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Abstract. Scroll waves are three-dimensional stacks of rotating spi-
ral waves, with spiral tips aligned along filament curves. Such spatio-
temporal patterns arise, for example, in reaction diffusion systems of
excitable media type.
We introduce and explore the crossover collision as the only generic
possibility for scroll wave filaments to change their topological knot
or linking structure. Our analysis is based on elementary singularity
theory, Thom transversality, and abackwards uniqueness property of
reaction diffusion systems.
All phenomena are illustrated numerically by six mpeg movies down-
loadable at

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.html

and, in the printed version, with six snapshots from each sequence.
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1 Introduction

Spatio-temporal scroll wave patterns have been observed both experimentally
and in numerical simulations of excitable media in three space dimensions. See
for example [36, 25, 20] and the references there. Typical experimental settings
are the Belousov-Zhabotinsky reactions and its many variants.
In two space dimensions, or in suitable planar sections through scroll wave
patterns, rigidly rotating spiral wave patterns occur; see figure 1. For pioneering
analysis motivated by propagation of electrical impulses in the heart muscle
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Figure 1: Spiral wave patterns (model see section 6). Shown on the left is a rigidly
rotating spiral wave with parameters as in section 6, on the right is a meandering
spiral wave, with parameter a = 0.65 instead of a = 0.8. For color coding see section 7.

see [34], 1946. Meandering tip motions are also observed; see for example
[35, 38, 5, 4] and the references there. There is some ambiguity in the definition
of the tip of a spiral. It is an admissible definition in the sense of [13, sec.4], to
associate tip positions (x1, x2) ∈ R2 at time t ≥ 0 with the location of zeros of
two components (u1, u2) of the solution describing the state of the system:

u = (u1, u2)(t, x1, x2) = 0.(1.1)

In a typical excitable medium the values of (u1, u2) trace out a cycle as shown
in figure 2, along x-circles around the spiral tip. In a singular perturbation
setting, steep wave fronts are observed along these x-circles. Only near the
spiral tip, these u-cycles shrink rapidly to the tip-value u = 0.
This scenario, among other observations, motivated Winfree to attempt a phe-
nomenological description in terms of states ϕ = u/|u| ∈ S1, for (almost) all
x ∈ R2, with remaining singularities of ϕ at the tip positions. In the present
paper, we return to a reaction diffusion setting for u = u(t, x) ∈ R2, keeping
in mind that the set u(t, x) = 0 is particularly visible, distinguished, and de-
scriptively important – not as an “organizing center”which causes the global
dynamics to follow its pace, but rather as a highly visible indicator of the global
dynamics. In fact, defining tip positions by other nonzero levels (t, x) ≡ const.,
inside the cycle of figure 2, works just as well, and only reflects some of the
ambiguity in the notion of “tip position”, as was mentioned above. With all
our results below holding true, independently of such a shift of u-values, we
proceed to work with u(t, x) = 0 as a definition of tip position.
Scroll waves in three space dimensions x = (x1, x2, x3) ∈ R3 can be viewed

Documenta Mathematica 5 (2000) 695–731



Crossover Collision of Scroll Wave Filaments 697

0.4

−0.4

0.4−0.4

u1

u2

0

Figure 2: A cycle of values (u1, u2)(t, x0) through a time-periodic wave front at a
suitably fixed position x0 in an excitable medium (see section 6). Polar coordinates
define a phase ϕ ∈ S1 along the dotted cycle.

as stacks of spiral waves with their tips aligned along a one-dimensional curve
called the tip filament. As in the planar case, the tip filament may move
around in R3, and the associated sectional spirals may continuously change
their shapes and their mutual phase relations with time. Denoting by (u1, u2)
two components of the solutions of the associated reaction diffusion systems,
again, we can consider filaments ϕt as given by the zero sets

u = (u1, u2)(t, x1, x2, x3) = 0.(1.2)

We use two components here because the local dynamics of excitable media
are essentially two-dimensional. More precisely, for each fixed time t > 0 the
filaments ϕt describe the zeros x ∈ R

3 of the solution profile

x 7→ u(t, x).(1.3)

In other words, the filament ϕt is the zero level set of the solution profile u(t, ·)
at time t.
Suppose zero is a regular value of u(t, ·), that is, the x-Jacobian ux(t, ·) possesses
maximal rank 2 at any zero of u. Then the filaments ϕt consist of embedded
curves in R3, by the implicit function theorem. Moreover the filaments depend
as smoothly on t as smoothness of the solution u permits.
Therefore, collision of filaments can occur only if the rank of ux(t, ·) drops. To

Documenta Mathematica 5 (2000) 695–731



698 Bernold Fiedler and Rolf M. Mantel

Figure 3: A scroll wave and its filament. The band is tangential to the wave front
at the filament.

b.) t = t0 c.) t > t0a.) t < t0

Figure 4: Crossover collision of oriented filaments at time t = t0

analyze the simplest possible case, we assume

u(t0, x0) = 0,
co-rank ux(t0, x0) = 1.

(1.4)

Let P denote a rank one projection along range ux(t0, x0) onto any complement
of that range. Let E = ker ux(t0, x0) denote the two-dimensional null space
of the 2 × 3 Jacobean matrix ux. We assume the following non-degeneracy
conditions for the time-derivative ut and the Hessian uxx, restricted to E:

Put(t0, x0) 6= 0, and
Puxx(t0, x0)|E is strictly indefinite.

(1.5)

A specific example u(t, x) satisfying assumptions (1.4), (1.5) at t = t0, x0 = 0
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is given by

u1(t, x) = (t − t0) + x2
1 − x2

2

u2(t, x) = x3.
(1.6)

In figure 4 we observe the associated crossover collision of filaments in pro-
jection onto the null space E: at t = t0 two filaments collide, and then re-
connect. Note that after collision the two filaments do not reconnect as be-
fore, re-establishing the previous filaments. Instead, they cross over, forming
bridges between originally distinct filaments. Figure 4 describes the universal
unfolding, by the time “parameter” t, of a standard transcritical bifurcation in
x-space. In fact, suppose u(t, x) satisfies assumptions (1.4), (1.5). Then there
exists a local diffeomorphism

τ = τ(t)
ξ = ξ(t, x)

(1.7)

mapping (t0, x0) to τ0 = t0, ξ0 = 0, such that the original zero set trans-
forms to that of example (1.6), rewritten in (τ, ξ)-coordinates. This follows
from Lyapunov-Schmidt reduction and elementary singularity theory; see for
example [15].
In an early survey, Tyson and Strogatz [31] hinted at topologically consistent
changes of the connectivity of oriented tip filaments, as a theoretical possibility.
The point of the present paper is to identify specific singularities, in the sense
of singularity theory, which achieve such changes and which, in addition, are
generic with respect to the initial conditions of general reaction diffusion sys-
tems. Genericity refers to topologically large sets. These sets contain countable
intersections of open dense sets, and are dense. We caution our PDE readers
here that we are not addressing issues like loss of regularity (smoothness) or
development of singularities in a blow-up sense. Genericity is based on pertur-
bations of only the initial conditions. We do not require any perturbations of
the underlying partial differential equations themselves.
We consider it a fundamental idea to study solutions u(t, x) of partial differ-
ential equations, qualitatively, by investigating the singularities of their level
sets – possibly for all, or at least for generic initial conditions. Such an idea is
already present in work by Schaeffer, [27], and more recently by Damon, [7],
[8], [9] and the references there. In view of example (2.12) for linear scalar
parabolic equations in one space dimension below, the first relevant example
can even be attributed to Sturm [28], 1836. For present day relevance of Sturm’s
observations, once motivated by Sturm-Liouville theory, see also [3], [12], [23].
The work by Schaeffer addresses level sets of strictly convex scalar hyperbolic
conservation laws in one space dimension. His analysis is based on the vari-
ational formulation due to Lax: for almost every (t, x) the solution u(t, x)
appears as the pointwise minimizer of a given function, which involves the
initial conditions u0(x) explicitly. The backwards uniqueness problem, a some-
what delicate technical point for our parabolic systems, is circumvented by the
explicit Lax formula in his context.
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Damon’s work is motivated by Gaussian blurring and by applications of the
linear heat equation to image processing, but applies to a large class of differ-
ential operators. Unfortunately, the partial differential equations are viewed as
purely local constraints on the k-jet of “solutions”. Neither initial nor boundary
conditions are imposed on these “solutions”. Genericity is understood purely
in the space of smooth such “solutions”. The important nonlocal PDE issue of
genericity in terms of initial conditions, as addressed in our present paper, has
not been resolved by Damon’s approach.
In contrast to these abstract results, strongly in the spirit of pure singularity
theory, our motivation is the global qualitative dynamics of reaction diffusion
systems. In particular, we do require our solutions u = u(t, x) to not only
satisfy the underlying partial differential equations near (t0, x0) but also the
respective initial and boundary conditions. For a technically detailed statement
see our main result, theorem 2.1 below. As a consequence, the crossover of
filaments just described is the one and only non-destructive collision of filaments
possible – for a generic set of initial conditions. See theorem 2.2.
The remaining sections are organized as follows. Preparing for the proof of
theorem 2.1, we provide an abstract jet perturbation lemma in section 3 which
is based on backwards uniqueness results for linear, non-autonomous parabolic
systems. In section 4, we prove theorem 2.1 using Thom’s jet transversality
theorem. Moreover we present a generalization to the vector case u ∈ R

m, m ≥
2, in corollary 4.2. Theorem 2.2 is proved in section 5. Section 6 summarizes a
fast numerical method, due to [11, 22], for time integration of a specific excitable
medium with steep fronts in three space dimensions. In section 7 we adapt
this method to compute filaments and their associated local isochrone phase
bands. We conclude with numerical examples illustrating crossover collisions in
autonomous and periodically forced reaction diffusion systems, including the
unlinking of linked twisted scroll rings and the unknotting of a trefoil torus
knot filament; see section 8.
Acknowledgment. Both authors are grateful to the Institute of Mathematics
and its Applications (IMA), Minneapolis, Minnesota. The main part of this
work was completed there during a PostDoc stay of the second author and
several visits of the first author as senior visiting scientist during the special year
”Emerging Applications of Dynamical Systems”, 1997/98. We are indebted to
Jim Damon for helpful discussions, and to the referee for additional references.
We thank Martin Rumpf and Peter Serocka for help with visualization. Support
by the Deutsche Forschungsgemeinschaft is also gratefully acknowledged.

2 Main Results

For a technical setting we consider semilinear parabolic systems

ui
t = divx(di(t, x)∇xui) + f i(t, x, u,∇xu)(2.1)

throughout the present paper. Here u = (u1, . . . , um) ∈ R
m, x =

(x1, . . . , xN ) ∈ Ω ⊂ RN . The data di, f i are smooth with uniformly posi-
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tive definite diffusion matrices di. The bounded open domain Ω is assumed to
have smooth boundary. Inhomogeneous mixed linear boundary conditions

αi(x)ui(t, x) + βi(x)∂νui(t, x) = γ(x)(2.2)

with smooth data and αi, βi ≥ 0, α2
i + β2

i ≡ 1 are imposed. Periodic bound-
ary conditions are also admissible, as well as uniformly parabolic semilinear
equations on compact manifolds with smooth boundaries, if any.
The solutions

u = u(t, x; u0)(2.3)

of (2.1), (2.2) with initial condition

u(0, x; u0) := u0(x)(2.4)

define a local semi-evolution system in the phase space X of profiles u0(·) in
any of the Sobolev spaces W k′,p(Ω), k′ > N/p, which satisfy the boundary
conditions (2.2); see [16] for a reference. By the smoothing property of the
parabolic system, solutions are in fact smooth in their maximal open intervals
of existence t ∈ (0, t+(u0)) and depend smoothly on u0 ∈ X , both when viewed
pointwise and when viewed as x-profiles u(t, ·; u0) ∈ X .
To address the issue of singularities u(t0, x0) = 0, in the sense of singularity the-
ory, we consider the jet space Jk

x of Taylor-polynomials in x = (x1, . . . , xN ) ∈
RN of degree at most k, with real coefficients and vector values u ∈ Rm. Defin-
ing the k-jet jk

xu with respect to x at (t0, x0) as

(jk
xu)(t0, x0) := (u, ∂xu, . . . , ∂k

xu)(t0, x0),(2.5)

Taylor expansion at x0 allows us to interpret jk
xu(t0, x0) as an element of our

linear jet space Jk
x satisfying

u(t0, x0) = 0.(2.6)

Here and below, we assume that k′ > k + N/p so that the evaluation

u 7→ jk
xu(t0, x0)(2.7)

becomes a bounded linear map from X to Jk
x , by Sobolev embedding.

On the level of k-jets, a notion of equivalence is induced by the action of local
Ck-diffeomorphisms x 7→ Φ(x), u 7→ Ψ(u) fixing the origins of x ∈ RN , u ∈ Rm,
respectively. Indeed, for any polynomial p(x) ∈ Jk

x with p(0) = 0, we may
consider the transformed polynomial

jk
x(Ψ ◦ p ◦ Φ) ∈ Jk

x .(2.8)

We call the jet (2.8) contact equivalent to jk
xp = p; see for example [15].
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By a variety S ⊂ R` we here mean a finite disjoint union

S =

j0⋃

j=0

Sj(2.9)

of embedded submanifolds Sj ⊂ R` with strictly decreasing dimensions such
that Sj1 ∪ . . .∪Sj0 is closed for any j1. We call codimR` S0 the codimension of
the variety S in R`.
Similarly, by a singularity (in the sense of singularity theory) we mean a variety
S ⊂ Jk

x in the sense of (2.9), which satisfies u = 0 and is invariant under any
of the contact equivalences (2.8). Let codimJk

x
S denote the codimension of

S, viewed as a subvariety of Jk
x . Shifting codimension by N = dim x for

convenience we call

codim S := (codimJk
x

S) − N(2.10)

the codimension of the singularity S. For example, a typical map (t0, x0) 7→
jk
xu(t0, x0) with x0 ∈ RN , u ∈ Rm will miss singularities of codimension 2 or

higher. In contrast, the map can be expected to hit singularities S of codi-
mension 1 at isolated points t = t0, and for some x0 ∈ RN . Having shifted
codimension by N in (2.10) therefore conveniently allows us to observe that
typical profiles of functions u(t, ·) miss singularities of codimension 2 entirely,
and encounter such singularities of codimension 1, anywhere in x ∈ RN , only
at discrete times t. We aim to show that this simple arithmetic also works for
PDE solutions u(t, x) under generic initial conditions.
Since the geometrically simple issue of codimension is overloaded with – some-
times conflicting – definitions in singularity theory, we add some examples
which illustrate our terminology. First consider the simplest case

S = {u = 0} ⊂ Jk
x .(2.11)

where u(t, ·) : RN → Rm. Then codim S = m − N . For systems of m = 2
equations in N = 0 space dimensions, that is, for ordinary differential equations
in the plane, typical trajectories fail to pass through the origin in finite time:
codim S = 2. For N = 1, we can expect the solution curve profile u(t, ·) to
pass through the origin at certain discrete times t0 and positions x0, because
codim S = 1. For N = 2 we have codimS = 0. We therefore expect isolated
zeros to move continuously with time: see our intuitive description of planar
spiral waves in section 1 and figure 1. Since codim S = −1 for N = 3, we
expect zeros of u(t0, ·) to occur along one-dimensional filaments, even for fixed
t0. This is the case of scroll wave filaments ϕt0 in excitable media.
Next we consider a scalar one-dimensional equation, m = N = 1. Multiple
zeros are characterized by

S = {u = 0, ux = 0},(2.12)
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Figure 5: Saddle-node singularities of codimension 1.

a set to which we ascribe codimension 1. Indeed, we can typically expect a pair
of zeros to coalesce and disappear as in (t0, x0) of figure 5. The opposite case,
a pair creation of zeros as in (t′0, x

′

0), does not occur for scalar nonlinearities
f satisfying f(t, x, 0, 0) = 0. This observation, going back essentially to Sturm
[28], conveys considerable global consequences for the associated semiflows; see
for example [12] and the references there.
Passing to planar 2-systems, m = N = 2, the same saddle-node bifurcations of
figure 5 could for example correspond to annihilation and creation of a pair of
tips of counter-rotating spirals, respectively.
We conclude our series of motivating examples with the singularity (1.4) of
filament collision in systems satisfying N = m + 1:

S = {u = 0, co-rank ux ≥ 1}.(2.13)

Note that codim S = 1. For the stratum S0 of S with lowest codimension we
can assume that the quadratic form Puxx|E is indeed nondegenerate, in the
notation of (1.5). Under the additional transversality assumption Put 6= 0, the
strictly indefinite case was discussed in section 1. It leads to crossover collisions,
which are our main applied motivation here. The strictly definite case, positive
or negative, leads to creation/annihilation of small circular filaments. For a
numerical realization of the associated scroll ring annihilation we refer to the
simulation in figure 8.
After our intermezzo on singularities we now address genericity. We say that
a property of solutions u(t, x; u0) of our semilinear parabolic system (2.1) –
(2.4) holds for generic initial conditions u0 ∈ X if it holds for a generic subset
of initial conditions. Here subsets are generic (or residual) if they contain a
countable intersection of open dense subsets of X . Recall that generic subsets
and countable intersections of generic subsets are dense in complete metric
spaces X , by Baire’s theorem; see [10, ch. 12].
With these preparations we can now state our main result concerning solutions
u(t, x) of our parabolic system (2.1) – (2.4) with generic initial conditions u0 ∈
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Figure 6: Annihilation (left) and creation (right) of closed filaments

X ⊂ W k′,p ↪→ Ck. As before 0 ≤ t < t+(u0) denotes the maximal interval of
existence. Finally, we recall that a map ρ : V → J between Banach spaces is
transverse to a variety S = S0 ∪ . . . ∪ Sj0 , in symbols:

ρ ∩> S,(2.14)

if ρ(v) ∈ Sj implies

Tρ(v)Sj + range Dρ(v) = J ;(2.15)

see for example [1, 19].

Theorem 2.1 For some fixed k ≥ 1, consider a finite collection of singularities
Si ⊂ Jk

x , each of codimension at least 1. Then the following holds true for
solutions u(t, x) of (2.1) – (2.4) with generic initial conditions u0 ∈ X.
Singularities Si with

codim Si ≥ 2(2.16)

are not encountered at any (t0, x0) ∈ (0, t+(u0)) × Ω. In other words,
jk
xu(t0, x0) ∈ Si for some 0 < t0 < t+(u0), x0 ∈ Ω implies codim Si = 1.

The map

(0, t+(u0)) × Ω → Jk
x

(t0, x0) 7→ jk
xu(t0, x0)

(2.17)

is in fact transverse to each of the varieties Si. In particular, the points (tn0 , xn
0 )

where the solution u(t, x) encounters singularities Si of codimension 1 are iso-
lated in the domain [0, t+(u0))×Ω of existence. Although there can be countably
many singular points (tn0 , xn

0 ) accumulating to the boundary t+(u0) or ∂Ω, the
values tn0 are pairwise distinct.
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Theorem 2.2 For some fixed k ≥ 1, consider solutions u(t, x) of (2.1) – (2.4)
with N = 3, m = 2, that is with x ∈ Ω ⊂ R3 and u(t, x) ∈ R2. Then for
generic initial conditions u0 ∈ X the following holds true.

Except for at most countably many times t = tn
0 ∈ (0, t+(u0)), the filaments

{x ∈ Ω | u(t, x) = 0}(2.18)

are curves embedded in Ω, possibly accumulating at the boundary. At each
exceptional value t = tn0 , exactly one of the following occurs at a unique location
xn

0 ∈ Ω:

(i) a creation of a closed filament, or

(ii) an annihilation of a closed filament, or

(iii) a crossover collision of filaments.

For cases (i),(ii) see figures 6, 8; for case (iii) see figures 4, 9–13, and
(1.4) – (1.6).

3 Jet Perturbation

In this section we prove a perturbation result, lemma 3.1, which is crucial to our
proof of theorem 2.1. We work in the technical setting of semilinear parabolic
systems (2.1) – (2.4) with associated evolution

u = u(t, x; u0)(3.1)

on the phase space X of W k′,p(Ω)-profiles u(t, ·, ; u0) satisfying Robin boundary
conditions (2.2). Let k′ − N

p
> k ≥ 1, to ensure the Sobolev embedding

X ↪→ Ck(Ω). Let

D := {(t, x, u0) | x ∈ Ω, u0 ∈ X, 0 < t < t+(u0)}(3.2)

denote the interior of the domain of definition.

Lemma 3.1 The map

jk
xu : D → Jk

x

(t, x, u0) 7→ jk
xu(t, x; u0)

(3.3)

is a Cκ map, for any κ. For any (t, x, u0) ∈ D, the derivative

Du0
jk
xu(t, x; u0) : X → Jk

x(3.4)

is surjective.
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Proof:
The regularity claim follows from smoothness of the data di, f i, αi, βi and the
smoothing action of parabolic systems; see for example [16, 26, 29, 14, 21].
To prove surjectivity of the linearization (3.4) with respect to the initial con-
dition, we essentially follow [16]. First observe that for any fixed x0 ∈ Ω the
linear evaluation map

jk
x : X → Jk

x

v 7→ jk
xv(x0)

(3.5)

is bounded, because X ↪→ Ck(Ω), and trivially surjective. Moreover, the jet
space Jk

x is finite-dimensional. It is therefore sufficient to show that the lin-
earization

Du0
u(t, ·; u0) : X → X

v0 7→ v(t·)
(3.6)

possesses dense range, for all u0 ∈ X , 0 < t0 < t+(u0). Here v(t, ·) satisfies
the linearized parabolic system

vi
t = divx(di(t, x)∇xvi) + f i

p · ∇xv + f i
u · v(3.7)

with boundary conditions (2.2) for v and initial condition v(0, ·) = v0. The
partial derivatives f i

p, f
i
u of the nonlinearity f = f(t, x, u, p) are to be evaluated

along (t, x, u(t, x),∇xu(t, x)).
To show the density of range Du0

u(t, ·; u0) in X , we now proceed indirectly.
Suppose

closXDu0
u(t0, ·; u0)X 6= X.(3.8)

Then X contains a nonzero element w(t0, ·) in the L2-orthogonal complement
of Du0

u(t, ·; u0)X in X . Consider the associated solution w(t, ·) ∈ X of the
formal adjoint equation

wi
t = −divx(di(t, x)T∇xwi) +

∑

j

divx(wjf j
pi

) − (fT
u w)i(3.9)

for 0 ≤ t ≤ t0, still with boundary conditions (2.2) but with “initial” condition
w(t0, ·) at t = t0. We again use the notation f j

pi
for the partial derivative of f j

with respect to ∇ui, here.
Direct calculation shows that scalar products 〈·, ·〉 between solutions v(t, ·) of
the linearization (3.7) and solutions w(t, ·) of its formal adjoint (3.9) in L2(Ω)
are time-independent. Therefore, by construction of w(t0, ·)

〈v(t, ·), w(t, ·)〉L2(Ω) = 〈v(t0, ·), w(t0, ·)〉 = 0,(3.10)

for all 0 ≤ t ≤ t0. Evaluating at t = 0, v(0, ·) = v0 ∈ X , we conclude

〈v0, w(0, ·)〉L2(Ω) = 0(3.11)
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for all v0 ∈ X , and hence

w(0, ·) = 0.(3.12)

In other words, the backwards parabolic system (3.9) possesses a solution w(t, ·)
which starts nonzero at t = t0 > 0 but ends up zero at t = 0. This is a contra-
diction to the so-called backwards uniqueness property of parabolic equations.
See for example [14], [16] and the references there. By contradiction, we have
therefore proved that

closXDu0
u(t0, ·; u0)X = X,(3.13)

contrary to our indirect assumption (3.8). This completes the indirect proof of
the perturbation lemma. ./

4 Proof of Theorem 2.1

Our proof of theorem 2.1 is based on Thom’s transversality theorem [30, 1]. For
convenience we first recall a modest adaptation of the transversality theorem,
fixing notation. We use the concept of transversality of a map ρ to a variety S
as explained in (2.9), (2.14), (2.15). The proof is based on Sard’s theorem and
is not reproduced here.

Theorem 4.1 [Thom transversality]
Let X be a Banach space, D ⊆ R` × X open and

ρ : D → R`′

(y, u0) 7→ ρ(y, u0)
(4.1)

a Cκ-map. Let S ⊂ R`′

be a variety and assume

ρ ∩> S,(4.2)

κ > max{0, `− codim
R`′ S}.(4.3)

Then the set

XS := {u0 ∈ X | ρ(·, u0) S, where defined}(4.4)

is generic in X (that is: contains a countable intersection of open dense sets).

The point of the theorem is, of course, that in XS transversality to S is
achieved, for fixed u0, by varying only y in ρ(y, u0). For example, u0 ∈ XS and
codim

R`′ S > ` imply

ρ(y, u0) 6∈ S(4.5)
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whenever y is such that (y, u0) ∈ D. This follows immediately from condition
(2.15) on transversality. In other words, for generic u0 the image of ρ(·, u0)
misses varieties of sufficiently high codimension.
We now use theorem 4.1 to prove our main result, theorem 2.1. We consider
the jet evaluation map

ρ(t, x, u0) := jk
xu(t, x; u0)(4.6)

of the evolution u(t, ·; u0) associated to our parabolic system; see (2.1) – (2.5).
We choose D to be the (open) domain of definition

D = {(t, x, u0) | 0 < t < t+(u0), x ∈ Ω, u0 ∈ X}(4.7)

of the evolution; clearly y = (t, x) ∈ RN+1 so that ` = N + 1. For the variety
S we choose, successively, any of the finitely many singularities S i ⊂ Jk

x of
theorem (2.1). Their codimensions as subvarieties of Jk

x
∼= R`′

are

codimJk
x

Si = N + codim Si;(4.8)

see (2.10). Note that assumptions (4.2) and (4.3) both hold, independently of
the choice of k for the varieties Si ⊆ Jk

x , by lemma 3.1. Claim (2.17) about
transversality of (t0, x0) 7→ u(t0, x0; u0) to any singularity Si is now just the
statement of theorem 4.1.
Next, we prove that singularities Si with codim Si ≥ 2 are missed altogether,
for generic initial conditions u0 ∈ X , as was claimed in (2.16). We evaluate
(4.8) to yield

codimJk
x

Si = N + codim Si ≥ N + 2 > N + 1 = `(4.9)

In view of example (4.5), this proves our claim (2.16): generically, only singu-
larities Si with codim Si = 1 are encountered.
Now we prove that the positions (tn

0 , xn
0 ), where singularities Si with codim Si =

1 are encountered, are generically isolated in [0, t+(u0)) × Ω. Indeed assum-
ing jk

xu0 6∈ Si, we have tn0 > 0 without loss of generality. Since the lower-
dimensional strata Si

j , j ≥ 1 of the singularity Si are of (singularity) codimen-
sion ≥ 2, they are missed by solutions entirely, for generic initial conditions u0.
Therefore

jk
xu(tn0 , xn

0 ; u0) ∈ Si
0(4.10)

only hit the maximal strata, staying away from the closed union of lower-
dimensional strata, uniformly in compact subsets of [0, t+(u0)) × Ω. Because
the Si

0 are finitely many embedded submanifolds of codimension N+1 in Jk
x and

because the crossings (4.10) are transverse, the corresponding crossing points
(tn0 , xn

0 ) are also isolated in [0, t+(u0)) × Ω, as claimed.
It remains to show that the values tn0 are mutually distinct for generic initial
conditions u0 ∈ X . To this end we consider the augmented map

ρ̃ : D̃ → Jk
x × Jk

x

(t, x1, x2, u0) → (jk
xu(t, x1; u0), j

k
xu(t, x2; u0))

(4.11)
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on the open domain

D̃ := {(t, x1, x2, u0) | 0 < t < t+(u), x1, x2 ∈ Ω, x1 6= x2, u0 ∈ X}.

(4.12)

To apply Thom’s transversality theorem 4.1, we only need to check the transver-
sality assumption (4.2). In fact we show

ρ̃ ∩> {0} ∈ Jk
x × Jk

x .(4.13)

This follows, analogously to lemma 3.1, from x1 6= x2 and the fact that the
linearization Du0

u(t0, ·; u0) possesses dense range in X ; see (3.6) – (3.13).
We can therefore apply theorem 4.1 to ρ̃ with respect to the varieties

S̃ := Si1 × Si2 .(4.14)

In Jk
x × Jk

x , these varieties have codimension

codimJk
x
×Jk

x
S̃ = 2N + codim Si1 + codim Si2 = 2N + 2(4.15)

Since this number exceeds

dim(t, x1, x2) = 2N + 1,(4.16)

the variety S̃ is missed by ρ̃(·, ·, ·; u0), for generic u0 ∈ X . See example (4.5)
again. Therefore the times tn0 where singularities Si can occur are pairwise
distinct for generic initial conditions, completing the proof of theorem 2.1. ./

Reviewing the proof of theorem 2.1, which hinges crucially on the transversality
statement (3.4) of our jet perturbation lemma 3.1, we state an easy generaliza-
tion which is important from an applied viewpoint. Suppose that only m′ ≤ m
profiles (or m′ linear combinations) out of the m profiles u = (u1, ..., um)(t, x)
are observable:

û := P̂u,(4.17)

for some linear rank m′ projection of Rm. Then û(t, x; u0) may encounter

certain singularities Ŝi in the space Ĵk
x of k-jets with values in range P̂ .

Corollary 4.2 Under the assumptions of theorem 2.1 and in the above set-
ting, theorem 2.1 remains valid, verbatim, for singularities Ŝi ⊂ Ĵk

x of the k-jets

jk
x û(t, x) of the observables û := P̂ u. We emphasize that codimensions of Ŝi

are then to be computed in Ĵk
x .

Proof:
Acting on the dependent variables (u1, . . . , um), only, the projection P̂ lifts to

a projection P̂k from Jk
x onto Ĵk

x such that

jk
x P̂u(t, x; u0) = P̂kjk

xu(t, x; u0)(4.18)
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Therefore the surjectivity property (3.4) of lemma 3.1 remains valid for

Du0
jk
x û(t, x; u0) : X → Ĵk.(4.19)

Repeating the proof of theorem 4.1, now on the level of û, Ĵk
x , Ŝi, proves the

corollary. ./

5 Proof of Theorem 2.2

To prove theorem 2.2 we invoke theorem 2.1 for x ∈ Ω ⊂ R3, u(t, x) ∈ R2, and
appropriate singularities Si ⊂ Jk

x of singularity codimension 1, in the sense of
(2.10).
We first consider the case that 0 is a regular value of u(t, ·) on Ω, that is

rank ux(t0, x0) = 2(5.1)

is maximal, whenever u(t0, x0) = 0, 0 < t0 < t+(u0), x0 ∈ Ω. Then the
filament

{x ∈ Ω | u(t0, x) = 0}(5.2)

is an embedded curve in Ω, as claimed in (2.18).
Next consider the case

rank ux(t0, x0) ≤ 1.(5.3)

Let S ⊂ Jk=2
x be the set of those 2-jets (u, ux, uxx) ∈ Jk=2

x satisfying u = 0
and rank ux = 1. Clearly S is a singularity in the sense of (2.9), (2.10) and

codim S = 1(5.4)

as was discussed in example (2.13). We recall that the maximal stratum S0 of
S, determining the codimension, is given by the conditions

rank ux = 1,
Puxx|E nondegenerate.

(5.5)

Here E := ker ux denotes the kernel and P denotes a projection in R2 onto a
complement of the range of the Jacobian ux.
In view of example (2.13) and section 1, nondegeneracy of Puxx|E gives rise to
the three cases (i) - (iii) of corollary 2.2, via theorem 2.1, if only we show that

Put(t0, x0) 6= 0(5.6)

whenever j2
xu(t0, x0) ∈ S.

By theorem 2.1, we have

j2
xu(·, ·) ∩> S(5.7)
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in J2
x , at (t0, x0). Evaluating only transversality in the first component u = 0

of j2
xu = (u, ux, uxx) ∈ J2

x , we see that

rank (ut, ux) = 2(5.8)

at (t0, x0). Since Pux = 0 by definition of P , this implies

Put(t0, x0) 6= 0(5.9)

and the proof of corollary 2.2 is complete. ./

6 Numerical Model and Methods

For our numerical simulations, we use two-variable N = 2 reaction-diffusion
equations

∂tũ
1 = 4ũ1 + f(ũ1, ũ2)

∂tũ
2 = D4ũ2 + g(ũ1, ũ2)

(6.1)

on a square or cube Ω with Neumann boundary conditions. The functions
f(ũ1, ũ2) and g(ũ1, ũ2) express the local reaction kinetics of the two variables
ũ1 and ũ2. The diffusion coefficient for the ũ1 variable has been scaled to unity,
and D is the ratio of diffusion coefficients. For the reaction kinetics we use

f(ũ1, ũ2) = ε−1ũ1(1 − ũ1)(ũ1 − uth(ũ2))
g(ũ1, ũ2) = ũ1 − ũ2,

(6.2)

with uth(ũ2) = (ũ2 + b)/a. This choice differs from traditional FitzHugh-
Nagumo equations, but facilitates fast computer simulations [11]. In non-
autonomous simulations, we periodically force the excitability threshold b =
b(t) = b0 + A cos(ωt). We keep most model parameters fixed at a = 0.8, b0 =
0.01, ε = 0.02, and D = 0.5.
Without forcing, the medium is strongly excitable, see figure 1. See figure 2
for the dynamics of a wave train. In two space dimensions, the equations
generate rigidly rotating spirals with small cores. These spirals are far from
the meander instability, and appropriate initial conditions quickly converge to
rotating waves. We map the coordinates (ũ1, ũ2) into the (u1, u2)-coordinates
of theorem 2.1 by setting u1 = ũ1 − 0.5 and u2 = ũ2 − (a/2 − b0). We have
remarked in the introduction, already, that our results are not effected by such
a shift of level sets.
In the autonomous cases we choose a forcing amplitude A = 0, of course. For
collision of spirals in two dimensions, we choose A = 0.01, ω = 3.21. For
collision of scroll wave filaments in three dimensions, we choose A = 0.01, ω =
3.92.
The challenging aspect of computing wave fronts in excitable media is the res-
olution of both spatial and temporal details of the wave fronts while the inter-
esting global phenomena occur on a much slower time scale. Since both spatial
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and temporal resolutions have to be high, the main computational speedup is
achieved by minimizing the number of operations necessary per time step and
space point.
Simulations with cellular automata encounter problems due to grid isotropies
[17, 32, 33]. The existence of persistent spatial wave fronts impedes algorithms
with variable time steps. Due to linearity of the spatial operator, methods with
fixed, small time steps are feasible. Moreover, ũ1 and ũ2 can be updated in
place away from the wave front.
We use a third-order semi-implicit stepping routine to time step f , combined
with explicit Euler time stepping for g and the Laplacian term. In the eval-
uation of f and in the diffusion of ũ1, we take into account that ũ1 ≈ 0 in a
large part of the domain, and that f(0, ũ2) = 0. This allows a cheap update
of approximately half of the grid elements and, even with a straightforward
finite-difference method, enables simulation on a workstation. The extra effort
of an adaptive grid with frequent re-meshing has been avoided.
In three space dimensions N = 3, we use a 19-point stencil with good numerical
properties (isotropic error, mild time-step constraint) for approximating the
Laplacian operator. In two dimensions N = 2, we use the analogous 9-point
stencil. Neumann boundary conditions are imposed on all boundaries.
For specific simulation runs in this paper, we take 1253 grid points. The domain
Ω is chosen sufficiently large, in terms of diffusion length, to exhibit scroll
wave collision phenomena. The time step 4t is chosen close to maximal: let h
denote grid size, σ = 3/8 the stability limit of the Laplacian stencil, and choose
4t := 0.784σh2. This results in the following numerical parameters: domain
Ω = −[15, 15]3, grid spacing h = 30/124 ≈ 1/4, time step 4t = 0.0172086,
giving 4t/ε = 0.86043. For high-accuracy studies of the collision of scroll
waves, we use a higher resolution of Ω = [−10, 10]3, h = 20/124 ≈ 1/6, 4t =
0.00764828, giving 4t/ε = 0.3882414. Note that 4t/ε < 1 in both cases, which
means that the temporal dynamics are well resolved. Further numerical details
for the three-dimensional simulations are given in [11].

7 Filament Visualization

After discretization in the cube domain Ω, and time integration, the solution
data u(t, x) ∈ R2 are given as values u(ti, xi) at time steps ti and at positions
xi on a Cartesian lattice. In our two-dimensional examples, figure 1 and exam-
ple 8.2, we show the vector field (ũ1, ũ2) = (u1 + 0.5, u2 + (a/2− b0), choosing
for each point a color vector in RGB space of (u1, 0.73 ∗ (u2)2, 1.56 ∗ u2). We
also mark the (past) trace of the tip path in white, to keep track of the move-
ments of the spiral tip. In figure 3 and example 8.3, we depict the wave front
in x ∈ Ω as the surface u1 = 0.
To determine the filament location, alias the level set

ϕt := {x ∈ Ω | u1(t, x) = u2(t, x) = 0},(7.1)

we use a simplicial algorithm in the spirit of [2, ch. 12].
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As in section 6, let Q ⊆ Ω be any of the small discretization cubes. We trian-
gulate its faces by bisecting diagonals, denoting the resulting closed triangles
by τ . The corners of τ are vertices of Q. We orient τ according to the induced
orientation of ∂Q by its outward normal ν and the right hand rule applied to
(τ, ν).
By linear interpolation, u(t, τ) ⊂ R2 is also an oriented triangle. The filament
ϕt passes through τ , on the discretized level, if and only if 0 ∈ u(t, τ). Inverting
the linear approximation u on τ defines an approximation ϕt

ι ∈ τ to ϕt ∩ τ .
We orient ϕt to leave Q through τ , if the orientation of the triangle u(t, τ)
is positive (”door out”). In the opposite case of negative orientation we say
that ϕt enters Q through τ (”door in”). By elementary degree theory, the
numbers of in-doors and of out-doors coincide for any small discretization cube
Q. Matching in-doors ϕt

ι and out-doors ϕt
ι′ in pairs defines a piecewise linear,

oriented approximation to the filament ϕt. For orientations before and after
crossover-collision see figure 4.
Note that here and below, we freely discard certain degenerate, non-generic
situations from our discussion which complicate the presentation and tend to
confuse the simple issue. In fact, due to homotopy invariance of Brouwer degree,
this piecewise linear (PL) method is robust with respect to perturbations of
degeneracies like filaments touching a face of the cube Q or repeatedly threading
through the same triangle τ .
To indicate the phase near the filament ϕt, we compute a tangential approxi-
mation to the accompanying somewhat arbitrary isochrone

χt := {x ∈ Ω | u1(t, x) ≥ 0 = u2(t, x)}(7.2)

as follows. The values (u1, u2)(t, x) = (α, 0) with α > 0 define a local half
line in the face triangle x ∈ τ through the filament point ϕt

ι ∈ τ . Together
with a filament point ϕt

ι−1 in another cube face, this half line also defines a
half space which approximates the isochrone χt, locally . We choose a point
ϕ̃t

ι in this half space, a fixed distance from ϕt
ι and such that the line from

ϕt
ι to ϕ̃t

ι is orthogonal to the filament line from ϕt
ι−1 to ϕt

ι. The sequence
of triangles (ϕt

ι−1, ϕ̃
t
ι−1, ϕ̃

t
ι), (ϕ

t
ι−1, ϕ̃

t
ι, ϕ

t
ι) then define a triangulated isochrone

band approximating χt near the filament ϕt.
In practical computations shown in the next section, we distinguish an absolute
front and back of the isochrone band by color, independently of camera angle
and position. This difference reflects the absolute orientation of filaments, in-
troduced above, which induces an absolute orientation and an absolute normal
for the accompanying isochrone χt. The absolute normal of the isochrone χt

also points into the propagation direction of the isochrone, by our choice of
orientation.

8 Examples

In this section we present four simulations of three-dimensional filament dy-
namics, both in autonomous and in periodically forced cases. All examples are
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based on equations (6.1) with the set of nonlinearities and parameters speci-
fied there. We use a cube Ω = [−15, 15]3 as a spatial domain, together with
Neumann boundary conditions. Only in example 8.4, we use a smaller cube
Ω = [−10, 10]3. Reflecting the solutions through the boundaries we obtain an
extension to the larger cube 2Ω with periodic boundary conditions. Viewing
this system on the flat 3-torus T 3, equivalently, eliminates all boundary con-
ditions and avoids the issue of ∂Ω not being smooth. In the paper version,
each of the spatio-temporal singularities at (t0, x0) is illustrated by a series of
still shots: t ' 0, t / t0, t = t0, t ' t0 and t = tend for the respective run. In
the Internet version, each sequence is replaced by a downloadable animation in
MPEG-1 format; see

http://www.math.fu-berlin.de/~Dynamik/

For possible later, updated and revised versions, please contact the authors.
Discretization was performed by 1253 cubes and a time step of 4t = 0.0172086
(4t = 0.00764828 in example 8.4); see section 6. Autonomous cases refer to
the forcing amplitude A = 0, whereas A = 0.01 switches on non-autonomous
additive forcing.

8.1 Initial Conditions

Prescribing approximate initial conditions for colliding scroll waves in three
space dimensions is a somewhat delicate issue. We describe the construction
in 8.1.1, 8.1.2 below. We discuss our four examples in sections 8.3-8.6.

8.1.1 Two-dimensional spirals

According to our numerical simulations, planar spiral waves are very robust
objects. In fact, sufficiently separated nondegenerate zeroes of the planar “vec-
tor field” (u1

0, u
2
0)(x1, x2) of initial conditions typically seemed to converge into

collections of single-armed spiral waves. Their tips were located nearby the
prescribed zeroes of u0.
To prepare for our construction of scroll waves below, we nevertheless construct
u0 as a composition of two maps,

u0 = σ ◦ γ(8.1)

γ : R
2 ⊇ Ω → C(8.2)

(x1, x2) 7→ z

σ : C → R
2(8.3)

z 7→ (u1
0, u

2
0)

Here γ prescribes the geometric location of the spiral tip and wave fronts. The
scaling map σ is chosen piecewise linear. It adjusts for the appropriate range
of u-values to trace out a wave front cycle in our excitable medium, see fig. 2.
Specifically, we choose

σ(z) = (u1, u2) = (Re z, Im z/4)(8.4)
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near the origin. Further away, we cut off by constants as follows:

u1 :=





−0.5, when Re(z) < −0.5

Re(z), when Re(z) ∈ [−0.5, 0.5]

0.5, when Re(z) > 0.5

u2 :=





−0.4, when Im(z) < −1.6

0.25Im(z), when Im(z) ∈ [−1.6, 1.6]

0.4, when Im(z) > 1.6

(8.5)

In the following, we will sometimes further decompose σ = σ2 ◦ σ1 where

σ1(z) = (Re(z), Im(z)/4)(8.6)

is linear and the clamping σ2 : R2 → R2 is the cut-off

(u1, u2) 7→ (sign(u1) min{|u1|, 0.5}, sign(u2) min{|u2|, 0.4}).(8.7)

For example, this choice of σ, combined with the simplest geometry map
γ(x1, x2) = x1 + ix2, results in a spiral wave rotating clockwise around
the origin, with wave front at x1 = 0, x2 < 0, initially, and wave back at
x1 = 0, x2 > 0.
A possible initial condition for a spiral — antispiral pair as in example 8.2
below would be

γ : [−15, 15]2 → C

(x1, x2) 7→ |x1| − 6 + ix2.

This reflection symmetric initial condition creates a pair of spirals rotating
around (±6, 0). The spiral at (6, 0) rotates clockwise and the symmetric spiral
around (−6, 0) rotates anti-clockwise.

8.1.2 Three-dimensional scrolls

It is useful to visualize a three-dimensional scroll wave as a stack foliated by two-
dimensional slices which contain planar spirals. Initial conditions u0 = σ◦γ for
scroll waves then contain the following ingredients: a mapping γ : R

3 → C that
stacks the spirals into the desired three-dimensional geometry, and a scaling
σ : C → R2. For planar γ : R2 → C as in (8.2), the scaling σ of (8.3)–
(8.7) generates a spiral whose tip is at the origin in R2. For γ : R3 → C, the
preimage in R3 of the origin under the stacking map γ will therefore comprise
the filament of the three-dimensional scroll wave. For example, it is easy to find
a stacking map γ that gives rise to a single straight scroll wave with vertical
filament: γ(x1, x2, x3) := x1 + ix2. As soon as filaments are required to form
rings, linked rings or knots, however, the design of stacking maps γ with the
appropriate zero set becomes more difficult.
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For the generation of more complicated stacking maps γ, we largely follow the
method pioneered by Winfree et al [37, 18, 39]. This approach uses a standard
method of embedding an algebraic knot in 3-space [6]. For convenience of our
readers, we briefly recall the construction here.
We construct stacking maps γ : R

3 → C with prescribed, possibly linked or
knotted zero set as a composition

γ = p ◦ s.(8.8)

Here the embedding s : R3 → C2 will be related to the map

s̃ : R
3 → S

3
ε ⊂ R

4 = C
2(8.9)

denoting the inverse of the standard stereographic projection from the standard
3- sphere S3

ε of radius ε to R3; see (8.11) below. The map

p : C
2 → C(8.10)

is a complex polynomial p = p(z1, z2) in two complex variables z1, z2. The
zero set of p describes a real, two-dimensional variety V in C

2. Consider the
intersection ϕ̃ of V with the small 3-sphere S3

ε, that is ϕ̃ := V ∩ S3
ε . Typically,

ϕ := s−1(ϕ̃) ⊂ R3, the zero set of γ, will be a one-dimensional curve or a
collection of curves: the desired filament of our scroll wave.
In the simplest case ϕ may be a circle embedded into the 3-sphere S3

ε . If
however zero is a critical point of the polynomial p, then the filament ϕ need
not be a topological circle. And even if ϕ̃ happens to be a topological circle, it
may be embedded as a knot in S3

ε.
The inverse stereographic map s̃ is given explicitly by

s̃(x1, x2, x3) =
1

R2 + ε2




2ε2x1

2ε2x2

2ε2x3

(R2 − ε2)ε


 ∼=

2ε2

R2 + ε2

(
x1 + ix2

x3 + i (R
2
−ε2)

(2ε)

)
(8.11)

where R2 ≡ x2
1 + x2

2 + x2
3. Note that points inside S2

ε ⊂ R3 are mapped to the
lower hemisphere, points outside S2

ε to the upper hemisphere of S3
ε.

In our construction (8.8) of the stacking map γ, we now replace the inverse
stereographic map s̃ by the embedding

s(x1, x2, x3) ∼= c




x1

x2

x3

(cR2 − 1
4c

)


 ∼=

(
cx1 + icx2

cx3 + i(c2R2 − 1
4 )

)
(8.12)

with a suitable scaling factor c. Clearly x → ∞ in R3 implies s(x) → ∞ in
C2. In the examples 8.5, 8.6 of a pair of linked rings and of a torus knot
below, the filaments ϕ = γ−1(0) ∩ Ω, ϕ̃ = s(ϕ) = p−1(0) ∩ s(Ω) do not inter-
sect the compact boundaries of the cube ∂Ω, s(∂Ω), respectively. Therefore,
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the embedded paraboloid s(R3) can in fact be modified outside s(Ω) without
changing the filaments in Ω. We modify s such that clos s(R3) closes up to a
diffeomorphically embedded 3-shere S diffeotopic to S3 in C2 \{0}, by a family
sϑ of embeddings 0 ≤ ϑ ≤ 1. Moreover, we will choose p = p(z1, z2) such that
z1 = z2 = 0 is the only critical point of p in C

2. If the embedding sϑ(R3)
remains transverse to p−1(0) in C2 \ {0} throughout the diffeotopy, then the
variety p−1(0) is an embedded real surface in C2, outside z = 0. The filament
ϕ̃ = s(ϕ) = p−1(0) ∩ s(Ω) is diffeotopic to some components of p−1(0) ∩ S3

ε ,
which in turn are described classically in algebraic geometry.
The same remarks apply, slightly more generally, if we replace s by a compo-
sition

s ◦ `(8.13)

where ` denotes a nondegenerate affine transformation in R3.
In summary, we generate our initial conditions by applying the following com-
position of mappings:

u0 = σ ◦ γ = (σ2 ◦ σ1) ◦ (p ◦ s).(8.14)

Here the scaling σ is given by (8.5)–(8.7). The modified stereographic projec-
tion s is given by (8.12) with ` = id, except in example 8.5, and with appro-
priate scaling constant c. The polynomial p is chosen according to the desired
topology of the filament.
The initial conditions thus created do not necessarily respect the boundary con-
ditions; however any intersection of a filament with the boundary is transverse.
Anyways, such intersections only occur in example 8.4. Neumann boundary
conditions can be enforced artificially, by standard implementation, without
introducing additional filaments.

8.2 Two-dimensional spiral pair annihilation

As a preparation to visualizing the three-dimensional behavior, we begin with
the collision of a pair of counter-rotating planar spirals. We use a domain
Ω = [−15, 15]2 and discretize with 1252 grid points, resulting in the same
spatial and temporal resolution as with our three-dimensional experiments. In
the movie and pictures, we show the subdomain [−15, 15]× [−11.25, 11.25] to
get the 3:4 size ratio typical for video.
For initial conditions, we take the fully developed rigidly rotating spiral of
figure 1 with origin at (−6, 0), for the half-plane x1 ≤ 0, and reflect at the ver-
tical x2-axis. Near-resonant periodic forcing with an amplitude A = 0.01 and
ω = 3.21 causes the spirals to drift towards each other until they collide. The
forcing makes the spiral tips drift on an almost straight, epicyclic trajectory,
until they reach interaction distance at time t = 19.2. The paths of the tips
show that the forcing is strong enough to move the spirals by approximately
twice their tip radius per rotation (which is small in comparison to their wave
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t = 0 t = 19.60

t = 31.77 t = 35.08

t = 37.67 t = 38.46

Figure 7: Interaction and collision of a pair of spiral waves in the plane.
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length). During the interaction time of the spiral tips, the u2 gradients are
much shallower than at other times. This can be seen by the fact that the
bright red part of the wave front is further away from the tip location.
The spirals then wander along the vertical axis, the excited center getting
smaller with every revolution. Finally the center is too small to sustain exci-
tation (t0 = 39.825) and disappears; the spirals annihilate. The purely local
interaction between the spiral tips shortly before collision from time t∗ = 19.2
up to the extinction at t0 = 39.825, x0 = (0, 1.4) is clearly visible from the tip
paths.
In view of theorem 2.1, this annihilation illustrates the left saddle-node singu-
larity of fig. 5 for dim u = dim x = 2.

8.3 Scroll ring annihilation

Our first three-dimensional example shows the disappearance of a closed cir-
cular filament as described, from an abstract singularity theory point of view,
in theorem 2.2,(ii), and as illustrated in figure 6. The example is autonomous,
A = 0. Viewed in a vertical planar slice through the center, the dynamics is
reminiscent of the two-dimensional spiral pair annihilation 8.2. Instead of pe-
riodic forcing, this time, the curvature of the three-dimensional filament seems
to be responsible for the filament contraction and annihilation [24].
The simplest initial conditions to create a scroll ring would be via the poly-
nomial p(z1, z2) = z2, resulting in the vertical axis s̃(Rez2) = x3 = 0 being a
symmetry axis both for u0 and for Ω ⊂ R3. In order for the initial conditions
to be less symmetric with respect to the boundaries of the domain Ω, we apply
the translation `x = x−x∗ with x∗ = (−1.5, 3, 0), and we choose a polynomial
p that also depends on z1. Our initial conditions are prescribed by (8.14), using

p = z2 + 0.1 iz1,
c = 8/21.

(8.15)

Under discretization, scroll ring annihilation occurs at

t0 = 9.10; x0 = (−1.5, 3.5,−0.5).(8.16)

For illustration/animation see figs. 8.

8.4 Crossover collision of scroll waves

We now return to the motivating phenomenon of this paper, outlined in the
introduction; see (1.6) and figure 4.
For finer spatial resolution, we choose a smaller domain, Ω = [−10, 10]3, with
discretization into 1253 cubes. Due to the finer space discretization of 20/124
instead of 30/124, we choose a smaller time step of 4t = 0.00764828. The
example is non-autonomous, with forcing amplitude A = 0.01 and frequency
ω = 3.92. Circumventing the polynomial construction γ = p ◦ s, we take

γ(x̃/c) = ((x3 + π/6) + i sin(x1))(sin(x2) − i(x3 − π/6)),(8.17)
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t = 4.16 t = 4.58

t = 15.32 t = 15.67

t = 15.74 t = 16.38

Figure 8: Scroll ring annihilation. By t = 4.2, a spiral-like cross-section has
formed. The scroll ring emits ball shaped target waves twice per revolution, starting at
approximately t = 4.58. After scroll ring annihilation at t0 = 23.45, the surface u1 = 0
largely follows a concentric target wave pattern rather than a scroll ring pattern. The
remaining target waves move outwards, and the medium becomes quiescent.
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t = 6.13 t = 17.875

t = 31.60 t = 35.654

t = 36.446 t = 39.918

Figure 9: Collision of scroll waves: Two scroll wave filaments drift towards each
other. After t = 17, they start interacting visibly. Around t = 34, the filaments
have found a common tangent plane and start lining up for collision. The crossover
collision occurs at t0 = 35.83, x0 = (−3.25, 3.25, 0). After collision, the filaments
connect adjacent faces of the cube rather than opposite faces.
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which has zeros in [−π/2, π/2]3 at (0, x2,−π/6) and at (x1, 0, π/6). Taking
u0 = σ ◦ γ, we then start with explicit initial conditions

u1
0(x) = sin(ax1)(ax3 − π/6) + sin(ax2)(ax3 + π/6),

u2
0(x) = 0.25 ∗ (sin(ax1) sin(ax2) − (ax3 + π/6)(ax3 − π/6)).

(8.18)

The spatial scaling factor a is chosen as π/20.
This example was selected because (8.17) has zeroes in [−π/2, π/2]3 at
(0, x2,−π/6) and at (x1, 0, π/6). Then (u1

0, u
2
0) has zeroes at (0, x̃2,−10/3)

and at (x̃1, 0, 10/3). Therefore, at t = 0, filaments are at right angles to each
other. Near resonant forcing with amplitude A = 0.01 and frequency ω = 3.92
is chosen, together with an appropriate initial phase, such that the filaments
drift towards each other and eventually interact.
Under discretization, crossover collision occurs at

t0 = 35.83; x0 = (−3.25, 3.25, 0).(8.19)

For illustration/animation see figures 9 and 10.
Naively, there would be at least two options for non-destructive collision of the
two scroll wave filaments. In figures 4, 9 and 10, the two primary filaments are
seen to touch, forming a crossing with four emanating semi-branches. Keeping
their orientation, the semi-branches could either simply re-connect, as before
the collision. Alternatively, they could separate and connect with that semi-
branch of matching orientation which they were not attached to previously.
The first scenario of a crossing collision may be more intuitive at first: the two
incoming semi-branches simply reconnect to their previous outgoing partners
without exchanging their pairing. Such a crossing clearly would not change the
global connectivity of the filaments. Viewed in projection onto the tangent
plane E at collision time t0, however, the filament branches would then have to
remain crossing immediately before and after collision time t0, in contradiction
to both theorem 2.2 and numerical observation in figures 9 and 10.
Note that the filaments, albeit initially straight lines, have to bend out of their
way considerably in order to accommodate a generic crossover collision in the
tangent plane E. Indeed, initial conditions, periodic forcing, and boundary
conditions are all chosen invariant under a rotation by 180o around the axis
A which diagonally connects the mid-edge points (−10, 10, 0) and (10,−10, 0)
of the domain Ω. This rotation invariance is preserved by the solution u(t, .).
Because rotation initially maps one filament into the other, the collision point
x0 must occur on the axis A – and it does, see (8.19). Similarly, the tangent
plane E must be orthogonal to A, forming angles of 45o with the straight line
initial conditions. We found it fascinating to watch the numerical filaments
obey all these predictions.
We caution the reader here that theorems 2.1 and 2.2, as they stand, do not
directly apply within restricted classes of symmetric initial conditions. In full
generality, the necessary modifications require a restriction to, and analysis of,
invariant singularities and their codimensions in spaces of symmetry invariant
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t = 35.764 t = 35.918

tangent plane

side view

top view

Figure 10: Details of the crossover collision: breaking and reconnecting scroll
wave filaments, consistently with theorem 2.2. The two incoming semi-branches ex-

change their pairing with the two outgoing semi-branches at t = t0, x = x0. Each
incoming semi-branch crosses over to its opposite outgoing semi-branch. The pro-
jected branches, when viewed locally in the tangent plane E = kerux to the collision
configuration at t = t0, x = x0, neither cross before nor after collision.
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k-jets, again based on transversality, lemma 3.1. The present example and
its codimension, however, comply with our simple rotation symmetry. In the
coordinates (1.6) of crossover collision this can be seen from invariance under
the 180o rotation (x1, x2) 7→ (−x1,−x2) around the x3 axis.

8.5 Collision of linked twisted scroll rings

In the previous non-autonomous example we have seen how crossover collisions
change the local connectivity of tip filaments. We now present an autonomous
example, with forcing amplitude A = 0, where two linked filaments merge into
a single filament. After collision the resulting filament is neither knotted nor
self-linked but is isotopic to a circle.
We start with initial conditions u0 prescribed by (8.14), with the polynomial
p = z2

1 − z2
2 and stereographic scaling factor c = 8/21 in (8.12).

p = z2
1 − z2

2 ,
c = 8/21.

(8.20)

Under discretization, crossover collision occurs at

t0 = 4.90, x0 = (0, 0,−2.14)(8.21)

For illustration/animation see fig. 11.
We comment on the changes of the global topological characteristics of twist
and linking which occur at the crossover collision in this example. See figure 12
for a caricature of the essential features.
To determine the twist of a non self-intersecting closed oriented filament ϕt,
we first orient the tip filament ϕt as described in section 7. Then we count
the integer winding number of the accompanying isochrone band χt around ϕt,
according to the right hand rule. The integer twist can be positive, negative, or
zero. Next suppose the filament ϕt spans an embedded disk, as all filaments in
figures 11, 12 do. The orientation of ϕt induces an orientation of the disk which,
again by the right hand rule, we can represent by a field of vectors ν normal
to the disk. To any other oriented filament crossing the disk transversely, we
associate a crossing sign +1, if the crossing is in the direction of ν, and −1
otherwise. Following [40], the sum of crossing signs on the disk adds up to the
twist of the boundary filament ϕt.
Applied to the schematic representation of figure 11 in figure 12, we conclude
that the two filaments ϕt

`, ϕt
r for t < t0 each have twist −1. After collision the

single remaining filament is untwisted. Our example therefore indicates that
one can hope, at best, for a conservation of the parity of the total twist.

8.6 Unknotting the trefoil knot by crossover collision

In the previous example two linked but unknotted filaments merged into a
single filament. Also, the initial conditions were far from a long-term solution
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t = 0.00 t = 1.665

t = 4.278 4.881

t = 4.910 t = 10.598

Figure 11: Crossover collision of two linked twisted filaments at t0 = 4.90, x0 =
(0, 0,−2.14) into a single untwisted filament.

MPEG-Movie [3.3MB,gzipped]

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/rings.mpg.gz

Documenta Mathematica 5 (2000) 695–731

http://www.mathematik.uni-bielefeld.de/documenta/vol-05/21.mpeg/rings.mpg.gz


726 Bernold Fiedler and Rolf M. Mantel

ϕt
` ϕt

r

Figure 12: A caricature of the crossover collision of two linked, simply twisted
filaments ϕt

`, ϕt

r at t = t0. Before collision, each scroll ring possesses a twist of −1.
After collision, the resulting scroll ring is untwisted, globally.

of the equations. In contrast, we now take a trefoil knot as an initial condition
that already exhibits fully developed scroll waves. We then rescale space, which
is equivalent to a change of diffusion constants. This brings the filaments into
sufficiently close contact for interaction.
The initial conditions for this autonomous example, A = 0, are the numerical
end state of a coarser simulation on a domain Ω1 = [−25, 25]3, also running
on a numerical grid of 1253 grid points. The initial condition for the coarser
simulation (starting at time t = −10) is created using the polynomial p = z2

1−z3
2

with stereographic scaling factor c = 1/5 in (8.12):

z1 = 1/5(x1 + ix2);
z2 = 1/5x3 + i((x2

1 + x2
2 + x2

3)/52 − 1/4);
u1

0(x) = Re(z2
1 − z3

2) clamped by (8.7);
u2

0(x) = 0.25Im(z2
1 − z3

2) clamped by (8.7).

(8.22)

At time t = 0, we stop the simulation, keeping the same numerical data at grid
points but rescaling the domain to Ω = [−15, 15]3. This is the initial condition
at t = 0.
Under discretization, crossover collision from a trefoil knot to two linked rings
is observed at

t0 = 8.94, x0 = (0, 0,−9.28)(8.23)

For illustration/animation see figure 13. Again we provide a caricature in
figure 14.

8.7 Discussion of examples

We conclude our series of examples with some remarks. Concerning example
8.3 of scroll ring annihilation we observe that only untwisted scroll rings can be
directly annihilated. This follows from the normal form of the corresponding
singularity with positive definite quadratic form 〈Put, Puxx|E〉 at (t0, x0); see
section 1. More globally, it also follows from the observation that the shrinking
disk spanned by a circular filament near annihilation is not traversed by other
filaments. Indeed a filament shrinking around another, large filament would
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t = 0.00 t = 4.905

t = 7.985 t = 8.914

t = 8.966 t = 12.597

Figure 13: Decomposing the trefoil knot into two linked twisted unknotted fila-
ments by crossover collision at t0 = 8.94, x0 = (0, 0,−9.28). As explained in example
8.3, we see in figures 13, 14 how the trefoil knot with twist ±3 decomposes into two
unknotted, but mutually linked twisted filaments, each of twist −1.
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Figure 14: A caricature of the unknotting of the trefoil knot, showing the orien-
tations of all filaments.

require a three-dimensional kernel and hence a singularity of codimension at
least six.
We have not presented an example for the process opposing annihilation:
the creation of a circular filament by a negative definite quadratic form
〈Put, Puxx|E〉 at (t0, x0). Since the definiteness required for Puxx|E does not
predetermine the direction of 4u, we could construct initial conditions u0(x)
corresponding to scroll ring creation at t0 = 0, x0 ∈ Ω. Although we expect
scroll ring creation to be feasible also for large positive times t0, we did not
observe this phenomenon in our simulations so far.
Our results provide specific examples of the “internal” collision type, which [31]
have described as topologically viable; furthermore, we show that crossover
collision is the only generic way for scroll waves to change their topological
linking type.
From a modeling point of view, experimental systems may require substantially
more than just two dependent variables u1, u2 for an adequate description by
parabolic reaction diffusion systems. We repeat that theorem 4.2 predicts the
described two-variable phenomena to occur in any projection setting, where
only two combinations of the relevant quantities u1, ..., um are observable, for
example by color shading. We emphasize that this observation neither requires,
nor corresponds to, a dynamic reduction of the full underlying reaction diffusion
system by inertial manifolds or related techniques of dimension reduction.
Aiming at the ubiquitous wealth of phenomena of pattern formation and pat-
tern transformation, our paper has detected and addressed just a few elemen-
tary dynamic effects peculiar to systems of two equations in three space di-
mensions. Clearly, the theoretical framework supports significantly more com-
plicated spatio-temporal effects than were presented here. Applicability hope-
fully also will reach far beyond the specific motivating context of Belousov-
Zhabotinsky patterns or excitable media.
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