0 .

Thus

Filp = (2πi)d−1γp+d−1Hm(Xan,R)

in Fil±realR . Hence:

HomAR≥0
(ξωR (H

n(Xan,R(1)), π1(F
•
), F

∗

∞),AR≥0)

= (2πi)d−1ξωR ((H
m(Xan,R), γ

•
, F ∗∞)(d− 1))

= (2πi)d−1ξωR (H
m(Xan,R), γ

•
, F ∗∞)(d− 1) .

Since we can replace γ
•
by V• = sγ

•
in the last expression the second formula

of the theorem now follows by invoking the isomorphism (23). 2
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If X/K is projective, fixing a polarization defined over K the hard Lefschetz
theorem together with Poincaré duality provides an isomorphism of R-Hodge
structures over K:

Hn(Xan)∗ = Hn(Xan)(1) . (28)

Similar arguments as before based on (28) instead of (25) then give the following
result:

Corollary 5.3 Fix a smooth projective variety X/K together with the class
of a hyperplane section over K. There are canonical isomorphisms:
1) ξC(H

n(Xan,R), γ
•
) = HomAR

(Rnπ∗DRX/C,AR(−1))
in case K = C and
2) ξR(H

n(Xan,R),V•, F ∗∞) = HomAR≥0
(Rnπ∗DRX/R,AR≥0)

if K = R. These isomorphisms respect the AR-resp. AR≥0-module structure
and the action of the flow.

A consideration of the sequence

0 −→ (Hn(Xan,R), γ
•
) −→ (Hn(Xan,C), F

•
)R

π1−→ (Hn(Xan,R(1)), π1(F
•
)) −→ 0

in FilrealC and of

0 −→ (Hn(Xan,R), γ
•
, F ∗∞) −→ (Hn(Xan,C), F

•
, F
∗

∞)R

π1−→ (Hn(Xan,R(1)), π1(F
•
), F

∗

∞) −→ 0

in Fil±realR leads to the following expressions for ξK of (Hn(Xan,R), γ
•
, (F ∗∞))

which are not based on duality:

Theorem 5.4 Let X be a smooth and proper variety over K. Then we have
for K = C
1) ξC(H

n(Xan,R), γ
•
)

= Ker
(
Rnπ∗(Ω

•

Xan×R/R, rd)
α
−→ Rnπ∗DRX/C/AR-torsion

)

= inverse image in Rnπ∗(Ω
•

Xan×R/R, rd) of the maximal AR-submodule of
Rnπ∗DRX/C with support in 0 ∈ R.

For K = R we find similarly:

2) ξR((H
n(Xan,R),V•, F ∗∞)

= Ker
(
Rnπ∗(Ω

•

Xan×µ2R/(R/µ2)
, rd)

α
−→ Rnπ∗DRX/R/AR≥0-torsion

)

= inverse image in Rnπ∗(Ω
•

Xan×µ2
R/(R/µ2)

, rd) of the maximal AR≥0-

submodule of Rnπ∗DRX/R with support in 0 ∈ R≥0.

By passing to the associated Cω-vector bundles over R resp. R≥0 the pre-
ceeding theorems and corollary give a geometric construction of the Cω-bundle
Eω

p (M) attached to a motive M in section 3. The Hodge theoretic notions pre-
viously required for its definition have been replaced by using suitably deformed
complexes and their dynamics.
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Appendix

In this appendix we relate the deformed complex (Ω
•

X×A1/A1 , zd) in Simpson’s
theorem 4.1 to the ordinary complex of relative differential forms on a suitable
space.
Let X be a variety over a field k. For a closed subvariety Y ⊂ X let M =
M(Y,X) denote the deformation to the normal bundle c.f. [V1] § 2. Let I ⊂ OX

be the ideal corresponding to Y . Filtering OX by the powers I i for i ∈ Z with
Ii = OX for i ≤ 0 we have:

M = specFil0(k[z, z−1]⊗k OX)

= spec

(
⊕

i∈Z

z−iIi

)
.

Here spec denotes the spectrum of a quasi-coherent OX -algebra. By construc-
tion M is equipped with a flat map

πM :M −→ A1

and an affine map

ρ :M −→ X .

They combine to a map:

h = (ρ, πM ) :M −→ X × A1

such that the diagram

M
h //

πM
ÃÃA

AA
AA

AA
A X × A1

π
{{ww

ww
ww

ww
w

A1

commutes.
The map πM is equivariant with respect to the natural Gm-actions on M and
A1 defined by λ · z = λz for λ ∈ Gm. The map h becomes equivariant if Gm

acts on X × A1 via the second factor.
It is immediate from the definitions that if f : X ′ → X is a flat map of varieties
and Y ′ = Y ×X X ′ then

M(Y ′, X ′) =M(Y,X)×X X ′ . (29)

Moreover the diagram

M(Y ′, X ′)
h //

fM

²²

X ′ × A1

f×id

²²
M(Y,X)

h // X × A1

(30)
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is commutative and cartesian.
From now on let X be a smooth variety over an algebraically closed field k and
fix a base point ∗ ∈ X. Set M =M(∗, X) and consider the natural map

h :M −→ X × A1 .

Pullback of differential forms induces a map :

µ : h∗Ωp
X×A1/A1 −→ Ωp

M/A1 , µ(ω) = h∗(ω) .

We can now formulate the main observation of this appendix:

Theorem 5.5 For every p ≥ 0 the sheaf Ωp
M/A1 has no z-torsion and we have

that

Imµ = zpΩp
M/A1 .

The map of OM -modules:

α : h∗Ωp
X×A1/A1 −→ Ωp

M/A1 , α(ω) = z−ph∗(ω)

which is well defined by the preceeding assertions is an isomorphism. Hence we
get an isomorphism of complexes:

α : h∗(Ω
•

X×A1/A1 , zd)
∼
−→ Ω

•

M/A1 , α(ω) = z− degωh∗(ω) .

Remarks. 1) Under the isomorphism α the Gm-action on the left, as defined
after theorem 5.1, corresponds to the natural Gm-action on Ω

•

M/A1 by pullback

λ · ω = λ∗(ω).
2) By a slightly more sophisticated construction one can get rid of the choice
of base point: The spaces M(∗, X) define a family M → X. The maps h :
M(∗, X)→ X×A1 lead to a mapM→ X×X×A1. ReplaceM by the inverse
image inM of ∆×A1 where ∆ ⊂ X ×X is the diagonal. This is independent
of the choice of base point.

Proof of 4.5 We first check the assertions for the pair (0,An), n ≥ 1. In this
case M =M(0,An) is the spectrum of the ring

B = k[z, x1, . . . , xn, y1, . . . , yn]/(zy1 − x1, . . . , zyn − xn) .

The maps A1 πM←−M
ρ
−→ An are induced by the natural inclusions

k[z] ↪→ B ←↩ k[x1, . . . , xn] .

The B-module Ω1
B/k[z] is generated by dxi, dyi for 1 ≤ i ≤ n modulo the

relations zdyi = dxi. Hence it is freely generated by the dyi and in particular
z-torsion free. The B-module

Ω1
k[z,x1,... ,xn]/k[z]

⊗k[z,x1,... ,xn] B
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is free on the generators dxi. The map µ corresponds to the natural inclusion
of this free B-module into Ω1

B/k[z] which sends dxi to dxi = zdyi. The map
α which sends dxi to dyi is an isomorphism. Hence the theorem for the pair
(0,An).
In the general case choose an open subvariety U ⊂ X containing ∗ ∈ U and an
étale map

f : U −→ An

such that f−1(0) = ∗. By (29) and (30) we then have a cartesian diagram:

M(0,An)×An U

proj.
((PPPPPPPPPPPP
M(∗, U)

h //

fM

²²

U × A1

f×id

²²
M(0,An)

h // An × A1 .

Since f × id and hence fM are étale we know by [M] Theorem 25.1 (2) that

Ωp
M(∗,U)/A1 = f∗MΩp

M(0,An)/A1 (31)

and

Ωp
U×A1/A1 = (f × id)∗Ωp

An×A1/A1 .

As we have seen, Ωp
M(0,An)/A1 has no z-torsion. Since fM is flat the same is

true for Ωp
M(∗,U)/A1 by (31). Applying f∗M to the isomorphism

α : h∗Ωp
An×A1/A1

∼
−→ Ωp

M(0,An)/A1

it follows from the above that

α : h∗Ωp
U×A1/A1

∼
−→ Ωp

M(∗,U)/A1

is an isomorphism as well.
We now choose an open subvariety V ⊂ X not containing the point ∗ and such
that U ∪V = X. Then M(∗, U) and M(∅, V ) are open subvarieties of M(∗, X)
and we have that

M(∗, X) =M(∗, U) ∪M(∅, V ) .

As we have seen the map α for M(∗, X) is an isomorphism over M(∗, U). Over
M(∅, V ) it is an isomorphism as well since

M(∅, V ) = V ×Gm

canonically. Hence the theorem follows. 2
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6 The torsion of Rnπ∗DRX/K

In this section we describe the AR-resp. AR≥0-torsion TX/C resp. TX/R of
the sheaves Rnπ∗DRX/C resp. Rnπ∗DRX/R which were introduced in the last
section. For this we first have to extend Proposition 2.3 ii) somewhat.
For a filtered vector space V ∈ FilC and any N ≥ 1 define a graded vector
space by

NGr
•
V =

⊕

p∈Z

FilpV/Filp+NV .

It becomes a C[z]/(zN )-module by letting z act as the one-shift to the left: For
v in FilpV/Filp+NV set

z · v = image of v in Filp−1V/Filp+N−1V .

This action depends on the choice of z. For N = 1 we have NGr
•
V = Gr

•
V .

To V in Fil±R , N ≥ 1 we attach the graded vector space:

2N
R Gr

•
V := ( 2NGr

•
V )F∞=(−1)

•

.

It is a C[z2]/(z2N )-module and for N = 1 and V in FilR we have:

2
RGr

•
V = Gr

•
V . (32)

With these notations the following result holds:

Proposition 6.1 a) For V in FilC, N ≥ 1 there are functorial isomorphisms
of free C[z]/(zN )-modules:

i−10 (ξC(V,Fil
•

V )⊗OA1/zNOA1) = NGr
•
V .

Here i0 : 0 ↪→ A1 denotes the inclusion of the origin.

b) For V in Fil±R , N ≥ 1 there are functorial isomorphisms of free C[z2]/(z2N )-
modules:

i−10 (ξR(V,Fil
•

V, F∞)⊗OA
∼

1/z2NOA
∼

1) = 2N
R Gr

•
V .

Here, A
∼
1= specC[z2] and i0 : 0 ↪→A

∼
1 is the inclusion.

The isomorphisms in a) and b) are compatible with the Gm-action if Gm acts
on the right in degree p by the character z−p. They depend on the choice of z.

Proof For V ∈ FilC the map:

FilpV/Filp+NV −→
(∑

i

FiliV ⊗ z−iC[z]
)
⊗ C[z]/(zN )
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sending v + Filp+NV to v ⊗ z−p mod zN is well defined. The induced map

NGr
•
V −→ Γ(A1, ξC(V,Fil

•

V ))⊗ C[z]/(zN )

is surjective and C[z]/(zN )-linear by construction. Since

dim NGr
•
V = N dimV

both sides have the same C-dimension and hence a) follows.

Given V ∈ Fil±R we may view it as an object of FilC and we get an isomorphism
of C[z]/(z2N )-modules

2NGr
•
V −→

(∑

i

FiliV ⊗ z−iC[z]
)
⊗C[z] C[z]/(z2N )

‖(∑

i

FiliV ⊗ z−iC[z]
)
⊗C[z2] C[z2]/(z2N ) .

Passing to invariants under F∞ ⊗ (−id)∗ on the right corresponds to taking
invariants under (−1)•F∞ on the left. Hence assertion b). The claim about
the Gm-action is clear. 2

As before there is an ω-version of this proposition over R resp. R≥0 which we
will use in the sequel.

For a proper and smooth variety X/C consider the exact sequence of R-vector
spaces:

0 −→ Hn(Xan,R) −→ Hn(Xan,C)
π1−→ Hn(Xan,R(1)) −→ 0 . (33)

It leads to a complex of R[r]/(rN )-modules:

0 −→ NGr
•

Fil0H
n(Xan,R)

ιN−→ NGr
•

FH
n(Xan,C) (34)

π1−→ NGr
•

π1(F )H
n(Xan,R(1)) −→ 0

which is right exact but not exact in the middle or on the left in general. Denote
by NH•X/C its middle cohomology.

For a proper and smooth variety X/R we obtain from (34) equipped with the

action of F
∗

∞ a complex of R[r2]/(r2N )-modules

0 −→ 2N
R Gr

•

Fil0H
n(Xan,R)

ι2N−→ 2N
R Gr

•

FH
n(Xan,C) (35)

π1−→ 2N
R Gr

•

π1(F )H
n(Xan,R(1)) −→ 0 .

It is again right exact and we denote its middle cohomology by 2NH•X/R. As

R-vector spaces both NH•X/C and 2NH•X/R are naturally graded.

We can now describe the torsion sheaves TX/K for K = C,R:
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Theorem 6.2 For N À 0 the map α in (20) resp. (24) induces isomorphisms
of AR- resp. AR≥0-modules:

α0 : i0∗(
NH

•

X/C)
∼
−→ TX/C

resp.

α0 : i0∗(
2NH

•

X/R) −→ TX/R .

Here the operation ψt
0 on TK corresponds to multiplication by e

•t on the left.

Proof For any N ≥ 1 the exact sequence:

0 −→ TX/C −→ Rnπ∗DRX/C
(21)
−→ ξωC (H

n(Xan,R(1)), π1(F
•
)) −→ 0

remains exact after tensoring with AR/r
NAR since ξωC is AR-torsion free. To-

gether with the short exact sequence (34) and the ω-version of Proposition
6.1 a) we obtain the following exact and commutative diagram of AR/r

NAR-
modules:

0y
i−1
0 (TX/C ⊗AR/r

NAR)y
NGr

•

Fil0
Hn(Xan,R)→NGr

•

FH
n(Xan,C)

α0
−→ i−1

0 (Rnπ∗DRX/C ⊗AR/r
NAR) → 0

π1

y
y

NGr
•

π1(F )H
n(Xan,R(1)) = i−1

0 (ξωC (Hn(Xan,R(1)), π1(F
•
))⊗AR/r

NAR)y
0 .

This shows that α0 induces an isomorphism of AR-modules

α0 : NH
•

X/C
∼
−→ i−10 (TX/C ⊗AR/r

NAR) .

Since TX/C is a coherent torsion sheaf with support in 0 ∈ R we have

TX/C = TX/C ⊗AR/r
NAR

for N À 0 which gives the first assertion. The remark on ψt
0 follows from

Proposition 6.1 since the map α in the exact sequence (20) is ψt-equivariant.
The assertion over R follows similarly. 2

In the next result we will view i−10 TX/K simply as a finite dimensional R-vector
space with a linear flow ψt

0. Let Θ be its infinitesimal generator i.e. ψt
0 = exp tΘ

on i−10 TX/K .

Proposition 6.3 The endomorphism Θ of i−10 TX/K is diagonalizable over R.
For α = p ∈ {1, . . . , n} the dimension of its α-eigenspace is dim γpHn(Xan,R)
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if K = C and dim(γpHn(Xan,R)(−1)
p

) if K = R. For all other values of α the
α-eigenspace is zero. In particular we have

detR(s−Θ | i−10 TX/C) =
∏

0<p≤n

(s− p)dim γp

dimR(i
−1
0 TX/C) =

∑

p∈Z

pdimGrpγH
n(Xan,R)

and

detR(s−Θ | i−10 TX/R) =
∏

0<p≤n

(s− p)dim(γp)(−1)p

dimR(i
−1
0 TX/R) =

1

2
dimHn(Xan,R)− +

1

2

∑

p∈Z

pdimGrpVH
n(Xan,R) .

Remark: According to the proposition the torsion TX/K is zero iff γ1 = 0 in
case K = C and (γ1)− = 0 = (γ2)+ in case K = R. These conditions are
equivalent to the strictness of the inclusion (19) if K = C and to the strictness
of

(Hn(Xan,R), sFil
•

0) ↪→ (Hn(Xan,C), sF
•
)R

if K = R. Here s is formed with respect to F
∗

∞. This is as it must be according
to proposition 2.2 c) ii). More explicitly TX/C is zero iff Hn has Hodge type
(n, 0), (0, n) whereas TX/R is zero iff Hn has Hodge type either (n, 0), (0, n) or
(2, 0), (1, 1), (0, 2) with F∞ acting trivially on H11.

Proof of 6.3: We assume that K = C, the case K = R being similar.
According to theorem 6.2 the operator Θ is diagonalizable on i−10 TX/C the
possible eigenvalues being integers. For p ∈ Z and N À 0 we have:

dimKer (p−Θ | i−10 TX/C) = dim NHp
C

(34)
= dimKer ιpN − dim NGrpFil0H

n(Xan,R)

+dimR
NGrpFH

n(Xan,C)− dim NGrpπ1(F )H
n(Xan,R(1)) .

Using the exact sequence:

0 −→ NGrpγH
n(Xan,R) −→ NGrpFH

n(Xan,C)
π1−→ NGrpπ1(F )H

n(Xan,R(1)) −→ 0

we see that this is equal to:

dimKer ιpN + dim NGrpγH
n(Xan,R)− dim NGrpFil0H

n(Xan,R) .
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Since

NGr
•

Fil0H
n(Xan,R) =

⊕

−N<p≤0

Hn(Xan,R)

we find

Ker ιN = Ker


 ⊕

−N<p≤0

Hn(Xan,R) −→
⊕

−N<p≤0

F p/F p+N




=
⊕

−N<p≤n−N

γp+NHn(Xan,R)

if N ≥ n. A short calculation now gives the result. 2

Remark. I cannot make the idea rigorous at present but it seems to me that
the complexes Rnπ∗DRX/C and Rnπ∗DRX/R should have an interpretation in
terms of a suitable perverse sheaf theory. Let us look at an analogy:

Consider a possibly singular variety Y over Fp and let j : U ⊂ Y be a smooth
open subvariety. If π : X → U is smooth and proper the intermediate extension
F = j!∗R

nπ∗Ql for l 6= p is a pure perverse sheaf. We have the L-function

LY (H
n(X), t) :=

∏

y∈|Y |

detQl
(1− tFry | Fy)

−1

=
∏

i

detQl
(1− tFrp |H

i(Y ⊗ Fp,F))
(−1)i+1

.

By perverse sheaf theory and Deligne’s work on the Weil conjectures it satisfies
a functional equation and the Riemann hypotheses.

For varieties over number fields Y corresponds to the “curve” spec ok and for
U we can take e.g. spec ok. Hypothetically a better analogue for Y (or more
precisely for Y ⊗Fp) is the dynamical system (“spec ok”, φ

t) whose existence is
conjectured in [D7]. For U we would take the subsystem (“spec ok”, φ

t) which
has no fixed points of the flow i.e. singularities. This is one motivation for the
above idea. Another comes from the discussion in sections 5 and 9 of [D5].

Incidentally the appendix to the preceeding section was motivated by the use
of the deformation to the normal cone in perverse sheaf theory [V2].

We would also like to point out that there is an exact triangle in the derived
category of AR-modules with a flow:

ξC(H
n(Xan,R), γ

•
) −→ P −→ T ∗C (−1)[−1] −→ . . .

where

P = RHomAR
(Rnπ∗DX/C,AR(−1)) .
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Here ξC sits in degree zero with one-dimensional support and T ∗C (−1)[−1]
sits in degree one with zero-dimensional support. This follows by applying
RHomAR

( ,AR(−1)) to the exact sequence:

0 −→ TX/C −→ Rnπ∗DX/C −→ Rnπ∗(DX/C)/TX/C −→ 0

and noting that

Ext1AR
(TX/C,AR(−1)) = T ∗X/C(−1)

:= HomAR
(TX/C,AR/r

NAR(−1)) for N À 0 .

A similar exact triangle exists for K = R of course.

Remark. One may wonder whether the torsion TX/K is also relevant for the
L-function. It seems to be partly responsible for the ε-factor at infinity as
follows: Let X/K be as usual a smooth and proper variety over K = R or C.
With normalizations as in [De1] 5.3 the ε-factor of Hn(X) is given by:

ε = exp(iπD) where D =
1

eK

∑

p∈Z

p(hp − dp) .

Here:

hp = dimC GrpFH
n(X,C) and dp = dimGrpVH

n(X,R) .

This description of the ε-factor can be checked directly. Alternatively it can
be found in a more general context in the proof of [D6] Prop. 2.7.
With these notations we have by 6.3:

dim(i−10 TX/C) =
∑

p∈Z

pdp

and

dim(i−10 TX/R) =
1

2

∑

p∈Z

pdp +
1

2
dimHn(Xan,R)− .
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[Si] C. Simpson, The Hodge filtration on nonabelian cohomology.Proc.
Symp. Pure Math. 62 (2) (1997), 217–281
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