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Geschäftsführende Herausgeber / Managing Editors:

Alfred K. Louis, Saarbrücken louis@num.uni-sb.de
Ulf Rehmann (techn.), Bielefeld rehmann@mathematik.uni-bielefeld.de
Peter Schneider, Münster pschnei@math.uni-muenster.de

Herausgeber / Editors:

Don Blasius, Los Angeles blasius@math.ucla.edu
Joachim Cuntz, Heidelberg cuntz@math.uni-heidelberg.de
Bernold Fiedler, Berlin (FU) fiedler@math.fu-berlin.de
Friedrich Götze, Bielefeld goetze@mathematik.uni-bielefeld.de
Wolfgang Hackbusch, Kiel wh@informatik.uni-kiel.d400.de
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A. Böttcher
On the Approximation Numbers
of Large Toeplitz Matrices 1–29

Amnon Besser
On the Finiteness of X for Motives
Associated to Modular Forms 31–46

A. Langer
Selmer Groups and Torsion Zero Cycles on the
Selfproduct of a Semistable Elliptic Curve 47–59

Christian Leis
Hopf-Bifurcation in Systems with Spherical Symmetry
Part I : Invariant Tori 61–113

Jane Arledge, Marcelo Laca and Iain Raeburn
Semigroup Crossed Products and Hecke Algebras
Arising from Number Fields 115–138

Joachim Cuntz
Bivariante K-Theorie für lokalkonvexe Algebren
und der Chern-Connes-Charakter 139–182

Henrik Kratz
Compact Complex Manifolds
with Numerically Effective Cotangent Bundles 183–193

Ekaterina Amerik
Maps onto Certain Fano Threefolds 195–211

Jonathan Arazy and Harald Upmeier
Invariant Inner Product in Spaces of
Holomorphic Functions
on Bounded Symmetric Domains 213–261

Victor Nistor
Higher Index Theorems and
the Boundary Map in Cyclic Cohomology 263–295

Oleg T. Izhboldin and Nikita A. Karpenko
On the Group H3(F (ψ,D)/F ) 297–311

Udo Hertrich-Jeromin and Franz Pedit
Remarks on the Darboux Transform of
Isothermic Surfaces 313–333

iii



Udo Hertrich-Jeromin
Supplement on Curved Flats in the Space
of Point Pairs and Isothermic Surfaces:
A Quaternionic Calculus 335–350

Ernst-Ulrich Gekeler
On the Cuspidal Divisor Class Group of a
Drinfeld Modular Curve 351–374

Mikael Rørdam
Stability of C∗-Algebras is Not a Stable Property 375–386

iv



Doc.Math. J. DMV 1

On the Approximation Numbers

of Large Toeplitz Matrices

A. Böttcher∗

Received: January 14, 1997

Communicated by Alfred K. Louis

Abstract. The kth approximation number s
(p)
k (An) of a complex n× n

matrix An is defined as the distance of An to the n× n matrices of rank at
most n − k. The distance is measured in the matrix norm associated with
the lp norm (1 < p < ∞) on Cn. In the case p = 2, the approximation
numbers coincide with the singular values.

We establish several properties of s
(p)
k (An) provided An is the n× n trunca-

tion of an infinite Toeplitz matrix A and n is large. As n→∞, the behavior

of s
(p)
k (An) depends heavily on the Fredholm properties (and, in particular,

on the index) of A on lp.

This paper is also an introduction to the topic. It contains a concise history
of the problem and alternative proofs of the theorem by G. Heinig and F.
Hellinger as well as of the scalar-valued version of some recent results by S.
Roch and B. Silbermann concerning block Toeplitz matrices on l2.

1991 Mathematics Subject Classification: Primary 47B35; Secondary 15A09,
15A18, 15A60, 47A75, 47A58, 47N50, 65F35

1. Introduction

Throughout this paper we tacitly identify a complex n× n matrix with the operator
it induces on Cn. For 1 < p <∞, we denote by Cnp the space Cn with the lp norm,

‖x‖p :=
(
|x1|p + . . .+ |xn|p

)1/p
,

and given a complex n× n matrix An, we put

‖An‖p := sup
x 6=0

(
‖Anx‖p/‖x‖p

)
. (1)

∗Research supported by the Alfried Krupp Förderpreis für junge Hochschullehrer of the Krupp
Foundation
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2 A. Böttcher

We let B(Cnp ) stand for the Banach algebra of all complex n × n matrices with the

norm (1). For j ∈ {0, 1, . . . , n}, let F (n)j be the collection of all complex n× n matrices
of rank at most j, i.e., let

F (n)j :=
{
F ∈ B(Cnp ) : dim ImF ≤ j

}
.

The kth approximation number (k ∈ {0, 1, . . . , n}) of An ∈ B(Cnp ) is defined as

s
(p)
k (An) := dist (An,F (n)n−k) := min

{
‖An − Fn‖p : Fn ∈ F (n)n−k

}
. (2)

(note that F (n)j is a closed subset of B(Cnp )). Clearly,

0 = s
(p)
0 (An) ≤ s(p)1 (An) ≤ . . . ≤ s(p)n (An) = ‖An‖p.

It is easy to show (see Proposition 9.2) that

s
(p)
1 (An) =

{
1/‖A−1n ‖p if An is invertible,

0 if An is not invertible.
(3)

Notice also that in the case p = 2 the approximation numbers s
(2)
1 (An), . . . , s

(2)
n (An)

are just the singular values of An, i.e., the eigenvalues of (A∗nAn)1/2.

Let T be the complex unit circle and let a ∈ L∞ := L∞(T). The n× n Toeplitz
matrix Tn(a) generated by a is the matrix

Tn(a) := (aj−k)nj,k=1 (4)

where al (l ∈ Z) is the lth Fourier coefficient of a,

al :=
1

2π

2π∫

0

a(eiθ)e−ilθdθ.

This paper is devoted to the limiting behavior of the numbers s
(p)
k (Tn(a)) as n goes

to infinity.

Of course, the study of properties of Tn(a) as n→∞ leads to the consideration
of the infinite Toeplitz matrix

T (a) := (aj−k)∞j,k=1.

The latter matrix induces a bounded operator on l2 := l2(N) if (and only if) a ∈ L∞.
Acting with T (a) on lp := lp(N) is connected with a multiplier problem in case p 6= 2.
We let Mp stand for the set of all a ∈ L∞ for which T (a) generates a bounded operator
on lp. The norm of this operator is denoted by ‖T (a)‖p. The function a is usually
referred to as the symbol of T (a) and Tn(a).

In this paper, we prove the following results.

Theorem 1.1. If a ∈Mp then for each k,

s
(p)
n−k

(
Tn(a)

)
→ ‖T (a)‖p as n→∞.

Documenta Mathematica 2 (1997) 1–29



Approximation Numbers of Toeplitz Matrices 3

Theorem 1.2. If a ∈Mp and T (a) is not normally solvable on lp then for each k,

s
(p)
k

(
Tn(a)

)
→ 0 as n→∞

Let M〈2〉 := L∞. For p 6= 2, we define M〈p〉 as the set of all functions a ∈ L∞
which belong to Mp̃ for all p̃ in some open neighborhood of p (which may depend on
a). A well known result by Stechkin says that a ∈ Mp for all p ∈ (1,∞) whenever
a ∈ L∞ and the total variation V1(a) of a is finite and that in this case

‖T (a)‖p ≤ Cp
(
‖a‖∞ + V1(a)

)
(5)

with some constant Cp < ∞ (see, e.g., [5, Section 2.5(f)] for a proof). We denote by
PC the closed subalgebra of L∞ constituted by all piecewise continuous functions.
Thus, a ∈ PC if and only if a ∈ L∞ and the one-sided limits

a(t ± 0) := lim
ε→0±0

a(ei(θ+ε))

exist for every t = eiθ ∈ T. By virtue of (5), the intersection PC ∩M〈p〉 contains all
piecewise continuous functions of finite total variation.

Throughout what follows we define q ∈ (1,∞) by 1/p+ 1/q = 1 and we put

[p, q] :=
[

min{p, q},max{p, q}
]
.

One can show that if a ∈ Mp, then a ∈ Mr for all r ∈ [p, q] (see, e.g., [5, Section
2.5(c)]).

Here is the main result of this paper.

Theorem 1.3. Let a be a function in PC ∩M〈p〉 and suppose T (a) is Fredholm of
the same index −k (∈ Z) on lr for all r ∈ [p, q]. Then

lim
n→∞

s
(p)
|k|

(
Tn(a)

)
= 0 and lim inf

n→∞
s
(p)
|k|+1

(
Tn(a)

)
> 0.

For p = 2, Theorems 1.2 and 1.3 are special cases of results by Roch and Silber-
mann [20], [21]. Since a Toeplitz operator on l2 with a piecewise continuous symbol
is either Fredholm (of some index) or not normally solvable, Theorems 1.2 and 1.3
completely identify the approximation numbers (= singular values) which go to zero
in the case p = 2.

Now suppose p 6= 2. If a ∈ C ∩ M〈p〉, then T (a) is again either Fredholm or
not normally solvable, and hence Theorems 1.2 and 1.3 are all we need to see which
approximation numbers converge to zero. In the case where a ∈ PC ∩M〈p〉 we have
three mutually excluding possibilities (see Section 3):

(i) T (a) is Fredholm of the same index −k on lr for all r ∈ [p, q];

(ii) T (a) is not normally solvable on lp or not normally solvable on lq ;

Documenta Mathematica 2 (1997) 1–29



4 A. Böttcher

(iii) T (a) is normally solvable on lp and lq but not normally solvable on lr for some
r ∈ (p, q) := [p, q] \ {p, q}.

In the case (i) we can apply Theorem 1.3. Since

s
(p)
k

(
Tn(a)

)
= s

(q)
k

(
Tn(a)

)
(6)

(see (35)), Theorem 1.2 disposes of the case (ii). I have not been able to settle the
case (iii). My conjecture is as follows.

Conjecture 1.4. In the case (iii) we have

s
(p)
k

(
Tn(a)

)
→ 0 as n→∞

for every fixed k.

The paper is organized as follows. Section 2 is an attempt at presenting a short
history of the topic. In Section 3 we assemble some results on Toeplitz operators
on lp which are needed to prove the three theorems stated above. Their proofs are
given in Sections 4 to 6. The intention of Sections 7 and 8 is to illustrate how
some simple constructions show a very easy way to understand the nature of the
Heinig/Hellinger and Roch/Silbermann results. Notice, however, that the approach
of Sections 7 and 8 cannot replace the methods of these authors. They developed some
sort of high technology which enabled them to tackle the block case and more general
approximation methods, while in these two sections it is merely demonstrated that in
the scalar case (almost) all problems can be solved with the help of a few crowbars
(Theorems 7.1, 7.2, 7.4). Nevertheless, beginners will perhaps appreciate reading
Sections 7 and 8 before turning to the papers [13] and [25], [20].

2. Brief history

The history of the lowest approximation number s
(p)
1 (Tn(a)) is the history of the finite

section method for Toeplitz operators: by virtue of (3), we have

s
(p)
1

(
Tn(a)

)
→ 0⇐⇒ ‖T−1n (a)‖p →∞.

We denote by Φk(lp) the collection of all Fredholm operators of index k on lp. The
equivalence

lim sup
n→∞

‖T−1n (a)‖p <∞⇐⇒ T (a) ∈ Φ0(l
p) (7)

was proved by Gohberg and Feldman [7] in two cases: if a ∈ C∩M〈p〉 (where C stands
for the continuous functions on T) or if p = 2 and a ∈ PC. For a ∈ PC ∩M〈p〉, the
equivalence

lim sup
n→∞

‖T−1n (a)‖p <∞⇐⇒ T (a) ∈ Φ0(l
r) for all r ∈ [p, q] (8)

Documenta Mathematica 2 (1997) 1–29



Approximation Numbers of Toeplitz Matrices 5

holds. This was shown by Verbitsky and Krupnik [30] in the case where a has a single
jump, by Silbermann and the author [3] for symbols with finitely many jumps, and
finally by Silbermann [23] for symbols with a countable number of jumps. In the work
of many authors, including Ambartsumyan, Devinatz, Shinbrot, Widom, Silbermann,
it was pointed out that (7) is also true if

p = 2 and a ∈ (C +H∞) ∪ (C +H∞) ∪ PQC

(see [4], [5]). Also notice that the implication “=⇒” of (8) is valid for every a ∈ Mp.
Treil [26] proved that there exist symbols a ∈ M〈2〉 = L∞ such that T (a) ∈ Φ0(l

2)
but ‖T−1n (a)‖2 is not uniformly bounded; concrete symbols with this property can be
found in the recent article [2, Section 7.7].

The Toeplitz matrices

Tn(ϕγ) =

(
1

j − k + γ

)n

j,k=1

(γ 6∈ Z)

are the elementary building blocks of general Toeplitz matrices with piecewise contin-
uous symbols and have therefore been studied for some decades. The symbol is given
by

ϕγ(eiθ) =
π

sinπγ
eiπγe−iγθ, θ ∈ [0, 2π).

This is a function in PC with a single jump at eiθ = 1. Tyrtyshnikov [27] focussed
attention on the singular values of Tn(ϕγ). He showed that

s
(2)
1

(
Tn(ϕγ)

)
= O(1/n|γ|−1/2) if γ ∈ R and |γ| > 1/2

and that there are constants c1, c2 ∈ (0,∞) such that

c1/ logn ≤ s(2)1
(
Tn(ϕ1/2)

)
≤ c2/ logn.

Curiously, the case |γ| < 1/2 was left as an open problem in [27], although from the
standard theory of Toeplitz operators with piecewise continuous symbols it is well
known that

T (ϕγ) ∈ Φ0(l
2)⇐⇒ |Reγ| < 1/2

(see, e.g., [7, Theorem IV.2.1] or [5, Proposition 6.24]), which together with (7) (for
p = 2 and a ∈ PC) implies that

lim inf
n→∞

s
(2)
1

(
Tn(ϕγ)

)
= 0 if |Re γ| ≥ 1/2 (9)

and
lim inf
n→∞

s
(2)
1

(
Tn(ϕγ)

)
> 0 if |Re γ| < 1/2

(see [20]). A simple and well known argument (see the end of Section 3) shows that
in (9) the liminf can actually be replaced by lim.

Also notice that it was already in the seventies when Verbitsky and Krupnik [30]
proved that

lim
n→∞

s
(p)
1

(
Tn(ϕγ)

)
= 0 ⇐⇒ |Reγ| ≥ min{1/p, 1/q}

Documenta Mathematica 2 (1997) 1–29



6 A. Böttcher

(full proofs are also in [4, Proposition 3.11] and [5, Theorem 7.37; in part (iii) of
that theorem there is a misprint: the −1/p < Reβ < 1/q must be replaced by
−1/q < Reβ < 1/p]).

As far as I know, collective phenomena of s
(p)
1 (Tn(a)), . . . , s

(p)
n (Tn(a)) have been

studied only for p = 2, and throughout the rest of this section we abbreviate

s
(2)
k (Tn(a)) to sk(Tn(a)).

In 1920, Szegö showed that if a ∈ L∞ is real-valued and F is continuous on R,
then

1

n

n∑

k=1

F
(
sk(Tn(a))

)
→ 1

2π

2π∫

0

F
(
|a(eiθ)|

)
dθ. (10)

In the eighties, Parter [15] and Avram [1] extended this result to arbitrary (complex-
valued) symbols a ∈ L∞. Formula (10) implies that

{
sk(Tn(a))

}n
k=1

and
{
|a(e2πik/n)|

}n
k=1

(11)

are equally distributed (see [9] and [29]).

Research into the asymptotic distribution of the singular values of Toeplitz ma-
trices was strongly motivated by a phenomenon discovered by C. Moler in the middle
of the eighties. Moler observed that almost all singular values of Tn(ϕ1/2) are concen-
trated in [π− ε, π] where ε is very small. Formula (10) provides a way to understand
this phenomenon: letting F = 1 on [0, π− 2ε] and F = 0 on [π− ε, π] and taking into
account that |ϕ1/2| = 1, one gets

1

n

n∑

k=1

F
(
sk(Tn(ϕ1/2))

)
→ 1

2π

2π∫

0

F (1) dθ = F (1) = 0,

which shows that the percentage of the singular values of Tn(ϕ1/2) which are located
in [0, π− 2ε] goes to zero as n increases to infinity.

Widom [32] was the first to establish a second order result on the asymptotics of
singular values. Under the assumption that

a ∈ L∞ and
∑

n∈Z

|n| |an|2 <∞

and that F ∈ C3(R), he showed that

n∑

k=1

F
(
s2k(Tn(a))

)
=

n

2π

2π∫

0

F
(
|a(eiθ)|2

)
dθ +EF (a) + o(1)

with some constant EF (a), and he gave an expression for EF (a). He also introduced
two limiting sets of the sets

Σ(Tn(a)) :=
{
s1(Tn(a)), . . . , sn(Tn(a))

}
,

Documenta Mathematica 2 (1997) 1–29



Approximation Numbers of Toeplitz Matrices 7

which, following the terminology of [19], are defined by

Λpart
(

Σ(Tn(a))
)

:= {λ ∈ R : λ is partial limit of some sequence
{λn} with λn ∈ Σ(Tn(a))},

Λunif
(

Σ(Tn(a))
)

:= {λ ∈ R : λ is the limit of some sequence
{λn} with λn ∈ Σ(Tn(a))}.

It turned out that for large classes of symbols a we have

Λpart
(

Σ(Tn(a))
)

= Λunif
(

Σ(Tn(a))
)

= sp
(
T (a)T (a)

)1/2
(12)

where spA := {λ ∈ C : A − λI is not invertible} denotes the spectrum of A (on

l2) and a is defined by a(eiθ) := a(eiθ). Note that T (a) is nothing but the adjoint
T ∗(a) of T (a). Widom [32] proved (12) under the hypothesis that a ∈ PC or that a
is locally self-adjoint, while Silbermann [24] derived (12) for locally normal symbols.
Notice that symbols in PC or even in PQC are locally normal.

In the nineties, Tyrtyshnikov [28], [29] succeeded in proving that the sets (11) are
equally distributed under the sole assumption that a ∈ L2 := L2(T). His approach
is based on the observation that if ‖An − Bn‖F = o(n), where ‖ · ‖F stands for
the Frobenius (or Hilbert-Schmidt) norm, then An and Bn have equally distributed
singular values. The result mentioned can be shown by taking An = Tn(a) and
choosing appropriate circulants for Bn.

The development received a new impetus from Heinig and Hellinger’s 1994 paper
[13]. They considered normally solvable Toeplitz operators on l2 and studied the
problem whether the Moore-Penrose inverses of T+n (a) of Tn(a) converge strongly on
l2 to the Moore-Penrose inverse T+(a) of T (a). Recall that the Moore-Penrose inverse
of a normally solvable Hilbert space operator A is the (uniquely determined) operator
A+ satisfying

AA+A = A, A+AA+ = A+, (A+A)∗ = A+A, (AA+)∗ = AA+.

If a ∈ C, then T (a) is normally solvable on l2 if and only if a(t) 6= 0 for all t ∈ T.
When writing T+n (a)→ T+(a), we actually mean that T+n (a)Pn → T+(a), where Pn
is the projection defined by

Pn : {x1, x2, x3, . . .} 7→ {x1, x2, . . . , xn, 0, 0, . . .}. (13)

It is not difficult to verify that T+n (a) → T+(a) strongly on l2 if and only if T (a) is
normally solvable and

lim sup
n→∞

‖T+n (a)‖2 <∞. (14)

Heinig and Hellinger investigated normally solvable Toeplitz operators T (a) with
symbols in the Wiener algebra W ,

a ∈W ⇐⇒ ‖a‖W :=
∑

n∈Z

|an| <∞,

and they showed that then (14) is satisfied if and only if there is an n0 ≥ 1 such that

Ker T (a) ⊂ ImPn0 and Ker T (a) ⊂ ImPn0, (15)
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8 A. Böttcher

where KerA := {x ∈ l2 : Ax = 0} and ImA := {Ax : x ∈ l2}. (This formulation of
the Heinig-Hellinger result is due to Silbermann [25].) Conditions (15) are obviously
met if T (a) is invertible, in which case even ‖T−1n (a)‖2 is uniformly bounded. The
really interesting case is the one in which T (a) is not invertible, and in that case (15)
and thus (14) are highly instable. For example, if a is a rational function (without
poles on T) and λ ∈ spT (a), then

lim sup
n→∞

‖T+n (a− λ)‖2 <∞ (16)

can only hold if λ belongs to spTn(a) for all sufficiently large n. Consequently, (16)
implies that λ lies in Λunif(sp Tn(a)), and the latter set is extremely “thin”: it is
contained in a finite union of analytic arcs (see [22] and [6]).

What has Moore-Penrose invertibility to do with singular values ? The answer
is as follows: if An ∈ B(Cn2 ) and sk(An) is the smallest nonzero singular value of An,
then

‖A+n ‖2 = 1/sk(An).

Thus, (14) holds exactly if there exists a d > 0 such that

Σ(Tn(a)) ⊂ {0} ∪ [d,∞) (17)

for all sufficiently large n.

Now Silbermann enters the scene. He replaced the Heinig-Hellinger problem by
another one. Namely, given T (a), is there a sequence {Bn} of operators Bn ∈ B(Cn2 )
with the following properties: there exists a bounded operator B on l2 such that

Bn → B and B∗n → B∗ strongly on l2

and

‖Tn(a)BnTn(a) − Tn(a)‖2 → 0, ‖BnTn(a)Bn −Bn‖2 → 0,

‖(BnTn(a))∗ −BnTn(a)‖2 → 0, ‖(Tn(a)Bn)∗ − Tn(a)Bn‖2 → 0 ?

Such a sequence {Bn} is referred to as an asymptotic Moore-Penrose inverse of T (a).
In view of the (instable) conditions (15), the following result by Silbermann [25] is
surprising: if a ∈ PC and T (a) is normally solvable, then T (a) always has an asymp-
totic Moore-Penrose inverse. And what is the concern of this result with singular
values ? One can easily show T (a) has an asymptotic Moore-Penrose inverse if and
only if there is a sequence cn → 0 and a number d > 0 such that

Σ(Tn(a)) ⊂ [0, cn] ∪ [d,∞). (18)

One says that Σ(Tn(a)) has the splitting property if (18) holds with cn → 0 and d > 0.
Thus, Silbermann’s result implies that if a ∈ PC and T (a) is normally solvable on l2,
then Σ(Tn(a)) has the splitting property.

Only recently, Roch and Silbermann [20], [21] were able to prove even much
more. The sets Σ(Tn(a)) are said to have the k-splitting property, where k ≥ 0 is an
integer, if (18) is true for some sequence cn → 0 and some d > 0 and, in addition,
exactly k singular values lie in [0, cn] and n − k singular values are located in [d,∞)
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Approximation Numbers of Toeplitz Matrices 9

(here multiplicities are taken into account). Equivalently, Σ(Tn(a)) has the k-splitting
property if and only if

lim
n→∞

sk(Tn(a)) = 0 and lim inf
n→∞

sk+1(Tn(a)) > 0. (19)

A normally solvable Toeplitz operator T (a) on l2 with a symbol a ∈ PC is
automatically Fredholm and therefore has some index k ∈ Z. Roch and Silbermann
[20], [21] discovered that then Σ(Tn(a)) has the |k|-splitting property. In other words,
if a ∈ PC and T (a) ∈ Φk(l2) then (19) holds with k replaced by |k|. Notice that this
Theorem 1.3 for p = 2.

In fact, it was the Roch and Silbermann papers [20], [21] which stimulated me
to do some thinking about singular values. It was the feeling that the |k|-splitting
property must have its root in the possibility of “ignoring |k| dimensions” which led
me to the observation that none of the works cited in this section makes use of the fact
that sk(An) may alternatively be defined by (2), i.e. that singular values may also be
viewed as approximation numbers. I then realized that some basic phenomena of [20]
and [21] can be very easily understood by having recourse to (2) and that, moreover,
using (2) is a good way to pass from l2 and C∗-algebras to lp and Banach algebras.

3. Toeplitz operators on lp

We henceforth always assume that 1 < p <∞ and 1/p+ 1/q = 1.

Let Mp and M〈p〉 be as in Section 1. The set Mp can be shown to be a Banach
algebra with pointwise algebraic operations and the norm ‖a‖Mp := ‖T (a)‖p. It is
also well known that

Mp = Mq ⊂M2 = L∞

and
‖a‖Mp = ‖a‖Mq ≥ ‖a‖M2 = ‖a‖∞ (20)

(see, e.g., [5, Section 2.5]). We remark that working with M〈p〉 instead of Mp is caused
by the need of somehow reversing the estimate in (20). Suppose, for instance, p > 2
and a ∈ M〈p〉 . Then a ∈ Mp+ε for some ε > 0, and the Riesz-Thorin interpolation
theorem gives

‖a‖Mp ≤ ‖a‖γM2
‖a‖1−γp+ε = ‖a‖γ∞ ‖a‖1−γMp+ε

(21)

with some γ ∈ (0, 1) depending only on p and ε. The ‖a‖Mp+ε on the right of (21) may
in turn be estimated by Cp(‖a‖∞ + V1(a)) (recall Stechkin’s inequality (5)) provided
a has bounded total variation.

A bounded linear operator A on lp is said to be normally solvable if its range,
ImA, is a closed subset of lp. The operator A is called Fredholm if it is normally
solvable and the spaces

KerA := {x ∈ lp : Ax = 0} and CokerA := lp/ImA

have finite dimensions. In that case the index IndA is defined as

IndA := dim KerA − dim CokerA.
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10 A. Böttcher

We denote by Φ(lp) the collection of all Fredholm operators on lp and by Φk(lp) the
operators in Φ(lp) whose index is k. The following four theorems are well known.
Comments are at the end of this section.

Theorem 3.1. Let a ∈Mp.

(a) If a does not vanish identically, then the kernel of T (a) on lp or the kernel of T (a)
on lq is trivial.

(b) The operator T (a) is invertible on lp if and only if T (a) ∈ Φ0(l
p).

Of course, part (b) is a simple consequence of part (a).

Theorem 3.2. Let a ∈ C ∩M〈p〉. Then T (a) is normally solvable on lp if and only
if a(t) 6= 0 for all t ∈ T. In that case T (a) ∈ Φ(lp) and

IndT (a) = −wind a,

where winda is the winding number of a about the origin.

Now let a ∈ PC, t ∈ T, and suppose a(t − 0) 6= a(t + 0). We denote by

Ap(a(t − 0), a(t+ 0))

the circular arc at the points of which the line segment [a(t−0), a(t+0)] is seen at the
angle max{2π/p, 2π/q} and which lies on the right of the straight line passing first
a(t − 0) and then a(t + 0) if 1 < p < 2 and on the left of this line if 2 < p <∞. For
p = 2, Ap(a(t−0), a(t+0)) is nothing but the line segment [a(t−0), a(t+0)] itself. Let
a#p denote the closed, continuous, and naturally oriented curve which results from the
(essential) range R(a) of a by filling in the arcs Ap(a(t − 0), a(t+ 0)) for each jump.
In case this curve does not pass through the origin, we let winda#p be its winding
number.

Theorem 3.3. Let a ∈ PC ∩M〈p〉. Then T (a) is normally solvable on lp if and only

if 0 6∈ a#p . In that case T (a) ∈ Φ(lp) and

IndT (a) = −wind a#p .

For a ∈ PC and t ∈ T, put

Op
(
a(t − 0), a(t+ 0)

)
:=

⋃

r∈[p,q]

Ar
(
a(t − 0), a(t+ 0)

)
. (22)

If a(t− 0) 6= a(t+ 0) and p 6= 2, then Op(a(t− 0), a(t+ 0)) is a certain lentiform set.
Also for a ∈ PC, let

a#[p,q] :=
⋃

r∈[p,q]

a#r .
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Thus, a#[p,q] results from R(a) by filling in the sets (22) between the endpoints of the

jumps. If 0 6∈ a#[p,q], then necessarily 0 6∈ a#2 and we define winda#[p,q] as wind a#2 in

this case.

From Theorem 3.3 we deduce that the conditions (i) to (iii) of Section 1 are
equivalent to the following:

(i’) 0 6∈ a#[p,q] and wind a#[p,q] = k;

(ii’) 0 ∈ a#p ∪ a#q ;

(iii’) 0 ∈ a#[p,q] \ (a#p ∪ a#q ).

For a ∈ Mp, let Tn(a) ∈ B(Cnp ) be the operator given by the matrix (4). One
says that the sequence {Tn(a)} := {Tn(a)}∞n=1 is stable if

lim sup
n→∞

‖T−1n (a)‖p <∞.

Here we follow the practice of putting

‖T−1n (a)‖p =∞ if Tn(a) is not invertible.

In other words, {Tn(a)} is stable if and only if Tn(a) is invertible for all n ≥ n0 and
there exists a constant M < ∞ such that ‖T−1n (a)‖p ≤ M for all n ≥ n0. From (3)
we infer that

{Tn(a)} is stable ⇐⇒ lim inf
n→∞

s
(p)
1 (Tn(a)) > 0.

Theorem 3.4. (a) If a ∈ C ∩M〈p〉 then

{Tn(a)} is stable ⇐⇒ 0 6∈ a(T) and winda = 0.

(b) If a ∈ PC ∩M〈p〉 then

{Tn(a)} is stable ⇐⇒ 0 6∈ a#[p,q] and winda#[p,q] = 0.

As already said, these theorems are well known. Theorem 3.1 is due to Coburn
(p = 2) and Duduchava (p 6= 2), Theorem 3.2 is Gohberg and Feldman’s, Theorem
3.3 is the result of many authors in the case p = 2 and was established by Duduchava
for p 6= 2, Theorem 3.4 goes back to Gohberg and Feldman for a ∈ C ∩M〈p〉 (general
p) and a ∈ PC (p = 2), and it was obtained in the work of Verbitsky, Krupnik,
Silbermann, and the author for a ∈ PC ∩M〈p〉 and p 6= 2. Precise historical remarks
and full proofs are in [5].

Part (a) of Theorem 3.4 is clearly a special case of part (b). In fact, Theo-
rem 3.4(b) may also be stated as follows: {Tn(a)} contains a stable subsequence
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12 A. Böttcher

{Tnj(a)} (nj → ∞) if and only if 0 6∈ a#[p,q] and wind a#[p,q] = 0. Hence, we arrive at

the conclusion that if a ∈ PC ∩M〈p〉, then

s
(p)
1 (Tn(a))→ 0

⇐⇒ {Tn(a)} is stable

⇐⇒ 0 ∈ a#[p,q] or
(

0 6∈ a#[p,q] and winda#[p,q] 6= 0
)
.

At this point the question of whether the lowest approximation number of Tn(a) goes
to zero or not is completely disposed of for symbols a ∈ PC ∩M〈p〉.

4. Proof of Theorem 1.1.

Contrary to what we want, let us assume that there is a c < ‖T (a)‖p such

that s
(p)
n−k(Tn(a)) ≤ c for all n in some infinite set N . Since s

(p)
n−k(Tn(a)) =

dist (Tn(a),F (n)k ), we can find Fn ∈ F (n)k (n ∈ N ) so that ‖Tn(a) − Fn‖p ≤ c. For
x = (x1, . . . , xn) and y = (y1, . . . , yn), we define

(x, y) := x1y1 + . . .+ xnyn. (23)

By [16, Lemma B.4.11], there exist e
(n)
j ∈ Cnp , f(n)j ∈ Cnp , γ(n)j ∈ C such that

Fnx =
k∑

j=1

γ
(n)
j

(
x, f

(n)
j

)
e
(n)
j (x ∈ Cnp ),

‖e(n)j ‖p = 1, ‖f(n)j ‖q = 1, and

|γ(n)j | ≤ ‖Fn‖p ≤ ‖Tn(a)‖p + ‖Fn − Tn(a)‖p ≤ ‖T (a)‖p + c (24)

for all j ∈ {1, . . . , k}.
Fix x ∈ Cnp , y ∈ Cnq and suppose ‖x‖p = 1, ‖y‖q = 1. We then have

∣∣∣
(
Tn(a)x, y

)
−

k∑

j=1

γ
(n)
j

(
x, f

(n)
j

)(
e
(n)
j , y

)∣∣∣ ≤ ‖Tn(a)− Fn‖p ≤ c. (25)

Clearly, (Tn(a)x, y)→ (T (a)x, y). From (24) and the Bolzano-Weierstrass theorem we

infer that the sequence {(γ(n)1 , . . . , γ
(n)
k )}n∈N has a converging subsequence. Without

loss of generality suppose the sequence itself converges, i.e.
(
γ
(n)
1 , . . . , γ

(n)
k

)
→ (γ1, . . . , γk) ∈ Ck

as n ∈ N goes to infinity. The vectors e
(n)
j and f

(n)
j all belong to the unit sphere

of lp and lq, respectively. Hence, by the Banach-Alaoglu theorem (see, e.g., [18,

Theorem IV.21]), {e(n)j }n∈N and {f(n)j }n∈N have subsequences converging in the
weak ∗-topology. Again we may without loss of generality assume that

e
(n)
j → ej ∈ lp, f(n)j → fj ∈ lq
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Approximation Numbers of Toeplitz Matrices 13

in the weak ∗-topology as n ∈ N goes to infinity.

From (25) we now obtain that if x ∈ lp and y ∈ lq have finite support and
‖x‖p = 1, ‖y‖q = 1, then

∣∣∣
(
T (a)x, y)

)
−

k∑

j=1

γj(x, fj)(ej , y)
∣∣∣ ≤ c.

This implies that
‖T (a) − F‖p ≤ c (26)

where F is the finite-rank operator given by

Fx :=
k∑

j=1

γj(x, fj)ej (x ∈ lp). (27)

Let ‖T (a)‖(ess) denote the essential norm of T (a) on lp, i.e. the distance of T (a) to
the compact operators on lp. By (26) and (27),

‖T (a)‖(ess)p ≤ ‖T (a)− F‖p ≤ c < ‖T (a)‖p.

However, one always has ‖T (a)‖(ess)p = ‖T (a)‖p (see, e.g., [5, Proposition 4.4(d)]).
This contradiction completes the proof.

5. Proof of Theorem 1.2.

We will employ the following two results.

Theorem 5.1. Let A be a bounded linear operator on lp.

(a) The operator A is normally solvable on lp if and only if

kA := sup
x∈lp, ‖x‖p=1

dist (x,KerA) <∞.

(b) If M is a closed subspace of lp and dim (lp/M) < ∞, then the normal solv-
ability of A|M : M → lp is equivalent to the normal solvability of A : lp → lp.

A proof is in [8, pp. 159–160].

Theorem 5.2. If M is a k-dimensional subspace of Cnp , then there exists a projection
Π : Cnp → Cnp such that Im Π = M and ‖Π‖p ≤ k.

This is a special case of [16, Lemma B.4.9].

Theorem 1.2 is trivial in case a vanishes identically. So suppose a ∈Mp \{0} and
T (a) is not normally solvable on lp. Then the adjoint operator T (a) is not normally
solvable on lq . By Theorem 3.1(a), KerT (a) = {0} on lp or Ker T (a) = {0} on lq.
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14 A. Böttcher

Since s
(p)
k (Tn(a)) = s

(q)
k (Tn(a)), we may a priori assume that Ker T (a) = {0} on lp.

Abbreviate T (a) and Tn(a) to A and An, respectively.

Define Pn on lp by (13) and let

V := lp → lp, {x1, x2, x3, . . .} 7→ {0, x1, x2, x3, . . .}.

As A|Im V n : ImV n → lp has the same matrix as AV n : lp → lp, we deduce from
Theorem 5.1(b) that there is no n ≥ 0 such that AV n is normally solvable. Note that
Ker (AV n) = {0} for all n ≥ 0.

Let lp(n1, n2] denote the sequences {xj}∞j=1 ∈ lp which are supported in (n1, n2],
i.e., for which xj = 0 whenever j ≤ n1 or j > n2.

Lemma 5.3. There are 0 = N0 < N1 < N2 < . . . and zj ∈ lp(Nj−1, Nj ] (j ≥ 1) such
that

‖zj‖p = 1 and ‖Azj‖p → 0 as j →∞.

Proof. By Theorem 5.1(a), there is a y1 ∈ lp such that ‖y1‖p = 2 and ‖Ay1‖ <
1/2. If N1 is large enough, then ‖PN1y1‖p ≥ 1 and ‖APN1y1‖p < 1. Letting z1 :=
PN1y1/‖PN1y1‖p we get

z1 ∈ lp(0, N1], ‖z1‖p = 1, ‖Az1‖p < 1.

Applying Theorem 5.1(a) to the operator AV N1 , we see that there is an y2 ∈ lp

such that ‖y2‖p = 2 and ‖AV N1y2‖p < 1/4. For sufficiently large N2 > N1 we have
‖PN2V N1y2‖p ≥ 1 and ‖APN2V N1y2‖p < 1/2. Setting

z2 := PN2V
N1y2/‖PN2V N1y2‖p,

we therefore obtain

z2 ∈ lp(N1, N2], ‖z2‖p = 1, ‖Az2‖p < 1/2.

Continuing in this way we find zj satisfying

zj ∈ lp(Nj−1, Nj], ‖zj‖p = 1, ‖Azj‖p < 1/j.

Contrary to the assertion of Theorem 1.2, let us assume that there exist k ≥ 1

and d > 0 such that s
(p)
k (An) ≥ d for infinitely many n. We may without loss of

generality assume that

s
(p)
k (An) ≥ d for all n ≥ n0. (28)

Let ε > 0 be any number such that

2εk2 < d. (29)

Choose zj as in Lemma 5.3. Obviously, there are sufficiently large j and N such that

‖PNzl‖p ≥ 1/2, ‖APNzl‖p < ε for l ∈ {j + 1, . . . , j + k}. (30)
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Approximation Numbers of Toeplitz Matrices 15

Since PNzl ∈ lp(Nl−1, l], it is clear that PNzj+1, . . . , PNzj+k are linearly indepen-
dent. Now let n ≥ N . By Theorem 5.2, there is a projection Πn of Cnp onto
span{PNzj+1, . . . , PNzj+k} for which ‖Πn‖p ≤ k. Let In stand for the identity oper-
ator on Cnp . The space Im (In − Πn) = Ker Πn has the dimension n − k and hence,

In − Πn ∈ F (n)n−k. Every x ∈ Cnp can be uniquely written in the form

x = γ1PNzj+1 + . . .+ γkPNzj+k + w with w ∈ Ker Πn.

Thus,

‖Anx− An(In −Πn)x‖p = ‖AnΠnx‖p
= ‖γ1An(PNzj+1) + . . .+ γkAn(PNzj+k)‖p ≤ |γ1|ε+ . . .+ |γk|ε, (31)

the estimate resulting from (30). Taking into account that the sequences PNzl have
pairwise disjoint supports, we obtain from (30) that

‖Πnx‖pp = ‖γ1PNzj+1 + . . .+ γkPNzj+k‖pp
= |γ1|p‖PNzj+1‖pp + . . .+ |γk|p‖PNzj+k‖pp
≥ (1/2)p

(
|γ1|p + . . .+ |γk|p

)
≥ (1/2)p max

1≤m≤k
|γm|p. (32)

Combining (31) and (32) we get

‖Anx−An(In − Πn)x‖p ≤ εk max
1≤m≤k

|γm| ≤ 2εk‖Πnx‖p ≤ 2εk2‖x‖p,

whence s
(p)
k (An) = dist (An,F (n)n−k) ≤ ‖An −An(I −Πn)‖p ≤ 2εk2. By virtue of (29),

this contradicts (28) and completes the proof.

6. Proof of Theorem 1.3.

The Hankel operator on lp induced by a function a ∈ Mp is given by the matrix

H(a) = (aj+k−1)
∞
j,k=1.

For a ∈ Mp, define ã ∈Mp by ã(eiθ) := a(e−iθ). Clearly,

H(ã) = (a−j−k+1)
∞
j,k=1.

It is well known and easily seen that

T (ab) = T (a)T (b) +H(a)H(b̃) (33)

for every a, b ∈Mp. A finite section analogue of formula (33) reads

Tn(ab) = Tn(a)Tn(b) + PnH(a)H(b̃)Pn +WnH(ã)H(b)Wn, (34)

where Pn is as in (13) and Wn is defined by

Wn : {x1, x2, x3, . . .} 7→ {xn, xn−1, . . . , x1, 0, 0, . . .}.
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16 A. Böttcher

The identity (34) first appeared in Widom’s paper [31], a proof is also in [4, Proposi-
tion 3.6] and [5, Proposition 7.7].

We remark that Tn(ã) is the transposed matrix of Tn(a) and that the identity
Tn(ã) = WnTn(a)Wn holds. In particular, we have

s
(q)
k (Tn(a)) = min

{
‖Tn(a) − Fn−k‖q : Fn−k ∈ F (n)n−k

}

= min
{
‖Tn(ã) −Gn−k‖p : Gn−k ∈ F (n)n−k

}

= min
{
‖Wn(Tn(ã) −Gn−k)Wn‖p : Gn−k ∈ F (n)n−k

}

= min
{
‖Tn(a) −Hn−k‖p : Hn−k ∈ F (n)n−k

}

= s
(p)
k (Tn(a)) (35)

(note also that Wn is an invertible isometry on Cnp ).

To prove Theorem 1.3, we need the following two (well known) lemmas.

Lemma 6.1. If A,B, C ∈ B(Cnp ) then

s
(p)
k (ABC) ≤ ‖A‖p s(p)k (B)‖C‖p for all k.

This follows easily from the definition of s
(p)
k .

Lemma 6.2. If b ∈ Mp and {Tn(b)} is stable on lp, then T (b) is invertible on lp and
T−1n (b) (:= T−1n (b)Pn) converges strongly on lp to T−1(b).

This is obvious from the estimates

‖T−1n (b)Pny − T−1(b)y‖p
≤ ‖T−1n (b)‖p ‖Pny − Tn(b)PnT

−1(b)y‖p + ‖PnT−1(b)y − T−1(b)y‖p,
‖x‖p ≤ lim inf

n→∞
‖T−1n (b)‖p ‖T (b)x‖p, ‖ξ‖q ≤ lim inf

n→∞
‖T−1n (b̃)‖q ‖T (b̃)ξ‖q.

We now establish two propositions which easily imply Theorem 1.3.

Define χk by χk(eiθ) = eikθ. Using Theorem 3.1(b) and formula (33) one can
readily see that if a ∈ Mp, then T (a) ∈ Φ−k(lp) if and only if a = bχk and T (b) is
invertible on lp.

Propostion 6.3. If b ∈Mp and {Tn(b)} is stable on lp then for every k ∈ Z,

lim inf
n→∞

s
(p)
|k|+1

(
Tn(bχk)

)
> 0.

Proof. We can assume that k ≥ 0, since otherwise we may pass to adjoints. Because
‖Tn(χ−k)‖p = 1, we obtain from Lemma 6.1 that

s
(p)
k+1

(
Tn(bχk)

)
= s

(p)
k+1

(
Tn(bχk)

)
‖Tn(χ−k)‖p

≥ s(p)k+1
(
Tn(bχk)Tn(χ−k)

)
= s

(p)
k+1

(
Tn(b)− PnH(bχk)H(χk)Pn

)
,
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the latter equality resulting from (34) and the identities H(χ̃−k) = H(χk) and

H(χ−k) = 0. As dim ImH(χk) = k, we get that Fk := PnH(bχk)H(χk)Pn ∈ F (n)k ,
whence

s
(p)
k+1

(
Tn(b)− Fk

)
= inf

{
‖Tn(b)− Fk −Gn−k−1‖p : Gn−k−1 ∈ F (n)n−k−1

}

≥ inf
{
‖Tn(b)−Hn−1‖p : Hn−1 ∈ F (n)n−1

}
= s

(p)
1 (Tn(b)).

Since {Tn(b)} is stable, we infer from (3) that

lim inf
n→∞

s
(p)
k+1(Tn(bχk)) ≥ lim inf

n→∞
s
(p)
1 (Tn(b)) > 0.

Proposition 6.4. If b ∈Mp and {Tn(b)} is stable on lp then for every k ∈ Z,

lim
n→∞

s
(p)
|k| (Tn(bχk)) = 0.

Proof. Again we may without loss of generality assume that k ≥ 0. Using (34) and
Lemma 6.1 we get

s
(p)
k (Tn(bχk)) = s

(p)
k

(
Tn(χk)Tn(b) + PnH(χk)H(b̃)Pn

)

≤ ‖Tn(b)‖p s(p)k
(
Tn(χk) + PnH(χk)H(b̃)PnT

−1
n (b)

)
.

Put An := Tn(χk) + PnH(χk)H(b̃)PnT
−1
n (b). We have

An =

(
∗ Cn
In−k 0

)
=

(
∗ 0
In−k 0

)
+

(
0 Cn
0 0

)
=: Bn +Dn,

the blocks being of size k× (n− k), k× k, (n− k)× (n− k), (n− k)× k, respectively.

Clearly, Bn has rank n − k and thus Bn ∈ F (n)n−k. It follows that

s
(p)
k (An) = s

(p)
k (An − Bn) = s

(p)
k (Dn) ≤ ‖Dn‖p = ‖Cn‖p,

and we are left with showing that ‖Cn‖p → 0.

Let bn (n ∈ Z) be the Fourier coefficients of b, let ej ∈ lp be the sequence whose
only nonzero entry is a unit at the jth position, and recall the notation (23). We have

Cn = (c
(n)
jl )kj,l=1, and it is easily seen that c

(n)
jl equals (b−k+j−1, . . . , b−k+j−n) times

the (n− k + l)th column of T−1n (b):

c
(n)
jl = (b−k+j−1 . . . b−k+j−n)T−1n (b)Pnen−k+l =

(
Pnfjk, T

−1
n (b)Pnen−k+l

)

where

fjk :=
{
b−k+j−1, b−k+j−2, b−k+j−3, . . .

}
= T (χ−k+j−1)T (b̃)e1 ∈ lq.

Consequently,

c
(n)
jl =

(
T−1n (b̃)Pnfjk, en−k+l

)

=
(
T−1(b̃)fjk, en−k+l

)
+
(
T−1n (b̃)Pnfjk − T−1(b̃)fjk, en−k+l

)
. (36)
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The first term on the right of (36) obviously converges to zero as n→∞. The second
term of (36) is at most

‖T−1n (b̃)Pnfjk − T−1(b̃)fjk‖q (37)

(note that ‖en−k+l‖p = 1). Our assumptions imply that {Tn(b̃)} is stable on lq. We
so deduce from Lemma 6.2 that (37) tends to zero as n→∞.

Thus, each entry of the k×k matrix Cn approaches zero as n→∞. This implies
that ‖Cn‖p → 0.

Now let a be as in Theorem 1.3. Since T (a) ∈ Φ−k(lr) for all r ∈ [p, q], we have
a = bχk where T (b) ∈ Φ0(l

r) for all r ∈ [p, q]. From Theorems 3.3 and 3.4(b) we
conclude that {Tn(b)} is stable on lp. The assertions of Theorem 1.3 therefore follows
from Propositions 6.3 and 6.4.

We remark that Propositions 6.3 and 6.4 actually yield more than Theorem 1.3.
Namely, let Π0p denote the collection of all symbols b ∈Mp for which {Tn(b)} is stable
on lp and let Πp be the set of all symbols a ∈ Mp such that aχ−k ∈ Π0p for some
k ∈ Z. Notice that

Πp = Πq ⊂
⋃

r∈[p,q]

Πr

and
G(C +H∞) ∪G(C +H∞) ∪G(PQC) ⊂ Π2 6= L∞,

where G(B) stands for the invertible elements of a unital Banach algebra B. The
following corollary is immediate from Propositions 6.3 and 6.4.

Corollary 6.5. If a ∈ Πp and T (a) ∈ Φk(lp) then

Σ(p)(Tn(a)) :=
{
s
(p)
1 (Tn(a)), . . . , s(p)n (Tn(a))

}

has the |k|-splitting property.

We also note that the proof of Proposition 6.4 gives estimates for the speed of

convergence of s
(p)
|k| (Tn(bχk)) to zero. For example, if

∑
n∈Z |n|µ|bn| < ∞ (µ > 0),

then the finite section method is applicable to T (b) on the space l2,µ of all sequences
x = {xn}∞n=1 such that

‖x‖2,µ :=

( ∞∑

n=1

n2µ|xn|2
)1/2

<∞

whenever T (b) is invertible (see [17, pp. 106–107] or [5, Theorem 7.25]). Since

‖en−k−l‖2,−µ = (n− k + l)−µ = O(n−µ),

the proof of Proposition 6.4 implies the following result.

Corollary 6.6. If
∑
n∈Z |n|µ|an| <∞ for some µ > 0 and T (a) ∈ Φk(lp) then

s
(p)
|k| (Tn(a)) = O(n−µ) as n→∞.
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7. Remarks on the Hilbert space case

Some aspects of the asymptotic behavior of the approximation numbers (= singular
values) of matrices in B(Cn2 ) can be very easily understood by having recourse to the
following well known fact (the “singular value decomposition”).

Theorem 7.1. If An ∈ B(Cn2 ) then there exist unitary matrices Un, Vn ∈ B(Cn2 ) such
that An = UnSnVn where

Sn = diag
(
s1(An), . . . , sn(An)

)
.

Here and throughout this section we abbreviate s
(2)
k (An) to sk(An).

To illustrate the usefulness of Theorem 7.1, we give another proof of Theorem
1.2 for p = 2. We still need the following result.

Theorem 7.2. A bounded linear Hilbert space operator A is normally solvable if and
only if there is a d > 0 such that

sp (A∗A) ⊂ {0} ∪ [d,∞).

For a proof see [10], [11], [20].

Theorem 7.3. Let a ∈ L∞ and suppose T (a) is not normally solvable on l2. Then
sk(Tn(a))→ 0 as n→∞ for each k ≥ 1.

Proof. Assume there is a k ≥ 1 such that sk(Tn(a)) does not converge to zero. Let
k0 be the smallest k with this property. Then there are n1 < n2 < . . . and d > 0 such
that

sk0(Tnj (a)) ≥ d and sk(Tnj (a))→ 0 for k < k0. (38)

To simplify notation, let us assume that nj = j for all j.

Write Tn(a) = UnSnVn as in Theorem 7.1. If λ 6∈ {0}∪ [d2,∞), then (38) implies
that S2n − λIn is invertible for all sufficiently large n, say for n ≥ n0, and that

‖(S2n − λIn)−1‖2 ≤M(λ)

with some M(λ) <∞ independent of n. Because

T ∗n(a)Tn(a)− λIn = V ∗n (S2n − λIn)Vn,

it follows that T ∗n(a)Tn(a) − λIn is invertible for n ≥ n0 and that

‖(T ∗n(a)Tn(a) − λIn)−1‖2 ≤M(λ).
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Consequently, for every x ∈ l2 we have

‖(T ∗(a)T (a)− λI)x‖2 ≥
(

1/M(λ)
)
‖x‖2,

which implies that T ∗(a)T (a) − λI is invertible. Thus,

sp
(
T ∗(a)T (a)

)
⊂ {0} ∪ [d2,∞),

and Theorem 7.2 shows that T (a) must be normally solvable.

Things are more transparent by invoking a few (harmless) C∗-algebras. Let S
denote the C∗-algebra of all sequences {An} := {An}∞n=1 of operators An ∈ B(Cn2 )
such that

‖{An}‖ := sup
n≥1
‖An‖2 <∞,

and let Sc be the C∗-algebra of all {An} ∈ S for which there exists a bounded linear
operator A on l2 such that An → A and A∗n → A∗ strongly. Finally, let C stand for
the sequences {An} ∈ S for which ‖An‖2 → 0. Clearly, C is a closed two-sided ideal
in both S and Sc.

Obviously, a sequence {An} ∈ S is stable if and only if {An}+ C is invertible in
S/C. Following [25] and [20], we call a sequence {An} ∈ S a Moore-Penrose sequence
if there exists a sequence {Bn} ∈ S such that

{AnBnAn − An} ∈ C, {BnAnBn −Bn} ∈ C, (39){
(BnAn)∗ − BnAn

}
∈ C,

{
(AnBn)∗ −AnBn

}
∈ C. (40)

An element a of a unital C∗-algebra A is said to be Moore-Penrose invertible if there
is an element a+ ∈ A such that

aa+a = a, a+aa+ = a+, (a+a)∗ = a+a, (aa+)∗ = aa+.

Thus, {An} ∈ S is a Moore-Penrose sequence if and only if {An}+C is Moore-Penrose
invertible in S/C.

The following result is again from [10], [11], [20].

Theorem 7.4. Let A be a unital C∗-algebra. An element a ∈ A is Moore-Penrose
invertible in A if and only if there is a d > 0 such that sp (a∗a) ⊂ {0} ∪ [d,∞).

The next theorem is Roch and Silbermann’s [20]. The proof given here is different
from theirs.

Theorem 7.5. A sequence {An} ∈ S is a Moore-Penrose sequence if and only if

Σ(An) =
{
s1(An), . . . , sn(An)

}

has the splitting property.
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Proof. Write An = UnSnVn as in Theorem 7.1. We have

‖AnBnAn − An‖2 → 0

⇐⇒ ‖UnSnVnBnUnSnVn − UnSnVn‖2→ 0

⇐⇒ ‖Sn(VnBnUn)Sn − Sn‖2 → 0,

and since analogous equivalences hold for the remaining three sequences in (39) and
(40), we arrive at the conclusion that {An} is a Moore-Penrose sequence if and only
if {Sn}+C is Moore-Penrose invertible in S/C. By Theorem 7.4, this is equivalent to
the condition

sp S/C

(
{S2n}+ C

)
⊂ {0} ∪ [d2,∞) for some d > 0. (41)

Let D ⊂ S denote the sequences {An} constituted by diagonal matrices An. From
the elementary theory of C∗-algebras we get

sp S/C

(
{S2n}+ C

)
= spD/(D∩C)

(
{S2n}+D ∩ C

)
. (42)

Consider the infinite diagonal matrix

diag (S21 , S
2
2, . . .) = diag (̺1, ̺2, ̺3, . . .)

(here Sm ∈ B(Cm2 ) and ̺m ∈ C). Obviously, the spectrum on the right of (42)
coincides with the set P{̺m} of the partial limits of the sequence {̺m}. Consequently,
(41) holds if and only if

P{̺m} ⊂ {0} ∪ [d2,∞) for some d > 0,

which is easily seen to be equivalent to the splitting property of Σ(An).

Also as in [20], we call a sequence {An} ∈ S an exact Moore-Penrose sequence if
{A+n } belongs to S; here A+n ∈ B(Cn2 ) is the Moore-Penrose inverse of An.

Proposition 7.6. Let {An} be a sequence in Sc and let A be the strong limit of An.
Then the following are equivalent:

(i) A+n is strongly convergent;

(ii) A is normally solvable and A+n → A+ strongly;

(iii) A is normally solvable and {An} is an exact Moore-Penrose sequence.

The simple proof is omitted.

The following theorem was by means of different methods established in [20].

Theorem 7.7. A sequence {An} ∈ S is an exact Moore-Penrose sequence if and only
if there is a d > 0 such that

Σ(An) ⊂ {0} ∪ [d,∞) for all n ≥ 1. (43)
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Proof. As in the proof of Theorem 7.5 we see that {An} is an exact Moore-Penrose
sequence if and only if {Sn} enjoys this property. Write

diag (S1, S2, . . .) = diag (µ1, µ2, µ3, . . .)

(where again Sm ∈ B(Cm2 ) and µn ∈ C) and define f : [0,∞)→ [0,∞) by

f(x) :=

{
x−1 if x > 0

0 if x = 0.

Since
diag (S+1 , S

+
2 , . . .) = diag

(
f(µ1), f(µ2), f(µ3), . . .

)
,

we conclude that {S+n } ∈ S if and only if {f(µm)} is a bounded sequence, which is
equivalent to (43).

Now let An = Tn(a) with a ∈ L∞. If {Tn(a)} is a Moore-Penrose sequence, then
T (a) must obviously be normally solvable. Thus, from Theorem 3.3 (for p = 2) and
Theorem 1.3 (for p = 2) we deduce that if a ∈ PC, then {Tn(a)} is a Moore-Penrose
sequence if and only if T (a) is Fredholm.

The following result, which is also taken from [20], characterizes the exact Moore-
Penrose sequences constituted by the truncations of an infinite Toeplitz matrix. Our
proof is again different from the one of [20].

Theorem 7.8. Let a ∈ PC. Then {Tn(a)} is an exact Moore-Penrose sequence if
and only if T (a) is Fredholm and

dim Ker Tn(a) = |IndT (a)| (44)

for all sufficiently large n.

Proof. If {Tn(a)} is an exact Moore-Penrose sequence, then T (a) is normally solvable
and thus Fredholm. Let T (a) ∈ Φk(l2). Then

s|k|(Tn(a))→ 0 and s|k|+1(Tn(a)) ≥ d > 0

by virtue of Theorem 1.3 (for p = 2). Since

dist
(
Tn(a), F (n)n−|k|−1

)
> 0,

we see that
rankTn(a) ≥ n− |k|. (45)

From Theorem 7.7 we deduce that {Tn(a)} is an exact Moore-Penrose sequence if and
only if s|k|(Tn(a)) = 0 for all n ≥ n0. Because

s|k|(Tn(a)) = dist
(
Tn(a), F (n)n−|k|

)
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and F (n)
n−|k| is a closed subset of B(Cn2 ), we have s|k|(Tn(a)) = 0 if and only if

rankTn(a) ≤ n− |k|. (46)

Combining (45) and (46) we obtain that {Tn(a)} is an exact Moore-Penrose sequence
if and only if T (a) ∈ Φk(l2) for some k ∈ Z and

dim Ker Tn(a) = n− rankTn(a) = |k|

for all n ≥ n0.

8. The Heing-Hellinger theorem

Of course, condition (44) is difficult to check. In this section we give a new proof of
the Heinig-Hellinger theorem, which provides a criterion (in terms of only the symbol
a) for (44) to hold.

If a ∈ PC and T (a) is Fredholm of index zero and thus invertible, then the
sequence {Tn(a)} is stable (Theorems 3.3 and 3.4 for p = 2). In this case Σ(Tn(a)) ⊂
[d,∞) and dim Ker Tn(a) = 0 for all sufficiently large n and hence each of Theorems
7.7 and 7.8 yields that {Tn(a)} is an exact Moore-Penrose sequence; however, we
have T+n (a) = T−1n (a) for all sufficiently large n and therefore consideration of Moore-
Penrose inverses is not at all necessary in this situation.

The really interesting case is the one in which T (a) is Fredholm of nonzero index.
The rest of this section is devoted to the proof of the following result.

Theorem 8.1 (Heinig and Hellinger). Let a ∈ PC. Suppose T (a) is Fredholm
on l2 and IndT (a) 6= 0. If IndT (a) < 0, then the following are equivalent:

(i) dim Ker Tn(a) = |IndT (a)| for all sufficiently large n;

(ii) Ker T (ã) ⊂ ImPn0 for some n0 ≥ 1;

(iii) the Fourier coefficients (a−1)−m are zero for all sufficiently large m.

If IndT (a) > 0, then the following are equivalent:

(i’) dim Ker Tn(a) = IndT (a) for all sufficiently large n;

(ii’) Ker T (a) ⊂ ImPn0 for some n0 ≥ 1;

(iii’) (a−1)m = 0 for all sufficiently large m.

For the sake of definiteness, let us assume that IndT (a) = −k < 0. The proofs
of the implications (iii) ⇒ (ii) ⇒ (i) are easy.

Proof of the implication (iii)⇒ (ii). Let x ∈ Ker T (ã). Then, by (33),

T (ã−1)T (ã) = I −H(ã−1)H(a),
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which shows that x = H(ã−1)H(a)x, and since H(ã−1) has only a finite number of
nonzero rows, it follows that xm = 0 for all sufficiently large m.

Proof of the implication (ii)⇒ (i). If n is large enough then sk+1(Tn(ã)) ≥ d > 0
by Theorem 1.3 (or Proposition 6.3), whence rankTn(ã) > n− k + 1 and thus,

dim Ker Tn(ã) < k + 1. (47)

If x ∈ Ker T (ã) ⊂ ImPn0 and n ≥ n0, then Tn(ã)Pnx = PnT (ã)x = 0, which implies
that

dim Ker Tn(ã) ≥ dim Ker T (ã) = k (48)

(recall Theorem 3.1(a) for the last equality). Clearly, equality (i) follows from (47)
and (48).

The proof of the implication (i)⇒ (iii) is less trivial and is based on the following
deep theorem. Recall that χn is defined by χn(t) = tn for t ∈ T.

Theorem 8.2 (Heinig). Let a ∈ L∞ and let k > 0 be an integer. Then

dim Ker Tn(a) = k for all sufficiently large n

if and only if a or ã is of the form χp+k(r + h) where h is a function in H∞, r is a
rational function in L∞, r has exactly p poles in the open unit disk D (multiplicities
taken into account), r has no pole at the origin, and r(0) + h(0) 6= 0.

A proof is in [12, Satz 6.2 and formula (8.4)]. Also see [14, Theorem 8.6].

Proof of the implication (i) ⇒ (iii). Let χp+k(r + h) be the representation of a
or ã ensured by Theorem 8.2 and put b := χp+k(r + h). Denote by α1, . . . , αp and
β1, . . . , βq the poles of r inside and outside T, respectively. For t ∈ T,

r(t) =
u+(t)

(t− α1) . . . (t− αp)(t− β1) . . . (t − βq)

=
t−pv+(t)

(1− α1/t) . . . (1− αp/t)(1− t/β1) . . . (1− t/βq)

with polynomials u+, v+ ∈ H∞. Clearly,

s+(t) := (1− t/β1)−1 . . . (1− t/βq)−1 ∈ H∞.

Letting
c+(t) := tkv+(t)s+(t) + tp+k(1− α1/t) . . . (1− αp/t)h(t),

we get
b(t) = (1 − α1/t)−1 . . . (1− αp/t)−1c+(t).

The function c+ lies in H∞ and has a zero of order at least k at the origin. Obviously,
(1 − α1/t)−1 . . . (1− αp/t)−1 is a function which together with its inverse belongs to
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H∞. If c+ would have infinitely many zeros in D, then T (c+) and thus T (b) were not
Fredholm (see, e.g., [5, Theorem 2.64]). Hence, c+ has only a finite number λ ≥ k of
zeros in D. It follows that IndT (c+) = −λ (again see, e.g., [5, Theorem 2.64]) and
therefore IndT (b) = IndT (c+) = −λ. If b = a, then λ must equal k. Consequently,
c+(z) = zkϕ+(z) with ϕ+ and ϕ−1+ in H∞. This implies that

a−1(t) = t−k(1− α1/t) . . . (1− αp/t)ϕ−1+ (t)

has only finitely many nonzero Fourier coefficients with negative index. If b would be
equal to ã, it would result that IndT (ã) is negative, which is impossible due to the
equality IndT (ã) = −IndT (a).

Corollary 8.3. If a ∈ PC \ C then {Tn(a)} is an exact Moore-Penrose sequence
on l2 if and only if {Tn(a)} is stable on l2.

Proof. The “if part” is trivial. To prove the “only if” portion, suppose {Tn(a)}
is an exact Moore-Penrose sequence. Then T (a) is Fredholm by Theorem 7.8. If
T (a) has index zero, then {Tn(a)} is stable. If IndT (a) 6= 0, then Theorem 7.8 and
the implication (i) ⇒ (iii) of Theorem 8.1 tell us that a−1 is a polynomial times a
function in H∞ or H∞. As functions in H∞ or H∞ cannot have jumps, this case is
impossible.

We remark that Heinig and Hellinger [13] proved the equivalence (i) ⇔ (iii) of
Theorem 8.2 for symbols in the Wiener algebra W . Corollary 8.3 was known to
Silbermann and led him to the introduction of condition (ii). In the case of block
Toeplitz matrices, (iii) and (ii) are no longer equivalent; Silbermann proved that then
the validity of (15) for some n0 ≥ 1 implies that

{Tn(a)} is an exact Moore-Penrose sequence, (49)

and he conjectures that (49) is even equivalent to (15) for some n0 ≥ 1 (see [25]).
The proofs of [13] and [25] differ from the proof given above.

9. lp versus l2

As shown in the previous section, many l2 results can be derived with the help of
Theorem 7.1, which reduces problems for {An} to questions about the infinite diagonal
operator

diag
(
s
(2)
1 (A1), s

(2)
1 (A2), s

(2)
2 (A2), s

(2)
1 (A3), s

(2)
2 (A3), s

(2)
3 (A3), . . .

)
.

It would therefore be very nice to have an analogous result for lp. For example, one
could ask the following: given An ∈ B(Cnp ), are there invertible isometries Un, Vn ∈
B(Cnp ) and a diagonal matrix Sn ∈ B(Cnp ) such that An = UnSnVn ? If the answer
were “yes”, we had

Σ(p)(An) = Σ(p)(Sn),
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and Theorem 11.11.3 of [16] would tell us that Σ(p)(Sn) is the collection of the moduli
of the diagonal elements of Sn.

However, the answer to the above question is “no”. The reason is the dramatic
loss of symmetry when passing from l2 to lp. Looking at the (real) unit spheres

S
(p)
1 :=

{
(x, y) ∈ R2 : |x|p + |y|p = 1

}
,

we see that S
(2)
1 has the symmetry group O(2), while the symmetry group of S

(p)
1

(p 6= 2) is the dieder group D4, which contains only 8 elements. Equivalently, the
invertible isometries in B(C22) are the 2× 2 unitary matrices, whereas a matrix U2 ∈
B(C2p) (p 6= 2) is an invertible isometry if and only if

U2 =

(
λ 0
0 µ

)
or U2 =

(
0 λ
µ 0

)
with (λ, µ) ∈ T2.

Thus, a matrix A2 ∈ B(C2p) (p 6= 2) is of the form A2 = U2S2V2 with invertible
isometries U2, V2 and a diagonal matrix S2 if and only if

A2 =

(
a 0
0 b

)
or A2 =

(
0 a
b 0

)
with (a, b) ∈ C2.

I even suspect that relaxing the above question will not be successful.

Conjecture 9.1. Fix p 6= 2 and let 1/p+ 1/q = 1. There is no number M ∈ (1,∞)
with the following property: given any sequence {An} of matrices An ∈ B(Cnp ) such
that sup ‖An‖p < ∞ and sup ‖An‖q < ∞, there are invertible matrices Un, Vn ∈
B(Cnp ) and diagonal matrices Sn ∈ B(Cnp ) such that An = UnSnVn and

‖Un‖p ≤M, ‖U−1n ‖p ≤M, ‖Vn‖p ≤M, ‖V −1n ‖p ≤M
for all n.

Finally, for the reader’s convenience, we add a proof of (3).

Proposition 9.2. If A ∈ B(Cnp ), then s
(p)
1 (A) = 1/‖A−1‖p if A is invertible and

s
(p)
1 (A) = 0 if A is not invertible.

Proof. Suppose A is not invertible. Then KerA 6= {0}. Let Z be any direct comple-
ment of KerA in Cnp and let P : Cnp → Z be the projection onto Z parallel to KerA.

Clearly, P ∈ F (n)n−1 and thus F := AP ∈ F (n)n−1. If x ∈ Cn, then x = x0 + x1 with
x0 ∈ KerA and x1 = Px ∈ Z. Therefore

(A− F )x = Ax−APx = A(x0 + Px)−APx = 0,

which implies that A− F = 0 and hence dist (A,F (n)n−1) = 0.

Now suppose A is invertible. We then have

‖A−1‖p = sup
x 6=0

‖A−1x‖p
‖x‖p

= sup
z 6=0

‖z‖p
‖Az‖p

=

(
inf
z 6=0

‖Az‖p
‖z‖p

)−1
,
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whence

1/‖A−1‖p = inf
z 6=0

‖Az‖p
‖z‖p

= min
‖z‖p=1

‖Az‖p =: ‖Ae0‖p (50)

with some e0 ∈ Cnp of norm 1. Put span {e0} = {λe0 : λ ∈ C} and let X be any
direct complement of span {e0} in Cnp . The functional

ϕ : span {e0} → C, λe0 7→ λ

clearly has the norm 1. By the Hahn-Banach theorem, there is a functional Φ : Cnp →
C such that Φ(λe0) = λ and ‖Φ‖ = 1. Define F ∈ B(Cnp ) by Fx := Ax − Φ(x)Ae0.
Since

F (λe0) = λAe0 − λAe0 = 0,

we see that F ∈ F (n)n−1. Because

‖Ax− Fx‖p = ‖Φ(x)Ae0‖p = |Φ(x)| ‖Ae0‖p ≤ ‖x‖p ‖Ae0‖p,

it results that ‖A − F‖p ≤ ‖Ae0‖p. From (50) we therefore deduce that s
(p)
1 (A) ≤

1/‖A−1‖p.
To prove that s

(p)
1 (A) ≥ 1/‖A−1‖p, let G be any matrix in F (n)n−1. If ‖I−A−1G‖p

were less than 1, then A−1G and thus G were invertible, which is impossible. Thus
‖I −A−1G‖p ≥ 1. We therefore have

1 ≤ ‖I − A−1G‖p = ‖A−1(A−G)‖p ≤ ‖A−1‖p ‖A−G‖p,

which implies that 1/‖A−1‖p ≤ ‖A−G‖p. As G ∈ F (n)n−1 was arbitrary, it follows that

1/‖A−1‖p ≤ s(p)1 (A).
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[4] A. Böttcher, B. Silbermann: Invertibility and Asymptotics of Toeplitz Ma-
trices. Akademie-Verlag, Berlin 1983.
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Abstract. Let f be a modular form of even weight on Γ0(N) with asso-
ciated motive Mf . Let K be a quadratic imaginary field satisfying certain
standard conditions. We improve a result of Nekovář and prove that if a
rational prime p is outside a finite set of primes depending only on the form
f , and if the image of the Heegner cycle associated with K in the p-adic
intermediate Jacobian of Mf is not divisible by p, then the p-part of the
Tate-Šafarevič group of Mf over K is trivial. An important ingredient
of this work is an analysis of the behavior of “Kolyvagin test classes” at
primes dividing the level N . In addition, certain complications, due to the
possibility of f having a Galois conjugate self-twist, have to be dealt with.

1991 Mathematics Subject Classification: 11G18, 11F66, 11R34, 14C15.

1 Introduction

Let f be a new form of even weight 2r for the group Γ0(N), letMf be the r-th Tate
twist of the motive associated to f by Jannsen [Jan88b] and Scholl [Sch90]. For all
but a finite number of primes p there is a canonical choice of free Zp-lattice Tp(Mf )
with a continuous action of Gal(Q̄/Q) such that Tp(Mf )⊗Q is the p-adic realization
of Mf . In [Nek92], Nekovář showed that under certain assumption one could apply
the Kolyvagin method of Euler systems to Mf and obtained, among other things,
the following result:

Theorem 1.1. Let K be a quadratic imaginary field of discriminant D in which all
primes dividing N split, and let p be a prime not dividing 2N . Let Tp(Mf ) be the
p-adic realization ofMf and let P (1) be the image in H1(K, Tp(Mf)) of the Heegner
cycle associated with K under the p-adic Abel-Jacobi map. If P (1) is not torsion,
then the p-part of the Tate-Šafarevič group of Mf over K,Xp(Mf/K), is finite.

1Partially supported by an NSF grant
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We remark that in [Nek92] there is a stronger condition on p for the theorem to
hold which is removed in a remark on the last paragraph of [Nek95].

The purpose of this note is to give the following refinement of the above result:

Theorem 1.2. There is a finite set of primes Ψ(f), depending only on f, such that
for a prime p not in Ψ(f) the following holds: for K as in theorem 1.1, if P (1) is
not torsion, then p2IpXp(Mf/K) = 0, where Ip is the smallest non-negative integer
such that the reduction of P (1) to H1(K, Tp(Mf)/pIp+1) is not 0. In particular, if
Ip = 0, then Xp(Mf/K) is trivial

Remark 1.3. 1. The Tate-Šafarevič group discussed here is not exactly the same as
the one that appears in [Nek92]. The main difference is in the local conditions
at the primes of bad reduction. Nekovář makes no conditions at these primes,
which is whyX comes out too big. The local condition that we use is the one
defined by Bloch and Kato. The analysis of this local condition is one of the
main ingredient of this work.

2. The finite set Ψ(f) contains the primes dividing 2N and primes with an excep-
tional image of Gal(Q̄/Q) in Aut(Tp(Mf)) (see definition 6.1).

It is our hope that the methods used here allow a complete analysis of the struc-
ture ofXp(Mf/K) in terms of various Kolyvagin classes following [Kol91, McC91].
Notice however that some difficulties are already visible in the fact that the power of
p annihilatingX is 2Ip whereas in the elliptic curves case one gets annihilation by
pIp . This difficulty is caused by the more complicated structure of the image of the
Galois representation associated to Mf (see remark 6.5).

A natural problem raised by theorem 1.2 is to bound the numbers Ip. In par-
ticular, one would hope that Ip = 0 for all but a finite number of p’s. This would
show the finiteness ofX(Mf/K) except for possible infinite contribution at primes
dividing 2N . It is useful to compare the situation to the case where the weight of f is
2, where the triviality ofXp(Mf/K) for almost all p has been previously established
in [KL90]. In that case, the class P (1) correspond to a point on the Jacobian of a
modular curve, and Ip = 0 for almost all p whenever P (1) is of infinite order. This
last result uses essentially the injectivity of the Abel-Jacobi map (up to torsion) and
the Mordell-Weil theorem, neither of which is known for greater than 1 codimension
cycles. One possible way of getting some control over the indices Ip could be to use the
results of Nekovář on the p-adic heights of Heegner cycles: According to [Nek95, corol-
lary to theorem A] one has the equality h(P (1), P (1)) = Ωf⊗K,pL

′
p(f ⊗K, r) where

h( , ) is the p-adic height pairing defined by Nekovář and Perrin-Riou, Lp(f ⊗K) is a
p-adic L-function of f over K defined by Nekovář and Ωf⊗K,p is some p-adic period.
The p-adic height of elements of H1f (K, T ) has a bounded denominator (it is integral
for universal norms from a Zp extension) and so the estimation of Ip is reduced to
giving estimates on the p-divisibility of L′p(f ⊗K, r).

Another problem is to handle primes dividing 2N . The difficulty here is that
we do not understand yet the image of the Abel-Jacobi map with Qp coefficients for
varieties over an extension of Qp and with bad reduction. Recently there has been
some progress on that problem [Lan96] but the results do not yet cover the cases we
need.

Here is a short description of the contents. After a few preliminary remarks and
definitions in section 2 we will recall in section 3 some of the main points of [Nek92].
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For brevity this will be far from a full account. We merely attempt to indicate the main
changes that need to be made and explain where the local conditions at the bad primes
come into play. These conditions are then discussed in sections 4 and 5. We then
give the proof of the main theorem in section 6. It would have been nice to skip this
section or make it shorter and refer instead to the corresponding sections in [Nek92].
However, it turns out that to get the result we want under weaker conditions than
the ones stated there (see the remark in loc. cit. page 121), the proof has to be
modified somewhat. I have therefore chosen to give the full details of the proof. In
the appendix we give a proof of a Hochschild-Serre spectral sequence for continuous
group cohomology which is used in section 5.

As the reader will notice, this work is closely related to [Nek92]. Familiarity with
that paper is helpful for reading this one but not necessary, as one may choose to
trust the results quoted from there.

I would like to thank Wayne Raskind, Don Blasius, Haruzo Hida, Dinakar Ra-
makrishnan and Jan Nekovář for helpful discussions and remarks. I would also like
to thank Farshid Hajir for encouraging me to write down my ideas on this subject.
Finally, I would like to thank the referee for some useful corrections and remarks.

2 preliminaries

For this work, a motive is effectively equivalent to its set of realizations. We only need
the p-adic realizations for the different p’s and a brief mention of the Betti realization.
Thus, a motive M has a Betti realization which is a Q-vector space VQ and p-adic
realizations which are continuous representations of Gal(Q̄/Q) on Vp = VQ⊗Qp for the
different p’s. By choosing a suitable Z-lattice TZ in VQ we have in each Vp an invariant
Zp-lattice Tp = TZ ⊗ Zp. The p-part of the Tate-Šafarevič group of M depends on
the choice of Tp but statements about the p-part for all but a finite number of p are
clearly independent of the choice of TZ. In the cases we will be considering there
is a standard choice (a Tate twist of a piece of the étale cohomology of a suitable
Kuga-Sato variety, see [Nek92, §3]) and the theorem will be proved for this choice.
To be more precise:

Tp ⊗Qp ∼= ρf,p ⊗Qp(r), (2.1)

where ρf,p is the standard p-adic representation associated to f .

To define the p-part of X, we start with the free Zp-module of finite rank,
T = Tp(M), on which Gal(Q̄/Q) acts continuously. Let V = T ⊗ Qp and A = V/T ,
so that there is a short exact sequence:

0 −→ T
i−→ V

pr−→ A −→ 0.

Let ℓ be a prime, possibly ∞. Let F be a finite extension of Qℓ and let F̄ be an
algebraic closure of F . In [BK90, (3.7.1)] Bloch and Kato define the finite part H1f of
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the first Galois cohomology of F with values in V , T or A as follows:

H1f (F, V ) := KerH1(F, V )
res−−→ H1(F ur, V ) when ℓ 6= p;

H1f (F, V ) := KerH1(F, V )→ H1(F, V ⊗ Bcris) when ℓ = p;

H1f (F, T ) := i−1H1f (F, V );

H1f (F,A) := ImH1f(F, V ) →֒ H1(F, V )
pr−→ H1(F,A),

where F ur is the maximal unramified extension of F . The ring Bcris is defined by
Fontaine. We will not need to use the definition directly in the case ℓ = p.

Let now K be a number field. When B is a Gal(Q̄/K)-module we have restriction
maps for each place v of K: H1(K,B) → H1(Kv, B). When x ∈ H1(K,B) we will
denote its restriction to H1(Kv, B) by xv. The p-part of the Selmer group ofM over
K is now defined as

Selp(M/K) := KerH1(K,A) −→
∏

v

H1(Kv, A)/H1f(Kv, A),

where the product is over all places v of K. We also define

H1f (K, V ) := KerH1(K, V ) −→
∏

v

H1(Kv, V )/H1f(Kv, V ).

The p-part of the Tate-Šafarevič group of M over K is the quotient of Selp(M/K)
by the image of H1f(K, V ). Nekovář defines the same group as the quotient of the
Selmer group by the image of an appropriate Abel-Jacobi map. It follows easily from
his result that in the case of interest here his definition coincides with the one we are
using.

Let Apk be the pk-torsion subgroup ofA and let redpk : T → Apk be the reduction
mod pk. We will use the same notation for the reduction map Apn → Apk which is
given by multiplication by pn−k when n > k and we notice that all reduction maps
commute with each other. We will abuse the notation further to denote by redpk the
maps induced by the reduction on Galois cohomology groups.

To simplify the notation slightly, we assume the following:

Assumption 2.1. There is a Galois invariant bilinear pairing T × T → Zp(1) such
that the induced pairings on T/pk ∼= Apk are non-degenerate for all k.

This condition is satisfied in the case we are considering by [Nek92, proposition
3.1]. It is mostly made at this point so that we do not have to consider both T and
its Kummer dual. We have the following well known results:

Proposition 2.2. The pairing above induces local Tate pairings, for each place v of
K:

H1(Kv , T )×H1(Kv, A)→ H1(Kv,Qp/Zp(1)) ∼= Qp/Zp;
H1(Kv, Apk)×H1(Kv, Apk)→ H1(Kv,Z/pk(1)) ∼= Z/pk,

which are both perfect and will be denoted by 〈 , 〉v (for the torsion coefficients case
see [Mil86, Chap. I, Cor. 2.3]). The following properties hold:
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1. [BK90, Proposition 3.8] The pairing 〈 , 〉v makes H1f (Kv, T ) and H1f (Kv, A)
exact annihilators of each other (this is true even in the case p|v).

2. If x and y belong to H1(K,Apk) then

∑

v

〈xv, yv〉v = 0,

where the sum is over all places v of K but is in fact a finite sum.

We remark that it is possible to neglect the infinite places in all the discussions if
we assume that p 6= 2 or if K is totally imaginary. Both conditions will in fact hold.

Definition 2.3. Let F be a local field. We define H1f(F,Apk) to be the preimage in

H1(F,Apk) of H1f (F,A). We define H1f∗(F,Apk) to be the annihilator of H1f (F,Apk)

in H1(F,Apk) under local Tate duality. We will call the classes in H1f∗(F,Apk) the
dual finite classes. We define the singular part of the cohomology as

H1sin(F,Apk) = H1(F,Apk)/H1f∗(F,Apk)

(this definition is due to Mazur). If x ∈ H1(F,Apk) we denote by xsin its projection
on the singular part. When K is a number field we let

Sel(K,Apk) := KerH1(K,Apk) −→
∏

v

H1(Kv, Apk)/H1f (Kv, Apk).

Lemma 2.4. The group H1f∗(F,Apk) is the image of H
1
f (F, T ) under the canonical

map H1(F, T )→ H1(F,Apk). There is a perfect pairing, induced by 〈 , 〉v:

〈 , 〉v : H1f (F,Apk)×H1sin(F,Apk)→ Z/pk

Proof. This is a formal consequence of the preceding definition and proposition 2.2.

For a Gal(F̄ /F )-module B and F̄ ⊃ K ⊃ F we denote BGal(F̄ /K) by B(K). If
B′ is a subset of B we denote by F (B) the fixed field of the subgroup of Gal(F̄ /F )
fixing B′.

3 Method of proof

The Kolyvagin method, as applied to Mf by Nekovář, works as follows: Let f have
q-expansion f =

∑
anq

n. Let E be the field generated over Q by the ai. It is known
that E is a totally real finite extension of Q. Let OE be the ring of integers of E. As
explained in [Nek92, Proposition 3.1], the invariant lattice Tp(Mf) can be taken to
be a free rank 2 module over OE ⊗Zp =

∏OEp , where the product is over all primes
p of E dividing p. To prove the result about X it is sufficient to choose one such
prime p and consider only the direct summand of Tp(Mf) corresponding to p. This
summand will be denoted Tf,p. For the rest of this section we fix T = Tf,p and let as
usual V = T ⊗Qp and A = V/T .
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As the Tate-Šafarevič group is (obvious with the above definition) p-torsion, we
wish to show that its part killed by pk is killed by the fixed power p2Ip for each k.
We look at the short exact sequence

0 −→ Apk −→ A
pk−→ A −→ 0

and the induced sequence on cohomology

0 −→ A(K)/pk −→ H1(K,Apk) −→ H1(K,A)pk −→ 0

The conditions we will impose on the prime p imply, as we will see in part 2 of
proposition 6.3, that A(K) = 0, and hence H1(K,A)pk ∼= H1(K,Apk). It follows that
the preimage in H1(K,Apk) of Selp(T/K) is Sel(K,Apk). Since P (1) ∈ H1f(K, V ) it

will be enough to show that Sel(K,Apk)/(OEp/pk)P (1) is killed by p2Ip.
Choose once and for all a complex conjugation τ ∈ Gal(Q̄/Q). Let S(k) be the

set of primes ℓ satisfying:

• ℓ ∤ NDp;
• ℓ is inert in K;

• pk divides aℓ and ℓ+ 1;

• ℓ+ 1± aℓ are not divisible by pk+1.

Remark 3.1. The first 3 conditions are equivalent to Frob(ℓ) and τ being conjugates
in Gal(K(Apk )/Q). The last condition can be arranged for infinitely many ℓ’s (see
proposition 6.10).

Let n be a product of distinct primes ℓ ∈ S(k). Nekovář associates with n a coho-
mology class yn ∈ H1(Kn, T ), where Kn is the ring class field of K of conductor n.
The classes yn are defined as the images of certain CM cycles under the Abel-Jacobi
map ofMf . When n = mℓ the relation

corKn,Km(yn) = aℓym

holds, as well as some local congruence condition which we will not discuss here.
Let Gn := Gal(Kn/K1). Then Gn =

∏
ℓ|nGℓ. For each prime ℓ ∈ S(k) we

associate the element Dℓ ∈ Z[Gℓ] which is given by

Dℓ =
ℓ∑

i=1

iσi, Gℓ = 〈σ〉,

and let Dn =
∏
ℓ|nDℓ ∈ Z[Gn]. One now notices, following Kolyvagin, that

Dn(redpk yn) ∈ H1(Kn, Apk) is Gn-invariant. By [Nek92, Proposition 6.3]

pMApk (Kn) = 0, (3.1)

with some constant M independent of n and k. An application of the inflation restric-
tion sequence shows that there is a canonically defined class zn ∈ H1(K1, Apk−2M )
such that

resK1,Kn zn = Dn(redpk−2M yn).
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Indeed, one has the commutative diagram with exact inflation restriction rows:

H1(K1, Apk)
resK1,Kn−−−−−−→ H1(Kn, Apk)Gn −−−−→ H2(Gn, Apk(Kn))

redpk−M

y redpk−M

y redpk−M

y

H1(K1, Apk−M )
resK1,Kn−−−−−−→ H1(Kn, Apk−M )Gn −−−−→ H2(Gn, Apk−M (Kn))

and the rightmost vertical map is 0 by (3.1) because the reduction map kills pM

torsion. It follows that

redpk−M yn ∈ Im
(
resK1,Kn : H1(K1, Apk−M )→ H1(Kn, Apk−M )

)
.

We get the canonical class zn by further reduction as in [Nek92, §7]. Finally, define

P (n) := corK1,K zn.

Note the important difference between Nekovář’s definition of the same classes and
ours: in Nekovář’s definition resK1,Kn zn = pMDn(redpk−M yn). To simplify the nota-
tion, we may notice that the definition is entirely independent of the value of M . To
define classes in the cohomology of Apr we need to start with n whose prime divisors
satisfy certain congruences depending on r and M and we may freely assume that we
have chosen the n correctly whatever the congruences are. It will be convenient to
make the change of variable k = k−2M here. Note that P (1) can be considered mod
pk for any k and its definition is independent of M .

Proposition 3.2. The classes P (n) enjoy certain fundamental properties:

1. P (n) belongs to the (−1)par(n)εL-eigenspace of the complex conjugation τ acting
on H1(K,Apk), where par(n) is the parity of the number of prime factors in n
and εL is the negative of the sign of the functional equation of L(f, s).

2. For a place v of K such that v ∤ Nn, P (n) ∈ H1f∗(Kv, Apk).

3. If n = m·ℓ and λ is the unique prime of K above ℓ, then there is an isomorphism
between H1f (Kλ, Apk) and H1sin(Kλ, Apk) which takes P (m)λ to P (n)λ,sin. In
particular, if P (m)λ 6= 0, then P (n)λ,sin 6= 0.

Proof. This is [Nek92, Proposition 10.2] with a couple of modifications. First of all
we remark that there is a miss-print in [Nek92] and the eigenvalue of τ on P (n) is
indeed (−1)par(n)εL as can be seen from the proof. To get the second statement when
v ∤ p we note that if such a v is a prime of good reduction one has H1f∗(Kv, Apk) =

H1f (Kv, Apk) = H1ur(Kv, Apk) (see lemma 4.4) and that the auxiliary power of p that
appear in [Nek92] is not needed here because of the change in the definition of P (n)
alluded to above. The case v|p follows from [Nek92, Lemma 11.1]. Here, two remarks
are in place: First of all, Nekovář uses the comparison theorem of Faltings for open
varieties [Fal89]. As is well known, this result is not universally accepted. However,
in the last 2 years Nekovář himself [Nek96] and Nizio l [Niz97, Theorem 3.2] have
supplied alternative proofs that the image of the Abel-Jacobi map lies inside Hf in
the case of good reduction. The second remark is that this is all we need because our
assumption p ∤ 2N imply that v|p is a place of good reduction.
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One of the main points of this work is to analyze the dual finite conditions
at primes of bad reduction and to show that by further reduction (i.e. by possibly
increasing M) one may assume that the classes P (n) are dual finite at these primes
(see corollary 5.2).

4 Finite and dual finite conditions at ℓ

Let F be a finite extension of Qℓ (ℓ 6= p) and let T be a free Zp-module of finite rank
with a continuous action of G = Gal(F̄ /F ). Again let V = T ⊗Qp and A = V/T . Let
I = Gal(F̄ /F ur) be the inertial group. We assume the following condition is satisfied
(as is in the case at hand, see [Nek92, proposition 3.1]):

Condition 4.1. There is a Galois invariant, non-degenerate bilinear pairing V ×V →
Qp(1) and VI (−1) has no nontrivial fixed vector with respect to any power of Frobenius
(true if VI has no part of weight −2).

Proposition 4.2. Under the above condition there exists a constant M such that for
any finite unramified extension L/F we have

1. pMH1(Lur , T )Gal(L
ur/L) = 0;

2. H1f (L, V ) = H1(L, V );

3. V (L) = 0.

Proof. The second statement immediately follows from the first. For the first state-
ment we begin by noticing that I is independent of L. By making a finite ramified
extension we may assume that the action of I factors through the p-primary part of its
tame quotient. It then follows that H1(I, T ) ∼= TI(−1) as Gal(Lur/L)-modules. The
condition now implies that TI (−1) is a direct sum of a torsion group and a Zp-free
module on which Frobenius has no invariants. Finally, the third statement follows
since by duality one gets that 1 is not an eigenvalue of any power of Frobenius on
V I .

Remark 4.3. If T is the Tate module of an elliptic curve with split semi-stable re-
duction, then the constant M is essentially the p-adic valuation of the number of
components of the special fiber of E.

It follows from part 2 of proposition 4.2 that for any finite unramified extension
L/F we have H1f (L, T ) = H1(L, T ), and therefore by lemma 2.4 we get

H1f∗(L,Apk) = ImH1(L, T )
red−−→ H1(L,Apk).

Lemma 4.4. If the G-module T is unramified, then for any L as above

H1f∗(L,Apk ) = H1f (L,Apk) = H1ur(L,Apk) := KerH1(L,Apk)→ H1(Lur , Apk).

Proof. It is enough to show the second equality as the condition of being unramified
is self dual. It is clear that any class in H1f (L,Apk) is unramified. Conversely, a class

in H1ur(L,Apk ) is inflated from H1(Lur/L, Apk). Since Gal(Lur/L) ∼= Ẑ, H1 is just
coinvariants. It follows that the reduction map H1(Lur/L, T ) → H1(Lur/L, Apk) is
surjective.
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5 The local condition under restriction

Keeping the assumption of the previous section, suppose now that L/F is a finite

unramified extension with Galois group ∆. The short exact sequence 0 −→ T
pk−→

T
red

pk−−−→ Apk −→ 0 gives rise to the following commutative diagram with exact rows:

0 −−−−→ H1(F, T )/pk
redpk−−−−→ H1(F,Apk) −−−−→ H2(F, T )pk −−−−→ 0

resF,L

y resF,L

y resF,L

y

0 −−−−→
(
H1(L, T )/pk

)∆ redpk−−−−→ H1(L,Apk)∆ −−−−→ H2(L, T )∆pk

(5.1)

Given x ∈ H1(F,Apk) such that resF,L x is in H1f∗(L,Apk ), we would like to know

how far is x from being in H1f∗(F,Apk). In view of (5.1) the obstruction is given by

KerH2(F, T )pk
resF,L−−−−→ H2(L, T )∆pk . (5.2)

Proposition 5.1. The kernel (5.2) is annihilated by a constant pM independent of
k and L.

Proof. Since ∆ is finite, there is a Hochschild-Serre spectral sequence

Ei,j2 = Hi(∆, Hj(L, T ))⇒ Hi+j(F, T ).

Note that the cohomology here is the continuous cohomology. The Hochschild-Serre
spectral sequence does not exist in general for continuous cohomology. A proof that
it does exits in our case is found in the appendix. For i+ j = 2 the spectral sequence
converges to a filtration F 0 ⊃ F 1 ⊃ F 2 ⊃ 0 on H2(F, T ) with

F 1 = KerH2(F, T )
resF,L−−−−→ H2(L, T )∆;

F 1/F 2 ∼= E1,1∞ = E1,13 = Ker
[
H1(∆, H1(L, T ))→ H3(∆, T (L))

]

= H1(∆, H1(L, T ));

F 2 ∼= E2,0∞ ⊂ E2,02 = H2(∆, T (L)) = 0,

since T (L) = 0 by part 3 of proposition 4.2. Therefore,

Ker
(
H2(F, T )pk

resF,L−−−−→ H2(L, T )∆pk
)
∼= H1(∆, H1(L, T ))pk .

Applying the inflation restriction sequence to Gal(Lur/L) ⊳Gal(L̄/L) and T we find

0 −→ H1(Lur/L, T (Lur)) −→ H1(L, T ) −→ H1(Lur , T )Gal(L
ur/L) −→ 0.

The right exactness is a consequence of the fact that Gal(Lur/L) ∼= Ẑ has co-
homological dimension 1. Applying the Hochschild-Serre spectral sequence to
Gal(Lur/L) ⊳ Gal(Lur/F ) and T (Lur) we find that H1(∆, H1(Lur/L, T (Lur))) in-

jects into H2(Lur/F, T (Lur)) and is therefore 0 since Gal(Lur/F ) ∼= Ẑ. Therefore,
H1(∆, H1(L, T )) →֒ H1(∆, H1(Lur, T )Gal(L

ur/L)) and the result follows from propo-
sition 4.2
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Corollary 5.2. Let pM be the constant given by proposition 5.1. Then, if x ∈
H1(F,Apk+M ) and resF,L x ∈ H1f∗(L,Apk+M ), then redpk x ∈ H1f∗(F,Apk).

Proof. The commuting diagram with exact rows

0 −−−−→ T
pk+M−−−−→ T

redpk+M−−−−−→ Apk+M −−−−→ 0

pM
y =

y redpk

y

0 −−−−→ T
pk−−−−→ T

red
pk−−−−→ Apk −−−−→ 0

gives rise to

H1(F, T )
red

pk+M−−−−−→ H1(F,Apk+M ) −−−−→ H2(F, T )pk+M

=

y red
pk

y pM
y

H1(F, T )
red

pk−−−−→ H1(F,Apk) −−−−→ H2(F, T )pk

The corollary now follows by a diagram chase on this last diagram as well as on (5.1)
with k replaced by k +M .

6 Proof of theorem 1.2

In this section we give the proof of the main theorem using a variant of the Kolyvagin
argument following mostly [Gro91]. By proposition 3.2 and corollary 5.2 we may
assume that the class P (n) is dual finite at all primes which do not divide n. Recall
that this involves fixing some large integer M , constructing the classes modulo pk+M

and then reducing them mod pk.
We will concentrate on the case where f has no CM. The CM case can be handled

similarly (see the remark in [Nek92] page 121). Recall that E is the field generated by
the Fourier coefficients of the form f . We first exclude primes p which are ramified in
E. If p is not excluded, let p be a prime of E above p and recall that we are considering
T = Tf,p which is a rank 2 free OEp -module with an action of Gal(Q̄/Q). Let again
ρf,p be the p-adic representation associated with f . Consider the p component of
ρf,p which is a representation of Gal(Q̄/Q) on a 2-dimensional Ep vector space Vρf ,p.
According to a result of Ribet [Rib85, theorem 3.1] if p is outside a finite set of
primes then there is a subfield E′ of Ep such that in an appropriate basis the image
of Gal(Q̄/Q) in Aut(Vρf ,p)

∼= GL2(Ep) contains

{g ∈ GL2(OE′), det g ∈ ((Z×p )2r−1)}

(in fact, the result of Ribet is stronger and treats the image of Galois in all the
completions of E above p simultaneously), and therefore contains in particular

{g ∈ GL2(Zp), det g ∈ ((Z×p )2r−1)}. (6.1)

We exclude all other primes and the prime 2. This concludes our exclusions which we
may sum up in:
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Definition 6.1. The set Ψ(f) of excluded primes for theorem 1.2 is the set contain-
ing the primes dividing 2N , primes that ramify in E = Q(ai) and primes where the
image of Gal(Q̄/Q) in Aut(Vρf ,p) does not contains (6.1) (in some basis).

We consider non excluded primes from now onward.

Lemma 6.2. Let G̃p be the image of Gal(Q̄/Q) in Aut(T ) ∼= GL2(OEp) (p not ex-

cluded). Then, G̃p contains a subgroup conjugate to GL2(Zp).

Proof. By (2.1), T ⊗ Ep is just the r-th Tate twist of Vρf ,p. From that and Ribet’s
theorem it follows easily that after fixing an appropriate basis for T every matrix
A ∈ GL2(OEp) has a scalar multiple in G̃p. Since SL2(OEp) is the commutator

subgroup of GL2(OEp), it follows that SL2(OEp) ⊂ G̃p. The lemma follows because

for almost all ℓ, Frob(ℓ) has determinant ℓ−1 and because G̃p is closed.

Let F = OEp/pk. Let Gpk ∼= Gal(Q(Apk )/Q) be the image of Gal(Q̄/Q) in
Aut(Apk) ∼= GL2(F). Then, Gpk contains a group G′pk conjugate to SL2(Z/pk).

Proposition 6.3. Let L = K(Apk ).

1. When k = 1, Ap is an irreducible F[Gal(L/K)]-module.

2. Hi(Gal(L/K), Apk) = 0 for all i ≥ 0.

3. There is a natural pairing [ , ] : H1(K,Apk) × Gal(Q̄/L) → Apk inducing an
isomorphism of F-modules H1(K,Apk) ∼= HomGal(L/K)(Gal(Q̄/L), Apk).

4. The F-module Apk is the direct sum of its ±1 eigenspaces with respect to the
generator τ of Gal(K/Q), each free of rank 1.

Proof. Since SL2(Fp) has no nontrivial Z/2 quotients when p > 2 and Gal(L/K) is
of index at most 2 in Gp, it follows that Gal(L/K) contains G′p and therefore that
Ap is an irreducible F[Gal(L/K)]-module. It also follows that Gal(L/K), consid-
ered as embedded in Aut(Apk), contains the central Subgroup of order 2 generated
by −1. Since p 6= 2, Hi(±1, Apk ) = 0 for all i ≥ 0 and the second assertion fol-
lows from the Hochschild-Serre spectral sequence Hi(Gal(L/K)/±1,Hj(±1, Apk))⇒
Hi+j(Gal(L/K), Apk). An inflation restriction sequence now implies that

H1(K,Apk) ∼= H1(L,Apk)Gal(L/K) ∼= HomGal(L/K)(Gal(Q̄/L), Apk)

hence the third assertion. Finally, part 4 follows because the determinant of τ on T
is −1.

Let S be a finitely generated F-submodule of H1(K,Apk). We consider the
elements of S as elements of HomGal(L/K)(Gal(Q̄/L), Apk) and let LS be the field
fixed by the common kernel of these elements. The following lemma is immediate:

Lemma 6.4. The pairing [ , ] induces a pairing

[ , ]S : S ×Gal(LS/L)→ Apk ,

Documenta Mathematica 2 (1997) 31–46



42 Amnon Besser

which in turn induces an injection

Gal(LS/L) →֒ HomF(S,Apk) as Gal(L/K)-modules. (6.2)

This injection has the property that

x ∈ S and [x,Gal(LS/L)]S = 0 =⇒ x = 0.

In addition, this pairing induces an injection

S →֒ HomGal(L/K)(Gal(LS/L), Apk ) as F-modules

Remark 6.5. Unlike the situation for elliptic curves [Gro91, proposition 9.3] we can
not in general expect the injection (6.2) to be an isomorphism. For instance, if Gpk
is contained in GL2(Z/pk), then there might exist a homomorphism φ : Gal(Q̄/L)→
Apk whose image is contained in (Z/pk)2. If we take S to be the F-span of φ, then
Gal(LS/L) ∼= (Z/pk)2 and is not in general an F-module whereas HomF(S,Apk ) is.
The failure of (6.2) to be an isomorphism forces some changes in the final arguments.

Our chosen complex conjugation τ acts on all the groups above. We will denote
by G± the ±1-eigenspace of τ acting on an abelian group G.

Lemma 6.6. Let C ⊂ HomF(S,Apk ) be a Gal(L/K)-submodule with the property that
x ∈ S and [x, C]S = 0 imply x = 0. Let 0 6= s ∈ S and let a ∈ HomF(S,Apk)+. Let

C ′ = a+ C+, C ′′ = {c ∈ C ′, [s, c]S 6= 0}.

Then, C ′ and C ′′ have the same property as C with respect to eigenvectors of τ in S,
that is, if x ∈ S± and [x, C ′]S = 0 or [x, C ′′]S = 0, then x = 0.

Proof. Suppose first that [x, C+]S = 0. Then F · [x, C]S is an F[Gal(L/K)]-submodule
of Apk which is contained in the proper submodule A∓

pk
. Considering p-torsion and

using part 1 of proposition 6.3 one finds that F · [x, C]S is trivial. It follows in
particular that [s, C+]S is non trivial and since p ≥ 3 it contains at least 3 elements.
From that it follows that for any c ∈ C+ one may always find c1, c2 ∈ C+ such that
c = (a+ c1)− (a+ c2) and [s, a+ ci]S 6= 0 for i = 1, 2. The lemma follows easily.

Lemma 6.7. Let ℓ be a prime in S(M+k). Then, ℓ is inert in K. Let λ be the unique
prime of K above ℓ. Then, for any choice of Frob(λ) in a decomposition group of λ,
Frob(λ) acts trivially on Apk and therefore λ splits completely in L.

Proof. Both assertions follow from remark 3.1. In Gal(K/Q), Frob(ℓ) = τ hence ℓ is
inert in K. It now follows that Frob(λ) is conjugate to τ2 and is therefore the identity
on Apk .

Let ℓ and λ be as in the previous lemma, let λ′ be a prime of LS above λ and let
Frob(λ′) ∈ Gal(LS/L) be the associated Frobenius substitution. It is easy to see that
the formula

φλ′(x) := [x,Frob(λ′)]S

defines an element of HomF(S,Apk) which depends only on ℓ up to conjugation on
Apk by some element of Gal(L/K). Using lemma 6.7 one has:
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Lemma 6.8. There is a Gal(K/Q)-equivariant isomorphism

H1f (Kλ, Apk) ∼= H1(Kur
λ /Kλ, Apk) ∼= Apk , (6.3)

where the last step is evaluation at the Frobenius. If x ∈ H1(K,Apk) and xλ ∈
H1f (Kλ, Apk) then, up to conjugation as before, the image of xλ under this isomor-
phism is φλ′(x).

Lemma 6.9. Let λ be as above.

1. The pairing 〈 , 〉λ defined in lemma 2.4 induces nondegenerate pairings:

〈 , 〉±λ : H1f (Kλ, Apk)± ×H1sin(Kλ, Apk)± → Z/pk.

2. Both H1f (Kλ, Apk) and H1sin(Kλ, Apk) are direct sums of their ±1 eigenspaces
with respect to τ . All eigenspaces are free of rank 1 over F.

Proof. The first assertion follows since 〈 , 〉λ is Gal(L/K) equivariant. The second
assertion follows for H1f(Kλ, Apk) by lemma 6.8 and part 4 of proposition 6.3 and the

same now follows for H1sin(Kλ, Apk)± by the first assertion.

Proposition 6.10. Let x, y ∈ S and suppose that y 6= 0. Then there exists some
ℓ ∈ S(M + k) such that yλ 6= 0. If for almost all ℓ ∈ S(M + k) with yλ 6= 0 we have
xλ = 0, then x = 0.

Proof. Let LM = K(ApM+k+1 ). Let C be the image of Gal(Q̄/LM ) in Gal(LS/L).
We first claim that when considered in HomF(S,Apk), C satisfies the assumption
of lemma 6.6. To show that, we first notice that the same argument used to
prove that Hi(Gal(L/K), Apk) = 0 for all i ≥ 0 in proposition 6.3 shows that
Hi(Gal(LM/K), Apk) = 0 for all such i. An inflation restriction sequence now shows
that

HomGal(L/K)(Gal(LM/L), Apk) = H1(Gal(LM/L), Apk)Gal(L/K) = 0.

This implies that if x ∈ S satisfies [x, C]S = 0, then in fact [x,Gal(LS/L)]S = 0 and
the claim follows from lemma 6.4.

By lemma 6.2 the image of Gal(Q̄/K) in Aut(ApM+k+1 ) ∼= GL2(OEp/pM+k+1)
contains an element of the form a · I such that a ∈ 1 + pM+k(Z/p)×. One checks that
this element defines ρ′ ∈ Gal(LM/LM−1) with the property that if Frob(ℓ) contains
τρ′, then ℓ ∈ S(M + k).

Now let L′ = LM ∩ LS . Then C = Gal(LS/L
′). Consider σ ∈ C+. Since C has

odd order we can find ρ ∈ C such that σ = ρτρ. Let ρ · ρ′ ∈ Gal(LM · LS/K) be the
element whose restriction to Gal(LM/K) is ρ′ and whose restriction to Gal(LS/L

′)
is σ. By Čebotarev’s density theorem, we may find infinitely many primes ℓ whose
Frobenius conjugacy class in Gal(LM · LS/Q) contains τ · ρ · ρ′. Every such ℓ is in
S(M + k). In addition, after projecting to Gal(LS/L

′) we find Frob(λ) = (τρ)2 =
ρτ · ρ = σ. Thus, we are able to generate a full coset of C in Gal(LS/L) with these
Frob(λ). By lemma 6.8 we are also able to generate all elements σ of this coset for
which [y, σ]S = 0 with {Frob(λ), yλ 6= 0}. The proposition therefore follows from
lemma 6.6.
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Lemma 6.11. Suppose x ∈ Sel(K,Apk) and n is a product of primes in S(M + k).

1.
∑

ℓ|n

〈xλ, P (n)λ,sin〉λ = 0.

2. If x and P (n) are in the same eigenspace for τ , pk−I−1P (n)λ,sin 6= 0 and we
have 〈Fxλ, P (n)λ,sin〉λ = 0, then pIxλ = 0.

Proof. 1. This follows from proposition 2.2, lemma 2.4 and the fact that the classes
P (n) are dual finite at primes not dividing n.
2. Consider first the case k = 1 and I = 0. The conditions then imply that Fxλ is a
proper subspace of an eigenspace of τ on H1f (Kλ, Ap) which is 1-dimensional over F
by lemma 6.9 and it follows that Fxλ = 0. If k is arbitrary but I = 0 then P (n)λ,sin
has a non trivial image in p-cotorsion hence by the previous case Fxλ has trivial p-
torsion but this can only happen if xλ = 0. Finally, if I 6= 0 the conditions imply
that P (n)λ,sin = pI

′

P ′ with I ′ ≤ I and P ′ has a non trivial image in p-cotorsion.

Since 〈FpI′xλ, P ′〉λ = 0 we get from the previous case pI
′

xλ = 0.

The proof of theorem 1.2 may now be completed as follows: Let I = Ip and
let J = I + 1. We assume that k > I and we want to prove that p2I kills
Sel(K,Apk)/FP (1). Our assumption is that redpJ P (1) 6= 0 in H1(K,ApJ ). On
H1(K,Apk), multiplication by pk−J factors as the composition of redpJ with the
map H1(K,ApJ )→ H1(K,Apk) induced by the inclusion in the short exact sequence
0 → ApJ → Apk → Apk−J → 0. Since Apk−J (K) = 0, this induced map is injec-
tive and we conclude that pk−JP (1) 6= 0. Let x ∈ Sel(K,Apk). Suppose first that
x is in the opposite eigenspace to P (1), hence in the same eigenspace as P (ℓ) for
ℓ ∈ S(M +k) by proposition 3.2. Let S be the F-submodule of H1(K,Apk) generated
by x and P (1). Suppose ℓ ∈ S(M +k) is such that (pk−JP (1))λ 6= 0. Then, by part 3
of proposition 3.2, pk−JP (ℓ)λ,sin 6= 0 and from that and lemma 6.11 it follows that
pIxλ = 0. Proposition 6.10 therefore implies that pIx = 0.

Suppose now that x is in the same eigenspace as P (1) and we claim that p2Ix
has to be a multiple of P (1). By proposition 6.10 we may find ℓ ∈ S(M + k) such
that (pk−JP (1))λ 6= 0. As before, this implies that pk−JP (ℓ)λ,sin 6= 0 and hence
that pk−JP (ℓ) 6= 0. Let S be generated by x, P (1) and P (ℓ). Since pk−JP (1)λ 6= 0
and both P (1)λ and xλ are in the free rank 1 F-module H1f (Kλ, Apk)±, it is easy

to see that we may find a combination x′ = αP (1) + pIx ∈ S, with α ∈ F, such
that x′λ = 0. Consider now ℓ 6= ℓ1 ∈ S(M + k) such that pk−JP (ℓ)λ1 6= 0. Then
pk−JP (ℓℓ1)λ1,sin 6= 0, again by part 3 of proposition 3.2. Let x′′ ∈ Fx′. Then

〈x′′λ, P (ℓℓ1)λ,sin〉λ + 〈x′′λ1 , P (ℓℓ1)λ1,sin〉λ1 = 0.

Since x′′λ = 0 we find 〈x′′λ1 , P (ℓℓ1)λ1,sin〉λ1 = 0. Lemma 6.11 implies that pIx′λ1 = 0.

From proposition 6.10 we get pIx′ = 0 and so p2Ix = −αpIP (1).
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A The Hochschild-Serre spectral sequence in continuous cohomology

Here we prove the following result:

Proposition A.1. Let G be a profinite group, M a continuous module of G which
is the inverse limit of discrete G-modules Mn, n ∈ N, and H a normal subgroup of
G with a finite quotient group ∆ = G/H. Then there is a Hochschild-Serre spectral
sequence

Ei,j2 = Hi(∆, Hj(H,M))⇒ Hi+j(G,M), (A.1)

where the cohomology of M is the continuous cohomology, i.e., the one computed with
respect to continuous cochains as in [Tat76].

Proof. The spectral sequence will be derived from the Grothendieck spectral sequence
for the composition of the functors U : A → B and V : B → C defined as follows:

• A is the category of inverse systems (Mn)n∈N of discrete G-modules;

• B is the category of ∆-modules and C of abelian groups;

• U is the functor which takes an inverse system of G-modules (Mn) to lim
←
MH
n ;

• V is the ∆ invariants functor.

In this case, U◦V is the functor which takes (Mn) to lim
←
MG
n , because taking invariants

commutes with taking limits. The i-th right derived functor of (Mn)→ lim
←
MG
n was

shown by Jannsen [Jan88a] to be the continuous cohomology Hi(G, lim
←
Mn) and the

same holds with G replaced by H. The only thing left to check is that U takes A
injectives to V acyclics, or even to injectives. For this fact, a proof can be given
along the lines of the proof of the usual Hochschild-Serre spectral sequence (see for
example [HS76, p.303]). One only needs to give a left adjoint Ū to U which preserves
monomorphisms and this is easily done: for a ∆-module N , let Ū(N) be the constant
inverse system of N considered as a G-module. Now it is very easy to check that

HomA(Ū(N), (Mn)) = HomB(N, lim
←
MH
n )

and so the proof is complete.
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Abstract. In this paper we extend the finiteness result on the p-primary
torsion subgroup in the Chow group of zero cycles on the selfproduct of a
semistable elliptic curve obtained in joint work with S. Saito to primes p
dividing the conductor. On the way we show the finiteness of the Selmer
group associated to the symmetric square of the elliptic curve for those
primes. The proof uses p-adic techniques, in particular the Fontaine-Jannsen
conjecture proven by Kato and Tsuji.
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Introduction.

In this note we extend the main finiteness result on p-primary torsion zero-cycles
on the selfproduct of a semistable elliptic curve in [L-S] to primes p ≥ 3 where E
has (bad) multiplicative reduction, at least under a certain standard assumption. In
the course of the proof we will also derive the finiteness of the Selmer group of the
symmetric square Sym2H1(E)(1) for these primes. However, this latter result has
already been proven, under the additional condition that the Galois representation

̺p : Gal(Q/Q) −→ Aut(Ep)

is absolutely irreducible (here Ep = Ep(Q) is the subgroup of p-torsion elements of
E), in a much more general context by Wiles in his main paper ([W] Theorem 3.1)
for Selmer groups associated to deformation theories.

To state the Theorems, let E be a semistable elliptic curve over Q with conductor
N and let X = E×

Q
E be its self-product. Consider the Chow group CH0(X) of
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zero-cycles on X modulo rational equivalence and let CH0(X){p} be — for a fixed
prime p — its p-primary torsion subgroup. For a prime p dividing N consider the
following hypothesis:

H 1) The Gersten-Conjecture holds for the Quillen-(Milnor)-sheaf K2 on a regular
model X of X over ZZp.

Then we have

Theorem A: Let E be a semistable elliptic curve and p ≥ 3 a prime such that p | N ,
i.e., E has (bad) multiplicative reduction at p. Assume that the condition H 1) is
satisfied. Then CH0(X){p} is a finite group.

Let A = H2(X,Qp/ZZp(2)) be the Qp/ZZp-realization of the motive H2(X)(2) with

its Gal(Q/Q)-action. Then we have

Theorem B: Let E be a semistable elliptic curve over Q and p ≥ 3 a prime such
that p | N . Then the Selmer group S(Q, A) is finite.

Remarks:

— In [L-S] we showed the finiteness of CH0(X){p} for primes p such that p 6 | 6 and E
has good reduction at p. We also proved that CH0(X){p} is zero for almost all p.
Therefore Theorem A extends this result to bad primes and provides a further step
towards a proof that the full torsion subgroup CH0(X)tors is finite. In order to
find a first example where this is true it remains to consider the 2- and 3-primary
torsion in CH0(X).

— The Selmer group S(Q, A) coincides with S(Q, Sym2H1(E,Qp/ZZp(1))) that was
studied by [Fl], because S(Q,Qp/ZZp(1)) is zero. In [Fl] Flach proved the finite-
ness of S(Q, A) for primes p ≥ 5 such that E has good reduction at p and the
representation ̺p is surjective. We were able to remove the latter hypothesis
by using a rank-argument of Bloch-Kato and reproved Flach’s finiteness result
for primes p such that p 6 | 6N (compare [L-S]). In the proof of Theorem B we
combine the criterium of Bloch-Kato with Kolyvagin’s argument that was used
in Flach’s paper. Flach’s additional condition on the surjectivity of ̺p can be
avoided by applying a certain lemma, due to J. Nekovář, that bounds the order
of H1(Gal(Q(Epn)/Q), (Sym2H1(E,ZZ/pn(1)))(−1)) independently of n.

The paper is organized as follows:
In the first paragraph we reduce the proof of Theorem A to two Lemmas I and II.
Lemma I was already proven in ([L-S], Lemma A). Lemma II is similar to ([L-S],
Lemma B), but the statement is different. The difference is caused by the particular
semistable situation. In the second paragraph we derive Lemma II and Theorem B
from a key proposition that bounds the possible corank (at most 1 !) of the cokernel
of the map defining the Selmer group. Finally this proposition is proven in the last
paragraph. The methods of the proof are similar to those developed in [L-S]. At the
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point where the crystalline conjecture was used in the good reduction case, we now
use the Fontaine-Jannsen conjecture (proven by Kato/Tsuji for p ≥ 3) that relates the
log-crystalline cohomology to the p-adic étale cohomology. The role of the syntomic
cohomology in the context of Schneider’s p-adic points conjecture is now replaced
by a semistable analog relating log-syntomic cohomology to H1g (Qp, H

2(X,Qp(2)))
(compare [L]). When we apply this argument we will also need the computation, due
to Hyodo and used by Tsuji, on a filtration on the sheaf of p-adic vanishing cycles in
terms of modified logarithmic Hodge-Witt sheaves.

This paper was written during a visit at the University of Cambridge. I want to thank
J. Coates and J. Nekovář for their invitation and J. Nekovář for many discussions and
the permission to include his proof of Lemma (2.5) in this paper. Finally I thank S.
Saito for encouraging me to look at the remaining semistable reduction case of our
main finiteness result in [L-S] and I consider this work as having been done very much
in the spirit of our joint paper and a continuation of it.

§1

We first fix some notations.

For an Abelian group M let Mdiv be the maximal divisible subgroup of M and M{p}
its p-primary torsion subgroup. For a scheme Z over a field k let Z = Z×

k
k where

k is an algebraic closure of k. Denote by Gk = Gal(k/k) the absolute Galois group
of k. We will consider the Zariski sheaf K2 associated to the presheaf U → K2(U) of
Quillen (-Milnor) K-groups on Z and let Hj

Zar(Z,K2) be its Zariski cohomology. Let
E be a semistable elliptic curve over Q with conductor N , φ : X0(N)→ E a modular
parametrization of E, X = E×

Q
E. Let T, A, V be the following G = GQ-modules:

T = H2(X,ZZp(2)) , A = H2(X,Qp/ZZp(2)) , V = H2(X,Qp(2)) .

Note that as Abelian groups T ∼= ZZ6p, A ∼= Qp/ZZ
6
p, because the integral cohomology

of an Abelian variety is torsion-free and the second Betti number of X b2 is 6.

Let K be the function field of X. For a prime p let

NH3(X,Qp/ZZp(2)) := ker(H3(X,Qp/ZZp(2))→ H3(K,Qp/ZZp(2)))

and

KNH
3(X,Qp/ZZp(2)) := ker(NH3(X,Qp/ZZp(2))→ H3(X,Qp/ZZp(2)))

By results of Bloch and Merkurjev-Suslin ([Bl], §5 and [M-S] we have the following
exact sequence

(1− 1) 0→ H1(X,K2) ⊗Qp/ZZp → NH3(X,Qp/ZZp(2))→ CH0(X){p} → 0

Since H1(X,K2) ⊗Qp/ZZp = 0 we get an exact sequence

0 −→ H1(X,K2) ⊗Qp/ZZp −→ KNH
3(X,Qp/ZZp(2))(1− 2)

−→ ker(CH0(X){p} −→ CH0(X){p}G) −→ 0
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Since X is identified with its Albanese variety, the map CH0(X)tors −→
CH0(X)Gtors is the Albanese map and therefore (CH0(X){p})G ∼= X(Q){p} is finite.
Consider the Hochschild-Serre spectral sequence

Ea,b2 = Ha(Q, Hb(X,Qp/ZZp(2)) =⇒ Ha+b(X,Qp/ZZp(2)) .

Then we have

Lemma I: Let the assumptions be as above. Then the composite map

E2,12 −→ H3(X,Qp/ZZp(2)) −→ H3(K,Qp/ZZp(2))

is injective.

This is shown in ([L-S], Lemma (A)) without any assumption on the prime p.

Corollary (1.3) The composite map

ϕ : KNH
3(X,Qp/ZZp(2)) −→ H1(GQ, A)

that is obtained by the Hochschild-Serre spectral sequence is injective.

The Corollary will play an important role in the proof of

Lemma II: Under the above assumptions let p ≥ 3 be a prime such that p | N and
assume that the condition H 1) in the introduction is satisfied. Then we have

H1(X,K2)⊗Qp/ZZp = KNH
3(X,Qp/ZZp(2))div .

Remark:

Lemma II was proven for primes p 6 | 6N in ([L-S, Lemma (B)) because in this case
KNH

3(X,Qp/ZZp(2))div coincides with H1(Q, A)div. This is not stated there explic-
itly but follows from the proof of Lemma (B) in [L-S].

Now we deduce Theorem A from Lemma II.

The exact sequence (1-1) also holds for a smooth proper model X of X over ZZ
[
1
Np

]
.

So CH0(X ){p} is a subquotient of H3(X ,Qp/ZZp(2)) and one knows that the latter
group is co-finitely generated. Therefore CH0(X ){p} is co-finitely generated as ZZp-
module. Since the kernel of the canonical map

CH0(X ){p} −→ CH0(X){p}

is a torsion group by the main result in [Mi], the localization sequence in the Zariski
K-cohomology over X yields a surjection

CH0(X ){p} →→ CH0(X){p} .
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So we also know that CH0(X){p} is co-finitely generated.

On the other hand, by (1-2), the finiteness of CH0(X){p}G and Lemma II we conclude
that the maximal divisible subgroup of CH0(X){p} is zero. Therefore CH0(X){p} is
a finite group.

To complete the proof of Theorem A it remains to show Lemma II.
§2

For each prime ℓ let

H1e (Qℓ, V ) ⊂ H1f (Qℓ, V ) ⊂ H1g (Qℓ, V ) ⊂ H1(Qℓ, V )

be defined as in ([BK], 3.7)). Let

H1f (Qℓ, T ) ⊂ H1g(Qℓ, T ) ⊂ H1(Qℓ, T )

be the inverse image of H1f(Qℓ, V ) and H1g (Qℓ, V ). Put

H1f(Qℓ, A) := H1f (Qℓ, T )⊗Qp/ZZp ⊂ H1(Qℓ, A)

and

H1g(Qℓ, A) := H1g (Qℓ, T )⊗Qp/ZZp ⊂ H1(Qℓ, A)

Write ∧ℓ = H1(Qℓ, T )/H1f(Qℓ, T ). Then we have

∧ℓ ⊗Qp/ZZp = H1(Qℓ, A)div/H
1
f(Qℓ, A)

Consider as in ([L-S], §3) the composite map

ψ : H1(X,K2)⊗Qp/ZZp −→ KNH
3(X,Qp/ZZp(2))div

α′−→ ⊕
ℓ
∧ℓ ⊗Qp/ZZp

where α′ is the restriction of the map

α : H1(Q, A) −→ ⊕
all ℓ

H1(Qℓ, A)

H1f (Qℓ, A)

the kernel of which defines the Selmer group S(Q , A).

In analogy to ([L-S], Lemma 3.1) we will prove the following
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Proposition (2.1): Let the notations be as in §1. Let p ≥ 3 a prime, such that E
has multiplicative reduction at p. Assume that condition (H 1) holds. Then we have

cokerψ = H1(Qp, A)div/H
1
g(Qp, A)a)

Imψ = Imα′b)

We will give the proof of Proposition 2.1 in the next section.

In the following we will compute the coranks of H1(Qp, A)div/H
1
g(Qp, A) and

H1g(Qp, A)/H1f(Qp, A). Let

Ωp = H1g(Qp, V )/H1f(Qp, V ) and θp = H1(Qp, V )/H1g(Qp, V )

as in ([L-S], §4). It is well known that XQp = E×EQp has a regular proper model X
over ZZp with semistable reduction. Let Xp be its closed fiber. By local Tate-Duality
([B-K], §3.8), Ωp is the Qp-dual of H1f (Qp, V (−1))/H1e (Qp, V (−1)) and this quotient

is — by the computations in [B-K], 3.8 — isomorphic to (Bcrys ⊗ V (−1))GQp/1− f ,
which is by Kato’s and Tsuji’s proof of the Fontaine-Jannsen-Conjecture ([Ka], §6),
([Tsu]) isomorphic to (D2)

N=0/1− f), where

D2 = H2log crys((Xp,M1)/W (IFp),W (L), Ocrys)⊗Qp

denotes the log-crystalline cohomology introduced by Hyodo-Kato [H-K], N = 0 de-
notes the kernel under the action of the monodromy operator N , and f acts as p−1ϕ,
where ϕ is the Frobenius acting on D2. Therefore we have by Poincaré duality for
Hyodo-Kato cohomology that Ωp is isomorphic to (cokerN : D2 → D2)

ϕ=p. Since
the functor Dst(·) = (Bst ⊗ ·)GQp commutes with tensor products and a Tate-elliptic
curve has ordinary semistable reduction in the sense of ([Il], Definition 1.4) we have
a Hodge-Witt-decomposition ([Il], Proposition 1.5)

D2 = ⊕
i+j=2

Hi(Xp,Wwj) ⊗Qp .

Here Hi(Xp,Wwj) is the cohomology of the modified Hodge-Witt-sheaves.
From the action of the Frobenius ϕ on D2 it is clear that (D2)ϕ=p is contained
in H1(Xp,Ww1)Qp . By ([Mo], §6) we know that the monodromy filtration and the
weight filtration on D2 coincide. Using the formula Nϕ = pϕN we have that

N(H0(Xp,Ww2)) ⊂ H1(Xp,Ww1)

and the map

N2 : H0(Xp,Ww2) −→ H2(Xp,Ww0)

is an isomorphism. Since dimHi(Xp,Wwj)Qp = dimHi(XQpΩ
j) by ([Il], Corollaire

2.6), we see that

dim(cokerN : D2 → D2)
ϕ=p = dim(D2)

N=0
ϕ=p ≤ 3 .

On the other hand the BSt-comparison-isomorphism provides an injection

Pic(X) ⊗Qp →֒ H2(X,Qp(1))GQp →֒ (D2)
N=0
ϕ=p .

Since Pic(X) has rank 3 we have
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Lemma (2.2):

dim Ωp = dim(D2)
N=0
ϕ=p = 3 .

By the same methods and the proof of ([L-S], Lemma 4.4) we get

Lemma (2.3):

dim θp = 1 .

From Lemma (2.2) and ([L-S], Lemma 4.1) we get

Lemma (2.4): The image of the composite map

(Pic(X) ⊗Q∗) ⊗Qp/ZZp −→ H1(X,K2) ⊗Qp/ZZp
ψp−→ ∧p ⊗Qp/ZZp

is

H1g (Qp, A)/H1f(Qp, A) .

Now we will give the proof of Theorem B and we distinguish between two cases.

Case I:

The map α′p, i.e. the p-component of α′ is surjective.

This case is actually obstructed by the Gersten-conjecture as we will see in the proof
of Proposition (2.1). Since we do not assume (H 1) in Theorem B we also consider
this case. Using the surjectivity-property of ψℓ, i.e. the ℓ-component of ψ, for ℓ 6= p
that follows from Prop. 2.1, and where the condition (H 1) is not needed, we see that
cokerα has ZZp-corank 0. Now apply the modified version of ([B-K], Lemma 5.16)
that is given in ([L-S], Lemma (3.3)): All the assumptions there are also satisfied for
our choice of p:

— V is a de Rham representation of Gal(Qp/Qp) by Falting’s proof of the de Rham
conjecture.

— For the characteristic polynomial Pℓ(V, t) we have Pℓ(V, 1) 6= 0. For ℓ 6= p the
proof is the same as in ([L-S], §3). For ℓ = p, we have Crys(V )f=1 = (D2)

N=0
ϕ=p2 .

By the same methods as in the proof of Lemma (2.2) we have (D2)
N=0
ϕ=p2 = 0.

By the same arguments as in the proof of ([L-S], Theorem 3.2) we get the formula
corank(kerα) = corank(cokerα) = 0. Therefore S(Q, A) = kerα is finite.

Case II:

Imα′p = H1g (Qp, A)/H1f(Qp, A)

By Lemmas (2.3) and (2.4) this is the only remaining case to consider.

Let T ′ = Sym2H1(E,ZZp(1)). By Lemma (2.2) and Lemma (2.4) we have
H1g(Qp, T

′)/H1f(Qp, T
′) = 0. Let c(ℓ) for ℓ 6 | N be the elements in H1(X,K2) that
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were constructed by Mildenhall and Flach. In the notation of ([Fl], Prop. (1.1)) we
therefore have resr=pc(ℓ) ∈ H1f(Qp, T

′). We get this property with little effort whereas

in [Fl] this was one of the harder parts in the whole paper. It is now easy to check
that all the other required properties on the elements c(ℓ) in ([Fl], Prop. (1.1)) are
also satisfied for our choice of p. Thus we apply Kolyvagin’s argument in ([Fl], Prop.
(1.1)). At the point where Flach needs the surjectivity of the Galois representation
̺p in order to derive the finiteness of S(Q, A(−1)), we use the following Lemma, due
to Nekovář, that finishes, after applying Poitou-Tate Duality, the proof of Theorem
B.

Lemma (2.5): Let Q(Epn)/Q be the Galois extension obtained by adjoining the co-
ordinates of all pn-torsion points on E and let T ′ be as above. Then there exists a
c > 0, such that the exponent of H1(Gal(Q(Epn)/Q), T ′(−1)/pn) divides pc for all
n ≥ 0.

Remark: Flach uses the vanishing of this cohomology group that follows from his
additional assumption on the surjectivity of ̺p.

Proof: Put G := Im(Gal(Q/Q) → AutZZp(Tp(E))). Since E is without complex

multiplication over Q, G is of finite index in AutZZp(Tp(E)) = GL2(ZZp). Put Gn :=

ker(G → GL2(ZZ/p
n), T ′ := Sym2(Tp(E)), G̃ := Im(G → AutZZp(T

′)) = G/Z ∩ G,

where Z = center of GL2(ZZp) =

{(
λ 0
0 λ

)
, λ ∈ ZZ∗p

}
.

Consider the following diagram with horizontal and vertical exact sequences:
(note that G/Gn ∼= Gal(Q(Epn)/Q).

0

↓
H1(G, T ′(−1)) ⊗ ZZ/pn

↓
0→ H1(G/Gn, T

′(−1)/pn)
inf−→ H1(G, T ′(−1)/pn)

res−→H1(Gn, T ′(−1)/pn)G/Gn

↓
H2(G, T ′(−1))pn

It is clear that Hi(G, T ′(−1)) = Hi
cont(G, T

′(−1)) = Hi
naive(G, T

′(−1)) are ZZp-
modules of finite type. Therefore H2(G, T ′(−1))p∞ is finite. We have an exact
sequence

0→ H1(G̃, T ′(−1))
inf−→ H1(G, T ′(−1))

res−→H1(Z ∩G, T ′(−1))G/Z∩G

=

Homcont(Z ∩G, (T ′(−1))G/Z∩G)
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But (T ′(−1))G/Z∩G is zero (E has no CM). Thus H1(G̃, T ′(−1)) = H1(G, T ′(−1)).
By result of Lazard there is an injection

H1(G̃, T ′(−1)) ⊗Q →֒ H1(Lie(G̃), T ′(−1)⊗Q)
= H1(sl(2), T ′(−1) ⊗Q)

and H1 vanishes for semisimple Lie-algebras (and every representation). So
H1(G, T ′(−1)) is finite and Lemma 2.5 follows.

Finally it is easy to see that Corollary (1.3), Proposition (2.1) b) and Theorem B imply
Lemma II and as a consequence also Theorem A. It remains to show Proposition (2.1).
This will be accomplished in the next paragraph.

§3

The surjectivity of the map

ψ′ = ⊕
ℓ 6=p

ψℓ : H1(X,K2) ⊗Qp/ZZp −→ ⊕
ℓ 6=p

H1(Qℓ, A)div/H
1
f(Qℓ, A)

follows from ([L-S], Lemmas (4.1), (4.3), (4.4) and (4.5)). On the other hand the
composite map

Pic(X) ⊗ pZZ) ⊗Qp/ZZp → H1(X,K2)⊗Qp/ZZp
ψp→ H1g (Qp, A)/H1f(Qp, A)

is surjective by Lemma (2.2), whereas the image of (Pic(X) ⊗ pZZ) ⊗ Qp/ZZp under
the map ψ′ is zero. To finish the proof of Proposition (2.1) we therefore have to show
that the image of α′p, the p-component of α′ is contained in H1g(Qp, A)/H1f(Qp, A).

By the theory of Bloch-Ogus and the work of Merkurjev-Suslin [M-S] we have an
isomorphism

H1(X,K2/pn) ∼= NH3et(X,ZZ/p
n(2)) .

Let X be a proper regular semistable model of XQp over ZZp, i : Xp → X and
j : XQp →֒ X the inclusions of the closed and generic fiber.

Let H3et(X , τ≤2Rj∗ZZ/pn(2)) be the cohomology of the truncated complex of p-adic
vanishing cycles. Then we have

Lemma (3.1): Assume that the Gersten-Conjecture holds for the Zariski sheaf K2 on
the regular scheme X . Then we have the inclusion

H1(XQp ,K2/pn) ⊂ H3et(X , τ≤2Rj∗ZZ/pn(2)) .

Proof:

This follows from the proof of ([L-S], Lemma (5.4)).
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Lemma (3.2): H3(XQp ,Qp(2))GQp = 0.

Proof:

Using the Künneth formula and the fact that H2(E,Qp(1)) ∼= Qp (the Brauer
group of a curve over an algebraically closed field is zero), it suffices to show that
H1(E,Qp(1))GQp = 0. This follows from ([J], Theorem 5a).

Using Lemma (3.2) and the Hochschild-Serre spectral sequence we get a canonical
map

σ : lim
←−
n
H1(XQp ,K2/pn) ⊗Qp −→ H1(Qp, V ) .

When we deal with a variety over a local field, all cohomology groups under
consideration are (co-)finitely generated. The map α′p certainly factors through

lim
−→
n
H1(XQp ,K2/pn)div . The assertion that lim

−→
n
H1(XQp ,K2/pn)div is contained in

H1g(Qp, A) is therefore equivalent to the assertion that the image of σ is contained in

H1g(Qp, V ). In view of Lemma (3.1) we see that Proposition (2.1) follows from the
following

Lemma (3.3): Under the condition H1) we have: Im σ ⊂ H1g (Qp, V ).

To prove Lemma (3.3) it suffices to show that the image of the map

H3(X , τ≤2Rj∗Qp(2)) −→ H1(Qp, V )

is contained in H1g (Qp, V ).

Let slogn (2) be the log-syntomic complex in Det(X ) constructed by Kato ([Ka], §6)
and Tsuji [Tsu] together with a canonical map

slogn (2) −→ τ≤2i∗i
∗Rj∗ZZ/p

n(2) .

This gives rise to a composite map

η : H3et(X , slogQp(2)) −→ H1(Qp, V ) .

Since (D2)
N=0
ϕ=p2 = (D3)

N=0
ϕ=p2 = 0 (Di denotes the i-th log-crystalline cohomology of

Xp) we may apply the main result in [L] on a semistable analogue of Schneider’s
p-adic points conjecture to get
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Lemma (3.4) Im η = H1g(Qp, V ).

Tsuji has proven that there is a canonical isomorphism between the cohomology
H2(i∗slogn (2)) and the sheaf M2

n = i∗R2j∗ZZ/p
n(2) of p-adic vanishing cycles ([Tsu],

Theorem 3.2). His proof relies on a filtration Fil· on M2
n that was defined by Hyodo

([H], (1.4)) and is induced by a symbol map on Milnor K-Theory. Hyodo has shown
([H], Theorem (1.6)) that the highest graded quotient gr0M2

n sits in an extension
(change of notation: Y := Xp, the closed fiber of X )

0 −→Wnw
1
Y,log −→ gr0M2

n −→Wnw
2
Y,log −→ 0

where Wnw
i
Y,log are the modified logarithmic Hodge-Witt-sheaves ([H] (1.5)). On

the other hand Hyodo and Kato ([H-K] Prop. 1.5) constructed an exact sequence of
Hodge-Witt-sheaves

0 −→Wnw
1
Y −→Wnw̃

2
Y −→Wnw

2
Y −→ 0

and used the connecting homomorphism on the level of cohomology to define the
monodromy operator on log-crystalline cohomology. It follows from the work of Tsuji
([Tsu], §2.4) that there is a commutative diagram

0 → Wnw
1
Y,log → gr0M2

n → Wnw
2
Y,log → 0y y y

0 → Wnw
1
Y → Wnw̃

2
Y → Wnw

2
Y → 0

such that the upper exact sequence is obtained by taking the kernel of 1 − F act-
ing on the lower exact sequence, where F is the Frobenius. From the Hodge-Witt-
decomposition of Hr(Y,Ww·) ([Il], Proposition (1.5)) it is easy to derive a Hodge-
Witt-decomposition for Hr(Y,Ww̃·Y )

Hr(Y,Ww̃·Y ) =
⊕

i+j=r

Hi(Y,Ww̃jY ) .

From the action of the Frobenius ϕ on Hr(Y,Ww̃·Y ) we get

H3(Y,Ww̃·Y )ϕ=p2 = H1(Y,Ww̃2Y )F=1 .

On the other hand it is shown in the proof of the semistable analogue of the p-adic
points conjecture on log-syntomic cohomology [L], (2.6), Prop. (2.9), Prop. (2.13) that
there is a surjection

H3et(X , slogQp(2))→→ (H3(Y,Ww̃·Y )Qp)ϕ=p2
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and the above arguments yield a commutative diagram

H3(X , slogQp(2))

y ց

H3et(X , τ≤2Rj∗Qp(2)) → H1(Y, gr0M2
Qp

) → (H3(Y,Ww̃·Y )Qp)ϕ=p2

y y

H1(Qp, V ) −→ H1(Qp, Bcrys ⊗ V )

It follows from ([L], (2.10)) that the composite

(H3(Y,Ww̃·Y )Qp)ϕ=p2 −→ H1(Qp, Bcrys ⊗ V ) −→ H1(Qp, Bst ⊗ V )

is the zero map. Using the fact that H1st = H1g (unpublished result of Hyodo, see also
Nekovář ([Ne](1.24)) we conclude that the image of the map

H3et(X , τ≤2Rj∗Qp(2)) −→ H1(Qp, V )

is H1g(Qp, V ) in view of Lemma (3.4). This finishes the proof of Lemma (3.3) and
Proposition (2.1).

References

[Bl] S. Bloch, Lectures on Algebraic Cycles. Duke Univ. Math. Series, Durham,
1980.

[B-K] S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives. In: The
Grothendieck Festschrift 1990.

[Fl] M. Flach, A finiteness theorem of the symmetric square of an elliptic curve.
Invent. Math. 109 (1992), 307–327.

[H] O. Hyodo, A note on p-adic étale cohomology in the semistable reduction
case. Invent. Math. 91 (1988), 543–557.

[H-K] O. Hyodo, K. Kato, Semistable reduction and crystalline cohomology with
logarithmic poles. In: Périodes p-adiques, Astérisque 223 (1994), 221–268.
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Abstract.

A Hopf-bifurcation scenario with symmetries is studied. Here, apart from

the well known branches of periodic solutions, other bifurcation phenomena

have to occur as it is shown in the second part of the paper using topological

arguments. In this �rst part of the paper we prove analytically that invariant

tori with quasiperiodic motion bifurcate. The main methods used are orbit

space reduction and singular perturbation theory.

1991 Mathematics Subject Classi�cation: 58F14, 34C20, 57S15

Contents

1 Introduction 62

2 Representation of the group O(3) × S1 on V2 ⊕ iV2 64

3 Restriction to Fix(Z2, 1) 69
3.1 Poincare-series, invariants, and equivariants . . . . . . . . . . . . . . . 69

3.2 Orbit space reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Lattice of isotropy subgroups . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Critical points of the reduced vector �eld . . . . . . . . . . . . . . . . 81

3.5 Stability of the critical points of the reduced vector �eld . . . . . . . . 91

3.6 Fifth order terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.7 Singular perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 99

3.8 Invariant tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.9 Stability of the invariant tori . . . . . . . . . . . . . . . . . . . . . . . 109

Documenta Mathematica 2 (1997) 61–113



62 Christian Leis

1 Introduction

An interesting problem in the theory of ordinary di�erential equations is the gen-

eralization of the two dimensional Hopf-bifurcation to higher dimensional systems

with symmetry. In this connection, [GoSt] and [GoStSch] investigated problems on

a vector space X that can be decomposed into a direct sum of absolutely irreducible

representations of the group O(3) of the formX = Vl⊕ iVl. Here Vl denotes the space
of homogeneous harmonic polynomials P : R3 → R of degree l. This is the simplest

case where purely imaginary eigenvalues (of high multiplicity) in the bifurcation

point are possible. Using Lie-group theory, the authors showed the existence of

branches of periodic solutions with certain symmetries. Here in addition to the

spatial O(3)-symmetry a temporal S1-symmetry occurs. This symmetry corresponds

to a time shift along the periodic solutions. In order to obtain their results, the

authors made a Lyapunov-Schmidt-reduction on the space of periodic functions.

The reduced system then has O(3) × S1-symmetry and solutions correspond to

periodic solutions of the original system with spatial-temporal symmetry. Under

certain transversality assumptions, periodic solutions with symmetry H̄ ⊂ O(3)× S1

bifurcate if Dim Fix(H̄) = 2 for the induced representation of the group O(3)×S1 on
the space X (cf. [GoSt] resp. [GoStSch]). [Fi] has shown that it is su�cient that H̄
is a maximal subgroup for periodic solutions with symmetry H̄ to bifurcate. Using

these methods, only the existence of periodic solutions can be investigated. Via

normal form theory (cf. [EletAl]) one gets O(3) × S1-equivariant polynomial vector

�elds up to every �nite order for our systems. This additional S1-symmetry is due to

the fact that the normal form commutes with the one parameter group eL
T t

which

is generated by the linearization L in the bifurcation point. For a Hopf-bifurcation

L has purely imaginary eigenvalues (of high multiplicity) and the group generated is

a rotation. [IoRo], [HaRoSt] and [MoRoSt] did analytic calculations for the normal

form up to �fth order in the case l = 2. They gave conditions for the stability of

the �ve branches of periodic solutions predicted by [GoSt] resp. [GoStSch] in terms

of coe�cients of the normal form. Quasiperiodic solutions found by [IoRo] in the

normal form up to third order can not be con�rmed in this paper. We shall show a

mechanism for quasiperiodic solutions to bifurcate in the �fth order.

Investigating the normal form due to [IoRo], one �nds a region in parameter space

where two of the branches of periodic solutions bifurcating supercritically are stable

simultaneously. Using topological methods, [Le] showed that we have the following

alternative in this region in parameter space: Either besides the known branches of

periodic solutions other invariant objects bifurcate or recurrent structure between

the di�erent invariant sets (e.g. between the di�erent group orbits of periodic

solutions and the trivial solution) exists. Actually the results of these topological

investigations were the starting point of analytical e�orts to �nd other solutions (or

recurrent structure) in this paper. In order to get our results, we shall proceed as

follows.

First the representation of the group Γ = O(3) × S1 on the ten dimensional space

X = V2 ⊕ iV2 is introduced. The lattice of isotropy subgroups of this representation

is given according to [MoRoSt] and the results of [IoRo] are quoted. The smallest

invariant subspace containing both solutions that are stable simultaneously has

isotropy Σ = (Z2, 1).
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Then our considerations are being restricted to this six dimensional subspace.

The normaliser of Σ is N(Σ) = O(2) × S1 ⊂ Γ. This is the biggest subgroup of Γ
leaving Fix(Σ) invariant as a subspace. Now we shall look at the representation of

N(Σ)
Σ on Fix(Σ).

Dealing with di�erential equations with symmetries, one has to deal with group

orbits of solutions because a solution x(t) gives rise to solutions γ x(t) with γ ∈ Γ.
This redundancy, induced by the action of the group, will be removed by identifying

points that lie on a group orbit. I.e. one studies the orbit space that is homeomorphic

to the image of the Hilbert-map Π : Fix(Σ) → Rk : z → πi(z) (cf. [La2] and [Bi]).

Here k denotes the minimal number of generators of the ring of

N(Σ)
Σ invariant poly-

nomials P : Fix(Σ) → R and πi, i = 1, . . . , k, is such a system of generators. Thus

the original di�erential equation is reduced to a di�erential equation on Π
(
Fix(Σ)

)
of

the form π̇ = g(π), π = (π1, . . . , πk). In order to perform this reduction for a given

equation, one, �rst of all, has to know the number of independent invariants and

equivariants for a given representation. Then one, actually, has to calculate them.

Statements on the number of independent invariants and equivariants and possible

relations between them are given by the Poincaré-series. These are formal power

series

∑∞
i=0 ai t

i
in t. Here ai denotes the dimension of the vector space of homoge-

neous invariant polynomials of degree i resp. the dimension of the vector space of

homogeneous equivariant mappings of degree i. These series can be determined just

by knowledge of the representation of the group on the space.

The lattice of isotropy subgroups of the representation of

N(Σ)
Σ on Fix(Σ) and the

image of the Hilbert-map are determined. This is a strati�ed space which consists of

manifolds (strata). Each stratum consists of images of points of some isotropy type

of the representation of

N(Σ)
Σ on Fix(Σ). Thus it is �ow invariant with respect to the

reduced vector �eld on Π
(
Fix(Σ)

)
.

Afterwards we shall carry out the orbit space reduction for the normal form up to

third order. The critical points of the reduced vector �eld in Π
(
Fix(Σ)

)
are deter-

mined. As expected by inspection of the lattice of isotropy subgroups of Γ on V2⊕ iV2,

we shall �nd images of periodic solutions of isotropy (O(2), 1), (D4,Z2), S̃O(2)
2

, and

(T,Z3). Moreover there exists some stratum F in Π
(
Fix(Σ)

)
. Connected via a curve

g of �xed points the �xed points having isotropy (O(2), 1) resp. (D4,Z2) in the orig-

inal system lie on F . The preimage of F consists of points having isotropy (Z2, 1)
in the restricted system. Perturbations that respect the symmetry will, therefore,

respect this stratum. The curve g is stable for the reduced vector �eld restricted to

F . Small perturbations of the original vector �eld in �fth order of magnitude ε will,
therefore, preserve a curve. By use of singular perturbation theory (cf. [Fe]), one gets

a resulting drift on the curve. This explains the observation made by [IoRo] that the

stability of the �xed points of isotropy (O(2), 1) resp. (D2,Z2) is determined in the

�fth order.

Dependent on the relative choice of the coe�cients of the third order normal form

in the region of parameter space in question, there is a point on the curve g where

the linear stability of the curve in the direction of the principle stratum changes.

Linearization of the reduced vector �eld in this point yields a nontrivial two dimen-

sional Jordan-block to the eigenvalue zero. The second dimension results from the
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linearization along the curve. Finally the �ow on the two dimensional center manifold

in this point is determined for small ε. The persistence of the curve g for small ε,
knowledge of the direction of the drift, the change of stability in the direction of the

principle stratum, and the existence of a nontrivial two dimensional Jordan-block to

the eigenvalue zero are su�cient to prove for small ε the bifurcation of a �xed point

of the reduced equation in the direction of the principle stratum using the implicit

function theorem. Fixed points of the reduced system on the stratum F correspond to

periodic solutions, �xed points in the principle stratum correspond to quasiperiodic

solutions in the original system.

2 Representation of the group O(3) × S1 on V2 ⊕ iV2

We investigate systems of ODE's of the form

ẋ = f
(
λ, x

)

in the ten dimensional space

X = V2 ⊕ iV2.

Let V2 be the �ve dimensional space of homogeneous harmonic polynomials

p : R3 → R

of degree two. We have

V2 =
〈
2x23 − (x21 + x22), x1x3, x2x3, x

2
1 − x22, x1x2

〉
.

Let us introduce the following coordinates (z, z),

z = (z−2, z−1, z0, z1, z2), zm ∈ C, m = −2, . . . , 2,

in the space X:

x ∈ X ⇔ x =
2∑

m=−2

zm Ym.

Here

Y0 =
√

5
16π

(
2x23 − (x21 + x22)

)
,

Y±1 =
√
15
8π

(x1x3 ± ix2x3) ,

Y±2 =
√
15
32π

(
(x21 − x22)± i2x1x2

)

denote spherical harmonics. Moreover let

f : R×X → X

be a smooth map that commutes with the following representation of the compact

Lie-group

Γ = O(3)× S1
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on the space X.

The group

O(3) = SO(3)⊕ Zc2
with

Zc2 = {±Id}

acts via the natural representation absolutely irreducible on V2. For p ∈ V2 and γ ∈ Γ
we have

γ p(·) = p(γ−1·) for γ ∈ SO(3),

−Id p(·) = p(·).

This representation is a special case of the representation of the group O(3) on the

space Vl, l ≥ 1. For l even the subgroup Zc2 acts trivially in the natural representation.
On the space X the group O(3) acts diagonally. For the general representation theory

of O(3) we refer to [StiFä] and [GoStSch].

The group S1 acts as a rotation in the coordinates

φ z = eiφz,

φ z = e−iφz

with φ ∈ S1.
So we have

f(λ, γ x) = γ f(λ, x), ∀γ ∈ Γ.

In their paper concerning Hopf-bifurcation with O(3)-Symmetry [GoSt] and [GoStSch]

look at systems of the form

ẋ = f(λ, x)

with

x ∈ X = Vl ⊕ iVl

and

f : R×X → X

a smooth mapping. This direct sum of two absolutely irreducible representations of

the group O(3) is the simplest case allowing imaginary eigenvalues, however of high

multiplicity, in the bifurcation point. Let us assume:

• f is equivariant with respect to the diagonal representation of O(3) on X.

• f(λ, 0) ≡ 0.

• (Df)λ,0 has a pair of complex conjugate eigenvalues σ(λ)± iρ(λ) with σ(0) = 0,
σ̇(0) 6= 0, and ρ(0) = ω of multiplicity (2l+1) = Dim(Vl) with smooth functions

σ and ρ.
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The authors now look at subgroups

H̄ ⊂ Γ.

Here the group S1 ⊂ Γ acts as a time shift on the periodic solutions. Therefore

subgroups H̄ consist of spatial and temporal symmetries. For subgroups H̄ with

Dim Fix(H̄) = 2

with respect to the representation of the group Γ on Vl ⊕ iVl, the authors prove the
existence of exactly one branch of periodic solutions with small amplitude of period

near

2π
ω

and the group of symmetries H̄. In order to do this, the authors make a

Lyapunov-Schmidt-reduction on the space of periodic functions. The reduced system

has the full O(3) × S1-symmetry and solutions correspond to periodic solutions with

spatial-temporal symmetries in the original system.

For l = 2 [IoRo] applied normal form theory (cf. [EletAl]) to these systems. Up

to every �nite order they got O(3) × S1-equivariant systems of the form described

above. This additional S1-symmetry up to every �nite order is due to the fact that

the normal form of f commutes with the one-parameter group e(Df)
T
0,0 t

. Due to our

conditions on the eigenvalues, this is just a complex rotation.

The following calculations are done using the normal form up to �fth order due to

[IoRo]. The normal form up to �fth order is very lengthy and shall not be given here.

The parts important for our calculations shall be cited when necessary.

Let G be a compact Lie-group acting on a space X. The most general form of a

G-equivariant polynomial mapping g : X → X is

g(x) =
n∑

i=1

pi(x) ei(x).

Here

pi : X → R

denote G-invariant polynomials and

ei : X → X

G-equivariant, polynomial mappings.

In order to determine the most general G-equivariant, polynomial mapping up to a

�xed order, one, �rst of all, has to know the number of independend invariants and

equivariants and possible relations between them. On this occasion the Poincaré-

series described in the next chapter are useful. The next problem is to �nd the

polynomials. In the case of the group O(3), using raising and lowering operators (cf.

[Sa],[Mi]), one can check whether a speci�c polynomial is invariant or not. The raising

and lowering operators are in close relationship to the in�nitesimal generators of the

Lie-algebra of the group. So the problem is to construct and check all possible poly-

nomials resp. polynomial mappings. Dealing with high order polynomials and large

dimensions of the problem, this is a very di�cult task that is only accessible via sym-

bolic algebra. At least, using the Poincaré-series, one knows when everything is found.
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The lattice of isotropy subgroups of the representation of the group Γ on V2⊕ iV2 has
been determined by [MoRoSt].

(O(2), 1) (D4,Z2) (T,Z3) S̃O(2)
2

S̃O(2)
1

(D2, 1) (Z4,Z2) (Z2,Z2) (Z3,Z3)

SO(3)× S1

(Z2, 1)

1

Figure 1: Lattice of isotropy subgroups of Γ on V2 ⊕ iV2.

The subgroups H̄ ⊂ Γ are given as twisted subgroups

H̄ =
(
H,Θ(H)

)

with H ⊂ SO(3) and Θ(H) ⊂ S1. In this connection

Θ : H → S1

is a group homomorphism. Every isotropy subgroup H̄  Γ can be written in this

form (cf. [GoStSch]). In the case of the isotropy subgroups S̃O(2)
1

resp. S̃O(2)
2

we

have H = SO(2) ⊂ SO(3) and Θ(H) = S1 with Θ(φ) = φ resp. Θ(φ) = φ2.
In [MoRoSt] the authors investigate Hamiltonian systems of the form

v̇ = J DH(v)

with v ∈ R10 = V2 ⊕ iV2,

J =

(
0 −I5
I5 0

)
,

and O(3) × S1 invariant Hamiltonian H : R10 → R. This leads to restrictions on the

coe�cients of the normal form of the vector �eld. Like [IoRo] for the general vec-

tor �eld, [MoRoSt] analytically prove the existence of periodic solutions of isotropy
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(O(2), 1), (D4,Z2), (T,Z3), S̃O(2)
1

, and S̃O(2)
2

. These are exactly the subgroups of Γ
having a two dimensional �xed point space for our representation, i.e. the subgroups

for which [GoSt] and [GoStSch] predicted the bifurcation of periodic solutions using

group theoretical methods. Moreover the authors give conditions for the stability of

the di�erent branches of periodic solutions by means of regions in the parameter space

of the normal form.

In the following we shall look only at the situation where all solutions bifurcate su-

percritically. In this case there is a region in parameter space where the periodic

solutions of isotropy (O(2), 1) resp. S̃O(2)
2

are stable simultaneously, see [IoRo]. Us-

ing topological methods, [Le] showed that in this region in parameter space either

other isolated invariant objects besides the trivial solution and the di�erent group

orbits of periodic solutions have to exist or there is recurrent structure between the

trivial solution and the di�erent group orbits of periodic solutions. Recurrent struc-

ture means that it is possible to go back via connecting orbits that connect di�erent

group orbits in the direction of the �ow, from a speci�c group orbit to this group

orbit itself.

In this paper we shall prove the existence of quasiperiodic solutions in the region in

parameter space in question. The quasiperiodic solutions given by [IoRo] using the

third order normal form cannot be con�rmed. We shall prove that the quasiperiodic

solutions bifurcate in �fth order from a curve of periodic solutions that is degenerate

up to third order.

In order to reduce the dimension of the problem, we shall restrict our calculations in

the following to the smallest invariant subspace containing the two stable solutions.

This is a subspace of isotropy (Z2, 1) due to the lattice of isotropy subgroups. Next

we want to �x a speci�c subgroup

O(2) ⊂ SO(3)

because it is well suited for our coordinates:

O(2) =



rφ =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 , κ =




1 0 0
0 −1 0
0 0 −1


 ; φ ∈ [0, 2π)



 .

It acts (cf. [GoStSch]) in the following form on our coordinates z:

rφ (z−2, z−1, z0, z1, z2) = (e−2iφz−2, e
−iφz−1, z0, e

iφz1, e
2iφz2),

κ (z−2, z−1, z0, z1, z2) = (z2,−z1, z0,−z−1, z−2).

Finally let

Σ = (Z2, 1)

with

Z2 = {1, rπ}.
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3 Restriction to Fix(Z2, 1)

Lemma 3.0.1
Fix(Σ) = Span{(z−2, 0, z0, 0, z2)} ∼= C 3.

Lemma 3.0.2

Ξ =
N(Σ)

Σ
= O(2) × S1.

The group O(2) × S1 acts on C 3:

rθ(z−2, z0, z2) = (e−iθz−2, z0, e
iθz2),

κ(z−2, z0, z2) = (z2, z0, z−2),

φ(z−2, z0, z2) = (eiφz−2, e
iφz0, e

iφz2).

The group O(2) is generated by the rotations rθ and the re�ection κ and the group S1

by the rotations φ.

Proof: We have NSO(3)(Z2) = O(2). The representation of O(2) × S1 on C 3 is given
by restriction of the representation of SO(3) × S1 on Fix(Σ). 1

Let z = (z−2, z0, z2) ∈ C 3. The de�nition

σz = σz, σ ∈ Ξ,

gives rise to an unitary representation of Ξ on the space

C 3 ⊕ C 3 ⊃ {(z, z), z ∈ C 3} = R6.

3.1 Poincare-series, invariants, and equivariants

The number of generators of the ring of Ξ-invariant polynomials P : R6 → R and

of the module of Ξ-equivariant, polynomial mappings Q : R6 → R6 over the ring of

invariant polynomials can be determined using Poincaré-series.

For an unitary representation T of a compact Lie-group G on a vector space V we

have

PI(t) =

∫

G

1

det(I − tT (g))
dg =

∞∑

i=0

cit
i,

PEq(t) =

∫

G

χ(g)

det(I − tT (g))
dg =

∞∑

i=0

dit
i.

Here ci, i > 0, denotes the dimension of the vector space of homogeneous invariant

polynomials of degree i and di, i > 0, the dimension of the vector space of homoge-

neous, equivariant mappings of degree i. Let c0 = d0 = 1. The integral appearing in

the formulas is the Haar-integral associated to the compact Lie-group G (cf. [BrtD]),

χ(g), g ∈ G, denotes the character of g relative to the representation T . The theory
of Poincaré-series is presented in [La2].
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Lemma 3.1.1

PI(t) =
1 + t4

(1− t2)2(1− t4)2 ,

PEq(t) =
2t+ 3t3 + t5

(1− t2)2(1− t4)2 .

Proof: The group Ξ = O(2) × S1 can be written as the disjoint union of two sets in

the following form

O(2) × S1 = SO(2)× S1 ∪̇ κSO(2)× S1.

Therefore the integrals appearing in the formulas split in two parts.

a. Ξ1 = SO(2)× S1 acts on the space C 3 ⊕C 3. So we get

P 1I (t) =

∫

Ξ1

1

det(I − tT (g))
dg

=
1

(2π)2

∫ 2π

φ=0

∫ 2π

θ=0

1

det(I − tT (θ, φ))
dθ dφ.

For our representation we have

det(I − tT (θ, φ)) = (1− tei(θ−φ))(1− te−iφ)(1 − te−i(θ+φ))(1− tei(−θ+φ))
(1− teiφ)(1 − tei(θ+φ).

A transformation of variables

eiθ → y1, e
iφ → y2

leads to

P 1I (t) =
1

(2πi)2

∮

y1

∮

y2

1

y1y2 det(I − tT (y1, y2))
dy1 dy2

=
1

(2πi)2

∮

y1

∮

y2

y1y
2
2

(y2 − ty1)(y2 − t)(y1y2 − t)(y1 − ty2)(1− ty2)(1− ty1y2)
dy1dy2.

Using the residue theorem twice, one gets

P 1I (t) =
1 + t4

(1 − t2)3(1 − t4) .

b. For the set κSO(2)× S1 we have

det(I − tT (κ, θ, φ)) = (1− te−iφ)2(1 + te−iφ)(1− teiφ)2(1 + teiφ).

A transformation of variables gives

P 2I (t) =
1

2πi

∮

y2

y22
(y2 − t)2(y2 + t)(1− ty2)2(1 + ty2)

dy2.
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Using the residue theorem, one gets

P 2I (t) =
1 + t4

(1 − t4)2(1 − t2) .

c. Because of the normalization of the Haar-integral, we have

PI(t) = 1
2

(
P 1I (t) + P 2I (t)

)

=
1 + t4

(1− t2)2(1− t4)2

proving the �rst formula.

d. We want to calculate

P 1Eq(t) =

∫

Ξ1

χ(g)

det(I − tT (g))
dg.

Here we get

χ(θ, φ) = Tr(T (θ, φ))

= ei(−θ+φ) + eiφ + ei(θ+φ) + ei(θ−φ) + e−iφ + e−i(θ+φ)

=
(
eiφ + e−iφ

) (
eiθ + 1 + e−iθ

)
.

This leads to

P 1Eq(t) =
1

(2πi)2∮

y1

∮

y2

y2(1 + y1 + y21)(1 + y22)

(y2 − ty1)(y2 − t)(y1y2 − t)(y1 − ty2)(1 − ty2)(1 − ty1y2)
dy1 dy2

= 2
3t+ 3t3

(1− t2)3(1− t4) .

e. For the set κSO(2)× S1 one correspondingly gets

χ(κ, θ, φ) = eiφ + e−iφ.

This leads to

P 2Eq(t) =
1

2πi

∮

y2

y2(1 + y22)

(y2 − t)2(y2 + t)(1− ty2)2(1 + ty2)
dy2

= 2
t

(1− t2)2(1− t4) .

f. We therefore have

P̃Eq(t) = 1
2

(
P 1Eq(t) + P 2Eq(t)

)

= 2
2t+ 3t3 + t5

(1− t2)2(1− t4)2 .
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Doing this, we used the diagonal representation of Ξ on C 3 ⊕ C 3. But we are

interested in the subspace {(z, z), z ∈ C 3} ⊂ C 3 ⊕ C 3 only. Therefore the number

of equivariants given by the formula is twice as big as it should be counting also

equivariants with one component being zero. 1

The Poincaré-series can be interpreted in the following way.

Lemma 3.1.2 The polynomials

π1 = |z0|2,
π2 = |z−2|2 + |z2|2,
π3 = |z−2|2|z2|2,

π4 =
1

2

(
z0
2z−2z2 + z20z−2 z2

)
,

π5 =
i

2

(
z0
2z−2z2 − z20z−2 z2

)

are a minimal set of generators of the ring of invariant polynomials.

P : R6 → R.

The only relation between them is

π24 + π25 = π21π3.

Proof: One easily sees that the given polynomials π1, . . . , π5 are invariant, and

just meet the given relation. Therefore the Poincaré-series of these polynomials is

identical to the one calculated. Because of this there are no additional generators

and relations. 1

Introducing polar coordinates in the following form

zj = rje
iφj , j ∈ {−2, 0, 2},

and de�ning

θ = 2φ0 − φ−2 − φ2,
one gets

π4 = r20r−2r2 cos θ

and

π5 = r20r−2r2 sin θ.

Consequently the invariants π4 and π5 represent phase relations between the di�erent

coordinates.

Lemma 3.1.3 Let π : R6 → R be an invariant polynomial for the representation of Ξ
on R6.
Then

p(z, z) = ∇z,zπ(z, z)

is a Ξ-equivariant polynomial mapping for this representation.
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Proof: We have

p(σ(z, z)) = ∇σ(z,z)π(z, z) = ∇z,zπ(z, z)σ−1 = σp(z, z).

The last equality is correct because the representation is unitary. 1

Lemma 3.1.4 The independent, Ξ-equivariant, polynomial mappings

Q : R6 → R6

up to �fth order are

e1 =




0
z0
0


 , e2 =




z−2
0
z2


 , e3 =




z−2|z2|2
0

z2|z−2|2


 ,

e4 =
1

2




z20z2
2z−2z2z0
z20z−2


 , e5 = − i

2




z20z2
−2z−2z2z0
z20z−2


 .

Here ei, i = 1, . . . , 5, always denote the �rst component of the equivariant. The second

is given by complex conjugation of the �rst one.

Proof: Using the previous lemma, one knows that the mappings ej = ∇z,zπj, j =
1, . . . , 5, are equivariant. Power series expansion of PEq(t) leads to

PEq(t) = 2t+ 7t3 + 17t5 + O(t7).

There are 2, 7 resp. 18 di�erent possibilities to construct equivariant mappings of

degree 1, 3 resp. 5 from invariant polynomials π1, . . . , π5 and equivariant mappings

e1, . . . , e5 by multiplication of invariants with an equivariant. In the �fth order one

gets the relation

e1(π4 − iπ5) =
1

2
π1(e4 − ie5).

All other combinations can't be generated this way. Therefore the Poincaré-series

belonging to π1, . . . , π5 and e1, . . . , e5 is identical to the calculated one up to �fth

order. Because of this there are no further generators or relations up to �fth order.

1

3.2 Orbit space reduction

The most general O(2) × S1-equivariant Hopf-bifurcation problem on R6 up to third

order has the form

ż = (λ + iω)(e1 + e2) + a1π1e1 + a2π1e2 + a3π2e1 + a4π2e2 + a5e3 + a6e4 + a7e5,

aj ∈ C, j = 1, . . . , 7, λ, ω ∈ R, and z = (z−2, z0, z2).
We want to study bifurcation problems on R6 resulting from a SO(3)×S1-equivariant
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problem on V2⊕iV2. This gives the following restrictions for the coe�cients a1, . . . , a7:

ż = (λ+ iω) (e1 + e2) +

(
a− 1

2
b−

√
3

2
c

)
π1e1 +

(
a−

√
8

3
c

)
π1e2

+

(
a−

√
8

3
c

)
π2e1 + aπ2e2 −

(
b+
√

6c
)
e3 +

(
−b+

√
2

3
c

)
e4

+0e5. (3.2.1)

Here a, b, c ∈ C denote the corresponding coe�cients from the normal form of [IoRo].

This is obtained by comparison of the normal form of [IoRo] restricted to the subspace

with the general equation. De�ne coe�cients α, β, γ ∈ C:

α = a− 12 b−
√
3
2c, a = γ,

β = a−
√
8
3
c, b = −2α+ 3

2
β + 1

2
γ,

γ = a, c =
√
3
8(γ − β).

Then the vector �eld has the form

ż = (λ + iω)(e1 + e2) + απ1e1 + β(π1e2 + π2e1) + γπ2e2

+2(α− γ)e3 + 2(α− β)e4

=
(

(λ + iω) + απ1 + βπ2
)
e1 +

(
(λ+ iω) + βπ1 + γπ2

)
e2

+2(α− γ)e3 + 2(α− β)e4 (3.2.2)

with λ, ω ∈ R.

Let ẋ = f(x) be a di�erential equation on a vector space X. Let the mapping f
be equivariant with respect to the representation of the compact Lie-group G on X.

Since

˙(gx) = gẋ = gf(x) = f(gx), ∀g ∈ G,
gx(t), g ∈ G, is a solution if x(t) is a solution. This means one has to deal with group

orbits Gx of solutions. Let Gx denote the isotropy of a point x. Then we have

G

Gx
∼= Gx.

Here

G
Gx

and Gx are compact manifolds and we have (cf. [Di])

DimGx = DimG−DimGx.

In order to get rid of the redundancy in our system induced by the group G, one
studies the orbit space

X
G . Here points lying on a group orbit are identi�ed:

x ≃ y ⇐⇒ x = gy with x, y ∈ X and g ∈ G.
The orbit space is homeomorphic to the image of the Hilbert-map Π(X)

Π : X → Rk

x → (πi(x))
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(cf. [La2], [Bi]). Here k denotes the minimal number of generators of the ring of G-
invariant polynomials P : X → R and πi, i = 1, . . . , k, is such a system of generators.

The original di�erential equation is reduced to a di�erential equation on Π(X) of the
form

π̇ = g(π) with π = (π1, . . . , πk).

The reduced equation can be calculated as follows:

π̇i = ∇xπi ẋ = ∇xπi f(x), i = 1, . . . , k.

The advantage of this reduction lies in the fact that in general the dimension of the

reduced problem is smaller than the original one. Furthermore symmetry induced

periodic solutions in the original system correspond to �xed points in the reduced

system and can be dealt with more easily analytically. The disadvantage is that the

orbit space in general is no vector space but a strati�ed space.

In our case the di�erential equation up to third order (Equation (3.2.2)) is given in

the form

ż =
5∑

j=1

qj ej .

Here

qj : R6 → C, j = 1, . . . , 5,

are invariant polynomials. So one gets

π̇i = ∇zπi ż +∇zπi ż
= ei ż + ei ż

= 2Re (ei ż)

= 2Re



5∑

j=1

qj eiej


 .

The products eiej , i ≤ j ∈ {1, . . . , 5}, are
e1e1 = π1 e2e2 = π2
e1e2 = 0 e2e3 = 2π3
e1e3 = 0 e2e4 = π4 + iπ5
e1e4 = π4 − iπ5 e2e5 = −iπ4 + π5
e1e5 = iπ4 + π5

e3e3 = π2π3 e4e4 = 1
4π
2
1π2 + π1π3 e5e5 = 1

4π
2
1π2 + π1π3.

e3e4 = 1
2
π2(π4 + iπ5) e4e5 = − i

4
π21π2 + iπ1π3

e3e5 = 1
2π2(−iπ4 + π5).

For i > j ∈ {1, . . . , 5} we have
eiej = ejei.

So the following lemma is proved.
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Lemma 3.2.1 The Vector Field (3.2.2) yields the following reduced vector �eld on the

orbit space

π̇1 = 2(λ + αrπ1 + βrπ2)π1 + 4
(

(α − β)rπ4 + (α− β)iπ5
)

π̇2 = 2(λ + βrπ1 + γrπ2)π2 + 8(α− γ)rπ3 + 4
(

(α− β)rπ4 − (α− β)iπ5
)

π̇3 = 4(λ + βrπ1 + αrπ2)π3 + 2π2
(

(α− β)rπ4 − (α− β)iπ5
)

π̇4 = 2
(

2λ+ (α+ β)r(π1 + π2)
)
π4 + 2(α− β)i(−π1 + π2)π5

+(α − β)rπ1(π1π2 + 4π3)

π̇5 = 2
(

2λ+ (α+ β)r(π1 + π2)
)
π5 + 2(α− β)i(π1 − π2)π4

+(α − β)iπ1(−π1π2 + 4π3).

Here αr, βr, γr resp. αi, βi, γi denote the real resp. imaginary parts of α, β, γ.

3.3 Lattice of isotropy subgroups

All isotropy subgroups G  O(2) × S1 can be written as twisted subgroups in the

form

G = H Θ = {(h,Θ(h)) ∈ O(2) × S1 | h ∈ H}
(cf. [GoSt], [GoStSch]). Here H ⊂ O(2) denotes a closed subgroup of O(2) and

Θ : O(2) → S1

is a group homomorphism. For a closed subgroup H ⊂ O(2) let

H ′ =
〈
g−1h−1gh | g, h ∈ H

〉

denote the commutator of H and

Hab =
H

H ′

the abelianisation of H. Since Θ(H) ⊂ S1 is abelian, the possible twist typs Θ(H) of
H can be concluded from the abelianisation Hab

. One gets the following table.

H H ′ Hab Θ(H)

O(2) SO(2) Z2 1,Z2

SO(2) 1 SO(2) 1, S1

Dn
Z n
2
, n even

Zn, n odd
Z2 ⊕ Z2, n even
Z2, n odd

1,Z2

Zn 1 Zn 1,Zd, d|n
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(1, 1)

(Z2, 1) (Z2,Z2)

(O(2), 1) (D2,Z2) S̃O(2)

O(2) × S1

Figure 2: Lattice of isotropy subgroups of O(2)× S1 on R6

Lemma 3.3.1 For our representation of the group O(2)×S1 on the space R6 one gets
the following lattice of isotropy subgroups.

The following table contains generating elements, representatives and the dimension

of the associated �xed point space for every group H Θ
.

H Θ generators representative Dim Fix(H Θ)

O(2) × S1 O(2)× S1 (0, 0, 0) 0

(O(2), 1) (O(2), 1) (0, z0, 0) 2

S̃O(2)
〈
(φ, φ), φ ∈ S1

〉
(z−2, 0, 0) 2

(D2,Z2) 〈(κ, 1), (π, π)〉 (z2, 0, z2) 2

(Z2,Z2) 〈(π, π)〉 (z−2, 0, z2) 4

(Z2, 1) 〈(κ, 1)〉 (z2, z0, z2) 4

(1, 1) {(1, 1)} (z−2, z0, z2) 6

Proof: The dimension of the �xed point space of a potential isotropy subgroup

H Θ ⊂ O(2) × S1

is given by the trace formula (cf. [GoSt], [GoStSch])

Dim FixH Θ =

∫

H Θ

Tr(h, θ(h)) dh.
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The values of Tr(h, θ(h)), h ∈ O(2), Θ(h) ∈ S1, are known by Section 3.1. Since we

use the diagonal representation of the group O(2)× S1 on C3 ⊕C3 ⊃ R6 the formula

yields the real dimension of the �xed point space.

a. Let Θ(H) = 1. Then

Dim Fix (O(2), 1) =
1

2

(
1

2π

∫ 2π

δ=0

2(1 + 2 cos δ) dδ +

∫ 2π

δ=0

2 dδ

)
= 2,

Dim Fix (SO(2), 1) =
1

2π

∫ 2π

φ=0

2(1 + 2 cosφ) dφ = 2,

Dim Fix (Dn, 1) =
1

2n




n∑

j=1

2

(
1 + 2 cos

2π

n
j

)
+

n∑

j=1

2


 =

{
4 n = 1,
2 n ≥ 2,

Dim Fix (Zn, 1) =
1

n

n∑

j=1

2

(
1 + 2 cos

2π

n
j

)
= 2.

The subspaces {(0, z0, 0)} resp. {(z2, z0, z2)} have isotropy (O(2), 1) resp. (Z2, 1)
and, consequently, (O(2), 1) resp. (Z2, 1) are isotropy subgroups with two resp. four

dimensional �xed point spaces. Let Z2 = D1 denote the Z2 generated by κ. The other
groups with trivial twist are no isotropy subgroups.

b. Let Θ(H) = S1. Possible twists are

Θk : SO(2) → S1

φ → kφ

with k ∈ N. Then we have

Dim Fix S̃O(2)
k

=
1

2π

∫ 2π

φ=0

2(1 + 2 cosφ) cos kφ dφ =

{
2 k = 1,
0 k > 1.

The subspace {(z−2, 0, 0)} has isotropy S̃O(2) and, therefore, S̃O(2) is an isotropy

group with two dimensional �xed point space.

c. Let Θ(H) = Z2. Then

Dim Fix (O(2),Z2) =
1

2

(
1

2π

∫ 2π

δ=0

2(1 + 2 cos δ) dδ −
∫ 2π

δ=0

2 dδ

)
= 0.

In the case (Dn,Z2) there are several possibilities. Let �rst n be even. Here we have

three possible twists.

To begin with let

H Θ1,n =

〈(
2π

n
, π

)
, (κ, 1)

〉
.

Then

Dim FixH Θ1,n =
1

2n




n∑

j=1

2(−1)j
(

1 + 2 cos
2π

n
j

)
+

n∑

j=1

2(−1)j




=

{
2 n = 2,
0 n ≥ 4.
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De�ning

H Θ2,n =

〈(
2π

n
, π

)
, (κ, π)

〉
,

we have

Dim FixH Θ2,n =
1

2n




n∑

j=1

2(−1)j
(

1 + 2 cos
2π

n
j

)
+

n∑

j=1

2(−1)j+1




=

{
2 n = 2,
0 n ≥ 4.

Finally let

H Θ3,n =

〈(
2π

n
, 1

)
, (κ, π)

〉
.

Then

DimFixH Θ3,n =
1

2n




n∑

j=1

2

(
1 + 2 cos

2π

n
j

)
+

n∑

j=1

−2


 = 0.

Setting

(D2,Z2) = 〈(π, π), (κ, 1)〉 = H Θ1,2 ,

we have

(
−π

2
, 1
)
H Θ2,2

(π
2
, 1
)

= H Θ1,2 .

Therefore both groups are conjugated.

The subspace {(z2, 0, z2)} has isotropy (D2,Z2) and, therefore, (D2,Z2) is an isotropy
group with two dimensional �xed point space.

If n is odd, then

Dim Fix (Dn,Z2) =
1

2n




n∑

j=1

2

(
1 + 2 cos

2π

n
j

)
+

n∑

j=1

−2


 =

{
2 n = 1,
0 n ≥ 3.

(D1,Z2) = 〈(κ, π)〉 is extended by H Θ2,2 and, consequently, is no isotropy group.

In the case (Zn,Z2), in particular n has to be even, we have

Dim Fix (Zn,Z2) =
1

n

n∑

j=1

2(−1)j
(

1 + 2 cos
2π

n
j

)
=

{
4 n = 2,
0 n ≥ 4.

The subspace {(z−2, 0, z2)} has isotropy (Z2,Z2) = 〈(π, π)〉 and, therefore, (Z2,Z2) is
an isotropy group with four dimensional �xed point space.

d. Finally we have to study the case (Zn,Zd) with d|n and n ≥ 2. Possible nontrivial
twists for Zn are

Θk : Zn → S1
2π
n j → 2π

n jk
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with 1 ≤ k < n. This gives

Dim Fix (Zn,Θk(Zn)) =
1

n

n∑

j=1

2

(
1 + 2 cos

2π

n
j

)
cos

2π

n
jk

=





4 n = 2, k = 1
2 n ≥ 3, k ∈ {1, n− 1}
0 otherwise.

Studying the representations Tk of Dn = 〈σ, κ〉 on C2 with

Tk(σ) =

(
e−i

2π
n k 0

0 ei
2π
n k

)

and

Tk(κ) =

(
0 1
1 0

)
,

the last equality follows. The representations Tk are irreducible for n ≥ 3. The

representations T1 and Tn−1 are conjugated since

(
0 1
1 0

)(
e−i

2π
n 0

0 ei
2π
n

)(
0 1
1 0

)
=

(
ei
2π
n 0

0 e−i
2π
n

)
.

Orthogonality relations for these representations (cf. [La2]) yield the equality.

The case (Z2,Z2) has been dealt with in part c of the proof, the other cases correspond
to conjugated twists of typ

Θk : Zn → S1
2π
n j → ±2πn j.

These are extended by the isotropy group S̃O(2). 1

Lemma 3.3.2 For the isotropy groups H Θ ⊂ SO(3)×S1 introduced in the �rst chapter

we have

H Θ H Θ∩N(Σ)
Σ

(Z2, 1) (1, 1)

(Z4,Z2) (Z2,Z2)

(D2, 1) (Z2, 1)

(O(2), 1) (O(2), 1)

(D4,Z2) (D2,Z2)

S̃O(2)
2

S̃O(2)

(T,Z3) (Z2, 1).

Note that

H Θ ⊂ N(Σ)
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for all isotropy groups H Θ except for the group (T,Z3). The group (T,Z3) does not
correspond to a special isotropy typ in the O(2) × S1-equivariant system. But the

restricted Vector Field (3.2.2) leaves the corresponding two dimensional �xed point

space lying in Fix (Σ) invariant.

Lemma 3.3.3

Fix (T,Z3) =

{(
i√
2
z0, z0,

i√
2
z0

)
, z0 ∈ C

}
.

Proof: Using the representation of SO(3) on the space V2⊕ iV2 introduced in the �rst

chapter, one gets the following representation of the group

T = 〈π, τ〉 ⊂ SO(3)

with

τ =




0 0 1
1 0 0
0 1 0




on the subspace {(z2, z0, z2)} ⊂ R6:
π(z2, z0, z2) = (z2, z0, z2),

τ(z2, z0, z2) =

(
−1

2
z2 −

1

2

√
3

2
z0,

√
3

2
z2 −

1

2
z0,−

1

2
z2 −

1

2

√
3

2
z0

)
.

If an element has the form{(
i√
2
z0, z0,

i√
2
z0

)
, z0 ∈ C

}
,

then (
τ, ei

2π
3

)
(z2, z0, z2) = (z2, z0, z2). 1

3.4 Critical points of the reduced vector field

Lemma 3.4.1 The image of the Hilbert-map Π(R6) is sketched in Figure 3.

One has to imagine circles of radius

π24 + π25 = π21π3

attached to points of the sketch. We have the following assignment

(π1, . . . , π5) ∈ Π(R6) isotropy typ

π1-axis (O(2), 1)

π2-axis S̃O(2)

π1 = 0, π3 = 1
4
π22 (D2,Z2)

π1 = 0, 0 < π3 <
1
4π
2
2 (Z2,Z2)

π1 > 0, π3 = 1
4π
2
2 (Z2, 1)

π1 > 0, 0 ≤ π3 < 1
4π
2
2 (1, 1).
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π1

π2

π3

π3 = 1
4π
2
2

(1, 1)

S̃O(2)

(D2,Z2)

(Z2,Z2)

(Z2, 1)

(O(2), 1)

Figure 3: Image of the Hilbert-map

Remark 3.4.2 In the following the image of the Hilbert-map Π(R6) shall be denoted
Hilbert-set. Since the invariants π1, π2, and π3 by de�nition mean radii, only non-

negative values are possible. In (π1, π2, π3)-space the Hilbert-set is a wedge (cf. Figure

3) limited at the top by the surface π3 = 1
4π
2
2, at the bottom by the surface π3 = 0,

and at the back by the surface π1 = 0.

Proof: By de�nition of the invariants in Lemma 3.1.2 we have

π1, π2, π3 ≥ 0.

A calculation using Lagrange-multipliers yields the possible values of π3

0 ≤ π3 ≤
1

4
π22.

The relation

π24 + π25 = π21π3
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has to be satis�ed by Lemma 3.1.2. 1

Remark 3.4.3 Points with isotropy (O(2), 1) and (D2,Z2) and images of points with

isotropy (T,Z3) in the original system (cf. Lemma 3.4.5) under the Hilbert-map

satisfy the relation

∆ =
1

4
π22 − π3 = 0.

In the following we shall study the reduced vector �eld (cf. Lemma 3.2.1) on the

Hilbert-set Π(R6).

Lemma 3.4.4 Let

∆ =
1

4
π22 − π3.

Then

∆̇ = 4 ∆ (λ+ βrπ1 + γrπ2) .

Proof: The stratum

∆ = 0

corresponds to points with a certain isotropy and, therefore, is �ow invariant. Thus

we have ∆̇ = 0 for ∆ = 0 and there exists a relation of the form

∆̇ = ∆ r(π1, . . . , π5).

A simple calculation gives the precise relation. 1

Lemma 3.4.5 The orbit space reduction maps Fix (T,Z3) to the invariant curve

(
π1, π1,

1

4
π21,−

1

2
π21, 0

)
⊂ Π(R6), π1 > 0,

located on the stratum ∆ = 0.

Proof: The proof follows directly from the Lemmata 3.1.2 and 3.3.3. 1

In the following let the parameter of the Hopf-bifurcation λ be positive:

λ > 0.

We are only interested in supercritical bifurcations.
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The restriction of the reduced vector �eld (cf. Lemma 3.2.1) to the statum ∆ = 0 is

π̇1 = 2(λ+ αrπ1 + βrπ2)π1 + 4
(

(α− β)rπ4 + (α− β)iπ5
)

(3.4.3)

π̇2 = 2(λ+ βrπ1 + αrπ2)π2 + 4
(

(α− β)rπ4 − (α− β)iπ5
)

(3.4.4)

π̇3 =
1

2
π2π̇2 (3.4.5)

π̇4 = 2
(

2λ+ (α+ β)r(π1 + π2)
)
π4 + 2(α− β)i(−π1 + π2)π5

+(α− β)rπ1π2(π1 + π2) (3.4.6)

π̇5 = 2
(

2λ+ (α+ β)r(π1 + π2)
)
π5 + 2(α− β)i(π1 − π2)π4

+(α− β)iπ1π2(−π1 + π2). (3.4.7)

Here αr , βr resp. αi, βi denote the real resp. imaginary parts of α, β.

Lemma 3.4.6 Let αr, βr < 0 and αr 6= βr. Then the set of critical points of the

Equations 3.4.3 to 3.4.7 on the stratum ∆ = 0 is given by a curve

g(π1) =

(
π1, π2 = −

(
π1 +

λ

αr

)
,

1

4
π22,

1

2
π1π2, 0

)
, 0 ≤ π1 ≤ −

λ

αr
,

parametrised by π1 and

h(π1) =

(
π1, π1,

1

4
π21,−

1

2
π21, 0

)
, π1 = − λ

2βr
.

The curve g(π1), 0 ≤ π1 ≤ − λ
αr , connects a critical point with isotropy (O(2), 1),

g

(
− λ

αr

)
=

(
− λ

αr
, 0, 0, 0, 0

)
,

with a critical point with isotropy (D2,Z2),

g(0) =

(
0, π2 = − λ

αr
,

1

4
π22, 0, 0

)
.

The critical point h(π1), π1 = − λ
2βr , lies in Π(Fix (T,Z3)), the image of points with

isotropy (T,Z3) in the original system under the Hilbert-map.

Proof: By addition resp. subtraction of Equations 3.4.3 and 3.4.4 one gets the fol-

lowing equations

0 = λ(π1 + π2) + αr(π21 + π22) + 2βrπ1π2 + 4(α− β)rπ4, (3.4.8)

0 = λ(π1 − π2) + αr(π21 − π22) + 4(α− β)iπ5. (3.4.9)

Let (α− β)i 6= 0 then

π4 = −λ(π1 + π2) + αr(π21 + π22) + 2βrπ1π2
4(α− β)r

,

π5 = −λ(π1 − π2) + αr(π21 − π22)
4(α− β)i

.
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Inserting this in Equations 3.4.6 and 3.4.7 gives

0 = −
(π1 + π2)

(
λ+ αr(π1 + π2)

)(
λ + βr(π1 + π2)

)

(α− β)r
,

0 = −
(π1 − π2)

(
λ+ αr(π1 + π2)

)

2(α− β)r(α− β)i(
2λ(α− β)r + (π1 + π2)(α

r2 − βr2 + (α− β)i2
)
. (3.4.10)

Looking for nontrivial critical points, one, therefore, has to study two cases.

Let π1 + π2 = − λ
αr . Since we assume λ > 0, only the choice αr < 0 gives solutions

that lie in Π(R6). By insertion one gets the curve

g(π1) =

(
π1, π2 = −

(
π1 +

λ

αr

)
,
1

4
π22,

1

2
π1π2, 0

)
, 0 ≤ π1 ≤ −

λ

αr
,

of critical points. Lemma 3.4.1 gives the associated orbit types.

Now let π1 + π2 = − λ
βr
. Only the choice βr < 0 gives solutions that lie in Π(R6) as

above. By insertion in Equation 3.4.10 one gets the condition

0 =

(
(α− β)r2 + (α − β)i2

)
λ2 (λ+ 2βrπ2)

2βr3 (α− β)i
.

In order to get critical points, one has to choose

π1 = π2 = − λ

2βr
.

By insertion one obtains the critical point

h(π1) =

(
π1, π1,

1

4
π21,−

1

2
π21, 0

)
, π1 = − λ

2βr
,

lying in Π(Fix (T,Z3)) (cf. Lemma 3.4.5). It shall be shown that there are no other

critical points with radius

π1 + π2 = − λ

βr
.

Therefore the group orbit of periodic orbits with isotropy (T,Z3) in the original system
can only intersect the strati�ed space in the curve given in Lemma 3.4.5.

Now let (α− β)i = 0. Equations 3.4.8 and 3.4.9 yield

0 = λ(π1 + π2) + αr(π21 + π22) + 2βrπ1π2 + 4(α− β)rπ4,

0 = (π1 − π2)
(
λ + αr(π1 + π2)

)
.

Consequently we have to study two cases.

Let π1 = π2. Then

π4 = −

(
λ+ (α+ β)rπ1

)
π1

2(α− β)r
.
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By insertion in Equation 3.4.6 one gets

0 = −π1 (λ + 2βrπ1)(λ + 2αrπ1)

(α− β)r
.

The choice π1 = π2 = − λ
2αr

and the relation

π24 + π25 = π21π3 =
1

4
π41

give the critical point

(
π1, π1,

1

4
π21,

1

2
π21, 0

)
, π1 = − λ

2αr
,

that lies on the curve g(π1).
The case π1 = π2 = − λ

2βr again yields the solution h(π1), π1 = − λ
2βr .

Finally we have to study the case π1 + π2 = − λ
αr
. We get

π4 = − π1
2αr

(λ+ αrπ1)

=
1

2
π1π2.

The relation

π24 + π25 =
1

4
π21π

2
2

yields π5 = 0. So again we get the curve g(π1). 1

Lemma 3.4.7

Π(Fix (T,Z3)) ∩ g(π1) = ∅, 0 ≤ π1 ≤ −
λ

αr
.

The critical point h(π1), π1 = − λ
2βr

, (cf. Lemma 3.4.6) that lies in Π(Fix(T,Z3)) is
isolated in the Hilbert-set Π(R6).

Proof: For points lying on the curve g(π1) we have π1 + π2 = − λ
αr . Points in

Π(Fix (T,Z3)) satisfy the condition π1 = π2 (cf. Lemma 3.4.5). For a potential

intersection this means π1 = π2 = − λ
2αr . We have

g

(
− λ

2αr

)
=

(
− λ

2αr
,− λ

2αr
,

1

16

λ2

αr2
,+

1

8

λ2

αr2
, 0

)

whereas

Π(Fix (T,Z3)) ∩
(
π1 = − λ

2αr

)
=

(
− λ

2αr
,− λ

2αr
,

1

16

λ2

αr2
,−1

8

λ2

αr2
, 0

)
.

On the stratum ∆ = 0 the critical point h(π1), π1 = − λ
2βr , (cf. Lemma 3.4.6) that

lies on Π(Fix(T,Z3)), therefore, is isolated. We shall show in Lemma 3.4.8 that

there are no further critical points in the Hilbert-set in the region ∆ 6= 0 near h(π1),
π1 = − λ

2βr
. 1
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Now we are looking for critical points of the reduced vector �eld (cf. Lemma 3.2.1)

in Π(R6) that do not lie on the stratum ∆ = 0. Such a critical point has to meet the

condition (cf. Lemma 3.4.4)

∆̇ = 4 ∆ (λ+ βrπ1 + γrπ2) = 0.

Since we assumed ∆ 6= 0, this means

λ+ βrπ1 + γrπ2 = 0. (3.4.11)

So we get the following equations:

0 = 2(λ+ αrπ1 + βrπ2)π1 + 4
(

(α− β)rπ4 + (α− β)iπ5
)

(3.4.12)

0 = 8(α− γ)rπ3 + 4
(

(α− β)rπ4 − (α− β)iπ5
)

(3.4.13)

0 =
1

2
π2π̇2 (3.4.14)

0 = 2
(

2λ + (α+ β)r(π1 + π2)
)
π4 + 2(α− β)i(−π1 + π2)π5

+(α− β)rπ1(π1π2 + 4π3) (3.4.15)

0 = 2
(

2λ + (α+ β)r(π1 + π2)
)
π5 + 2(α− β)i(π1 − π2)π4

+(α− β)iπ1(−π1π2 + 4π3) (3.4.16)

π2 = −λ + βrπ1
γr

. (3.4.17)

Here αr , βr, γr resp. αi, βi again denote the real resp. imaginary parts of α, β, γ.
In the following we shall assume

βr < αr < γr < 0.

In Lemma 3.5.1 we shall show that only for this choice of the coe�cients the solutions

with isotropy (O(2), 1) resp. S̃O(2) can be stable simultaneously. Investigations using

the topological Conlex-index suggested to study this case. In the following lemma

the solution with isotropy S̃O(2) is being described.

Lemma 3.4.8 Let βr < αr < γr < 0. Then
(

0,− λ

γr
, 0, 0, 0

)

is the only critical point of the reduced vector �eld in Π(R6) with ∆ 6= 0. This solution

has isotropy S̃O(2).

Proof: First let (α− β)i 6= 0. By addition resp. subtraction of Equations 3.4.12 and

3.4.13 we get

0 = (λ + αrπ1 + βrπ2)π1 + 4(α− β)rπ4 + 4(α− γ)rπ3,

0 = (λ + αrπ1 + βrπ2)π1 + 4(α− β)iπ5 − 4(α− γ)rπ3.
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Therefore we have

π4 = −(λ + αrπ1 + βrπ2)π1 + 4(α− γ)rπ3
4(α− β)r

,

π5 = −(λ + αrπ1 + βrπ2)π1 − 4(α− γ)rπ3
4(α− β)i

.

Insertion in Equation 3.4.15 yields

(β − γ)r
(
λ(α − γ)r + αrπ1(β − γ)r

)
(−λπ1 − βrπ21 + 4γrπ3)

(α− β)rγr2
= 0.

Let

π1 = − λ(α− γ)r

αr(β − γ)r
> 0.

Using Equation 3.4.17 we get

π2 =
λ(α− β)r

αr(β − γ)r
> 0.

Together with Equation 3.4.16 this yields

0 =
(α− γ)r

(
(α− β)r2 + (α− β)i2

)
λ
(
− λ2(α− β)r2 + 4αr2 π3 (β − γ)r2

)

2αr3(α− β)r(α− β)i(β − γ)r2
.

So we have

π3 =
λ2(α − β)r2

4αr2(β − γ)r2
=

1

4
π22.

This solution lies on the stratum ∆ = 0.
Now let

π3 =
π1(λ + βrπ1)

4γr
= −1

4
π1π2.

Insertion in Equation 3.4.16 yields

0 = −2(α− β)i2π21π2 −
(α− β)i2π1

(
λ+ (β + γ)rπ1

)2

2γr2

−
π1
(
λ(α + β − 2γ)r + π1(α+ β)r(β − γ)r

)2

2γr2
.

Since all elements of the sum are nonpositive in Π(R6) the sum can only be zero if all

elements are zero. This is only possible if π1 = 0. This yields
(

0,− λ

γr
, 0, 0, 0

)
,

the solution with isotropy S̃O(2).
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Second let (α − β)i = 0. Again by addition resp. subtraction of the Equations

3.4.12 and 3.4.13 we get

π3 =
(λ+ αrπ1 + βrπ2)π1

4(α− γ)r
,

π4 = −2(α− γ)rπ3
(α− β)r

. (3.4.18)

Furthermore we have

π2 = −λ + βrπ1
γr

.

Insertion in Equation 3.4.16 yields

0 =
(

2λ+ (α+ β)r(π1 + π2)
)
π5.

In order to solve this equation, we have to look at several cases.

Let π5 = 0. Then

π24 + π25 = π21π3

and Equation 3.4.18 yields

4(α− γ)r2

(α− β)r2
π23 = π21π3.

For π3 6= 0 we get

π1 = − λ(α− γ)r

αr(β − γ)r
> 0, π2 =

λ(α− β)r

αr(β − γ)r
> 0, π3 =

1

4
π22.

Therefore the solution lies on the stratum ∆ = 0.
The choice π3 = 0 and Equation 3.4.16 yield the solution

(
0,− λ

γr
, 0, 0, 0

)

with isotropy S̃O(2). For π5 6= 0 and

0 = 2λ+ (α+ β)r(π1 + π2)

Equation 3.4.15 gives

0 = π1(π1π2 + 4π3).

Choosing π1 = 0 again yields the solution with isotropy S̃O(2).
For π1 6= 0 one gets the solution

π1 = − λ(α+ β − 2γ)r

(α+ β)r(β − γ)r
> 0,

π2 =
λ(α − β)r

(α+ β)r(β − γ)r
> 0,

π3 =
λ2(α− β)r(α+ β − 2γ)r

4(α+ β)r2(β − γ)r2
< 0

that does not lie in Π(R6). 1
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Figure 4 sketches the position of the critical points of the reduced vector �eld (cf.

Lemma 3.2.1) in the Hilbert-set Π(R6) known by Lemmata 3.4.6 and 3.4.8 under the

assumption

βr < αr < γr < 0.

π1

π2

π3

π3 = 1
4π
2
2

(1, 1)

S̃O(2)

(D2,Z2)

(Z2,Z2)

(Z2, 1)

(O(2), 1)

u

u

u

u

Figure 4: Critical points of the reduced vector �eld in the Hilbert-set

We now study the curve

g(π1) =

(
π1, π2 = −

(
π1 +

λ

αr

)
,
1

4
π22,

1

2
π1π2, 0

)
, 0 < π1 < −

λ

αr
,

of critical points of the Equations (3.4.3) to (3.4.7) (cf. Lemma 3.4.6).

Lemma 3.4.9 The preimage of a point g(π1), π1 ∈
(
0,− λ

αr

)
, in R6 is a two-torus. It

is �bered with periodic solutions.

Proof: The curve g of critical points lies on the statum

∆ =
1

4
π22 − π3 = 0.
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Introducing polar coordinates in the form

zj = rj e
iφj , j ∈ {−2, 0, 2},

yields

r−2 = r2.

The choice of

π1 = r20 ∈
(

0,− λ

αr

)

and the condition

π1 + π2 = − λ

αr

determine the radii. Let

θ = 2φ0 − φ−2 − φ2.

Then the conditions for π4 resp. π5 yield, in polar coordinates, the phase relations

cos θ = 1, sin θ = 0

and, thus,

θ = 0 mod 2π.

So one angle is determined, two are still available, the preimage is a 2-torus. Points
on the surface ∆ = 0 have the (conjugated) isotropy (Z2, 1). Therefore it is possible
just to look at points of the form (z2, z0, z2) in order to determine the resulting �ow

on the preimage of a point on the curve of �xed points. Thus we have the additional

condition

φ−2 = φ2.

Using θ = 0 mod 2π, one sees that

φ0 = φ2modπ.

Inserting this into the di�erential equation yields

φ̇0 = ω0 = ω + αi
(
r20 + 2r22

)
.

Thus the 2−torus is �bered with periodic solutions of period near

2π
ω
. 1

3.5 Stability of the critical points of the reduced vector field

In Lemmata 3.4.6 and 3.4.8 we have shown that in the case of supercritical bifurcation

(λ > 0) the coe�cients αr, βr , γr have to be negative in order that the corresponding

solutions lie in the image of the Hilbert-map Π(R6). The following lemma gives a

condition on the choice of the coe�cients relative to each other.
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Lemma 3.5.1 Only by choosing the coe�cients

βr < αr < γr < 0, αr ∈
(

1

4
(β + 3γ)r , γr

)
,

the critical points with isotropy (O(2), 1) resp. S̃O(2) of the reduced vector �eld (cf.

Lemma 3.2.1) can be stable simultaneously. The stability of the solution with isotropy

(O(2), 1) is determined by higher order terms because of the existence of a curve of

critical points (cf. Lemma 3.4.6).

Proof: The calculations of [IoRo] yield (using our parameters) up to third order the

following conditions for the stability of the periodic solutions with isotropy (O(2), 1)

resp. S̃O(2) in the original, ten dimensional system:

isotropy nontrivial Floquet-exponents

(O(2), 1) −2λ < 0,− 2λαr (α− β)r < 0,− 2λαr (−4α+ β + 3γ)r < 0

S̃O(2) −2λ < 0,−2λγr (α− γ), cc, λγr (γ − β), cc, 3λ2γr (γ − β), cc.

Here cc denotes the complex conjugate of the preceding number.

So we get the conditions

βr < αr < γr < 0

and

βr + 3γr < 4αr.

The ansatz

αr = t βr + (1− t) γr , t ∈ (0, 1),

yields

(β − γ)r(1− 4t) < 0

and, therefore, we have

t ∈
(

0,
1

4

)
.

This means

αr ∈
(

1

4
(β + 3γ)r , γr

)
.

Especially

(α− γ)r

(β − γ)r
∈
(

0,
1

4

)
. 1
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Now we want to determine the linearization of the reduced vector �eld (cf. Lemma

3.2.1) along the curve g(π1) of critical points (cf. Lemma 3.4.6). For the general

linearization L one gets

L =




2λ+ 4π1α
r + 2π2β

r

2π2β
r

4π3β
r

2π4(α+ β)r − 2π5(α− β)i + (2π1π2 + 4π3)(α− β)r

2π5(α+ β)r + 2π4(α− β)i + (−2π1π2 + 4π3)(α− β)i

2π1β
r

2λ + 2π1β
r + 4π2γ

r

4π3α
r + 2

(
π4(α− β)r − π5(α− β)i

)

2π4(α+ β)r + 2π5(α− β)i + π21(α− β)r

2π5(α+ β)r − 2π4(α− β)i − π21(α− β)i

0 4(α− β)r 4(α− β)i

8(α− γ)r 4(α− β)r −4(α− β)i

4(λ+ βrπ1 + αrπ2) 2π2(α− β)r −2π2(α− β)i

4π1(α− β)r 4λ+ 2(π1 + π2)(α+ β)r 2(−π1 + π2)(α− β)i

4π1(α− β)i 2(π1 − π2)(α− β)i 4λ+ 2(π1 + π2)(α+ β)r



.

We are interested in the eigenvalues of L along the curve g(π1) with reference to

Π(R6) ⊂ R5. Thus we have to determine the tangent space at points of the curve in

Π(R6). It is given by the relation

π24 + π25 = π21π3.

The curve itself lies on the stratum

∆ =
1

4
π22 − π3 = 0.

So we get the following lemma.

Lemma 3.5.2 The tangent space at the stratum ∆ = 0 along the curve

g(π1), 0 < π1 < −
λ

αr
,

is spanned by the vectors

t1 =

(
1,−1,−1

2
π2,

1

2
(π2 − π1), 0

)
,

t2 =

(
π1, π2,

1

2
π22, π1π2, 0

)
,

t3 =
(
2αr(α − β)i,−2αr(α− β)i,−π2αr(α− β)i, αr(π2 − π1)(α− β)i,

−αr(π1 + π2)(α − β)r) .

The vectors t1, t2, t3 are eigenvectors of L to the eigenvalues

ew1 = 0,

ew2 = −2λ = 2αr(π1 + π2),

ew3 =
2(α− β)rλ

αr
= −2(α − β)r(π1 + π2).
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The curve g(π1), 0 < π1 < − λ
αr , is stable on the stratum ∆ = 0.

Proof: The relations π24 + π25 = π21π3 and ∆ = 0 yield the following vectors normal to

the tangent space at the surface ∆ = 0 in Π(R6) ⊂ R5:
n1 =

(
−2π1π3, 0,−π21, 2π4, 2π5

)
,

n2 =

(
0,

1

2
π2,−1, 0, 0

)
.

The orthogonal complement to Span(n1, n2) is spanned by the vectors t1, t2, t3. A

simple calculation shows that these vectors are eigenvectors to the given eigenvalues.

The eigenvector t1 points along the curve of critical points. Therefore the associated
eigenvalue is zero. By de�nition of the curve g(π1) we have

π1 + π2 = − λ

αr
.

Therefore the curve g(π1), 0 < π1 < − λ
αr
, is stable on the stratum ∆ = 0. 1

Now we want to determine the linearization of the reduced vector �eld along the

curve g(π1) of �xed points in the direction of the principal stratum. We shall show

that there exists a point π̃1 on the curve g(π1) in which the stability of the curve

changes from stable to unstable in the direction of the principal stratum. In this

point the linearization L of the vector �eld of the reduced equation has a nontrivial

two dimensional Jordan-block with respect to the eigenvalue zero.

Let

t = (0, 1, 0, 0, 0).

Then n1 t = 0 and n2 t 6= 0 for π2 6= 0. Thus the vectors t1, t2, t3, t span the tangent

space at the Hilbert-set Π(R6) along the curve g(π1), 0 < π1 < − λ
αr
. One gets

L t = a t1 + b t2 + c t3 + d t

with

a = −2π1
(α− β)r2 + (α− β)i2

(α− β)r
,

b = 2αr,

c = π1
(α− β)i

αr(α− β)r
,

d = 4
λ(α− γ)r + π1 α

r(β − γ)r

αr
.

Restricted to the tangent space at the curve g(π1), 0 < π1 < − λ
αr
, according to our

choice of the vectors t1, t2, t3, t, L has the form L̃:

L̃ =




0 0 0 a
0 −2λ 0 b

0 0 2(α−β)rλ
αr

c
0 0 0 d


 .
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Especially the fourth eigenvalue is

ew4 = d

= 4
λ(α− γ)r + π1α

r(β − γ)r

αr
= −4

(
π1(α− β)r + π2(α− γ)r

)
.

For

π̃1 = − λ(α− γ)r

αr(β − γ)r

we have ew4(π̃1) = 0. Choosing the coe�cients according to Lemma 3.5.1 yields

0 < π̃1 < −
λ

4αr
.

The point g(π̃1) is exactly the intersection point of the curve g(π1), 0 ≤ π1 ≤ − λ
αr
,

with the surface λ+βrπ1+ γrπ2 = 0 (cf. Lemma 3.4.4). Only on this surface we can

have critical points of the reduced vector �eld (cf. Lemma 3.2.1) outside the stratum

∆ = 0 (cf. Lemma 3.4.6).

For

h(π̃1) =




− (α−γ)
rλ
(
(α−β)r2−(α−β)i2

)
(α−β)r2(β−γ)r

(α−γ)rλ
(
(α−β)r2−(α−β)i2

)
(α−β)r2(β−γ)r

λ2
(
(α−β)r3−(α−γ)r(α−β)i2

)
2αr(α−β)r(β−γ)r2

− (α−γ)
rλ2
(
2(α−β)r3+(−2α+β+γ)r (α−β)i2

)
2αr(α−β)r2(β−γ)r2

(α−γ)r(α−β)iλ2

2αr(α−β)r(β−γ)r




we have

h(π̃1) = αrt2(π̃1)−
(α− β)iπ̃1
2(α− β)r2

t3(π̃1) + λt.

Consequently, h(π̃1) ∈ Span
(
t1(π̃1), t2(π̃1), t3(π̃1), t

)
, and one sees that Lh(π̃1) =

j t1(π̃1) with

j =
2λ2(α− γ)r

(
(α− β)r2 + (α− β)i2

)

αr(α− β)r(β − γ)r
< 0.

So we have shown the following lemma.

Lemma 3.5.3 In the point g(π̃1), π̃1 = − λ(α−γ)r

αr(β−γ)r , the linearization L of the vector

�eld of the reduced equation (cf. Lemma 3.2.1) has a nontrivial, two dimensional

Jordan-block with respect to the eigenvalue zero.

Up to now we have studied the reduced vector �eld resulting from the normal

form up to third order (cf. [IoRo]). It has been shown in this section that this vector

�eld is degenerate. In the next section we shall use �fth order terms to investigate

this degeneracy.
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3.6 Fifth order terms

Restricted to Fix(Z2, 1) the normal form (cf. [IoRo]) yields the following �fth order

terms (FOT). Proceed as in Chapter 3.2 to get these terms.

FOT = (δ1π
2
1 + δ2π1π2 + δ3π

2
2 + δ4π3 + δ5π4) e1

+ (δ6π
2
1 + δ7π1π2 + δ8π

2
2 + δ9π3 + δ10π4 + δ11iπ5) e2

+ (δ12π1 + δ13π2) e3 + (δ14π1 + δ15π2) e4 −
1

2
δ11π2ie5.

The coe�cients δ1, . . . , δ15 ∈ C result from a transformation of the coe�cients

d1, . . . , d9 ∈ C of the normalform (cf. [IoRo])

d3 →
√

6d3

d4 → −d4
d5 → −

√
6 d5

d6 →
√
3
2 d6

d7 →
√
3
2 d7

d9 → 3
8 d9

as follows

δ1 = d1 +
1

4
d2 − 3d3 +

1

2
d4 −

3

2
d5 + d6 + d7 − d8

δ2 = 2d1 − 7d3 +
1

2
d4 − 2d5 − 2d7 + 3d8

δ3 = d1 − 4d3 − 2d8 + d9

δ4 = d2 + 2d5 + 12d6 + 4d7 − 4d9

δ5 = d2 + 2d5 − 4d6 − 4d7

δ6 = d1 +
1

4
d2 − 4d3 +

1

2
d5 − 2d7 + d8

δ7 = 2d1 − 4d3 + 4d7 − 2d8

δ8 = d1

δ9 = d2 − 6d5

δ10 = d2 − 2d5 + 4d7 − 2d8

δ11 = −4d5 + 4d7 + 2d8

δ12 = −6d3 + d4 − 4d5 + 12d6 − 2d8

δ13 = −6d3 + d4

δ14 = 2d3 + d4 − 4d5 − 4d6 + 2d8

δ15 = 2d3 + d4 − 2d5 + 2d7 − 3d8.

In the following we want to study the vector �eld perturbed in �fth order of the form

π̇ = f(π) + εRFOT(π), ε≪ 1.
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By reduction of the �fth order terms (FOT) to the orbit space one gets the pertur-

bation RFOT (reduced �fth order terms) with components RFOT1, . . . ,RFOT5.

RFOT1 = 2π1(δ
r
1π
2
1 + δr2π1π2 + δr3π

2
2 + δr4π3) + π4

(
2(δ5 + δ14)

rπ1

+(δ11 + 2δ15)
rπ2
)

+ π5
(

2δi14π1 + (δ11 + 2δ15)
iπ2
)

RFOT2 = 4δr12π1π3 + 2π2
(
δr6π

2
1 + δr7π1π2 + δr8π

2
2 + (δ9 + 2δ13)

rπ3
)

+π4
(

2δr14π1 + (2δ10 − δ11 + 2δ15)
rπ2
)
− π5

(
2δi14π1

+(δ11 + 2δ15)
iπ2
)

RFOT3 = 2π3

(
2δr6π

2
1 + (2δ7 + δ12)

rπ1π2 + (2δ8 + δ13)
rπ22 + 2δr9π3

)

+π4

(
π2

(
δr14π1 −

(
1

2
δ11 − δ15

)r
π2

)
+ 4δr10π3

)

−π5
(
π2

(
δi14π1 −

(
1

2
δ11 − δ15

)i
π2

)
+ 4δi11π3

)

RFOT4 = 2π4

(
(δ1 + δ6)

rπ21 +

(
δ2 + δ7 +

1

2
δ12

)r
π1π2

+

(
δ3 + δ8 +

1

2
δ13

)r
π22 + (δ4 + δ9)

rπ3 + (δ5 + δ10)
rπ4

)

−2π5

(
(δ1 − δ6)iπ21 +

(
δ2 − δ7 −

1

2
δ12

)i
π1π2

+

(
δ3 − δ8 −

1

2
δ13

)i
π22 + (δ4 − δ9)iπ3 − δr11π5

)

−2π4π5(δ5 − δ10 + δ11)
i + π1

(
1

2
δr14π

2
1π2 −

(
1

4
δ11 −

1

2
δ15

)r
π1π

2
2

+2δr14π1π3 + (δ11 + 2δ15)
rπ2π3

)

RFOT5 = 2π4

(
(δ1 − δ6)iπ21 +

(
δ2 − δ7 −

1

2
δ12

)i
π1π2 +

(
δ3 − δ8 −

1

2
δ13

)i
π22

+(δ4 − δ9)iπ3 + (δ5 − δ10)iπ4
)

+2π5

(
(δ1 + δ6)

rπ21 +

(
δ2 + δ7 +

1

2
δ12

)r
π1π2

+

(
δ3 + δ8 +

1

2
δ13

)r
π22 + (δ4 + δ9)

rπ3 − δi11π5
)

+2π4π5(δ5 + δ10 − δ11)r + π1

(
− 1

2
δi14π

2
1π2 +

(
1

4
δ11 −

1

2
δ15

)i
π1π

2
2

+2δi14π1π3 + (δ11 + 2δ15)
iπ2π3

)
.
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Lemma 3.6.1 Restriction to the stratum ∆ = 0 yields

∆RFOT1 = 2π1

(
δr1π

2
1 + δr2π1π2 +

(
δ3 +

1

4
δ4

)r
π22

)

+π4
(

2(δ5 + δ14)
rπ1 + (δ11 + 2δ15)

rπ2
)

+π5
(

2δi14π1 + (δ11 + 2δ15)
iπ2
)

∆RFOT2 = 2π2

(
δr6π

2
1 +

(
δ7 +

1

2
δ12

)r
π1π2 +

(
δ8 +

1

4
δ9 +

1

2
δ13

)r
π22

)

+π4
(

2δr14π1 + (2δ10 − δ11 + 2δ15)
rπ2
)

−π5
(

2δi14π1 + (δ11 + 2δ15)
iπ2
)

∆RFOT3 =
1

2
π2∆RFOT2

∆RFOT4 = 2π4

(
(δ1 + δ6)

rπ21 +

(
δ2 + δ7 +

1

2
δ12

)r
π1π2

+

(
δ3 +

1

4
δ4 + δ8 +

1

4
δ9 +

1

2
δ13

)r
π22 + (δ5 + δ10)

rπ4

)

−2π5

(
(δ1 − δ6)iπ21 +

(
δ2 − δ7 −

1

2
δ12

)i
π1π2

+

(
δ3 +

1

4
δ4 − δ8 −

1

4
δ9 −

1

2
δ13

)i
π22 − δr11π5

)

−2π4π5(δ5 − δ10 + δ11)
i + π1π2

(
1

2
δr14π

2
1

−
(

1

4
δ11 −

1

2
δ14 −

1

2
δ15

)r
π1π2 +

(
1

4
δ11 +

1

2
δ15

)r
π22

)

∆RFOT5 = 2π4

(
(δ1 − δ6)iπ21 +

(
δ2 − δ7 −

1

2
δ12

)i
π1π2

+

(
δ3 +

1

4
δ4 − δ8 −

1

4
δ9 −

1

2
δ13

)i
π22 + (δ5 − δ10)iπ4

)

+2π5

(
(δ1 + δ6)

rπ21 +

(
δ2 + δ7 +

1

2
δ12

)r
π1π2

+

(
δ3 +

1

4
δ4 + δ8 +

1

4
δ9 +

1

2
δ13

)r
π22 − δi11π5

)

+2π4π5(δ5 + δ10 − δ11)r + π1π2

(
− 1

2
δi14π

2
1

+

(
1

4
δ11 +

1

2
δ14 −

1

2
δ15

)i
π1π2 +

(
1

4
δ11 +

1

2
δ15

)i
π22

)
.

Here ∆RFOT1, . . . , ∆RFOT5 denote the components of the reduced �fth order terms

(RFOT) restricted to the statum ∆ = 0.
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3.7 Singular perturbation theory

For the moment we want to restrict our considerations to the stratum ∆ = 0. The

curve g(π1), 0 ≤ π1 ≤ − λ
αr
, of critical points of the reduced vector �eld π̇ = f(π) (cf.

Equations 3.4.3 to 3.4.7) is located on this stratum (cf. Lemma 3.4.6). According to

Lemma 3.5.2 this curve is asymptotically stable for our choice of the coe�cients

βr < αr < γr < 0.

Now we want to study the perturbed vector �eld (cf. Lemma 3.6.1)

π̇ = fε(π) = f(π) + ε∆RFOT(π), ε≪ 1. (3.7.19)

We have the following propostion.

Proposition 3.7.1 For the perturbed Vector Field 3.7.19 and 0 < |ε| < ε0 there per-
sists an invariant curve gε near g on the stratum ∆ = 0. This curve gε is parametrised

over π1. The vector �eld on gε has the form

r(π1) = 2
π1π2
π1 + π2

(
16π21 + 16

λ

αr
π1 + 3

λ2

αr2

)
d

with

0 < π1 < −
λ

αr
, π1 + π2 = − λ

αr
,

d =

(
(d6 + d7 − d8)r +

(α− β)i

(α− β)r
(d6 + d7 − d8)i

)
.

Proof: In Lemma 3.5.2 we showed that the curve g(π1), 0 < π1 < − λ
αr , is normally

hyperbolic. Thus an invariant curve gε near g persists under small perturbations.

The curve gε will no longer consist of critical points but there will be a resulting �ow
on gε. This �ow is determined in the lowest order by projection of the perturbation

onto the curve g.
Let

E =

{
g(π1) | 0 < π1 < −

λ

αr

}

be the curve of critical points of the vector �eld f0(π) on the stratum

F =
{
π ∈ Π(R6) |∆(π) = 0

}
.

For a point π ∈ E let

Tf0(π) : TπF → TπF

denote the linearization of f0 in π. By construcion TπE lies in the kernel of Tf0(π).
So a linear map

Qf0(π) :
TπF

TπE
→ TπF

TπE
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is induced on the quotient space. The eigenvalues of Qf0(π) have been determined

in Lemma 3.5.2 and are both negative. Thus for every π ∈ E TπE has a unique

complement Nπ that is invariant under Tf0(π). Let PE denote the projection onto

TE de�ned by the splitting

TF|E = TE ⊕N

On E we de�ne the vector �eld

fR(π) = PE
∂

∂ε
fε(π)|ε=0 .

We have the extended vector �eld

fε(π)× {0} on F × (−ε0, ε0).

In this system, according to [Fe], a two dimensional center manifoldC exists for small

ε0 ≪ 1. The second dimension has its origin in the extension of the system in ε-
direction.

On C near E × {0} a smooth vector �eld

fC =

{
1
εf

ε(π)× 0, ε 6= 0
fR(π) × 0, ε = 0

is de�ned. The center manifold is �bered in ε-direction with invariant curves gε. The
�ow on gε has the form

π̇ = ε fR(π) + O(ε2).

We want to determine the vector �eld

fR(π) = PE
∂

∂ε
fε(π)|ε=0 .

The vectors t1, t2, t3 that span the tangent space to the stratum F along the curve

g, are known (cf. Lemma 3.5.2). The vector t1 is the tangent vector along the curve
g. Now we want to write the terms of higher order ∆RFOT along the curve g in the

form

∆RFOT(π) = a(π)t1 + b(π)t2 + c(π)t3.

This gives the projection PE we are looking for and we have

fR(π) = a(π).
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As the restriction of the vector �eld

∂
∂εf

ε(π)|ε=0 along the curve g one gets

r1 = π1

(
2δr1π

2
1 + (2δ2 + δ5 + δ14)

rπ1π2 +

(
2δ3 +

1

2
δ4 +

1

2
δ11 + δ15

)r
π22

)

r2 = π2

(
(2δ6 + δ14)

rπ21 +

(
2δ7 + δ10 −

1

2
δ11 + δ12 + δ15

)r
π1π2

+

(
2δ8 +

1

2
δ9 + δ13

)r
π22

)

r3 =
1

2
π2 r2

r4 = π1π2

((
δ1 + δ6 +

1

2
δ14

)r
π21

+

(
δ2 +

1

2
δ5 + δ7 +

1

2
δ10 −

1

4
δ11 +

1

2
δ12 +

1

2
δ14 +

1

2
δ15

)r
π1π2

+

(
δ3 +

1

4
δ4 + δ8 +

1

4
δ9 +

1

4
δ11 +

1

2
δ13 +

1

2
δ15

)r
π22

)

r5 = π1π2

((
δ1 − δ6 −

1

2
δ14

)i
π21

+

(
δ2 +

1

2
δ5 − δ7 −

1

2
δ10 +

1

4
δ11 −

1

2
δ12 +

1

2
δ14 −

1

2
δ15

)i
π1π2

+

(
δ3 +

1

4
δ4 − δ8 −

1

4
δ9 +

1

4
δ11 −

1

2
δ13 +

1

2
δ15

)i
π22

)
.

We always have

π1 + π2 = − λ

αr

and get the following equations

r1 = a + bπ1 + 2cαr(α− β)i (3.7.20)

r2 = −a + bπ2 − 2cαr(α− β)i (3.7.21)

r4 =
1

2
a(π2 − π1) + bπ1π2 + cαr(π2 − π1)(α− β)i (3.7.22)

r5 = −cαr(π1 + π2)(α− β)r . (3.7.23)

Thus

c = − r5
αr(π1 + π2)(α − β)r

,

r1 + r2 = b(π1 + π2)

and

r1 − r2 = 2a+ b(π1 − π2) + 4cαr(α− β)i.
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Finally we get

b =
r1 + r2
π1 + π2

and

a =
1

2
(r1 − r2) −

1

2
b(π1 − π2) − 2cαr(α− β)i

=
r1π2 − r2π1
π1 + π2

− 2cαr(α− β)i.

Insertion of r1, r2, c and retranslation of the coe�cients δ1, . . . , δ15 into the coe�cients

d1, . . . , d9 �nishes the proof. 1

In the following let

d 6= 0.

Proposition 3.7.2 On the invariant curve gε (cf. Propostion 3.7.1) for the per-

turbed Vector Field 3.7.19 exactly two critical points persist for 0 < |ε| < ε̃0 < ε0. In
the entire ten dimensional system these critical points have isotropy (O(2), 1) resp.

(D4,Z2). The latter corresponds to the isotropy (D2,Z2) in the reduced system. Their

stability in R6 is determined by the sign of

d =

(
(d6 + d7 − d8)r +

(α− β)i

(α− β)r
(d6 + d7 − d8)i

)
.

Especially a connection between the group orbits of solutions with isotropy (O(2), 1)
resp. (D4,Z2) persists for small ε in R6.
The position of the critical points, their isotropy in the entire system, and the direction

of the resulting �ow on gε is given in Figure 5.

Proof: On the curve gε(π1), 0 < π1 < − λ
αr , near g there are two critical points of the

Fenichel vector �eld r(π1) (cf. Proposition 3.7.1) with

π1 ∈
{
− λ

4αr
,− 3λ

4αr

}
.

Linearization of the vector �eld r(π1) in these critical points yields

π1
dr
dπ1

− λ
4αr −3d λ2

αr2

− 3λ
4αr 3d λ2

αr2 ,

and, thus, they are hyperbolic. Here d is de�ned as in Proposition 3.7.1. Therefore

these critical points persist for |ε| < ε̃0 < ε0 in the perturbed Vector Field 3.7.19.

We shall show that the persisting critical points lie on the group orbits of solutions
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with isotropy (O(2), 1) resp. (D4,Z2) with reference to the entire system.

First let

π̃ = − λ

4αr
.

Using the representation of the group element

τ =




0 0 1
1 0 0
0 1 0




introduced in Lemma 3.3.3 and

π ∈ S1,

we have

τ π (0, z, 0) = τ (0,−z, 0) =

(
1

2

√
3

2
z,

1

2
z,

1

2

√
3

2
z

)
.

Points of the form (0, z, 0) with

|z|2 = − λ

αr

are mapped to the critical point of isotropy (O(2), 1) in the reduced system by the

Hilbert-map. Thus

Π(τπ (0, z, 0)) =

(
π1 = − λ

4αr
, π2 = −

(
π1 +

λ

αr

)
, π3 =

1

4
π22,

π4 =
1

2
π1π2, π5 = 0

)
.

Therefore

Π
(
τ π (0, z, 0)

)
= g(π̃).

Second let

π̃ = − 3λ

4αr
.

Correspondingly the Hilbert-map maps points of the form (z, 0, z) with

|z|2 = − λ

2αr

to the critical point of isotropy (D2,Z2) in the reduced system. With rπ ∈ O(2) we

have

rπ τ (z, 0, z) = rπ

(
−1

2
z,

√
3

2
z,−1

2
z

)
=

(
1

2
z,

√
3

2
z,

1

2
z

)
.
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Thus

Π(rπ τ (z, 0, z)) =

(
π1 = − 3λ

4αr
, π2 = −

(
π1 +

λ

αr

)
, π3 =

1

4
π22,

π4 =
1

2
π1π2, π5 = 0

)
= g(π̃).

Since the perturbation respects the symmetry, the critical points persisting for small

ε on the curve have the same isotropies.

Besides these two critical points there are no critical points on gε for small ε > 0.
Since the two critical points are hyperbolic, in a neighbourhood of these points no

further critical points exist by the implicit function theorem. If there were critical

points (xn, εn) in the remaining part of gε, for a sequence (εn)→ 0 the accumulation

point (x̄, 0) would have to be a critical point of the resulting vector �eld in contra-

diction to Proposition 3.7.1. 1

Figure 5 shows the resulting �ow on the invariant curve gε(π1), 0 < π1 < − λ
αr
, in a

schematic way for d > 0 and small ε > 0. Choosing d < 0 will change the direction of

the arrows. The isotropies of the solutions in the entire ten dimensional system are

indicated in the sketch.

For ε = 0 (i.e. gε = g) g(0) resp. g(− λ
αr ) are �xed points of isotropy (D2,Z2) resp.

(O(2), 1) (cf. Lemma 3.4.6). The curve itself consists of �xed points.

e e

− λ
αr − 3λ4αr − λ

4αr 0

(O(2), 1) (O(2), 1)(D4,Z2) (D4,Z2)

Figure 5: Resulting �ow on gε

3.8 Invariant tori

In this section we want to show that for small ε > 0 a �xed point bifurcates from the

critical point π̃1 in the direction of the principal stratum. The critical point π̃1 lies on
the curve g on the stratum ∆ = 0. According to Lemma 3.5.3 the linearization of the

vector �eld of the reduced equation (cf. Lemma 3.2.1) has a nontrivial Jordan-block

to the eigenvalue zero in the point

g(π̃1), π̃1 = − λ(α − γ)r

αr(β − γ)r
.

The position of this point on the invariant curve

g(π1), 0 < π1 < −
λ

αr
,
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depends on the relative choice of the coe�cients

βr < αr < γr < 0, αr ∈
(

1

4
(βr + 3γr), γr

)
,

according to Figure 6. Making the ansatz

αr = t βr + (1− t) γr , t ∈
(

0,
1

4

)
,

this follows as in the proof of Lemma 3.5.1. Thus

π̃1 = − λ(α− γ)r

αr(β − γ)r
= − λ

αr
t, t ∈

(
0,

1

4

)
.

e e

− λ
αr − 3λ4αr − λ

4αr 0

(O(2), 1) (O(2), 1)(D4,Z2) (D4,Z2)

Figure 6: Possible region of the point π̃1

We want to determine the form of the resulting vector �eld on the local two di-

mensional center manifold W c
loc near the point g(π̃1). The center manifold W c

loc is

tangential to Span (t1, h) (cf. Lemma 3.5.3) and intersects the stratum ∆ = 0 in

a part of the invariant curve g(π1) near g(π̃1). Let t1 be the tangent vector in the

direction of the curve g(π1) and h be the hauptvector associated to the Jordan-block

of the linearization. By de�nition of the vectors t1, t, h in Lemma 3.5.3 h points in

the direction of the principal stratum.

We introduce x-coordinates in the direction of (−t1) along the invariant curve g(π1)
and y-coordinates in the direction of (−h) with origin in g(π̃1). Therefore the vector
�eld on W c

loc has the form

ẋ = −y +H(x, y) (3.8.24)

ẏ = y G(x, y).

We are only interested in the region y ≤ 0 that describes a part of the Hilbert-set

Π(R6) according to our choice of the coordinates. The (−y)-term in the x-equation
models the Jordan-block, the minus sign follows from the equation

Lh = j t1

with j < 0 according to Lemma 3.5.3. The y-term in the y-equation describes the

�ow invariance of the curve y = 0, i.e. of the stratum ∆ = 0.
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The function H(x, y) has the following properties

H(x, y) = O(x2, xy, y2),

H(x, 0) ≡ 0,

∂H

∂x
(x, 0) ≡ 0.

The last two properties are due to the fact that points of the form (x, 0) are critical
points of the system 3.8.24 by construction. The linearization of the Vector Field

3.8.24 in such a point (x, 0) yields

A =


 0 −1 + ∂H

∂y (x, 0)

0 G(x, 0)


 .

Consequently the eigenvalues are zero in the direction of the curve of �xed points and

G(x, 0) in the direction of the principal stratum. This eigenvalue has been calculated

in Lemma 3.5.3, and has the form

e4 = 4
λ(α− γ)r + π1 α

r (β − γ)r

αr
.

Therefore in our coordinates we have

G(x, 0) = a x+ O(x2)

with a > 0. The invariant curve changes the stability in the direction of the principal

stratum in the �rst order from stable to unstable in the point (0, 0) (transversality

condition).

Now let's look at the extended system

π̇ = f(π) + εRFOT(π) (3.8.25)

ε̇ = 0.

Here near the point

(g(π̃1), 0)

there exists a local center manifold. This manifold is �bered in ε-direction with two

dimensional invariant manifolds W c
loc,ε. For ε = 0 the manifold W c

loc,0, tangential

to Span {t1, h}, intersects the stratum ∆ = 0 in a part of the curve g near g(π̃1)
transversally. This property is preserved for small

ε < ε < ε̃.

On the two dimensional center manifoldsW c
loc,ε again we introduce, now ε-dependent,

coordinates xε in the direction of gε and yε in the direction of the principal stratum.

We shall continue writing x resp. y for xε resp. yε.
Now let π̃1 be tuned in such a way such that the Fenichel-drift in gε(π̃1), |ε| < ε, is
not zero. Then the �ow on the corresponding center manifoldW c

loc,ε has the form

ẋ = −y + ε+H(x, y, ε) (3.8.26)

ẏ = y G(x, y, ε).
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The sign of ε depends on the direction of the resulting Fenichel-drift. We want

to assume the solution of isotropy (O(2), 1) to be stable. Therefore according to

Proposition 3.7.2 we have to choose d > 0 and the resulting Fenichel-drift has the

form indicated in Figure 5. For the choice of parameters

βr < αr < γr < 0, αr ∈
(

1

4
(β + 3γ)r , γr

)
,

we have

π̃1 ∈
(

0,− λ

4αr

)

and, thus, we have to choose ε < 0.
The functions G(x, y, ε) resp. H(x, y, ε) have the following properties

G(x, y, ε) = O(x, y, ε),

G(x, y, 0) = G(x, y)

resp.

H(x, y, ε) = O(x2, xy, y2, εx, εy, ε2),

H(x, y, 0) = H(x, y).

Proposition 3.8.1 Let

βr < αr < γr < 0, αr ∈
(

1

4
(β + 3γ)r , γr

)
.

Then there exists ε > 0 and a unique curve

(
x(ε), y(ε) ≤ 0

)
, −ε < ε ≤ 0,

of critical points of the �ow on the center manifold W c
loc,ε ∩Π(R6) with

(
x(0), y(0)

)
= (0, 0).

The critical points are saddles.

Proof: We are looking for critical points of the Vector Field 3.8.26. Therefore we �rst

solve the equation

P (x, y, ε) = −y + ε+H(x, y, ε) = 0.

We have

P (0, 0, 0) = 0

and

∂P

∂y
(0, 0, 0) = −1
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since H(x, y, ε) is of second order. Using the implicit function theorem, locally

near (x, ε) = (0, 0) one gets a unique surface y = y(x, ε) with y(0, 0) = 0 and

P (x, y(x, ε), ε) = 0. Furthermore

y(x, ε) = ε+ O(x2, xε, ε2)

and

∂y

∂x
(0, 0) = 0.

Now we want to solve the equation

G(x, y(x, ε), ε) = 0.

We have

G(0, 0, 0) = 0

and

∂G

∂x
(0, 0, 0) = a > 0

because of the transversality property of G and the condition

∂y
∂x(0, 0) = 0. Therefore,

again by the implicit function theorem, there exists a unique curve

(x(ε), y(ε)), 0 ≤ |ε| < ε, ε ≤ 0,

of critical points of the Vector Field 3.8.26. Furthermore

x = O(ε).

Thus the curve y(ε) has the form

y(ε) = ε+O(ε2).

The sign of y(ε) is determined by the sign of ε for small ε. Here we have ε < 0 and,

therefore, y(ε) < 0. Consequently the curve lies in the Hilbert-set Π(R6).
The linear stability of the critical point (x(ε), y(ε)), −ε < ε ≤ 0, is to be determined.

The linearization of the Vector Field 3.8.26 in the point (x(ε), y(ε)) yields

D =




∂H
∂x

(x(ε), y(ε), ε) −1 + ∂H
∂y

(x(ε), y(ε), ε)

y(ε) ∂G∂x (x(ε), y(ε), ε) G(x(ε), y(ε), ε) + y(ε) ∂G∂y (x(ε), y(ε), ε)




=

(
O(ε) −1 + O(ε)

ε a(ε) + O(ε2) O(ε)

)
.

We have

∂G
∂x (0, 0, 0) = a > 0. Thus

∂G

∂x
(x(ε), y(ε), ε) = a(ε) > 0
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with a(0) = a for small ε. So we get two eigenvalues of D of the following form

ρ1,2 = O(ε)±
√
O(ε2) − ε a(ε)

with ε < 0 and a(ε) > 0. For small ε the
√−ε-term is dominating, the critical point

is a saddle. 1

The bifurcating critical point lies in the principal stratum. The preimages are two

2-tori. Since there are no additional, symmetry given phase relations (cf. Lemma

3.4.9) in general we have quasiperiodic solutions.

3.9 Stability of the invariant tori

We want to know the stability of the group orbit of the quasiperiodic solutions (cf.

Proposition 3.8.1) in the entire ten dimensional system. This information is useful

for calculating the Conley-index of this group orbit (cf. [Le]). We shall determine the

Floquet-exponents of the periodic solutions that correspond to the critical points on

the curve

g(π1), 0 < π1 < −
λ

αr
.

According to our choice of the coe�cients only the interval

0 < π1 < −
λ

4αr

is of interest. Here, in dependence on the relative choice of the coe�cients, critical

points of the reduced system bifurcate (cf. Proposition 3.8.1).

The periodic solutions are rotating waves. In a rotating coordinate system one gets

a static problem which is accessible more easily. We make the ansatz

z0 = (r0 + ρ0) e
i(ω0 t+φ0)

z±2 = (r2 + ρ±2) e
i(ω0 t+φ±2)

z±1 = y±1 e
iω0 t

with

ω0 = ω + αi
(
r20 + 2r22

)

and

r20 + 2r22 = − λ

αr
.

In the lowest order one gets the following systems which decouple for symmetry rea-

sons:

d

dt




y1
y1
y−1
y−1


 =




s t t s
t s s t
t s s t
s t t s







y1
y1
y−1
y−1
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with

s = r20

(
−α+

1

4
β +

3

4
γ

)
+ r22

(
−2α+

3

2
β +

1

2
γ

)
,

t = 2

√
3

8
(γ − β)r0r2

and

d

dt




ρ−2
ρ0
ρ2
φ−2
φ0
φ2




=




2r22γ
r − r20(α − β)r

2r0r2α
r

−2r22γ
r + r20(α− β)r + 4r22α

r

2r2γ
i − r20

r2
(α− β)i

2r2α
i

−2r2γ
i +

r20
r2

(α− β)i + 4r2α
i

2r0r2α
r −2r22γ

r + r20(α− β)r + 4r22α
r

2r20α
r 2r0r2α

r

2r0r2α
r 2r22γ

r − r20(α− β)r

2r0α
i −2r2γ

i +
r20
r2

(α− β)i + 4r2α
i

2r0α
i 2r2α

i

2r0α
i 2r2γ

i − r20
r2

(α− β)i

r20r2(α− β)i −2r20r2(α− β)i r20r2(α− β)i

−2r0r
2
2(α− β)i 4r0r

2
2(α− β)i −2r0r

2
2(α− β)i

r20r2(α− β)i −2r20r2(α− β)i r20r2(α− β)i

−(α− β)rr20 2(α− β)rr20 −(α− β)rr20
2(α− β)rr22 −4(α− β)rr22 2(α− β)rr22
−(α− β)rr20 2(α− β)rr20 −(α− β)rr20







ρ−2
ρ0
ρ2
φ−2
φ0
φ2



.

One gets the following eigenvalues

µ1,2 = 0,

µ3 = 2(s+ t)r ,

µ4 = 2(s− t)r .

Our choice of coordinates yields

(
−α+

1

4
β +

3

4
γ

)r
< 0,

(
−α+

3

4
β +

1

4
γ

)r
< 0,

2

√
3

8
(γ − β)r > 0,

and, therefore,

µ4 < 0.
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Finally we want to show

µ3 < 0.

By insertion on gets

µ3 = 2

(
(γ − β)r

(
1

2
r20 + 2

√
3

8
r0

√
− λ

2αr
− r20

2

)
− λ

2αr

(
−2α+

3

2
β +

1

2
γ

)r)
.

The ansatz

r20 = −t λ
αr
, t ∈

(
0,

1

4

)
,

yields

µ3 = −2
λ

αr

(
(γ − β)r

(
1

2
t+ 2

√
3

8

√
t(1− t)

2

)
+

1

2

(
−2α+

3

2
β +

1

2
γ

)r)
.

In the admissible region we have

µ3 < 0.

The eigenvalues of the second system are (cf. Lemmata 3.5.2 and 3.5.3),

µ1,2,3 = 0,

µ4 = −2λ < 0,

µ5 = 2
λ

αr
(α − β)r < 0,

µ6 = −2
(
r20(α− β)r + 2r22(α− γ)r

)
.

Therefore in the bifurcation point

π̃1 = − λ(α− γ)r

αr(β − γ)r

there are six trivial and four negative Floquet-exponents. In the entire system the

solution has isotropy (D2, 1) in the bifurcation point. Thus the group orbit is four

dimensional. Therefore four trivial exponents are symmetry given. The sign of the

Floquet-exponents of the periodic solution corresponds to the sign of the eigenvalues of

the associated �xed point in the strati�ed space. Dealing with �xed point bifurcation

in the strati�ed space the group orbit of the bifurcating solution inherits the stability

of the bifurcation point. The double zero eigenvalue at the bifurcation point splits

into one positive and one negative eigenvalue (cf. Proposition 3.8.1). Therefore the

bifurcating �xed point is hyperbolic. In the entire system the bifurcating �xed point

has isotropy (Z2, 1).
The following lemma is shown.

Lemma 3.9.1 The bifurcating group orbit (cf. Proposition 3.8.1) has the unstable

dimension one.
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Abstract. Recently Bost and Connes considered a Hecke C∗-algebra aris-
ing from the ring inclusion of Z in Q, and a C∗-dynamical system involving
this algebra. Laca and Raeburn realized this algebra as a semigroup crossed
product, and studied it using techniques they had previously developed for
studying Toeplitz algebras. Here we associate Hecke algebras to general
number fields, realize them as semigroup crossed products, and analyze their
representations.
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Introduction

In their work on phase transitions in number theory, Bost and Connes considered
the Hecke algebra H(Γ,Γ0) of a particular group–subgroup pair (Γ,Γ0), and gave a
presentation of this algebra involving a unitary representation of the additive group
Q/Z and an isometric representation of the multiplicative semigroup N∗ [3]. From
this presentation, Laca and Raeburn recognized H(Γ,Γ0) as a dense subalgebra of a
semigroup crossed product of the form C∗(Q/Z)⋊N∗, and then applied techniques
they had previously developed for studying Toeplitz algebras to obtain information
about H(Γ,Γ0) and its representations [8].

The fascinating ideas of Bost and Connes raise many possibilities for fruitful
interaction between number theory and operator algebras, and in particular promise
to provide new and intriguing examples of dynamical systems. Here we investigate a
family of semigroup crossed products similar to C∗(Q/Z)⋊N∗, but with Q replaced
by a finite extension K of Q, and the subring Z of Q replaced by the ring O of
integers in K. We construct an action α of the multiplicative semigroup of nonzero
integers O× on the C∗-algebra of the additive group K/O, and show that all the main

1This research was supported by the Australian Research Council.
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results of [8] carry over to an arbitrary number field K. This has not been completely
routine: in particular, to construct some of the key representations and prove our
main theorem we had to look very closely at the compact dual (K/O)̂ of the discrete
Abelian group K/O, and our results here may be of independent interest.

The main theorem of [8], motivated by our earlier approach to uniqueness the-
orems for semigroups of non-unitary isometries [1, 7], is a characterization of faith-
ful representations of the crossed product C∗(Q/Z)⋊N∗. Thus the crossed product
has several faithful realizations: on ℓ2(Q/Z), extending the regular representation of
C∗(Q/Z); on ℓ2(N∗), extending the Toeplitz representation of N∗; and on ℓ2(Γ0\Γ),
arising from the canonical representation ofH(Γ,Γ0) in the commutant of the induced

representation IndΓΓ01. For our action α of O× by endomorphisms of C∗(K/O), it
is easy enough to construct the regular representation on ℓ2(K/O). We shall find
a group–subgroup pair (ΓK ,ΓO) whose Hecke algebra is isomorphic to our crossed
product and hence gives a representation on ℓ2(ΓO\ΓK), and, through our analysis
of (K/O)̂ , find faithful representations of C∗(K/O) on ℓ2(O×) which are compatible
with the Toeplitz representation of O×. Our main theorem implies that all these
realizations of C∗(K/O)⋊αO× are faithful.

We begin in §1 by constructing the action α of O× on C∗(K/O). For a ∈ O×,
αa is determined on generators δy for C∗(K/O) by averaging in the group algebra the
generators δx corresponding to solutions of the equation ax = y inO; thus α is almost
by definition a right inverse for the action of O× induced by multiplication on K/O.
We then discuss the crossed product C∗(K/O)⋊αO×, which is universal for covariant
representations of the system (C∗(K/O),O×, α), and the dual action of (K∗ )̂ , which
integrates to give a faithful expectation of C∗(K/O)⋊αO× onto C∗(K/O). We can
immediately write down several representations of the crossed product, including the
regular representation on ℓ2(K/O).

In §2 we construct the Hecke algebra realization H(ΓK ,ΓO) of the crossed prod-
uct, and give a presentation of this algebra similar to that given by Bost and Connes
in the case K = Q. The isomorphism of H(ΓK ,ΓO) into C∗(K/O)⋊αO× gives a
natural representation of the crossed product on ℓ2(ΓO\ΓK), which we call the Hecke
representation. It is interesting to note that, by identifying a subrepresentation with
the GNS-representation of a faithful state on C∗(K/O)⋊αO×, we can see directly
that the Hecke representation is faithful. This approach bypasses the appeal to the
theory of groupoid C∗-algebras in [3], and our own main theorem.

Our main technical innovations are in §3, where we discuss characters of K/O.
In [3] and [8], essential use was made of the injective character r 7→ exp 2πir on Q/Z.
In general there are no injective characters, and one is forced to look for a family of
characters which can play the same rôle. We show that there is a nonempty set XK of
characters χ with two important properties: χ(a−1/O) 6= 1 for every nontrivial ideal
a in O, and {r 7→ χ(br) : b ∈ O} is dense in (K/O)̂ . The key step in the proof that
XK 6= ∅ is the construction of projections which behave as one would expect αa(1)
to behave — if we knew that the action α extended to an action of the semigroup
of ideals in O. Using the characters in XK , we can construct representations of the
crossed product on ℓ2(O×) extending the Toeplitz representation.

The characterization of faithful representations of C∗(K/O)⋊αO× is Theorem
4.1. This theorem and its proof have a long history: the strategy is that used by
Cuntz in [4], which has been streamlined over the years, and adapted to the present
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situation in [1, 7]. The crucial ingredient is an estimate, whose proof uses in several
key places the properties of the characters in XK . Thus the end result is substantially
deeper than its analogue in [8]; in addition, the presence of units in O×, which is
necessary for the construction of the action α, complicates the proof of the estimate.
We finish §4 with a discussion of the various representations and their interrelations.

In our last section, we consider a field K with class number 1. Now the ring
O is a principal ideal domain, and one can realize the semigroup of ideals in O as a
subsemigroup S ofO×. There is therefore a similar dynamical system (C∗(K/O), S, α)
which does not involve units. The corresponding version of Theorem 4.1 is therefore
slightly easier to prove, and is a direct generalization of the main theorem of [8].

While we were preparing the final version of this paper, we received a preprint
from David Harari and Eric Leichtnam, in which they extend the original Bost-Connes
analysis to more general fields K [5]. They associate a Hecke algebra to a class of fields
more general than ours; however, they have used a principal ideal domain larger than
the ringO of integers, which is principal only ifK has class number 1. Berndt Brenken
has recently told us that he has been looking at the Hecke algebras of more general
almost normal inclusions from the point of view of semigroup crossed products.

Background

This paper is addressed primarily at operator algebraists, so general facts about C∗-
algebras have been used freely. However, it is an attractive feature of the semigroup-
crossed-product approach to Toeplitz algebras that it is relatively elementary: it
requires only the basic theory of C∗-algebras and familiarity with the group C∗-
algebras of discrete groups. Many of the results in the first two sections have purely
algebraic analogues, involving the action α of the semigroup O× by ∗-endomorphisms
of the group ∗-algebra C(K/O) := span{δx : x ∈ K/O}.

Our notation concerning number fields is as follows. Throughout K will denote
a finite extension of the rational numbers Q, called a number field. Every number
field has an associated ring of integers O, consisting of the solutions in K of monic
polynomials with coefficients in Z; for example, Z is the ring of integers of Q. We write
O× for the multiplicative semigroup of nonzero integers, andO∗ for the multiplicative
group of units, or invertible elements, in O. The only units in Z are ±1, but this is
certainly not true for general rings of integers: for example, real quadratic number
fields have their group of units isomorphic to Z. The field K can be recovered from
O as its field of fractions: in other words, every number in K has the form a/b for
some a ∈ O and b ∈ O×.

The norm is a multiplicative homomorphism from ideals in O to N, given by
N(a) = |O/a| for an ideal a ⊆ O. If a is principally generated, so a = aO for some
a ∈ O, then this norm coincides with the absolute value of the standard number-
theoretic norm N(a) of the element a [11, Prop. 3.5.1]. We shall write either Na or
N(a) to denote the norm of the ideal a, and for principal ideals, Na = |N(a)| will
denote the norm of the ideal aO. In §3, we shall need to use the extension of the
norm to fractional ideals, but we shall discuss the key points then.

1. The semigroup dynamical system (C∗(K/O),O×, α)

Because O is a subring of K, multiplication by elements of O× gives an action of
the semigroup O× as endomorphisms of the additive group K/O. The universality
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of the group algebra construction allows us to lift this to an action β of O× by
endomorphisms of the group C∗-algebra: thus, by definition, we have βa(δx) = δax
for x ∈ K/O, a ∈ O×. These are endomorphisms rather than automorphisms: as
the next Lemma shows, multiplication by a ∈ O× is not injective at the group or
group-algebra level unless a is a unit.

Lemma 1.1. If a ∈ O× and y ∈ K/O, the equation ax = y has Na solutions in K/O.
We write [x : ax = y] for the set of solutions.

Proof. Multiplication by a induces an isomorphism of the group [x : ax = 0] = 1
a
O/O

onto O/aO, and hence [x : ax = 0] is a finite set with Na elements. If x′ is one solution
of ax′ = y, then

[x : ax = y] = [x : ax = ax′] = [x+ x′ : ax = 0] = x′ + [x : ax = 0],
(1.1)

which also has Na elements.

When the equation ax = y has more than one solution in K/O, division by a
does not give a well-defined endomorphism of K/O. Nevertheless, one can define an
endomorphism of the C∗-algebra C∗(K/O) by averaging over the set of all solutions,
and this endomorphism αa is a right inverse for βa. It is important to realize that the
construction of αa is not possible on K/O itself: one must pass to the group algebra
C∗(K/O) (or C(K/O)) before the averaging makes sense.

Proposition 1.2. Let K be a number field with ring of integers O. The formula

αa(δy) =
1

Na

∑

[x:ax=y]

δx (1.2)

defines an action of O× by endomorphisms of C∗(K/O). For every a ∈ O×, αa(1) is
a projection, and

αa(1)αb(1) = αab(1) whenever aO + bO = O. (1.3)

The action α is a right inverse for the action β defined by βa : δy 7→ δay , so βa ◦αa =
id, while αa ◦ βa is multiplication by αa(1).
The action α restricts to an action of O× by ∗-endomorphisms of the group ∗-

algebra C(K/O).

Proof. For y, y′ ∈ K/O and a ∈ O×,

αa(δy)αa(δy′) =


 1

Na

∑

[x:ax=y]

δx




 1

Na

∑

[x′:ax′=y′]

δx′




=
1

N2a

∑

[x:ax=y]

∑

[x′:ax′=y′]

δxδx′ =
1

N2a

∑

[x:ax=y]

∑

[x′:ax′=y′]

δx+x′

=
1

Na

∑

[x′′:ax′′=y+y′]

δx′′ = αa(δyδy′),

where the fourth equality holds because addition induces a Na–to–one surjective map
from [x : ax = y] × [x′ : ax′ = y′] onto [x′′ : ax′′ = y + y′].

Thus x 7→ αa(δx) is a homomorphism of K/O into C∗(K/O), and it clearly pre-
serves adjoints. Hence αa(1) = αa(δ0) is a projection in the C∗-algebra C∗(K/O),
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and x 7→ αa(δx) is a homomorphism of K/O into the unitary group of the C∗-algebra
αa(1)C∗(K/O)αa(1). The universal property of C∗(K/O) now implies that αa ex-
tends to a homomorphism of C∗(K/O) into itself — that is, to an endomorphism of
the C∗-algebra C∗(K/O). It follows similarly from the universal property of C(K/O)
that the same formula gives ∗-endomorphisms αa of C(K/O).

Next assume a, b ∈ O× and z ∈ K/O, and calculate

αa(αb(δz)) = αa


 1

Nb

∑

[y:by=z]

δy


 =

1

NaNb

∑

[y:by=z]


 ∑

[x:ax=y]

δx




=
1

Nab

∑

[x:abx=z]

δx = αab(δz),

where the third equality holds because NaNb = Nab and [x : abx = z] is the disjoint
union of the sets [x : ax = y] with y ranging in [y : by = z]. We have now proved that
α is an action by endomorphisms of C∗(K/O), and the same calculations show that
it restricts to an action on C(K/O).

To prove (1.3), multiply

αa(1)αb(1) =


 1

Na

∑

[x:ax=0]

δx




 1

Nb

∑

[y:by=0]

δy




=
1

NaNb

∑

[x:ax=0]×[y:by=0]

δx+y

=
1

Nab

∑

[z:abz=0]

δz = αab(1);

for the third equality, note that, by the Chinese Remainder Theorem, aO + bO = O
implies O/abO ∼= O/aO×O/bO, which in turn implies 1

abO/O ∼= 1
aO/O × 1bO/O.

It is easy to check that βa(αa(δy)) = δy for any y ∈ K/O. To see that αa ◦ βa is
multiplication by αa(1), we compute:

αa(βa(δy)) =
1

Na

∑

[x:ax=ay]

δx =
1

Na

∑

[x′:ax′=0]

δx′+y =
1

Na


 ∑

[x′:ax′=0]

δx′


 δy = αa(1)δy,

where the second equality holds as in (1.1).

Remark 1.3. Since βa ◦ αa = id, αa is injective and βa is surjective for each a ∈ O×.
If a is a unit, αa(1) = 1, so αa◦βa = id, and units act by automorphisms. Conversely,
αa(1) = 1 only for a ∈ O∗, so only units act by automorphisms. These automorphisms
leave the projections αa(1) fixed, because for every a ∈ O× and u ∈ O∗, we have
αua(1) = αau(1) = αa(αu(1)) = αa(1).

Definition 1.4. A covariant representation of the system (C∗(K/O),O×, α) is a
pair (π, V ), in which π is a unital representation of C∗(K/O) on a Hilbert space H,
and V is an isometric representation of O× on H, satisfying the covariance condition

π(αa(f)) = Vaπ(f)V ∗a for a ∈ O× and f ∈ C∗(K/O).
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We can use the same covariance condition to define an algebraic covariant represen-
tation of the system (C(K/O),O×, α) with values in a unital ∗-algebra.

This covariance condition combines with the left inverse β to give the following
useful identities:

Lemma 1.5. Suppose (π, V ) is a covariant representation for (C∗(K/O),O×, α). If
a, b ∈ O× and x ∈ K/O, then

1. Vaπ(δx) = π(αa(δx))Va, π(δx)V ∗a = V ∗a π(αa(δx)),
2. π(δx)Va = Vaπ(βa(δx)), V ∗a π(δx) = π(βa(δx))V ∗a ,
3. and if in addition aO + bO = O, then V ∗a Vb = VbV

∗
a .

Proof. Since V ∗a Va = 1, claim (1) is immediate from covariance. Use (1) and facts
about β to compute Vaπ(βa(δx)) = Vaπ(δax) = π(αa(δax)Va = π(αa(βa(δx)))Va =
π(αa(1)δx)Va = π(δx)π(αa(1))Va = π(δx)Va, since αa(1) = VaV

∗
a by covariance. The

second equality in (2) is shown similarly. To see (3), multiply (1.3) by V ∗a on the left
and Vb on the right.

Example 1.6. We construct a covariant representation (λ, L) on ℓ2(K/O), in which λ
is the left regular representation of C∗(K/O) on ℓ2(K/O).

The isometric representation L of the semigroup O× is defined by the formula

Laǫy =
1

N
1/2
a

∑

[x:ax=y]

ǫx,

where {ǫy : y ∈ K/O} is the usual orthonormal basis of ℓ2(K/O). First we need to
check that these are actually isometries, and for this it suffices to show that La maps
this orthonormal basis into orthogonal unit vectors. That they are unit vectors is an
easy calculation. If ax = y 6= y′ = ax′ in K/O then x 6= x′ in K/O, so the sums for
Laǫy and Laǫy′ are over disjoint sets, and hence orthogonal.

The same type of calculation used to show αa ◦αb = αab yields LaLb = Lab, and

one checks easily that that L∗aǫx = (1/N
1/2
a )ǫax, which can then be used to compute

Laλ(δx)L∗aǫy =
1

N
1/2
a

Laǫay+x =
1

Na

∑

[z:az=ay+x]

ǫz =
1

Na

∑

[z:a(z−y)=x]

ǫz

=
1

Na

∑

[z′:az′=x]

ǫz′+y = λ(αa(δx))ǫy.

Therefore the pair (λ, L) is a covariant representation of the system
(C∗(K/O),O×, α).

Definition 1.7. Because we have just constructed a non-trivial covariant represen-
tation, we know from Proposition 2.1 of [7] that the system (C∗(K/O),O×, α) has a
crossed product. This is a C∗-algebra B generated by a universal covariant representa-
tion (i, v) of (C∗(K/O),O×, α) in B: for every other covariant representation (π, V ),
there is a representation π × V of B such that (π × V ) ◦ i = π and (π × V ) ◦ v = V .
The triple (B, i, v) is unique up to isomorphism [7, Proposition 2.1]. Since the rep-
resentation λ in the example is faithful, and λ = (λ× L) ◦ i, the homomorphism i is
injective on C∗(K/O).

We can similarly define the algebraic crossed product (C(K/O)⋊αO×, i, v) to
be the ∗-algebra generated by a universal algebraic covariant representation. The
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construction of [7, Proposition 2.1] can be easily modified to show that there is such
a representation.

Lemma 1.8. The vector space span{v∗ai(δx)vb : x ∈ K/O, a, b ∈ O×} is a dense
∗-subalgebra of C∗(K/O)⋊O×. We also have

span{v∗ai(δx)vb : x ∈ K/O, a, b ∈ O×} = span{i(δx)v∗avb : x ∈ K/O, a, b ∈ O×}
Proof. The vector space certainly contains every i(δx) and va, and is obviously closed
under taking adjoints, so it is enough to to show that the product of two spanning
elements is a linear combination of such elements. To prove this let x, y ∈ K/O and
a, b, c, d ∈ O×. Then, since vbvc = vcvb, we have

(v∗ai(δx)vb)(v
∗
c i(δy)vd) = v∗ai(δx)v∗c (vbvc)(vbvc)

∗vbi(δy)vd

= v∗av
∗
c i(αc(δx)αbc(1)αb(δy))vbvd by Lemma 1.5 (1)

= (vavc)
∗i(αbc ◦ βbc(αc(δx)αb(δy)))vbvd by Proposition 1.2

= (vavc)
∗i(αbc(βb(δx)(βc(δy)))(vbvd)

= (vavc)
∗i(αbc(δbx + δcy))(vbvd),

which we can see is in the linear span of {v∗ai(δx)vb : x ∈ K/O, a, b ∈ O×} by
considering the formula (1.2) defining α. The last equality follows from Lemma 1.5.

Remark 1.9. The labeling of the spanning elements by the ordered triples
(va, i(δx), vb) is not one-to-one. If bc = ad and bx = dy + n + mb/a for m, n ∈ O,
then, using Lemma 1.5(2) repeatedly,

v∗ai(δx)vb = v∗avbi(δbx)

= v∗avbi(δmb/a)i(δdy ) by assumption, since i(δn) = 1

= v∗ai(δm/a)vbi(δdy)

= i(δam/a)v∗avbi(δdy)

= v∗c vdi(δdy)

= v∗c i(δy)vd,

where the fifth equality holds because i(δm) = 1 and v∗avb = v∗av
∗
c vcvb = v∗cv

∗
avbvc =

v∗c v
∗
avavd = v∗cvd.
From the discussion of the Hecke algebra in §2 it will follow that v∗ai(δx)vb =

v∗c i(δy)vd implies b/a = d/c and bx ≡ dy (mod O + b
aO). It will also follow that the

set {v∗ai(δx)vb : x ∈ K/O, a, b ∈ O×} is linearly independent, hence a linear basis for
the dense subalgebra C(K/O)⋊O× of C∗(K/O)⋊O×.

Proposition 1.10. Let K be a number field with ring of integers O. There is a
strongly continuous action α̂ of the compact group K̂∗ on C∗(K/O)⋊αO× such that

α̂γ
(
v∗ai(δx)vb

)
= γ(a−1b)v∗ai(δx)vb

for all γ ∈ K̂∗, a, b ∈ O× and x ∈ K/O; α̂ is called the dual action.

Proof. For fixed γ, the map w : a 7→ γ(a)va gives another covariant pair (i, w), which
is easily seen to be universal. Thus we can deduce from the uniqueness of the crossed
product that there is an automorphism α̂γ of C∗(K/O)⋊αO× with the required
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behavior on generators. The continuity of γ 7→ α̂γ(c) is easy to check when c belongs
to span{v∗ai(δx)vb}, and because automorphisms of C∗-algebras are norm-preserving,
this extends to c ∈ C∗(K/O)⋊αO×.

Corollary 1.11. There is a faithful positive linear map Φ of C∗(K/O)⋊αO× onto
C∗(K/O) (strictly speaking, onto its image i(C∗(K/O)) in the crossed product) such
that

Φ
(
v∗ai(δx)vb

)
=

{
v∗ai(δx)va if b = a,

0 otherwise.

Proof. Define

Φ(c) :=

∫

K̂∗
α̂γ(c) dγ;

this gives a norm-decreasing projection of C∗(K/O)⋊αO× onto the fixed-point al-
gebra for the action α̂, which is faithful in the sense that Φ(b∗b) = 0 only if b = 0.
Because

∫
γ(a−1b) dγ = 0 unless a−1b = 1, Φ has the required form on generators.

The covariance of (i, v) implies that v∗ai(δx)va = i(βa(δx)) = i(δax), so Φ does indeed
have range i(C∗(K/O)). One can check by representing C∗(K/O)⋊αO× on Hilbert
space that Φ is positive (in fact, completely positive of norm 1).

Example 1.12. Composing the expectation Φ with the canonical trace τ : z 7→ z(0)
on C∗(K/O) gives a state τ ◦Φ on C∗(K/O)⋊αO×. This state is faithful on positive
elements because both τ and Φ are. Thus the GNS-representation πτ◦Φ is a faithful
representation of C∗(K/O)⋊αO×. (We observe that when K = Q, τ ◦Φ is the KMS1
state of [3, Theorem 5], which is shown there to be a factor state of type III.)

2. The Hecke algebra of a number field

The universal property defining the crossed product C∗(K/O)⋊αO× can be restated
as a presentation in terms of generators and relations similar to the modification in [8,
Corollaries 2.9 and 2.10] of [3, Proposition 18]. To do this we need to extend the defi-
nition of covariance to say that a pair (U, V ) consisting of an isometric representation
V of O× and a unitary representation U of K/O is covariant if

1

Na

∑

[x:ax=y]

U(x) = VaU(y)V ∗a , for a ∈ O× and y ∈ K/O.

Since C∗(K/O) is universal for unitary representations of K/O, a pair (U, V ) is covari-
ant in this sense precisely when (πU , V ) is a covariant representation of the dynamical
system.

Proposition 2.1. The crossed product C∗(K/O)⋊αO× is the universal C∗-algebra
generated by elements {u(y) : y ∈ K/O}, {va : a ∈ O×} subject to the relations:

1. v∗ava = 1 for a ∈ O×,

2. vavb = vab for a, b ∈ O×,

3. u(0) = 1, u(x)∗ = u(−x), u(x)u(y) = u(x+ y) for x, y ∈ K/O, and

4.
1

Na

∑

[x:ax=y]

u(x) = vau(y)v∗a , for a ∈ O× and x, y ∈ K/O.
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Similarly, the algebraic crossed product C(K/O)⋊αO× is the universal involutive
algebra generated by such elements and relations.

Proof. Relations (1) and (2) say that v is an isometric representation of O×, (3)
says that u is a unitary representation of K/O, and (4) is the covariance condition.
Clearly, a universal representation of the above relations is a universal covariant pair
for the system (C∗(K/O),O×, α), and vice versa.

In Example 1.6 we gave a concrete representation of these relations. In this
section we obtain another, by real-Ising the crossed product as a Hecke algebra, and
using the regular representation of this Hecke algebra.

Recall that a subgroup Γ0 of a group Γ is almost normal if the orbits for the left
action of Γ0 on the right coset space Γ/Γ0 are finite. Consider the subgroup

ΓO =

{(
1 a
0 1

)
: a ∈ O

}
of

ΓK =

{(
1 y
0 x

)
: x, y ∈ K, x 6= 0

}
.

Lemma 2.2. ΓO is an almost normal subgroup of ΓK .

Proof. The right coset of γ =

(
1 y

0 x

)
∈ ΓK is γΓO =

(
1 y +O
0 x

)
, so

(
1 a
0 1

)
γΓO =

(
1 a
0 1

)(
1 y +O
0 x

)
=

(
1 ax+ y +O
0 x

)
.

Thus the orbit has as many points as there are classes of ax+y modulo O. If x = b/c
with b, c ∈ O, then a ≡ a′ (mod c) implies ax+ y ≡ a′x+ y (mod O), so there are at
most Nc points in the orbit.

The generalized Hecke algebra H(ΓK ,ΓO) is defined in [3, §1] as a convolution ∗-
algebra of ΓO-biinvariant functions on ΓK . As a complex vector space, H(ΓK ,ΓO) is
the space of functions f : ΓK → C which are constant on double cosets, so f(γ0γγ

′
0) =

f(γ) for γ0, γ
′
0 ∈ ΓO and γ ∈ ΓK , and which are supported on finitely many of these

double cosets. The convolution product is

(f ∗ g)(γ) =
∑

γ1∈ΓO\ΓK

f(γγ−11 )g(γ1),

where the sum is over left-cosets, and the involution is f∗(γ) = f(γ−1). With these
operations, H(ΓK ,ΓO) is a unital ∗-algebra.

It is convenient to think of H(ΓK ,ΓO) as the linear span of characteristic func-
tions of double cosets, indicated by square brackets, with the multiplication rule:

[ΓOγ1ΓO] ∗ [ΓOγ2ΓO](γ) =
∑

γ′∈ΓO\ΓK

[ΓOγ1ΓO](γγ′
−1

)[ΓOγ2ΓO](γ′) (2.1)

= # LC
{

(ΓOγ
−1
1 ΓO)γ ∩ (ΓOγ2ΓO)

}
,

where the sum is taken over representatives γ′ of the left cosets ΓO\ΓK, and # LC
counts the number of left cosets in a left-invariant subset of ΓK . The last equal-
ity holds because the term of the sum corresponding to a left coset γ′ is 0 unless
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γγ′
−1 ∈ ΓOγ1ΓO and γ′ ∈ ΓOγ2ΓO, in which case it is 1. Involution is determined by

conjugate-linearity and [ΓOγΓO ]∗ = [ΓOγ
−1ΓO], and the unit is [ΓO].

Consider the maps µ : O× →H(ΓK ,ΓO) and e : K →H(ΓK ,ΓO) defined by

µa =
1

N
1/2
a

[
ΓO

(
1 0
0 a

)
ΓO

]
(2.2)

e(r) =

[
ΓO

(
1 r
0 1

)
ΓO

]
. (2.3)

The map e factors through K/O because ΓO

(
1 r

0 1

)
ΓO =

(
1 r +O
0 1

)
, and

the same notation will be used for the corresponding map of K/O into H(ΓK ,ΓO).
The following generalization of [3, Proposition 18] shows that the Hecke algebra is
generated by these elements, and that they are universal generators. More precisely,
it says that the pair (e, µ) is covariant and that πe × µ is a ∗-algebra isomorphism of
C(K/O)⋊αO× onto H(ΓK ,ΓO).

Theorem 2.3. Let K be a number field with ring of integers O. The elements µa
and e(x) defined in (2.2) and (2.3), with a ∈ O× and x ∈ K/O, generate the Hecke
algebra H(ΓK ,ΓO), and satisfy the relations

H1. µ∗aµa = 1 for a ∈ O×,
H2. µaµb = µab for a, b ∈ O×,
H3. e(0) = 1, e(x)∗ = e(−x) and e(x)e(y) = e(x+ y) for x, y ∈ K/O, and
H4. 1

Na

∑
[x:ax=y] e(x) = µae(y)µ

∗
a , for a ∈ O× and y ∈ K/O.

Moreover, H(ΓK ,ΓO) is the universal ∗-algebra over C with these generators and
relations; it is spanned by the set {µ∗ae(x)µb : a, b ∈ O×, x ∈ K}.
Proof. To prove (H3), first observe that

ΓO

(
1 r
0 1

)
=

(
1 r
0 1

)
ΓO = ΓO

(
1 r
0 1

)
ΓO =

(
1 r +O
0 1

)
,

so for these elements, left cosets, right cosets and double cosets coincide. Let r, s ∈ K,

γ =

(
1 y

0 x

)
∈ ΓK , and compute as in (2.1):

e(r)e(s)(γ) =

[(
1 r +O
0 1

)]
∗
[(

1 s+O
0 1

)]
(γ)

= # LC

{(
1 −r +O
0 1

)
γ ∩

(
1 s+O
0 1

)}

= # LC

{(
1 y − rx+ xO
0 x

)
∩
(

1 s+O
0 1

)}

=

{
1 if x = 1 and y ≡ r + s (mod O)
0 otherwise,

because if x = 1 and y − r ≡ s (mod O), the intersection is the (single) left coset(
1 s +O
0 1

)
. Thus e(r)e(s) = e(r+ s). The remaining identities are easily verified.
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To see (H1) and (H2), notice that ΓO

(
1 0
0 a

)
ΓO =

(
1 O

0 a

)
=

(
1 0
0 a

)
ΓO, so the support of µa is a right coset, and the support of µ∗a is the

left coset ΓO

(
1 1

a
O

0 1
a

)
. Thus, for γ =

(
1 y

0 x

)
, we have

µ∗aµa(γ) =
1

Na

[(
1 1

aO
0 1

a

)]
∗
[(

1 O
0 a

)]
(γ)

=
1

Na
# LC

{(
1 O
0 a

)
γ ∩

(
1 O
0 a

)}

=
1

Na
# LC

{(
1 y + xO
0 ax

)
∩
(

1 O
0 a

)}

=

{
1 if x = 1 and y ∈ O
0 otherwise,

because if x = 1 and y ∈ O the intersection

(
1 O

0 a

)
contains exactly Na left cosets.

This proves µ∗aµa =

[(
1 O

0 1

)]
= [ΓO] = 1. A similar computation proves (H2).

Before proving the covariance condition (H4), we compute µae(r):

µae(r)(γ) =
1

N
1/2
a

# LC

{(
1 1

a
O

0 1
a

)
γ ∩

(
1 r +O
0 1

)}

=
1

N
1/2
a

# LC

{(
1 y + x

aO
0 1

ax

)
∩
(

1 r +O
0 1

)}

=

{
1/N

1/2
a if x = a and y ≡ r (mod O)

0 otherwise.

Thus µae(r) = 1

N
1/2
a

[(
1 r +O
0 a

)]
and

µae(r)µ
∗
a(γ) =

1

Na

[(
1 r +O
0 a

)]
∗
[(

1 1
a
O

0 1
a

)]
(γ)

=
1

Na
# LC

{(
1 − r

a + 1
aO

0 1
a

)
γ ∩

(
1 1

aO
0 1

a

)}

=
1

Na
# LC

{(
1 y − rx

a
+ x

a
O

0 x
a

)
∩
(

1 1
a
O

0 1
a

)}

=

{
1/Na if x = 1 and y − r/a ∈ 1aO
0 otherwise.

This gives

µae(r)µ
∗
a =

1

Na

[(
1 1

a (r +O)
0 1

)]
,
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which implies (H4) because the right-hand-side is the sum of Na characteristic func-
tions of double cosets, one for each class in r/a+ (1/a)O (mod O); in other words,

µae(r)µ
∗
a =

1

Na

∑

[x:ax=r]

[(
1 x+O
0 1

)]
=

1

Na

∑

[x:ax=r]

e(x) = πe(αa(δr)).

Now that we have verified (H1)–(H4), the universal property of the algebraic
crossed product gives a ∗-algebra homomorphism πe × µ of C(K/O)⋊O× into the
Hecke algebra H(ΓK ,ΓO), and it only remains to prove that πe× µ is one-to-one and
onto.

Consider a single monomial µ∗ae(r)µb. A computation similar to the one above
gives

µ∗ae(r)(γ) =
1

N
1/2
a

[(
1 r + 1

a
O

0 1
a

)]
,

and further calculation shows

µ∗ae(r)µb(γ) =
1

N
1/2
ab

# LC

{(
1 y − rb+ b

aO
0 ax

)
∩
(

1 O
0 b

)}
.

Thus we must have x = b/a and y ∈ rb + b
a
O + O. Since

(
1 O

0 b

)
is not a

(single) left coset, we must count carefully to find the number of left cosets in this
intersection. We notice, first, that abO ⊆ bO∩aO ⊆ aO, b

aO∩O is an ideal in O and

( baO ∩O)/bO ∼= (bO∩ aO)/abO, and, second, that aO/(bO∩ aO) ∼= O/( baO∩O), so

that |aO/(bO ∩ aO)| = N( baO ∩O). From the isomorphism theorems we have

|aO/(bO ∩ aO)| |(bO ∩ aO)/abO| = |aO/abO| = |O/bO| = |N(b)| = Nb,

and from the multiplicativity of the norm, we deduce that the number of left cosets

is Nb/N( baO ∩O). We divide by N
1/2
ab and manipulate to get

µ∗ae(r)µb =
N( ba )1/2

N( baO ∩O)

[(
1 rb+ b

aO +O
0 b

a

)]
.

The support of the right hand side is a single double-coset. To see this, multiply one
of its elements on the left and on the right by ΓO to get

(
1 O
0 1

)(
1 rb
0 b

a

)(
1 O
0 1

)
=

(
1 rb+ b

aO +O
0 b

a

)
.

Since every double coset has this form, and since N( b
a
)1/2 6= 0, the linear span of

the elements µ∗ae(r)µb is all of H(ΓK ,ΓO). Moreover, if two such elements µ∗ae(x)µb
and µ∗ce(y)µd do not have disjoint support, they are supported on the same double
coset, in which case b/a = d/c and µ∗ae(x)µb = µ∗ce(y)µd . Thus the set {µ∗ae(x)µb :
a, b ∈ O× x ∈ K/O} is linearly independent, because distinct elements have disjoint
support.

Since the representation πe × µ maps {v∗au(x)vb : x ∈ K/O, a, b ∈ O×} in-
jectively onto a linear basis for the Hecke algebra, it follows that {v∗au(x)vb : x ∈
K/O and a, b ∈ O×} is a linear basis for the algebraic crossed product and that

πe × µ : C(K/O)⋊O× →H(ΓK ,ΓO)

is a ∗-algebra isomorphism. The result now follows from Proposition 2.1.
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The Hecke algebra H(ΓK ,ΓO) acts as convolution operators on the Hilbert space
ℓ2(ΓO\ΓK), and then the Hecke C∗-algebra C∗(ΓK ,ΓO) is by definition the closure of
H(ΓK ,ΓO) in the operator norm, [3, Proposition 3], [2]. Thus, the generators e(r) and
µa, viewed as unitaries and isometries on ℓ2(ΓO\ΓK), give a covariant representation
(πe, µ) of (C∗(K/O), u, v) such that C∗(ΓK ,ΓO) = (πe × µ)(C∗(K/O)⋊O×). It will
follow from our main theorem in §4 that this Hecke representation is faithful; i.e. that
the Hecke C∗-algebra is the universal C∗-algebra of the relations (H1)–(H4).

We can also establish directly that the Hecke representation is faithful by em-
bedding the faithful representation of Example 1.12 as a subrepresentation. Indeed,
the subspace of ℓ2(ΓO\ΓK) consisting of biinvariant functions is invariant under the
Hecke representation (πe, µ), and the corresponding subrepresentation turns out to
be the GNS-representation of the state τ ◦ Φ.

Proposition 2.4. The representation of the Hecke algebra as convolution operators
on ℓ2(ΓO\ΓK/ΓO) is unitarily equivalent to the GNS-representation of τ ◦ Φ.

Proof. By uniqueness of the GNS-representation, it is enough to show that the
vector [ΓO] ∈ ℓ2(ΓO\ΓK/ΓO) is cyclic for the left convolution action of H(ΓK ,ΓO)
and that the corresponding vector state ωΓO is equal to ω◦Φ. Since [ΓO] is an identity
for convolution, its cyclic component contains every biinvariant function supported
on finitely many double cosets; this proves that [ΓO] is cyclic.

To show that ωΓO = τ ◦ Φ, notice first that, because the fixed point algebra

of the dual action α̂ of K̂× is exactly C∗(K/O), any state ω of C∗(K/O) has a
unique α̂-invariant extension to C∗(K/O)⋊αO×, namely ω◦Φ. So it suffices to prove
that the vector state ωΓO is α̂-invariant and agrees with τ on C∗(K/O). If a 6= b,
then the support of µ∗ae(r)µb[ΓO] is disjoint from ΓO, and hence ωΓO(µ∗ae(r)µb) =
〈µ∗ae(r)µb[ΓO], [ΓO], 〉 = 0. Similarly, if r 6= 0 the support of e(r)[ΓO] is disjoint
from [ΓO], and hence ωΓO(e(r)) = 〈e(r)[ΓO], [ΓO]〉 = 0. Since we trivially have
ωΓO(e(0)) = 1, this proves that ωΓO is α̂-invariant and agrees with τ on C∗(K/O),
as required.

Corollary 2.5. Let K be a number field with ring of integers O. Then the Hecke
representation πe × µ is faithful on C∗(K/O)⋊αO× and the Hecke C∗-algebra
C∗(ΓK ,ΓO) is the universal C∗-algebra of the relations (H1)–(H4).

3. Characters of K/O
In [8] the character κ(r) = exp(2πir) gave an embedding of Q/Z in T which was
essential to the characterization of faithful covariant representations. There is no
such embedding in general:

Lemma 3.1. If K is a nontrivial extension of Q, there are no injective characters of
K/O.
Proof. Suppose that K is an extension of degree [K : Q] = n > 1, and choose
an integer a ∈ Z ∩ O× with a 6= ±1. Then the subgroup 1

aO/O of K/O has order
Na = an [11, 2.6(3)]. On the other hand, every x ∈ O satisfies x = ax/a = 0 in
1
aO/O, so the order of χ(x/a) divides a for every character χ. Thus χ( 1aO/O) is a

subgroup of the ath-roots of unity and χ cannot be injective.

For χ ∈ (K/O)̂ and b ∈ O, define a character χb on K/O by χb(x) := χ(bx). Our
key technical Lemma says that for every number field K there exists χ ∈ (K/O)̂ such
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that {χb : b ∈ O} is dense in (K/O)̂ (Corollary 3.5, Lemma 3.6); these characters
play the role of the injective characters of Q/Z. We begin by recording a general fact.

Lemma 3.2. Let χ be a character on K/O, and let a, b ∈ O×. Then
∑

[x:ax=0]

χ(bx) = 0 if and only if χ(bx) 6= 1 for some x ∈ [x : ax = 0].
(3.1)

Proof. The set {χ(bx) : ax = 0} is a group of roots of unity, and hence, unless this
group is trivial, its elements sum to zero.

In dealing with semigroup crossed products A⋊α S, one often needs to know
that

∏
a∈F (1 − αa(1)) is nonzero for every finite set of elements F of S (see [7,

Theorem 3.7], for example). In the present setting, something stronger is needed.
The problem is that αa(1)αb(1) is not necessarily of the form αc(1) for c ∈ O×. To
get around this, we would like to make sense of αa(1) for ideals a in O, in such a
way that αa(1)αb(1) = αa(1) with a the not-necessarily-principal ideal generated by
a and b. The ideals in O form a semigroup including O×/O∗ as the subsemigroup of
principal ideals, but we have been unable to find a suitable action α of this semigroup
on C∗(K/O). However, we can define projections Pa which have the properties we
require of αa(1). Once we have established these properties in Proposition 3.4, we can
show the existence of the required characters on K/O (Corollary 3.5, Lemma 3.6).

We need some basic facts about fractional ideals. A fractional ideal f of a number
field K is a nonzero finitely-generated O-submodule of K such that df ⊂ O for some
d ∈ O×. Ideals inO are certainly fractional ideals, with d = 1; these are called integral
ideals when it is necessary to distinguish them. Products and inverses of fractional
ideals are defined by

fg = {
n∑

i=1

figi : fi ∈ f, gi ∈ g}

f−1 = {x ∈ K : xf ⊂ O},
and are fractional ideals too. Since the ring of integers O is a Dedekind domain,
these operations make the set of fractional ideals into a multiplicative group IK with
identity element the ideal O; moreover, every element in IK can be factored uniquely
into a product of integer powers of prime ideals in O. Hence IK is a free Abelian
group with the set P of prime ideals as generators [11, Theorem 3.4.3].

The intersection f∩g of two fractional ideals, which is sometimes denoted [f, g], is
a greatest lower bound in terms of ideal inclusion; similarly, f+g, which is sometimes
denoted (f, g), is the least upper bound. The notation of lcm and gcd is meaningful;
if f and g are two fractional ideals with factorizations

f =
∏

p∈P

pnp(f) and g =
∏

p∈P

pnp(g),

then

[f, g] = f ∩ g =
∏

p∈P

pmax(np(f),np(g)),

and

(f, g) = f+ g =
∏

p∈P

pmin(np(f),np(g)).
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Notice that with these factorizations, if f is integral, all the exponents np are nonneg-
ative, and if f is the inverse of an integral ideal, np ≤ 0 for all p. Thus any fractional
ideal can be written as f = a

b
, with a, b ⊆ O, and we can define the norm of a frac-

tional ideal by N(f) = N(a)/N(b) [6, pp. 17,24]. However, if f is not integral this
norm no longer represents a cardinality.

If a is an integral ideal, then a−1 contains O. Let d ∈ O be an integer such that
da−1 ⊆ O. Since we trivially have dO ⊆ da−1, the isomorphism theorems give

|O/dO| =
∣∣O/da−1

∣∣ ∣∣da−1/dO
∣∣ ;

since da−1/dO ∼= a−1/O, we deduce that

∣∣a−1/O
∣∣ =

∣∣da−1/dO
∣∣ =

Nd
N(da−1)

= N(a).

Lemma 3.3. Suppose a and b are integral ideals in O. Then
0→ (a+ b)−1/O −−−−−−→

x 7→(x,−x)
a−1/O× b−1/O −−−−−−−→

(x,y)7→x+y
(a ∩ b)−1/O → 0

is an exact sequence of finite Abelian groups.

Proof. From the factorization into prime ideals it is easy to see that a−1 + b−1 =
(a ∩ b)−1 and a−1 ∩ b−1 = (a + b)−1. Hence addition gives a natural surjective
homomorphism (x, y) ∈ a−1 × b−1 7→ x + y ∈ (a ∩ b)−1 with kernel {(x,−x) : x ∈
(a+ b)−1}. Taking quotients by O gives the sequence.

We are now ready to define the projections Pa in C∗(K/O).

Proposition 3.4. For each integral ideal a in O let

Pa =
1

N(a)

∑

x∈a−1/O

δx, (3.2)

where the sum is taken over any set of representatives of a−1/O. Then
(i) P(a) = αa(1) for every a ∈ O×,

(ii) Pa is a projection for every a,
(iii) Pa ≥ Pb whenever a|b (i.e. whenever b ⊂ a),
and, for every finite collection {ai}1≤i≤n of integral ideals,
(iv)

∏
i Pai = P∩iai , and

(v)
∏
i(1− Pai) 6= 0 whenever ai 6= O for 1 ≤ i ≤ n.

Proof. Claim (i) is verified directly from the definition. Since multiplication and
intersection are associative operations, to prove (iv) it is enough to consider two ideals
a and b:

PaPb =
1

N(a)N(b)

∑

x∈a−1/O

∑

y∈b−1/O

δx+y

=
N(a+ b)

N(a)N(b)

∑

z∈(a∩b)−1/O

δz

=
1

N(a ∩ b)
∑

z∈(a∩b)−1/O

δz

= Pa∩b,
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where the second equality holds by Lemma 3.3. Since a−1/O contains −x whenever
it contains x, Pa is self adjoint, and setting a = b in (iv) gives P 2a = Pa, proving (ii).
If b|a then a ∩ b = b, so (iii) follows from (iv).

It remains to prove (v). Observe first that replacing each ai by one of its prime
factors gives a smaller projection because of (iii); repeated primes are irrelevant be-
cause the Pai are idempotents. Thus it suffices to prove that

∏
a∈F (1 − Pa) 6= 0 for

any finite set F of distinct prime ideals. Multiplying out and using (iv) gives
∏

a∈F

(1− Pa) =
∑

A⊂F

∏

a∈A

(−Pa) =
∑

A⊂F

(−1)|A|P∩A,

where ∩A indicates the intersection of all the members of A, which in this case equals
their product because they are all prime. This projection is in C(K/O), and, viewing
it as a function on K/O, it makes sense to evaluate it at 0 ∈ K/O:

∏

a∈F

(1− Pa)(0) =
∑

A⊂F

(−1)|A|P∩A(0)

=
∑

A⊂F

(−1)|A|
1

N(∩A)

∑

x∈(∩A)−1/O

δx(0)

=
∑

A⊂F

∏

a∈A

(− 1

N(a)
), because N(∩A) =

∏

a∈A

N(a),

=
∏

a∈F

(1− 1

N(a)
) 6= 0,

because N(a) > 1 for every integral ideal a 6= O.

Corollary 3.5. Let f 7→ f̂ denote the Fourier transform isomorphism of C∗(K/O)

onto C(K̂/O). Then

XK :=
⋂
{supp 1̂− Pa : a is a nontrivial ideal in O}

is a nonempty compact Gδ subset of K̂/O.

Proof. The space K̂/O is compact, and the family {supp(1 − Pa)̂ } has the finite
intersection property by Proposition 3.4(v).

The following lemma shows that the characters in XK have the required proper-
ties.

Lemma 3.6. Let χ ∈ K̂/O. Then
1. χ ∈ XK if and only if χ(a−1/O) 6= {1} for every non-trivial ideal a ⊆ O,
2. if χ ∈ XK , a, b ∈ O×, and χ(bx) = 1 for all x ∈ 1aO/O, then a|b, and
3. if χ ∈ XK , then {χb : b ∈ O} is dense in K̂/O.

Proof. Suppose χ ∈ XK . By the definition of the set XK, P̂a(χ) 6= 1, so it must be
zero, which means

∑
x∈a−1/O χ(x) = 0. Equivalently, the group χ(a−1/O) of roots of

unity is non-trivial by (3.1), giving (1). To see (2), note that

1
a

(aO + bO) = 1
a
{ax+ by : x, y ∈ O} = {x+ b

a
y : x, y ∈ O}.
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Suppose a does not divide b, and set a−1 = 1
a (aO + bO): this makes sense since by

dividing ideals we can compute

1
a (aO + bO) = 1

a

(
abO

aO∩bO

)
= (a)−1

(
aO∩bO
abO

)−1
,

and so a = (aO ∩ bO)/bO is an integral ideal. If χ ∈ XK , then from (1) we have

χ({by
a

: y ∈ O}) = χ({x+
by

a
: x, y ∈ O}) = χ(a−1) 6= {1},

so (2) is proved.
Let χ ∈ XK. The map b 7→ χb from O to the characters on K/O is a group

homomorphism. We claim that the homomorphism b 7→ χb| 1
aO/O

has kernel aO. We

see that a is in the kernel, since χa( 1aO) = χ(O) = {1}. Suppose b is in the kernel.

Then χ(bx) = 1 for all x ∈ 1aO/O, so (2) implies that a|b; thus b ∈ aO, and the claim

is true. Thus we have an injective homomorphism of O/aO into ( 1aO/O)̂ , and since
these are finite Abelian groups of the same cardinality Na, the homomorphism must
also be surjective. Thus every character on 1

a
O/O is the restriction of some χb. Since

K/O = ∪{ 1aO/O : a ∈ O×}, we have

K̂/O = lim
←−

1̂
aO/O,

and we can deduce that {χb : b ∈ O} is dense in K̂/O.

Remark 3.7. The referee suggested that it should also be possible to prove the exis-
tence of characters with the required properties using Fourier analysis on the adele
group A of K, as in [6]. In fact, this method is used by Harari and Leichtnam
[5]. The approach presented here is more elementary, and in particular bypasses the
application of the strong approximation theorem.

The characters in XK will play a very important rôle in the proof of our main
theorem. We can also use them to construct new covariant representations of the
system (C∗(K/O),O×, α) involving the usual Toeplitz representation T of O× on
ℓ2(O×), which is defined in terms of the usual basis {εb : b ∈ O×} for ℓ2(O×) by
Ta(εb) := εab.

Proposition 3.8. Suppose χ ∈ XK. Then τχ(x) : εb 7→ χb(x)εb extends to a faithful
representation of C∗(K/O) such that the pair (τχ, T ) is covariant.

Proof. The operator τχ(δx) is multiplication by the circle-valued function b 7→ χb(x)
on ℓ2(O×), so τχ is a unitary representation of K/O; we use the same symbol for the
corresponding representation of C∗(K/O). For f ∈ C∗(K/O), τχ(f) is multiplication

by the function b 7→ f̂(χb), and since {χb : b ∈ O×} is dense in (K/O)̂ by Lemma 3.6,
τχ is faithful.

To check the covariance condition, fix b ∈ O×. Compute first

Taτχ(y)T ∗a εb =

{
Taτχ(y)εb/a if a|b
0 if a 6 | b =

{
χ((b/a)y)εb if a|b
0 if a 6 | b,

and then

τχ(αa(y))εb =
1

Na

∑

[x:ax=y]

τχ(x)εb =


 1

Na

∑

[x:ax=y]

χ(bx)


 εb.
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Let z be a fixed element of [z : az = y]. Then

1

Na

∑

[x:ax=y]

χ(bx) =
1

Na

∑

[x′:ax′=0]

χ(b(x′ + z)) = χ(bz)
1

Na

∑

[x′:ax′=0]

χ(bx′)

=

{
χ(bz) if a|b
0 if a 6 | b,

by Lemma 3.6(2) and (3.1). Since a|b implies χ(bz) = χ((b/a)az) = χ((b/a)y),
covariance follows.

4. Representations of the crossed product

In this section we prove our main theorem — the characterization of faithful represen-
tations of the crossed product — and then discuss the various specific representations
we have constructed earlier.

Theorem 4.1. Let K be a number field with ring of integers O. A covariant repre-
sentation π × V of C∗(K/O)⋊αO× is faithful if and only if π is faithful.

The strategy of the proof is familiar: the crux is to show that deleting the terms
with a 6= b from finite sums

∑
a,b∈F π(f)V ∗a Vb gives a norm-decreasing expectation of

π× V (C∗(K/O)⋊αO×) onto π(C∗(K/O)). For this, we want a projection Q = π(q)
such that compressing by Q kills the off-diagonal terms while retaining the norm
of the remaining sum of diagonal terms (see Lemma 4.3 below). The presence of
invertible elements (units) in the semigroup O× makes this trickier than it was in
[8], and we begin with a lemma which will help deal with units. Both the next two
lemmas depend crucially on the characters constructed in the previous section.

Lemma 4.2. Suppose χ ∈ XK , c ∈ O× and H is a finite set of units in O. Then
there is a projection q ∈ C∗(K/O) such that qαu(q) = 0 for all u ∈ H and q̂(χc) = 1.

Proof. We begin by observing that the units in O act as automorphisms of C∗(K/O)
(the inverse of αu is βu−1), and hence α induces an action of O∗ on the spectrum
(K/O)̂ of C∗(K/O). Indeed, we have u · θ(x) := θ(α−1u (x)) = θ(ux) = θu(x) for
every θ in (K/O)̂ . We claim that O∗ acts freely on the set {χb : b ∈ O×}. To see
why, suppose u ∈ O∗ satisfies u · χb = χb — or, equivalently, χub = χb. Then for all
x ∈ K/O, we have

1 = χub(x)χb(x)−1 = χ((u− 1)bx).

By Lemma 3.6, this implies that every a ∈ O× divides (u − 1)b, and this is only
possible if u = 1. This justifies the claim.

The claim implies that the characters {u ·χc = χuc : u ∈ H} are distinct elements
of (K/O)̂ . Since the discrete group K/O = ∪a 1aO/O is a directed union of finite
subgroups, the dual (K/O)̂ is a topological inverse limit of finite groups, and hence
is a totally disconnected compact Hausdorff space. Thus we can find a compact
neighborhood N of χc such that (u · N) ∩ N = ∅ for all u ∈ H. Its characteristic
function 1N ∈ C((K/O)̂ ) is the Fourier transform of a projection q ∈ C∗(K/O) with
the required properties.

Recall from Lemma 1.8 that the crossed product C∗(K/O)⋊αO× is the closed
linear span of {i(f)v∗avb : f ∈ C(K/O) and a, b ∈ O×}.
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Lemma 4.3. Let
∑
a,b∈F i(fa,b)v

∗
avb be a finite linear combination with fa,b ∈

C∗(K/O), and let ǫ > 0. Then there exists a projection q = q(ǫ) ∈ C∗(K/O) such
that

i(q)i(fa,b)v
∗
avbi(q) = 0 if a 6= b, and (4.1)

∥∥∥q
(∑

fa,a
)
q
∥∥∥ ≥

∥∥∥
∑

fa,a

∥∥∥− ǫ. (4.2)

Proof. Let χ ∈ XK and let g =
∑
fa,a ∈ C∗(K/O). By Lemma 3.6(3) there exists

c ∈ O× such that |ĝ(χc)| ≥ ‖ĝ‖ − ǫ. Consider the projection

q1 = αc(1)
∏

a6 | b

(1− βb ◦ αac(1))
∏

b 6 |a

(1 − βa ◦ αbc(1)).

If a ∈ F is not associate to b ∈ F then either a 6 | b or b 6 | a. Suppose first b 6 | a. Then
i(q1)i(fa,b)v

∗
avbi(q1) has a factor

i((αc(1)− αc(1)βa(αbc(1))))v∗avbi(αc(1)) =

= v∗ai((αac(1)− αac(1)αa ◦ βa(αbc(1)))αbc(1))vb by Lemma 1.5(1),

= v∗ai((αac(1)− αac(1)αa(1)αbc(1))αbc(1))vb

= v∗ai((αac(1)− αac(1)αbc(1))αbc(1))vb

= 0.

The case a 6 | b reduces to this one by taking adjoints.
We now consider H := {u ∈ O∗ \ {1} : there exists a ∈ F with ua ∈ F}. By

Lemma 4.2, there is a projection q2 such that q2αu(q2) = 0 for all u ∈ H and
q̂2(χ

c) = 1. We claim that the projection q := q1q2 has the required properties.
Indeed, the calculation in the previous paragraph shows that i(q)v∗avbi(q) = 0 when
a, b ∈ F are not associate. If a is associate to b, then b = ua for some u ∈ H, and
v∗avb = vu; now the property q2αu(q2) = 0 forces i(q)v∗avbi(q) = i(q)vui(q) = 0.

By construction, χc is in the support of q̂2, so to finish the proof of (4.2) we need
to show that q̂1(χ

c) = 1. Since χc is always in the support of αc(1)̂ , it suffices to
prove that (βa ◦ αbc(1))̂ (χc) = 0 whenever b 6 | a in O×.

(βa ◦ αbc(1))̂ (χc) =
1

Nbc

∑

[x:bcx=0]

β̂a(δx)(χc)

=
1

Nbc

∑

[x:bcx=0]

χ(cax).

By Lemma 3.6(2), at least one of the summands is 6= 1, because bc does not divide
ac. Thus the sum vanishes by (3.1).

Recall from Corollary 1.11 that we have a faithful linear map Φ :
C∗(K/O)⋊O× → C∗(K/O), constructed by averaging over the compact orbits
of (K∗)̂ .

Proposition 4.4. Let (π, V ) be covariant for (C∗(K/O),O×, α). If π is faithful, the
map

φ : π(f)V ∗a Vb 7→
{
π(f) if a = b
0 if a 6= b
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extends by linearity and continuity to a projection of norm 1 from C∗(π, V ) onto
C∗(π), such that the following diagram commutes

C∗(K/O)⋊αO× π×V−−−−→ C∗(π, V )
yΦ

yφ

C∗(K/O)
π−−−−→ C∗(π).

(4.3)

Proof. Let
∑
a,b∈F π(fa,b)V

∗
a Vb be a linear combination of the spanning monomials

and fix ǫ > 0. Let q be the projection from Lemma 4.3, and take Q := π(q). Since π
is faithful, it is isometric. Thus∥∥∥

∑

a,b∈F

π(fa,b)V
∗
a Vb

∥∥∥ ≥
∥∥∥Q

∑

a,b∈F

π(fa,b)V
∗
a VbQ

∥∥∥

=
∥∥∥
∑

a

Qπ(fa,a)V ∗a VaQ
∥∥∥

=
∥∥∥
∑

a

qfa,aq
∥∥∥

≥
∥∥∥
∑

a

fa,a

∥∥∥− ǫ

=
∥∥∥
∑

a

π(fa,a)
∥∥∥ − ǫ.

Since ǫ is arbitrary, this gives the existence of the contractive projection φ. That the
diagram commutes is easily verified on the spanning set.

Proof. [Proof of Theorem 4.1.] Since there is a covariant representation (λ, L) with
λ faithful, and this representation factors through (i, v), i must be faithful. Thus if
π × V is faithful, so is π = (π × V ) ◦ i. For the other direction, suppose π is faithful
and π × V (b) = 0. Then π(Φ(b∗b)) = φ(π× V )(b∗b) = 0, and the faithfulness of Φ on
positive elements implies b = 0.

Next we consider the various covariant representations of C∗(K/O)⋊αO×:

1. The representation λ× L on ℓ2(K/O) (Example 1.6).
2. The GNS-representation associated to the state τ ◦Φ on C∗(K/O)⋊αO×, which

is already known to be faithful (Example 1.12).
3. The Hecke representation on ℓ2(ΓO\ΓK) (see §2).
4. The representations τχ × T from Proposition 3.8.
5. A one-dimensional representation: the trivial character on K/O and the trivial

representation of O× on C form a covariant pair.

Corollary 4.5. The representations (1), (3) and (4) of C∗(K/O)⋊αO× are all
faithful.

As things stand, it is not obvious that these representations are different. In fact
(λ, L) is quite different: the dual action is not unitarily implemented. Our proof of
this shows more: the representations {λ× γL : γ ∈ (K∗)̂ } are a family of mutually
inequivalent irreducible representations.

Proposition 4.6. Suppose that U is a non-zero bounded operator on ℓ2(K/O), and

that there exists γ ∈ K̂∗ such that
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1. Uλx = λxU for all x ∈ K/O, and
2. ULa = γ(a)LaU for all a ∈ O×.

Then U is a scalar multiple of 1 and γ = 1.

Proof. Let ux := (Uε0|εx). Then
∑
x∈K/O |ux|2 = ‖Uε0‖2 < ∞. Condition (1)

implies

(Uεy |εx) = (Uλyε0|εx) = (λyUε0|εx) = (Uε0|λ∗yεx) (4.4)

= (Uε0|λ−yεx) = (Uε0|εx−y) = ux−y. (4.5)

(We think of U ∼ ∑uyλy as the Fourier series of U , which by (1) belongs to the
maximal Abelian algebra λ(K/O)′′.) We claim that, for each fixed n ∈ N ⊂ O and
each x ∈ K/O, we have ∑

[y:ny=x]

uy = γ(n)ux.

To see this, we use (2) and calculate:

γ(n)ux =
(
γ(n)Uε0|εx

)
=
(
L∗nULnε0|εx

)
=
(
ULnε0|Lnεx

)

=
(
U
( 1√

n

n∑

i=1

εi/n

)∣∣∣ 1√
n

∑

[y:ny=x]

εx
)

=
1

n

∑

i

∑

[y:ny=x]

uy−i/n.

Now {y − i/n : ny = x, 1 ≤ i ≤ n} is n copies of [y : ny = x], so

γ(n)ux =
1

n

∑

[y:ny=x]

nuy =
∑

[y:ny=x]

uy,

as claimed.
Now suppose that ux 6= 0 for some x 6= 0, and fix n ∈ N. Recall that the ℓ2- and

ℓ1-norms on Cn are related by ‖z‖2 ≥ ‖z‖1/
√
n. Thus the claim implies that

|ux| =
∣∣∣
∑

[y:ny=x]

uy

∣∣∣ ≤
∑

[y:ny=x]

|uy| ≤
√
n
( ∑

[y:ny=x]

|uy|2
)1/2

.

We deduce that
∑

y∈K/O

|uy|2 ≥
∑

n∈N

( ∑

[y:ny=x]

|uy|2
)
≥
∑

n

|ux|2
n

= |ux|2
(∑

n

1

n

)
=∞,

contradicting
∑ |uy|2 = ‖Uε0‖2 <∞.

Corollary 4.7. The representations {(λ, χL) : χ ∈ K̂∗} are irreducible and mutu-
ally inequivalent.

Proof. For the first assertion, take γ = 1 in the proposition, and multiply both sides
by χ(a). To see that (λ, χ1L) is not equivalent to (λ, χ2L), apply the proposition with
γ = χ−11 χ2.

Corollary 4.8. The automorphisms in the dual action α̂ of K̂∗ on C∗(K/O)⋊αO×
are not implemented by unitaries in the representation λ× L.
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Remark 4.9. That the dual action is not implemented distinguishes the representa-
tions λ × γL from the others in the list. For example, because the state ω ◦ Φ is
invariant under the dual action α̂, there is a unitary representation U of (K∗ )̂ on
Hω◦Φ such that (πω◦Φ, U) is a covariant representation of (C∗(K/O)⋊αO×, (K∗)̂ , α̂).
It is also easy to check that the representation U : (K∗)̂ → B(ℓ2(O×)) defined by
Uγεa = γ(a)εa gives a covariant representation (τ × T, U).

To see that the dual action is unitarily implemented in the Hecke representation,
define U : (K∗)̂ → B(ℓ2(ΓO\ΓK)) by

Uγ :

[(
1 y + xO
0 x

)]
7→ γ(x)

[(
1 y + xO
0 x

)]
.

The necessary relations Uγe(r) = e(r)Uγ and Uγµa = γ(a)µaUγ follow easily by
observing that

supp
(
e(r) ∗

[(
1 y + xO
0 x

)])
⊂

(
1 ∗
0 x

)
, and

supp
(
µa ∗

[(
1 y + xO
0 x

)])
⊂

(
1 ∗
0 ax

)
.

Remark 4.10. The representation λ× L is the GNS-representation corresponding to
the vector state φ : c 7→ (λ× L(c)ε0|ε0). Since τ ◦ Φ =

∫
K̂∗ φ ◦ α̂γ dγ, it is tempting

to guess that πτ◦Φ is the direct integral of the representations λ× γL = (λ×L) ◦ α̂γ .
However, because each λ × γL is irreducible, the direct integral representation on
L2((K∗ )̂ , ℓ2(K/O)) has commutant L∞((K∗)̂ ), and is therefore type I. On the other
hand, in the case K = Q, τ ◦ Φ is the KMS1-state described in [3, §1], and this is
known to be a factor state of type III1 [3, Theorem 5].

5. Fields of class number 1

The ideal class group of a field K is the quotient of the group F of fractional ideals
by the subgroup P of principally generated ideals; it is a finite Abelian group whose
cardinality is called the class number hK of the field [11, §4.3]. The group of principal
ideals is always isomorphic to K∗/O∗, so we have an exact sequence

1→ O∗ → K∗ → F → F/P → 1

of Abelian groups. Since fractional ideals factor uniquely as products of prime ideals,
when hK = |F/P | = 1, K∗/O∗ is the free Abelian group generated by the prime
ideals. It is possible in this case to choose a multiplicative section S in O× consisting
of one associate for each class in O×: select an arbitrary prime generator from each
prime ideal, and take S to consist of 1 and the products of the selected generators.

Throughout this section, K will be a number field with hK = 1, and S will
be such a subsemigroup of O×. The semigroup S is lattice ordered in the sense of
[10, 7], with a ∨ b defined to be the unique representative in S of the ideal generated
generated by a and b. Restricting α to S gives another semigroup dynamical system
(C∗(K/O), S, α) associated to a number field of class number 1.

In the case of K = Q, selecting the positive primes gives the section N∗, and
the dynamical system (C∗(Q/Z),N∗, α) is the one studied in [8]. In fact S is always
non-canonically isomorphic to N∗ ∼= ⊕p∈PN, so in some sense the dynamical systems
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(C∗(K/O), S, α) involve different actions of the same lattice-ordered semigroup. How-
ever, the inclusion of Z in O induces a canonical inclusion of N∗ in S, which takes
each prime generator of N∗ to the unique product in S of (the representatives in S
of) its prime factors, and this is not an isomorphism unless K = Q.

The pairs (λ, L) and (τχ, T ) restrict to covariant representations of
(C∗(K/O), S, α) which are faithful on C∗(K/O), so it follows from [7, Proposi-
tion 2.1] that the system has a unique crossed product C∗(K/O)⋊α S. The following
version of our main theorem is a direct generalization of [8, Theorem 3.7].

Theorem 5.1. Suppose K is a number field with hK = 1, and (C∗(K/O), S, α) is
the dynamical system constructed above. Then a representation π × V is faithful on
C∗(K/O)⋊α S if and only if π is faithful.

This theorem can be proved by modifying the proof of Theorem 4.1. The crossed
product C∗(K/O)⋊α S carries a dual action of (K∗)̂ , and averaging over this dual
action gives a faithful expectation of C∗(K/O)⋊α S onto C∗(K/O) (as in Proposition
1.10 and Corollary 1.11). The analogue of Lemma 4.3 is easier: if

∑
a,b∈F fa,bv

∗
avb is a

finite sum in C∗(K/O)⋊α S, then no two different elements of F are associates, and
we can take for q the projection q1 constructed in the first paragraph of the proof of
Lemma 4.3. Now the proofs of Proposition 4.4 and Theorem 4.1 carry over verbatim,
giving Theorem 5.1.

It is interesting to note that Theorem 5.1 is substantially deeper than in the
special caseK = Q [8, Theorem 3.7]; it depends crucially on the existence of characters
χ such that {χb : b ∈ O} is dense in (K/O)̂ , which was much easier in the case of Q
(compare Corollary 3.5 and Lemma 3.6(3) with [8, Lemma 2.5]).

Remark 5.2. The crossed product C∗(K/O)⋊α S is the Hecke C∗-algebra C∗(ΓS ,ΓO)
of the almost normal inclusion

ΓO =

(
1 O
0 1

)
⊂ ΓS =

(
1 K
0 SS−1

)
.

To see this, note that ΓO\ΓS/ΓO is a subset of ΓO\ΓK/ΓO, so H(ΓS ,ΓO) naturally
embeds in H(ΓK ,ΓO). As in the proof of Theorem 2.3, the characteristic function of
every double coset is µ∗ae(x)µb for some a, b ∈ S and x ∈ K/O, so H(ΓS ,ΓO) is gener-
ated by {µa : a ∈ S} and {e(x) : x ∈ K/O}; they still satisfy the relations (H1)–(H4)
for a, b ∈ S, and are linearly independent because they have disjoint support. Hence
H(ΓS ,ΓO) is the universal ∗-algebra with such generators and relations. Theorem 5.1
therefore implies that the completion C∗(ΓS ,ΓO) is isomorphic to C∗(K/O)⋊α S.

Remark 5.3. Because the semigroup S is lattice-ordered, we can write down an alter-
native spanning set for the crossed product C∗(K/O)⋊α S:

C∗(K/O)⋊
α
S = span{i(x)vav

∗
b : x ∈ K/O, a, b ∈ S with (a, b) = 1}.

To see this, first note that because ideals are principal, Proposition 3.4 yields

αa(1)αb(1) = αa∨b(1),

which is equivalent to vav
∗
avbv

∗
b = va∨bv

∗
a∨b. Multiplying on the left by v∗a, right by

vb gives
v∗avb = v∗ava∨bv

∗
a∨bvb = va−1(a∨b)v

∗
b−1(a∨b);

this suffices to prove the claim because (a−1(a ∨ b), b−1(a ∨ b)) = 1.
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Remark 5.4. It follows from Theorem 5.1 that C∗(K/O)⋊α S embeds as a subalgebra
of C∗(K/O)⋊αO×. In fact we can recover C∗(K/O)⋊αO× from this subalgebra by
taking the crossed product by the action γ of O∗ satisfying

γu(i(f)v∗avb) = i(αu(f))v∗avb.

To see this, first observe that the unitary elements vu implement the automorphisms
γu, so there is a homomorphism π of (C∗(K/O)⋊α S)⋊O∗ into C∗(K/O)⋊αO×.
On the other hand, because O× is the direct product of O∗ and S, we can combine the
embeddings of O∗ and S in (C∗(K/O)⋊α S)⋊O∗ into one homomorphism of O×,
which is covariant with the embedding of C∗(K/O), and hence gives a homomorphism
ρ of C∗(K/O)⋊αO× into the iterated crossed product. It is easy to check that π and
ρ are inverses of each other.
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Abstract. We present a new construction of a bivariant K-functor. The
functor can be defined on various categories of topological algebras. The cor-
responding bivariant theory has a Kasparov product and the other standard
properties of KK-theory. We study such a theory in detail on a natural cate-
gory of locally convex algebras and define a bivariant multiplicative character
to bivariant periodic cyclic cohomology.
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Das Fundament der Nichtkommutativen Geometrie wird gebildet einerseits von Kas-
parovs KK-Theorie und andererseits von der zyklischen Homologie/Kohomologie von
Connes und Tsygan. Diese Theorien verallgemeinern und erweitern zwei wichtige klas-
sische Homologie/Kohomologie-Theorien - nämlich die Atiyah-Hirzebruch-K-Theorie
und die de Rham Theorie - von Räumen oder Mannigfaltigkeiten (kommutative Al-
gebren) auf geeignete Kategorien von nichtkommutativen Algebren. Das Wort “ver-
allgemeinern” ist hier nicht völlig angebracht, da diese neuen Theorien angewandt
auf den klassischen Fall eine ganz andere neuartige Beschreibung und eine erweiterte
Form für die K-Theorie und die de Rham-Theorie geben.
Diese so erweiterten Homologie/Kohomologie-Theorien erlauben es im Prinzip, nicht-
kommutative Algebren (etwa Algebren von Pseudodifferentialoperatoren) genauso zu
behandeln wie Räume, bzw. Algebren von Funktionen. Beide Theorien sind darüber-
hinaus in natürlicher Weise direkt als bivariante Theorien definiert. Dies stellt einen
wichtigen Vorteil dar und ist für Berechnungen der Theorie sehr hilfreich.
Ein wunder Punkt der Theorie war allerdings die Tatsache, dass die K-Homologie
sowie die KK-Theorie auf der einen Seite, und die zyklische Theorie auf der anderen,
auf verschiedenen Kategorien von topologischen Algebren definiert sind, bzw. sinnvolle
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Ergebnisse liefern. Der natürliche Definitionsbereich von Kasparovs KK-Theorie be-
steht aus C*-Algebren, d.h. aus relativ großen Algebren vom Typ “alle stetigen Funk-
tionen auf einem kompakten Raum”. Die zyklische Theorie dagegen liefert vernünftige
Ergebnisse nur für wesentlich kleinere Algebren, wie z.B. die Fréchetalgebra aller un-
endlich oft differenzierbaren Funktionen auf einer Mannigfaltigkeit [Cu4]. Schon wegen
des verschiedenen Definitionsbereichs konnten beide Theorien daher nur in speziellen
Fällen mit Hilfe etwas künstlicher Tricks miteinander verglichen werden und in die-
sen Situationen ein partieller bivarianter Chern-Connes-Charakter gefunden werden,
siehe z.B. [Co1], [Ks], [Wa], [Ni1].

Andererseits ist bekannt, dass beide Theorien auf ihren verschiedenen Definitionsbe-
reichen ganz analoge Eigenschaften haben. Der letzte wesentliche Schritt hierzu wurde
durch den Beweis der Ausschneidungseigenschaft der periodischen zyklischen Theorie
in [CuQu2] erzielt. Damit war klar, dass im Prinzip eine allgemeine Transformation
von einer Version der KK-Theorie in die bivariante zyklische Theorie zu erwarten ist
(bivarianter Chern-Connes-Charakter). Rein algebraisch wurde die Konstruktion ei-
nes solchen Charakters schon in [CuQu2] auf Grundlage des Ausschneidungsresultats
erläutert.

In der vorliegenden Arbeit führen wir nun eine neue bivariante topologischeK-Theorie
ein, die auf derselben Kategorie von lokalkonvexen Algebren definiert ist, auf der auch
die zyklische Homologie/Kohomologie Sinn macht. Wir bezeichnen diese Theorie mit
kk. Wir zeigen, dass kk im wesentlichen dieselben abstrakten Eigenschaften wie die
KK-Theorie hat und daher auch in derselben Weise zu berechnen ist. Die Eigenschaf-
ten sind Homotopieinvarianz, Stabilität und Ausschneidung, wobei allerdings in der
Kategorie der m-Algebren jede dieser Eigenschaften in etwas modifizierter Form zu
verstehen ist. Ebenso wie KK kann kk als der universelle Funktor mit diesen drei
Eigenschaften charakterisiert werden. Angewendet auf die Algebra der unendlich oft
differenzierbaren Funktionen auf einer Mannigfaltigkeit gibt die Theorie natürlich die
klassische K-Homologie/K-Theorie. Außerdem ergibt kk(C,A) die übliche K-Theorie
von A, wenn A eine Banachalgebra ist (oder wenn A eine Fréchetalgebra ist, unter
Verwendung der in [Ph] eingeführten K-Theorie von Fréchetalgebren).

Die Existenz und Multiplikativität des bivarianten Chern-Connes-Charakters folgt
im geraden Fall direkt aus der Charakterisierung von kk als universeller Funktor mit
gewissen Eigenschaften, da die periodische zyklische Theorie HP ∗ dieselben Eigen-
schaften besitzt. Im ungeraden Fall ergibt sich die Existenz des Charakters aus der
Ausschneidung für HP ∗, und die Multiplikativität aus der Verträglichkeit der Ran-
dabbildungen in kk und in HP ∗. Diese Verträglichkeit wird durch eine ähnliche Rech-
nung wie in [Ni2] bewiesen. Im wesentlichen muss das Produkt der Randabbildungen
in der Toeplitzerweiterung und in der Einhängungserweiterung bestimmt werden.

Wir beschreiben jetzt kurz den Inhalt der Arbeit. Die ersten beiden Abschnitte ent-
halten einige allgemeine Grundlagen über die Klasse von lokalkonvexen Algebren, mit
der wir arbeiten. Wir nennen diese Algebren m-Algebren. Weiter geben wir Beispiele
von m-Algebren und Erweiterungen von m-Algebren, die wir später benutzen. Wir
verweisen auf [Ph] für eine ausgezeichnete Zusammenstellung weiterer Konstruktionen
in dieser Klasse von topologischen Algebren.

Der dritte Abschnitt enthält mit dem Hauptlemma 3.10 die wesentliche neue tech-
nische Idee, die zu einer einfachen und mehr (wenn auch nicht vollständig) algebrai-
schen Konstruktion des Kasparovprodukts führt. Sie erlaubt es, das Produkt ohne
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die üblichen analytischen Hilfsmittel aus der Theorie der C*-Algebren zu definie-
ren. Übrigens kann die hier eingeführte Strategie auch verwendet werden, um die
gewöhnliche KK-Theorie für C*-Algebren oder entsprechende bivariante Theorien
für σ-C*-Algebren (siehe [We]) oder Banachalgebren einzuführen. In der Tat gibt un-
sere Methode ein allgemeines Rezept, um die bivariante K-Theorie mit verschiedenen
Homotopieinvarianz- und Stabilitätseigenschaften für verschiedene Kategorien von to-
pologischen Algebren zu konstruieren, siehe Bemerkung 4.6. Sie basiert, ähnlich wie in
[Ze] auf Erweiterungen von topologischen Algebren beliebiger Länge und ihren klas-
sifizierenden Abbildungen. Dadurch, dass wir Erweiterungen höherer Länge zulassen,
bekommen wir eine einfache Beschreibung des Produkts und vermeiden gleichzeitig
eine bekannte Summierbarkeitsobstruktion für “glatte” Erweiterungen der Länge 1,
[DoVo].
Abschnitt 4 enthält die Definition und eine Aufstellung der einfachsten Eigenschaften
der bivarianten kk-Theorie. Wie in Abschnitt 8 bemerkt wird, ist diese Definition
formal verblüffend analog zur Beschreibung der periodischen bivarianten zyklischen
Kohomologie, die in [CuQu2, 3.2] enthalten ist. Ein Unterschied zu den üblichen
Definitionen der K-Theorie ist, dass wir mit differenzierbaren statt mit stetigen Ho-
motopien arbeiten. Dies ist für die Existenz des Chern-Connes-Chrakters und für die
Ausschneidung in kk wichtig. In Abschnitt 5 wird gezeigt, dass jede Erweiterung von
m-Algebren, die einen stetigen linearen Schnitt besitzt, lange exakte Folgen in beiden
Variablen von kk induziert. Der Beweis benutzt die Methode von [CuSk].
In Abschnitt 6 beweisen wir die Charakterisierung von kk als universeller Funktor,
konstruieren den Chern-Connes-Charakter und untersuchen seine Eigenschaften. Ins-
besondere wird eine Fortsetzung des Charakters auf “p-summierbare” Moduln ange-
geben, die für Anwendungen und zum Vergleich mit den von Connes und Nistor gege-
benen Formeln wichtig ist. Als Nebenprodukt ergibt sich übrigens eine Bestimmung
der (stetigen) periodischen zyklischen Homologie/Kohomologie der Schattenideale ℓp.
In Abschnitt 7 wird gezeigt, dass kk∗(C,A) für eine Fréchetalgebra A mit der von
Phillips definierten K-Theorie K∗(A) übereinstimmt. Dies ist selbst für A = C a
priori überhaupt nicht klar (die kk-Gruppen könnten trivial oder riesengroß sein).
Der Beweis benutzt wieder das Hauptlemma 3.10. Wir zeigen auch unabhängig von
Phillips’ Methoden, dass für Banachalgebren und für gewisse dichte Unteralgebren von
Banachalgebren ebenfalls kk∗(C,A) = K∗(A) gilt. Man erhält daher insbesondere eine
neue Definition der K-Theorie für die sehr große Klasse der m-Algebren durch

K∗(A) =
def

kk∗(C,A)

Abschnitt 8 enthält einige abschließende Bemerkungen zu der natürlichen Filtrierung
auf kk.
Wir erwähnen schließlich, dass das oben beschriebene Dilemma der verschiedenen De-
finitionsbereiche der KK-Theorie und der zyklischen Theorie prinzipiell auch auf an-
dere Weise gelöst werden kann. Es lässt sich nämlich eine zyklische Theorie entwickeln,
die auch für C*-Algebren Sinn macht. Dies wurde im wesentlichen von Puschnigg in
[Pu] mit der “asymptotische” zyklischen Theorie auf der Basis eines Vorschlags von
Connes-Moscivici [CoMo] erreicht. Die asymptotische Theorie ist aber ihrer Natur
nach weniger algebraisch.
Anwendungen der im vorliegenden Artikel dargestellten Theorie bleiben weiteren Ar-
beiten vorbehalten.

Documenta Mathematica 2 (1997) 139–182



142 Joachim Cuntz

1 m-Algebren und differenzierbare Homotopien

Eine m−Algebra ist eine Algebra A über C mit einer vollständigen lokalkonvexen To-
pologie, die durch eine Familie {pα} von submultiplikativen Halbnormen bestimmt ist.
Für jedes α gilt also pα(xy) ≤ pα(x)pα(y). Die Algebra A ist dann eine topologische
Algebra, d.h. die Multiplikation ist stetig. Es ist leicht zu sehen, dass m-Algebren ge-
rade die lokalkonvexen Algebren sind, die als projektive Limiten von Banachalgebren
darstellbar sind, vgl. [Mi, 5.1]. In [Cu4] wurde gezeigt, dass sich das Argument für die
Ausschneidung aus [CuQu2] auf die topologische zyklische Theorie für m-Algebren
überträgt.

Die direkte Summe A⊕B von zwei m−Algebren ist wieder eine m−Algebra mit der
Topologie, die durch die Halbnormen der Form p ⊕ q mit (p ⊕ q)(x, y) = p(x) + q(y)
definiert ist, wobei p eine stetige Halbnorm auf A und q eine stetige Halbnorm auf B
ist.

Wir erinnern an die Definition des projektiven Tensorprodukts im Sinn von Gro-
thendieck, [Gr], [T]. Für zwei lokalkonvexe Vektorräume V and W ist die projektive
Topologie auf dem Tensorprodukt V⊗W bestimmt durch die Familie der Halbnormen
der Form p ⊗ q, wo p eine stetige Halbnorm auf V und q eine stetige Halbnorm auf
W ist. Hierbei ist p⊗ q definiert durch

p⊗q (z) = inf
{ n∑

i=1

p(ai)q(bi)| z =
n∑

i=1

ai ⊗ bi, ai ∈ V, bi ∈W
}

für z ∈ V ⊗W . Wir bezeichnen mit V ⊗̂W die Vervollständigung von V⊗W bezüglich
dieser Familie von Halbnormen. Wenn A undB m-Algebren sind, so ist auch das pro-
jektive Tensorprodukt A⊗̂B wieder eine m-Algebra (wenn p und q submultiplikativ
sind, so auch p⊗ q).
Wir geben jetzt einige Beispiele von m-Algebren, die wir später benutzen werden.

1.1 Algebren von differenzierbaren Funktionen

Sei [a, b] ein Intervall in R. Wir bezeichnen mit C[a, b] die Algebra der komplexwer-
tigen C∞-Funktionen f auf [a, b], deren Ableitungen in den Endpunkten a und b alle
verschwinden (während die 0-te Ableitung, d.h. f selbst, in a und b beliebige Werte
annehmen kann).

Eine wichtige Rolle werden auch die Unteralgebren C(a, b],C[a, b) and C(a, b) von
C[a, b] spielen, die nach Definition aus den Funktionen f bestehen, die außerdem
noch in a, bzw. in b, bzw. in a und b verschwinden.

Die Topologie auf diesen Algebren ist die übliche Fréchettopologie, die durch die
folgende Familie von submultiplikativen Normen pn definiert ist:

pn(f) = ‖f‖+ ‖f ′‖+ 1
2
‖f ′′‖+ . . .+ 1

n!
‖f(n)‖

Hierbei ist natürlich ‖g‖ = sup{|g(t)|
∣∣ t ∈ [a, b]}.

Wir bemerken, dass C[a, b] nuklear im Sinn von Grothendieck [Gr] ist und dass für
jeden vollständigen lokalkonvexen Raum V der Raum C[a, b]⊗̂V isomorph zu dem
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Raum der C∞-Funktionen auf [a, b] mit Werten in V ist, deren Ableitungen in beiden
Endpunkten verschwinden, [T,§ 51].

Wenn A eine m-Algebra ist, schreiben wir A[a, b],A[a, b) und A(a, b) für die m-
Algebren A⊗̂C[a, b],A⊗̂C[a, b) und A⊗̂C(a, b).

Zwei stetige lineare Abbildungen α, β : V → W zwischen zwei vollständigen lo-
kalkonvexen Räumen heißen differenzierbar homotop, oder diffeotop, falls eine Fa-
milie ϕt : V → W, t ∈ [0, 1] von stetigen linearen Abbildungen existiert, so dass
ϕ0 = α, ϕ1 = β und so dass die Abbildung t 7→ ϕt(x) unendlich oft differenzierbar
ist für jedes x ∈ V . Eine andere Formulierung dieser Bedingung ist, dass eine ste-
tige lineare Abbildung ϕ : V → C∞([0, 1])⊗̂W existiert mit der Eigenschaft, dass
ϕ(x)(0) = α(x), ϕ(x)(1) = β(x) für jedes x ∈ V .

Sei h : [0, 1]→ [0, 1] eine monotone und bijektive C∞-Abbildung, deren Einschränkung
auf (0, 1) ein Diffeomorphismus (0, 1)→ (0, 1) ist und deren Ableitungen in 0 und 1
alle verschwinden. Durch Ersetzung von ϕt durch ψt = ϕh(t) sieht man, dass α and β

diffeotop sind genau dann, wenn eine stetige lineare Abbildung ψ : V → C[0, 1]⊗̂W
existiert, für die gilt ψ(x)(0) = α(x), ψ(x)(1) = β(x), x ∈ V . Dies zeigt insbesondere,
dass Diffeotopie eine Äquivalenzrelation ist.

1.2 Die Tensoralgebra

Es sei V ein vollständiger lokalkonvexer Raum. Wir definieren die Tensoralgebra TV
als die Vervollständigung der algebraischen direkten Summe

TalgV = V ⊕ V⊗V ⊕ V ⊗
3 ⊕ . . .

im Bezug auf die Familie {p̂} von Halbnormen, die auf dieser direkten Summe durch

p̂ = p ⊕ p⊗p ⊕ p⊗
3 ⊕ . . .

gegeben sind , wo p alle stetigen Halbnormen auf V durchläuft. Die Zusammensetzung
von Tensoren definiert in der üblichen Weise eine Multiplikation auf TalgV , für die
die Halbnormen p̂ submultiplikativ sind. Die Vervollständigung TV ist daher eine
m-Algebra.

Im einfachsten Fall, wo V = C, ist TC in natürlicher Weise isomorph zu der Algebra
der holomorphen Funktionen auf der komplexen Ebene, die im Punkt 0 verschwinden
(unter dem Isomorphismus, der eine Folge (λn) in TalgC auf die Funktion f mit f(z) =
∞∑
n=1

λnz
n abbildet). Die Topologie ist gegeben durch die Topologie der uniformen

Konvergenz auf kompakten Teilmengen

Wir bezeichnen mit σ : V → TV die Abbildung, die V auf den ersten Summanden
in TalgV abbildet. Diese Abbildung σ hat die folgende universelle Eigenschaft: Es sei
s : V → A eine beliebige stetige lineare Abbildung von V in eine m-Algebra A. Dann
existiert ein eindeutig bestimmter Homomorphismus τs : TV → A von m-Algebren
mit der Eigenschaft, dass τs ◦ σ = s.

Die Tensoralgebra ist differenzierbar kontrahierbar, d.h. die identische Abbildung von
TV ist diffeotop zu 0. Eine differenzierbare Familie ϕt : TV → TV , für die ϕ0 =
0, ϕ1 = id gilt, ist gegeben durch ϕt = τtσ, t ∈ [0, 1].
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1.3 Das freie Produkt von zwei m-Algebren

Zwei m-Algebren A und B seien gegeben. Das algebraische freie Produkt (in der
nichtunitalen Kategorie) von A und B ist dann die folgende Algebra

A ∗alg B = A ⊕ B ⊕ (A⊗B) ⊕ (B⊗A) ⊕ (A⊗B⊗A) ⊕ . . .

Die direkte Summe erstreckt sich über alle Tensorprodukte, wo die Faktoren A und B
jeweils abwechselnd auftreten. Die Multiplikation ist, wie bei der Tensoralgebra, die
Zusammensetzung von Tensoren, wobei aber anschließend die Multiplikation A⊗̂A→
A und B⊗̂B → B benutzt wird, um alle Terme zu vereinfachen, in denen zwei
Elemente in A oder zwei Elemente in B zusammentreffen.

Wir bezeichnen mit A ∗B die Vervollständigung von A ∗alg B bezüglich aller Halb-
normen der Form p ∗ q die in der folgenden Weise definiert sind:

p ∗ q = p ⊕ q ⊕ (p⊗ q) ⊕ (q ⊗ p) ⊕ (p⊗ q ⊗ p) ⊕ . . .

Wir setzen hier alle stetigen Halbnormen p und q auf A und B ein. Wenn p und q
submultiplikativ sind, so ist auch die Halbnorm p ∗ q submultiplikativ und A ∗B ist
daher eine m-Algebra.

Die Algebra A ∗ B ist das freie Produkt von A und B in der Kategorie der m-
Algebren. Die kanonischen Inklusionen ι1 : A → A ∗B und ι2 : B → A ∗B haben
die folgende universelle Eigenschaft: Seien α : A→ E und β : B → E zwei stetige Ho-
momorphismen in eine m-Algebra E. Dann existiert ein eindeutig bestimmter stetiger
Homomorphismus α ∗ β : A ∗B → E, so dass (α ∗ β)◦ι1 = α und (α ∗ β)◦ι2 = β.

1.4 Die Algebra der glatten kompakten Operatoren

Die Algebra K der glatten kompakten Operatoren besteht aus allen Matrizen (aij)
mit schnell abfallenden Matrixelementen aij ∈ C, i, j = 0, 1, 2 . . . (für eine andere
Beschreibung dieser Algebra siehe [ENN]). Die Topologie auf K ist gegeben durch die
Familie von Normen pn, n = 0, 1, 2 . . ., die durch

pn
(
(aij)

)
=
∑

i,j

|1 + i+ j|n |aij|

definiert sind. Man prüft leicht nach, dass die pn submultiplikativ sind und dass K
vollständig ist. Damit ist K eine m-Algebra. Als linearer lokalkonvexer Raum ist K
natürlich isomorph zum Folgenraum s und daher nuklear.

Die Abbildung, die (aij)⊗(bkl) auf die N2×N2-Matrix (aijbkl)(i,k)(j,l)∈N2×N2 abbildet,

gibt offensichtlich einen Isomorphismus Θ zwischen K⊗̂K und K (vgl. auch [Ph,2.7])

Lemma 1.4.1 Sei Θ : K → K⊗̂K die oben angegebene Abbildung und ι : K → K⊗̂K
die Inklusionsabbildung, die x auf e00 ⊗ x abbildet (wo e00 die Matrix mit Elementen
aij ist, für die aij = 1, falls i = j = 0, und aij = 0 sonst). Dann ist Θ diffeotop zu ι.
Dasselbe gilt für die entsprechenden Abbildungen Θ′ : K→M2(K) und ι′ : K→M2(K).
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Beweis: Wir können K darstellen als eine Algebra von Operatoren auf dem Raum s
der schnell fallenden Folgen. Die gesuchte Homotopie kann durch direkte Summen von
Rotationen in jeweils zweidimensionalen Teilräumen, die Vektoren der Form ξi ⊗ ξj
in der Standardbasis von s⊗̂s in Vektoren der Form ξ0 ⊗ ξij überführen, realisiert
werden. Dabei bezeichnet ξij eine Umnumerierung der Basis von s mit Indexmenge
N ×N; siehe auch [Ph,2.7]. q.e.d.

Bemerkung 1.4.2 Sei V ein Banachraum. Dann besteht K⊗̂V gerade aus den Ma-
trizen, oder den durch N×N indizierten Folgen (vij)i,j∈N, für die der Ausdruck

p̄n((vij)) =
def

∑

i,j

(1 + i+ j)n‖vij‖

endlich ist für jedes n. Die Topologie auf K⊗̂V ist natürlich gerade durch die Normen
p̄n gegeben. Um dies zu sehen, betrachten wir das Tensorprodukt αn der Norm pn auf
K mit der auf V gegebenen Norm ‖ · ‖. Wenn dann xij die Matrix bezeichnet, die
x ∈ V als i, j-tes Element hat und sonst 0 ist, so gilt

αn(xij) = (1 + i+ j)‖x‖

nach [T, Prop. 43.1]. Dies zeigt sofort, dass

αn((vij)) ≤ p̄n((vij))

für alle Matrizen (vij) im algebraischen Tensorprodukt K⊗V . Die umgekehrte Unglei-
chung folgt aus der Definition der projektiven Tensornorm. Daher ist für jedes feste n
die Vervollständigung (K⊗V )p̄n isometrisch isomorph zu (K)pn⊗̂V und besteht gerade
aus den Matrizen (vij), für die p̄n((vij)) endlich ist.

1.5 Die glatte Toeplitzalgebra

Die Elemente der Algebra C∞S1 können als Potenzreihen in dem Erzeuger z (definiert
durch z(t) = t, t ∈ S1 ⊂ C) geschrieben werden. Die Koeffizienten sind schnell
abfallend, d.h. genauer gilt

C∞(S1) =
{ ∑

k∈Z

akz
k
∣∣ ∑

k∈Z

|ak| |k|n <∞ für jedes feste n ∈ N
}

Submultiplikative Normen, die die Topologie beschreiben, sind gegeben durch

qn
(∑

akz
k
)

=
∑
|1 + k|n |ak|

Als topologischer Vektorraum ist die glatte Toeplitzalgebra T dann definiert als die
direkte Summe T = K⊕ C∞(S1).

Um die Multiplikation in T zu definieren, schreiben wir vk für das Element (0, zk)
von T und einfach x für das Element (x, 0) mit x ∈ K. Außerdem bezeichnet eij das
Element von T, das durch die Matrix (akl) mit akl = 1, falls k = i, l = j, und akl = 0
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sonst, bestimmt ist (mit der Vereinbarung, dass eij = 0, wenn i < 0 oder j < 0). Die
Multiplikation in T ist dann bestimmt durch die folgenden Regeln:

eijekl = δjke
il

vke
ij = e(i+k),j eijvk = ei,(j−k)

(i, j, k ∈ Z); und

vkv−l =





vk−l(1−El−1) l > 0

vk−l l ≤ 0

wo El = e00 + e11 + . . . + ell. Wenn pn die in 1.4 definierten Normen auf K sind
und qn die oben definierten Normen auf C∞(S1), so ist leicht zu sehen, dass jede
Norm der Form pn ⊕ qm submultiplikativ auf T = K⊕ C∞(S1) mit der so definierten
Multiplikation ist. Es ist offensichtlich, dass K ein abgeschlossenes Ideal in T ist, und
dass der Quotient T/K gerade C∞(S1) ist.

1.6 Abgeleitete Unteralgebren von Banachalgebren

Viele der wichtigsten m-Algebren sind von einem speziellen Typ - sie sind Algebren
von “nichtkommutativen C∞-Funktionen”. Um diese Klasse von Fréchetalgebren zu
charakterisieren, verwenden wir die Ideen aus [BlCu], wo der Fall von abgeleiteten
Unteralgebren von C*-Algebren eingehend untersucht wurde.
Sei A eine Banachalgebra. Eine abgeleitete Unteralgebra von A ist eine Unteralgebra
A, für die gilt

1) Auf A ist eine Familie p0, p1, . . . von Halbnormen gegeben, wo p0 ein Vielfaches
der gegebenen Norm auf A ist. A ist vollständig im Bezug auf diese Familie.

2) Für jedes k gilt

pk(xy) ≤
∑

i+j=k

pi(x)pj(y), x, y ∈ A

Falls 1) und 2) erfüllt sind, so ist für jedes k die Summe p0 + p1 + . . . + pk eine
submultiplikative Norm. A ist daher gleichzeitig eine Fréchetalgebra und eine m-
Algebra. Eines der wichtigsten Beispiele ist C∞[0, 1] mit den Halbnormen pn(f) =
1
n!‖f(n)‖ oder allgemeiner C∞M für eine differenzierbare kompakte Mannigfaltigkeit
M .
Wir erinnern daran, dass eine Unteralgebra A einer Banachalgebra A abgeschlossen
unter holomorphem Funktionalkalkül ist, falls das Spektrum Sp(x) jedes Elements x
von A, in A und A dasselbe ist und falls außerdem für jede in einer Umgebung von
Sp(x) holomorphe Funktion f , auch f(x) wieder in A liegt.

Lemma 1.6.1 Wenn A ⊂ A die Bedingungen 1) und 2) erfüllt, so ist A abgeschlossen
unter holomorphem Funktionalkalkül.

Beweis: vgl. [BlCu, 3.12 oder 6.4]. Sei Ak die Vervollständigung von A bezüglich der
Norm ‖ · ‖k = p0 + p1 + . . . pk. Für alle x, y ∈ A gilt

‖xy‖k+1 ≤ ‖x‖k‖y‖k+1 + ‖x‖k+1‖y‖k
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Dies impliziert, dass

lim sup n
√
‖x2n‖k+1 ≤ lim sup n

√
‖xn‖k lim sup n

√
‖xn‖k+1

für jedes x ∈ A und damit für die Spektralradien

rAk+1(x)2 = rAk+1(x
2) ≤ rAk(x)rAk+1(x)

und somit, dass rAk+1(x) = rAk(x).

Dasselbe Argument gilt für die Algebren Ãk, wo noch eine Eins adjungiert wurde.
Falls nun x ∈ Ã invertierbar in Ã ist, so existiert ε ≥ 0, so dass für jedes y ∈ A mit
‖x−1 − y‖ ≤ ε gilt, dass rA(1 − xy) < 1. Daher ist rAk(1 − xy) < 1 für alle k und
somit xy und also auch x invertierbar in Ak (nach einem Diagonalfolgenargument ist
A der Durchschnitt aller Bilder von Ak in A).
Dies zeigt, dass SpAx = SpAx für alle x ∈ A. Wenn jetzt f eine Funktion ist, die
holomorph in einer Umgebung von SpAx = SpAx ist, so liegt f(x) in Ak für alle k
und damit auch in A. q.e.d.

Bemerkung 1.6.2 Falls A eine abgeleitete Unteralgebra einer C*-Algebra ist, so ist
A sogar invariant unter Funktionalkalkül mit C∞-Funktionen, siehe [BlCu, 6.4].

Lemma 1.6.3 Seien A und B abgeleitete Unteralgebren von A bzw. B. Dann ist A⊗̂B
eine abgeleitete Unteralgebra von A⊗̂B.

Beweis: Falls p0, p1, . . . und q0, q1, . . . die Familien von Halbnormen mit der Eigen-
schaft 2) sind, die die Topologien auf A und B bestimmen, so ist u0, u1, . . . mit

uk =
∑

i+j=k

pi ⊗ qj

eine Familie von Halbnormen auf A⊗̂B, für die A⊗̂B vollständig ist und für die 2)
gilt. q.e.d.

Wir bezeichnen mit K1 die Banachalgebra der komplexen Matrizen (aij)i,j∈N mit

‖(aij)‖1 =
∑
|aij| <∞

Lemma 1.6.4 K ist eine abgeleitete Unteralgebra von K1.

Beweis: Die Topologie von K ist bestimmt durch die Halbnormen α0, α1, α2 . . . mit

αn((aij)) =
1

n!

∑
(i+ j)n‖aij‖

Nach Definition ist α0 = ‖ · ‖1. Die Gleichung

1

n!
(i+ j)n =

∑

r+s=n

1

r!
ir

1

s!
js

zeigt, dass αn(xy) ≤ ∑
r+s=n

αr(x)αs(y). q.e.d.
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Lemma 1.6.5 Sei α : A→ B ein stetiger Homomorphismus zwischen Banachalgebren
und B ⊂ B eine abgeleitete Unteralgebra mit definierendem System von Halbnormen
q0, q1, . . ..
Dann ist A = α−1(B) mit dem System p0, p1, . . . von Halbnormen, wo

p0 = C‖ · ‖A C = max(1, ‖α‖)
pi(x) = qi(α(x)), i = 1, 2, . . .

eine abgeleitete Unteralgebra von A.

Beweis: Klar. q.e.d.

2 Einige wichtige Erweiterungen von m-Algebren

In der bivarianten K-Theorie für C*-Algebren spielen eine Reihe von Standarder-
weiterungen eine grundlegende Rolle. Wir beschreiben in diesem Abschnitt zunächst
einmal die analogen Erweiterungen in der Kategorie der m-Algebren. Hierbei ist zu
beachten, dass außerdem jeweils Algebren von stetigen Funktionen durch die entspre-
chenden Algebren von C∞-Funktionen ersetzt werden, da wir statt mit stetigen Homo-
topien mit differenzierbaren Homotopien arbeiten werden. Darüberhinaus benötigen
wir aber auch noch weitere Erweiterungen, die bisher in der K-Theorie noch nicht
so stark in Erscheinung getreten sind. Insbesondere wird die universelle Erweiterung
durch die Tensoralgebra in unserer Theorie eine tragende Rolle spielen.

Wir betrachten in erster Linie Erweiterungen, die stetige lineare Schnitte besitzen,
d.h. als exakte Folgen von lokalkonvexen Vektorräumen einfach direkte Summen dar-
stellen. Wir nennen solche Erweiterungen linear zerfallend. Das Tensorprodukt einer
linear zerfallenden Erweiterung mit einer beliebigen lokalkonvexen Algebra ist wieder
linear zerfallend.

Die meisten Erweiterungen in diesem Abschnitt sind außerdem von dem Typ, dass
die Algebra in der Mitte kontrahierbar ist, so dass die Ideale verschiedene Formen der
Einhängung (des Quotienten) beschreiben.

2.1 Die Einhängungserweiterung.

Dies ist das Analogon zu der fundamentalen Erweiterung der algebraischen Topologie.
Sie hat die folgende Form

0→ C(0, 1)→ C[0, 1)→ C→ 0

oder allgemeiner

0→ A(0, 1)→ A[0, 1)→ A→ 0

mit einer beliebigen m-Algebra A.

Wir erinnern daran, dass C(0, 1) und C[0, 1) Algebren von C∞- Funktionen auf dem
Intervall [0, 1], deren Ableitungen alle in 0 und 1 verschwinden, bezeichnen, und dass
die Algebra C[0, 1) differenzierbar kontrahierbar ist, vgl. 1.1.
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2.2 Die universelle Erweiterung.

Auf dieser Erweiterung beruht unsere Definition der bivarianten K-Theorie für m-
Algebren. Für eine m-Algebra A ist die Tensoralgebra TA über dem lokalkonvexen
Raum A wie in Abschnitt 1 definiert. Wenn wir die Tatsache verwenden, dass A auch
eine Algebra ist und die universelle Eigenschaft von TA auf die Abbildung id:A→ A
anwenden, so erhalten wir einen Homomorphismus α = τid : TA → A (ein Element
x1⊗x2⊗ . . .⊗xn von TA wird dabei auf x1x2 . . . xn in A) abgebildet. Wir definieren
jetzt JA als den Kern von α. Die Erweiterung

0→ JA→ TA
α→ A→ 0

besitzt dann einen stetigen linearen Schnitt. Diem-Algebra TA ist glatt kontrahierbar.
Die universelle Eigenschaft dieser Erweiterung wird im nächsten Abschnitt erläutert
und benutzt werden.

2.3 Die glatte Toeplitzerweiterung.

Die glatte Toeplitzalgebra T wurde in 1.5 eingeführt. Nach Konstruktion enthält T
die Algebra K als Ideal und wir erhalten die folgende Erweiterung

0→ K→ T π→ C∞(S1)→ 0

die natürlich nach Konstruktion auch einen stetigen linearen Schnitt erlaubt.

Sei nun κ : T → C der kanonische Homomorphismus, der v1 und v−1 auf 1 abbildet
und T0 = Ker κ. Durch Restriktion der Toeplitzerweiterung erhalten wir die folgende
Erweiterung

0→ K→ T0 → C∞0 (S1\1)→ 0

Wir werden später sehen, dass T0 “kk-kontrahierbar” ist.

2.4 Die universelle zweifach triviale Erweiterung.

Mit einer m-Algebra A assoziieren wir wie in [Cu2] die Algebra QA = A ∗ A. Wir
bezeichnen mit ι und ῑ die beiden kanonischen Inklusionen von A in QA. Die Algebra
QA ist in natürlicher Weise Z/2-graduiert durch den involutiven Automorphismus τ ,
der ι(A) und ῑ(A) vertauscht.

Das Ideal qA in QA ist definiert als der Kern des kanonischen Homomorphismus
π = id ∗ id : A ∗ A→ A. Die Erweiterung

0→ qA→ QA
π−→ A→ 0 (1)

besitzt dann zwei verschiedene Schnitte, die Algebrenhomomorphismen sind; nämlich
ι und ῑ. Sie hat die folgende universelle Eigenschaft: Sei

0→ E0 → E1 → A→ 0 (2)

eine Erweiterung mit zwei verschiedenen Schnitten α, ᾱ : A → E1, die stetige Al-
gebrahomomorphismen sind. Dann existiert ein Morphismus (d.h. ein kommutatives
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Diagramm von Abbildungen) von der Erweiterung (1) in die Erweiterung (2) wie
folgt:

0→ qA → QA → A → 0
↓ α∗ᾱ ↓ α∗ᾱ ↓ id

0→ E0 → E1 → A → 0

Dieser Morphismus führt nach Konstruktion die Schnitte ι und ῑ in α und ᾱ über.

2.5 Die Erweiterung, die die gerade und die ungerade K-Theorie ver-
bindet.

Wir konstruieren in diesem Artikel die bivariante K-Theorie aus Erweiterungen, d.h.
wir benutzen das “ungerade” oder Ext-Bild. Die folgende Erweiterung erlaubt es,
diesen Zugang mit dem “gerade” Bild von [Cu2] zu vergleichen. Sie wird in Abschnitt 7
eine wichtige Rolle spielen. Wie oben seien ι, ῑ : A→ QA die kanonischen Inklusionen.
Wir setzen

E := {f ∈ QA[0, 1] | ∃x∈ A, f(0) = ι(x), f(1) = ῑ(x), f(t) − f(0) ∈ qA, t ∈ [0, 1]}

Die Erweiterung

0→ qA(0, 1)→ E→ A→ 0

besitzt dann einen stetigen linearen Schnitt, der x ∈ A auf f ∈ E mit f(t) = (1 −
t)ι(x) + tῑ(x) abbildet.

3 Morphismen von der universellen Erweiterung.

Als erstes analysieren wir die universelle Eigenschaft der Erweiterung 0 → JA →
TA→ A→ 0 aus 2.2.

Satz 3.1 Es sei

0→ E0→ E1

s
x
π−→ A→ 0

eine Erweiterung mit einem stetigen linearen Schnitt s (d.h. πs = idA). Weiter sei
ϕ : A′ → A ein Homomorphismus und τsϕ : TA′ → E1 der Homomorphismus, der
sich wie in 1.2 aus der universellen Eigenschaft der Tensoralgebra TA′ ergibt. Dann
existiert ein eindeutig bestimmter Homomorphismus γsϕ : JA′ → E0 so dass das
folgende Diagramm kommutiert

0→ E0 → E1

s
x
π→ A→ 0

↑ γsϕ ↑ τsϕ ↑ ϕ
0→ JA′ → TA′ → A′ → 0

Beweis: Das Bild von JA′ unter τsϕ ist in E0 enthalten, weil die Abbildung π ◦ τsϕ
das Ideal JA′ annulliert und weil andererseits E0 = Ker π. Wir setzen γsϕ = τsϕ|JA′
q.e.d.
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Die Anwendung dieses Prinzips auf die in Abschnitt 2 eingeführten Erweiterungen
ergibt Homomorphismen JA → A(0, 1), J(C∞(S1)) → K und JA → qA(0, 1), die im
folgenden immer wieder benutzt werden.
Wenn man das Resultat auf die Erweiterung 0→ JA→ TA→ A→ 0 anwendet, sieht
man insbesondere, dass A 7→ JA ein Funktor ist: Jeder Homomorphismus ϕ : A′ → A
induziert einen Homomorphismus JA′ → JA, den wir mit J(ϕ) bezeichnen.

Lemma 3.2 Sei 0 → E0 → E1
sx
π−→A → 0 eine Erweiterung mit stetigem linearen

Schnitt s und ϕ : A′ → A ein Homomorphismus wie in 3.1.
(a) Sei s′ ein weiterer stetiger linearer Schnitt. Dann ist γs′ϕ : JA → E0 diffeotop
zu γsϕ.

(b) Wenn ein stetiger linearer Schnitt s′′ existiert, der ein Algebrenhomomorphis-
mus ist, so ist γsϕ diffeotop zu 0.

(c) Wenn ein Algebrenhomomorphismus ϕ′ : A′ → E1 existiert mit π ◦ ϕ′ = ϕ, so
ist γsϕ diffeotop zu 0.

Beweis: (a) Setze st = ts′ + (1 − t)s. Dann ist γst , t ∈ [0, 1] eine differenzierbare
Homotopie, die γs und γs′ verbindet. (b) und (c) folgen aus (a) und aus der Tatsache,
dass die Einschränkungen von τs′′ϕ und τϕ′ auf JA′ verschwinden. q.e.d.

Für ϕ = id nennen wir γs die klassifizierende Abbildung zu der linear zerfallenden
Erweiterung

0→ E0→ E1

s
x
π−→ A→ 0

Das nächste einfache Lemma beschreibt das Verhalten der klassifizierenden Abbildung
unter Morphismen (d.h. kommutativen Diagrammen) von Erweiterungen. Es wird in
den folgenden Abschnitten implizit immer wieder benutzt.

Lemma 3.3 Betrachte das folgende kommutative Diagramm von Erweiterungen

0→ E0 → E1 → A→ 0

↑ψ0 ↑ ψ1 ↑ ϕ
0→ E′0 → E′1 → A′ → 0

mit stetigen linearen Schnitten s : A→ E1 und s′ : A′ → E′1.
Es gilt γsϕ = γs ◦ J(ϕ) und diese Abbildung ist diffeotop zu ψ0 ◦ γs′ (falls sϕ = ψ1s

′,
so gilt sogar γs ◦ J(ϕ) = ψ0 ◦ γs′ ).

Definition-Satz 3.4 Gegeben seien zwei Erweiterungen von A

0→ E0 → E1
s
x
π−→A→ 0

0→ E0→ E′1

s′x
π′−→A→ 0
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mit stetigen linearen Schnitten. Die Summe dieser beiden Erweiterungen ist nach
Definition die Erweiterung

0→M2(E0)→ D → A→ 0

wo D =
{(

x a
b x′

)
| x ∈ E1, x′ ∈ E′1, π(x) = π′(x′); a, b ∈ E0

}
.

Sie erlaubt s ⊕ s′ =

(
s 0
0 s′

)
als stetigen linearen Schnitt. Der assoziierte Homo-

morphismus γs⊕s′ : JA→M2(E0) ist gegeben durch

γs⊕s′ = γs ⊕ γs′ =

(
γs 0
0 γs′

)

Beweis: Klar. q.e.d.

Als Beispiel betrachten wir die glatte Toeplitzerweiterung

0→ K→ T π−→C∞(S1)→ 0 (3)

aus 2.3. Es sei u der Automorphismus von C∞(S1), der die Orientierung von S1

umkehrt. Dann ist die Summe von (3) mit der Erweiterung

0→ K→ T uπ−→C∞(S1)→ 0 (4)

trivial (d.h. sie erlaubt einen stetigen linearen Schnitt, der ein Algebrenhomomorphis-
mus ist). In der Tat ist die Abbildung, die die k-te Potenz zk des Erzeugers z von

C∞(S1), k ∈ Z auf die k-te Potenz der Matrix

(
v1 e00

0 v−1

)
(mit den Bezeichnungen

von 1.5) abbildet, ein stetiger Homomorphismus. Wenn daher s der stetige lineare
Schnitt C∞(S1)→ T ist, der zk auf vk abbildet und s′ der Schnitt für (4) der zk auf
v−k abbildet, so ist γs ⊕ γs′ diffeotop zu 0.

Definition-Satz 3.5 Gegeben seien m-Algebren A und B. Wenn ϕ : A → B ein
Homomorphismus zwischen m-Algebren ist, so bezeichnen wir mit 〈ϕ〉 die Äquiva-
lenzklasse von ϕ im Bezug auf die Relation der Diffeotopie und wir setzen

〈A,B〉 = {〈ϕ〉|ϕ ist ein stetiger Homomorphismus A→ B }

Für Homomorphismen α, β : A→ K⊗̂B definieren wir wie in 3.4 die direkte Summe
α⊕ β als

α⊕ β =

(
α 0
0 β

)
: A −→M2(K⊗̂B) ∼= K⊗̂B

Mit der durch 〈α〉+ 〈β〉 = 〈α ⊕ β〉 definierten Addition ist die Menge 〈A,K⊗̂B〉 der
Diffeotopieklassen von Homomorphismen von A nach K⊗̂B eine abelsche Halbgruppe
mit Nullelement 〈0〉.

Beweis: Dies folgt aus Lemma 1.4.1. q.e.d.
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Für jede m-Algebra A ist JA wieder eine m-Algebra. Wir können daher durch
Iteration J2A = J(JA), . . . , JnA = J(Jn−1A) bilden. Abbildungen von JnA in eine
m-Algebra B gehören dann zu Erweiterungen der Länge n.

Definition-Satz 3.6 Eine exakte Folge

0 −→ E0 ϕ0−→E1 ϕ1−→ . . . −→ En ϕn−→A −→ 0

wo E0, . . . ,En,Am-Algebren und die ϕi stetige Homomorphismen sind, heiße linear
zerfallende n-Schritt-Erweiterung, falls sie als exakte Folge von lokalkonvexen Vek-
torräumen zerfällt (d.h. falls Ei ∼= Kerϕi ⊕ Imϕi−1). Jede Wahl s1, . . . , sn von ste-
tigen linearen Schnitten (d.h. ϕisi ist für alle i eine stetige Projektion auf Imϕi)
bestimmt in eindeutiger Weise einen Homomorphismus γ(s1,...,sn) : JnA → E0 und
Homomorphismen γ(sk+1,...,sn) : Jn−kA → Ek so dass das folgende Diagramm kom-
mutiert

0 −→ E0
ϕ0−→ E1

ϕ1−→ . . . En−1
ϕn−1−→ En

ϕn−→ A −→ 0

↑ γ(s1...,sn) ↑ τs1γ(s2...,sn) ↑ τsn−1γsn ↑ τsn ‖
0 −→ JnA −→ TJn−1A → . . . TJA −→ TA −→ A −→ 0

Wenn s′1, . . . , s
′
n eine andere Familie von stetigen linearen Schnitten ist, so ist

γ(s′1,...,s′n) diffeotop zu γ(s1,...,sn).

In dem vorhergehenden Diagramm interessieren wir uns in erster Linie für die klas-
sifizierende Abbildung γ = γ(s1,...,sn). Diese hängt bis auf Diffeotopie nicht von
(s1, . . . , sn) sondern nur von der gegebenen n-Schritt-Erweiterung ab.

Betrachten wir zwei Erweiterungen der Länge n und der Länge m

0 −→ E0 ϕ0−→E1 ϕ1−→ . . . −→ En ϕn−→A −→ 0 (5)

und

0 −→ E′0
ϕ′0−→E′1

ϕ′1−→ . . . −→ E′m
ϕ′m−→A′ −→ 0 (6)

wo E′0 = A. Das wohlbekannte Yonedaprodukt besteht in der Zusammensetzung dieser
zwei Erweiterungen zu einer Erweiterung der Länge n+m von der Form

0 −→ E0 ϕ0−→E1 ϕ1−→ . . . −→ En
ϕ′0ϕn−→ E′1

ϕ′1−→ . . . −→ E′m
ϕ′m−→A′ −→ 0 (7)

Lemma 3.7 Es seien γ : JnA −→ E0 und γ′ : JmA′ −→ E′0 = A die Abbildungen,
die mit (5) und (6) assoziiert sind. Die klassifizierende Abbildung Jn+mA′ −→ E0 zu
der Erweiterung (7) ist gegeben durch γ ◦ Jn(γ′).

Beweis: Dies folgt aus 3.3. q.e.d.

Definition 3.8 Es sei ϕ : JA → C∞(S1)⊗̂A die Komposition der klassifizierenden
Abbildung JA→ A(0, 1) zu der Erweiterung

0 −→ A(0, 1) −→ A[0, 1) −→ A −→ 0
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mit der Inklusionsabbildung A(0, 1) −→ C∞(S1)⊗̂A. Wir bezeichnen mit ε die Abbil-
dung

ε : J2A −→ K⊗̂A
die unter Benutzung von ϕ zu der Erweiterung

0 −→ K⊗̂A −→ T⊗̂A
s
x−→ C∞(S1)⊗̂A −→ 0

gehört (d.h. ε = γsϕ).

Man beachte, dass eine linear zerfallende Erweiterung in der Kategorie der lokalkon-
vexen Vektorräume einfach eine direkte Summe darstellt und daher natürlich auch
nach Tensorieren mit beliebigen lokalkonvexen Räumen noch exakt bleibt.

Durch Hintereinanderschaltung der Abbildungen J4A
J2(ε)−→ J2(K⊗̂A), sowie

J2(K⊗̂A) → K⊗̂J2(A) und K⊗̂J2A id⊗ε−→ K⊗̂K⊗̂A bekommmen wir, unter leichtem
Missbrauch der Bezeichnungen,

ε2 : J4A −→ K⊗̂K⊗̂A ∼= K⊗̂A

und, nach Induktion
εn : J2nA −→ K⊗̂A

Wir können bei der Konstruktion von ε statt der Toeplitzerweiterung auch die inverse
Toeplitzerweiterung verwenden und erhalten dann eine Abbildung ε− : J2A −→ K⊗̂A
, die nach 3.4 die Eigenschaft hat, dass ε⊕ ε− diffeotop zu 0 ist.

Lemma 3.9 Für jedes Paar von m-Algebren A und B existieren kanonische Abbil-
dungen J(A⊗̂B ) → JA⊗̂B und J(A⊗̂B ) → A⊗̂JB , die mit den folgenden linear
zerfallenden Erweiterungen assoziiert sind

0 → JA⊗̂B → TA⊗̂B → A⊗̂B → 0

0 → A⊗̂JB → A⊗̂TB → A⊗̂B → 0 .

Wir bemerken, dass insbesondere für jede m-Algebra A ein kanonischer Homomor-
phismus J(A) → J(C)⊗̂A existiert. Es ist klar, dass die in 3.8 definierte Abbildung
ε = εA : J2A → K⊗̂A als Komposition der Abbildung J2A → J2C⊗̂A mit der
Abbildung ε⊗ idA geschrieben werden kann.

Das folgende Lemma bildet den Kernpunkt für unsere Konstruktion des Produkts der
in Abschnitt 4 definierten bivarianten K-Theorie.

Hauptlemma 3.10 A und B seien m-Algebren und γ+, γ− die zwei Abbildungen
von J2(A⊗̂B) nach JA⊗̂JB, die sich durch Anwendung von 3.9, wie folgt in den
zwei möglichen Weisen ergeben:

J(JA⊗̂B)
ր ց

J2(A⊗̂B)
γ+−→−→
γ−

JA⊗̂JB

ց ր
J(A⊗̂JB)
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Dann ist die Abbildung γ+⊕γ− =

(
γ+ 0
0 γ−

)
: J2(A⊗̂B)→M2(JA⊗̂JB) diffeotop

zu 0.

Beweis: Betrachte die folgende Erweiterung

0 −→ JA⊗̂JB −→ TA⊗̂JB + JA⊗̂TB
s
x
π−→A⊗̂JB ⊕ JA⊗̂B −→ 0

Die Algebra in der Mitte wird hier als Unteralgebra von TA⊗̂TB angesehen.
Die Abbildung γ+⊕γ− ist durch Rotationen in 2×2-Matrizen diffeotop zu γsα, wenn
α : J(A⊗̂B)→ A⊗̂JB⊕JA⊗̂B die natürliche Abbildung bezeichnet. Zum Beweis der
Behauptung genügt es daher nach Lemma 3.2 (c) zu zeigen, dass ein Homomorphismus
α′ : J(A⊗̂B ) −→ TA⊗̂JB + JA⊗̂TB existiert, für den π ◦ α′ = α gilt.

Nun kann aber α′ als klassifizierende Abbildung γs′ in der linear zerfallenden Erwei-
terung

0 −→ JA⊗̂TB + TA⊗̂JB −→ TA⊗̂TB
s′

x−→A⊗̂B −→ 0

gewählt werden. Die Tatsache, dass π ◦ γs′ = α folgt aus den zwei folgenden kommu-
tativen Diagrammen

0 −→ JA⊗̂TB + TA⊗̂JB −→ TA⊗̂TB −→ A⊗̂B −→ 0
↓ ↓ ‖

0 −→ A⊗̂JB −→ A⊗̂TB −→ A⊗̂B −→ 0

und

0 −→ JA⊗̂TB + TA⊗̂JB −→ TA⊗̂TB −→ A⊗̂B −→ 0
↓ ↓ ‖

0 −→ JA⊗̂B −→ TA⊗̂B −→ A⊗̂B −→ 0

sowie aus Lemma 3.3. q.e.d.

Als nächstes soll die Abbildung ε : JkA −→ K⊗̂Jk−2A, die in 3.8 eingeführt wurde,
genauer untersucht werden. Zur besseren Übersichtlichkeit schreiben wir Ji für die
i-te Anwendung des J-Funktors. D.h. also JkA = JkJk−1 . . . J1(A).

Für jede Wahl von i, j mit 1 ≤ j < i ≤ k, ergibt die Anwendung von 3.9 eine Abbil-
dung ηij : JkA −→ J2C⊗̂Jk−2A, indem wir das j-te und das i-te J im Tensorprodukt
C⊗̂A auf C und alle anderen J auf den zweiten Faktor A anwenden. Explizit sieht
also ηij folgendermaßen aus:

ηij : Jk . . . J1(A) −→ JiJj(C)⊗̂Jk . . . J̌i . . . J̌j . . . J1(A)

wo ∨ Auslassung bedeutet.

Wenn wir dies mit der Abbildung ε : J2C = JiJj(C) −→ K kombinieren, erhalten wir
eine Familie von Abbildungen εij : JkA −→ K⊗̂Jk−2A, 1 ≤ j < i ≤ k. (Mit dieser
Bezeichnungsweise wäre die unter 3.8 betrachtete Abbildung ε21).
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Korollar 3.11 Es gelten die folgenden differenzierbaren Homotopien

(a) εi−1,j ⊕ εi,j ∼ 0, 1 < j < i− 1 ≤ k − 1

εi,j−1 ⊕ εi,j ∼ 0, 2 ≤ j < i ≤ k
(b) Für alle i, j, 1 ≤ i, j ≤ k − 1, gilt εi+1,i ∼ εj+1,j
Hierbei bezeichnet ∼ Diffeotopie.
Beweis: (a) ergibt sich aus 3.10. (b) folgt aus (a) unter Benutzung der Tatsache, dass
die Menge der Diffeotopieklassen von Homomorphismen JkA nach K⊗̂Jk−2A nach 3.5
eine abelsche Halbgruppe mit 0-Element ist. In dieser Halbgruppe sind die Klassen
von εi+1,i und von εi,i−1 beide invers zu εi+1,i−1, und daher gleich. q.e.d.

4 Der bivariante K-Funktor

Wir sind jetzt soweit, dass wir das eigentliche Untersuchungsobjekt dieser Arbeit
einführen können. Wir betrachten die Menge der Diffeotopieklassen von Homomor-
phismen Hk = 〈JkA,K⊗̂B 〉, wobei H0 = 〈A,K⊗̂B 〉. Jedes Hk ist eine abelsche
Halbgruppe mit der üblichen K-Theorie-Addition 〈α〉+ 〈β〉 = 〈α⊕ β〉, siehe 3.6. Die
Klasse 〈0〉 ist das Nullelement.

Es existiert eine kanonische Abbildung S : Hk −→ Hk+2, die man in der folgenden
Weise erhält: für 〈α〉 ∈ Hk, α : JkA −→ K⊗̂B , sei S〈α〉 = 〈(idK ⊗ α) ◦ ε〉. Dabei ist
ε : Jk+2A −→ K⊗JkA die in 3.8 betrachtete Abbildung (genauer gesagt ε = εk+2,k+1
mit den Bezeichnungen von 3.9). Weiter sei ε− : Jk+2A −→ K⊗ JkA die Abbildung,
die sich in derselben Weise, aber unter Ersetzung der Toeplitzerweiterung durch die
inverse Toeplitzerweiterung, ergibt. Die Diskussion nach 3.4 zeigt, dass die Summe
ε⊕ε− diffeotop zu 0 ist. Daher ist S〈α〉+S−〈α〉 = 0, wenn wir S−〈α〉 = 〈(idK⊗α)◦ε−〉
setzen.

Definition 4.1 Es seien A und B m-Algebren und ∗ = 0 oder 1. Wir setzen

kk∗(A, B ) = lim
−→
k

H2k+∗ = lim
−→
k

〈J2k+∗A, K⊗̂B 〉

Die vorhergehende Diskussion zeigt, dass kk∗(A, B) nicht nur eine abelsche Halb-
gruppe, sondern sogar eine abelsche Gruppe ist (jedes Element besitzt ein Inverses).

Die wesentliche Eigenschaft von kk∗ ist das Produkt, das mit Hilfe des Hauptlemmas
3.10 definiert werden kann. Wir benötigen für die Definition noch einige Bezeichnun-
gen.

Wenn α : JkA −→ K⊗̂B ein Homomorphismus ist, so bezeichne αj den Ho-
momorphismus αj : Jk+jA → K⊗̂JjB, der durch Hintereinanderschaltung von
Jj(α) : Jk+jA → Jj(K⊗̂B) mit der kanonischen Abbildung Jj(K⊗̂B) → K⊗̂JjB
entsteht; cf. 3.9.

Lemma 4.2 Mit den Bezeichnungen vom Ende des Abschnitt 3 sind die folgenden
Abbildungen Jk+j+2A→ K⊗̂JjB diffeotop (∼ )

(a) ((idK ⊗ α) ◦ εk+2, k+1)j ∼ (idK ⊗ αj) ◦ εk+j+2, k+j+1
(b) (idK ⊗ αj) ◦ εk+j+2, k+j+1 ∼ (idK ⊗ εj+2, j+1) ◦ αj+2
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Beweis: (a) ist eine Konsequenz von Korollar 3.11 und (b) folgt sofort aus Lemma
1.4.1. q.e.d.

Theorem 4.3 (a) Es existiert ein assoziatives und in beiden Variablen additives Pro-
dukt

kki(A,B)× kkj(B,C) −→ kki+j(A,C)

(i, j ∈ Z/2; A,B und C m-Algebren), das für α : JnA→ K⊗̂B , β : JmB → K⊗̂C in
der folgenden Weise definiert ist:

〈α〉 · 〈β〉 = 〈(idK ⊗ β) ◦ αm〉

(b) Es existiert ein bilineares graduiert kommutatives äußeres Produkt

kki(A1,A2)× kkj(B1,B2) −→ kki+j(A1⊗̂A2,B1⊗̂B2)

Beweis: (a) Die einzige Behauptung, die nicht offensichtlich ist, ist die, dass das
Produkt wohldefiniert ist. Wir müssen zeigen, dass unsere Definition des Produkts
verträglich ist mit den Identifikationen in dem induktiven Limes, der in der Definition
von kk∗ in 4.1 benutzt wird. Dafür müssen wir nachprüfen, dass

β ◦ (α ◦ ε)j ∼ (β ◦ αj) ◦ ε
(β ◦ ε) ◦ αj+2 ∼ (β ◦ αj) ◦ ε

(Wir haben hier bei den Bezeichnungen die Indizes von ε, die nach 3.11 irrelevant
sind, und das Tensorprodukt mit idK weggelassen.) Die Existenz dieser Diffeotopien
ist genau die Aussage von Lemma 4.2.

(b) Dies folgt sofort aus der Existenz der natürlichen Abbildungen

J2n+2m+i+j(A1⊗̂A2) −→ (J2n+iA1)⊗̂(J2m+jA2)

vgl. 3.9. q.e.d.

Lemma 3.7 zeigt, dass das (innere) Produkt in (a) gerade dem Yonedaprodukt von
Erweiterungen entspricht.

Satz 4.4 kk∗ hat die folgenden Eigenschaften

(a) Jeder Homomorphismus ϕ : A→ B definiert ein Element kk(ϕ) in der Gruppe
kk0(A,B). Wenn ψ : B→ C, ein weiterer Homomorphismus ist, so gilt

kk(ψ ◦ ϕ) = kk(ϕ) · kk(ψ)

kk∗(A,B ) ist ein kontravarianter Funktor in A und ein kovarianter Funktor in
B. Wenn α : A′ → A und β : B → B′ Homomorphismen sind, so sind die
in der ersten und zweiten Variablen von kk∗ induzierten Abbildungen gegeben
durch Linksmultiplikation mit kk(α) und Rechtsmultiplikation mit kk(β).

(b) Für jede m-Algebra A ist kk∗(A,A) ein Z/2-graduierter Ring mit Einselement
kk(idA).
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(c) Der Funktor kk∗ ist invariant unter Diffeotopien in beiden Variablen.

(d) Die kanonische Inklusion ι : A → K⊗̂A definiert ein invertierbares Element
in kk0(A,K⊗̂A). Insbesondere ist kk∗(A,B) ∼= kk∗(K⊗̂A,B) und kk∗(B,A) ∼=
kk∗(B,K⊗̂A) für jede m-Algebra B.

Beweis: (a) Die Diffeotopieklasse 〈α〉 von α ist ein Element von H0 und damit nach
Definition auch von kk0. Die zweite Behauptung folgt sofort aus der Definition des
Produkts.
(b) Dies folgt aus 4.3. Das Einselement ist kk (idA) ∈ kk0(A,A).
(c) Die Abbildungen A→ A[0, 1] und A[0, 1]→ A , die a auf a ·1 und f auf f(0) abbil-
den, definieren Elemente in kk0(A,A[0, 1]) und kk0(A[0, 1],A), die invers zueinander
sind.
(d) folgt aus Lemma 1.4.1. q.e.d.

Nach Definition bestimmt ε ein Element in kk0(A,A) und zwar dasselbe wie idA,
d.h. also das Einselement. Andererseits kann die Abbildung ε : J2A→ K⊗̂A auch als
Element von kk0(J

2A,A) oder als Element von kk1(JA,A) gedeutet werden.

Satz 4.5 Die Abbildung ε : J2A → K⊗̂A definiert invertierbare Elemente e0 in
kk0(J

2A,A) und e1 in kk1(JA,A).

Beweis: Die Inversen zu e0 und e1 sind gegeben durch idJ2A und idJA. q.e.d.

Insbesondere ist also

kk1(A,B) ∼= kk0(JA,B) ∼= kk0(A, JB)

Bemerkung 4.6 Die hier entwickelte Konstruktion der bivarianten K-Theorie ist
sehr allgemein und kann ohne weiteres verwendet werden, um bivariante Theorien
mit verschiedenen Stabilitäts- und Homotopieinvarianzeigenschaften auch für ganz
andere Kategorien von topologischen Algebren einzuführen. Benötigt werden hierzu
für jede Algebra A in einer solchen Kategorie die folgenden Erweiterungen:

(a) die universelle Erweiterung 0→ JA → TA→ A → 0

(b) die Einhängungserweiterung 0→ A(0, 1)→ A(0, 1]→ A→ 0

(c) die Toeplitzerweiterung 0→ K⊗A → T ⊗A→ A(S1)→ 0

Hierbei ist ⊗ ein geeignetes Tensorprodukt in der Kategorie, K eine Vervollständigung
der Algebra M∞ der endlichen Matrizen beliebiger Grösse, sowie A(0, 1), A(0, 1],
A(S1) geeignete Algebren von Funktionen auf (0, 1), (0, 1], S1 mit Werten in A. Die
universelle Erweiterung muß universell für eine gewisse Klasse von Erweiterungen
sein (bei m-Algebren für linear zerfallende Erweiterungen). Außerdem müssen die
Einhängungserweiterung und die Toeplitzerweiterung zusammensetzbar sein, d.h. es
muß eine Abbildung A(0, 1)→ A(S1) existieren.
Diese Bedingungen sind zum Beispiel erfüllt in der Kategorie der C*-Algebren mit der
üblichen Toeplitzerweiterung und mit der universellen C*-Algebra- Vervollständigung
von TA, für die die kanonische lineare Inklusion A → TA involutionserhaltend und
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von Norm ≤ 1 ist. Damit ist die entsprechende Erweiterung universell für Erweiterun-
gen, die einen stetigen Schnitt mit Norm 1 erlauben. Dieselben Wahlen funktionieren
in der Kategorie der σ-C*-Algebren.
In der Kategorie der Banachalgebren kann für K die Algebra K1 aus 1.6.4 und für
die Funktionenalgebren die einmal stetig differenzierbaren Funktionen mit Werten in
A verwendet werden. Eine geeignete Wahl für das Tensorprodukt ist hier auch das
projektive.
Die Stabilitäts- und Homotopieinvarianzeigenschaften der Theorie sind dann bestimmt
durch die Wahl der Algebra K und der Funktionenalgebren (stetige oder differenzier-
bare Funktionen mit Werten in A). Die Größe von K korrespondiert aufgrund der
Toeplitzerweiterung zur Größe der Funktionenalgebren. Die hier dargestellte Theorie
ist gewissermaßen minimal (für die Größe von K und der Funktionenalgebren) mit
der Eigenschaft, dass die oben erwähnte Abbildung A(0, 1)→ A(S1) noch existiert.
Wenn wir nur Erweiterungen der Länge 1, d.h. Abbildungen JA → K ⊗ A zulas-
sen würden, so müsste nach der Summierbarkeitsobstruktion von Douglas-Voiculescu
[DoVo], die Algebra K alle Schattenideale ℓp für p ≥ 1 enthalten. Dadurch, dass wir
Abbildungen JnA → K ⊗A für beliebige n verwenden, erhalten wir das Produkt und
umgehen gleichzeitig diese Obstruktion.

5 Ausschneidung und die langen exakten Folgen in beiden Variablen

In diesem Abschnitt halten wir uns eng an das in [CuSk] gegebene Argument für die
Ausschneidung. Ein Unterschied hier ist, dass wir nur differenzierbare Homotopien,
d.h. Diffeotopien benutzen. Der Beweisgang zeigt übrigens interessanterweise auch,
dass dies wirklich wesentlich ist. Wenn wir kk mit Hilfe von stetigen Homotopien
definiert hätten, würde die Ausschneidung nicht gelten; siehe Bemerkung 5.6. Weiter
wird ein Teil des Arguments im Vergleich zu [CuSk] dadurch vereinfacht, dass die
inverse Bottabbildung ε : J2C → K in unsere Theorie schon eingebaut ist und nach
Definition das Einselement von kk0(C,C) repräsentiert.

Wenn α : A → B ein Homomorphismus zwischen m-Algebren ist, werden wir
im folgenden mit K(α), α(0, 1), α[0, 1), J(α). . . die induzierten Abbildungen K⊗̂A →
K⊗̂B, A(0, 1)→ B(0, 1), A[0, 1)→ B[0, 1), JA→ JB. . . bezeichnen.

Wie üblich definieren wir auch den (differenzierbaren) Abbildungskegel Cα durch

Cα = {(x, f) ∈ A⊕B[0, 1)
∣∣ α(x) = f(0)}

Lemma 5.1 Sei D eine m-Algebra und α : A→ B ein Homomorphismus
(a) Die Folge

kk∗(D, Cα)
·kk(π)−→ kk∗(D,A)

·kk(α)−→ kk∗(D,B)

ist exakt. Hierbei bezeichnet π : Cα → A die Projektion auf den ersten Sum-
manden und ·kk(π) Rechtsmultiplikation mit kk(π).

(b) Die Folge in (a) kann fortgesetzt werden zu einer exakten Folge

·kk(π(0,1))−→ kk∗(D,A(0, 1))
·kk(α(0,1))−→ kk ∗+1(D,B (0, 1)) →

kk∗(D, Cα)
·kk(π)−→ kk∗(D,A)

·kk(α)−→ kk∗(D,B)
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Beweis: (a) Das Element z ∈ kk∗(D,A) sei durch den Homomorphismus ϕ :
J2n+∗D → K⊗̂A repräsentiert. Die Gleichung 〈ϕ〉 · kk(α) = 0 bedeutet, dass für
ein geeignetes m ≥ n die durch K(α) ◦ϕ induzierte Abbildung J2m+∗D→ K⊗̂B über
einen Homomorphismus γ : J2m+∗D → K⊗̂B[0, 1) faktorisiert. Wir können anneh-
men,dass m = n. Das kommutative Diagramm

J2n+∗D
ϕ−→ K⊗̂A

↓ γ ↓ K (α)

K⊗̂B[0, 1) −→ K⊗̂B

definiert einen Homomorphismus γ′ : J2n+∗D→ K⊗̂Cα so dass K(π) · γ ′ = ϕ.
(b) Dies folgt wie üblich durch Iteration der Konstruktion in (a). Hierzu benutzt man
die Tatsache, dass der Abbildungskegel Cπ für die Projektion π : Cα → A diffeotop
zu B(0, 1) ist, und das folgende kommutative Diagramm

Cπ
π′−→ Cα

↑ ‖
B (0, 1)

ι−→ Cα

In diesem Diagramm ist ι die Inklusion von B(0, 1) in die zweite Komponente von
Cα und der erste senkrechte Pfeil ist die erwähnte Diffeotopieäquivalenz (sie bildet
f ∈ B (0, 1) auf (ιf, 0) ∈ Cπ ⊂ Cα ⊕ A[0, 1)) ab.

Gleicherweise ist der Abbildungskegel Cι für ι : B(0, 1)→ Cα enthalten in A(0, 1)⊕
B([0, 1)× [0, 1)). Die Projektion Cι → A(0, 1) ist ebenfalls eine Diffeotopieäquivalenz
und macht das folgende Diagramm kommutativ

Cι −→ B(0, 1)
↓ ‖

A (0, 1)
α(0,1)−→ B (0, 1)

q.e.d.

Lemma 5.2 α : A → B und D seien wie in 5.1

(a) Die Folge

kk∗(Cα,D)
kk(π)·←− kk∗(A,D)

kk(α)·←− kk∗(B,D)

ist exakt.

(b) Die Folge in (a) kann zu einer langen exakten Folge der Form

kk(π(0,1))·←− kk∗(A(0, 1),D)
kk(α(0,1))·←− kk ∗+1(B(0, 1),D) ←

kk∗(Cα,D)
kk(π)·←− kk∗(A,D)

kk(α)·←− kk∗(B,D)

fortgesetzt werden.

Documenta Mathematica 2 (1997) 139–182



Bivariante K-Theorie. . . 161

Beweis: (a) Der Einfachheit halber nehmen wir an, dass ∗ = 0. Sei dann ϕ : J2nA −→
K⊗̂D ein Homomorphismus mit der Eigenschaft, dass kk(π)·〈ϕ〉 = 〈0〉. Dies bedeutet,
dass ein kommutatives Diagramm der Form

J2nCα
J2n(π)−→ J2nA

↓ γ ↓ ϕ
K⊗̂D[0, 1)

ev−→ K⊗̂D

existiert. Hierbei ist ev die Auswertungsabbildung in 0. Man beachte, dass ϕ◦J2n(π)◦
ε = ϕ ◦ ε ◦ J2n+2(π), so dass wir annehmen können, dass die Diffeotopie schon auf
Niveau n realisiert ist. Da γ in diesem Diagramm den Kern von J2n(π) in den Kern von
ev abbildet, d.h. also in K⊗̂D(0, 1), ergibt die Einschränkung von γ eine Abbildung
γ′ : J2n(B(0, 1)) −→ K⊗̂D(0, 1).

Wir verwenden jetzt die natürlichen Abbildungen JB → B(0, 1) und J(D(0, 1))
→ K⊗̂D, siehe 3.8, um durch die Komposition

J2n+2B −→ J2n+1(B (0, 1))
J(γ′)−→ J(K⊗̂D(0, 1)) −→ K⊗̂D

eine Abbildung ψ : J2n+2B −→ K⊗̂D zu konstruieren. Wir müssen zeigen, dass
ψ ◦ J2n+2(α) ∼ ϕ ◦ ε. Dies folgt aus dem folgenden kommutativen Diagramm

0 −→ K⊗̂D(0, 1) −→ K⊗̂D[0, 1) −→ K⊗̂D −→ 0

↑ γ′ ↑ γ ↑ ϕ
0 −→ J2n(B(0, 1) −→ J2nCα −→ J2nA −→ 0

↑ J2nα(0, 1) ↑ J2nα′ ‖
0 −→ J2n(A (0, 1)) −→ J2n(A [0, 1)) −→ J2nA −→ 0

Hierbei ist α(0, 1) die Einhängung von α und α′ ist die Abbildung, die f ∈ A[0, 1) auf
(f(0), α[0, 1)(f)) ∈ Cα abbildet.

Das Diagramm zeigt unter Verwendung von Lemma 3.3, dass die durch ϕ induzierte
Abbildung J2n+1A −→ K⊗̂D(0, 1) diffeotop zur Komposition der folgenden Abbil-
dungen ist

J2n+1A −→ J2n(A (0, 1))
J2n(α(0,1))−→ J2n(B (0, 1))

γ′−→K⊗̂D(0, 1)

(b) folgt aus (a) genau wie in Lemma 5.1. q.e.d.

Satz 5.3 Es sei 0 → I → A q−→B → 0 eine linear zerfallende Erweiterung und
e : I → Cq die Inklusionsabbildung, die durch e : x 7→ (x, 0) ∈ Cq ⊂ A ⊕ B [0, 1)
definiert ist. Dann ist kk(e) ein invertierbares Element in kk0(I, Cq).

Beweis: Wir zeigen, dass das Inverse zu kk(e) in kk0(Cq , I) durch die Diffeotopie-
klasse 〈u〉 des Homomorphismus u : J2Cq −→ K⊗̂I gegeben ist, der folgendermaßen
konstruiert wird: Sei u0 : JCq −→ I(0, 1) die Abbildung, die zu der Erweiterung

0 −→ I(0, 1) −→ A [0, 1)−→ Cq −→ 0
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gehört. Dann sei u die Komposition von J(u0) mit der kanonischen Abbildung
J(I(0, 1)) −→ K⊗̂I. Wir bezeichnen das durch u definierte Element auch mit kk(u).

Das kommutative Diagramm

0 −→ I(0, 1) −→ A[0, 1) −→ Cq −→ 0
↑ ↑ ↑ e

0 −→ I(0, 1) −→ I[0, 1) −→ I −→ 0

zeigt, dass u0 ◦ J(e) gerade die kanonische Abbildung JI −→ I(0, 1) ist, so dass also
das Element kk(e) · kk(u) durch die Abbildung ε : J2I −→ K⊗̂I dargestellt wird.
Nach Definition entspricht aber ε dem Einselement in kk0(I, I).

Um das umgekehrte Produkt kk(u) · kk(e) zu bestimmen, betrachten wir das kom-
mutative Diagramm

0 −→ Cq(0, 1) −→ Cq[0, 1) −→ Cq −→ 0

↑ e(0, 1) ↑ e′ ‖
0 −→ I(0, 1) −→ A[0, 1) −→ Cq −→ 0

(8)

wo

e′(f)(z) =





q(f(s)) wenn z = seiθ θ > 0 und s > 0

0 wenn |z| ≥ 1

f(s) wenn z = s

Hierbei werden Elemente von Cq[0, 1) aufgefasst als “Funktionen” g von zwei Varia-
blen (x, y) ∈ [0, 1]2 oder von einer komplexen Variablen z = x+ iy mit

g(x+ iy) ∈
{
A y = 0

B y > 0

Außerdem muss eine Funktion g in Cq[0, 1) die folgenden Bedingungen erfüllen:

g(x + iy) = 0, wenn x = 1 oder y = 1

für y > 0 ist g(x+ iy) eine stetige Funktion von x, y

q(g(x)) = lim
y→0

g(x+ iy)

Das kommutative Diagramm (8) zeigt, dass e(0, 1) ◦ u0 diffeotop zu der kanonischen
Abbildung JCq → Cq(0, 1) ist und damit, dass kk(u) · kk(e) = 1. q.e.d.

Betrachte nun die nach links unendlichen exakten Folgen aus 5.1(b) und 5.2(b) für
den Fall, wo α die Quotientenabbildung q in einer Erweiterung wie in 5.3 ist. Theorem
5.3 erlaubt es, in den exakten Folgen jeweils Cq durch I zu ersetzen. Überdies erhalten
wir aus 5.3 auch sofort die Bottperiodizität.

Satz 5.4 Die durch die Einhängungserweiterung induzierten Abbildungen JA →
A(0, 1) und J2A → A(0, 1)2 repräsentieren in kk0(JA,A(0, 1)), in kk1(A,A(0, 1))
und in kk0(A,A(0, 1)2) invertierbare Elemente.
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Beweis: Dies ergibt sich aus den langen exakten Folgen aus 5.1(b) und 5.2(b) ange-
wandt auf das folgende kommutative Diagramm von Erweiterungen

0 −→ A(0, 1) −→ A[0, 1) −→ A −→ 0
↑ ↑ ↑

0 −→ JA −→ TA −→ A −→ 0

Z.B. zeigt das 5-Lemma und die exakte Folge aus 5.2(b) für kk0( · , JA), dass Links-
multiplikation mit g = kk(JA→ A(0, 1)) einen Isomorphismus von
kk0(A(0, 1), JA) mit kk0(JA, JA) induziert. Man schließt daraus, dass g von rechts
invertierbar ist. q.e.d.

Theorem 5.5 Es sei D eine beliebigem-Algebra. Jede linear zerfallende Erweiterung

E : 0→ I i−→ A q−→B → 0

induziert exakte Folgen in kk(D, · ) und kk( · ,D) der folgenden Form:

kk0(D, I)
·kk(i)−→ kk0(D,A)

·kk(q)−→ kk0(D,B)

↑ ↓
kk1(D,B)

·kk(q)←− kk1(D,A)
·kk(i)←− kk1(D, I)

(9)

und

kk0(I,D)
kk(q)·←− kk0(A,D)

kk(i)·←− kk0(B,D)

↓ ↑
kk1(B,D)

kk(i)·−→ kk1(A,D)
kk(q)·−→ kk1(I,D)

(10)

Die gegebene Erweiterung E definiert eine klassifizierende Abbildung JB → I und
damit ein Element von kk1(I,B), das wir mit kk(E) bezeichnen. Die senkrechten
Pfeile in (9) und (10) sind bis auf ein Vorzeichen gegeben durch Rechts-, bzw. durch
Linksmultiplikation mit dieser Klasse kk(E). Das Vorzeichen hängt von den Identifi-
zierungen bei der Bottperiodizität nach Satz 5.4 ab.

Beweis: Satz 5.3 erlaubt es, in den exakten Folgen aus 5.1(b) und 5.2(b) jeweils Cq
durch I zu ersetzen. Dies ergibt unter Verwendung von 5.4 die exakten Folgen (9)
und (10). Die Verbindungsabbildungen für die einfachen Einhängungen in 5.1(b) und
5.2(b) sind induziert durch die Inklusion j : B(0, 1)→ Cq, d.h. sie sind gegeben durch
Produkt mit der Klasse kk(j). Das kommutative Diagramm

0→ I(0, 1) → A[0, 1) → Cq → 0

‖ ↑ ↑ j
0→ I(0, 1) → A(0, 1) → B(0, 1) → 0

zeigt andererseits, dass mit den Bezeichnungen aus dem Beweis zu Satz 5.3 die Iden-
tität kk(j) · kk(u) = kk(E) gilt. Die Identifikation von Cq mit I geschieht aber
gerade mit Hilfe des Isomorphismus, der nach Satz 5.3 durch Multiplikation mit
kk(e)−1 = kk(u) ∈ kk(Cq, I) definiert ist. q.e.d.
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Bemerkung 5.6 Der Beweis für die Ausschneidung macht deutlich, dass in der De-
finition von kk die Beschränkung auf Diffeotopie, d.h. differenzierbare Homotopie als
Äquivalenzrelation von grundlegender Bedeutung ist. Der Beweis von 5.2 und vor al-
lem aber auch der zu 5.3 beruht auf der Existenz der Abbildung J(A(0, 1)) → K⊗̂A.
Wenn der Abbildungskegel Cq mit stetigen oder nur k-fach differenzierbaren Funktio-
nen definiert worden wäre, würde das Inverse kk(u) zu kk(e) nicht existieren.
Dies liegt an den Eigenschaften der Toeplitzerweiterung, bei der die Grösse des Ideals
der des Quotienten entspricht. Man könnte verschiedene Versionen von kk definieren,
indem man Diffeotopie durch stetige oder k-fach differenzierbare Homotopie ersetzt
und dann aber auch statt der glatten Toeplizerweiterung entsprechend die stetige oder
die k-fach differenzierbare Toeplitzerweiterung verwendet. Dies bedeutet, dass man in
der Definition von kk das Ideal K durch die C*-Algebra K der kompakten Operatoren
bzw. durch die Algebra Kn der Matrizen (λij) mit

∑

ij

|λij| |1 + i+ j|n ≤ ∞

ersetzen muss.

Bemerkung 5.7 In Analogie zu [Sk] könnte man für zwei m-Algebren A und B eine
Theorie kknuk∗ (A, B ) definieren, indem man statt beliebiger Homomorphismen nur
nukleare Homomorphismen J2n+∗A → K⊗̂B betrachtet. Aufgrund der Hochhebungs-
und Fortsetzungseigenschaften nuklearer Abbildungen würde diese Theorie Ausschnei-
dung in beiden Variablen für Erweiterungen von Fréchetalgebren erfüllen, auch wenn
diese nicht notwendigerweise zerfallen.

6 Der Chern-Connes-Charakter

Wir zeigen in diesem Abschnitt, dass Funktoren E auf der Kategorie der m-Algebren,
die gewisse abstrakte Eigenschaften besitzen, automatisch auch funktoriell unter kk-
Elementen sind. Da die Definition von kk wesentlich auf der Periodizitätsabbildung ε
beruht, besteht der erste Schritt darin, zu zeigen, dass für solche Funktoren E(ε) ein
Isomorphismus sein muss. Weil aber ε mit Hilfe der Toeplitzerweiterung definiert ist,
benötigen wir zuerst eine genauere Analyse der universellen Eigenschaften der Toep-
litzalgebra T. Hierzu sei U(v, w) die universelle Algebra über C mit zwei Erzeugern v
und w, die die Relation wv = 1 erfüllen. Dies ist Kurzschreibweise für die Bedingung,
dass wv ein Einselement für alle Polynome in v und w ist. Wir setzen e = 1−vw. Dann
ist e ein idempotentes Element in U(v, w), und die Elemente eij = viewj erfüllen

eijekl = δjke
il

Man sieht daraus sofort, dass man U(v, w) treu auf dem Hilbertraum ℓ2(N) mit der
kanonischen Orthonormalbasis (ξn)n=0,1,2,... durch

vξn = ξn+1 wξn = ξn−1, wξ0 = 0

darstellen kann. Dabei werden dann also die eij auf die Matrixeinheiten mit eijξn =
δjnξi abgebildet. Die Linearkombinationen der eij, 1 ≤ i, j ≤ n bilden eine Matrixal-
gebra isomorph zu Mn(C)
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Satz 6.1 Die Toeplitzalgebra T ist die universelle m-Algebra, die von zwei Elemen-
ten v und w mit wv = 1, erzeugt wird (d.h. also die eine Vervollständigung von
U(v, w) ist) und deren Topologie durch eine Familie (pn)n∈N von submultiplikativen
Halbnormen bestimmt ist, die die folgende Wachstumsbedingung erfüllen

pn(vk) ≤ Cn(1 + kn), k = 1, 2, . . .

pn(wk) ≤ Cn(1 + kn), k = 1, 2, . . .

Hierbei sind die Cn positive Konstanten.
Dies bedeutet, dass für jede m-Algebra B, deren Topologie durch einen Familie von
Halbnormen (p′n)n∈N gegeben ist und die von zwei Elementen v

′ und w′ erzeugt wird,
die dieselben Relationen und Wachstumsbedingungen erfüllen, ein stetiger Homomor-
phismus T→ B existiert, der v auf v′ und w auf w′ abbildet.
Beweis: Nach Definition ist T als lokalkonvexer Vektorraum isomorph zu

K⊕ C∞(S1)

Wenn z den Erzeuger von C∞(S1) bezeichnet, so entspricht unter diesem linearen
Isomorphismus vn dem Element zn und wn dem Element z−n. Die in 1.5 angegeben
Halbnormen erfüllen also offensichtlich die Wachstumsbedingung.

Sei B wie in der Behauptung und ϕ der Homomorphismus U(v, w) → B, der v
auf v′ und w auf w′ abbildet. Es genügt zu zeigen, dass ϕ auf U(v, w) ∩ K und auf
U(v, w) ∩ C∞(S1) stetig ist. Da

p′n(ϕ(eij)) = p′n(v′iw′j − v′i+1w′j+1)
≤ 2C ′n(1 + (i+ 1)n)C ′n(1 + (j + 1)n) ≤ C(1 + i+ j)n

mit einer neuen Konstante C, ist ϕ auf dem ersten Summanden stetig und die Stetig-
keit auf dem zweiten ist klar. q.e.d.

Lemma 6.2 (vgl. [Cu1, 4.2]) Es existieren eindeutig bestimmte stetige Homomorphis-
men ϕ, ϕ′ : T→ T⊗̂T, so dass

ϕ(v) = v(1 − e) ⊗ 1 + e⊗ v ϕ(w) = (1− e)w ⊗ 1 + e⊗w
ϕ′(v) = v(1− e) ⊗ 1 + e⊗ 1 ϕ′(w) = (1− e)w ⊗ 1 + e⊗ 1

Diese beiden Homomorphismen sind diffeotop und zwar durch eine Diffeotopie ψt :
T→ T⊗̂T, t ∈ [0, π/2], für die ψt(x)− ϕ(x) ∈ K⊗̂T für alle t ∈ [0, π/2], x ∈ T gilt.
Beweis: Wir zeigen, dass ϕ und ϕ′ beide diffeotop zu ψ sind, wo

ψ(v) = v ⊗ 1 ψ(w) = w ⊗ 1

Wir schreiben im folgenden Linearkombinationen von eij ⊗ x, 0 ≤ i, j ≤ n− 1, x ∈ T
als n×n-Matrizen mit Matrixelementen in T. Weiter schreiben wir En für 1−vnwn =
e00 + e11 + . . .+ en−1,n−1. Mit diesen Bezeichnungen setzen wir für t ∈ [0, π/2]

ut = (1 −E2) +

(
e+ cos t (1− e) sin t v
− sin t w cos t 1

)

u′t = (1 −E2) +

(
cos t 1 sin t 1
− sin t 1 cos t 1

)
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Sowohl ut als auch u′t sind offensichtlich invertierbar in T⊗̂T. Wir zeigen nun, dass
für jedes t stetige Homomorphismen ϕt, ϕ

′
t : T→ T⊗̂T existieren, so dass

ϕt(v) = ut (v ⊗ 1) ϕt(w) = (w ⊗ 1)u−1t
ϕ′t(v) = u′t (v ⊗ 1) ϕ′t(w) = (w ⊗ 1)u′−1t

Seien pn⊕qn die Halbnormen aus 1.5, die die Topologie auf T bestimmen. Wir müssen
nachweisen, dass die Halbnormen (pn⊕ qn)⊗ (pn⊕ qn) die Wachstumsbedingung auf
den Potenzen von ut (v ⊗ 1), (w ⊗ 1)u−1t , u′t (v ⊗ 1) und (w ⊗ 1)u′−1t erfüllen.

Es ist nun aber (
ut (v ⊗ 1)

)k
= u

(k)
t (vk ⊗ 1)

mit u
(k)
t = (1−Ek)+L, wo L eine invertierbare k×k-Matrix mit Werten in T ist. Man

sieht sofort, dass L Summe von k2 Elementen der Form eij ⊗ (λ1W1 + λ2W2), 0 ≤
i, j ≤ k ist, mit |λi| ≤ 1, Wi Wörter in v, w der Länge ≤ k + 1. Daher gilt

pn ⊗ (pn⊕qn)(L) ≤ 2k2Cn(1 + 2kn)(k + 1)n ≤ C(1 + k2n+2)

(pn⊕qn) ⊗ (pn ⊕ qn)
(
u
(k)
t (vk ⊗ 1)

)
≤ C(1 + k3n+2)

mit einer neuen Konstante C. Die Wachstumsbedingungen für (pn ⊕ qn)⊗ (pn ⊕ qn)
auf den Potenzen von (w ⊗ 1)u−1t , u′t (v ⊗ 1) und (w ⊗ 1)u′−1t ergeben sich im ersten
Fall genauso und in den zwei letzteren sogar einfacher.

Die Familie ϕt ergibt nun eine Diffeotopie zwischen ϕ und ψ und die Familie ϕ′t
ergibt eine Diffeotopie zwischen ϕ′ und ψ. Wir erhalten ψt durch Zusammensetzen
dieser beiden Diffeotopien. Die geforderte Zusatzbedingung ψt(x) − ϕ(x) ∈ K⊗̂T ist
offensichtlich erfüllt. q.e.d.

Wir betrachten im folgenden Funktoren E von der Kategorie der m-Algebren in
die Kategorie der abelschen Gruppen, die die folgenden (wohlbekannten) Bedingungen
erfüllen:

(E1) E ist diffeotopieinvariant, d.h. die Auswertungsabbildung in einem beliebigen
Punkt t ∈ [0, 1] induziert einen Isomorphismus E(evt) : E(A[0, 1])→ E(A)

(E2) E ist stabil, d.h. die kanonische Inklusion ι : A→ K⊗̂A induziert einen Isomor-
phismus E(ι).

(E3) E ist halbexakt, d.h. jede linear zerfallende Erweiterung 0→ I → A→ B→ 0
induziert eine kurze exakte Folge E(I)→ E(A)→ E(B)

Wir erinnern daran, dass nach einer Standardkonstruktion aus der algebraischen To-
pologie die kurze exakte Folge in (E3) mit Hilfe von Abbildungskegeln und unter
Benutzung der Eigenschaft (E1) zu einer nach links unendlichen langen exakten Folge
der Form

. . .→ E(B(0, 1)2)→ E(I(0, 1))→ E(A(0, 1))

→ E(B(0, 1))→ E(I)→ E(A)→ E(B)
(11)

fortgesetzt werden kann, vgl. etwa [Ka] oder [Cu3].
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Für eine m-Algebra A seien QA, qA und ι, ι : A → QA wie in 2.4 definiert. Wir
bezeichnen mit δ : qA → A die Restriktion der Abbildung QA → A, die ι(x) auf x
und ι(x) auf 0 abbildet. Das folgende Lemma ist wohlbekannt in der Kategorie der
C*-Algebren, vgl. [Cu2, 3.1].

Lemma 6.3 Es sei E ein Funktor mit den Eigenschaften (E1), (E2), (E3).

(a) Die kanonische Abbildung id∗0 ⊕ 0∗id:QA −→ A ⊕ A, die ι(x) auf (x, 0) und
ι(x) auf (0, x) abbildet, induziert einen Isomorphismus E(QA)→ E(A)⊕E(A).

(b) Die Abbildung δ : qA→ A induziert einen Isomorphismus E(δ).

Beweis: (a) Man zeigt genau wie im Fall von C*-Algebren ([Cu2, 3.1]) unter Ver-
wendung der universellen Eigenschaft des freien Produkts, dass die Komposition der
angegebenen Abbildung mit der Abbildung

A⊕A −→
(
A 0
0 A

)
⊂M2(QA)

in beide Richtungen diffeotop zu den kanonischen Einbettungen von A ⊕ A und QA
in die 2×2-Matrizen über diesen Algebren ist.
(b) Dies folgt aus folgendem kommutativen Diagramm

0 −→ qA −→ QA
π−→ A −→ 0

↓ δ ↓ ϕ ↓ id

0 −→ A −→ A⊕ A −→ A −→ 0

(wo ϕ = id ∗ 0⊕ π) in Kombination mit (a). q.e.d.

Satz 6.4 Sei T0 der Kern der kanonischen stetigen Abbildung κ : T→ C, die v und
w auf 1 abbildet. Für jeden Funktor E mit den Eigenschaften (E1), (E2), (E3) und
für jede m-Algebra A gilt

E(T0⊗̂A) = 0

Beweis: Wir betrachten erst den Fall A = C und benutzen hierzu die Homomorphis-
men T → T⊗̂T aus Lemma 6.2 und außerdem den Homomorphismus ω : T → T⊗̂T,
der v auf v(1 − e) ⊗ 1 und w auf (1 − e)w ⊗ 1 abbildet. Die Homomorphismen
ψt ∗ ω : QT→ T⊗̂T bilden qT in K⊗̂T ab und ergeben durch Restriktion eine Diffeo-
topie

ωt : qT −→ K⊗̂T
Nach Konstruktion von ϕ und ϕ′ gilt

ω0 = ι ◦ δ ω1 = ι ◦ j ◦ κ ◦ δ

wobei κ wie oben, j : C → T die kanonische Inklusion und δ : qT → T die kanoni-
sche “Auswertung”abbildung ist. siehe 6.3. Nach 6.3 ist E(δ) : E(qT) → E(T) ein
Isomorphismus. Da nach (E2) außerdem auch E(ι) ein Isomorphismus ist, folgt aus

E(ι ◦ δ) = E(ι ◦ j ◦ κ ◦ δ)
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dass E(j) ◦ E(κ) = E(idT). Da offensichtlich κ ◦ j = idC, sind also E(j) und E(κ)
zueinander inverse Isomorphismen. Da die Erweiterung 0 → T0 → T → C → 0
zerfällt, ergibt sich aus der langen exakten Folge (11) eine kurze exakte Folge

0 −→ E(T0) −→ E(T)
E(κ)−→ E(C) −→ 0

wobei E(κ) ein Isomorphismus ist. Dies zeigt, dass E(T0) = 0. Der allgemeine Fall
E(T0⊗̂A) ergibt sich durch Tensorieren aller Homomorphismen in dem eben gegebe-
nen Beweis mit idA oder durch Ersetzen von E durch E( · ⊗̂A). q.e.d.

Die Toeplitzerweiterung mit Ideal K1 und Quotienten C1(S1) wurde auch von Laf-
forgue untersucht. Für sie wurden in [La] Analoga zu Lemma 6.2 und Satz 6.4 bewiesen
und daraus wie in [Cu1] gefolgert, dass jeder Funktor E’ auf der Kategorie der Bana-
chalgebren, der Eigenschaften analog zu (E1), E(2), E(3) hat, Bottperiodizität erfüllt.
Das folgende Korollar ist ebenfalls eine Form der Bottperiodizität.

Korollar 6.5 Für jeden Funktor E auf der Kategorie der m-Algebren mit den
Eigenschaften (E1), (E2), (E3) und für jede m-Algebra A sind die Abbildungen
E(ε) : E(J2A)→ E(K⊗̂A) und E(εn) : E(J2nA)→ E(K⊗̂A) Isomorphismen.

Beweis: Betrachte die folgenden kommutativen Diagramme

0 −→ J2k+2A −→ TJ2k+1A −→ J2k+1A −→ 0
↓ ε ↓ ↓

0 −→ K⊗̂K⊗̂A −→ K⊗̂T0⊗̂A −→ K⊗̂C∞(S1 \ {1})⊗̂A −→ 0

0 −→ J2k+1A −→ TJ2kA −→ J2kA −→ 0
↓ ↓ ↓ εk

0 −→ K⊗̂A(0, 1) −→ K⊗̂A[0, 1) −→ K⊗̂A −→ 0

und die nach (11) mit diesen Erweiterungen assoziierten langen exakten Folgen. Die
Gruppen E(TA), E(T0⊗̂A) und E(A[0, 1)) sind trivial für jedem-Algebra A, siehe 6.4.
Außerdem ist die Inklusion K⊗̂A(0, 1)→ K⊗̂A⊗̂C∞(S1 \ {1}) eine Diffeotopieäquiva-
lenz (vgl. 1.1) und die Abbildung E(A(0, 1))→ E(A⊗̂C∞(S1 \ {1})) ein Isomorphis-
mus. Anwendung des 5-Lemmas zeigt dann, dass die senkrechten Pfeile auf der linken
Seite unter E jeweils einen Isomorphismus induzieren, wenn dies für die Pfeile rechts
der Fall ist. Die Behauptung ergibt sich dann durch Induktion nach k (mit J0A = A
und ε0 = ι). q.e.d.

Theorem 6.6 Sei E ein kovarianter Funktor mit den Eigenschaften (E1), (E2),
(E3). Dann kann mit jedem h ∈ kk0(A,B) in eindeutiger Weise ein Morphismus
E(h) : E(A) → E(B) assoziert werden, so dass E(h1 · h2) = E(h2) ◦ E(h1) und
E(kk(α)) = E(α) für jeden Homomorphismus α : A→ B zwischen m-Algebren.
Die analoge Aussage gilt auch für kontravariante Funktoren.

Beweis: Sei h durch η : J2nA→ K⊗̂B repräsentiert. Wir setzen

E(h) = E(ι)−1E(η)E(εn)−1
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Zunächst einmal ist klar, dass E(h) wohldefiniert ist und dass E(kk(α)) = E(α).
Die Verträglichkeit mit dem Produkt ergibt sich aus derselben Rechnung wie die im
Beweis von Theorem 4.3 und ist eine Konsequenz von Lemma 4.2.

Die Eindeutigkeit schließlich ist offensichtlich. q.e.d.

Das vorhergehende Resultat erlaubt, wie im Fall der KK-Theorie für C*-Algebren,
[Hi], [Bl] ein andere Interpretation. Hierzu bemerken wir, dass kk0 als Kategorie auf-
gefasst werden kann, deren Objekte gerade die m-Algebren sind, und deren Morphis-
men zwischen A und B durch kk0(A,B) gegeben sind. Diese Kategorie ist additiv in
dem Sinn, dass die Morphismen zwischen zwei Objekten jeweils eine abelsche Gruppe
bilden und dass das Produkt von Morphismen bilinear ist.
Wir bezeichnen den natürlichen Funktor von der Kategorie der m-Algebren in die
Kategorie kk0, der auf den Objekten die Identität ist, auch mit kk0.

Korollar 6.7 Es sei F ein Funktor von der Kategorie der m-Algebren in eine
additive Kategorie, deren Objekte ebenfalls die m-Algebren sind, mit F (β ◦ α) =
F (α) · F (β). Wir bezeichnen diese Kategorie ebenfalls mit F und ihre Morphismen
mit F (A,B).
Wir nehmen an, dass F (A,B) in der ersten Variablen als kontravarianter Funktor
und in der zweiten Variablen als kovarianter Funktor jeweils die Eigenschaften (E1),
(E2), (E3) erfüllt. Dann existiert ein eindeutig bestimmter kovarianter Funktor F ′

von der Kategorie kk0 in die Kategorie F , so dass F = F ′ ◦ kk0.

Beweis: Wir zeigen zuerst, dass εn : J2nA → K⊗̂A für jede m-Algebra A einen
invertierbaren Morphismus F (εn) induziert.
Da Links- und Rechtsmultiplikation mit F (·) für festgehaltene zweite oder erste Varia-
ble Funktoren in die Kategorie der abelschen Gruppen mit den Eigenschaften (E1),
(E2), (E3) sind, existieren nach 4.5 und 6.6 Elemente x und y in F (A, J2nA), so
dass x · F (εn) = F (idA) und F (εn) · y = F (idJ2nA). Da dann x und y Links- und
Rechtsinverse für F (εn) sind, sind sie gleich und invers zu F (εn).

Ebenso sieht man, dass ι : A → K⊗̂A für jede Wahl von A einen invertierbaren
Morphismus E(ι) induziert. Wenn jetzt h ∈ kk0(A,B) durch η : J2nA → K⊗̂B
repräsentiert ist, können wir setzen

F ′(h) = F (ι)F (εn)−1F (η)F (ι)−1

q.e.d.

Auf der Kategorie der m-Algebren ist also kk0 der universelle Funktor in ei-
ne additive Kategorie mit den Eigenschaften (E1), (E2), (E3) in beiden Variablen.
Hieraus ergibt sich als Spezialfall sofort die Existenz des bivarianten Chern-Connes-
Charakters im geraden Fall. Wir fassen hierzu die bivariante periodische zyklische
Theorie HP 0(·, ·) ebenso wie kk0 als additive Kategorie, deren Objekte die m-
Algebren sind, auf. Ebenso wie bei kk schreiben wir das Produkt in HP ∗ in der
umgekehrten Reihenfoge wie bei Homomorphismen. Für einen Homomorphismus α
bezeichnen wir mit ch(α) das entsprechende Element der bivarianten zyklischen Theo-
rie.

Documenta Mathematica 2 (1997) 139–182



170 Joachim Cuntz

Korollar 6.8 Es existiert ein eindeutig bestimmter (kovarianter) Funktor ch :
kk0 → HP 0, so dass ch(kk(α)) = ch(α) ∈ HP 0(A,B) für jeden Homomorphismus
α : A→ B zwischen m-Algebren.

Beweis: Die Eigenschaften (E1) und (E2) sind für die beiden Variablen von HP 0

seit langem bekannt und im wesentlichen schon von Connes in [Co] bewiesen. Der
Nachweis von Eigenschaft (E3) gelang in [CuQu2]. q.e.d.

Der Chern-Connes-Charakter ch ist also eine bilineare multiplikative Transfor-
mation von kk0 nach HP 0. Offensichtlich respektiert er auch das äußere Produkt auf
kk0 aus 4.3 (b), bzw. auf HP 0, siehe [CuQu2, p.86]. Es bleibt noch die Aufgabe, ch zu
einer multiplikativen Transformation von der Z/2-graduierten Theorie kk∗ nach HP ∗

auszudehnen und die Verträglichkeit von ch mit der Randabbildung in den langen
exakten Folgen zu untersuchen.

Wenn E : 0→ I→ A→ B→ 0 eine linear zerfallende Erweiterung ist, schreiben wir
wie in [CuQu2] δ für die Randabbildung HP i(I,D) → HP i−1(B,D) in der ersten
Variable und δ′ für die Randabbildung HP i(D,B) → HP i+1(D, I) in der zweiten
Variable. Weiter schreiben wir im folgenden 1A für ch(idA) ∈ HP 0(A,A).

Man rechnet leicht nach, dass δ′(1B) = −δ(1I), siehe [CuQu2,5.4]. Wie in [CuQu2]
bezeichnen wir dieses Element von HP 1(B, I) mit ch(E).

Ein Teil des folgenden Satzes wurde in etwas anderer Weise schon in [Ni1], [Ni2]
bewiesen. Der Faktor 2πi beim Vergleich der Periodizitätsabbildungen in der K-
Theorie und der zyklischen Homologie wurde an verschiedenen Stellen in der Literatur
bemerkt, [Co1], [Pu], [Ni1].

Satz 6.9 Wir betrachten die Einhängungserweiterung

Eσ : 0→ C(0, 1)→ C(0, 1]→ C→ 0

und die Toeplitzerweiterung

Eτ : 0→ K→ T→ C∞S1 → 0

sowie die Einbettungsabbildungen j : C(0, 1)→ C∞S1 und ι : C→ K. Mit dem Produkt
in HP ∗ gilt die folgende fundamentale Beziehung

ch(Eσ) · ch(j) · ch(Eτ ) =
1

2πi
ch(ι)

Beweis: Wir benutzen kanonische dichte Unteralgebren von C(0, 1), C∞S1,K und T

sowie ihre algebraische periodische zyklische Homologie HP alg∗ . Außerdem benutzen
wir, wenn B eine dieser Algebren ist, die Homologie HX∗(B) des X-Komplexes

X(B) : B
d−→←−
b

Ω1(B)♮
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Wir haben zwei große kommutative Diagramme, wo die horizontalen Abbildungen
alle Isomorphismen sind und die Spalten exakte Folgen mit 6 Termen

↓ ↓ ↓
HP∗(K)

∼=←− HP alg∗ (M∞)
∼=−→ HX∗(M∞)

↓ ↓ ↓
HP∗(T)

∼=←− HP alg∗ (U(v, w))
∼=−→ HX∗(U(v, w))

↓ ↓ ↓
HP∗(C∞(S1))

∼=←− HP alg∗ (C[z, z−1])
∼=−→ HX∗(C[z, z−1])

↓ ↓ ↓
Die Folge in der rechten Spalte ist exakt, weil M∞ H-unital und damit HX∗(M∞)
isomorph zu der Homologie HX∗(M∞ : U(v, w)) des relativen X-Komplexes ist, vgl.

[Wo]. Der Isomorphismus HP alg∗ (M∞) ∼= HX∗(M∞) gilt, weil M∞ quasifrei ist, siehe
[CuQu1,5.4]. Die Abbildungen in der mittleren Zeile sind Isomorphismen nach dem
5-Lemma. Das zweite Diagramm ist das folgende

↓ ↓ ↓
HP∗(C∞0 (0, 1))

∼=←− HP alg∗ ((t− t2)C[t])
∼=−→ HX∗((t− t2)C[t] : tC[t])

↓ ↓ ↓
HP∗(C∞0 (0, 1])

∼=←− HP alg∗ (tC[t])
∼=−→ HX∗(tC[t])

↓ ↓ ↓
HP∗(C)

∼=←− HP alg∗ (C)
∼=−→ HX∗(C)

↓ ↓ ↓

Hierbei bezeichnen C∞0 (0, 1] und C∞0 (0, 1) die Algebren der glatten Funktionen auf
[0, 1], die bei 0, bzw. bei 0 und 1 verschwinden (ohne Bedingung an die Ableitun-
gen) und HX∗((t − t2)C[t] : tC[t]) bezeichnet wieder die Homologie des relativen
X-Komplexes. Die Isomorphismen in der ersten Zeile gelten nach dem 5-Lemma.
Um die Randabbildungen in der Toeplitz- und Einhängungserweiterung in der Spalte
ganz links zu bestimmen, genügt es daher, die Randabbildungen in der Spalte ganz
rechts zu berechnen. Dies ist aber sehr einfach. Nach Definition genügt es, jeweils Ur-
bilder für die Repräsentanten einer Klasse in dem Komplex in der Mitte zu finden und
dann den Randoperator des X-Komplexes darauf anzuwenden. Dies ergibt Elemente
des relativen Komplexes, die das Bild unter der Randabbildung darstellen.
Fangen wir mit dem Erzeuger von HX0(C) an. Er wird durch 1 ∈ C repräsentiert.
Ein Urbild in X0(tC[t]) ist t. Unter dem Randoperator d geht dies auf ♮(dt) ∈ Ω1((t−
t2)C[t] : tC[t])♮.
Die Klasse von ♮(dt) wiederum entspricht unter den Identifizierungen

HX1((t − t2)C[t] : tC[t])← HP alg1 ((t− t2)C[t])→ HP1(C∞0 (0, 1)∼)

← HP1(C∞(S1))← HX1(C[z, z−1])

der Klasse von ♮( 1
2πi
z−1dz). In der Tat ist z = e2πit und in den Differentialformen

über S1 ist z−1dz = 2πi dt (man beachte, dass HP1(C∞(S1)) durch die de Rham
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Kohomologie von S1 gegeben ist). Ein Urbild für ♮(z−1dz) in X1(U(v, w)) ist ♮(wdv).
Unter der Randabbildung des X-Komplexes wird ♮(wdv) auf b(wdv) = wv − vw = e
abgebildet. q.e.d.

Für den speziellen Fall der universellen Erweiterung

Eu : 0→ JA→ TA→ A→ 0

setzen wir

xA = ch(Eu) = δ′(1A) = −δ(1JA) ∈ HP 1(A, JA)

Die Randabbildungen δ und δ′ in der universellen Erweiterung sind durch Links-
und Rechtsmultiplikation mit xA gegeben. Die Tatsache, dass δ und δ′ für die uni-
verselle Erweiterung Isomorphismen sind, impliziert sofort, dass xA invertierbar ist
(es existieren Elemente y und y′ in HP 1(JA,A) so dass δ(y) = xA · y = 1A und
δ′(y′) = y′ · xA = 1JA). Falls δ und δ′ wieder die Randabbildungen in den exak-
ten Folgen zu einer beliebigen Erweiterung E : 0 → I → A → B → 0 sind und
α : JB → I die klassifizierende Abbildung, so gilt wegen der Natürlichkeit der Ran-
dabbildung, dass

δ(1I) = xB · ch(α) δ′(1B) = ch(α) · xB (12)

d.h. also ch(E) = xB · ch(α), siehe auch [CuQu2, 5.5]. Weiter gilt für jeden Homo-
morphismus α : JA→ B

ch(α) · xB = xJA · ch(J(α)) (13)

Satz 6.10 Sei ε : J2A→ K⊗̂A die kanonische Abbildung. Dann gilt

xA · xJA · ch(ε) · ch(ι)−1 =
1

2πi
1A

Beweis: Wir betrachten zuerst den Fall A = C. Die Abbildung ε kann geschrieben
werden als ε = ε2 ◦ J(j) ◦ J(ε1), wo ε1 : J(C) → C(0, 1) und ε2 : J(C∞S1) → K die
klassifizierenden Abbildungen für die Einhängungs- und für die Toeplitzerweiterung
sind und j : C(0, 1)→ C∞S1 die Einbettungsabbildung bezeichnet. Daher

xA · xJA · ch(ε) = xA · ch(ε1) · ch(j) · xJA · ch(ε2) = ch(Eσ) · ch(j) · ch(Eτ)

Die erste Gleichung gilt nach (13) und die zweite folgt aus (12). Die Behauptung für
A = C reduziert sich daher auf Satz 6.9.

Für allgemeines A gilt unter Verwendung des äußeren Produkts in HP ∗ (siehe [Cu-
Qu2, p.86])

xA · xJA · ch(εA) · ch(ιA)−1 = (xC ⊗ 1A) · (xJC ⊗ 1A) · (ch(εC)⊗ 1A)

= (xC · xJC · ch(εC) · ch(ιC)−1)⊗ 1A = 1
2πi 1A

q.e.d.
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Sei jetzt u ein Element in kk1(A,B). Nach Definition ist kk1(A,B) = kk0(JA,B).
Sei u0 das Element in kk0(JA,B), das u entspricht. Wir setzen

ch(u) =
√

2πi xA · ch(u0) ∈ HP 1(A,B)

Satz 6.11 Der so definierte Chern-Connes-Charakter ist multiplikativ, d.h. für u ∈
kki(A,B) und v ∈ kkj(B,C) gilt

ch(u · v) = ch(u) · ch(v)

Beweis: Der einzig wirklich neue Fall ist i = j = 1. Wir haben nach Lemma 6.9

ch(u) · ch(v) = 2πi xA · ch(u0) · xB · ch(v0) = 2πi xA · xJA · ch(J(u0)) · ch(v0)

und andererseits nach Definition von ch im geraden Fall

ch(u · v) = ch(ι) · ch(ε)−1 · ch(J(u0) · v0)

Die beiden Ausdrücke stimmen nach Satz 6.10 überein. q.e.d.

Insbesondere ist der Chern-Connes-Charakter auch mit den Randabbildungen in den
langen exakten Folgen in kk∗ und HP ∗, die mit einer linear zerfallenden Erweiterung

(E) 0→ I→ A→ B→ 0

von m-Algebren assoziiert sind, (bis auf den Faktor
√

2πi und möglicherweise ein Vor-
zeichen) verträglich: Die klassifizierende Abbildung JB→ I ergibt Elemente kk(E) ∈
kk1(B, I) und ch(E) ∈ HP 1(B, I). Nach Definition gilt

√
2πich(E) = ch(kk(E)). Die

Randabbildungen in den langen exakten Folgen in kk und HP sind laut Theorem 5.5
und [CuQu, 5.5] bis auf ein Vorzeichen durch Multiplikation mit kk1(E) bzw. ch(E)
gegeben.

Wir diskutieren jetzt zum Schluss noch den Zusammenhang mit dem Chern-
Connes-Charakter, der für p-summierbare Fredholm- und Kasparovmoduln von
Connes, Nistor und anderen konstruiert wurde, [Co], [Ni1].

Satz 6.12 Gegeben seien m-Algebren I und A. Wir nehmen an, dass stetige Abbil-
dungen α : I→ A und µ : A⊗̂A→ I mit folgenden Eigenschaften existieren:
(a) α ◦ µ ist die Multiplikation auf A

(b) µ ◦ (α⊗ α) ist die Multiplikation auf I

(insbesondere ist also α(I) ein Ideal in A mit A2 ⊂ α(I)). Dann ist kk(α) ein inver-
tierbares Element in kk0(I,A).

Beweis: Das Inverse zu kk(α) ist durch die Zusammensetzung der Toeplitzerweite-
rung mit der folgenden Erweiterung bestimmt

0→ I(0, 1)→ I(0, 1) +At→ A→ 0 (14)

Diem-Algebra I(0, 1)+At ist folgendermaßen definiert. Als lokalkonvexer Vektorraum
ist sie einfach die direkte Summe von I(0, 1) und A. Das Symbol t bezeichnet die
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identische Funktion auf [0, 1]. Die Elemente von At werden als Funktionen auf [0, 1]
mit Werten in A, die Vielfache dieser Funktion mit Elementen von A sind, aufgefasst.
Die Multiplikation auf dem ersten Summanden ist die von I(0, 1). Das Produkt einer
Funktion f in I(0, 1) mit einem Element xt ∈ At ist µ(α(f) ⊗ xt) (wir setzen hier µ
und α kanonisch auf Funktionen fort). Das Produkt von xt und yt in dem zweiten
Faktor ist definiert als µ(x ⊗ y)(t2 − t) + αµ(x ⊗ y)t, wobei der erste Summand in
I(0, 1) und der zweite in At liegt. Man prüft sofort nach, dass mit diesen Definitionen
I(0, 1) +At eine m-Algebra ist.

Die Erweiterung (14) ist dann offensichtlich linear zerfallend und definiert ein Element
u in kk1(A, I(0, 1)). Wir müssen nachweisen, dass das Produkt von u mit α in beide
Richtungen die kanonischen Abbildungen JA → A(0, 1) und JI → I(0, 1) ergibt.
Betrachte hierzu das folgende kommutative Diagramm

0 −→ I(0, 1) −→ I(0, 1] −→ I −→ 0

↓ id ↓ id + α ↓ α
0 −→ I(0, 1) −→ I(0, 1) +At −→ A −→ 0

↓ α ↓ α ‖
0 −→ A(0, 1) −→ A(0, 1] −→ A −→ 0

Man beachte, dass die in der offensichtlichen Weise definierte Abbildung id + α nach
Bedingung (b) ein Homomorphismus ist. Der obere Teil des Diagramms zeigt nach
Lemma 3.3, dass das Produkt kk(α) · u durch die Einhängungserweiterung von I
repräsentiert wird, während der untere Teil zeigt, dass u · kk(α) die Einhängungser-
weiterung von A ist. q.e.d.

Wir können dieses Resultat nun anwenden auf die Schattenideale ℓp = ℓp(H).
Betrachte allgemeiner den Fall, wo I = ℓp⊗̂B und A = ℓq⊗̂B für eine beliebige m-
Algebra B und p ≤ q ≤ 2p. Die Abbildungen α und µ ergeben sich durch die Inklusion
ℓp → ℓq und die Multiplikationsabbildung ℓq⊗̂ℓq → ℓp.

Satz 6.11 zeigt, dass ℓp⊗̂B und ℓq⊗̂B äquivalent in kk0 und damit auch in HP 0 sind.
Durch Iteration ist ℓp⊗̂B äquivalent zu ℓ1⊗̂B für jedes p ≥ 1. Andererseits ist ℓ1⊗̂B
in HP0 äquivalent zu B, siehe etwa [Ga]. Wir erhalten also

Korollar 6.13 Die m-Algebra ℓp⊗̂B ist in HP0 äquivalent zu B für jedes p ≥
1. Der Chern-Connes-Charakter gibt eine Transformation ch(p) : kk∗(A, ℓ

p⊗̂B) →
HP ∗(A,B) mit der Eigenschaft, dass

ch(p)(x · kk(ι(p))) = ch(x) für x ∈ kk∗(A,B)

wo ι(p) die kanonische Inklusion B→ ℓp⊗̂B bezeichnet.

Durch Vergleich der funktoriellen Eigenschaften [Ni1, Theorem 3.5] sieht man oh-
ne weiteres, dass dieser Chern-Connes-Charakter mit dem von Connes und Nistor
konstruierten Charakter übereinstimmen muß.
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7 Vergleich mit der topologischen K-Theorie

Wir untersuchen in diesem Abschnitt den Spezialfall des Funktors kk, wo die erste
Variable trivial ist, d.h. also kk∗(C, · ). Wir zeigen, dass dieser Funktor mit der to-
pologischen K-Theorie übereinstimmt - im wesentlichen, wann immer diese definiert
ist. Dazu benutzen wir die von Phillips eingeführte Theorie [Ph], die die topologische
K-Theorie für die bisher wohl größte Klasse von lokalkonvexen Algebren, nämlich für
m-Algebren, die gleichzeitig Fréchetalgebren sind, definiert. Dies hat für uns den Vor-
teil, dass diese Theorie es erlaubt, den Funktor K∗ direkt auch auf Algebren vom Typ
JnC usw., die die Grundlage unserer Theorie bilden, anzuwenden. Dies vereinfacht
den Beweis für Theorem 7.4 (selbst im Fall A = C) bedeutend. Wir skizzieren am En-
de des Abschnitts kurz, wie Theorem 7.4 ohne Verwendung der Theorie von Phillips
für spezielle Fréchetalgebren, nämlich abgeleitete Unteralgebren von Banachalgebren
bewiesen werden kann. Damit erhält man einen neuen Zugang zur K-Theorie von
m-Algebren, indem man einfach K∗(A) = kk∗(C,A) setzt.

Wie Phillips verstehen wir in dieser Arbeit unter Fréchetalgebren immer Fréchet-
algebren, die auch m-Algebren sind, d.h. also vollständige lokalkonvexe Algebren,
deren Topologie durch eine abzählbare Familie von submultiplikativen Halbnormen
bestimmt ist.

Mit einer Fréchetalgebra A assoziiert Phillips in [Ph] die folgende abelsche Gruppe:

K0(A) =
{

[e]
∣∣ e ist ein idempotentes Element in

M2(K⊗̂A∼) so dass e−
( 1 0

0 0

)
∈M2(K⊗̂A)

} (15)

Hierbei bezeichnet, wie üblich K⊗̂A∼ die Algebra, die man erhält, wenn man zu K⊗̂A
eine Eins adjungiert.

Phillips verwendet die Bezeichnung “RK0” für diese Gruppe. Uns erscheint die Be-
zeichnung K0 angemessener, da diese Theorie die übliche topologische K-Theorie von
der Kategorie der Banachalgebren auf die der Fréchetalgebren verallgemeinert. Wir
setzen auch K1(A) = K0(A(0, 1))

In (15) bezeichnet [e] die Homotopieklasse von e. In [Ph] wird gezeigt, dass zwei
idempotente Elemente e und e′ in M2(K⊗̂A∼), wie sie in (15) betrachtet werden,
homotop sind, genau dann, wenn sie konjugiert und damit auch diffeotop sind. Wir
können also in (15) die Homotopieklasse [e] durch die Diffeotopieklasse 〈e〉 ersetzen.
Weiter wird in [Ph] gezeigt, dass der Funktor K∗, ∗ = 0, 1 auf der Kategorie der
Fréchetalgebren die folgenden Eigenschaften hat:

(a) K∗ ist diffeotopie- und homotopieinvariant

(b) K∗ ist stabil in dem Sinn, dass für jede Fréchetalgebra A die Inklusionsabbildung
A→ A⊗̂K einen Isomorphismus in der K-Theorie induziert.

(c) Jede Erweiterung

0→ I i−→ A q−→B → 0
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von Fréchetalgebren (d.h. die Folge ist exakt und q ist eine Quotientenabbildung)
induziert exakte Folgen in K∗ der folgenden Form:

K0(I)
K0(i)−→ K0(A)

K0(q)−→ K0(B)

↑ ↓
K1(B)

K1(q)←− K1(A)
K1(i)←− K1(I)

(d) Falls A eine Banachalgebra ist, so stimmt K∗(A) mit der üblichen topologischen
K-Theorie von A überein.

Für weitere Einzelheiten verweisen wir auf [Ph].

Wir betrachten jetzt die Algebra QC und bezeichnen mit e, ē die beiden Erzeuger
e = ι(1), ē = ι(1)). Nach 6.3 gilt Z ∼= K0(qC) ⊂ K0(QC) ∼= Z2. Der Erzeuger von
K0(qC) ist mit der oben angegebenen Definition von K0 für Fréchetalgebren gegeben
durch die Diffeotopieklasse des idempotenten Elements p in M2(K⊗̂qC∼):

p = W

(
ē⊥ 0
0 e

)
W wo W =

(
ē⊥ ē
ē ē⊥

)

mit ē⊥ = 1− ē. Wir setzen auch

p̄ =

(
1 0
0 0

)

Man beachte, dass p − p̄ ∈ M2(K⊗̂qC) ⊂ M2(K⊗̂QC∼) und dass daher [p] − [p̄] ∈
K0(K⊗̂qC) ⊂ K0(K⊗̂QC).

Lemma 7.1 Es sei ϕ : qC → M2(K⊗̂qC) die Einschränkung des Homomorphismus
QC → M2(K⊗̂QC∼), der e auf p und ē auf p̄ abbildet. Dann ist ϕ diffeotop zu der
Inklusionsabbildung ι : qC→M2(K⊗̂qC).

Beweis: Sei γt : qC→M2(K⊗̂qC), t ∈ [0, π/2] die Einschränkung des Homomorphis-
mus γ′t : QC→M2((K⊗̂QC)∼) der durch

γ′t(e) = Wt

(
ē⊥ o
0 e

)
W−t

γ′t(ē) = Wt

(
ē⊥ 0
0 ē

)
W−t

gegeben ist, wo

Wt =

(
ē⊥ 0
0 ē⊥

)
+

(
ē cos t ē sin t
−ē sin t ē cos t

)

Für jedes t liegt die Differenz γ′t(e)− γ′t(ē) in dem Ideal M2(K⊗̂qC)). Daher definiert
γt eine Diffeotopie, die ϕ mit ι verbindet. q.e.d.
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Satz 7.2 Für jede Fréchetalgebra A gilt

K0(A) ∼= 〈qC,K⊗̂A〉
Beweis: Wir definieren die Abbildung θ : 〈qC,K⊗̂A〉 → K0(A) in der folgenden
Weise: Sei η : qC → K⊗̂A ein stetiger Homomorphismus. Wir bezeichnen mit z den
Erzeuger von K0(qC) ∼= Z und setzen θ(〈η〉) = K0(η)(z). Wir zeigen, dass θ surjektiv
und injektiv ist.

Die Surjektivität ist offensichtlich, da jedes Element w von K0A nach Definition durch
ein idempotentes Element r in M2(K⊗̂A∼) gegeben ist und daher einen Homomor-
phismus η̂ : QC → K⊗̂A∼ bestimmt, der e auf r und ē auf p̄ (p̄ wie oben) abbildet.
Die durch η̂ induzierte Abbildung bildet die durch e und ē bestimmten Klassen u und
ū in K0(QC) auf [r] und [p̄] in K0(A) ab. Wenn daher η die Einschränkung von η̂ auf
qC bezeichnet, so bildet K0(η) den Erzeuger z = u − ū von K0(qC) ⊂ K0(QC) auf
[r]− [p̄] = [r] ∈ K0(A) ab.

Um die Injektivität zu beweisen, benutzen wir Lemma 7.1. Nehmen wir an, dass η1, η2 :
qC → K⊗̂A Homomorphismen sind, so dass K0(η1)(z) = K0(η2)(z). Das bedeutet,
dass die Bilder r1 und r2 des vor 7.1 definierten Idempotenten p unter M2(idK⊗̂η∼1 )
und M2(idK⊗̂η∼2 ) in M2(K⊗̂A∼) konjugiert durch ein invertierbares Element w sind.
Dieses Element w kann sogar durch eine differenzierbare Familie wt, t ∈ [0, 1] mit 1
verbunden werden, so dass 1− wt ∈M2(K⊗̂A) für alle t.

Es seien nun η′1, η
′
2 : qC → K⊗̂A die Homomorphismen qC → K⊗̂A, die durch Ein-

schränkung der Abbildungen von QC, die e auf r1 bzw. r2 und ē auf p̄ abbilden, ent-
stehen. Nach Lemma 7.1 ist η′1 = M2(idK⊗̂η∼1 ) ◦ ϕ diffeotop zu η1 = M2(idK⊗̂η∼1 ) ◦ ι
und η′2 diffeotop zu η2. Andererseits definiert die Familie ψt, t ∈ [0, 1] von Homomor-
phismen qC → K⊗̂A, die durch Einschränkung der Abbildungen von QC, die e auf
wtr1w−t entstehen, eine Diffeotopie, die η′1 mit η′2 verbindet. q.e.d.

Für eine beliebige m-Algebra A hatten wir in 2.5 die folgende linear zerfallende
Erweiterung betrachtet:

0→ qA(0, 1)→ E→ A→ 0

Wenn wir die klassifizierende Abbildung JA→ qA(0, 1) mit der Toeplitzerweiterung

0→ K⊗̂qA→ T0⊗̂qA→ qA(0, 1)→ 0

kombinieren, so erhalten wir eine Abbildung ε′ : J2A→ K⊗̂qA.

Lemma 7.3 Sei δ : qA→ A die kanonische Auswertungsabbildung (mit den Bezeich-
nungen von 1.3 ist δ die Restriktion von id∗0 ). Dann ist die Komposition (idK⊗̂δ)◦ε′
diffeotop zu ε : J2A→ K⊗̂A.
Beweis: Dies ergibt sich mit Hilfe von Lemma 3.3 aus dem folgenden kommutativen
Diagramm

0 −→ qA(0, 1) −→ E −→ A −→ 0

↓ δ(0, 1) ↓ ψ ‖
0 −→ A(0, 1) −→ A[0, 1) −→ A −→ 0

wo ψ die Restriktion von (id∗ 0)[0, 1] : QA[0, 1]→ A[0, 1] auf E ⊂ QA[0, 1] ist. q.e.d.
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Theorem 7.4 Für jede Fréchetalgebra A sind die Gruppen kk∗(C,A) und K∗A
natürlich isomorph.

Beweis: Wir können annehmen, dass ∗ = 0. Der Fall ∗ = 1 ergibt sich durch
Ersetzung von A durch die Einhängung A(0, 1).

Die Existenz der gewünschten Abbildung kk∗(C,A) → K∗A ergibt sich für ∗ = 0
als Spezialfall aus 6.5. Um den Isomorphismus zu beweisen, müssen wir aber die
Abbildung in systematischer Weise explizit konstruieren.
Nach Korollar 6.5 ist K0(ε) : K0(J

2nC) → K0(C) ein Isomorphismus. Aus Satz
7.2 erhalten wir also Z ∼= K0(C) ∼= K0(J

2nC) ∼= 〈qC,K⊗̂J2nC〉, wobei der zweite
Isomorphismus durch ε induziert ist. Sei dann

βn : qC→ K⊗̂J2nC
der bis auf Diffeotopie eindeutig bestimmte Homomorphismus, der dem Erzeuger von
Z unter diesem Isomorphismus entspricht, d.h. 〈βn〉 = K0(ε

n)−1(1).

Andererseits sei αn : J2nC→ K⊗̂qC der Homomorphismus, der sich durch Komposi-
tion von εn−1 : J2nC→ K⊗̂J2C mit der Abbildung ε′ : K⊗̂J2C→ K⊗̂qC aus Lemma
7.3 ergibt.

Lemma 7.3 zeigt dann, dass (idK⊗̂δ) ◦ αn diffeotop zu εn ist.

Nach Lemma 6.3(b) ist K0(δ) : K0(qC)→ K0C ein Isomorphismus. Da

K0(idK⊗̂δ) ◦K0(αn) ◦K0(βn)

nach Konstruktion der Isomorphismus K0(δ) : K0(qC) → K0C ist, folgt daher nach
Satz 7.2, dass αn ◦ βn diffeotop zur Inklusion ι : qC → K⊗̂qC ist und dass εn ◦ βn
diffeotop zu ι ◦ δ : qC→ K ist.

Wir können jetzt die Isomorphismen zwischen kk0(C,A) undK0A in beide Richtungen
explizit angeben. Die Abbildung αT : K0A → kk0(C,A) bildet 〈γ〉 ∈ 〈qC,K⊗̂A〉 auf
die Klasse von (idK ⊗ γ) ◦ αn : J2nC → K⊗̂A in kk0(C,A) ab. Die umgekehrte
Abbildung βT : kk0(C,A)→ K0A ist folgendermaßen definiert: Sei η : J2nC→ K⊗̂A
ein Repräsentant für ein Element h in kk0(C,A). Wir setzen dann βT (h) = 〈η ◦βn〉 ∈
〈qC,K⊗̂A〉. Nach Konstruktion von βn hängt diese Diffeotopieklasse nicht von der
Auswahl des Repräsentanten η ab, und βT (h) ist daher wohldefiniert. Aus der obigen
Diskussion folgt sofort, dass βT ◦ αT = id.

Um die Komposition αT ◦ βT zu berechnen. benutzen wir wieder das Hauptlemma
3.10 und sein Korollar 3.11, d.h. im Grund das Produkt in kk. Sei h ein Element
von kk0(C,A), das durch einen Homomorphismus η : J2nC→ K⊗̂A repräsentiert ist.
Nach Korollar 3.11 sind die folgenden beiden Kompositionen diffeotop

(idK⊗ η) ◦ εn ◦ J2n((idK⊗ βn) ◦ αn) ∼ (idK⊗ η)((idK ⊗ εn) ◦ βn ◦ αn)2n

(unter Verwendung der Bezeichnungsweise ψj : Jj+kA → K⊗̂JjB für ψ : JkA →
K⊗̂B, die vor Lemma 4.2 eingeführt wurde). Da εn ◦ J2n(ϕ) = ϕ ◦ εn für alle ϕ,
repräsentiert die erste Komposition αT ◦ βT (h). Da andererseits εn : J2n(J2nC) →
K⊗̂J2nC, wieder nach Korollar 3.11, diffeotop zu (εn)n ist und weil εn ◦βn ◦αn ∼ εn,
repräsentiert die zweite Komposition gerade h. Damit ist gezeigt, dass αT ◦ βT = id.
q.e.d.
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Wie schon in der Einleitung erwähnt, kann Theorem 7.4 für abgeleitete Unteralgebren
von Banachalgebren (im Sinn von 1.6) ohne Verwendung der Theorie von Phillips
direkt bewiesen werden. Wir skizzieren kurz, wie man vorzugehen hat.

Die Topologie auf J2nC ist gegeben durch die Familie von submultiplikativen Normen,
die auf T 2nC durch die Vielfachen der kanonischen Norm auf C induziert werden.
Jeder stetige Homomorphismus ϕ von J2nC in eine abgeleitete Unteralgebra einer
Banachalgebra A ist stetig für eine dieser Normen und setzt sich daher auf die ent-
sprechende Vervollständigung B von J2nC fort. Nach Lemma 1.6.5 ist ϕ dann auf
einer abgeleiteten Unteralgebra B von B definiert. Die K-Theorie dieser abgeleiteten
Unteralgebra ist wohldefiniert und stimmt mit der von B überein.

Insbesondere kann das auf den stetigen Homomorphismus ε : J2nC→ K angewendet
werden und wie in Korollar 6.5 sieht man sofort, dass ε einen IsomorphismusK0(B)→
K0(K) induziert.

Der Beweis von Satz 7.4 benutzt nur die Definition der K-Theorie durch Diffeo-
topieklassen von Idempotenten in M2(K⊗̂A)∼, die für abgeleitete Unteralgebren in
derselben Form gilt.

Schließlich können Homomorphismen von qC ebenso behandelt werden wie die von
J2nC und auf abgeleitete Unteralgebren von Banachalgebravervollständigungen fort-
gesetzt werden. Die Homomorphismen αn und βn im Beweis zu Theorem 7.4 können
dann als Homomorphismen zwischen solchen Vervollständigungen (die aber von dem
gegebenen Homomorphismus η abhängen) konstruiert werden.

8 Vergleich der Filtrierungen in kk und HP .

Für beliebige m-Algebren A und B gilt kk0(A,B) = kk0(A, J
2B), vgl. 4.5, und

〈A,K⊗̂B〉 ∼= 〈K⊗̂A,K⊗̂B〉 (als Konsequenz aus 1.4.1). Hieraus ergibt sich die folgende
alternative Definition von kk0

kk0(A,B) = lim
←−
m

(
lim
−→
n

〈K⊗̂J2nA,K⊗̂J2mB〉
)

Damit erhalten wir eine sehr einfache Beschreibung des Produkts in kk0, das nämlich
genau wie das Produkt von Morphismen zwischen Pro-Objekten definiert ist. Die
Wohldefiniertheit und Assoziativität des Produkts ist dann völlig offensichtlich.
Die obige Beschreibung von kk0 ist nun aber auch formal fast genau analog zur De-
finition der bivarianten periodischen zyklischen Homologie. Wir erinnern daran, dass
diese in der folgenden Weise definiert werden kann

HP ∗(A,B)) = H∗
(

lim
←−
m

(
lim
−→
n

Hom(X(JA)n, X(JB)m)
))

siehe [CuQu2,3.2]. Der wichtigste Unterschied in den Formeln für kk0 und HP ∗ ist die
Tatsache, dass einmal die durch Iteration des J-Funktors erhaltenen Algebren JnA
und JmB benutzt werden und das andere Mal die Potenzen (JA)n und (JB)m.
Wenden wir uns jetzt wieder der Definition von kk∗(A,B), wie sie in 4.1 gegeben
wurde, zu. Diese führt unmittelbar zu einer natürlichen aufsteigenden Filtrierung
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durch die Bilder von 〈J2n+∗A,K⊗̂B〉 in

kk∗(A,B) = lim
−→
n

〈J2n+∗A,K⊗̂B〉

Auf der anderen Seite besitzt die periodische zyklische KohomologieHP ∗(A) und das
Bild der bivarianten Jones-Kassel Theorie in HP ∗(A,B) eine natürliche Filtrierung
durch die Bilder von HCn. Da die Filtrierungen von kk∗ und HP ∗ beide mit dem
Produkt verträglich sind, und der Chern-Connes-Charakter multiplikativ ist, werden
die Filtrierungen unter dem Charakter wenigstens teilweise erhalten. Man kann etwa
eine Unterhalbgruppe ext∗(A,B) von kk∗(A,B) einführen, die aus allen Yonedapro-
dukten von Erweiterungen von dem Typ, wie sie in [Ni1] betrachtet werden, besteht.
Diese Unterhalbgruppe trägt eine natürliche Filtrierung. Die Konstruktion aus [Ni1]
zeigt, dass die Filtrierung unter dem Chern-Connes-Charakter erhalten wird.
Für beliebige Element von kk andererseits zeigt Satz 6.12 durch Iteration, dass eine
natürliche Abbildung J2p+1A → K⊗̂(JA)2

p

existiert. Dies legt nahe, dass im allge-
meinen in gewissem Sinn die Ordnung der Filtrierung auf kk dem Logarithmus der
Ordnung der Filtrierung auf HP ∗, d.h. dem Logarithmus der Dimension entspricht.
Eine genauere Untersuchung bleibt einer weiteren Arbeit vorbehalten.
Als letztes bemerken wir, dass auch bei der Definition derK-Theorie noch interessante
Variationen möglich sind. Wir können etwa setzen

kn(A) = lim
−→
k

〈Jk−nC,K⊗̂JkA〉

Ein Argument wie im Beweis zu Theorem 7.4 zeigt, dass für n ≥ 1 jeweils

〈J2k+2nC,K⊗̂J2kA〉 = 〈qC,K⊗̂J2kA〉 = K2n(A)

Für negative n ist also kn periodisch und stimmt mit der K-Theorie überein. Für
positive n ergibt sich eine Art konnektiver K-Theorie, vgl. [Se], [Ro] mit einer Peri-
odizitätsabbildung kn(A)→ kn−2(A), die durch ε induziert wird.
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Abstract. We prove that a projective manifold of dimension n = 2 or
3 and Kodaira dimension 1 has a numerically effective cotangent bundle if
and only if the Iitaka fibration is almost smooth, i.e. the only singular fibres
are multiples of smooth elliptic curves (n = 2) resp. multiples of smooth
Abelian or hyperelliptic surfaces (n = 3). In the case of a threefold which is
fibred over a rational curve the proof needs an extra assumption concerning
the multiplicities of the singular fibres. Furthermore, we prove the following
theorem: let X be a complex manifold which is hyberbolic with respect
to the Carathéodory-Reiffen-pseudometric, then any compact quotient of X
has a numerically effective cotangent bundle.

1991 Mathematics Subject Classification: 32C10, 32H20

Introduction

It is a natural question in algebraic geometry to classify manifolds by positivity prop-
erties of their tangent resp. cotangent bundles. The first result of this kind was
obtained by Mori who solved the Hartshorne-Frankel conjecture [Mo]: every projec-
tive n-dimensional manifold with ample tangent bundle is isomorphic to the complex
projective space Pn. A degenerate condition of ampleness is numerical effectivity. A
line bundle L on a projective manifold X is called numerically effective (abbreviated
“nef”) if L.C ≥ 0 for all curves C ⊂ X. A vector bundle E is said to be nef if the
tautological quotient line bundle OP(E)(1) on P(E), the projective bundle of hyper-
planes in the fibres of E, is nef.
Taking the Hartshorne-Frankel conjecture as a guideline, Campana and Peternell
considered projective manifolds whose tangent bundles are nef and classified them in
dimension 2 and 3 [CP]. For dimension 3 this has been done by Zheng [Zh] too. In
general, for arbitrary compact complex manifolds the “nefness” of the tangent bundle
leads to strong structural constraints [DPS].
The purpose of this paper is to investigate some aspects of manifolds X whose cotan-
gent bundles Ω1X are nef. In the first part we will give a characterization of 2 and 3
dimensional manifolds with Kodaira dimension κ(X) = 1 and nef cotangent bundle.
We will prove:
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Theorem 1 Let X be a minimal projective manifold of dimension n = 2 or 3 with
κ(X) = 1 and let π : X → C be the Iitaka fibration of X. Then the following
conditions are equivalent:
(i) Ω1X is nef.
(ii) π is almost smooth, in the sense that the only singular fibres of π are multiples of
smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).
• Exception: To prove (ii)⇒(i) in the case n = 3 and g(C) = 0 we need the assumption
that

∑ mi−1
mi
≥ 2, where the mi are the multiplicities of the singular fibres.

• The equivalence of (i) and (ii) holds also for compact Kähler surfaces.

This theorem generalizes a result of Fujiwara [Fu] who worked in arbitrary dimension
but under the stronger assumption that Ω1X is semi-ample, i.e. that some power of
OP(Ω1X)(1) is globally generated. The implication (i) ⇒ (ii) relies on the topological
constraints, namely the Chern class inequalities, which hold, when the cotangent
bundle is nef. To prove (ii) ⇒ (i) we will proceed in two steps. First, we will show
that the assertion is true for a smooth fibration. This follows basically from Griffiths’s
theory on the variation of the Hodge structure. Then, we will study the base-change
which reduces an almost smooth fibration to a smooth one and show that this process
allows to carry over the “nefness” of the cotangent bundle.
In fact, we will prove in any dimension that a projective manifold has a nef cotangent
bundle if (a) it admits a smooth Abelian fibration over a manifold with nef cotangent
bundle or (b) it admits an almost smooth Abelian fibration over a curve C such that
either (i) g(C) ≥ 1 or (ii) g(C) = 0 and

∑ mi−1
mi
≥ 2.

We remark that the fibres F of the Iitaka fibrations in Theorem 1 are paraAbelian
varieties, i.e. there exists an unramified cover T → F where T is an Abelian variety.
In view of this, we expect in any dimension that a manifold with Kodaira dimension
1 has a nef cotangent bundle if and only if the Iitaka fibration is almost smooth with
para-Abelian fibres.
In the second part of this paper we consider complex manifoldsX which are hyperbolic
with respect to the Carathéodory-Reiffen pseudometric. We will show :

Theorem 2 Let X be a complex manifold which is hyperbolic with respect to the
Carathéodory-Reiffen pseudometric and let Q be a compact quotient of X with respect
to a subgroup of the automorphism group of X which operates fixpointfree and properly
discontinuously. Then Ω1Q is nef.

In particular, any compact quotient of a bounded domain G ⊂ Cn possesses a nef
cotangent bundle. Since the canonical bundle of such a quotient is ample, this yields
a class of manifolds with maximal Kodaira dimension and nef cotangent bundle.
To prove theorem 2 we apply the technique of singular hermitian metrics which
was developed by Demailly. The Carathéodory-Reiffen pseudometric of X defines a
Finsler structure on the tangent bundle of Q and this gives us a singular hermitian
metric on OP(Ω1Q)(1). The hyperbolicity of X guarantees that this metric is contin-

uous and that the associated curvature current is positive. These conditions imply
that OP(Ω1Q)(1) is nef.

Acknowledgments: I would like to thank M. Schneider and Th. Peternell for
their help and encouragement.
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1 Basic definitions and properties

Let X and Y be compact complex manifolds and let L be a holomorphic line bundle
on X.

Definition 1 (i) When X is projective, L is said to be nef, if L · C =
∫
C c1(L) ≥ 0

for every curve C in X.
(ii) Let X be an arbitrary compact complex manifold equipped with a hermitian metric
ω. Then L is said to be nef, if for all ǫ > 0 there exists a smooth hermitian metric
hǫ on L such that the associated curvature form satisfies

Ωhǫ(L) ≥ −ǫ · ω.
(iii) Let E be a holomorphic vector bundle on X and P(E) the projective bundle of
hyperplanes in the fibres of E. Then we call E nef over X, if the tautological quotient
line bundle OP(E)(1) is nef over P(E).

We will frequently use the following propositions which are proved in [DPS].

Proposition 1 Let f : Y → X be a holomorphic map and let E be a holomorphic
vector bundle over X. Then E nef implies f∗E nef, and the converse is true if f is
surjective and has equidimensional fibres.

Proposition 2 Let E and F be holomorphic vector bundles. Then
(i) E, F nef ⇒ E ⊗ F nef.
(ii) E nef ⇒ det(E) nef.

Proposition 3 Let 0 → F → E → Q → 0 be an exact sequence of holomorphic
vector bundles. Then
(i) E nef ⇒ Q nef.
(ii) F,Q nef ⇒ E nef.

Proposition 1 immediately implies

Proposition 4 Let Y be a finite unramified covering of X. Then Ω1X is nef if and
only if Ω1Y is nef.

A fibration of X over Y is a surjective holomorphic map π : X → Y whose fibres are
connected. A point x ∈ X is said to be critical if the tangent map Dπ(x) has not
maximal rank. The images π(x) ∈ Y of the critical points are the critical values of
π. They form a proper analytic subset of Y , i.e. in the case, where Y is a curve, a
finite subset {a1, . . . , al}.
Let y ∈ Y and let J be the ideal sheaf of y in OY . Then the fibre Xy is the complex
subspace (π−1(y),OX/π∗(J ) · OX) of X, and a fibre Xy is singular if and only if y
is a critical value. A fibration, for which Dπ has maximal rank everywhere, is called
smooth.
When we consider a fibration π : X → C over a curve C, we will always assume
that C is smooth. Such a fibration is said to be almost smooth, if the only singular
fibres of π are multiples of smooth irreducible subvarieties. Their multiplicities will
be denoted by mi with 1 ≤ i ≤ l, so that the singular fibres are Xai = miFi, where
the Fi are smooth irreducible subvarieties.

Documenta Mathematica 2 (1997) 183–193



186 Henrik Kratz

We will denote the Kodaira dimension of X by κ(X). Let X be a projective
manifold with κ(X) ≥ 1 for which a power of the canonical bundle is globally gen-
erated. Then for m big enough the m−canonical map gives us a holomorphic map
π : X → Z where Z is a projective variety with dimZ = κ(X). Such a map π is
called Iitaka fibration (cf. [Ue]).

2 Manifolds with κ = 1 and nef cotangent bundle

We will now prove

Theorem 3 Let X be a minimal projective manifold of dimension n = 2 or 3 with
κ(X) = 1 and let π : X → C be the Iitaka fibration of X. Then the following
conditions are equivalent:
(i) Ω1X is nef.
(ii) π is almost smooth, in the sense that the only singular fibres of π are multiples of
smooth elliptic curves (n = 2) resp. Abelian or hyperelliptic surfaces (n = 3).
• Exception: To prove (ii)⇒(i) in the case n = 3 and g(C) = 0 we need the assumption
that

∑ mi−1
mi
≥ 2, where the mi are the multiplicities of the singular fibres.

• The equivalence of (i) and (ii) holds also for compact Kähler surfaces.

Proof: (i)⇒ (ii) If X is an n-dimensional projective manifold with Ω1X nef, it satisfies
the Chern class inequality c1(X)2 ≥ c2(X) ≥ 0, i.e.

c1(X)2 ·H1 · . . . ·Hn−2 ≥ c2(X) ·H1 · . . . ·Hn−2 ≥ 0

for all ample divisors Hi (cf. [DPS], Thm. 2.5). For n = 2 and 3 the abundance
conjecture holds which means that a power of the canonical bundle of X has to
be globally generated so that we get from κ(X) = 1 that c1(X)2 ≡ 0 and hence
c1(X)2 ≡ c2(X) ≡ 0. Here ≡ denotes numerical equivalence.
So for n = 2 we have an elliptic surface X whose topological Euler characteristic is
e(X) = c2(X) = 0. On the other hand, if π : X → C is the Iitaka fibration of X and
Xai are the singular fibres (1 ≤ i ≤ l), we calculate e(X) =

∑
e(Xai ) . But now the

assertion follows, because e(Xai ) ≥ 0 and e(Xai ) = 0 if and only if the fibre Xai is a
multiple of a smooth elliptic curve (cf. [BPV], Chap. III, Prop. 11.4). This argument
remains true for a compact Kähler surface.
For n = 3 we have a minimal threefold with the extremal Chern classes c1(X)2 ≡
3c2(X) ≡ 0 and the assertion follows from [PW], Theorem 2.1.
(ii)⇒ (i) We will prove this direction by reducing it to the case of a smooth fibration.

2.1 Smooth fibrations

We will consider smooth Abelian fibrations first:

Proposition 5 Let X and Y be projective manifolds and let π : X → Y be a smooth
fibration, whose fibres are Abelian varieties. Then the relative cotangent bundle Ω1X/Y
is nef. If Ω1Y is nef, Ω1X is nef too.

Proof: (1) We claim that π∗(π∗Ω
1
X/Y ) = Ω1X/Y . For all y ∈ Y the cotangent bundle of

the fibre Ω1Xy is trivial, so that π∗Ω
1
X/Y is locally free of rank equal to the dimension
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of the fibres (cf. [Ha], Chap. III, Cor. 12.9). Moreover for all y ∈ Y we have
(π∗Ω

1
X/Y )y ∼= H0(Xy,Ω

1
Xy

) and thus (π∗(π∗Ω
1
X/Y ))x ∼= H0(Xy,Ω

1
Xy

) for π(x) = y .

Now, the canonical homomorphism α : π∗(π∗Ω
1
X/Y ) → Ω1X/Y is described stalkwise

by αx : σ 7→ σ(x) with σ ∈ H0(Xy ,Ω1Xy). Since Ω1X/Y |Xy is globally generated, αx
is surjective and hence bijective.
(2) Any smooth fibration π : X → Y of projective manifolds gives rise to a variation
of the Hodge structure in its fibres Xy (y ∈ Y ). From this Griffiths deduces [Gr], Cor.
7.8

Theorem 4 For all n ∈ {1, . . . , dimCXy} the bundles Rnπ∗(OX) are seminegative
in the sense of Griffiths.

Now the bundle E = Rnπ∗(OX) is conjugate linear to Ē = π∗(Ω
n
X/Y ) so that the

curvature matrices with respect to unitary bases behave as

ΩĒ = Ω̄E = −ΩtE .

Since the transposition of the curvature matrix does not change its positivity proper-
ties, the preceding theorem can equivalently be formulated as

Theorem 5 For all n ∈ {1, . . . , dimCXy} the bundles π∗(ΩnX/Y ) are semipositive in
the sense of Griffiths.

In particular, since semipositivity implies “nefness”, π∗(Ω
n
X/Y ) is nef and hence for

a smooth Abelian fibration Ω1X/Y = π∗(π∗Ω
1
X/Y ) is nef too. The second assertion

follows immediately from the relative cotangent sequence and Proposition 3.

Remark: Proposition 5 holds also for compact elliptic surfaces π : X → C, because
for a smooth π one knows from the study of the period map that deg(π∗ωX/C) = 0
(cf. [BPV], Chap. III, Thm. 18.2).
We have a similar proposition for smooth hyperelliptic fibrations:

Proposition 6 Let X be a projective 3-dimensional manifold and let π : X → C be
a smooth fibration, whose fibres are hyperelliptic surfaces. Furthermore, let g(C) ≥ 1.
Then Ω1X is nef.

Proof: We consider the relative Albanese factorization of π, i.e. the commutative
diagram

X
Aπ−→ A(X/C)

π ց ↓ Alb(π)
C,

where A(X/C) is a smooth fibration over C whose fibres over a ∈ C are the Albanese
tori Alb(Xa) of the fibres Xa of π. The existence of such a relative Albanese diagram is
proved in [Ca]. Since the tangent bundle of a hyperelliptic surface is nef, the Albanese
map Aπ |Xa : Xa → Alb(Xa) is a surjective submersion with smooth elliptic curves as
fibres ([DPS], Prop. 3.9.). But also Aπ is smooth: let x ∈ X, π(x) = a and Aπ(x) = y,
then both tangent directions of TA(X/C)y lie in the image of DAπ(x). First, we can
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find a tangent vector v ∈ (TA(X/Y ) |Alb(Xa))y in the image of DAπ(x) |Xa (because

Aπ |Xa is smooth). Now let (x1, x2, x3) be a coordinate system centered in x and let z1
be a coordinate centered in a, such that Dπ(x). ∂

∂x1
= ∂

∂z1
. Using the commutativity

of the relative Albanese diagram, we get

0 6= Dπ(x).
∂

∂x1
= DAlb(π)(y) ◦DAπ(x).

∂

∂x1
.

In particular, w := DAπ(x). ∂
∂x1
6= 0, and since DAlb(π)(y).v = 0 the vectors v and

w have to be linear independent.
We can now apply Proposition 5 twice to conclude that Ω1X is nef: Alb(π) : A(X/C)→
C is a smooth fibration of projective manifolds whose fibres are elliptic curves and
by assumption g(C) ≥ 1, so that Ω1A(X/C) has to be nef. Since Aπ : X → A(X/C) is

a smooth elliptic fibration too, Ω1X is also nef.

2.2 Almost smooth fibrations

Let X be a compact complex manifold of dimension n and let π : X → C be an
almost smooth fibration over a smooth curve C. As above we will denote the critical
values of π by a1, . . . , al and their multiplicities bymi where 1 ≤ i ≤ l, so that the
singular fibres are Xai = miFi, where the Fi are smooth irreducible subvarieties.
To get rid of the multiple fibres we will now perform a base change which was in-
troduced by Kodaira for elliptic surfaces ([Kod], Thm 6.3), but may be used in this
general context as well. Let m0 be the lowest common multiple of the multiplicities
and let d be their product. Then we choose a finite covering σ : C ′ → C, which has d

mi
ramification points of order mi − 1 over the points ai where 0 ≤ i ≤ l. Remark that
we have to add one extra point a0 which is not contained in the set of critical values.
Then the normalization of the fibre product X ×C C ′ gives us a smooth fibration
ϕ : X′ → C ′ and a commutative diagram (cf. [Kod], Thm 6.3)

X′
f−→ X

ϕ ↓ ↓ π
C ′

σ−→ C .

Here f is a finite covering which is unramified over X − π−1(a0), because the multi-
plicities of π and σ compensate each other over ai (i ≥ 1), and f has d

m0
ramification

divisors of order m0 − 1 over π−1(a0).
Assume that we knew Ω1X′ is nef, then we would like to carry this over to Ω1X . How-
ever, it is not possible to apply Proposition 4 since f is ramified. But we have the
following commutative diagram with exact rows which was already used in [Fu]

0 −→ f∗(L) −→ f∗(Ω1X) −→ Ω1X′/C′ −→ 0

↓ ↓ ‖
0 −→ ϕ∗(KC′) −→ Ω1X′ −→ Ω1X′/C′ −→ 0.

Let D =
∑l
i=1(mi − 1)Fi then L = π∗(KC ) ⊗ OX(D) is the full subbundle of Ω1X

associated to π∗(KC) (cf. [Re]). To prove the commutativity of this diagram one uses
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basically the fact that the restriction of f to a fibre of ϕ is unramified. For i ≥ 1 we

have π∗(ai) = miFi. So, defining A :=
∑l
i=1

(mi−1)
mi

·ai we get L = π∗(KC ⊗OC (A)).
Combining the diagram and Proposition 5, we obtain

Corollary 1 Let X be a projective manifold of arbitrary dimension and let π :
X → C be an almost smooth fibration, whose fibres are Abelian varieties. Assume
furthermore that (i) g(C) ≥ 1 or (ii) g(C) = 0 and degA ≥ 2. Then Ω1X is nef.

Proof: The process described above allows us to pass to a smooth Abelian fibration ϕ,
for which Ω1X′/C′ is nef by Proposition 5. Moreover the line bundle L = π∗(KC ⊗ A)

is nef, since our assumptions guarantee that deg(KC ⊗A) = 2g(C)−2+deg A ≥ 0. If
L is nef, then f∗(L) and f∗(Ω1X) are nef (Proposition 3). Since f is a finite surjective
map, we finally deduce from Proposition 1 that Ω1X is nef.

Remark: (i) The corollary holds for arbitrary compact surfaces too, because
Proposition 5 remains true in that case.
(ii) If S is a surface with κ(S) = 1 and π : S → P1 is an almost smooth elliptic
fibration, the condition that degA ≥ 2 (resp. that L is nef) is automatically satisfied.
We have deg(π∗(ωS/P1)) = 0 and therefore π∗(ωS/P1) = OP1 (cf. [BPV]). Now the
formula for the canonical bundle of an elliptic fibration yieldsKS = π∗(KP1)⊗OS(D),
so that L = KS is nef since κ(S) = 1.

Similarly we get

Corollary 2 Let X be a projective 3-dimensional manifold with κ(X) ≥ 0 and let
π : X → C be an almost smooth fibration, whose fibres are hyperelliptic surfaces.
Assume furthermore that (i) g(C) ≥ 1 or (ii) g(C) = 0 and degA ≥ 2. Then Ω1X is
nef.

Proof: To deduce from Proposition 6 that Ω1X′/C′ is nef as a quotient of Ω1X′ , we

have to assure that g(C ′) ≥ 1. But g(C ′) = 0 leads to −∞ = κ(X′) ≥ κ(X) which
contradicts our assumptions.

In particular, these two corollaries yield the direction (ii)⇒ (i) in Theorem 3
which is now completely proved.

3 Quotients with nef cotangent bundle

The goal of this section is to prove that compact quotients of a manifold which is hy-
perbolic with respect to the Carathéodory-Reiffen pseudometric have a nef cotangent
bundle. We will use the notion of singular hermitian metrics as introduced in [De1]:

Definition 2 Let L be a holomorphic line bundle over a compact complex manifold

X and let θα : L |Uα
≃−→ Uα × C be a local trivialization of L. Then a singular

hermitian metric on L is given by

‖ξ‖ = |θα(ξ)| · e−ϕα(x), x ∈ Uα, ξ ∈ Lx,
where ϕα ∈ L1loc(Uα) is an arbitrary real valued function, called the weight function
of the metric with respect to the trivialization θα.

Documenta Mathematica 2 (1997) 183–193



190 Henrik Kratz

The curvature form of the singular metric on L is locally given by the closed (1, 1)-
current c(L) = i

π
∂∂̄ϕα. We will write c(L) ≥ 0, if c(L) is a positive current in the

sense of distribution theory, i.e. if the weight functions ϕα are plurisubharmonic.
Remark: We will say that a singular metric is continuous (or simply that it is a
continuous metric), if the weight functions ϕα are continuous on the trivialization
sets.
The main ingredient for the following arguments will be the next proposition which
is independently due to Demailly, Shiffman and Tsuji (see e.g. [De2])

Proposition 7 Let L be a holomorphic line bundle on a compact complex manifold
X. Then L is nef, if there exists a continuous metric with c(L) ≥ 0.

In fact the proposition is even true in the case where the Lelong numbers of the metric
(which are zero everywhere for a continuous metric) are zero except for a countable
set of points (cf. Thm. 4.2 in [JS]).
Let E be a holomorphic vector bundle over a compact complex manifold X. As in
[Rei] and [Ko] we define

Definition 3 A Finsler structure on E is a continuous function F : E → R≥0, so
that for all η ∈ E:
(i) F (η) > 0 for η 6= 0,
(ii) F (λη) = |λ|F (η) for all λ ∈ C.
If we require in (i) only ≥, F is said to be a Finsler pseudostructure.
Let P (E) denote the projective bundle of lines in the fibres of E, p : P (E) → X
the projection and OP(E)(−1) the subbundle of p∗E whose fibre over a point in
P (E) is given by the complex line represented by that point. Then we have a map
p̃ : OP(E)(−1) → E which is biholomorphic outside the zero sections of OP(E)(−1)
and E. The set of all plurisubharmonic functions on a complex manifold Y will be
denoted by PSH(Y ).

Proposition 8 (a) Any Finsler structure F on E defines via

‖ξ‖ := F ◦ p̃(ξ), ξ ∈ OP(E)(−1).

a continuous metric on OP(E)(−1).
(b) If logF ∈ PSH(E\{0}), then −ϕα ∈ PSH(Uα).

Proof: (a) Let θα : OP(E)(−1) |Uα
≃−→ Uα×C be a local trivialization and let sα be a

local holomorphic section of OP(E)(−1) |Uα which describes the trivialization. Then
the corresponding weight function is

−ϕα(x) = log ‖sα(x)‖ = logF ◦ p̃(sα(x)), x ∈ Uα.

The map p̃ ◦ sα : Uα → E is clearly holomorphic. Moreover for x ∈ Uα we have
sα(x) 6= 0, so that property (i) in the definition of Finsler structures leads to
F ◦ p̃(sα(x)) > 0. From this we conclude −ϕα ∈ C0(Uα).
(b) If f : Y → Z is a holomorphic map between complex manifolds and the function
u ∈ PSH(Z), then u ◦ f ∈ PSH(Y ) (cf. [JP], Appendix, PSH 7). So, since p̃ ◦ sα is
holomorphic, we have −ϕα ∈ PSH(Uα).
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Proposition 9 Let E → X be a holomorphic vector bundle over a compact complex
manifold X. If there exists a Finsler structure F : E → R≥0 such that logF ∈
PSH(E\{0}), then E∗ is nef.

Proof: To prove that E∗ is nef, we have to show that L := OP(E)(1) ∼= OP(E∗)(1)
is nef. According to Proposition 8 the Finsler structure F : E → R≥0 induces a
continuous metric on OP(E)(−1) so that −ϕα ∈ PSH(Uα). For the dual bundle
L = OP(E)(1) equipped with the dual metric the weight functions are given by
ϕ∗α = −ϕα, hence we have a continuous metric on L whose current is positive and
the assertion follows from Proposition 7.

Let X be a connected complex manifold. A Finsler (pseudo-) structure on the
tangent bundle TX is called a differential (pseudo-) metric. Any such X admits a
differential pseudometric: for p ∈ X and η ∈ TXp we define

γX(p, η) := sup{|Dg(p).η| : g ∈ O(X,∆), g(p) = 0},

where ∆ is the open unit disc in C and O(X,∆) the set of all holomorphic maps from
X to ∆. Reiffen shows in [Rei]:

Proposition 10 The map γX : TX → R≥0 is a differential pseudometric, which has
the following invariance property. Let f : X → Y be a holomorphic map of connected
complex manifolds, then

γY (f(p), Df(p).η) ≤ γX(p, η),

in particular, for a biholomorphic map f the equality holds.

The function γX is called the Carathéodory-Reiffen pseudometric and X is said to be
γ-hyperbolic, if γX is a differential metric.
Examples: (i) Any bounded domain G ⊂ Cn is γ-hyperbolic (cf. [JP], Chap. II, Prop.
2.3.2).
Proposition 10 immediately implies: let i : X → Y be a holomorphic immersion and
let Y be γ-hyperbolic, then X is γ-hyperbolic too. This gives us
(ii) Let Y be a Stein manifold and let G̃ be a bounded domain in Y , i.e. there exists
an embedding Y →֒ CN and a bounded domain G ⊂ CN , such that G̃ = Y ∩ G is
connected. Then G̃ is γ-hyperbolic.

Proposition 11 Let X be a γ-hyperbolic manifold. Then the function

log γX : TX\{0} → (−∞,+∞)

is plurisubharmonic.

Proof: Since the logarithm is strictly increasing, we have

log γX(p, η) = sup{log |Dg(p).η| : g ∈ O(X,∆), g(p) = 0}.

The tangent map of a holomorphic map is again holomorphic, so that g̃(p, η) :=
log |Dg(p).η| is in PSH(TX) (see [JP], Appendix, PSH 4). Hence log γX = supg{g̃}
is the supremum of plurisubharmonic functions. By assumption γX is a differential
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metric, i.e. γX is continuous and γX : TX\{0} → R>0, thus logγX : TX\{0} →
(−∞,∞) is also continuous. Now we get our assertion from the following fact ([JP],
Appendix, PSH 14). If a family (uα)α∈A of plurisubharmonic functions is locally
uniformly bounded from above, then the function

u0 := (sup
α∈A

uα)∗

is again plurisubharmonic, where “∗” denotes the upper semicontinuous regulariza-
tion. But we don’t need to regularize log γX , since it is already continuous and this
assures also that the family {g̃} is locally uniformly bounded from above.
Let G be a subgroup of the automorphism group Aut(X), which operates fixpointfree
and properly discontinuously on X. Then the quotient Q = X/G is a Hausdorff space
which admits a unique complex structure, such that the projection π : X → Q is a
holomorphic and locally biholomorphic map. We can now prove

Theorem 6 Let X be a γ-hyperbolic manifold and let Q = X/G be a compact quotient
as above. Then the cotangent bundle Ω1Q is nef.

Proof: As local coordinates ψ for Q we can take π−1 restricted to appropriate open
sets such that a coordinate change is described by ψ1 ◦ ψ−10 = f , where f ∈ G (cf.
[W], Chap. V, Prop. 5.3.). Then we define for q ∈ Q and ξ ∈ TQq

F (q, ξ) := γX(ψ(q), Dψ(q).ξ).

Since the Carathéodory-Reiffen metric γX is invariant under biholomorphic transfor-
mations (Proposition 10), this definition does not depend on the choice of the local
coordinate and gives us a differential metric F on TQ. Moreover Proposition 11
implies that logF ∈ PSH(TQ\{0}). Now the assertion follows from Proposition 9.

In particular, compact quotients of a bounded domain in Cn or in a Stein manifold
have nef cotangent bundles.
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Abstract. We prove that if X is a smooth projective threefold with b2 = 1
and Y is a Fano threefold with b2 = 1, then for a non-constant map f : X →
Y , the degree of f is bounded in terms of the discrete invariants of X and
Y . Also, we obtain some stronger restrictions on maps between certain Fano
threefolds.

1991 Mathematics Subject Classification: 14E99, 14J45

1. Introduction

Let X, Y be smooth complex n-dimensional projective varieties with P ic(X) ∼=
P ic(Y ) ∼= Z. Let f : X → Y be a non-constant morphism. It is a trivial conse-
quence of Hurwitz’s formula

KX = f∗KY + R

that if Y is a variety of general type, then deg(f) is bounded in terms of the numerical
invariants of X and Y , and in particular all the morphisms from X to Y fit in a finite
number of families.
If we drop the assumption that Y is of general type, then this assertion is no longer
quite true. Indeed, if Y is a projective space Pn, for any X we can construct infinitely
many families of maps X → Y : take an embedding of X in PN by any very ample
divisor on X and then project the image to Pn. However, one might ask if Pn is the
only variety with this property (the following conjectures are suggested by A. Van de
Ven) :

Conjecture A: Let X, Y be as above and Y 6∼= Pn. Then there is only finitely many
families of maps from X to Y . Moreover, the degree of a map f : X → Y can be
bounded in terms of the discrete invariants of X and Y .

A weaker version is the following
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Conjecture B: Let X, Y be smooth n-dimensional projective varieties with b2(X) =
b2(Y ) = 1. Suppose Y 6∼= Pn and, if n = 1, that Y is not an elliptic curve. Then the
degree of a map f : X → Y can be bounded in terms of the discrete invariants of X
and Y .

Remark: If n = 1, the Conjecture A is empty and the Conjecture B is trivial. If
n = 2, one must check the Conjecture A with Y a K3-surface, and at the moment I
do not know how to do this. This problem, of course, does not arise for Conjecture B,
which again becomes a triviality in dimension two (note that if for a smooth complex
projective variety V we have b1(V ) 6= 0 and b2(V ) = 1, then V is a curve). The
assumption in the Conjecture B that Y is not an elliptic curve is , of course, necessary:
any torus has endomorphisms of arbitrarily high degree given by multiplication by an
integer.

Evidence: It seems likely that “the more ample is the canonical sheaf on Y , the more
difficult it becomes to produce maps from X to Y ”. Of course, the projective space
has the “least ample” canonical sheaf: KPn = −(n + 1)H, where H is a hyperplane.
The next case is that of a quadric: KQn = −nH with H a hyperplane section. For
n = 3, it has been proved by C.Schuhmann ([S]) that the degree of a map from a
smooth threefold X with Picard group Z to the three-dimensional quadric is bounded
in terms of the invariants of X. In [A], I have suggested a simpler method to prove
results of this kind, which also generalizes to higher dimensions.

The main purpose of this paper is to show by a rather simple method that for Fano
threefolds Y , at least for those with very ample generator of the Picard group, the
above Conjecture B is true (we also show that for many of such threefolds Conjecture
A holds). The boundedness results are proved in the next section. In Section 3,
we obtain in a similar way a strong restriction on maps between “almost all” Fano
threefolds with Picard group Z. This is related to the “index conjecture” of Peternell
which states that if f : X → Y is a map between Fano varieties of the same dimension
with cyclic Picard group, then the index of Y is not smaller than that of X. This
conjecture is studied for Fano threefolds by C.Schuhmann in her thesis, and one of
her main results is that there are no maps from such a Fano threefold of index two to
a Fano threefold of index one with reduced Hilbert scheme of lines. An extension of
this result appears also in Theorem 3.1 of this paper ; however, there is at least one
Fano threefold of index one with non-reduced Hilbert scheme of lines, namely, Mukai
and Umemura’s V22. The last section of this paper deals with this variety: it is proved
that a Fano threefold of index two with Picard group Z does not admit a map onto
it. One would think that the Mukai-Umemura V22 is the only Fano threefold of genus
at least four with cyclic Picard group and non-reduced Hilbert scheme of lines. The
proof of this would be a solution to the “index conjecture” in the three-dimensional
case (recall that a Fano threefold of index one and genus at most three has the third
Betti number which is bigger than the third Betti number of any Fano threefold of
index two ([I1] ,table 3.5), so we do not have to consider the case of genus less than
four to prove the index conjecture). In fact even a weaker statement would suffice
(see Theorem 3.1).
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This paper can be viewed as a very extensive appendix to [A], as a large part of the
method is described there.

We will often use the following notations: Generally, for X ⊂ Pn, HX denotes the
hyperplane section divisor on X. Also, for X with cyclic Picard group, we will call
HX the ample generator of P ic(X) (in this paper it will mostly be assumed that HX

is very ample). By Vk, following Iskovskih, we will often denote a Fano threefold with
cyclic Picard group, which has index one and for which H3X = k (k will be called the
degree of this Fano threefold). For Grassmann varieties, we use projective notation:
G(k, n) denotes the variety of projective k-subspaces in the projective n-space.
Finally, throughout the paper we work over the field of complex numbers.

Acknowledgments: I would like to thank Professor A. Van de Ven for many helpful
discussions. I am grateful to Frank-Olaf Schreyer for explaining me many facts on
V22 and for letting me use his unfinished manuscript [Sch], and also to Aleksandr
Kuznetsov for giving me his master’s thesis [K]. The final version of this paper was
written during my stay at the University of Bayreuth, to which I am grateful for its
hospitality and support.

2. Boundedness

Let Y be a Fano threefold such that P ic(Y ) ∼= Z, and suppose that the positive
generator of the Picard group is very ample. When speaking of deg(Y ) and other
notions related to the projective embedding ( e.g. the sectional genus g(Y ) of Y ) we
will suppose that this embedding is given by global sections of the generator.
It is well-known ([I],I, section 5 ) that if Y is of index two, then lines on Y are
parameterized by a smooth surface FY (the Fano surface) on Y . A general line on Y
has trivial normal bundle, and there is a curve on F which parametrizes lines with
the normal bundle OP1(−1) ⊕OP1(1) (let us call them (-1,1)-lines). If Y is of index
one, than Y contains a one-dimensional family of lines ([I], II, section 3); the normal
bundle of a line is then either OP1(−1)⊕OP1 , or OP1(−2)⊕OP1(1). In the last case
such a line is of course a singular point of the Hilbert scheme. In the sequel we will
use the simple fact that if the Hilbert scheme of lines on a Fano threefold of index one
is non-reduced, i.e. every line of one of its irreducible components is (-2,1), then the
surface covered by the lines of this component is either a cone, or a tangent surface
to a curve.

If the generator HY of P ic(Y ) is not very ample, there still exist “lines” on Y : we call
a curve C a line if C · HY = 1. In this case, however, there exist other possibilities
for the normal sheaf NC,Y . If Y is a threefold of index 2 and H3Y = 1, C can even be
a singular curve and, moreover, if we want our “lines” to fit into a Hilbert scheme,
we must also allow embedded points ([T]).
At this point, it is convenient to recall from [I] which Fano threefolds have very
ample/not very ample generator of the Picard group. For index two, the threefolds
with very ample generator are cubics, intersections of two quadrics and the linear
section of G(1, 4); the other threefolds are double covers of P3 branched in a quartic
(quartic double solids) and double covers of the Veronese cone branched in a cubic
section of it (double Veronese cones). For index one, we have nine families of threefolds
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with very ample generators, plus double covers of the quadric branched in a quartic
section and double covers of P3 branched in a sextic.
Often we will assume here for simplicity that HY is very ample, and discuss the other
case in remarks.
We start by proving the following

Proposition 2.1 A) If Y is a Fano threefold (with P ic(Y ) ∼= Z, HY very ample) of
index 2 such that the surface UY ⊂ Y which is the union of all (-1,1)-lines on Y is in
the linear system |iHY | with i ≥ 5, then for any threefold X, P ic(X) ∼= Z, the degree
of a map f : X → Y is bounded in terms of the discrete invariants of X.
B) If Y is a Fano threefold of index 1 with P ic(Y ) ∼= Z, HY very ample, such that
the surface SY ⊂ Y which is the union of all lines on Y is in the linear system iHY

with i ≥ 3, then for any threefold X, P ic(X) ∼= Z, the degree of a map f : X → Y is
bounded in terms of the discrete invariants of X.

Proof: Let m be such that f∗HY = mHX . Notice that by Hurwitz’ formula, our
conditions on UY resp. SY just mean that if deg(f) is big enough, then not the whole
inverse image of UY resp. SY is contained in the ramification. Indeed, if Y is, say, of
index one, we have KY = −HY . The Hurwitz formula reads

KX = −mHX +R.

If the whole inverse image of SY is in the ramification, then R is at least 32mHX ,
so m cannot get very big. Therefore one gets that the inverse image D of a general
(-1,1)-line on Y (in the index-two case) or a general line on Y (in the index-one case)
has a reduced irreducible component C.
Let Y be a Fano threefold of index two satisfying UY = iHY with i ≥ 5. For C and
D as above, there is a natural morphism

φ : (IC/I2C)∗ → (ID/I2D)∗|C = OC(m) ⊕OC(−m),

and this map must be an isomorphism at a smooth point of D, i.e. at a sufficiently
general point of C, as C is reduced. Now, also due to the fact that C is reduced, the
natural map

ψ : TX |C → (IC/I2C)∗

is a generic surjection. Therefore if we find an integer j such that TX(j) is globally
generated, we must have m ≤ j.
Such j depends only on the discrete invariants of X. Indeed, let A be a very ample
multiple of HX . A linear subsystem of the sections of A gives an embedding of a
threefold X into P7. We have

TX(KX) = Λ2ΩX .

Λ2ΩX is a quotient of Λ2ΩP7 |X , and we deduce from this that Λ2ΩX(3A) is generated
by the global sections. So TX(KX + 3A) is generated by the global sections, and j
can be taken such that KX + 3A = jHX . So one only needs to know which multiple
of HX is very ample, and this can be expressed in terms of the discrete invariants of
X (see for example [D] for many results in this direction).
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The case of index one is completely analogous: a normal bundle of any line on a Fano
threefold of index one has a negative summand.

Remark A: The assumption on the very ampleness of the generator of P ic(Y ) is
not really necessary to prove Proposition 2.1. Otherwise, we call “lines” curves C
satisfying C · HY =1. These curves are rational. One has then to count with the
possibility that e. g. some of the “lines” on such a Fano 3-fold of index two can have
normal bundle OP1(−2) ⊕OP1(2), but this is not really essential for the argument:
as soon as we can find sufficiently big 1-parameter family of smooth rational curves
with a negative summand in the normal bundle, our method works.

Examples of Fano threefolds Y satisfying our assumptions on SY , UY :

1) Y a cubic in P4 and
2) Y an intersection of two quadrics in P5. To check this is more or less standard and
almost all details can be found in [CG] for a cubic and in [GH] (Chapter 6) for an
intersection of two quadrics. For convenience of the reader, we give here the argument
for Y an intersection of two quadrics in P5:

Let F ⊂ G(1, 5) be a surface which parametrizes lines on Y (Fano surface) , and let
U → F be the family of these lines. The ramification locus of the natural finite map
U → Y consists exactly of (-1,1)-lines, that is, the surface M covered by (-1,1)-lines
on Y is exactly the set of points of Y through which there pass less than four lines
(of course there are four lines through a general point of Y ). F is the zero-scheme
of a section of the bundle S2U∗ ⊕ S2U∗ on G(1, 5). A standard computation with
Chern classes yields then that KF = OF (in fact, F is an abelian variety ([GH])).
For a general line l ⊂ Y consider a curve Cl ⊂ F which is the closure in F of lines
intersecting l and different from l. Cl contains l iff l is (-1,1). Cl is smooth for any
l ([GH]). By adjunction, Cl has genus 2. So the ramification R of the natural 3:1
morphism hl : Cl → l sending l′ to l ∩ l′ ( with l general, i.e. not a (-1,1)-line) has
degree 8. The branch locus of h consists of intersection points of l and the surface
M of (-1,1)-lines, and so we have that this surface is in |iHY | with i ≥ 4 and i = 4
only if there are only 2 lines through a general point of M . This is again impossible:
otherwise, for l a (-1,1)-line, Cl would be birational to l. In fact, one gets that i = 8.

3) Y a quartic double solid. The computations are rather similar, and the best
reference is [W]. Bitangent lines to the quartic surface give pairs of “lines” on Y as
their inverse images under the covering map. Welters proves the following results:
the Fano surface FY has only isolated singularities (and is smooth for a general Y );
the curve Cl for a general l is smooth except for one double point; there are 12 “lines”
through a general point of Y ; pa(Cl) = 71. We use these results to conclude that Y
satisfies our assumptions.
4) Y is a “sufficiently general” Fano threefold of index one ( of course we assume that
P ic(Y ) ∼= Z and that the positive generator of P ic(Y ) is very ample), deg(Y ) 6= 22:
see [I], II, proof of th. 6.1. It is computed there that a Fano threefold Y of index one
(with very ample HY ) with reduced scheme of lines satisfies our assumption on SY
iff deg(Y ) 6= 22. By the classification of Mukai ([M]), any Fano threefold of index one
as above except V22’s is a hyperplane section of a smooth (Fano) fourfold. Clearly, a
general line on a Fano fourfold of index two has trivial normal bundle. So a general
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hyperplane section of such a fourfold has reduced Hilbert scheme of lines.
5) Y any Fano threefold of index one and genus 10: Prokhorov shows in [P] that the
Hilbert scheme of lines on any such threefold is reduced.
6) Y any Fano threefold V14 of index one and genus 8: such a threefold is a linear
section of G(1, 5) in the Plücker embedding. Iskovskih shows in [I], II, proof of th. 6.1
(vi), that on such a threefold with reduced scheme of lines, lines will cover a surface
which is linearly equivalent to 5H. So one sees that if the lines cover only H or 2H,
the scheme of lines is non-reduced and the surface covered by lines consists of one
or two components which are hyperplane sections of Y . Moreover, as a V14 does not
contain cones, all the lines in one of the components must be tangent to some curve
A. One checks easily that this curve is a rational normal octic. A is then the Gauss
image of a rational normal quintic B in P5 ([A], proof of Proposition 3.1(ii)). This
makes it possible to check that there is no smooth three-dimensional linear section of
G(1, 5) containing the tangent surface to A. Indeed, one can assume that B is given
as

(x50 : x40x1 : ... : x51), (x0 : x1) ∈ P1;
one computes then that the Gauss image of B in G(1, 5) ⊂ P14 (where G(1, 5) is
embedded to P14 by Plücker coordinates (zi), the order of which we take as follows:
for a line l through p = (p0 : ... : p5) and q = (q0 : ... : q5) we take z0 = p0q1−p1q0; z1 =
p0q2− p2q0; ...; z5 = p1q2− p2q1; ...; z14 = p4q5− p5q4 ) generates the linear subspace
L given by the following equations:

z2 = 3z5, z3 = 2z6, z4 = 5z9,

z7 = 3z9, z8 = 2z10, z11 = 3z12.

So we must consider all the projective 9-subspaces through L and prove that the
intersection of every such space with G(1, 5) is singular. This can be done for example
as follows: let L ∼= P5 be a parametrizing variety for these 9-subspaces. Notice that
the points x = (1 : 0 : ... : 0) and y = (0 : ... : 0 : 1) belong to our curve A. Notice
that if t is a point of A, then the set Lt = {M ∈ L : M ∩ G(1, 5) is singular at t}
is a hyperplane in L. If we see that these sets are different at different points t, we
are done. It is not difficult to check explicitly (writing down the matrix of partial
derivatives) that for x = (1 : 0 : ... : 0) ∈ A and y = (0 : ... : 0 : 1) ∈ A, Lx 6= Ly: if a
9-space M through L is given by the equations

a1i(z2 − 3z5) + a2i(z3 − 2z6) + a3i(z7 − 3z9)+

+a4i(z8 − 2z10) + a5i(z11 − 3z12) + a6i(z4 − 5z9) = 0

for i = 1, ..., 5, then M ∈ Lx if and only if

det(aki)
i=1,2,3,4,5
k=1,2,3,4,6 = 0

and M ∈ Ly if and only if

det(aki)
i=1,2,3,4,5
k=1,2,3,4,5 = 0.

These conditions are clearly different.
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Examples of Fano threefolds not satisfying assumptions of Proposition
2.1:

1) Y is a linear section of G(1, 4) in the Plücker embedding: the surface UY has degree
10.
2) Y is a Fano variety of index one and genus 12 (V22). The surface of lines belongs
to | − 2KY | for all V22’s but one ([P]), for which the scheme of lines is non-reduced
and the surface covered by lines belongs to | −KY |. This threefold with non-reduced
Hilbert scheme of lines (the Mukai-Umemura variety) will be denoted V s22.

Question: Are these the only examples?

Remark B: Though any V22 violates the assumption of the Proposition 2.1, for a
V22 with the reduced Hilbert scheme of lines (therefore for all V22’s but one) the
boundedness of the degree of a map f : X → V22 can be proved. The point is that
a general line on such a V22 has the normal bundle OP1 ⊕ OP1(−1), so if U is the
universal family of lines on V22 and π : U → V22 is the natural map, then π is an
immersion along a general line. Now if the preimage of a general line l is not contained
in the ramification R, one can proceed as before. If it is, then let C be the reduction
of an irreducible component of f−1(l), and let k be such that at a general point of
the component of R containing C, the ramification index is k−1 (i.e. “k points come
together”.) It turns out that using our observation about π, we can then estimate
the arithmetic genus of C (see [A], section 5). Namely, let f∗HV22 = mHX and let
KX = rHX. We get then

2pa(C)− 2 ≤ (r − m

k
)CHX .

Suppose now that k − 1 is a smallest ramification index for R. Hurwitz’ formula
implies that if r < m

3
, then k = 2. So if m gets big, pa(C) becomes negative, and this

is impossible.

Concerning the remaining Fano threefolds (in particular, V s22 and G(1, 4)
⋂
P6), we

can prove a weaker result (as in Conjecture B):

Proposition 2.2 Let Y be a Fano threefold with P ic(Y ) = Z and with HY very
ample, let X be a smooth threefold with b2(X) = 1 and let f : X → Y be a morphism.
If either Y is of index two, or Y is of index one with non-reduced Hilbert scheme of
lines, then the degree of f is bounded in terms of the discrete invariants of X.

Proof: Consider for example the index one case. We have that Y has a one-dimensional
family of (−2, 1)-lines. If we take a smooth hyperplane section H through a line l of
this family, the sequence of the normal bundles

0→ Nl,H → Nl,Y → NH,Y |l → 0

splits.
Therefore, if M is the inverse image of H and C is the inverse image of l (scheme-
theoretically), the sequence

0→ NC,M → NC,X → NM,X |C → 0

Documenta Mathematica 2 (1997) 195–211



202 E. Amerik

also splits.
It is not difficult to see that for a general choice of l and H, the surface M has
only isolated singularities. As M is a Cartier divisor on a smooth variety X (say
M ∈ |OX(m)|), M is normal.
Now we are in the situation which is very similar to that of the following

Theorem (R. Braun, [B]): Let W be a Cartier divisor on a variety V of dimension
n, 2 ≤ n < N , in PN such that W has an open neighborhood in V which is locally a
complete intersection in PN . If the sequence of the normal bundles

0→ NW,V → NW,PN → NV,PN |W → 0 (∗)

splits, then W is numerically equivalent to a multiple of a hyperplane section of V .

It turns out that if we replace here W , V , PN by C, M , X as in our situation, the
similar statement is true. The only additional assumption we must make is that M
is sufficiently ample, i.e. m is sufficiently big:
Claim: Let X be a smooth projective 3-fold with b2(X) = 1, and let M be a sufficiently
ample normal Cartier divisor on X. If C is a Cartier divisor on M and the sequence

0→ NC,M → NC,X → NM,X |C → 0

splits, then C is numerically equivalent to a multiple of HX |M .
The proof of this claim is almost identical to that of Braun’s theorem (which is itself
a refinement of the argument of [EGPS] where the theorem is proved for V a smooth
surface). Recall that the main steps of this proof are:

1) The sequence (∗) splits iff W is a restriction of a Cartier divisor from the second
infinitesimal neighborhood V2 of V in PN ;
2)The image of the natural map P ic(V2)→ Num(V ) is one-dimensional.

In the situation of the lemma, 1) goes through without changes with W , V , PN

replaced by C, M , X (M2 will of course denote the second infinitesimal neighborhood
of M in X). The second step is an obvious modification of that in [B], [EGPS]: as in
these works, it is enough to prove that the image of the natural map

P ic(M2)→ H1(M,Ω1M)

is contained in a one-dimensional complex subspace, and this follows from the com-
mutative diagram

P ic(M2) P ic(M) Num(M) H1(M,Ω1M )

H1(M2,Ω
1
M2

) H1(M,Ω1M2
|M) H1(M,Ω1X |M)

-restr.

?
dlog

- -

- -α
�������*

(where α exists because the sheaves Ω1M2
|M and Ω1X |M are isomorphic)
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and the fact that for sufficiently ample M ,

H1(M,Ω1X |M) ∼= H1(X,Ω1X) ∼= C
as follows from the restriction exact sequence

0→ Ω1X(−M)→ Ω1X → Ω1X |M → 0.

Note that we can give an effective estimate for “sufficient ampleness” of M in terms
of numerical invariants of X using the Griffiths vanishing theorem ([G]).
Applying this to our situation of a map onto a Fano threefold Y of index one with
non-reduced Hilbert scheme of lines, we get that C = f−1(l) must be numerically
equivalent to a multiple of the hyperplane section divisor on M = f−1(H) if the
number m (defined by f∗HY = mHX) is large enough. As it is easy to show that C
and the hyperplane section of M are independent in Num(M), it follows that m and
therefore deg(f) must be bounded. The case of index two is exactly the same (use
the existence of a divisor covered by (-1,1)-lines). So the Proposition is proved.

We summarize our results in the following

Theorem 2.3 Let X be a smooth projective threefold with b2(X) = 1, let Y be a Fano
threefold with b2(Y ) = 1 and very ample HY and let f : X → Y be a morphism. If
Y ≇ P3, then the degree of f is bounded in terms of the discrete invariants of X, Y .

Proof: Indeed, there are only four possibilities:
a) Y is a quadric: this is proved in [S], [A].
b) Proposition 2.1 applies;
c) Y is V22 with reduced scheme of lines: the boundedness for deg(f) is obtained in
Remark B;
d) Y is either G(1, 4) ∩ P6, or a Fano threefold with non-reduced Hilbert scheme of
lines: then Proposition 2.2 applies.
Notice that in the first three cases it is sufficient that P ic(X) ∼= Z.

3. Maps between Fano threefolds

It turns out that we obtain especially strong bound if X is also a Fano variety. In
many cases,this even implies non-existence of maps:

Theorem 3.1 Let X, Y be Fano threefolds, P ic(X) ∼= P ic(Y ) ∼= Z. Suppose that
HX, HY are very ample. If either
i) Y is of index one and SY is at least 2HY ,
or
ii) Y is of index two and UY is at least 4HY(where SY , UY are as in Proposition 2.1),
then for a non-constant map f : X → Y we must have

f∗(HY ) = HX ,

i.e.

deg(f) =
H3X
H3Y

.
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Before starting the proof, we formulate the following result from [S]:
Let f : X → Y be a non-trivial map between Fano threefolds with Picard group Z.
Then:
A) If X,Y are of index two, then the inverse image of any line is a union of lines;
B) If X,Y are of index one, then the inverse image of any conic is a union of conics;
C) If X is of index one and Y is of index two, then the inverse image of any line is
a union of conics;
D) If X is of index two and Y is of index one, then the inverse image of any conic is
a union of lines.
(here a conic is allowed to be reducible or non-reduced. Unions of lines and conics
are understood in set-theoretical sense, i.e. a line or a conic from this union can, of
course, have a multiple structure.)

We will also need some facts on conics on a Fano threefold V of index one, with very
ample −KV and cyclic Picard group. Iskovskih proves ([I],II, Lemma 4.2) that if C
is a smooth conic on such a threefold, then NC,V = OP1(−a) ⊕OP1(a) with a equal
to 0,1,2 or 4. The following lemma is an almost obvious refinement of this:

Lemma 3.2 a) Let C ⊂ V be a smooth conic. Then NC,V = OP1(−4)⊕OP1(4) if and
only if there is a plane tangent to V along C. In particular, such conics exist only if
V is a quartic.
b) Let C ⊂ V be a reducible conic: C = l1

⋃
l2, l1 6= l2. Let N be the (locally free

with trivial determinant) normal sheaf of C in V . Then N |li = OP1(−ai)⊕OP1(ai)
with 0 ≤ ai ≤ 2, and if ai = 2 for both i, then there is a plane tangent to V along C
(and V is a quartic ).

Proof: a) This is a simple consequence of the fact that for C ⊂ V ⊂ Pn, NC,V ⊂
NC,Pn , and the only subbundle of degree 4 in NC,Pn is NC,P with P the plane
containing C. One concludes that V is a quartic as all the other Fano threefolds V
considered here are intersections of quadrics and cubics which contain this V ([I], II,
sections 1,2) and therefore must contain this P , which is impossible.
b) We have embeddings

0→ Nli,V → N |li ,
this implies the first statement: 0 ≤ ai ≤ 2. If ai = 2, then li should be a (-2,1)-line;
therefore there are planes Pi tangent to V along li, giving the degree 1 subbundle of
Nli,V and the exceptional section in P(Nli,V ) ∼= F3. In fact P1 = P2. This is easy to
see using so-called “ elementary modifications” of Maruyama (of which I learned from
[AW] ,p.11): if we blow P(Nl1,V ) up in the point p corresponding to the direction of
l2 and then contract the proper preimage of the fiber, we will get P(N |l1). Under our
circumstances, p must lie on the exceptional section of P(Nl1,V ), so l2 ⊂ P1. In the
same way, l1 ⊂ P2, q.e.d..

Proof of the Theorem:
Let f : X → Y be a finite map between Fano threefolds as above.
Again, the condition on SY , TY means that not the whole inverse image of SY , TY
can be contained in the ramification. If Y is of index one resp. index two, we will
denote by C be a reduced irreducible component of the inverse image of a general line
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resp. (-1,1)-line l on Y (so C is not contained in the ramification), and by D the full
scheme-theoretic inverse image of such a line.
Let f∗OY (1) = OX(m). If X is of index two, then TX(1) is globally generated. As
in the Proposition 2.1, we conclude that m = 1.
If X is of index one and Y is of index two, then, by the result quoted in the beginning
of this section, C is a line or a conic.
If C is a smooth conic, we look at the generic isomorphism

φ : (IC/I2C)∗ → (ID/I2D)∗|C = OC(m) ⊕OC(−m).

Immediately we get that m is equal to one or two. Suppose m = 2. Then, by the
Lemma, X is a quartic and there is a plane P tangent to X along C. Choose the
coordinates so that P is given by x3 = x4 = 0. Then the equation of X can be written
as

(q(x0, x1, x2))
2 + x3F + x4G = 0,

where q defines C and F,G are cubic polynomials. Denote as A and B the curves cut
out on P by these cubics. The necessary condition for smoothness of X is

A ∩B ∩X = ∅.

Now recall that C resp. P varies in a one-dimensional (complete) family Ct resp. Pt.
A and B also vary, and for every t we must have

At ∩Bt ∩X = ∅.

This means that all the planes Pt pass through the same point, not lying on X.
Projecting from this point, we see that the surface W formed by our conics Ct is in
the ramification locus of this projection. The Hurwitz formula then givesW ∈ |OX(i)|
with i ≤ 3. Now Y is, by assumption, a cubic or an intersection of two quadrics. But
then, as we saw, the surface UY of (-1,1)-lines is at least 5HY , and an elementary
calculation shows that it is impossible that the inverse image of the surface of (-1,1)-
lines UY consists only from W and the ramification.
If C is a line, then the argument is similar. One only needs to prove the following
Claim:In this situation, if m = 2, the scheme D has another reduced irreducible
component C1, which intersects C.
Then of course either C1, or C

⋃
C1 is a conic, and one can proceed as above. The

proof of this claim is elementary algebra. We will sketch it after finishing the following
last step of the Theorem:
If X and Y are both of index one, we have that the inverse image of a line l on Y
should consist of lines and conics; for C as above, we have a map

φ : (IC/I2C)∗ → OC ⊕OC(−m),

if l is (0,-1), or
φ′ : (IC/I2C)∗ → OC(m) ⊕OC(−2m),

if l is (1,-2). As these maps must be generic isomorphisms, we get that in both cases
m = 1, whether C is a conic or a line.
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Proof of the claim: Notice that C must be (1,-2)-line. The cokernel of the natural
map

β : ID/I2D|C → IC/I2C
is the sheaf IC,D/I2C,D, supported on intersection points of C and other components
of D. We see from our assumptions that it must have length one (so be supported at
one point x). Suppose that C intersects non-reduced components of D at x. Let A
be a local ring of D at x and p ⊂ A a fiber of IC,D. Of course p/p2 6= 0 by Nakayama.
To see that dimp/p2 ≥ 2, we find an ideal a ⊂ p, not contained in p2. For example,
we can take an ideal defining the union of C and the reduction of an irreducible but
non-reduced component of D intersecting C. We have a surjection

p/p2→ (p/a)/(p2/(p2 ∩ a))→ 0,

which has non-trivial (again by Nakayama) image and non-trivial kernel, q. e. d..

Corollary 3.3 Let X, Y be Fano threefolds of index one as in Theorem 3.1 i). Then
any map between X and Y is an isomorphism.

Proof: Iskovskih computed the third Betti numbers of all Fano threefolds ( see also
[M]), and in fact as soon as deg(X) > deg(Y ), then b3(X) < b3(Y ), so a morphism
f : X → Y cannot exist.

Remark C: Some part of the argument of Theorem 3.1 goes through without assump-
tions on the very ampleness of the generator H of the Picard group. For example,
when X is a quartic double solid, which is a Fano threefold of index two, all the
“lines” C on X except possibly a finite number, have either trivial normal bundle, or
the normal bundle OC(H)⊕OC(−H) (in other words, the surface which parametrizes
lines on X, has only isolated singularities). One can then replace the words “TX(H)
is globally generated”, which are not true in general, by some “normal bundle argu-
ments” as in the above proof. The same should hold for the Veronese double cone.
See [W], [T] for details. As for maps to the quartic double solid, the argument goes
through without changes.

Examples: Any cubic inP4 satisfies the assumption we made on Y . By our Theorem
3.1 , we get that if a Fano threefold X of index one with cyclic Picard group is mapped
onto a cubic, then the degree of this map can only be degX

3
. So if X admits such a

map, then deg(X) is divisible by 3. Of course there are Fano threefolds of index one
which admit a map onto a cubic: we can take an intersection of a cubic cone and
a quadric in P5. Theorem 3.1 shows that if a smooth complete intersection of type
(2,3) in P5 maps to a cubic, then it is contained in a cubic cone and the map is the
projection from the vertex of this cone.
The same applies of course to maps from a complete intersection of three quadrics
in P6 to a complete intersection of two quadrics in P5. Notice that any smooth
complete intersection of two quadrics in P5 admits a map g onto a quadric in P4 such
that the inverse image of the hyperplane section is the hyperplane section (any pencil
of quadrics with non-singular base locus contains a quadratic cone). Therefore if a
smooth intersection of three quadrics in P6 can be mapped onto a smooth complete
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intersection of two quadrics in P5, it must lie in a quadric of corank 2 in P6. Of
course a general intersection of three quadrics in P6 does not have this property, as
the space of quadrics of corank 2 is of codimension four in the space of all quadrics.

Additional examples of varieties satisfying the assumption of Theorem
3.1:

1) any complete intersection of a cubic and a quadric in P5 or

2) any complete intersection of three quadrics in P6. Indeed, if lines on these varieties
cover only a hyperplane section divisor, then the scheme of lines must be non-reduced,
i.e. each line must have normal bundle OP1(−2) ⊕ OP1(1). So the surface of lines
is either a cone or the tangent surface to a curve. But one can check that these
varieties do not contain cones; neither do they contain a tangent surface to a curve
as a hyperplane section, because by a version of Zak’s theorem on tangencies (see
for example [FL]), a hyperplane section of a complete intersection has only isolated
singularities.

3) Any V22 with reduced Hilbert scheme of lines. By ([P]), there is exactly one V22
such that its Hilbert scheme of lines is non-reduced.

4) any Fano threefold V16 of index one and genus 9. This can be shown by the method
of Prokhorov ([P]) :

First, notice that if the lines on V16 cover only a hyperplane section, the scheme of
lines is non-reduced. So all the lines are tangent to a curve. This is actually a rational
normal curve, so the lines never intersect.

For convenience of the reader, we recall from [I2] the notion of double projection from
a line and its application to V16 :

Let X be a Fano threefold of index one, g(X) ≥ 7, and let l be a line on X. On X̃,
the blow-up of X, we consider the linear system |σ∗H − 2E|, where σ is the blow-up,
H = KY and E is the exceptional divisor. This is not base-point-free, namely, its
base locus consists of proper preimages of lines intersecting l, and, if l is (-2,1), from
the exceptional section of the ruled surface E ∼= F3. However, after a flop (i.e. a
birational transformation which is an isomorphism outside this locus) we can make it
into a base-point-free system |(σ∗H)+ − 2E+| on the variety X̃+.

If g(X) = 9, i.e.X is a V16, the variety X̃+ is birationally mapped by this linear
system onto P3. This map, say g, is a blow-down of the surface of conics intersecting
l to a curve Y ⊂ P3, which is smooth of degree 7 and genus three (smoothness of Y
is obtained from Mori’s extremal contraction theory). Y lies on a cubic surface which
is the image of E+. Moreover, the inverse rational map from P3 to X is given by the
linear system |7H − 2Y |.
One has therefore that the lines from X, different from l, must be mapped by g
to trisecants of Y . Note that if lines on X form only a hyperplane section, the
desingularization of the surface of lines on X is rational ruled, and it remains so after
the blow-up and the flop. So, as in [P], we must have a morphism Fe → P3, which
is given by some linear system |C + kF | with C the canonical section and f a fiber,
such that the inverse image of Y belongs to the system |3C+ lF |. deg(Y ) = 7 implies

(3C + lF )(C + kF ) = −3e+ 3k + l = 7,
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and as degKY = 4,

(C + (l − 2− e)F )(3C + lF ) = −6e+ 4l − 6 = 4,

Combining these two equations, we get

2k − e = 3,

However, we must have e ≥ 0 and k ≥ e, as otherwise the linear system |C + kF |
does not define a morphism. This leaves only two possibilities for k and e: either
e = k = 3, or e = 1, k = 2. The first case actually cannot occur: this would imply
that Y is singular. So the image of Fe = F1 inP3 is a cubic which is a projection of F1
from P4. By assumption, Y is also contained in another irreducible cubic (the image
of E+). But one check that this cannot happen, using e.g. a theorem by d’Almeida
([Al]), which asserts that if a smooth non-degenerate curve Y of degree d ≥ 6 and
genus g in P3 satisfies H1(IY (d − 4)) 6= 0, then Y has a (d-2)-secant provided that
(d, g) 6= (7, 0), (7, 1), (8, 0).

4. V22

Let us now take Y = V s22, i.e. the only variety of type V22 which has non-reduced
Hilbert scheme of lines. This V22 violates the assumptions of Theorem 3.1. However,
using Mukai’s and Schreyer’s descriptions of conics on varieties of type V22, it is still
possible to say something on maps from Fano threefolds onto Y . We will show the
following:

Proposition 4.1 A Fano threefold X of index two with cyclic Picard group and
irreducible Hilbert scheme of lines does not admit a map onto V s22.

As for the last assumption on X, one believes that this is always satisfied. In fact
this is easy to check (and well-known) for a cubic or a complete intersection of two
quadrics (the Hilbert scheme is smooth in this case, so it is enough to show that it
is connected). The irreducibility is also known for V5, in fact, the Hilbert scheme is
isomorphic to P2 ([I], I, Corollary 6.6). For a quartic double solid, see [W]. As for
a double Veronese cone, in [T] it is proven that a general double Veronese cone has
irreducible Hilbert scheme of lines. So the only possible exception could be a special
double Veronese cone.

In fact our argument will work for a sufficiently general V22, but for all of them except
V s22 this assertion is already proved in the last paragraph.

Proof: Let S be the Fano surface ( = reduced Hilbert scheme) of lines on X and T the
Fano surface of conics on the V22. If f : X → V22 is a finite map, then, as Schuhmann
proves in [S], the inverse image of any conic is a union of lines, and, moreover, in this
way f induces a finite surjective morphism g : S → T ( thanks to irreducibility of S,
any line on X is in the inverse image of a conic on V22).
F.-O. Schreyer ([Sch]) gives the following description of a general conic on V22:
Consider V22 as the variety of polar hexagons of a plane quartic curve C ⊂ P2 (a polar
hexagon of C is the union of six lines l1, ...l6 given by equations L1 = 0, ..., L6 = 0 ,
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such that L41 + ...+ L46 = F where F = 0 defines C; “the variety of polar hexagons”
means here the closure of the set of 6-tuples l1, ...l6 with L41 + ... + L46 = F in the
Hilbert scheme Hilb6(P

2∗); a general V22 is isomorphic to such a variety for a certain
curve C; V s22 is the variety of polar hexagons of a double conic). Then there is a
birational isomorphism between (P2)∗ and T given as follows:
for a general l ⊂ P2 the curve of polar hexagons to C containing l is a conic on V22.
This description and the fact that through any point on a V22 there is only a finite
number of conics ([I], II, Theorem 4.4) gives that
there are six conics through a general point of V22.
In [M], Mukai claims that the Fano surface of conics on a V22 is even isomorphic to
P2. Unfortunately, this paper does not contain a proof of this fact. The proof appears
in the paper of A. Kuznetsov ([K]): he uses another description of a general V22 as
a subvariety of G(2, 6). Namely, if V and N are 7- and 3-dimensional vector spaces
respectfully and f : N → Λ2V ∗ is a general net of skew-symmetric forms on V , then
a general V22 (including V s22, [Sch]) appears as a set of all 3-subspaces of V which are
isotropic with respect to this net (i.e. to all forms of the net simultaneously). Let
U (resp. Q) denote restriction on a V22 of the universal (resp. universal quotient)
bundle on G(2, 6). Kuznetsov proves that every (possibly singular) conic on a V22 is
a degeneracy locus of a homomorphism U → Q∗; the Fano surface of conics is thus
P(Hom(U,Q∗)) = P2.
Now if there is a finite map f : X → V22 as above, then X must be a cubic: indeed,
a Fano threefold with cyclic Picard group and with 6 lines through a general point is
a cubic. Let f∗HV22 = mHX , then one easily computes that the inverse image of a
general conic consists of deg(g) = s = 3

11
m2 lines.

For simplicity, we will use the same notation for points of T (resp. S) and correspond-
ing conics on V22 (resp. lines on X). We have T ∼= P2. Let a be such that conics on
V22 intersecting a given (general) conic A, form a divisor DA from |OP2(a)|
On S, denote as EL the divisor of lines intersecting a given line L. It is well-known
and easy to compute that EL · EM = 5 for any L,M .
If g−1(A) = {L1, ..., Ls}, then

g∗(OP2(a)) = OS(EL1 + ...+ ELs).

We therefore have another formula for deg(g):

deg(g) =
5s2

a2
.

From the equality s = 5s2

a2 we get that (ma )2 = 11
15 , however, this is impossible as 1115

is not a square of a rational number.
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0 Introduction

Our main concern in this work is to provide concrete formulas for the invariant inner
products and hermitian forms on spaces of holomorphic functions on Cartan domains
D of tube type. As will be explained below, the group Aut(D) of all holomorphic
automorphisms of D acts transitively. Aut(D) acts projectively on function spaces
on D via f 7→ U (λ)(ϕ)f := (f ◦ ϕ) (Jϕ)λ/p, ϕ ∈ Aut(D), λ ∈ C, but these actions
are not irreducible in general. The inner products we consider are those obtained
from the holomorphic discrete series by analytic continuation. The associated Hilbert
spaces generalize the weighted Bergman spaces, the Hardy and the Dirichlet space. By
“concrete” formulas we mean Besov-type formulas, namely integral formulas involving
the functions and some of their derivatives. Possible applications include the study
of operators (Toeplitz, Hankel) acting on function spaces and the theory of invariant
Banach spaces of analytic functions (where the pairing between an invariant space
and its invariant dual is computed via the corresponding invariant inner product).

Our problem is closely related to finding concrete realizations (by means of inte-
gral formulas) of the analytic continuation of the Riesz distribution. [Ri], [Go], [FK2],
Chapter VII.

1Authors supported
by a grant from the German-Israeli Foundation (GIF), I-415-023.06/95.
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In principle, the analytic continuation is obtained from the integral formulas
associated with the weighted Bergman spaces (i.e. the holomorphic discrete series)
by “partial integration with respect to the radial variables”. This program has been
successful in the case of rank 1 (i.e. when D is the open unit ball of Cd, see [A3]).
The case of rank r > 1 is more difficult, and concrete formulas are known only in
special cases, see [A2], [Y4], [Y1], [Y2].

This paper consists of two main parts. In the first part (Sections 2, 3, and 4) we
develop in full generality the techniques of [A2], [Y4], and obtain integral formulas
for the invariant inner products associated with the so-called Wallach set and pole
set. In the second part (section 5) we introduce new techniques (integration on
boundary orbits), to obtain new integral formulas for the invariant inner products
in the important special cases of Cartan domains of type I and IV. This approach
has the potential for further generalizations and applications, including the infinite
dimensional setup.

The paper is organized as follows. Section 1 provides background information on
Cartan domains, the associated symmetric cones and Siegel domains and the Jordan
theoretic approach to the study of bounded symmetric domains [Lo], [FK2], [U2].
We also explain some general facts concerning invariant Hilbert spaces of analytic
functions on Cartan domains and the connection to the Riesz distribution. Section 2 is
devoted to the study of invariant differential operators on symmetric cones. We study
the “shifting operators” introduced by Z. Yan and their derivatives with respect to
the “spectral parameter”. Section 3 is devoted to our generalization of Yan’s shifting
method, to find explicit integral formulas for the invariant inner products obtained
by analytic continuation of the holomorphic discrete series. In section 4 we study the
expansion of Yan’s operators, and obtain applications to concrete integral formulas
for the invariant inner products. Some of these results were obtained independently
by Z. Yan, J. Faraut and A. Korányi, [FK2], [Y4]. We include these results and our
proofs, in order to make the paper self contained, and also because in most cases our
results go beyond the results in [FK2], [Y4].

In section 5 we propose a new type of integral formulas for the invariant inner
products. These formulas involve integration on boundary orbits and the applica-
tion of the localized versions of the radial derivative associated with the boundary
components of Cartan domains. We are able to establish the desired formulas in the
important special cases of type I and IV. The techniques established in this section
can be used in the study of the remaining cases.

Finally, in the short section 6 we use the quasi-invariant measures on the bound-
ary orbits of the associated symmetric cone in order to obtain integral formulas for
some of the invariant inner products in the context of the unbounded realization of the
Cartan domains (tube domains). These results are essentially implicitly contained in
[VR], where the authors use the Lie-theoretic and Fourier-analytic approach to analy-
sis on symmetric Siegel domains. We use the Jordan-theoretic approach which yields
simpler formulation of the results and simpler proofs.

Acknowledgment: We would like to thank Z. Yan, J. Faraut, and A. Korányi for
sending us drafts of their work and for many stimulating discussions. We also thank
the referee for valuable comments on the first version of the paper.
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1 Preliminaries

A Cartan domain D ⊂ Cd is an irreducible bounded symmetric domain in its Harish-
Chandra realization. Thus D is the open unit ball of a Banach space Z = (Cd, ‖ · ‖)
which admits the structure of a JB∗-triple, namely there exists a continuous mapping
Z × Z × Z ∋ (x, y, z) → {x, y, z} ∈ Z (called the Jordan triple product) which is
bilinear and symmetric in x and z, conjugate-linear in y, and so that the operators
D(x, x) : Z → Z defined for every x ∈ Z by D(x, x)z := {x, x, z} are hermitian,
have positive spectrum, satisfy the ”C∗-axiom” ‖D(x, x)‖ = ‖x‖2, and the operators
δ(x) := iD(x, x) are triple derivations, i.e. the Jordan triple identity holds

δ(x){y, z, w} = {δ(x)y, z, w}+ {y, δ(x)z, w}+ {y, z, δ(x)w}, ∀y, z, w ∈ Z.
The norm ‖ · ‖ is called the spectral norm. We put also D(x, y)z := {x, y, z}. An
element v ∈ Z is called a tripotent if {v, v, v} = v. Every tripotent v ∈ Z gives rise to
a direct-sum Peirce decomposition

Z = Z1(v) + Z 1
2
(v) + Z0(v), where Zν(v) := {z ∈ Z; D(v, v)z = νz}, ν = 1,

1

2
, 0.

The associated Peirce projections are defined for zκ ∈ Zκ(v), κ = 1, 12 , 0, by

Pν(v)(z1 + z 1
2

+ z0) = zν , ν = 1,
1

2
, 0.

In this paper we are interested in the important special case where Z contains
a unitary tripotent e, for which Z = Z1(e). In this case Z has the structure of a
JB∗-algebra with respect to the binary product x ◦ y := {x, e, y} and the involution
z∗ := {e, z, e}, and e is the unit of Z. The binary Jordan product is commutative,
but in general non-associative. The triple product is expressed in terms of the binary
product and the involution via {x, y, z} = (x◦y∗)◦z+(z ◦y∗)◦x−(x◦z)◦y∗ . In this
case the open unit ball D of Z is a Cartan domain of tube-type. This terminology is
related to the unbounded realization of D, to be explained later.

Let X := {x ∈ Z; x∗ = x} be the real part of Z. It is a formally-real (or
euclidean) Jordan algebra. Every x ∈ X has a spectral decomposition x =

∑r
j=1 λjej ,

where {ej}rj=1 is a frame of pairwise orthogonal minimal idempotents in X, and
{λj}rj=1 are real numbers called the eigenvalues of x. The trace and determinant (or,
“norm”) are defined in X via

tr(x) :=
r∑

j=1

λj , N(x) :=
r∏

j=1

λj

respectively, and they are polynomials on X. The maximal number r of pairwise
orthogonal minimal idempotents in X is called the rank of X. The positive-definite
inner product in X, 〈x, y〉 = tr(x ◦ y), x, y ∈ X, satisfies

〈x ◦ y, z〉 = 〈x, y ◦ z〉, x, y, z ∈ X.
Equivalently, the multiplication operators L(x)y := x ◦ y, x, y ∈ X, are self-adjoint.
The trace and determinant polynomials, as well as the multiplication operators, have
unique extensions to the complexification XC := X + iX = Z. Let

Ω := {x2; x ∈ X,N(x) 6= 0}.
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Then Ω is a symmetric, open convex cone, i.e. Ω is self polar and homogeneous with
respect to the group GL(Ω) of linear automorphisms of Ω. We denote the connected
component of the identity in GL(Ω) by G(Ω). Define

P (x) := 2L(x)2 − L(x2), x ∈ X, (1.1)

then P (x) ∈ G(Ω) for every x ∈ Ω, and x = P (x1/2)e. Thus G(Ω) is transitive on
Ω. The map x → P (x) from X into End(X) is called the quadratic representation
because of the identity

P (P (x)y) = P (x)P (y)P (x), ∀x, y ∈ X. (1.2)

The domain T (Ω) := X + iΩ, called the tube over Ω. It is an irreducible symmetric
domain which is biholomorphically equivalent to D by means of the Cayley transform
c : D → T (Ω), defined by

c(z) := i
e+ z

e− z , z ∈ Z.

This explains why D is called a tube-type Cartan domain.
Let e1, e2, . . . , er be a fixed frame of minimal, pairwise orthogonal idempotents

satisfying e1 + e2 + . . .+ er = e, where e is the unit of Z. Let

Z =
∑

1≤i≤j≤r

Zi,j

be the associated joint Peirce decomposition, namely Zi,j := Z 1
2
(ei) ∩ Z 1

2
(ej) for

1 ≤ i < j ≤ r and Zi,i := Z1(ei) for 1 ≤ i ≤ r. The characteristic multiplicity is the
common dimension a = dim(Zi,j), 1 ≤ i < j ≤ r, and d = r + r(r − 1)a/2. The
number p := (r − 1)a+ 2 is called the genus of D. It is known that

Det(P (x)) = N(x)p, ∀x ∈ X,

where “Det” is the usual determinant polynomial in End(Z). From this and (1.2) it
follows that

N(P (x)y) = N(x)2N(y) ∀x, y ∈ X. (1.3)

Let uj := e1 + e2 + . . .+ ej and let Zj :=
∑
1≤i≤k≤jZi,k be the JB∗- subalgebra

of Z whose unit is uj. Let Nj be the determinant polynomials of the Zj, 1 ≤ j ≤ r;
they are called the principal minors associated with the frame {ej}rj=1. Notice that
Zr = Z and Nr = N . For an r-tuple of integers m = (m1, m2, . . . , mr) write m ≥ 0 if
m1 ≥ m2 ≥ . . . ≥ mr ≥ 0. Such r-tuples m are called signatures (or, “partitions”).
The conical polynomial associated with the signature m is

Nm(z) := N1(z)
m1−m2 N2(z)

m2−m3 N3(z)
m3−m4 . . .Nr(z)

mr , z ∈ Z.

Notice that Nm(
∑r
j=1 tjej) =

∏r
j=0 t

mj
j , thus the conical polynomials are natural

generalizations of the monomials. Let Aut(D) be the group of all biholomorphic
automorphisms of D, and let G be its connected component of the identity. Let
K := {g ∈ G; g(0) = 0} = G ∩ GL(Z) be the maximal compact subgroup of G.
For any signature m let Pm := span{Nm ◦ k; k ∈ K}. Clearly, Pm ⊂ Pℓ, where
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ℓ = |m| = ∑r
j=1mj and Pℓ is the space of homogeneous polynomials of degree ℓ.

By definition, Pm are invariant under the composition with members of K. Let

〈f, g〉F := ∂f(g♯)(0) =
1

πd

∫

Z

f(z)g(z) e−|z|
2

dm(z) (1.4)

be the Fock-Fischer inner product on the space P of polynomials, where g♯(z) :=
g(z∗), ∂f = f( ∂

∂z
), |z| is the unique K-invariant Euclidean norm on Z normalized

so that |e1| = 1, and dm(z) is the corresponding Lebesgue volume measure. (Thus
〈1, 1〉F = 1). The following result (Peter-Weyl decomposition) is proved in [Sc], see
also [U1]. Here the group K acts on functions on D via π(k)f := f ◦ k−1, k ∈ K.
Notice that Pℓ, ℓ = 0, 1, 2, . . . and P are invariant under this action.

Theorem 1.1 (i) The spaces {Pm}m≥0, are K-invariant and irreducible. The rep-
resentations of K on the spaces Pm are mutually inequivalent, the Pm’s are mutually
orthogonal with respect to 〈·, ·〉F , and P =

∑
m≥0 Pm.

(ii) If H is a Hilbert space of analytic functions on D with a K-invariant inner
product in which the polynomials are dense, then H is the orthogonal direct sum
H =

∑
m≥0⊕Pm. Namely, every f ∈ H is expanded in the norm convergent series

f =
∑
m≥0 fm, with fm ∈ Pm, and the spaces Pm are mutually orthogonal in H.

Moreover, there exist positive numbers {cm}m≥0 so that for every f, g ∈ H with
expansions f =

∑
m≥0 fm and g =

∑
m≥0 gm we have

〈f, g〉H =
∑

m≥0

cm 〈fm, gm〉F .

For every signature m let Km(z, w) be the reproducing kernel of Pm with respect to
(1.4). Clearly, the reproducing kernel of the Fock-Fischer space F (the completion of
P with respect to 〈·, ·〉

F
) is

F (z, w) :=
∑

m

Km(z, w) = e〈z,w〉.

An important property of the norm polynomial N is its transformation rule under
the group K

N(k(z)) = χ(k)N(z), k ∈ K, z ∈ Z (1.5)

where χ : K → T := {λ ∈ C; |λ| = 1} is a character. In fact, χ(k) = N(k(e)) =
Det(k)2/p ∀k ∈ K. Notice that (1.5) implies that P(m,m,...,m) = CNm for m =
0, 1, 2, . . ..

The subgroup L of K defined via

L := {k ∈ K; k(e) = 1} (1.6)

plays an important role in the theory.

Lemma 1.1 For every signature m ≥ 0 the function

φm(z) :=

∫

L

Nm(ℓ(z))dℓ (1.7)

is the unique spherical (i.e., L-invariant) polynomial in Pm satisfying φm(e) = 1.
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For example, φ(m,m,...,m) = Nm by (1.5). The L-invariant real polynomial on X

h(x) = h(x, x) := N(e− x2)

admits a unique K-invariant, hermitian extension h(z, w) to all of Z. Thus,
h(k(z), k(w)) = h(z, w) for all z, w ∈ Z and k ∈ K, h(z, w) is holomorphic in z
and anti-holomorphic in w, and h(z, w) = h(w, z), [FK1]. The transformation rule of
h(z, w) under Aut(D) is

h(ϕ(z), ϕ(w)) = Jϕ(z)
1
p h(z, w) Jϕ(w)

1
p , ϕ ∈ Aut(D), z, w ∈ D, (1.8)

where Jϕ(z) := Det(ϕ′(z)) is the complex Jacobian of ϕ, and p is the genus of D.
For s = (s1, s2, . . . , sr) ∈ Cr one defines the conical function Ns on Ω via

Ns(x) := Ns1−s2
1 (x)Ns2−s3

2 (x)Ns3−s4
3 (x) . . . ·Nsr

r (x), x ∈ Ω,

which generalize the conical polynomials Nm. In what follows use the following no-
tation:

λj := (j − 1)
a

2
, 1 ≤ j ≤ r.

The Gindikin - Koecher Gamma function is defined for s = (s1, s2, . . . , sr) ∈ Cr with
ℜ(sj) > λj , 1 ≤ j ≤ r, via

ΓΩ(s) :=

∫

Ω

e−tr(x)Ns(x)dµΩ(x).

Here tr(x) = 〈x, e〉 is the Jordan-theoretic trace of x, and

dµΩ(x) := N(x)−
d
r dx

is the (unique, up to a multiplicative constant) G(Ω)-invariant measure on Ω. The
following formula [Gi] reduces the computation of ΓΩ(s) to that of ordinary Gamma
functions:

ΓΩ(s) = (2π)(d−r)/2
∏

1≤j≤r

Γ(sj − λj), (1.9)

and provides a meromorphic continuation of ΓΩ to all of Cr . In particular, ΓΩ(λ) :=
ΓΩ(λ, λ, . . . , λ) is given by

ΓΩ(λ) =

∫

Ω

e−tr(x) N(x)λ dµΩ(x) = (2π)(d−r)/2
∏

1≤j≤r

Γ(λ− λj),

and it is an entire meromorphic function. The pole set of ΓΩ(λ) is precisely

P(D) := ∪1≤j≤r(λj −N) = {λj − n; 1 ≤ j ≤ r, n ∈ N}. (1.10)

For λ ∈ C and a signature m = (m1, m2, . . . , mr) one defines

(λ)m :=
ΓΩ(m+ λ)

ΓΩ(λ)
=

r∏

j=1

(λ− λj)mj =
r∏

j=1

mj−1∏

n=0

(n + λ− λj),
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where m+ λ := (m1 + λ,m2 + λ, . . . , mr + λ).

We recall two important formulas for integration in polar coordinates [FK2],
Chapters VI and IX. The first formula uses the fact that K · Ω = Z, namely the
fact that every z ∈ Z can be written (not uniquely) in the form z = k(x), where
x ∈ Ω and k ∈ K. This is the first (or “conical”) type of polar decomposition of x,
and it generalizes the polar decomposition of matrices. This leads to the formula

∫

Z

f(z)dm(z) =
πd

ΓΩ(d
r
)

∫

Ω

(∫

K

f(k(x
1
2 )) dk

)
dx (1.11)

which holds for every f ∈ L1(Z,m). Next, fix a frame e1, . . . , er, and define

R := span
R
{ej}rj=1 and R+ := {

r∑

j=1

tjej; t1 > t2 > . . . > tr > 0}

and
Rr+ := {t = (t1, . . . tr); t1 > t2 > . . . > tr > 0}.

Then Z = K ·R, namely every z ∈ Z has a representation z = k(
∑r
j=1 tjej) for some

(again, not unique)
∑r
j=1 tjej ∈ R and k ∈ K. This representation is the second

type of polar decomposition of z. Moreover, m(Z \ K · R+) = 0, namely up to a

subset of measure zero, every z ∈ Z has a representation z = k(
∑r
j=1 t

1/2
j ej) with

t1 > t2 > . . . > tr > 0. This leads to the formula

∫

Z

f(z)dm(z) = c0

∫

Rr
+



∫

K

f(k(
r∑

j=1

t
1
2
j ej)) dk


 ∏

1≤i<j≤r

(ti − tj)a dt1 dt2 . . . dtr,

(1.12)
which holds for every f ∈ L1(Z,m). The constant c0 will be determined as a by-
product of our work in section 5 below. For convenience, we can write (1.12) in the
form ∫

Z

f(z)dm(z) = c0

∫

Rr
+

f#(t)w(t)a dt, (1.13)

where

f#(t) :=

∫

K

f(k(
r∑

j=1

t
1
2
j ej)) dk, t = (t1, t2, . . . , tr) ∈ Rr+

is the radial part of F and

w(t) :=
∏

1≤i<j≤r

(ti − tj), t = (t1, t2, . . . , tr) ∈ Rr+ (1.14)

is the Vandermonde polynomial.

By [Hu], [Be], [La1], [FK1], we have the binomial formula:

Theorem 1.2 For λ ∈ C we have

N(e− x)−λ =
∑

m≥0

(λ)m
φm(x)

‖φm‖2F
, ∀x ∈ Ω ∩ (e−Ω), (1.15)
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and
h(z, w)−λ =

∑

m≥0

(λ)mKm(z, w), ∀z, w ∈ D. (1.16)

The two series converge absolutely, (1.15) converges uniformly on compact subsets of
(λ, x) ∈ C × (Ω ∩ (e − Ω)), and (1.16) converges uniformly on compact subsets of
(λ, z, w) ∈ C×D×D.

In particular, it follows that for fixed z, w ∈ D, the function λ→ h(z, w)−λ is analytic
in all of C (this can be proved also by showing that h(z, w) 6= 0 for z, w ∈ D).

The Wallach set of D, denoted by W(D), is the set of all λ ∈ C for which the
function (z, w)→ h(z, w)−λ is non-negative definite in D×D, namely

∑

i,j

aiaj h(zi, zj)
−λ ≥ 0

for all finite sequences {aj} ⊆ C and {zj} ⊆ D. For λ ∈ W(D) let Hλ be the
completion of the linear span of the functions {h(·, w)−λ; w ∈ D} with respect to the
inner product 〈·, ·〉λ determined by

〈h(·, w)−λ, h(·, z)−λ〉λ = h(z, w)−λ, z, w ∈ D.

Since h(z, w)−λ is continuous in D × D, it is the reproducing kernel of Hλ. The
transformation rule (1.8) implies that 〈·, ·〉λ is K-invariant, namely 〈f ◦ k, g ◦ k〉λ =
〈f, g〉λ for all f, g ∈ Hλ and k ∈ K. Thus, by Theorems 1.1 and 1.2, for every
f, g ∈ Hλ with Peter-Weyl expansions f =

∑
m≥0 fm, g =

∑
m≥0 gm, we have

〈f, g〉
λ

=
∑

m≥0

〈fm, gm〉F
(λ)m

. (1.17)

This formula defines λ 7→ 〈f, g〉λ as a meromorphic function in all of C, whose poles
are contained in the pole set P(D) of ΓΩ, see (1.10) and (1.16). Of course, for
λ ∈ C \W(D) (1.17) is not an inner product, but merely a sesqui-linear form; it is
hermitian precisely when λ ∈ R.

Using (1.16) and (1.17) one obtains a complete description of the Wallach set
W(D) and the Hilbert spaces Hλ for λ ∈W(D).

Theorem 1.3 (i) The Wallach set is given by W(D) = Wd(D) ∪Wc(D) where
Wd(D) := {λj = (j − 1)a2 ; 1 ≤ j ≤ r} is the discrete part, and Wc(D) :=
(λr ,∞) is the continuous part.

(ii) For λ ∈Wc(D) the polynomials are dense in Hλ and Hλ =
∑
m≥0⊕Pm as in

Theorem 1.1;

(iii) For 1 ≤ j ≤ r, let S0(λj) := {m ≥ 0;mj = mj+1 = . . . = mr = 0}. Then
Hλj =

∑
m∈S0(λj)

Pm and

h(z, w)−λj =
∑

m∈S0(λj)

(λj)mKm(z, w), z, w ∈ D.
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For λ ∈ C, ϕ ∈ G and a functions f on D, we define

U (λ)(ϕ)f := (f ◦ ϕ) · (Jϕ)
λ
p

Then, U (λ)(idD) = I and for ϕ, ψ ∈ G we have

U (λ)(ϕ ◦ ψ) = cλ(ϕ, ψ) U (λ)(ψ) U (λ)(ϕ),

where cλ(ϕ, ψ) is a unimodular scalar which transforms as a cocycle (projective rep-
resentation of G). In particular, U (λ)(ϕ−1) = U (λ)(ϕ)−1.

Using (1.8) we see that

Jϕ(z)
λ
p h(ϕ(z), ϕ(w))−λ Jϕ(w)

λ
p = h(z, w)−λ, ∀z, w ∈ D, ∀ϕ ∈ G.

From this it follows that the hermitian forms 〈·, ·〉λ given by (1.17) are U (λ)-invariant:

〈U (λ)(ϕ)f , U (λ)(ϕ)g 〉λ = 〈f, g〉λ , ∀f, g ∈ Hλ , ∀ϕ ∈ G.

In particular, for λ ∈ W(D) the inner products 〈·, ·〉λ are U (λ)-invariant and
U (λ)(ϕ), ϕ ∈ G, are unitary operators on Hλ.

There are other spaces of analytic functions on D which carry U (λ)-invariant
hermitian forms, some of which are non-negative. For any signature m and λ ∈ C let
q(λ,m) := degλ(·)m be the multiplicity of λ as a zero of the polynomial ξ 7→ (ξ)m.
Notice that 0 ≤ q(λ,m) ≤ r for all λ and m. Let

q(λ) := max{q(λ,m);m ≥ 0}. (1.18)

Let
P(λ) := span{U (λ)(ϕ)f ; f polynomial , ϕ ∈ G}

For 0 ≤ j ≤ q(λ) set

Sj(λ) := {m ≥ 0; q(λ,m) ≤ j} M(λ)
j := {f ∈ P(λ); f =

∑

m∈Sj (λ)

fm, fm ∈ Pm}.

(1.19)

The following result is established in [FK1], see also [A1], [O].

Theorem 1.4 Let λ ∈ C and let 0 ≤ j ≤ q(λ).

(i) The spacesM(λ)
j , 0 ≤ j ≤ q(λ), are U (λ)-invariant,

M(λ)
0 ⊂M

(λ)
1 ⊂M

(λ)
2 ⊂ . . . ⊂M

(λ)
q(λ) = P(λ), (1.20)

and every non-zero U (λ)-invariant subspace of P(λ) is one of the spaces
M(λ)

j , 0 ≤ j ≤ q(λ).

(ii) The quotientsM(λ)
j /M(λ)

j−1, 1 ≤ j ≤ q(λ), are U (λ)-irreducible.
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(iii) The sesqui-linear forms 〈·, ·〉
λ,j
on M(λ)

j , 1 ≤ j ≤ q(λ), defined for f, g ∈ M(λ)
j

by
〈f, g〉

λ,j
:= lim

ξ→λ
(ξ − λ)j 〈f, g〉

ξ

are U (λ)-invariant and {f ∈M(λ)
j ; 〈f, g〉λ,j = 0, ∀g ∈ M(λ)

j } =M(λ)
j−1.

(iv) For f, g ∈ M(λ)
j with Peter-Weyl expansions f =

∑
m
fm and g =

∑
m
gm,

we have

〈f, g〉
λ,j

=
∑

m∈Sj(λ)\Sj−1(λ)

〈fm, gm〉F
(λ)m,j

where

(λ)m,j := lim
ξ→λ

(ξ)m
(ξ − λ)j

=
1

j!
(
d

dξ
)j (ξ)m

|ξ=λ
. (1.21)

(v) The forms 〈·, ·〉
λ,j
are hermitian if and only if λ ∈ R.

(vi) The quotient M(λ)
j /M(λ)

j−1 is unitarizable (namely, 〈·, ·〉λ,j is either positive def-
inite or negative definite onM(λ)

j /M(λ)
j−1) if and only if either: λ ∈W(D) and

j = 0, or: λ ∈ P(D), j = q(λ), and λr − λ ∈ N.

The sequence (1.20) is called the composition series of P(λ).

Definition 1.1 Hλ,j = Hλ,j(D) is the completion of M(λ)
j /M(λ)

j−1 with respect to
〈·, ·〉

λ,j
.

Observe that Hλ,0 = Hλ for λ ∈W(D). Also, q(λ) > 0 if and only if λ ∈ P(D).

The main objective of this work is to provide natural integral formulas for the
U (λ)-invariant hermitian forms 〈·, ·〉λ,j, with special emphasis on the case where the
forms are definite, namely the case whereHλ,j is a U (λ)-invariant Hilbert space. These
integral formulas provide a characterization of the membership in the spaces Hλ,j in
terms of finiteness of some weighted L2-norms of the functions or of some of their
derivatives. We discuss now some examples which motivate our study.

The weighted Bergman spaces: It is known [FK1] that for λ ∈ R the integral c(λ)−1 :=∫
D h(z, z)λ−pdm(z) is finite if and only if λ > p− 1, and in this case

c(λ) =
ΓΩ(λ)

πd ΓΩ(λ− d
r
)
. (1.22)

For λ > p − 1 we consider the probability measure

dµλ(z) := c(λ)h(z, z)λ−p dm(z) (1.23)

on D. The weighted Bergman space L2a(D, µλ) consists of all analytic functions in
L2(D, µλ). Using (1.8) one obtains the transformation rule of µλ under composition
with ϕ ∈ G:

dµλ(ϕ(z)) = |Jϕ(z)| 2λp dµλ(z).
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(The same argument yields the invariance of the measure dµ0(z) := h(z, z)−pdm(z)).
From this it follows that the operators U (λ)(ϕ) are isometries of L2(D, µλ) which leave
L2a(D, µλ) invariant. It is easy to verify that point evaluations are continuous linear
functionals on L2a(D, µλ) and that the reproducing kernel of L2a(D, µλ) is h(z, w)−λ.
(For w = 0 this is trivial, and the general case follows by invariance.) It follows that
Hλ = L2a(D, µλ).

The Hardy space: The Shilov boundary S of a general Cartan domain D is the set of
all maximal tripotents in Z. S is invariant and irreducible under both of G and K.
Let σ be the unique K-invariant probability measure on S, defined via

∫

S

f(ξ) dσ(ξ) :=

∫

K

f(k(e)) dk.

The Hardy space H2(S) is the space of all analytic functions f on D for which

‖f‖2H2(S) := lim
ρ→1−

∫

S

|f(ρξ)|2 dσ(ξ)

is finite. The polynomials are dense in H2(S) and every f ∈ H2(S) has radial
limits f̃(ξ) := limρ→1− f(ρξ) at σ-almost every ξ ∈ S. Moreover, for f ∈ H2(S),

‖f‖H2(S) = ‖f̃‖L2(S,σ). This identifies H2(S) as the closed subspace of L2(S, σ)
consisting of those functions f ∈ L2(S, σ) which extend analytically to D by means of
the Poisson integral. Again, the point evaluations f 7→ f(z), z ∈ D, are continuous
linear functionals on H2(S). The corresponding reproducing kernel is called the Szegö
kernel and is given (as a function on S) by Sz(ξ) = S(ξ, z) := h(ξ, z)−d/r . See [Hu],
[FK1]. This non-trivial fact implies that Hd/r = H2(S). The transformation rule of
the measure σ under the automorphisms ϕ ∈ G is

dσ(ϕ(ξ)) = |Jϕ(ξ)| dσ(ξ).

Hence, U (d/r)(ϕ)f = (f ◦ ϕ) (Jϕ)1/2, ϕ ∈ G, are isometries of L2(S, σ) which leave
H2(S) invariant.

The Dirichlet space: The classical Dirichlet space B2 consists of those analytic func-
tions f on the open unit disk D ⊂ C for which the Dirichlet integral

‖f‖2B2 :=

∫

D

|f ′(z)|2 dA(z) (1.24)

is finite. Here dA(z) := 1
π dx dy. Clearly, B2 is a Hilbert space modulo constant

functions, and ‖f ◦ ϕ‖B2 = ‖f‖B2 for every f ∈ B2 and ϕ ∈ Aut(D). Thus, B2 is

U (0)-invariant. The composition series corresponding to λ = λ1 = 0 is C1 = M
(0)
0 ⊂

M
(0)
1 = P(0). Hence B2 = H0,1(D). The inner product in B2 can be computed also

via integration on the boundary T := ∂D (which coincides with the Shilov boundary
in this simple case):

〈f, g〉B2 =
1

2π

∫

T

ξf ′(ξ) g(ξ) |dξ|. (1.25)

Motivated by this example we call the spaces H0,q(0) for a general Cartan domain
D the (generalized) Dirichlet space of D. The paper [A2] provides integral formulas
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generalizing (1.24) and (1.25) for the norms in Hλ,q(λ) for λ ∈Wd(D), in the context
of a Cartan domain of tube type (in [A1] these formulas are extended to all λ ∈ P(D)).
Formula (1.24) says that f ∈ B2 = H0,1 if and only if f ′ ∈ H2. Namely, differentiation
“shifts” the space corresponding to λ = 0 to the one corresponding to λ = 2. This
shifting technique is developed in [Y3] in order to get integral formulas for the inner
products in certain spaces Hλ with λ ≤ p − 1. The general idea is to obtain such
integral formulas via “partial integration in the radial directions”, see [Ri], [Go], and
[FK2], Chapter VII. (For the open unit ball of Cd, the simplest (i.e. rank-one) non-
tube Cartan domain, cf. [A3], [Pel]).

Finally, we describe the relationship between the invariant inner product and the
Riesz distribution. The Riesz distribution was introduced in [Ri] for the Lorentz
cone, i.e. the symmetric cone associated with the Cartan domain of type IV (the “Lie
ball”). It was studied in [Go] for the cone of symmetric, positive definite real matrices
(associated with the Cartan domain of type III) and for a general symmetric cone in
[FK2], chapter VII. Let Ω be the symmetric cone associated with the Cartan domain
of tube type D. For α ∈ C with ℜα > (r− 1)a

2
let Rα be the linear functional on the

Schwartz space S(X) of X defined via

Rα(f) :=
1

ΓΩ(α)

∫

Ω

f(x)N(x)α−
d
r dx.

Then Rα is a tempered distribution satisfying ∂NRα = Rα−1, Rα⋆Rβ = Rα+β, R0 =
δ, i.e. R1 is the fundamental solution for the “wave operator” ∂N := N( ∂∂x). These
formulas permit analytic continuation of α 7→ Rα to an entire meromorphic function.
It is very interesting to find the explicit description of the action of Rα for general α,
but this is still open. What is known is that the Riesz distribution Rα is represented
by a positive measure if and only if α ∈ W (D).

Writing the inner products 〈·, ·〉λ in conical polar coordinates (1.11), we get for
λ > p− 1

〈f, g〉
λ

=
ΓΩ(λ)

ΓΩ(d
r
) ΓΩ(λ− d

r
)

∫

Ω∩(e−Ω)

(fg)˜(x) N(e− x)λ−p dx, ∀f, g ∈ Hλ(D),

where (fḡ)˜(x) :=
∫
K f(k(x

1
2 )) g(k(x

1
2 )) dk. Thus

〈f, g〉
λ

=
ΓΩ(λ)

ΓΩ(dr )

(
Rλ−dr

⋆ (fḡ)
)̃

(e),

where the convolution of functions u and v on Ω is

(u ⋆ v)(x) :=

∫

Ω∩(x−Ω)

u(y) v(x − y) dy.

Also, the inner product 〈·, ·〉
λ
, λ > p − 1, in the context of the tube domain

T (Ω) := X + iΩ (holomorphically equivalent to D) is

〈f, g〉
λ

:= c(λ)

∫

Ω

(∫

X

f(x+ iy) g(x + iy) dx

)
N(2y)λ−p dy.
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See section 6 for the details. Thus

〈f, g〉
λ

= π−d 2λ−p ΓΩ(λ) Rλ− dr

(
(f ḡ)♭

)
,

where (f ḡ)♭)(y) :=
∫
X
f(x + iy) g(x + iy) dx, y ∈ Ω.

In view of these formulas the problem of obtaining an explicit description of
the analytic continuation of the maps λ 7→ 〈f, g〉

λ
is equivalent to the problem of

determining the analytic continuation of the maps λ 7→ Rλ−dr
(u).

2 G(Ω)-invariant differential operators

Let Ω be the symmetric cone associated with the Cartan domain of tube type D,
i.e. the interior of the cone of squares in the Euclidean Jordan algebra X. In this
section we study G(Ω)-invariant differential operators that will be used later for the
invariant inner products. The ring Diff(Ω)G(Ω) of G(Ω)-invariant differential opera-
tors is a (commutative) polynomial ring C[X1, X2, . . . , Xr], [He], [FK2]. By [FK2],
Proposition IX.1.1, Ω is a set of uniqueness for analytic functions on Z (namely, if
an analytic function on Z vanishes identically on Ω, it vanishes identically on Z).
Similarly, Ω ∩ D = Ω ∩ (e − Ω) is a set of uniqueness for analytic functions on D.
Thus, if f, g and q are polynomials on Z so that ∂f(g)(x) = f( d

dx
)g(x) = q(x) for

every x ∈ Ω, then ∂f(g)(z) = f( ∂
∂z

)g(z) = q(z) for every z ∈ Z. We begin with the
following known result [FK2], Proposition VII.1.6.

Lemma 2.1 For every s = (s1, s2, . . . , sr) ∈ Cr and ℓ ∈N, we have

N ℓ(
d

dx
)Ns(x) = µs(ℓ) Ns−ℓ(x), ∀x ∈ Ω,

where

µs(ℓ) :=
(dr )s

(d
r
)s−ℓ

=
ΓΩ(s + d

r )

ΓΩ(s + d
r
− ℓ) =

r∏

j=1

ℓ−1∏

ν=0

(sj − ν + (r − j)a
2

),

and

ΓΩ(s)N(
d

dx
)Ns(x

−1) = (−1)r ΓΩ(s + 1) Ns+1(x
−1).

Let N∗j be the norm polynomial of the JB∗-subalgebra Vj :=
∑
r−j+1≤j≤k≤r Zi,k,

where Zi,k are the Peirce subspaces of Z associated with the fixed frame {ej}rj=1. For
every s = (s1, . . . , sr) ∈ Cr let

N∗s (x) := N∗1 (x)s1−s2N∗2 (x)s2−s3 . . .N∗r (x)sr , x ∈ Ω,

and
s∗ := (sr , sr−1, sr−2, . . . , s1).

Then we have Ns(x
−1) = N∗−s∗(x) for x ∈ Ω, [FK2],Proposition VII.1.5.

Definition 2.1 For ℓ ∈ N and λ ∈ C let Dℓ(λ) be the operator on C∞(Ω) defined
by

Dℓ(λ) = N
d
r−λ(x)N ℓ(

d

dx
)N ℓ+λ− dr (x). (2.1)
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In the special case of the Cartan domain of type II the operators D1(λ) have been
considered by Selberg (see [T], p.208). The operators Dℓ(λ) were studied in full
generality in [Y3], see also [FK2], Chapter XIV. Notice that by Lemma 2.1 we have

Dℓ(λ)Ns =
ΓΩ(s+ λ+ ℓ)

ΓΩ(s+ λ)
Ns. (2.2)

In section 4 below we will extend Dℓ(λ) to a polynomial differential operator on
Z, i.e. Dℓ(λ) = Qℓ,λ(z, ∂∂z ) for some polynomial Qℓ,λ.

Lemma 2.2 The operator Dℓ(λ) is K-invariant, i.e.

Dℓ(λ)(f ◦ k) = (Dℓ(λ)f) ◦ k ∀f ∈ C∞(Ω), ∀k ∈ K.

Proof: We have N(kz) = χ(k)N(z) for every z ∈ Z. Since the operator ∂N = N( ∂∂z )
is the adjoint of the operator of multiplication by N with respect to the inner product
〈·, ·〉F , K-invariance of 〈·, ·〉F implies ∂N (f ◦ k) = χ(k)(∂Nf) ◦ k. It follows that

Dℓ(λ)(f(kz)) = χ(k)
ℓ+λ− dr N(z)

d
r−λ N ℓ(

∂

∂z
)
(
N ℓ+λ−dr (kz)f(kz)

)

= χ(k)
ℓ+λ− dr N(z)

d
r−λ χ(k)ℓ

(
N ℓ(

∂

∂z
)(N ℓ+λ− dr f)

)
(kz)

= N
d
r−λ(kz)

(
N ℓ(

∂

∂z
)(N ℓ+λ− dr f)

)
(kz) = (Dℓ(λ)f)(kz).

Using (2.2) and the fact that Ω ∩D = Ω ∩ (e−Ω) is a set of uniqueness for analytic
functions on D, we obtain the following result.

Corollary 2.1 The spaces Pm are eigenspaces of Dℓ(λ) with eigenvalues

µℓ,m(λ) :=
ΓΩ(m+ λ+ ℓ)

ΓΩ(m + λ)
. (2.3)

Thus for every analytic function f on D with Peter-Weyl expansion f =
∑
m≥0 fm,

Dℓ(λ)f =
∑

m≥0

ΓΩ(m+ λ + ℓ)

ΓΩ(m+ λ)
fm = (λ)(ℓ,ℓ,...,ℓ)

∑

m≥0

(λ + ℓ)m
(λ)m

fm. (2.4)

Indeed, for every signature m and every k ∈ K,

Dℓ(λ)(Nm ◦ k) = (Dℓ(λ)Nm) ◦ k =
ΓΩ(m+ λ + ℓ)

ΓΩ(m+ λ)
Nm ◦ k.

Since Pm = span{Nm ◦ k; k ∈ K}, (2.4) follows from the continuity of Dℓ(λ) with
respect to the topology of compact convergence on D.

Corollary 2.2 Let λ ∈ C \P(D), ℓ ∈ N, and w ∈ D. Then

Dℓ(λ)h(·, w)−λ = (λ)(ℓ,ℓ,...,ℓ) h(·, w)−(λ+ℓ). (2.5)
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Proof: Using (1.16) and Corollary 2.2, we get

Dℓ(λ)h(·, w)−λ =
∑

m≥0

(λ)mDℓ(λ)Km(·, w)

= (λ)(ℓ,...,ℓ)
∑

m≥0

(λ)m
(λ + ℓ)m

(λ)m
Km(·, w)

= (λ)(ℓ,...,ℓ)
∑

m≥0

(λ+ ℓ)mKm(·, w) = (λ)(ℓ,...,ℓ) h(·, w)−(λ+ℓ).

Notice that the assumption that λ is not in P(D) is used in the above proof to ensure
that (λ)m 6= 0 for every m ≥ 0. This is due to the fact that the zero set of the
polynomial (λ)m is

Z((·)m) = ∪rj=1 {λj − k; k = 0, 1, . . . , mj − 1}, (2.6)

while P(D) = ∪rj=1 (λj −N) = ∪m≥0 Z((·)m). Similarly, for each m ≥ 0 the zero
set of the polynomial defined by (2.3) is given by

Z(µℓ,m(·)) = ∪rj=1 {λj − k; mj ≤ k ≤ mj + ℓ− 1}. (2.7)

The multiplicities of the zeros are equal to the number of their appearances on the
right hand side of (2.7).

Corollary 2.3 Let λ ∈ C, ℓ ∈ N be so that {m ≥ 0; (λ)m = 0} ⊆ {m ≥ 0; (λ +
ℓ)m = 0}. Then (2.5) holds.

Proof: Notice first that (λ)(ℓ,ℓ,...,ℓ)(λ + ℓ)m = (λ)m+ℓ for all λ ∈ C, ℓ ∈ N, and
m ≥ 0. Hence, using the fact that {m; (λ + ℓ)m 6= 0} ⊆ {m; (λ)m 6= 0}, we get for
every w ∈ D

Dℓ(λ)h(·, w)−λ = Dℓ(λ)
∑

(λ)m 6=0

(λ)mKm(·, w)

= (λ)(ℓ,ℓ,...,ℓ)
∑

(λ)m 6=0

(λ+ ℓ)mKm(·, w)

= (λ)(ℓ,...,ℓ)
∑

(λ+ℓ)m 6=0

(λ+ ℓ)mKm(·, w)

= (λ)(ℓ,...,ℓ)h(·, w)−(λ+ℓ).

For λ ∈ P(D) let q = q(λ) be as in (1.18), and for 0 ≤ j ≤ q consider Sj(λ) and

M(λ)
j as in (1.19).

Lemma 2.3 Let λ, and q = q(λ) be as above, and choose an integer ℓ so that λ+ ℓ ≥
d
r = λr + 1. Then

(i) degλ((·)(ℓ,ℓ,...,ℓ)) = q.
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(ii) For every j = 0, 1, 2, . . ., q and every m ∈ Sj(λ) \ Sj−1(λ), degλ(µℓ,m) = q − j.
(iii) If 0 ≤ j ≤ q and m ∈ Sj−1(λ), then degλ(µℓ,m) ≥ q − j + 1.

Proof: Using (2.6) it is clear that

q(λ,m) = q ⇔ λj −mj + 1 ≤ λ ∀j ⇔ λr −mr + 1 ≤ λ.

Since λr+1 ≥ λ+ℓ, we see thatm = (ℓ, ℓ, . . . , ℓ) satisfies the above condition, namely

degλ((·)(ℓ,...,ℓ)) = q(λ, (ℓ, . . . , ℓ)) = q. This establishes (i). Next, m ∈ S(λ)j \ S(λ)j−1 is
equivalent to q(λ,m) = j. By the argument given above, q(λ,m+ ℓ) = q. Since
degλ(f/g) = degλ(f) − degλ(g), we get

degλ(µℓ,m) = degλ

(
(·)m+ℓ
(·)m

)
=

= degλ((·)m+ℓ)− degλ((·)m) = q(λ,m+ ℓ) − q(λ,m) = q − j.
This yields (ii). Finally, (iii) follows by similar computations.

Let λ ∈ P(D), ℓ ∈ N, and q = q(λ) as above. For every m ≥ 0 and ν ∈ N we
define

µνℓ,m(λ) :=
1

ν!
(
∂

∂ξ
)νµℓ,m(ξ)|ξ=λ.

Using Lemma 2.3 (ii), we have

Corollary 2.4 (i) If m ∈ Sj(λ) \ Sj−1(λ) then

µq−jℓ,m(λ) =
r∏

i=1

′∏ mi+ℓ−1

k=mi
(λ + k − λi),

where the product
∏′ mj+ℓ−1

k=mj
ranges over all non-zero terms. In particular,

µq−jℓ,m(λ) 6= 0.

(ii) If m ∈ Sj−1(λ) then µq−jℓ,m(λ) = 0.

Definition 2.2 For λ ∈ C and ν, ℓ ∈N let Dν
ℓ (λ) be the operator on C∞(D) defined

by

Dν
ℓ (λ)f :=

1

ν!
(
∂

∂ξ
)ν(Dℓ(ξ)f)|ξ=λ . (2.8)

Notice that if f =
∑
m≥0 fm is analytic in D, then Dν

ℓ (λ)f :=∑
m≥0 µ

ν
ℓ,m(λ) fm.

By [FK2], Chapter VI the group G(Ω) admits an Iwasawa decomposition G(Ω) =
NAL, where L is the group defined via (1.6), and NA is a maximal solvable subgroup
of G(Ω) (called the triangular subgroup with respect to the frame {ei}ri=1) which acts
simply transitively on Ω and for which all the conical functions Ns, s ∈ Cr , are
eigenfunctions:

Ns(τ(x)) = Ns(τ(e))Ns(x), ∀τ ∈ NA, ∀x ∈ Ω. (2.9)
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Lemma 2.4 The operators Dℓ(λ) are G(Ω)-invariant, i.e. Dℓ(λ)(f ◦ϕ) = (Dℓ(λ)f)◦
ϕ, ∀f ∈ C∞(Ω), ∀ϕ ∈ G(Ω).

Proof: By the L-invariance of Dℓ(λ) (see Lemma 2.2) it is enough to verify the
NA-invariance of Dℓ(λ) for functions f of the form f = Ns ◦ ℓ for some s ∈ Cr and
ℓ ∈ L. Let τ ∈ NA, and decompose ℓ ◦ τ uniquely as ℓ ◦ τ = τ ′ ◦ ℓ′ with τ ′ ∈ NA and
ℓ′ ∈ L. Then, using (2.2) and (2.9), we get

Dℓ(λ)(f ◦ τ) = Dℓ(λ)(Ns ◦ ℓ ◦ τ) = Dℓ(λ)(Ns ◦ τ ′ ◦ ℓ′)

= (Dℓ(λ)(Ns ◦ τ ′)) ◦ ℓ′ = Ns(τ
′(e))(Dℓ(λ)Ns) ◦ ℓ′

= Ns(τ
′(e))

ΓΩ(s+ λ + ℓ)

ΓΩ(s+ λ)
Ns ◦ ℓ′ =

ΓΩ(s+ λ+ ℓ)

ΓΩ(s+ λ)
Ns ◦ τ ′ ◦ ℓ′

=
ΓΩ(s + λ + ℓ)

ΓΩ(s + λ)
Ns ◦ ℓ ◦ τ =

ΓΩ(s+ λ+ ℓ)

ΓΩ(s+ λ)
f ◦ τ

= (Dℓ(λ)f) ◦ τ.

Corollary 2.5 The operators Dν
ℓ (λ) are G(Ω)-invariant.

3 Integral formulas via the shifting method

In this section we develop general shifting techniques (introduced in [Y3], for the case
of integer shifts). The simplest case where this technique is applied is the case of the
Dirichlet space D = H0,1 over the unit disk D (see Section 2). For any α ∈ C and
β ∈ C \P(D) we define an operator Sα,β on H(D) via

Sα,β(
∑

m≥0

fm) :=
∑

m≥0

(α)m
(β)m

fm.

Theorem 5 of [A4] and the known estimate

(x)m
(y)m

≈
r∏

j=1

(mj + 1)x−y, ∀x, y ∈ R

(an easy consequence of (1.9) and Stirling’s formula) ensures that Sα,β is continuous
on H(D). For β ∈ P(D) we define operators Sα,β,j, 0 ≤ j ≤ q(β), on the space of
analytic functions on D of the form f =

∑
m∈Sj (β)

fm by

Sα,β,jf := lim
ξ→β

(ξ − β)jSα,βf =
∑

m∈Sj(β)\Sj−1(β)

(α)m
(β)m,j

fm,

where (β)m,j are defined by (1.21). Again, Sα,β,j is continuous in the topology of
H(D). Also, Sα,β,0 = Sα,β.
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Proposition 3.1 Let α, β > (r − 1)a2 . Then 〈f, g〉β = 〈Sα,βf, g〉α for every f, g ∈
Hβ .

Proof: By (1.17) the operator S
1
2

α,β : Hβ →Hα defined by

S
1
2

α,β(
∑

m≥0

fm) :=
∑

m≥0

(
(α)m
(β)m

) 1
2

fm

is a surjective isometry, and ‖f‖2β = ‖S
1
2

α,βf‖2α = 〈Sα,βf, f〉α . Now the result follows
by polarization.

In a similar way one proves the following result.

Proposition 3.2 Let α > (r − 1)a2 and let β ∈ P(D). Then for every 0 ≤ j ≤ q(β)
and all f, g ∈ Hβ,j ,

〈f, g〉β,j = 〈Sα,β,jf, g〉α. (3.1)

The operators Sα,β,j allow the computation of the invariant hermitian forms
〈f, g〉β,j by “shifting” the point β to the point α. This is the “shifting method”. One

typically chooses either α = d
r or α > p − 1, so the forms 〈f, g〉

β,j
can be computed

by the integral-type inner products of H2(D) or L2a(D, µα). In order for the shifting
method to be useful, one has to identify the operators Sα,β,j as differential or pseudo-
differential operators. Essentially, this is our aim in the rest of the paper. Yan’s paper
[Y3] deals with the case where ℓ := α− β is a sufficiently large natural number. The
following result is a minor generalization of a result of [Y3].

Theorem 3.1 Let λ > λr = d
r − 1 and let ℓ ∈N. Then for all f, g ∈ Hλ

〈f, g〉
λ

= α(λ, ℓ)〈Dℓ(λ)f, g〉
λ+ℓ

, (3.2)

where

α(λ, ℓ) =
ΓΩ(λ)

ΓΩ(λ+ ℓ)
=

1

(λ)(ℓ,ℓ,...,ℓ)
.

We include a short proof for the sake of completeness.

Proof: Let f, g ∈ Hλ with expansions f =
∑
m≥0 fm and g =

∑
m≥0 gm respectively.

Then

〈Dℓ(λ)f, g〉
λ+ℓ

=
∑

m≥0

µℓ,m(λ)

(λ+ ℓ)m
〈fm, gm〉F

=
ΓΩ(λ + ℓ)

ΓΩ(λ)

∑

m≥0

〈fm, gm〉F
(λ)m

= α(λ, ℓ)−1 〈f, g〉
λ
.

Corollary 3.1 Let λ > λr = d
r
− 1, and ℓ ∈ N be so that λ + ℓ > p − 1. Then

Hλ+ℓ = L2a(D, µλ+ℓ), and for every f, g ∈ L2a(D, µλ+ℓ),

〈f, g〉
λ

= α(λ, ℓ) c(λ + ℓ)

∫

D

(Dℓ(λ)f)(z) g(z) h(z, z)λ+ℓ−p dm(z).
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Our main result in this section is a generalization of both Theorem 3.1 and the
other results of [Y3] to the case of invariant hermitian forms associated with the pole
set P(D) = ∪rj=1(λj − N). Since W(D) ⊂ P(D), this covers cases not studied in
[A1].

Theorem 3.2 Let λ ∈ P(D), ℓ ∈ N and assume that λ + ℓ ≥ d
r = λr + 1. Let

q = q(λ), 0 ≤ j ≤ q, and ν = q − j. Then for all f, g ∈ Hλ,j,

〈f, g〉
λ,j

= γ〈Dν
ℓ (λ)f, g〉

λ+ℓ
, (3.3)

where γ = γ(λ, ℓ) is the non-zero constant

γ :=
1

q!
(
∂

∂ξ
)q
(
(ξ)(ℓ,ℓ,...,ℓ)

)
|ξ=λ

. (3.4)

In particular, if λ + ℓ > p− 1, then

〈f, g〉
λ,j

= γ c(λ+ ℓ)

∫

D

(Dν
ℓ (λ)f)(z) g(z) dm(z). (3.5)

Moreover, if λr − λ ∈N and ℓ is chosen so that λ + ℓ = d
r

= λr + 1, then

〈f, g〉
λ,j

= γ

∫

S

(Dν
ℓ (λ)f)(ξ) g(ξ) dσ(ξ). (3.6)

We shall also give a new proof of the following known result (see [FK1], Theorem
5.3) and of a part of Theorem 1.4 above, based on our analysis of the structure of
zeros of the polynomials (·)m. Recall that Hλ,j is said to be unitarizable if 〈·, ·〉λ,j is
either positive definite or negative definite.

Theorem 3.3 Let λ, ℓ, q, and j be as in Theorem 3.2. Then Hλ,j is unitarizable if
and only if either
(a) j = q and λr − λ ∈N, or
(b) j = 0 and λ ∈Wd(D) = {λj}rj=1.

For the proof of Theorems 3.2 and 3.3 we consider separately the cases j = 0,
j = q, and 1 ≤ j ≤ q − 1.

Case 1: j = 0. Since λ ∈ P(D), there is a smallest k ∈ {1, 2, . . . , r} and a unique
s ∈ N so that λ = λk − s. We claim that S0(λ) = {m ≥ 0;mk ≤ s}. Indeed,

if m ≥ 0, then
∏k−1
i=1

∏mi−1
ν=0 (λ + ν − λi) 6= 0, by the minimality of k. The term∏mk−1

ν=0 (λ + ν − λk) =
∏mk−1
ν=0 (ν − s) is non-zero if and only if mk ≤ s. If mk ≤ s

and k < n ≤ r then

mk−1∏

ν=0

(λ+ ν − λk) =
mk−1∏

ν=0

((λk − λn) + (ν − s)) 6= 0
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because mn ≤ mk ≤ s. This establishes the claim. Notice that since λ + ℓ ≥ λr + 1,
we have (λ + ℓ)m > 0 for any m ≥ 0. Also, degλ((·)(ℓ,ℓ,...,ℓ)) = q by Lemma 2.3. It
follows that for m ∈ S0(λ), degλ(µℓ,m) = q, and

µqℓ,m(λ) =
1

q!
(
∂

∂ξ
)qµℓ,m(ξ) |ξ=λ =

1

q!
(
∂

∂ξ
)q
(

(ξ + ℓ)m
(ξ)m

(ξ)(ℓ,ℓ,...,ℓ)

)

|ξ=λ

=
(λ + ℓ)m

(λ)m

1

q!
(
∂

∂ξ
)q(ξ)(ℓ,ℓ,...,ℓ) |ξ=λ = γ

(λ + ℓ)m
(λ)m

.

Hence, for f, g ∈ Hλ,0,

〈Dq
ℓ (λ)f, g〉λ+ℓ =

∑

m∈S0(λ)

µqℓ,m(λ)
〈fm, gm〉F
(λ+ ℓ)m

= γ
∑

m∈S0(λ)

〈fm, gm〉F
(λ)m

= γ〈f, g〉
λ,0
.

This proves Theorem 3.2 in case j = 0. If λ ∈ Wd(D), i.e. λ = λk and s = 0,
then (λ)m > 0 for every m ∈ S0(λ), namely 0 = mk = mk+1 = · · · = mr . If
λ ∈ P(D) \Wd(D), then λ = λk − s with 1 ≤ s. In this case (λ)m assumes both
positive and negative values as m ranges over S0(λ). Indeed, if m and n are defined
by mi = ni = 0 for 1 ≤ i ≤ k − 1 and k < i ≤ r, and mk = 0, nk = s− 1, then (λ)m
and (λ)n have different signs. Thus 〈·, ·〉

λ,0
is not definite (positive or negative), and

thus Hλ,0 is not unitarizable. This proves Theorem 3.3 in case j = 0.

Case 2: j = q. In this case ν = q − j = 0. Also, Lemma 2.3 yields degλ(µℓ,m) = 0
if m ∈ Sq(λ) and degλ(µℓ,m) ≥ 1 if m ∈ Sq−1(λ). It follows that for f, g ∈ Hλ,q,

〈Dℓ(λ)f, g〉
λ+ℓ

=
∑

m∈Sq(λ)

µℓ,m(λ)
〈fm, gm〉F
(λ+ ℓ)m

.

Now,

µℓ,m(λ) = lim
ξ→λ

(ξ + ℓ)m
(ξ)m

(ξ)(ℓ,ℓ,...,ℓ) = (λ + ℓ)m lim
ξ→λ

(ξ)(ℓ,ℓ,...,ℓ)
(ξ)m

= γ
(λ + ℓ)m
(λ)m,q

,

where γ is the non-zero constant defined in (3.4). It follows that

〈Dℓ(λ)f, g〉
λ+ℓ

= γ
∑

m∈Sq(λ)

〈fm, gm〉F
(λ)m,q

= γ〈f, g〉
λ,q
.

This proves Theorem 3.2 in case j = q. To prove Theorem 3.3 in this case, assume
first that λ = λr − s for some s ∈N. We claim now that

Sq(λ) \ Sq−1(λ) = {m ≥ 0;mr ≥ s+ 1}. (3.7)

Indeed, if mr ≥ s + 1 then
∏mr−1
u=0 (λ + u − λr) = 0. If λ ∈ λi − N, then∏mi−1

u=0 (λ+u−λr) = 0 because mi ≥mr ≥ s+1. Thus degλ((·)m) = q. Conversely,
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if degλ((·)m) = q, then in order that
∏mr−1
u=0 (λ + u − λr) = 0 it is necessary that

s ≤ mr − 1. This establishes (3.7).

Next, let m ∈ Sq(λ), and let 1 ≤ i ≤ r be so that λ ∈ λi −N, say λ = λi − ki.
Then

lim
ξ→λ

(ξ − λ)−1
mi−1∏

u=0

(ξ + u− λi) =

ki−1∏

u=0

(λ + u− λi)
mi−1∏

u=ki+1

(λ+ u− λi) = γi,m βi

with βi 6= 0 and γi,m > 0. If λ /∈ λi −N we let βi =
∏
u<λi−λ

(λ + u− λi) 6= 0 and

γi,m =
∏
u>λi−λ

(λ + u− λi) > 0. Then

(λ)m,q = lim
ξ→λ

(ξ)m
(ξ − λ)q

=
r∏

i=1

γi,m βi.

Hence, all the numbers {(λ)m,q}m∈Sq (λ) have constant sign (equal to sgn(
∏r
i=1 βi)),

and thus Hλ,q is unitarizable. Assume now that λ /∈ λr −N. Then, necessarily, the
characteristic multiplicity a is odd and λ ∈ λr−1 −N. Writing λ = λr−1 − s, s ∈ N,
it is clear by the above arguments that

Sq(λ) \ Sq−1(λ) = {m ≥ 0; mr−1 ≥ s+ 1}.

Letm = (s+1, s+1, . . ., s+1, 1) and n = (s+1, s+1, . . . , s+1, 0). Thenm,n ∈ Sq(λ)
and (λ)m,q = (λ−λr)(λ)n,q . Thus (λ)m,q and (λ)n,q have different signs, and so Hλ,q
is not unitarizable. This proves Theorem 3.3 in case j = q.

Case 3: 1 ≤ j ≤ q− 1. Put ν = q − j. As before, ℓ ∈ N is chosen so that λ + ℓ ≥
λr + 1, and this guarantees that degλ((·)m+ℓ) = q and (λ+ ℓ)m > 0 for all signatures
m ≥ 0. Let f, g ∈ Hλ,j. Then

〈Dν
ℓ (λ)f, g〉λ+ℓ =

∑

m∈Sj(λ)

µνℓ,m(λ)
〈fm, gm〉F
(λ + ℓ)m

.

If m ∈ Sj(λ) \ Sj−1(λ), then

degλ(µℓ,m) = degλ

(
(·)m+ℓ
(·)m

)
= q − j = ν.

Thus,

µνℓ,m(λ) = lim
ξ→λ

µℓ,m(ξ)

(ξ − λ)ν
= lim
ξ→λ

(ξ + ℓ)m(ξ − λ)−q(ξ)(ℓ,ℓ,...,ℓ)

(ξ − λ)−j(ξ)m
= γ

(λ + ℓ)m
(λ)m,j

.

If m ∈ Sj−1(λ), then degλ(µℓ,m) ≥ q − j + 1 = ν + 1, and so µνℓ,m(λ) = 0. Thus

〈Dν
ℓ (λ)f, g〉λ+ℓ = γ

∑

m∈Sj (λ)\Sj−1(λ)

(λ + ℓ)m
(λ)m,j

〈fm, gm〉F
(λ+ ℓ)m

= γ
∑

m∈Sj (λ)\Sj−1(λ)

〈fm, gm〉F
(λ)m,j

= γ〈f, g〉
λ,j
.
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This proves Theorem 3.2 in case 1 ≤ j ≤ q − 1. To prove Theorem 3.3 in this case
we need to show that as m varies in Sj(λ) \ Sj−1(λ), (λ)m,j assumes both positive
and negative values. Notice first that there exists a unique pair (k, s) of integers with
1 ≤ k < s ≤ r so that λk − λ and λs − λ are positive integers and

m ∈ Sj(λ) \ Sj−1(λ) ⇐⇒ mk ≥ λk − λ + 1 and ms ≤ λs − λ.

In fact, s = k + 1 if the characteristic multiplicity a is even, and s = k + 2 if a is
odd. Next, λs − λ = λk − λ + (s− k)a2 ≥ 1. Define m, n by mi = ni = λk − λ + 1
if 1 ≤ i ≤ k, mi = ni = 0 if k + 2 ≤ i ≤ r, and mk+1 = 0, nk+1 = 1. Then
m,n ∈ Sj(λ) \ Sj−1(λ) and (λ)n,j = (λ)m,j(λ− λs). Thus (λ)n,j and (λ)m,j have
different signs, and so Hλ,j is not unitarizable. This proves Theorem 3.3 in case
1 ≤ j ≤ q − 1.

A special case of Theorem 3.2 is the following essentially known result.

Corollary 3.2 Let λ ∈ P(D) be so that s = s(λ) := d
r − λ ∈N. Then

(i) Hλ,q is unitarizable, and

〈f, g〉
λ,q

= γ

∫

S

Ns(ξ)(∂sNf)(ξ) g(ξ) dσ(ξ), ∀f, g ∈ Hλ,q.

Thus, an analytic function f on D belongs to Hλ,q if and only if (Ns∂sN)1/2f ∈
H2(S).

(ii) Moreover, if ℓ ∈N is chosen so that λ + ℓ > p− 1, then

〈f, g〉
λ,q

= γ′
∫

D

(Dℓ(λ)f)(z) g(z) h(z, z)λ+ℓ−p dm(z), ∀f, g ∈ Hλ,q.

Consequently, an analytic function f on D belongs to Hλ,q if and only if
(Dℓ(λ))1/2f ∈ L2a(D, µλ+ℓ).

In the last statement (Dℓ(λ))1/2 is the positive square root of the positive operator
Dℓ(λ), see Corollary 2.1 Indeed, part (i) follows from Theorem 3.2 with j = q, ν =
q − j = 0, ℓ = s and Ds(λ) = Ns∂sN . In this case Hλ+s = H d

r
is the Hardy space

H2(S) on the Shilov boundary S. Corollary 3.2 (i) for λ ∈ Wd(D) was proved in
[A2]. The proof of part (ii) is similar.

The case where λ ∈ P(D) and s := d
r
− λ ∈ N (i.e. the highest quotient of the

composition series of U (λ)-invariant spaces is unitarizable) is of particular interest.

Theorem 3.4 Let λ ∈ P(D) and assume that s := d
r − λ ∈ N. Then, for each

ϕ ∈ Aut(D) and f ∈ H(D)

∂sN (U (λ)(ϕ)f) = U (p−λ)(ϕ)(∂sNf). (3.8)

Namely, the operator ∂sN intertwines the actions U
(λ) and U (p−λ) of Aut(D). More-

over,
〈f, g〉

λ,q
= c1 〈∂sNf, ∂sNg〉p−λ , ∀f, g ∈ Hλ,q, (3.9)
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where

c−11 := (
d

r
)(s,s,...,s)

r∏

j=1

′∏s−1

u=0
(λ+ u− λj), (3.10)

and the product
∏′s−1

u=0 ranges over all non-zero terms. In particular, if λ < 1, then

〈f, g〉
λ,q

= c1 c(p− λ)

∫

D

(∂sNf)(z) (∂sNg)(z) h(z, z)−λ dm(z), ∀f, g ∈ Hλ,q. (3.11)

Proof: (3.8) is proved in [A1], Theorem 6.4. For the proof of (3.9) and (3.11) we

define an inner product on the polynomials moduloM(λ)
q−1 by

[f, g] := 〈∂sNf, ∂sNg〉p−λ, f, g ∈ Hλ,q.

We claim that [·, ·] is U (λ)-invariant. Indeed, using (3.8) we see that for every ϕ ∈
Aut(D) and polynomials f and g,

[U (λ)(ϕ)f, U (λ)(ϕ)g] = 〈∂sN(U (λ)(ϕ)f), ∂sN (U (λ)(ϕ)g)〉p−λ
= 〈U (p−λ)(ϕ)(∂sN f), U (p−λ)(ϕ)(∂sNg)〉p−λ
= 〈∂sNf, ∂sNg〉p−λ = [f, g].

Since polynomials are dense in Hλ,q, the fact that its inner product is the unique
U (λ)-invariant inner product (see [AF], [A1]) implies that

〈f, g〉λ,q = c1 [f, g], ∀f, g ∈ Hλ,q.

The value (3.10) of c1 is found by taking f = g = Ns, and using the facts that
〈Ns, Ns〉F = (d

r
)(s,s,...,s), [Ns, Ns] = (∂sNN

s)2 = 〈Ns, Ns〉2F , and

〈Ns, Ns〉λ,q = lim
ξ→λ

(ξ − λ)q
〈Ns, Ns〉F
(ξ)(s,s...,s)

=
〈Ns, Ns〉F∏r

j=1

∏′s−1
u=0(λ + u− λj)

.

Example: In the special case where λ = 0 and s := d
r ∈ N, H0,q is the generalized

Dirichlet space, and formula (3.11) is the generalized Dirichlet inner product

〈f, g〉0,q = c1 c(p − λ)

∫

D

(∂sNf)(z) (∂sNg)(z) dm(z), ∀f, g ∈ H0,q.

4 The expansion of the operators Dℓ(λ)

Yan’s operators Dℓ(λ) = N
d
r−λ∂ℓNN

λ+ℓ−dr and their derivatives play an important
role in the previous section. In this section we obtain an expansion of Dℓ(λ) in powers
of λ. This expansion will exhibit Dℓ(λ) as a polynomial in z, ∂

∂z , and λ, showing that
Dℓ(λ) is a differential operator (with parameters λ and ℓ) in the ordinary sense. It
also facilitates the computation of the derivatives

Dν
ℓ (λ) =

1

ν!
(
∂

∂ξ
)νDℓ(ξ)

|ξ=λ

,
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needed in formulas (3.3), (3.5) and (3.6) for the forms 〈f, g〉λ,j . Another conse-
quence will be that for any r distinct complex numbers α1, . . . , αr the operators
D1(α1), . . . , D1(αr) are algebraically independent generators of the ring of invariant
differential operators on the cone Ω, a result obtained independently also by Korányi
and Yan (see [FK2], Chapter XIV). We shall work in the framework of the cone Ω,
but all the results will be valid for Z, because Ω is a set of uniqueness for analytic
functions on Z.

Example 4.1. Let D ⊂ Cd, d ≥ 3 be a Cartan domain of rank r = 2 (called the Lie
ball). The associated JB∗-algebra Z = Cd, called the complex spin factor, is defined
via

zw := (z1w1 − z′ · w′, z1w′ +w1z
′), z∗ := (z1,−z′),

where z = (z1, z
′), z′ = (z2, z3, . . . , zd), and z · w :=

∑d
j=1 zjwj . The unit

of Z is e := (1, 0, 0, . . ., 0), and the canonical frame is {e1, e2}, where e1 :=
1
2 (1, i, 0, 0, . . . , 0), e2 := 1

2(1,−i, 0, 0, . . ., 0). The norm polynomial and the asso-
ciated differential operator are given by

N(z) := z · z =
d∑

j=1

z2j and ∂N = N(
∂

∂z
) =

1

4

d∑

j=1

∂2

∂z2j

respectively, since (z|w) = 2z · w is the normalized inner product. Since r = 2 and
a = d− 2, the Wallach set is

W(D) =Wd(D) ∪Wc(D), Wd(D) = {0, d− 2

2
}, Wc(D) = (

d− 2

2
,∞).

One can show that D is given by

D = {z ∈ Z;


(

d∑

j=1

|zj|2)2 − |N(z)|2


1
2

< 1−
n∑

j=1

|zj|2}. (4.1)

For every α ∈ C

∂2

∂z2k
Nα =

∂

∂zk
(2αNα−1zk +Nα ∂

∂zk
)

= 2αNα−1 + 4αNα−1zk
∂

∂zk
+ 4α(α− 1)Nα−2z2k +Nα ∂

2

∂z2k
.

Since R =
∑d
j=1 zj

∂
∂zj

, we obtain

∂N N
α =

1

4
(
d∑

j=1

∂2

∂z2j
)Nα = α(α− a

2
)Nα−1 + αNα−1R+Nα∂N .

It follows that for every α ∈ C and ℓ ∈N,

N1−α∂NN
α = N∂N + αR+ α(α+

d− 2

2
)I = N∂N + (α)(1,0)R+ (α)(1,1)I. (4.2)
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Since

Dℓ(λ) =
(
N

d
r−λ∂NN

1+λ− dr

)(
N

d
r−λ−1∂NN

2+λ−dr

)
· · ·
(
N

d
r+1−ℓ−λ∂NN

ℓ+λ− dr

)
,

we finally obtain

Dℓ(λ) =
ℓ∏

j=1

(N∂N + (λ− d

2
+ j)R + (λ− 1 + j)(λ− d

2
+ j)I). (4.3)

Note that the factors on the right hand sides of (4.2) and (4.3) commute, since they
are G(Ω)-invariant, and the entire ring of G(Ω)-invariant operators is commutative.
Also, the operators R and N∂N are K-invariant. Hence the factors on the right hand
sides of (4.2) and (4.3) are multipliers of the Peter-Weyl decomposition of analytic
functions on D (see Corollary 2.1).

Consider a general Cartan domain of tube-type D ⊂ Cd with rank r. Let Ω be
the associated symmetric cone in the Euclidean Jordan algebra X and fix a frame
{e1, . . . , er} of pairwise orthogonal primitive idempotents in X, whose sum is the unit
element e. For 1 ≤ ν ≤ r, let φν := φ1ν be the spherical polynomial associated with
the signature 1ν := (1, 1, . . . , 1, 0, 0, . . ., 0), where there are ν “1”’s and r − ν “0”’s.
Put also φ0(z) ≡ 1. Let {∆ν}rν=0 be the differential operators on Ω defined via

(∆ν)f(a) := φν(
d

dx
)(f(P (a

1
2 )x))

|x=e
, (4.4)

where for b ∈ X, P (b) is defined via (1.1). Recall that P (b) ∈ G(Ω) for every b ∈ Ω,

and that Ω = {P (b)e; b ∈ Ω} since P (a
1
2 )e = a. Moreover, the L-invariance of the

φν ’s and the “polar decomposition” for Ω imply that

(∆ν)f(a) := φν(
d

dx
)(f(ψ(x)))

|x=e
, a ∈ Ω (4.5)

for every ψ ∈ G(Ω) for which ψ(e) = a. This implies that the operators {∆ν}rν=0 are
G(Ω)-invariant, namely

∆ν(f ◦ ψ) = (∆νf) ◦ ψ, ∀ψ ∈ G(Ω), ∀f ∈ C∞(Ω).

We remark that (4.4) and (4.5) are equivalent to

∆νe
〈x,y〉

|x=a = φν(ψ∗(y)) e〈a,y〉 = φν(P (a
1
2 )y) e〈a,y〉 , a, y ∈ Ω, (4.6)

where ψ ∈ G(Ω) ⊂ GL(X) satisfies ψ(e) = a, ψ∗ is the adjoint of ψ with respect to
the inner product 〈·, ·〉 on X, and ∆ν differentiates the coordinate x. Notice also that
the operators ∆ν can be written as

∆ν = cmKm(x,
∂

∂x
),

where m = (1, 1, . . . , 1, 0, . . . , 0) (ν “ones” and r− ν zeros), and cm is an appropriate
constant.
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For ν = 0, 1, r it is easy to compute ∆ν. Clearly, ∆0 = I. Since N is L-invariant,
φr = N . Using (4.6) and (1.3), we find that

∆r = N ∂N .

Also, φ1(x) = 1
r tr(x) = 1

r 〈x, e〉. Indeed, using N1(x) = 〈x, e1〉 and the fact that L is
transitive on the frames, we get

φ1(x) =

∫

L

〈ℓx, e1〉 dℓ =
1

r

r∑

j=1

∫

L

〈ℓx, ej〉 dℓ

=
1

r

∫

L

〈ℓx, e〉 dℓ =
1

r

∫

L

〈x, ℓe〉 dℓ =
1

r
〈x, e〉.

Using the fact that tr(P (a
1
2 )y) = 〈P (a

1
2 )y, e〉 = 〈y, P (a

1
2 )e〉 = 〈y, a〉, ∀a, y ∈ Ω, we

find that

∆1 =
1

r
R,

where Rf(x) := ∂
∂tf(tx)

|t=1
is the radial derivative.

Our main result in this section is the expansion of D1(λ) = N
d
r−λ ∂N N

1+λ− dr .
This result was obtained independently by A. Korányi, see [FK2], Proposition
XIV.1.5.

Theorem 4.1 For every λ ∈ C,

D1(λ) =
r∑

ν=0

(
r

ν

) r∏

j=ν+1

(λ− λj) ∆ν. (4.7)

Proof: For x ∈ Ω, the function α→ N(x)α is entire in α. Hence both sides of (4.7)
are entire in λ, and it is therefore enough to prove (4.7) for λ with ℜλ < 0. Let
α = λr − λ. Since ℜλ > λr, we get for every x ∈ Ω

N(x)−α =
1

ΓΩ(α)

∫

Ω

e−〈x,t〉N(t)α dµΩ(t),

where dµΩ(t) := N(t)−
d
r dt is the G(Ω)-invariant measure on Ω. Fix a, y ∈ Ω and put

fy(x) := e〈x,y〉. Then

(Nα+1∂NN
−αfy)(a)

=
N(a)α+1

ΓΩ(α)
N(

d

dx
)

∫

Ω

e〈x,y−t〉N(t)αdµΩ(t) |x=a

=
N(a)α+1

ΓΩ(α)

∫

Ω

e〈a,y−t〉N(y − t)N(t)α dµΩ(t)

=
fy(a)

ΓΩ(α)

∫

Ω

e−〈e,P(a
1
2 )t〉N(P (a

1
2 )(y − t))N(P (a

1
2 )t)α dµΩ(t).
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Letting b = P (a
1
2 )y, the substitution t := P (a−

1
2 )P (b

1
2 )τ gives

(Nα+1∂NN
−αfy)(a) =

fy(a)

ΓΩ(α)
N(y)1+αN(a)1+α

∫

Ω

e−〈b,τ〉N(e− τ)N(τ)α dµΩ(τ).

Now, the well-known “binomial formula”

N(e+ x) =
r∑

ν=0

(
r

ν

)
φν(x), x ∈ X (4.8)

(which follows from Theorem 1.2 and the knowledge of the norms of the φν’s) and
the fact that for every s ∈ Cr and b ∈ Ω

1

ΓΩ(s)

∫

Ω

e−〈b,τ〉φs(τ) dµΩ(τ) = φs(b
−1) (4.9)

(which follows from the analogous formula for the conical functions), imply

∫

Ω

e−〈b,τ〉N(e− τ)N(τ)α dµ(τ) =
r∑

ν=0

(
r

ν

) ∫

Ω

e−〈b,τ〉φ1ν+α(τ) dµΩ(τ)

=
r∑

ν=0

(
r

ν

)
ΓΩ(1ν + α) φ1ν+α(b−1) = N(b)−α

r∑

ν=0

(
r

ν

)
ΓΩ(1ν + α) φν(b−1).

We claim that for every b ∈ Ω and 1 ≤ ν ≤ r,

φν(b−1) = φr−ν(b)N(b)−1. (4.10)

Indeed, using (4.8) we have N(e+ tb−1) =
∑r
ν=0

(
r
ν

)
φν(b−1) tν , as well as

N(e+ tb−1) = N(P (b−
1
2 )(b + te)) = N(b)−1 tr N(e+ t−1b)

= N(b)−1 tr
r∑

k=0

(
r

k

)
φk(b) t−k.

Comparing the coefficients of tν in the two expansions, we obtain (4.10). It follows
that

(Nα+1 ∂NN
−αfy)(a)

=
fy(a) N(y)1+α N(a)1+α

ΓΩ(α) N(b)1+α

r∑

ν=0

(−1)ν
(
r

ν

)
ΓΩ(1ν + α) φr−ν(b)

= fy(a)
r∑

ν=0

(−1)ν
(
r

ν

)
ΓΩ(1ν + α)

ΓΩ(α)
φr−ν(b)

= fy(a)
r∑

ν=0

(
r

ν

) ν∏

j=1

(λj − α) φr−ν(P (a
1
2 )y).
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Comparing this with (4.6), we conclude that

Nα+1 ∂NN
−α =

r∑

ν=0

(
r

ν

) ν∏

j=1

(λj − α) ∆r−ν =
r∑

k=0

(
r

k

) r−k∏

j=1

(λj − α) ∆k.

Using the relations α = λr − λ and d
r = 1 + λr , we obtain (4.7).

Remark: The “binomial formula” (4.8) yields that for every ν = 1, 2, . . . , r and every
x ∈ X,

φν(x) =
∑

1≤i1<i2<...<iν≤r

λi1 λi2 · · · λiν/
(
r

ν

)
= Sr,ν (λ)/

(
r

ν

)
,

where λ = (λ1, λ2, . . . , λr) is the sequence of eigenvalues of x, and Sr,ν is the elemen-
tary symmetric polynomial of degree ν in r variables.

Combining the definition Dℓ(λ) =
∏ℓ−1
k=0D1(λ+ k) with Theorem 4.1, we obtain

Corollary 4.1 For every λ ∈ C and ℓ ∈N,

Dℓ(λ) =
ℓ−1∏

k=0

r∑

ν=0

(
r

ν

) r∏

j=ν+1

(λ + k − λj) ∆ν. (4.11)

For any signature m ≥ 0 let ∆m be the differential operator associated with the
spherical polynomial φm via

(∆mf)(a) := φm(
d

dx
) f(P (a

1
2 ))
|x=e

, a ∈ Ω. (4.12)

Equivalently,
∆me

〈x,y〉
|x=a = φm(P (a

1
2 )y) e〈a,y〉, a ∈ Ω. (4.13)

Again, one can replace in (4.12) and (4.13) P (a
1
2 ) by any ψ ∈ G(Ω) satisfying ψ(e) =

a. Hence the operators ∆m are G(Ω)-invariant, namely

∆m(f ◦ ψ) = (∆mf) ◦ ψ, ∀ψ ∈ G(Ω).

Theorem 4.2 For every λ ∈ C and ℓ ∈N,

Dℓ(λ) =
∑

m≥0

(ℓ) ΓΩ(dr + ℓ) ΓΩ(dr − λ−m∗)
ΓΩ(dr + ℓ−m∗) ΓΩ(dr − ℓ− λ)

dm

(dr )m
∆m

(4.14)

= (
d

r
− λ− ℓ)(ℓ,...,ℓ)

∑

m≥0

(ℓ) (−ℓ)m
(λ)m

dm

(dr )m
∆m.

Here m∗ := (mr , mr−1, . . . , m1), dm = dim(Pm), and the summation
∑
m≥0

(ℓ)

extends over all m = (m1, m2, . . . , mr) ∈Nr with ℓ ≥ m1 ≥m2 ≥ . . . ≥ mr ≥ 0.
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Proof: The general binomial formula (1.15) and the relations

Km(x, e) =
φm
‖φm‖2F

, ‖φm‖2F =
(dr )m

dm

(see [FK2], Chapter XI) imply for ℓ ∈N and x ∈ X

N(e+ x)ℓ = c
∑

m≥0

(ℓ) dm

(d
r
)ℓ−m∗ (d

r
)m

φm(x), (4.15)

where c := (d
r
)(ℓ,ℓ,...,ℓ), and m∗ and

∑
m≥0

(ℓ)
are as in Theorem 4.2. Indeed, by

(1.15),

N(e+ x)ℓ =
∑

m≥0

(−ℓ)m
(−1)|m| dm

(dr )m
φm(x).

From this (4.15) follows by the fact that (−ℓ)m = 0 if m1 > ℓ, whereas in case m1 ≤ ℓ,

(−ℓ)m (−1)|m| =
(d
r
)(ℓ,ℓ,...,ℓ)

(dr )ℓ−m∗
.

As in the proof of Theorem 4.1, it is enough to prove that for every α ∈ C with
ℜα > λr and every ℓ ∈N,

Nα+ℓ ∂ℓN N
−α = c

∑

m≥0

(ℓ) (α)ℓ−m∗ dm

(dr )ℓ−m∗ (dr )m
∆m. (4.16)

From this one obtains (4.14) by the substitution α = d
r
− ℓ− λ. To prove (4.16), fix

a, y ∈ Ω and let fy(x) := e〈x,y〉. Then

(Nα+ℓ ∂ℓN N
−αfy)(a) =

N(a)α+ℓ fy(a)

ΓΩ(α)

∫

Ω

e−〈a,t〉N(y − t)ℓN(t)α dµΩ(t)

=
N(b)α+ℓ fy(a)

ΓΩ(α)

∫

Ω

e−〈b,u〉N(e− u)ℓN(u)α dµΩ(u),

by the substitutions b = P (a
1
2 )y and u = P (b−

1
2 )P (a

1
2 )t. Using (4.15), (4.9), and

φm(x−1) = φℓ−m∗(x) N(x)−ℓ (4.17)

(a consequence of [FK2], Proposition VII.1.5), we obtain

(Nα+ℓ ∂ℓN N
−αfy)(a) = c

fy(a)

ΓΩ(α)

∑

m≥0

(ℓ)ΓΩ(m+ α) dm

(dr )ℓ−m∗ (dr )m
φℓ−m∗(P (a

1
2 )y).

With the change of variables n := ℓ −m∗, the fact that dm = dn (use (4.17) or the
general formula for dm in [U1]), the definition (4.12), and

(Nα+ℓ ∂ℓN N
−αfy)(a) = c fy(a)

∑

n≥0

(ℓ) (α)ℓ−n∗ dn

(dr )ℓ−n∗ (dr )n
φn∗(P (a

1
2 )y),

we obtain (4.16).
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Corollary 4.2 The operators {∆k}rk=1 are algebraically independent generators of
the ring Diff(Ω)G(Ω) of G(Ω)-invariant differential operators on Ω.

Proof: Comparing the two expansions (4.11) and (4.14) of Dℓ(λ), we see that

∆m ∈ C[∆1,∆2, . . . ,∆r]

for every signature m ≥ 0. Since {φm}m≥0 is a basis for the space of spherical
polynomials, the one-to-one correspondence between spherical polynomials and the
elements of Diff(Ω)G(Ω) (see [FK2], Chapter XIV) implies that {∆m}m≥0 is a basis
of Diff(Ω)G(Ω). Thus Diff(Ω)G(Ω) = C[∆1,∆2, . . . ,∆r]. Since the minimal number of
algebraic generators of Diff(Ω)G(Ω) is r = rank(Ω) [He], it follows that ∆1,∆2, . . . ,∆r

are algebraically independent.

The divided differences of a C1-function f on R are defined by

f [1](t0, t1) :=
f(t0)− f(t1)

t0 − t1

for t0 6= t1, and f [1](t0, t0) := f ′(t0). The higher order divided differences of a smooth
enough function f are defined inductively by

f [n](t0, t1, . . . , tn) := g[1](tn−1, tn),

where g(x) := f [n−1](t0, t1, . . . , tn−2, x). Then f [n](t0, t1, . . . , tn) is symmetric in
t0, t1, . . . , tn, and

f [n](t, t, . . . , t) =
1

n!

dn

dtn
f(t).

Moreover, if f is analytic in a domain D ⊂ C, then

f [n](t0, t1, . . . , tn) =
1

2πi

∫

Γ

f(ξ)∏n
j=0(ξ − tj)

dξ

for all t0, t1, . . . , tn ∈ D and every Jordan curve Γ in D whose interior contains
t0, t1, . . . , tn and is contained in D. The divided differences of vector-valued maps
are defined in the same way and have analogous properties. For convenience we put
also f [0](t) := f(t).

Theorem 4.3 Let α1, α2, . . . , αr ∈ C be distinct. Then {D1(αj)}rj=1 are algebraically
independent generators of Diff(Ω)G(Ω). Moreover, for ℓ = 1, 2, . . . , r,

∆ℓ = D
[r−ℓ]
1 (λℓ, λℓ+1, . . . , λr)/

(
r

ν

)
, (4.18)

where D
[r−ℓ]
1 (λℓ, . . . , λr) are the divided differences of order r− ℓ of D1(λ), evaluated

at (λℓ, λℓ+1, . . . , λr).
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Proof: Let hk(x) :=
(
r
ℓ

)∏r
j=k+1(x − λj), 0 ≤ k ≤ r. Then h

[m]
k (x0, x1, . . . , xm) ≡ 0

whenever m > r − k, and h
[r−k]
k (x0, x1, . . . , xr−k) ≡

(
r
ℓ

)
for all choices of

x0, x1, . . . , xr−k. By Theorem 4.2, D1(α) =
∑r
k=0 hk(α) ∆k. Hence, for 1 ≤ ℓ ≤ r,

D
[r−ℓ]
1 (αℓ, αℓ+1, . . . , αr) =

ℓ∑

k=0

h
[r−ℓ]
k (αℓ, αℓ+1, . . . , αr) ∆k.

Solving this system of equations for the ∆k’s, we see that Diff(Ω)G(Ω) =
C[∆1,∆2, . . . ,∆r] coincides with the ring generated by the operators

{D[r−ℓ]1 (αℓ, αℓ+1, . . . , αr)}rℓ=1. If the {αj}rj=1 are distinct, then

D
[r−ℓ]
1 (αℓ, αℓ+1, . . . , αr) ∈ C[D1(α1), D1(α2), . . . , D1(αr)].

Hence,

Diff(Ω)G(Ω) = C[∆1,∆2, . . . ,∆r] = C[D1(α1), D1(α2), . . . , D1(αr)].

The operators {D1(αj}rj=1 are algebraically independent, since Diff(Ω)G(Ω) cannot be
algebraically generated by less than r elements. If αj = λj for j = 1, 2, . . . , r, then

h
[r−ℓ]
k (αℓ, . . . , αr) = 0 for k < ℓ. Thus, for ℓ = 1, 2, . . . , r,

D
[r−ℓ]
1 (αℓ, αℓ+1, . . . , αr) = h

[r−ℓ]
ℓ (αℓ, αℓ+1, . . . , αr) ∆ℓ =

(
r

ℓ

)
∆ℓ.

Remark: The first statement in Theorem 4.3 was proved independently also by A.
Korányi [FK2] and Z. Yan [Y1]. Our result is slightly stronger, giving the exact
formula (4.18).

Combining Theorems 3.2 and 4.2 (or, 4.1) we obtain integral formulas for the
invariant hermitian forms 〈·, ·〉λ,j, λ ∈ P(D), 0 ≤ j ≤ q(λ).

Corollary 4.3 Let λ ∈ P(D), ℓ ∈ N and assume that λ + ℓ ≥ d
r

= λr + 1. Let
q = q(λ), 0 ≤ j ≤ q, and ν = q− j. Consider the G(Ω)-invariant differential operator

Tλ,j := γ
∑

m≥0

(ℓ)
cm(λ, ℓ)

dm

(dr )m
∆m, (4.19)

where γ is given by (3.4), and for every m ≥ 0 with m1 ≤ ℓ

cm(λ, ℓ) :=
1

ν!
(
∂

∂ξ
)ℓ

(
ΓΩ(dr + ℓ) ΓΩ(dr − ξ −m∗)

ΓΩ(d
r

+ ℓ−m∗) ΓΩ(d
r
− ℓ− ξ)

)

|ξ=λ

. (4.20)

Then Tλ,j is defined on all analytic functions on D, and for all f, g ∈ Hλ,j
〈f, g〉

λ,j
= 〈Tλ,jf, g〉λ+ℓ . (4.21)

In particular, if λ + ℓ > p− 1 or λ+ ℓ = d
r then we have

〈f, g〉λ,j =

∫

D

(Tλ,jf)(z) g(z) dµλ+ℓ(z) and 〈f, g〉λ,j =

∫

S

(Tλ,jf)(ξ) g(ξ) dσ(ξ)

(4.22)
respectively.
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The case λ = λr is particularly simple, since then d
r − λr = 1, and we can use

(4.7) rather than (4.14).

Corollary 4.4 Let D be a Cartan domain of tube type and rank r ≥ 2 in Cd, d ≥ 3.
Then

〈f, g〉λr ,0 = 〈β
r−1∑

ν=0

(
r

ν

) r−ν∏

i=2

λi ∆νf, g〉H2(S) , where β :=
r∏

i=2

λi. (4.23)

Proof: In this case q = q(λr) = 1, j = 0, and ν = q − j = 1. We choose ℓ = 1, so
λr + ℓ = d

r . In order to apply Theorem 3.2 we use Theorem 4.1, and compute

D11(λr) =
∂

∂ξ
D1(ξ)|ξ=λ =

∂

∂ξ

(
r∑

ν=0

(
r

ν

) r∏

i=ν+1

(ξ − λi) ∆ν

)

|ξ=λr

=
r−1∑

ν=0

(
r

ν

) r−1∏

i=ν+1

(λr − λi) ∆ν =
r−1∑

ν=0

(
r

ν

) r−ν∏

i=2

λi ∆ν.

Using this, (4.23) follows from

β :=
∂

∂ξ

(
r∏

i=1

(ξ − λi)
)

ξ=λ

=
r−1∏

i=1

(λr − λi) =
r∏

i=2

λi.

Example 4.2. Let D be the Cartan domain of rank r = 2 in Cd (the Lie ball), d ≥ 3.
Then

〈f, g〉
d−2
2
,0

= 〈( 2

d− 2
R+ I)f, g〉

H2(S)
. (4.24)

Namely, in this case λ = λ2 = d−2
2

, q = q(λ) = 1, j = 0, and ν = q − j = 1. With

ℓ = 1, λ + ℓ = d
2

= λ2 + 1 = d
r

we get by using Theorem 3.2 and Corollary 3.2,

〈f, g〉
d−2
2
,0

= γ〈D11(
d− 2

2
)f, g〉

d
2

= γ 〈(R+
d− 2

2
I)f, g〉

H2(S)
= 〈( 2

d− 2
R+ I)f, g〉

H2(S)
.

Since the Shilov boundary S of D is given by

S = {eiθ(x1, ix2, ix3, . . . , ixd); θ ∈ R,
d∑

j=1

x2j = 1} ≡ S1 · Sd−1,

the unique K-invariant probability measure on S is dσ(eiθ(x1, ix
′)) = dθ

2π
dνd−1(x),

where νd−1 is the unique O(d − 1)-invariant probability measure on Sd−1. Thus
(4.24) provides a very concrete formula for the inner product 〈·, ·〉

d−2
2
,0

.

Documenta Mathematica 2 (1997) 213–261



Invariant Inner Products 245

5 Integration over boundary orbits of Aut(D)

In this section we obtain formulas for the invariant inner products in terms of inte-
gration over an orbit of Aut(D) on the boundary ∂D. We focus on the inner products
〈·, ·〉

λ2,0
= 〈·, ·〉a

2
, and conjecture that our method can be generalized for the deriva-

tion of similar formulas for the inner products 〈·, ·〉λj,0 = 〈·, ·〉λj , λj = (j − 1)a2 ,

j = 3, 4, . . . , r, in terms of integration on an appropriate boundary orbit. (Notice
that the case j = 1 is trivial, since λ1 = 0 and H0,0 = H0 = C1).

In order to describe the facial structure of a Cartan domain of tube-type D ⊂ Cd
[Lo], [A1], let Sℓ be the compact, real analytic manifold of tripotents in Z of rank
ℓ = 1, 2, . . ., r. The group K acts transitively and irreducibly on Sℓ. Let σℓ be the
unique K-invariant probability measure on Sℓ given by

∫

Sℓ

f dσℓ =

∫

K

f(k(vℓ)) dk, (5.1)

where vℓ is any fixed element of Sℓ. For any tripotent v let Z = Z1(v)+Z 1
2
(v)+Z0(v)

be the corresponding Peirce decomposition. Then Dv := D∩Z0(v) is a Cartan domain
of tube-type, which is the open unit ball of the JB∗-algebra Z0(v). If v ∈ Sℓ then the
rank of Dv is rv := r − ℓ, its characteristic multiplicity is av := a if ℓ ≤ r − 2 and
av = 0 if ℓ = r − 1, and the genus is pv = p− ℓ a. The set v +Dv is a face of the
closure D of D. For any function f on D let fv be the function on Dv defined by

fv(z) := f(v + z), z ∈ Dv. (5.2)

The fundamental polynomial “h” of Z0(v) is defined by

hv(z, w) := h(z, w), z, w ∈ Z0(v). (5.3)

For ℓ = 1, 2, . . . , r, ∂ℓD := ∪v∈Sℓ(v + Dv) is an orbit of G: ∂ℓD = G(vℓ). If v ∈ Sr
is a maximal tripotent, then Dv = Z0(v) = {0}. Hence ∂rD = Sr = S is the Shilov
boundary. In particular, S is a G-orbit. The only tripotent of rank 0 is 0 ∈ Z, and
D = D0 is also a G-orbit. Thus the decomposition of D into G-orbits is

D = D ∪
r⋃

ℓ=1

∂ℓD.

For every tripotent v ∈ Z and λ > pv − 1 consider the probability measure µv,λ on
Dv, defined via

∫

Dv

f dµv,λ := cv,λ

∫

Dv

f(z) hv(z, z)
λ−pv dmv(z), (5.4)

where mv is the Lebesgue measure on Dv and cv,λ is the normalization factor. Simi-
larly, one defines a probability measure σv on the Shilov boundary Sv of Dv , via

∫

Sv

f dσv :=

∫

Kv

f(k(v′)) dk,
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where v′ is any tripotent orthogonal to v and Kv := {k ∈ K; k(Zν(v)) = Zν(v)}, ν =
0, 1/2, 1, so that Kv(v′) = Sv. The combination of µv,λ and σℓ yields K-invariant
probability measures µℓ,λ on ∂ℓD, 1 ≤ ℓ ≤ r − 1, λ > p− ℓ a − 1, via

∫

∂ℓD

fdµℓ,λ :=

∫

Sℓ

(∫

Dv

fv(z) dµv,λ(z)

)
dσℓ(v).

Next, consider the “sphere bundle” Bℓ, 1 ≤ ℓ ≤ r, whose base is Sℓ and the fiber
at each v ∈ Sℓ is v + Sv (where Sv := ∂r−ℓDv is the Shilov boundary of Dv). The
group K acts on Bℓ naturally, and this action is transitive. The combination of the
measures σv, v ∈ Sℓ and σℓ yields K-invariant probability measures νℓ on Bℓ via

∫

Bℓ

f dνℓ :=

∫

Sℓ

(∫

Sv

f(v + ξ) dσv(ξ)

)
dσℓ(v).

For v ∈ Sℓ, consider the symmetric cone Ωv in Z0(v), and let ∆
(v)
1 ,∆

(v)
2 , . . . ,∆

(v)
r−ℓ be

the canonical generators of the ring Diff(Ωv)G(Ωv) as in section 4. We also denote

∆
(v)
0 = I, ∆(v) := (∆

(v)
1 ,∆

(v)
2 , . . . ,∆

(v)
r−ℓ), and λj = (j − 1)

a

2
, 0 ≤ j ≤ r.

Conjecture: For every 2 ≤ j ≤ r and every λ > λj−1 there exists a positive function
pj,λ ∈ C∞([0,∞)j−1), so that the inner product 〈·, ·〉

λj
= 〈·, ·〉

λj,0
is given by

〈f, g〉
λj

=

∫

Sr−j+1

〈pj,λ(∆(v))fv, gv〉Hλ(Dv) dσr−j+1(v). (5.5)

Moreover, if λ = λj−1 + 1 = dim(Dv)/rank(Dv), then pj := pj,λ is a polynomial with
positive coefficients.

If λ is chosen appropriately then (5.5) becomes an integral formula for 〈f, g〉λj .

For instance, if λ = λj−1 + 1 in (5.5), then we have Hλ(Dv) = H2(Sv), and (5.5)
becomes

〈f, g〉
λj

=

∫

Sr−j+1

(∫

Sv

(pj,λ(∆(v))fv)(ξ) gv(ξ)dσv(ξ)

)
dσr−j+1(v). (5.6)

Also, if λ > (j − 2)a+ 1 in (5.5) then Hλ(Dv) = L2a(Dv, µv,λ), and (5.5) becomes

〈f, g〉λj =

∫

Sr−j+1

(∫

Dv

(pj(∆
(v))fv)(z) gv(z) dµv,λ(z)

)
dσr−j+1(v). (5.7)

Note that the integral in (5.7) can be expressed as an integral on ∂r−j+1D with respect
to dµr−j+1,λ. Similarly, (5.6) is an integral on Br−j+1 with respect to νr−j+1.
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Integral formulas for 〈f, g〉
a/2
via integration on ∂r−1D

In what follows we shall establish (5.5) for j = 2 (i.e. λ2 = a
2 ) in two important

special cases, namely for Cartan domains of type I and IV. Our method suggests an
approach for the general case. For j = 2 (5.5) becomes

〈f, g〉a
2

=

∫

Sr−1

dσr−1(v)〈pλ(R(v))fv, gv〉Hλ(D) , (5.8)

where pλ(x) = p2,λ(x) ∈ C∞([0,∞)) is a positive function, ∆
(v)
1 = R(v), where R(v)

is the localized radial derivative (i.e. the radial derivative in Z0(v)), and Dv ≡ D =
{z ∈ C; |z| < 1}. We will show that in our two cases

pλ(x) =
Γ(x+ λ)

Γ(λ)Γ(x + 1)
q(x),

where q(x) is a polynomial with positive rational coefficients. In particular, for λ =
1, 2, . . ., pλ(x) itself is a polynomial with positive rational coefficients. If λ is chosen
appropriately, then (5.8) becomes an integral formula analogous to (5.6) or (5.7). For
λ = 1, (5.8) becomes

〈f, g〉a
2

=

∫

Sr−1

dσr−1(v)〈p1(R(v))fv, gv〉H2(T) , (5.9)

and for λ > 1, (5.8) becomes

〈f, g〉a
2

=

∫

Sr−1

dσr−1(v)〈pλ(R(v))fv, gv〉L2(D,µλ) . (5.10)

Lemma 5.1 The right hand side of (5.5) is K-invariant. Consequently, the right
hand sides of (5.6), (5.7), (5.8), (5.9), and (5.10) are K-invariant.

Proof: Let ℓ = r − j + 1, and note that for each fixed smooth function f the maps

Sℓ ∋ v 7→ ∆
(v)
i (fv), 1 ≤ i ≤ j − 1, are K-invariant, in the sense that

∆
(k(v))
i (fk(v)) ◦ k = ∆

(v)
i ((f ◦ k)v), ∀k ∈ K, ∀v ∈ Sℓ.

From this it follows that if vℓ ∈ Sℓ is any fixed element, then
∫

Sℓ

〈pj,λ(∆(v))fv, gv〉Hλ(Dv)dσℓ(v)

=

∫

K

〈pj,λ(∆(vℓ))(f ◦ k)vℓ , (g ◦ k)vℓ〉Hλ(Dvℓ )dk.

The K-invariance of the right hand side of (5.5) follows from the invariance of the
Haar measure dk.

Since M( a2 )
0 =

∑∞
m=0 P(m,0,0,...) and

〈f, g〉a
2

=
∑

m=(m,0,...,0),0≤m<∞

〈fm, gm〉F
(a
2
)m

,
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in order to establish (5.8) it is enough, by the K-invariance of both sides, to find
positive functions pλ(x) ∈ C∞([0,∞)) so that (5.8) holds for the functions f(z) =
g(z) = Nm

1 (z), m ≥ 0. This is equivalent to

∫

Sr−1

dσr−1(v)〈pλ(R(v))(Nm
1 )v, (N

m
1 )v〉Hλ(D) =

m!

(a2 )m
. (5.11)

Fix a frame e1, e2, . . . , er in Z. Then N1(z) = (z, e1), where (·, ·) is the unique K-
invariant inner product on Z for which (v, v) = 1 for every minimal tripotent v. Let
e′ := e2 + e3 + . . .+ er. Then for z = k(ξe1 + e′) with k ∈ K and ξ ∈ T, we have

Nm
1 (z) = (ξk(e1) + k(e′), e1)

m =
m∑

ℓ=0

(
m

ℓ

)
(k(e1), e1)

ℓ (k(e′), e1)
m−ℓ ξℓ.

Thus, for v = k(e′), m ≥ 0 and any continuous function f we have

(f(R(v))Nm
1 )(z) =

m∑

ℓ=0

(
m

ℓ

)
(k(e1), e1)

ℓ (k(e′), e1)
m−ℓ f(ℓ) ξℓ.

Let us define

Jm,ℓ :=

∫

K

|(k(e1), e1)|2ℓ |(k(e′), e1)|2(m−ℓ) dk, 0 ≤ ℓ ≤ m <∞. (5.12)

It follows that the function pλ should satisfy

∫

Sr−1

dσr−1(v) 〈pλ(R(v))(Nm
1 )v, (N

m
1 )v〉Hλ(D) =

m∑

ℓ=0

Jm,ℓ

(
m

ℓ

)2
ℓ!

(λ)ℓ
pλ(ℓ).

Thus (5.11) becomes

m∑

ℓ=0

Jm,ℓ

(
m

ℓ

)2
qℓ =

m!

(a2 )m
, m = 0, 1, 2, . . . , (5.13)

where the numbers

qℓ :=
ℓ!

(λ)ℓ
pλ(ℓ), ℓ = 0, 1, 2, . . . (5.14)

do not depend on λ. The infinite system of linear equations (5.13) in the unknowns
{qℓ}∞ℓ=0 corresponds to the lower triangular matrix A = (am,ℓ)

∞
m,ℓ=0, where am,ℓ =

Jm,ℓ
(
m
ℓ

)2
for m ≥ ℓ, and am,ℓ = 0 for m < ℓ. Since am,m > 0 for m = 0, 1, 2, . . .,

there exists a unique solution {qℓ}∞ℓ=0 to (5.13). There are many smooth functions
which interpolate the values {qℓ}∞ℓ=0. We will show that qℓ > 0 for every ℓ ≥ 0, and
prove that {qℓ}∞ℓ=0 can be interpolated by a polynomial of degree r − 1 with positive
coefficients. For Cartan domains of type I and IV, we will solve the system (5.13) by
calculating explicitly the numbers Jm,ℓ and applying powers of the difference operator

δ(f)(t) := f(t) − f(t − 1), t ∈ R.
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If f is defined only on [0,∞) then we define δ(f) := δ(F ), where F (t) := f(t) for
0 ≤ t and F (t) = 0 for 0 > t. Similarly, δ can be defined on two-sided sequences (i.e.
on functions on Z) or on sequences (i.e. functions on N). The powers of δ are defined
inductively by δn+1 := δ ◦ δn.

Case 1: Cartan domains of type I. Let D = D(Ir,r) := {z ∈ Mr,r(C); ‖z‖ < 1}.
The rank of D is r, the dimension is d = r2, the genus is p = 2r, and the characteristic
multiplicity is a = 2. To every k ∈ K there correspond u, w ∈ U(r) (the unitary group)
so that det(u) = det(w), and

k(z) = uzw∗, z ∈ D. (5.15)

Thus
∫
K
f(k(z)) dk =

∫
U(r)

∫
U(r)

f(uzw∗) du dw, where dk is the Haar measure of

K. Choose the canonical frame of matrix units ej := ej,j, j = 1, 2, . . . , r, and denote
e =

∑r
j=1 ej and e′ := e− e1 =

∑r
j=2 ej .

Proposition 5.1 Let D = D(Ir,r). Then for every integers m, ℓ with 0 ≤ ℓ ≤ m <
∞, we have

Jm,ℓ =
(r − 1) (ℓ !)2 (m− ℓ)! (m− ℓ+ r − 2)!

(r)m (m+ r − 1)!
. (5.16)

Proof: Let k ∈ K be given by (5.15). Then (k(e1), e1) = u1,1w1,1 and (k(e′), e1) =∑r
j=2 u1,jw1,j. Thus, for 0 ≤ ℓ ≤ m <∞,

Jm,ℓ =

∫

U(r)

∫

U(r)

|u1,1|2ℓ|w1,1|2ℓ|
r∑

j=2

u1,jw1,j|2(m−ℓ) du dw.

This integral can be written as an integral on the product of the unit spheres ∂Br ⊂
Cr with respect to the U(r)-invariant probability measure σ:

Jm,ℓ =

∫

∂Br

∫

∂Br

|ξℓ1|2|ηℓ1|2|(ξ′, η′)|2(m−ℓ) dσ(ξ) dσ(η),

where ξ′ := (ξ2, . . . , ξr) and η′ := (η2, . . . , ηr). Now, by the U(r)-invariance,

∫

∂Br

|ξℓ1|2|(ξ′, η′)|2(m−ℓ) dσ(ξ)

= ‖η′‖2(m−ℓ)
∫

∂Br

|ξℓ1|2|ξm−ℓ2 |2 dσ(ξ)

= ‖η′‖2(m−ℓ)‖ξℓ1ξm−ℓ2 ‖2Hr(D) = ‖η′‖2(m−ℓ) ℓ!(m− ℓ)!
(r)m

.

It follows by using [Ru], 1.4.5, that

Jm,ℓ =
ℓ!(m− ℓ)!

(r)m

∫

∂Br

|ηℓ1|2(1− |η1|2)m−ℓ dσ(η)

=
ℓ!(m− ℓ)!

(r)m
(r − 1)

∫ 1

0

tℓ(1− t)m−ℓ+r−2 dt
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=
ℓ!(m− ℓ)!

(r)m
(r − 1)B(ℓ+ 1, m− ℓ+ r − 1)

=
(r − 1)(ℓ!)2(m− ℓ)!(m− ℓ+ r − 2)!

(r)m(m+ r − 1)!
.

Corollary 5.1 For D = D(Ir,r) the system of equations (5.13) is equivalent to the
system

m∑

ℓ=0

(m− ℓ+ r − 2)!

(m− ℓ)! qℓ = (r − 2)!

(
m+ r − 1

r − 1

)2
, m = 0, 1, 2, . . . . (5.17)

Proposition 5.2 For every r ≥ 2 there exists a polynomial q(x) = qr(x) of degree
r − 1 with positive rational coefficients, so that q(ℓ) = qℓ for ℓ = 0, 1, 2, . . . , where
{qℓ}∞ℓ=0 is the unique solution of (5.17).

For small values of r it is easy to solve (5.17) explicitly by applying powers of δ. Thus,

q2(x) = 2x+ 1, q3(x) = 3x2 + 3x+ 1, and q4(x) =
1

3
(10x3 + 15x2 + 11x+ 3).

The proof in the general case requires more preparation. Define

fn(x) := (x+ 1)n =
n∏

j=1

(x+ j), n ≥ 1, and gn(x) :=
n∏

j=0

(x+ j)2, n ≥ 0. (5.18)

Then gn(x+ 1) = fn+1(x)2, and

(δkfn)(x) = n(n− 1) · · · (n− k + 1) fn−k(x), k ≥ 0, (5.19)

where δ is defined by δ(f)(x) := f(x) − f(x − 1). Indeed, (5.19) is trivial for k = 0.
For k = 1 and all n we have

δ(fn)(x) =
n∏

j=1

(x+ j) −
n∏

j=1

(x+ j − 1) =
n−1∏

j=1

(x+ j) (x+ n− x) = n fn−1(x).

Assuming (5.19) for k, let n > k and compute δk+1(fn)(x) = n(n − 1) · · · (n − k +
1) δ(fn−k)(x) = n(n− 1) · · · (n− k + 1)(n− k)fn−k−1(x). This establishes (5.19).

Next, define an operator σ, analogous to δ, via

(σf)(x) := f(x) + f(x − 1), x ∈ R.

Clearly, δσ = σδ, and both σ and δ commute with all the translation operators

(τcf)(x) := f(x + c).

Denote by P+ the set of polynomials in one variable with non-negative coefficients.
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Lemma 5.2 Let f(x) be a polynomial and let n,m ∈ N. If δnf ∈ P+, then
δn+jτm/2f ∈ P+ for every integer 0 ≤ j ≤ m.
Proof: Since δ commutes with translations, we may assume that n = 0 and m = 1.
It is therefore enough to check that δτ1/2x

k ∈ P+ for every k ∈N. This follows from
the binomial expansion:

δτ1/2x
k = (x+

1

2
)k − (x− 1

2
)k =

[
k−1
2
]∑

j=0

(
k

2j + 1

)
2−2jxk−2j−1.

Lemma 5.3 Let f(x) be a polynomial and let n ∈ N. Assume that δjσn−jf ∈
P+ for every 0 ≤ j ≤ n. Then δjσn−j

(
(x+ c)kf(x)

)
∈ P+ for every k ∈ N,

c ≥ n
2 and 0 ≤ j ≤ n.

Proof: Again, since δ and σ commute with translations, it is enough to assume that
k = 1. We shall prove the assertion by induction on n. The case n = 0 is trivial since
P+ is closed under sums and products. Assume that n > 0 and that the assertion
holds for n− 1. A computation yields

δ
(

(x+
n

2
)f(x)

)
= (x+

n− 1

2
)(δf)(x) +

1

2
(σf)(x) (5.20)

and

σ
(

(x +
n

2
)f(x)

)
= (x+

n− 1

2
)(σf)(x) +

1

2
(δf)(x). (5.21)

If 0 < j ≤ n then using (5.20) we get

δjσn−j
(

(x+
n

2
)f(x)

)
= δj−1σ(n−1)−(j−1)

(
(x+

n − 1

2
)(δf)(x) +

1

2
(σf)(x)

)
.

By assumption,

δj−1σ(n−1)−(j−1)σf = δj−1σn−(j−1)f ∈ P+, for 0 < j ≤ n.
Similarly,

δj−1σ(n−1)−(j−1)δf = δjσn−jf ∈ P+ for 0 < j ≤ n.
Thus, by the induction hypothesis on n− 1,

δj−1σ(n−1)−(j−1)
(

(x +
n− 1

2
)δf(x)

)
∈ P+, for 0 < j ≤ n.

Next, using (5.21) we get

σn
(

(x +
n

2
)f(x)

)
= σn−1

(
(x+

n − 1

2
)σf(x) +

1

2
δf(x)

)
.

By assumption, σn−1δf(x) ∈ P+ and δℓσn−1−ℓσf(x) ∈ P+ for 0 ≤ ℓ ≤ n − 1. Thus,
by the induction hypothesis, δℓσn−1−ℓ

(
(x + n−1

2 )σf(x)
)
∈ P+ for 0 ≤ ℓ ≤ n− 1, and

in particular σn−1
(
(x+ n−1

2
)σf(x)

)
∈ P+. It follows that σn

(
(x+ n

2
)f(x)

)
∈ P+.

This completes the induction step.
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Lemma 5.4 Let gn(x) be the polynomial defined by (5.18). Then δiσjgn ∈ P+ when-
ever i+ j ≤ n.

Proof: We proceed by induction on n. The case n = 0 is trivial, since g0(x) =
x2 ∈ P+. Assume that n > 0 and that δiσjgn−1 ∈ P+ whenever i + j ≤ n − 1. A
computation yields

δgn(x) = 2(n+ 1)(x+
n − 1

2
) gn−1(x) (5.22)

and

σgn(x) = 2

(
(x+

n − 1

2
)2 + (

n + 1

2
)2
)
gn−1(x). (5.23)

Now assume i+ j ≤ n. If i > 0, (5.22) yields

δiσjgn(x) = δi−1σj(δgn(x)) = 2(n+ 1)δi−1σj
(

(x+
n− 1

2
)gn−1(x)

)
,

and by induction hypothesis and Lemma 5.3

δi−1σj
(

(x+
n− 1

2
)gn−1(x)

)
∈ P+,

so that δiσjgn ∈ P+. If i = 0 and 0 ≤ j ≤ n, then (5.23) implies

σjgn(x) = σj−1(σgn(x)) = 2σj−1
((

(x+
n− 1

2
)2 + (

n + 1

2
)2
)
gn−1(x)

)
.

The polynomial σj−1gn−1 belongs to P+ by the induction hypothesis. Also, the
induction hypothesis (δiσj−1gn−1 ∈ P+ whenever i + j ≤ n) and Lemma 5.3 imply
that

δiσj−1
(

(x+
n− 1

2
)gn−1(x)

)
∈ P+ whenever i+ j ≤ n.

In particular, σj−1
(
(x+ n−1

2
)gn−1(x)

)
∈ P+. Hence σjgn ∈ P+ ∀ 0 ≤ j ≤ n.

Corollary 5.2 (i) δjgn ∈ P+ for all j, n ∈N satisfying 0 ≤ j ≤ n.

(ii) δj
(
(x+ m

2
)gn(x)

)
∈ P+ for all j, n,m ∈N satisfying 0 ≤ j ≤ n+m.

(iii) δjfn(x)2 ∈ P+ for all j, n ∈N satisfying 0 ≤ j ≤ n+ 1.

Proof: (i) is a special case of Lemma 5.4, and (ii) follows by (i) and Lemma 5.2.
Since fn(x)2 = gn−1(x+ 1), (iii) follows from Lemma 5.2 with m = 2.

Remark The result in part (iii) of Corollary 5.2 is best possible in the sense that
δn+2(f2n)2) need not be in P+. Indeed, δ6(f24 )2) is not in P+.
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Proof of Proposition 5.2: In terms of the polynomials (5.18), the system of
equations (5.17) with unknowns qℓ has the form

m∑

ℓ=0

fr−2(m− ℓ) qℓ =
fr−1(m)2

(r − 1) (r − 1)!
, m ≥ 0. (5.24)

Applying powers of the operator δ with respect to the variable m and using (5.19),
we get by induction on k that

δk

(
m∑

ℓ=0

fr−2(m− ℓ) qℓ
)

= (r − 2)(r − 3) · · · (r − k − 1)
m∑

ℓ=0

fr−2−k(m− ℓ) qℓ

for 0 ≤ k ≤ r − 2 (here f0(x) ≡ 1). From this it follows that

δr−1

(
m∑

ℓ=0

fr−2(m− ℓ) qℓ
)

= (r − 2)! qm, m ≥ 0.

Applying δr−1 to both sides of (5.24), Corollary 5.2 (iii) implies that there exists
a polynomial q(x) of degree r − 1 with positive rational coefficients so that qm =
q(m), ∀m ≥ 0.

Theorem 5.1 Let D = D(Ir,r). Then for every f, g ∈ Ha
2
(D) and λ > 0 we have

〈f, g〉a
2

=

∫

Sr−1

dσr−1(v)〈pλ(R(v))fv, gv〉Hλ(D) ,

where pλ(x) := Γ(x+λ) Γ(λ)−1 Γ(x+1)−1 q(x), and q(x) is the polynomial of degree
r − 1 with positive rational coefficients as in Proposition 5.2.

Case 2: Cartan domains of type IV. Let D ⊂ Cd, d ≥ 3, be the Cartan domain
of rank r = 2 (see Examples 4.1 and 4.2), and fix a frame {e1, e2}. Since a = d− 2,
(5.13) becomes

m∑

ℓ=0

(
m

ℓ

)2
Jm,ℓ qℓ =

m!

(a
2
− 1)m

, m ≥ 0, (5.25)

where for 0 ≤ ℓ ≤ m

Jm,ℓ =

∫

K

|(k(e1), e1)|2ℓ|(k(e2), e1)|2(m−ℓ) dk.

Without computing the numbers Jm,ℓ explicitly we show that

Jm,ℓ = Jm,m−ℓ, 0 ≤ ℓ ≤ m. (5.26)

Indeed, let k′ ∈ K satisfy k′(e1) = e2 and k′(e2) = e1. Then, by invariance of the
Haar measure dk,

Jm,ℓ =

∫

K

|(k(k′(e1)), e1)|2ℓ|(k(k′(e2)), e1)|2(m−ℓ) dk

=

∫

K

|(k(e2), e1)|2ℓ|(k(e1), e1)|2(m−ℓ) dk = Jm,m−ℓ.
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Theorem 5.2 The polynomial

q(x) =
4

a
x+ 1 =

4

d− 2
x+ 1

satisfies q(ℓ) = qℓ for every ℓ ≥ 0, where {qℓ}∞ℓ=0 is the unique solution of (5.25).
Therefore, for every λ > 0 and every f, g ∈ Ha

2
(D),

〈f, g〉a
2

=

∫

S1

〈pλ(R(v))fv, gv〉Hλ(Dv) dσ1(v),

where the functions pλ, 0 < λ <∞, are given by

pλ(x) =
Γ(x+ λ)

Γ(λ) Γ(x+ 1)
(
4

a
x+ 1). (5.27)

In particular, for λ = 1, 2, . . . pλ is a polynomial of degree λ with positive rational
coefficients.

Proof: We claim first that
m∑

ℓ=0

(
m

ℓ

)2
Jm,ℓ =

m!

(d
2
)m
, m ≥ 0. (5.28)

Indeed, it is clear that

m∑

ℓ=0

(
m

ℓ

)2
Jm,ℓ =

∫

K

(∫

T

|(k(eite1 + e2), e1)
m|2 dt

2π

)
dk.

Interchanging the order of integration and using the transitivity of K on the frames,
we get

m∑

ℓ=0

(
m

ℓ

)2
Jm,ℓ =

∫

K

|(k(e), e1)
m|2 dk = ‖Nm

1 ‖2H2(D) =
m!

(d2 )m
, m ≥ 0,

by using the well-known fact that ‖(·, z)m‖2F = m!(z, z)m for every z ∈ Z and m ≥ 0.
Using (5.26) and (5.28) we see that

m∑

ℓ=0

ℓ

(
m

ℓ

)2
Jm,ℓ =

m∑

ℓ=0

(m− ℓ)
(

m

m− ℓ

)2
Jm,m−ℓ

=
m∑

ℓ=0

(m− ℓ)
(
m

ℓ

)2
Jm,ℓ =

m ·m!

(d
2
)m
−

m∑

ℓ=0

ℓ

(
m

ℓ

)2
Jm,ℓ.

Thus
m∑

ℓ=0

ℓ

(
m

ℓ

)2
Jm,ℓ =

m ·m!

2(d
2
)m
, m ≥ 0. (5.29)

Combining (5.28) and (5.29), and using the fact that (d2 )m = (a2)m
( a2+m)

a
2

, we get

for m ≥ 0
m∑

ℓ=0

(
m

ℓ

)2
Jm,ℓ (

4

a
ℓ+ 1) =

4

a

m ·m!

2(d2 )m
+

m!

(d2 )m
=

m!

(a
2
)m
.
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In view of (5.14), this completes the proof.

—large The computation of 〈f, g〉
p−1
by integration on ∂1D

We conclude this section with the derivation of a formula for 〈f, g〉p−1 via inte-
gration on ∂1D.

Proposition 5.3 Let F ∈ C(D). Then

lim
λ↓p−1

∫

D

F (z) dµλ(z) =

∫

S1

(∫

Dv

Fv(w) dµv,p−1(w)

)
dσ1(v), (5.30)

where the measures µv,p−1 are defined by (5.4).

Proof: Using (1.13) and (1.14) as well as (1.22), (1.23), and (1.9), we can write

∫

D

F (z) dµλ(z) = c0 c(λ)

∫

Rr
+

F#(t)w(t)a
r∏

j=1

(1− tj)a dt

= c0 c(λ)

∫ 1

0

ψ(t1) (1− t1)λ−p dt1,

where

ψ(t1) :=

∫

[0,t1)
r−1
+

F#(t1, t
′)

∏

1≤i<j≤r

(ti − tj)a
r∏

j=2

(1− tj)λ−p dt′,

and c(λ) = cD(λ) is given by (1.22). Here t′ := (t2, t3, . . . , tr), dt
′ := dt2 dt3 . . . dtr,

and [0, t1)
r−1
+ := {t′ ∈ Rr−1; t2 > t3 > . . . > tr > 0}. Since ψ ∈ C([0, 1]), we have

limǫ↓0

(
ǫ
∫ 1
0
ψ(t)(1 − t)ǫ−1 dt

)
= ψ(1). Since limλ↓p−1 Γ(λ − p + 1) (λ − p + 1) = 1

and c(p− 1) = 0, we get

lim
λ↓p−1

∫

D

F (z) dµλ(z) = b ψ(1)

= b

∫

[0,1)r−1
+

F#(1, t′)
∏

2≤i<j≤r

(ti − tj)a
r∏

j=2

(1− tj)a−1 dt′,

where b := c0 c
′(p− 1). Using the definitions (5.1), (5.3) and the fact that for v ∈ S1

the genus of Dv is p− a, we have (with the obvious meaning of the constants)

∫

S1

(∫

Dv

Fv(w) dµv,p−1(w)

)
dσ1(v)

= cDe1 (p− 1)

∫

K

(∫

De1

Fk(e1)(k(ξ)) h(k(ξ), k(ξ))a−1 dm(k(ξ))

)
dk
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= cDe1 (p− 1) c0(De1)

×
∫

K



∫

[0,1)r−1
+



∫

Ke1

F (k(e1 + k′(
r∑

j=2

t
1
2
j ej dk

′))


w(t′)a

r∏

j=2

(1− tj)a−1 dt′

 dk,

where Ke1 := {k ∈ K; k(e1) = e1} and w(t′) :=
∏
2≤i<j≤r(ti − tj)a. Interchanging

the order of integration, and using the fact that k′(e1) = e1 and the invariance of the
Haar measure dk, we see that the last expression is equal to

cDe1 (p− 1) c0(De1)

∫

[0,1)r−1+

F#(1, t′) w(t′)a
r∏

j=2

(1− tj)a−1 dt′.

Comparing the computations for the left and right hand sides of (5.30), we see they
are proportional. Taking F (z) ≡ 1, the proportionality constant is 1.

Corollary 5.3 The constant c0 = c0(D) in the formula (1.12) is

c0(D) =
πd Γ(a2 )r−2

(
∏r−1
ℓ=1 ℓ

a
2
) Γ(r a

2
)
∏r−1
ℓ=2 Γ(ℓ a

2
)2
.

Proof: Define vr = 0, vℓ := e1 + . . .+ er−ℓ, ℓ = 1, 2, . . . , r − 1, and γℓ := c0(Dvℓ).
Then the above proof (with r replaced by ℓ) yields

γℓ
γℓ−1

=
cDvℓ+1 ((ℓ− 1)a+ 1)

c′Dvℓ
((ℓ− 1)a+ 1)

=
π(ℓ−1)a+1 Γ(a

2
)

Γ((ℓ− 1)a
2

+ 1) Γ( ra
2

)

for ℓ = 2, 3, . . ., r. Therefore, using the easily proved fact that γ1 = π, we get

c0(D) = γr =
γr
γr−1

γr−1
γr−2

· · · γ2
γ1

γ1

= π
r∏

ℓ=2

π(ℓ−1)a+1 Γ(a2 )

Γ((ℓ− 1)a2 + 1) Γ( ra2 )
=

πd Γ(a2 )r−2

(
∏r−1
ℓ=1 ℓ

a
2
) Γ(r a

2
)
∏r−1
ℓ=2 Γ(ℓ a

2
)2
.

Proposition 5.3 allows the computation of the inner products 〈f, g〉p−1 by inte-
grating over the boundary orbit ∂1(D) = G(e1) of G.

Theorem 5.3 Let f, g ∈ Hp−1. Then

〈f, g〉p−1 =

∫

S1

(∫

Dv

fv(w) gv(w) dµv,p−1(w)

)
dσ1(v), (5.31)

Proof: It is enough to establish (5.31) for polynomials f and g, and this case follows
from Proposition 5.3 with F (z) = f(z) g(z).
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6 Integral formulas in the context of the associated Siegel domain

In what follows we shall use the fact [FK2] that D is holomorphically equivalent to
the tube domain

T (Ω) := X + iΩ

via the Cayley transform c : D → T (Ω), defined by c(z) := i(e + z)(e − z)−1. For
λ ∈W (D) the operator V (λ)f := (f ◦c−1)(Jc−1)λ/p maps the space Hλ = Hλ(D) iso-
metrically onto a Hilbert space of analytic functions on T (Ω), denoted by Hλ(T (Ω)).
We will denote 〈f, g〉Hλ(T (Ω)) simply by 〈f, g〉λ. It is known that the reproducing
kernel of Hλ(T (Ω)) is

Kλ(z, w) =

(
N(

z −w∗
i

)

)−λ
, z, w ∈ T (Ω). (6.1)

Recall that for λ > p − 1 we have Hλ(D) = L2a(D, µλ), where µλ is the measure on
D defined via (1.23). Using the facts that h(c−1(w), c−1(w)) = 4r|N(w+ ie)|−2N(v)
and J(c−1)(w) = (2i)dN(w + ie)−p, ∀w ∈ T (Ω), we get by a change of variables
that

Hλ(T (Ω)) = L2a(T (Ω), νλ) = L2(T (Ω), νλ) ∩ {analytic functions},
where

dνλ(z) := c(λ)dx N(2y)λ−p dy, z = x+ iy, x ∈ X, y ∈ Ω, (6.2)

and c(λ) is defined by (1.22). In this case V (λ) extends to an isometry of L2(D, µλ)
onto L2(T (Ω), νλ).

In this section we obtain integral formulas for the invariant inner products in
the spaces Hλ(T (Ω)). Using the isometry V (λ) : Hλ(D) → Hλ(T (Ω)) one obtains
integral formulas for the inner products in the spaces Hλ(D). Our results are essen-
tially implicitly contained in [VR], where the authors determine the Wallach set for
Siegel domains of type II, using Lie and Fourier theoretical methods. The Jordan-
theoretical formalism allows us to formulate our results in a simpler way, avoiding
the Lie-theoretical details. Since the Fourier-theoretical arguments in our proofs are
contained in[VR], we omit all proofs.

For λ > (r − 1)a
2

consider the measure σλ on Ω defined by dσλ(v) :=

βλ N(v)
d
r−λ dv where βλ := (2π)−2dΓΩ(λ).

Proposition 6.1 Let λ > (r − 1)a2 and let f be a holomorphic function on T (Ω).
Then the following conditions are equivalent:

(i) f ∈ Hλ(T (Ω));

(ii) The boundary values f(x) := limΩ∋y→0 f(x + iy) exist almost everywhere on X,

and the Fourier transform f̂ of f(x) is supported in Ω and belongs to L2(Ω, σλ).

Moreover, the map f 7→ f̂ is an isometry of Hλ(T (Ω)) onto L2a(Ω, σλ).

Proposition 6.1 yields the following result.
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Theorem 6.1 Let λ > (r − 1)a2 and let f, g ∈ Hλ(T (Ω)). Then

〈f, g〉Hλ(T (Ω)) = 〈f̂ , ĝ〉L2(Ω,σλ) =
ΓΩ(λ)

(2π)2d

∫

Ω

f̂(t)ĝ(t) N(t)
d
r−λ dt.

The group GL(Ω) := {ϕ ∈ GL(X);ϕ(Ω) = Ω} acts transitively on Ω . It acts
also on the boundary ∂Ω, but this action is not transitive. The orbits of GL(Ω) on
∂Ω are exactly the r disjoint sets

∂kΩ := GL(Ω)(ek) = {x ∈ Ω; rank(x) = k}, k = 0, 1, . . . , r − 1,

where {c1, . . . , cr} is a frame of pairwise orthogonal primitive idempotents, e0 := 0,

and ek :=
∑k
j=1 cj, k = 1, 2, . . ., r − 1. Consider the Peirce decomposition Xν =

Xν(ek) = {x ∈ X; ekx = νx}, ν = 0, 12 , 1. Let Ω(k) be the symmetric cone of
X1(ek), and let ΓΩ(k) be the associated Gamma function. Let GL(Ω) = LNΩA be
the Iwasawa decomposition. Then NΩA(ek) = {x ∈ ∂kΩ;Nk(x) > 0} is an open
dense subset of ∂kΩ, and every x ∈ NΩA(ek) has a Peirce decomposition of the form
x = x1 + x 1

2
+ 2(e− ek)(x 1

2
(x 1

2
x−11 )) [La2]. Let us define a measure νk on ∂kΩ with

support NΩA(ek) by

dνk(x) := Nk(x1)
k a2−

d
r dx1 dx 1

2
. (6.3)

It has the following fundamental properties (see[VR] and [La2]).

Theorem 6.2 Let 1 ≤ k ≤ r − 1. Then the measure νk satisfies
∫

NΩA(ek)

e−〈y,x〉 dνk(x) = γk N(y)−k
a
2 , ∀y ∈ Ω, (6.4)

where γk := (2π)k(r−k)
a
2 ΓΩ(k)(k

a
2
), and

dνk(ϕ(x)) = Det(ϕ)(k
a
2 )/

d
r dνk(x), ∀ϕ ∈ GL(Ω). (6.5)

Since Ω is a set of uniqueness for analytic functions on T (Ω), (6.4) implies by analytic
continuation

∫

NΩA(ek)

e−〈
z−w∗

i ,x〉 dνk(x) = γk 2−k
a
2

(
N(

z − w∗
i

)

)−k a2
, ∀z, w ∈ T (Ω).

Thus
(
N( z−w

∗

i )
)−k a2

is positive definite, and so k a2 is in the Wallach set W (D) =

W (T (Ω)).

By complexification, GL(Ω) is realized as a subgroup of Aut(T (Ω)) which nor-
malizes the translations τx(z) := z + x, i.e.

ϕ τx ϕ
−1 = τϕ(x), ∀x ∈ X, ∀ϕ ∈ GL(Ω).

Let G ⊂ Aut(T (Ω)) be the semi-direct product of X and GL(Ω). It acts transitively
on T (Ω). Let N ⊂ G be the semi-direct product of X and NΩ. Then the Iwasawa
decomposition of Aut(T (Ω))0 is KAN . For

αk =
d

r
+ k

a

2
, k = 0, 1, 2, . . ., r − 1
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let Hαk = Hαk(T (Ω)) be the Hilbert space of analytic functions on T (Ω) whose

reproducing kernel is Kαk(z, w) :=
(
N( z−w

∗

i )
)−αk

. Note that αr−1 = p− 1 and for

k = 0 we have α0 = d
r

and ν0 = δ0, the Dirac measure at 0.

Theorem 6.3 For k = 0, 1, . . . , r− 1 Hαk(T (Ω)) consists of all analytic functions f
on T (Ω) for which

‖f‖2Hαk (T (Ω)) := βk sup
t∈Ω

∫

NΩA(ek)

(∫

X

|f(x + i(y + t))|2 dx
)
dνk(y) (6.6)

is finite, where

βk =
ΓΩ(αk)2rk

a
2

ΓΩ(k)(k
a
2
)

(2π)−(d+k(r−k)
a
2 ).

Moreover, for every f, g ∈ Hαk(T (Ω)),

〈f, g〉αk = βk lim
Ω∋t→0

∫

NΩA(ek)

(∫

X

f(x + i(y + t)) g(x+ i(y + t)) dx

)
dνk(y).
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Introduction

Index theory and K-Theory have been close subjects since their appearance [1, 4].
Several recent index theorems that have found applications to Novikov’s Conjecture
use algebraic K-Theory in an essential way, as a natural target for the generalized
indices that they compute. Some of these generalized indices are “von Neumann
dimensions”–like in the L2–index theorem for coverings [3] that, roughly speaking,
computes the trace of the projection on the space of solutions of an elliptic differ-
ential operator on a covering space. The von Neumann dimension of the index does
not fully recover the information contained in the abstract (i.e., algebraic K-Theory
index) but this situation is remedied by considering “higher traces,” as in the Connes–
Moscovici Index Theorem for coverings [11]. (Since the appearance of this theorem,
index theorems that compute the pairing between higher traces and the K–Theory
class of the index are called “higher index theorems.”)

In [30], a general higher index morphism (i.e., a bivariant character) was defined
for a class of algebras–or, more precisely, for a class of extensions of algebras–that is
large enough to accommodate most applications. However, the index theorem proved
there was obtained only under some fairly restrictive conditions, too restrictive for
most applications. In this paper we completely remove these restrictions using a
recent breakthrough result of Cuntz and Quillen.

In [16], Cuntz and Quillen have shown that periodic cyclic homology, denoted
HP∗, satisfies excision, and hence that any two–sided ideal I of a complex algebra A
gives rise to a periodic six-term exact sequence

HP0(I) // HP0(A) // HP0(A/I)

��
∂

HP1(A/I)

OO

∂

HP1(A)oo HP1(I)oo

(1)

similar to the topologicalK–Theory exact sequence [1]. Their result generalizes earlier
results from [38]. (See also [14, 15].)

If M is a smooth manifold and A = C∞(M), then HP∗(A) is isomorphic to the de
Rham cohomology of M , and the Chern–Connes character on (algebraic) K–Theory
generalizes the Chern–Weil construction of characteristic classes using connection and
curvature [10]. In view of this result, the excision property, equation (1), gives more
evidence that periodic cyclic homology is the “right” extension of de Rham homology
from smooth manifolds to algebras. Indeed, if I ⊂ A is the ideal of functions vanishing
on a closed submanifold N ⊂M , then

HP∗(I) = H∗DR(M,N)

and the exact sequence for continuous periodic cyclic homology coincides with the
exact sequence for de Rham cohomology. This result extends to (not necessarily
smooth) complex affine algebraic varieties [22].

The central result of this paper, Theorem 1.6, Section 1, states that the Chern–
Connes character

ch : Kalgi (A)→ HPi(A),

where i = 0, 1, is a natural transformation from the six term exact sequence in
(lower) algebraic K–Theory to the periodic cyclic homology exact sequence. In this
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formulation, Theorem 1.6 generalizes the corresponding result for the Chern character
on the K–Theory of compact topological spaces, thus extending the list of common
features of de Rham and cyclic cohomology.

The new ingredient in Theorem 1.6, besides the naturality of the Chern–Connes
character, is the compatibility between the connecting (or index) morphism in alge-
braic K–Theory and the boundary map in the Cuntz–Quillen exact sequence (Theo-
rem 1.5). Because the connecting morphism

Ind : Kalg1 (A/I)→ Kalg0 (I)

associated to a two-sided ideal I ⊂ A generalizes the index of Fredholm operators,
Theorem 1.5 can be regarded as an abstract “higher index theorem,” and the com-
putation of the boundary map in the periodic cyclic cohomology exact sequence can
be regarded as a “cohomological index formula.”

We now describe the contents of the paper in more detail.
If τ is a trace on the two–sided ideal I ⊂ A, then τ induces a morphism

τ∗ : Kalg0 (I)→ C.

More generally, one can–and has to–allow τ to be a “higher trace,” while still getting

a morphism τ∗ : Kalg1 (I) → C. Our main goal in Section 1 is to identify, as explicitly

as possible, the composition τ∗ ◦ Ind : Kalg1 (A/I) → C. For traces this is done in
Lemma 1.1, which generalizes a formula of Fedosov. In general,

τ∗ ◦ Ind = (∂τ)∗,

where ∂ : HP0(I) → HP1(A/I) is the boundary map in periodic cyclic cohomology.
Since ∂ is defined purely algebraically, it is usually easier to compute it than it is to
compute Ind, not to mention that the group Kalg0 (I) is not known in many interesting
situations, which complicates the computation of Ind even further.

In Section 2 we study the properties of ∂ and show that ∂ is compatible with
various product type operations on cyclic cohomology. The proofs use cyclic vector
spaces [9] and the external product × studied in [30], which generalizes the cross-
product in singular homology. The most important property of ∂ is with respect to
the tensor product of an exact sequence of algebras by another algebra (Theorem 2.6).
We also show that the boundary map ∂ coincides with the morphism induced by the
odd bivariant character constructed in [30], whenever the later is defined (Theorem
2.10).

As an application, in Section 3 we give a new proof of the Connes–Moscovici
index theorem for coverings [11]. The original proof uses estimates with heat kernels.
Our proof uses the results of the first two sections to reduce the Connes–Moscovici
index theorem to the Atiyah–Singer index theorem for elliptic operators on compact
manifolds.

The main results of this paper were announced in [32], and a preliminary version
of this paper has been circulated as “Penn State preprint” no. PM 171, March 1994.
Although this is a completely revised version of that preprint, the proofs have not
been changed in any essential way. However, a few related preprints and papers have
appeared since this paper was first written; they include [12, 13, 33].

I would like to thank Joachim Cuntz for sending me the preprints that have
lead to this work and for several useful discussions. Also, I would like to thank the
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Mathematical Institute of Heidelberg University for hospitality while parts of this
manuscript were prepared, and to the referee for many useful comments.

1. Index theorems and Algebraic K–Theory

We begin this section by reviewing the definitions of the groups Kalg0 and Kalg1 and of

the index morphism Ind : Kalg1 (A/I)→ Kalg0 (I) associated to a two-sided ideal I ⊂ A.
There are easy formulas that relate these groups to Hochschild homology, and we
review those as well. Then we prove an intermediate result that generalizes a formula
of Fedosov in our Hochschild homology setting, which will serve both as a lemma in
the proof of Theorem 1.5, and as a motivation for some of the formalisms developed in
this paper. The main result of this section is the compatibility between the connecting
(or index) morphism in algebraic K–Theory and the boundary morphism in cyclic
cohomology (Theorem 1.5). An equivalent form of Theorem 1.5 states that the Chern–
Connes character is a natural transformation from the six term exact sequence in
algebraic K–Theory to periodic cyclic homology. These results extend the results in
[30] in view of Theorem 2.10.

All algebras considered in this paper are complex algebras.

1.1. Pairings with traces and a Fedosov type formula. It will be conve-
nient to define the group Kalg0 (A) in terms of idempotents e ∈ M∞(A), that is, in
terms of matrices e satisfying e2 = e. Two idempotents, e and f , are called equivalent
(in writing, e ∼ f) if there exist x, y such that e = xy and f = yx. The direct sum of
two idempotents, e and f , is the matrix e⊕f (with e in the upper–left corner and f in
the lower–right corner). With the direct–sum operation, the set of equivalence classes

of idempotents in M∞(A) becomes a monoid denoted P(A). The group Kalg0 (A) is
defined to be the Grothendieck group associated to the monoid P(A). If e ∈M∞(A)

is an idempotent, then the class of e in the group Kalg0 (A) will be denoted [e].
Let τ : A → C be a trace. We extend τ to a trace M∞(A) → C, still denoted

τ , by the formula τ([aij]) =
∑
i τ(aii). If e ∼ f , then e = xy and f = yx for some

x and y, and then the tracial property of τ implies that τ(e) = τ(f). Moreover
τ(e ⊕ f) = τ(e) + τ(f), and hence τ defines an additive map P(A) → C. From the
universal property of the Grothendieck group associated to a monoid, it follows that
we obtain a well defined group morphism (or pairing with τ)

Kalg0 (A) ∋ [e] −→ τ∗([e]) = τ(e) ∈ C.(2)

The pairing (2) generalizes to not necessarily unital algebras I and traces τ : I →
C as follows. First, we extend τ to I+ = I +C1, the algebra with adjoint unit, to be
zero on 1. Then, we obtain, as above, a morphism τ∗ : Kalg0 (I+)→ C. The morphism

τ∗ : Kalg0 (I) → C is obtained by restricting from Kalg0 (I+) to Kalg0 (I), defined to be

the kernel of Kalg0 (I+)→ Kalg0 (C).

The definition of Kalg1 (A) is shorter:

Kalg1 (A) = lim
→

GLn(A)/[GLn(A), GLn(A)].

In words, Kalg1 (A) is the abelianization of the group of invertible matrices of the form
1 + a, where a ∈ M∞(A). The pairing with traces is replaced by a pairing with
Hochschild 1–cocycles as follows.

Documenta Mathematica 2 (1997) 263–295



Higher Index Theorems 267

If φ : A⊗A is a Hochschild 1-cocycle, then the the functional φ defines a morphism
φ∗ : Kalg1 (A) → C, by first extending φ to matrices over A, and then by pairing it
with the Hochschild 1–cycle u⊗ u−1. Explicitly, if u = [aij], with inverse u−1 = [bij],
then the morphism φ∗ is

Kalg1 (A) ∋ [u] −→ φ∗([u]) =
∑

i,j

φ(aij, bji) ∈ C.(3)

The morphism φ∗ depends only on the class of φ in the Hochschild homology group
HH1(A) of A.

If 0 → I → A → A/I → 0 is an exact sequence of algebras, that is, if I is a
two–sided ideal of A, then there exists an exact sequence [26],

Kalg1 (I)→ Kalg1 (A)→ Kalg1 (A/I)
Ind
−−−→ Kalg0 (I) → Kalg0 (A)→ Kalg0 (A/I),

of Abelian groups, called the algebraic K–theory exact sequence. The connecting (or
index) morphism

Ind : Kalg
1 (A/I)→ Kalg

0 (I)

will play an important role in this paper and is defined as follows. Let u be an
invertible element in some matrix algebra ofA/I. By replacing A/I withMn(A/I), for
some large n, we may assume that u ∈ A/I. Choose an invertible element v ∈M2(A)
that projects to u ⊕ u−1 in M2(A/I), and let e0 = 1⊕ 0 and e1 = ve0v

−1. Because

e1 ∈ M2(I+), the idempotent e1 defines a class in Kalg0 (I+). Since e1 − e0 ∈ M2(I),
the difference [e1]− [e0] is actually in Kalg0 (I) and depends only on the class [u] of u

in Kalg1 (A/I). Finally, we define

Ind([u]) = [e1]− [e0].(4)

To obtain an explicit formula for e1, choose liftings a, b ∈ A of u and u−1 and let
v, the lifting, to be the matrix

v =

[
2a− aba ab− 1
1− ba b

]
,

as in [26], page 22. Then a short computation gives

e1 =

[
2ab− (ab)2 a(2− ba)(1− ba)
(1− ba)b (1− ba)2

]
.(5)

Continuing the study of the exact sequence 0 → I → A → A/I → 0, choose an
arbitrary linear lifting, l : A/I2 → A. If τ is a trace on I, we let

φτ (a, b) = τ([l(a), l(b)]− l([a, b])).(6)

Because [a, xy] = [ax, y]+[ya, x], we have τ([A, I2]) = 0, and hence φτ is a Hochschild
1–cocycle onA/I2 (i.e., φτ(ab, c)−φτ(a, bc)+φτ (ca, b)). The class of φτ in HH1(A/I2),
denoted ∂τ , turns out to be independent of the lifting l. If A is a locally convex
algebra, then we assume that we can choose the lifting l to be continuous. If
τ([A, I]) = 0, then it is enough to consider a lifting of A→ A/I.

The morphisms (∂τ)∗ : Kalg1 (A/I2) → C and τ∗ : Kalg0 (I2) → C are related
through the following lemma.
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Lemma. 1.1. Let τ be a trace on a two-sided ideal I ⊂ A. If
Ind : Kalg1 (A/I2)→ Kalg0 (I2)

is the connecting morphism of the algebraic K–Theory exact sequence associated to
the two-sided ideal I2 of A, then

τ∗ ◦ Ind = (∂τ)∗.

If τ([A, I]) = 0, then we may replace I2 by I.

Proof. We check that τ∗ ◦ Ind([u]) = (∂τ)∗([u]), for each invertible u ∈ Mn(A/I2).
By replacing A/I2 with Mn(A/I2), we may assume that n = 1.

Let l : A/I2 → A be the linear lifting used to define the 1–cocycle φτ representing
∂τ , equation (6), and choose a = l(u) and b = l(u−1) in the formula for e1, equation
(5). Then, the left hand side of our formula becomes

τ∗
(

Ind([u])
)

= τ
(
(1− ba)2

)
− τ
(
(1− ab)2

)
= 2τ([a, b])− τ([a, bab]).(7)

Because (1− ba)b is in I2, we have τ([a, bab]) = τ([a, b]), and hence

τ∗(Ind([u])) = τ∗([e1]− [e0]) = τ(e1 − e0) = τ([a, b]).

Since the right hand side of our formula is

(∂τ)∗([u]) = (∂τ)(u, u−1) = τ([l(u), l(u−1)]− l([u, u−1])) = τ([a, b]),

the proof is complete.

Lemma 1.1 generalizes a formula of Fedosov in the following situation. Let B(H)
be the algebra of bounded operators on a fixed separable Hilbert spaceH and Cp(H) ⊂
B(H) be the (non-closed) ideal of p–summable operators [36] on H:

Cp(H) = {A ∈ B(H), T r(A∗A)p/2 <∞}.(8)

(We will sometimes omit H and write simply Cp instead of Cp(H).) Suppose now that
the algebra A consists of bounded operators, that I ⊂ C1, and that a is an element
of A whose projection u in A/I is invertible. Then a is a Fredholm operator, and, for
a suitable choice of a lifting b of u−1, the operators 1 − ba and 1 − ab become the
orthogonal projection onto the kernel of a and, respectively, the kernel of a∗. Finally,
if τ = Tr, this shows that

Tr∗
(

Ind([u])
)

= dim ker(a) − dim ker(a∗)

and hence that Tr∗ ◦ Ind recovers the Fredholm index of a. (The Fredholm index
of a, denoted ind(a), is by definition the right-hand side of the above formula.) By
equation (7), we see that we also recover a form of Fedosov’s formula:

ind(a) = Tr
(
(1− ba)k

)
− Tr

(
(1− ab)k

)

if b is an inverse of a modulo Cp(H) and k ≥ p.
The connecting (or boundary) morphism in the algebraic K–Theory exact se-

quence is usually denoted by ‘∂’. However, in the present paper, this notation be-
comes unsuitable because the notation ‘∂’ is reserved for the boundary morphism in
the periodic cyclic cohomology exact sequence. Besides, the notation ‘Ind’ is supposed
to suggest the name ‘index morphism’ for the connecting morphism in the algebraic
K–Theory exact sequence, a name justified by the relation that exists between Ind
and the indices of Fredholm operators, as explained above.
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1.2. “Higher traces” and excision in cyclic cohomology. The example of
A = C∞(M), for M a compact smooth manifold, shows that, in general, few mor-

phisms Kalg0 (A)→ C are given by pairings with traces. This situation is corrected by
considering ‘higher-traces,’ [10].

Let A be a unital algebra and

b′(a0 ⊗ . . .⊗ an) =
n−1∑

i=0

(−1)ia0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an,

b(a0 ⊗ . . .⊗ an) = b′(a0 ⊗ . . .⊗ an) + (−1)nana0 ⊗ . . .⊗ an−1,
(9)

for ai ∈ A. The Hochschild homology groups ofA, denoted HH∗(A), are the homology
groups of the complex (A ⊗ (A/C1)⊗n, b). The cyclic homology groups [10, 24, 37]
of a unital algebra A, denoted HCn(A), are the homology groups of the complex
(C(A), b +B), where

Cn(A) =
⊕

k≥0

A⊗ (A/C1)⊗n−2k.(10)

b is the Hochschild homology boundary map, equation (9), and B is defined by

B(a0 ⊗ . . .⊗ an) = s
n∑

k=0

tk(a0 ⊗ . . .⊗ an).(11)

Here we have used the notation of [10], that s(a0 ⊗ . . .⊗ an) = 1⊗ a0 ⊗ . . .⊗ an and
t(a0 ⊗ . . .⊗ an) = (−1)nan ⊗ a0 ⊗ . . .⊗ an−1.

More generally, Hochschild and cyclic homology groups can be defined for “mixed
complexes,” [21]. A mixed complex (X , b, B) is a graded vector space (Xn)n≥0, en-
dowed with two differentials b and B, b : Xn → Xn−1 and B : Xn → Xn+1, satisfying
the compatibility relation b2 = B2 = bB+Bb = 0. The cyclic complex, denoted C(X ),
associated to a mixed complex (X , b, B) is the complex

Cn(X ) = Xn ⊕ Xn−2 ⊕Xn−4 . . . =
⊕

k≥0

Xn−2k,

with differential b+ B. The cyclic homology groups of the mixed complex X are the
homology groups of the cyclic complex of X :

HCn(X ) = Hn(C(X ), b+ B).

Cyclic cohomology is defined to be the homology of the complex

(C(X )′ = Hom(C(X ),C), (b+ B)′),

dual to C(X ). From the form of the cyclic complex it is clear that there exists a
morphism S : Cn(X )→ Cn−2(X ). We let

Cn(X ) = lim
←
Cn+2k(X )

as k → ∞, the inverse system being with respect to the periodicity operator S.
Then the periodic cyclic homology of X (respectively, the periodic cyclic cohomology
of X ), denoted HP∗(X ) (respectively, HP∗(X )) is the homology (respectively, the
cohomology) of Cn(X ) (respectively, of the complex lim

→
Cn+2k(X )′).

If A is a unital algebra, we denote by X (A) the mixed complex obtained by
letting Xn(A) = A⊗ (A/C1)⊗n with differentials b and B given by (9) and (11). The
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various homologies of X (A) will not include X as part of notation. For example, the
periodic cyclic homology of X is denoted HP∗(A).

For a topological algebra A we may also consider continuous versions of the
above homologies by replacing the ordinary tensor product with the projective tensor
product. We shall be especially interested in the continuous cyclic cohomology of A,
denoted HP∗cont(A). An important example is A = C∞(M), for a compact smooth
manifold M . Then the Hochschild-Kostant-Rosenberg map

χ : A⊗̂n+1 ∋ a0 ⊗ a1 ⊗ . . .⊗ an −→ (n!)−1a0da1 . . . dan ∈ Ωn(M)(12)

to smooth forms gives an isomorphism

HPconti (C∞(M)) ≃
⊕

k

Hi+2k
DR (M)

of continuous periodic cyclic homology with the de Rham cohomology of M [10, 24]
made Z2–periodic. The normalization factor (n!)−1 is convenient because it trans-
forms B into the de Rham differential dDR. It is also the right normalization as far
as Chern characters are involved, and it is also compatible with products, Theorem
3.5. From now on, we shall use the de Rham’s Theorem

Hi
DR(M) ≃ Hi(M)

to identify de Rham cohomology and singular cohomology with complex coefficients
of the compact manifold M .

Sometimes we will use a version of continuous periodic cyclic cohomology for
algebras A that have a locally convex space structure, but for which the multiplication
is only partially continuous. In that case, however, the tensor products A⊗n+1 come
with natural topologies, for which the differentials b and B are continuous. This is
the case for some of the groupoid algebras considered in the last section. The periodic
cyclic cohomology is then defined using continuous multi-linear cochains.

One of the original descriptions of cyclic cohomology was in terms of “higher
traces” [10]. A higher trace–or cyclic cocycle–is a continuous multilinear map φ :
A⊗n+1 → C satisfying φ ◦ b = 0 and φ(a1, . . . , an, a0) = (−1)nφ(a0, . . . , an). Thus
cyclic cocycles are, in particular, Hochschild cocycles. The last property, the cyclic
invariance, justifies the name “cyclic cocycles.” The other name, “higher traces” is
justified since cyclic cocycles on A define traces on the universal differential graded
algebra of A.

If I ⊂ A is a two–sided ideal, we denote by C(A, I) the kernel of C(A)→ C(A/I).
For possibly non-unital algebras I, we define the cyclic homology of I using the
complex C(I+, I). The cyclic cohomology and the periodic versions of these groups are
defined analogously, using C(I+, I). For topological algebras we replace the algebraic
tensor product by the projective tensor product.

An equivalent form of the excision theorem in periodic cyclic cohomology is the
following result.

Theorem. 1.2 (Cuntz–Quillen). The inclusion C(I+, I) →֒ C(A, I) induces an iso-
morphism, HP∗(A, I) ≃ HP∗(I), of periodic cyclic cohomology groups.
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This theorem is implicit in [16], and follows directly from the proof there of the
Excision Theorem by a sequence of commutative diagrams, using the Five Lemma
each time.2

This alternative definition of excision sometimes leads to explicit formulae for ∂.
We begin by observing that the short exact sequence of complexes 0 → C(A, I) →
C(A) → C(A/I)→ 0 defines a long exact sequence

..← HPn(A, I)←HPn(A)←HPn(A/I)
∂←− HPn−1(A, I)←HPn−1(A)← ..

in cyclic cohomology that maps naturally to the long exact sequence in periodic cyclic
cohomology.

Most important for us, the boundary map ∂ : HPn(A, I) → HPn+1(A/I) is
determined by a standard algebraic construction. We now want to prove that this
boundary morphism recovers a previous construction, equation (6), in the particular
case n = 0. As we have already observed, a trace τ : I → C satisfies τ([A, I2]) = 0,
and hence defines by restriction an element of HC0(A, I2). The traces are the cycles of
the group HC0(I), and thus we obtain a linear map HC0(I)→ HC0(A, I2). From the
definition of ∂ : HP0(A, I)→ HP1(A/I), it follows that ∂[τ ] is the class of the cocycle
φ(a, b) = τ([l(a), l(b)]− l([a, b])), which is cyclically invariant, by construction. (Since
our previous notation for the class of φ was ∂τ , we have thus obtained the paradoxical
relation ∂[τ ] = ∂τ ; we hope this will not cause any confusions.)

Below we shall also use the natural map (transformation)

HCn → HPn = lim
k→∞

HCn+2k .

Lemma. 1.3. The diagram

HC0(I)

��

// HC0(A, I2)

��

//∂
HC1(A/I2)

��

HC1(A/I)

��

oo

HP0(I) //∼ HP0(A, I2) //∂
HP1(A/I2) HP1(A/I)oo ∼

commutes. Consequently, if τ ∈ HC0(I) is a trace on I and [τ ] ∈ HP0(I) is its class
in periodic cyclic homology, then ∂[τ ] = [∂τ ] ∈ HP1(A/I), where ∂τ ∈ HC1(A/I2) is
given by the class of the cocycle φ defined in equation (6) (see also above).

Proof. The commutativity of the diagram follows from definitions. If we start with a
trace τ ∈ HC0(I) and follow counterclockwise through the diagram from the upper–
left corner to the lower–right corner we obtain ∂[τ ]; if we follow clockwise, we obtain
the description for ∂[τ ] indicated in the statement.

1.3. An abstract “higher index theorem”. We now generalize Lemma 1.1 to
periodic cyclic cohomology. Recall that the pairings (2) and (3) have been generalized
to pairings

Kalgi (A)⊗ HC2n+i(A) −→ C, i = 0, 1.

[10]. Thus, if φ be a higher trace representing a class [φ] ∈ HC2n+i(A), then, using the

above pairing, φ defines morphisms φ∗ : Kalgi (A) → C, where i = 0, 1. The explicit

formulae for these morphisms are φ∗([e]) = (−1)n (2n)!n! φ(e, e, . . . , e), if i = 0 and e

2I am indebted to Joachim Cuntz for pointing out this fact to me.
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is an idempotent, and φ∗([u]) = (−1)nn!φ∗(u, u
−1, u, . . . , u−1), if i = 1 and u is an

invertible element. The constants in these pairings are meaningful and are chosen so
that these pairings are compatible with the periodicity operator.

Consider the standard orthonormal basis (en)n≥0 of the space l2(N) of square
summable sequences of complex numbers; the shift operator S is defined by Sen =
en+1. The adjoint S∗ of S then acts by S∗e0 = 0 and S∗en+1 = en, for n ≥ 0. The
operators S and S∗ are related by S∗S = 1 and SS∗ = 1−p, where p is the orthogonal
projection onto the vector space generated by e0.

Let T be the algebra generated by S and S∗ and C[w,w−1] be the algebra of

Laurent series in the variable w, C[w,w−1] = {∑N
n=−N akw

k, ak ∈ C} ≃ C[Z]. Then
there exists an exact sequence

0→M∞(C)→ T → C[w,w−1]→ 0,

called the Toeplitz extension, which sends S to w and S∗ to w−1.
Let C〈 a, b 〉 be the free non-commutative unital algebra generated by the symbols

a and b and J = ker(C〈 a, b 〉 → C[w,w−1]), the kernel of the unital morphism that
sends a→ w and b→ w−1. Then there exists a morphism ψ0 : C〈 a, b 〉 → T , uniquely
determined by ψ0(a) = S and ψ0(b) = S∗, which defines, by restriction, a morphism
ψ : J →M∞(C), and hence a commutative diagram

0 // J

��
ψ

// C〈 a, b 〉

��
ψ0

// C[w,w−1]

��

// 0

0 // M∞(C) // T // C[w,w−1] // 0

Lemma. 1.4. Using the above notations, we have that HC∗(J) is singly generated by
the trace τ = Tr ◦ ψ.
Proof. We know that HPi(C[w,w−1]) ≃ C, see [24]. Then Lemma 1.1, Lemma
1.3, and the exact sequence in periodic cyclic cohomology prove the vanishing of the
reduced periodic cyclic cohomology groups:

H̃C
∗
(T ) = ker(HP∗(T )→ HP∗(C)).

The algebra C〈 a, b 〉 is the tensor algebra of the vector space Ca ⊕ Cb, and hence

the groups H̃C
∗
(T (V )) also vanish [24]. It follows that the morphism ψ0 induces

(trivially) an isomorphism in cyclic cohomology. The comparison morphism between
the Cuntz–Quillen exact sequences associated to the two extensions shows, using
“the Five Lemma,” that the induced morphisms ψ∗ : HP∗(M∞(C)) → HP∗(J) is
also an isomorphism. This proves the result since the canonical trace Tr generates
HP∗(M∞(C)).

We are now ready to state the main result of this section, the compatibility of the
boundary map in the periodic cyclic cohomology exact sequence with the index (i.e.,
connecting) map in the algebraic K–Theory exact sequence. The following theorem
generalizes Theorem 5.4 from [30].

Theorem. 1.5. Let 0 → I → A → A/I → 0 be an exact sequence of complex

algebras, and let Ind : Kalg1 (A/I) → Kalg0 (I) and ∂ : HP0(I) → HP1(A/I) be the
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connecting morphisms in algebraic K–Theory and, respectively, in periodic cyclic co-
homology. Then, for any ϕ ∈ HP0(I) and [u] ∈ Kalg1 (A/I), we have

ϕ∗(Ind[u]) = (∂ϕ)∗[u] .(13)

Proof. We begin by observing that if the class of ϕ can be represented by a trace
(that is, if ϕ is the equivalence class of a trace in the group HP0(I)) then the boundary
map in periodic cyclic cohomology is computed using the recipe we have indicated,
Lemma 1.3, and hence the result follows from Lemma 1.1. In particular, the theorem
is true for the exact sequence

0 −→ J → C〈 a, b 〉 → C[w,w−1] −→ 0,

because all classes in HP0(J) are defined by traces, as shown in Lemma 1.4. We will
now show that this particular case is enough to prove the general case “by universal-
ity.”

Let u be an invertible element in Mn(A/I). After replacing the algebras involved
by matrix algebras, if necessary, we may assume that n = 1, and hence that u is
an invertible element in A/I. This invertible element then gives rise to a morphism
η : C[w,w−1] → A/I that sends w to u. A choice of liftings a0, b0 ∈ A of u and
u−1 defines a morphism ψ0 : C〈 a, b 〉 → A, uniquely determined by ψ0(a) = a0 and
ψ0(b) = b0, which restricts to a morphism ψ : J → I. In this way we obtain a
commutative diagram

0 // J

��
ψ

// C〈 a, b 〉

��
ψ0

// C[w,w−1]

��
η

// 0

0 // I // A // A/I // 0

of algebras and morphisms.
We claim that the naturality of the index morphism in algebraic K–Theory and

the naturality of the boundary map in periodic cyclic cohomology, when applied to
the above exact sequence, prove the theorem. Indeed, we have

ψ∗ ◦ Ind = Ind ◦η∗ : Kalg1 (C[w,w−1])→ Kalg0 (I), and

∂ ◦ ψ∗ = η∗ ◦ ∂ : HP∗(I)→ HP∗+1(C[w,w−1]).

As observed in the beginning of the proof, the theorem is true for the cocycle ψ∗(ϕ)
on J , and hence (ψ∗(ϕ))∗(Ind [w]) = (∂◦ψ∗(ϕ))∗[w]. Finally, from definition, we have
that η∗[w] = [u]. Combining these relations we obtain

ϕ∗(Ind [u]) = ϕ∗(Ind ◦η∗[w]) = ϕ∗(ψ∗ ◦ Ind[w]) = (ψ∗(ϕ))∗(Ind [w]) =

= (∂ ◦ ψ∗(ϕ))∗[w] = (η∗ ◦ ∂(ϕ))∗[w] = (∂ϕ)∗(η∗[w]) = (∂ϕ)∗[u].

The proof is complete.

The theorem we have just proved can be extended to topological algebras and
topological K–Theory. If the topological algebras considered satisfy Bott periodicity,
then an analogous compatibility with the other connecting morphism can be proved
and one gets a natural transformation from the six-term exact sequence in topological
K–Theory to the six-term exact sequence in periodic cyclic homology. However, a
factor of 2πı has to be taken into account because the Chern-Connes character is not
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directly compatible with periodicity [30], but introduces a factor of 2πı. See [12] for
details.

So far all our results have been formulated in terms of cyclic cohomology, rather
than cyclic homology. This is justified by the application in Section 3 that will use this
form of the results. This is not possible, however, for the following theorem, which
states that the Chern character in periodic cyclic homology (i.e., the Chern–Connes
character) is a natural transformation from the six term exact sequence in (lower)
algebraic K–Theory to the exact sequence in cyclic homology.

Theorem. 1.6. The diagram

Kalg1 (I)

��

// Kalg1 (A)

��

// Kalg1 (A/I)

��

//Ind
Kalg0 (I)

��

// Kalg0 (A)

��

// Kalg0 (A/I)

��
HP1(I) // HP1(A) // HP1(A/I) //∂

HP0(I) // HP0(A) // HP0(A/I),

in which the vertical arrows are induced by the Chern characters ch : Kalgi → HPi,
for i = 0, 1, commutes.

Proof. Only the relation ch ◦ Ind = ∂ ◦ ch needs to be proved, and this is dual to
Theorem 1.5.

2. Products and the boundary map in periodic cyclic cohomology

Cyclic vector spaces are a generalization of simplicial vector spaces, with which they
share many features, most notably, for us, a similar behavior with respect to products.

2.1. Cyclic vector spaces. We begin this section with a review of a few needed
facts about the cyclic category Λ from [9] and [30]. We will be especially interested
in the ×–product in bivariant cyclic cohomology. More results can be found in [23].

Definition. 2.1. The cyclic category, denoted Λ, is the category whose objects are
Λn = {0, 1, . . . , n}, where n = 0, 1, . . . and whose morphisms HomΛ(Λn,Λm) are
the homotopy classes of increasing, degree one, continuous functions ϕ : S1 → S1

satisfying ϕ(Zn+1) ⊆ Zm+1.
A cyclic vector space is a contravariant functor from Λ to the category of complex

vector spaces [9]. Explicitly, a cyclic vector space X is a graded vector space, X =
(Xn)n≥0, with structural morphisms din : Xn → Xn−1, s

i
n : Xn → Xn+1, for 0 ≤

i ≤ n, and tn+1 : Xn → Xn such that (Xn, d
i
n, s

i
n) is a simplicial vector space

([25], Chapter VIII,§5) and tn+1 defines an action of the cyclic group Zn+1 satisfying
d0ntn+1 = dnn and s0ntn+1 = t2n+2s

n
n, dintn+1 = tnd

i−1
n , and sintn+1 = tn+2s

i−1
n for

1 ≤ i ≤ n. Cyclic vector spaces form a category.
The cyclic vector space associated to a unital locally convex complex algebra A

is A♮ = (A⊗n+1)n≥0, with the structural morphisms

sin(a0⊗ . . .⊗an) = a0⊗ . . .⊗ai⊗1⊗ai+1⊗ . . .⊗an,
din(a0⊗ . . .⊗an) = a0⊗ . . .⊗aiai+1⊗ . . .⊗an, for 0 ≤ i < n, and

dnn(a0⊗ . . .⊗an) = ana0⊗ . . .⊗aiai+1⊗ . . .⊗an−1,
tn+1(a0⊗ . . .⊗an) = an ⊗ a0 ⊗ a1⊗ . . .⊗an−1.
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If X = (Xn)n≥0 and Y = (Yn)n≥0 are cyclic vector spaces, then we can define
on (Xn ⊗ Yn)n≥0 the structure of a cyclic space with structural morphisms given by
the diagonal action of the corresponding structural morphisms, sin, d

i
n, and tn+1, of

X and Y . The resulting cyclic vector space will be denoted X × Y and called the
external product of X and Y . In particular, we obtain that (A⊗B)♮ = A♮×B♮ for all
unital algebras A and B, and that X × C♮ ≃ X for all cyclic vector spaces X. There
is an obvious variant of these constructions for locally convex algebras, obtained by
using the complete projective tensor product.

The cyclic cohomology groups of an algebra A can be recovered as Ext–groups.
For us, the most convenient definition of Ext is using exact sequences (or resolutions).
Consider the set E = (Mk)nk=0 of resolutions of length n + 1 of X by cyclic vector
spaces, such that Mn = Y . Thus we consider exact sequences

E : 0→ Y = Mn →Mn−1 → · · · →M0 → X → 0,

of cyclic vector spaces. For two such resolutions, E and E′, we write E ≃ E′ whenever
there exists a morphism of complexes E → E′ that induces the identity on X and
Y . Then ExtnΛ(X, Y ) is, by definition, the set of equivalence classes of resolutions
E = (Mk)nk=0 with respect to the equivalence relation generated by ≃. The set
ExtnΛ(X, Y ) has a natural group structure. The equivalence class in ExtnΛ(X, Y ) of
a resolution E = (Mk)nk=0 is denoted [E]. This definition of Ext coincides with the
usual one–using resolutions by projective modules–because cyclic vector spaces form
an Abelian category with enough projectives.

Given a cyclic vector space X = (Xn)n≥0 define b, b′ : Xn → Xn−1 by

b′ =
∑n−1
j=0 (−1)jdj, b = b′+(−1)ndn. Let s−1 = snn ◦tn+1 be the ‘extra degeneracy’ of

X, which satisfies s−1b
′+b′s−1 = 1. Also let ǫ = 1−(−1)ntn+1, N =

∑n
j=0(−1)njtjn+1

and B = ǫs−1N . Then (X, b, B) is a mixed complex and hence HC∗(X), the cyclic ho-
mology ofX, is the homology of (⊕k≥0Xn−2k, b+B), by definition. Cyclic cohomology
is obtained by dualization, as before.

The Ext–groups recover the cyclic cohomology of an algebra A via a natural
isomorphism,

HCn(A) ≃ ExtnΛ(A♮,C♮),(14)

[9]. This isomorphism allows us to use the theory of derived functors to study cyclic
cohomology, especially products.

The Yoneda product,

ExtnΛ(X, Y )⊗ ExtmΛ (Y, Z) ∋ ξ ⊗ ζ → ζ ◦ ξ ∈ Extn+mΛ (X,Z),

is defined by splicing [18]. If E = (Mk)nk=0 is a resolution of X, and E′ = (M ′k)mk=0 a
resolution of Y , such that Mn = Y and M ′m = Z, then E′ ◦E is represented by

0→ Z = M ′m →M ′m−1 → · · · → M ′0
//

��

Mn−1 → · · · →M0 → X → 0

Y

;;
①
①
①
①
①
①
①
①
①
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The resulting product generalizes the composition of functions. Using the same no-
tation, the external product E ×E′ is the resolution

E × E′ =


 ∑

k+j=l

M ′k ×Mj



n+m

l=0

.

Passing to equivalence classes, we obtain a product

ExtmΛ (X, Y ) ⊗ ExtnΛ(X1, Y1)
×−→ Extm+nΛ (X ×X1, Y × Y1).

If f : X → X′ is a morphism of cyclic vector spaces then we shall sometimes denote
E′ ◦ f = f∗(E′), for E′ ∈ ExtnΛ(X′,C♮).

The Yoneda product, “◦,” and the external product, “×,” are both associative
and are related by the following identities, [30], Lemma 1.2.

Lemma. 2.2. Let x ∈ ExtnΛ(X, Y ), y ∈ ExtmΛ (X1, Y1), and τ be the natural transfor-
mation Extm+nΛ (X1 × X, Y1 × Y ) → Extm+nΛ (X ×X1, Y × Y1) that interchanges the
factors. Then

x× y = (idY × y) ◦ (x× idX1) = (−1)mn (x× idY1) ◦ (idX × y),

idX × (y ◦ z) = (idX × y) ◦ (idX × z),
x× y = (−1)mnτ(y × x), and x× idC♮ = x = idC♮ × x.

We now turn to the definition of the periodicity operator. A choice of a generator
σ of the group Ext2Λ(C♮,C♮), defines a periodicity operator

ExtnΛ(X, Y ) ∋ x→ Sx = x× σ ∈ Extn+2Λ (X, Y ).(15)

In the following we shall choose the standard generator σ that is defined ‘over Z’,
and then the above definition extends the periodicity operator in cyclic cohomology.
This and other properties of the periodicity operator are summarized in the following
Corollary ([30], Corollary 1.4)

Corollary. 2.3. a) Let x ∈ ExtnΛ(X, Y ) and y ∈ ExtmΛ (X1, Y1). Then (Sx)× y =
S(x × y) = x× (Sy).
b) If x ∈ ExtnΛ(C♮, X), then Sx = σ ◦ x.
c) If y ∈ ExtmΛ (Y,C♮), then Sy = y ◦ σ.
d) For any extension x, we have Sx = σ × x.
Using the periodicity operator, we extend the definition of periodic cyclic coho-

mology groups from algebras to cyclic vector spaces by

HPi(X) = lim
→

Exti+2nΛ (X,C♮),(16)

the inductive limit being with respect to S; clearly, HPi(A♮) = HPi(A). Then Corol-
lary 2.3 a) shows that the external product × is compatible with the periodicity
morphism, and hence defines an external product,

HPi(A) ×HPj(B)
⊗−→ HPi+j(A ⊗B),(17)

on periodic cyclic cohomology.
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2.2. Extensions of algebras and products. Cyclic vector spaces will be used
to study exact sequences of algebras. Let I ⊂ A be a two–sided ideal of a complex
unital algebra A (recall that in this paper all algebras are complex algebras.) Denote
by (A, I)♮ the kernel of the map A♮ → (A/I)♮ , and by [A, I] ∈ Ext1Λ((A/I)♮, (A, I)♮)
the (equivalence class of the) exact sequence

0→ (A, I)♮ → A♮ → (A/I)♮ → 0(18)

of cyclic vector spaces.
Let HCi(A, I) = ExtiΛ((A, I)♮,C♮), then the long exact sequence of Ext–groups

associated to the short exact sequence (18) reads

· · ·→ HCi(A/I)→ HCi(A)→ HCi(A, I)→ HCi+1(A/I)→ HCi+1(A)→· · ·
By standard homological algebra, the boundary map of this long exact sequence is
given by the product

HCi(A, I) ∋ ξ → ξ ◦ [A, I] ∈ HCi+1(A/I).

For an arbitrary algebra I, possibly without unit, we let I♭ = (I+, I)♮. Then
the isomorphism (14) becomes HCn(I) ≃ ExtnΛ(I♭,C♮), and the excision theorem in
periodic cyclic cohomology for cyclic vector spaces takes the following form.

Theorem. 2.4 (Cuntz–Quillen). The inclusion jI,A : I♭ →֒ (A, I)♮ of cyclic vector
spaces induces an isomorphism HP∗(A, I) ≃ HP∗(I).

It follows that every element ξ ∈ HP∗(I) is of the form ξ = ξ0 ◦ jI,A, and that

the boundary morphism ∂A,I : HP∗(I)→ HP∗+1(A/I) satisfies

∂A,I(ξ0 ◦ jI,A) = ξ0 ◦ [A, I](19)

for all ξ0 ∈ HCi(A, I) = ExtiΛ((A, I)♮,C♮). Formula (19) then uniquely determines
∂I,A.

We shall need in what follows a few properties of the isomorphisms jI,A. Let B
be an arbitrary unital algebra and I an arbitrary, possibly non–unital algebra. The
inclusion (I ⊗ B)+ → I+ ⊗ B, of unital algebras, defines a commutative diagram

0 // (I ⊗ B)♭

��
ηI,B

// (I ⊗B)+♮

��

// C♮

��

// 0

0 // I♭ × B♮ // (I+ ⊗ B)♮ // B♮ // 0

with exact lines. The morphism ηI,B, defined for possibly non-unital algebras I, will
replace the identification A♮ ×B♮ = (A⊗ B)♮, valid only for unital algebras A.

Using the notation of Theorem 2.4, we see that ηI,B = jI⊗B,I+⊗B, and hence,
by the same theorem, it follows that ηI,B induces an isomorphism

HP∗(I♭ ×B♮) ∋ α→ α ◦ ηI,B ∈ HP∗(I ⊗ B).

Using this isomorphism, we extend the external product

⊗ : HP∗(I) ⊗HP∗(B)→ HP∗(I ⊗B)

to a possibly non-unital algebra I by

Documenta Mathematica 2 (1997) 263–295



278 Victor Nistor

HPi(I) ⊗ HPj(B) = lim
→

Exti+2nΛ (I♭,C♮)⊗ lim
→

Extj+2mΛ (B♮,C♮)
×−→ lim

→
Exti+j+2lΛ (I♭ ×B♮,C♮) = HP∗(I♭ ×B♮) ≃ HPi+j(I ⊗B).

This extension of the external tensor product ⊗ to possibly non-unital algebras will be
used to study the tensor product by B of an exact sequence 0→ I → A→ A/I → 0
of algebras.

Tensoring by B is an exact functor, and hence we obtain an exact sequence

0→ I ⊗B → A ⊗B → (A/I)⊗ B → 0.(20)

Lemma. 2.5. Using the notation introduced above, we have the relation

[A⊗ B, I ⊗B] = [A, I]× idB ∈ Ext1Λ((A/I ⊗ B)♮, (A⊗ B, I ⊗ B)♮).

Proof. We need only observe that the relation A♮×B♮ = (A×B)♮ and the exactness
of the functor X → X × B♮ imply that (A, I)♮ × B♮ = (A ⊗B, I ⊗ B)♮.

2.3. Properties of the boundary map. The following theorem is a key tool in
establishing further properties of the boundary map in periodic cyclic homology.

Theorem. 2.6. Let A and B be complex unital algebras and I ⊂ A be a two-sided
ideal. Then the boundary maps

∂I,A : HP∗(I) → HP∗+1(A/I)

and
∂I⊗B,A⊗B : HP∗(I ⊗ B)→ HP∗+1((A/I) ⊗ B)

satisfy
∂I⊗B,A⊗B(ξ ⊗ ζ) = ∂I,A(ξ) ⊗ ζ

for all ξ ∈ HP∗(I) and ζ ∈ HP∗(B).

Proof. The groups HPk(I) is the inductive limit of the groups Extk+2nΛ (I♭,C♮) so ξ
will be the image of an element in one of these Ext–groups. By abuse of notation, we
shall still denote that element by ξ, and thus we may assume that ξ ∈ ExtkΛ(I♭,C♮),
for some large k. Similarly, we may assume that ζ ∈ ExtjΛ(B♮ ,C♮). Moreover, by

Theorem 2.4, we may assume that ξ = ξ0 ◦ jI,A, for some ξ0 ∈ ExtiΛ((A, I)♮ ,C♮).
We then have

∂I,A(ξ)⊗ ζ = ∂(ξ0 ◦ jI,A)× ζ =

= (ξ0 ◦ [A, I])× ζ by equation (19)

= (idC♮ × ζ) ◦ ((ξ0 ◦ [A, I])× idB) by Lemma 2.2

= (idC♮ × ζ) ◦ (ξ0 × idB) ◦ ([A, I]× idB) by Lemma 2.2

= (ξ0 × ζ) ◦ [A⊗B, I ⊗ B] by Lemma 2.2 and Corollary 2.3

= ∂A⊗B,I⊗B((ξ0 × ζ) ◦ jI⊗B,A⊗B) by equation (19).

By definition, the morphism jI,A introduced in Theorem 2.4 satisfies

jI⊗B,A⊗B = (jI,A × idB) ◦ ηI,B.(21)

Equation (21) then gives

∂I,A(ξ)⊗ ζ = ∂I⊗B,A⊗B((ξ × ζ) ◦ ηI,B)

in Exti+j+1Λ ((A/I⊗B)♮,C♮). This completes the proof in view of the definition of the
external product ⊗ in the non-unital case: ξ ⊗ ζ = (ξ × ζ) ◦ ηI,B.
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We now consider crossed products. Let A be a unital algebra and Γ a discrete
group acting on A by Γ × A ∋ (γ, a) → αγ(a) ∈ A. Then the (algebraic) crossed
product A⋊ Γ consists of finite linear combinations of elements of the form aγ, with
the product rule (aγ)(bγ1) = aαγ(b)γγ1. Let δ(aγ) = aγ⊗γ, which defines a morphism
δ : A ⋊ Γ → A ⋊ Γ ⊗ C[Γ]. Using δ, we define on HP∗(A ⋊ Γ) a HP∗(C[Γ])–module
structure [28] by

HP∗(A⋊ Γ)⊗ HP∗(C[Γ])
⊗−→ HP∗((A⋊ Γ)⊗ C[Γ])

δ∗−→ HP∗(A ⋊ Γ).

A Γ–invariant two-sided ideal I ⊂ A gives rise to a “crossed product exact se-
quence”

0→ I ⋊ Γ→ A⋊ Γ→ (A/I) ⋊ Γ→ 0

of algebras. The following theorem describes the behavior of the boundary map of this
exact sequence with respect to the HP∗(C[Γ])–module structure on the corresponding
periodic cyclic cohomology groups.

Theorem. 2.7. Let Γ be a discrete group acting on the unital algebra A, and let I
be a Γ-invariant ideal. Then the boundary map

∂I⋊Γ,A⋊Γ : HP∗(I ⋊ Γ)→ HP∗+1((A/I) ⋊ Γ)

is HP∗(C[Γ])-linear.

Proof. The proof is based on the previous theorem, Theorem 2.6, and the naturality
of the boundary morphism in periodic cyclic cohomology.

From the commutative diagram

0 // I ⋊ Γ

��

// A ⋊ Γ

��

// (A/I)⋊ Γ

��

// 0

0 // (I ⋊ Γ)⊗ C[Γ] // (A ⋊ Γ) ⊗C[Γ] // (A/I) ⋊ Γ⊗ C[Γ] // 0,

we obtain that δ∗∂ = ∂δ∗ (we have omitted the subscripts). Then, for each x ∈
HP∗(C[Γ]) and ξ ∈ HP∗(I ⋊ Γ), we have ξx = δ∗(ξ ⊗ x), and hence, using also
Theorem 2.6, we obtain

∂(ξx) = ∂(δ∗(ξ ⊗ x)) = δ∗(∂(ξ ⊗ x)) = δ∗((∂ξ) ⊗ x) = (∂ξ)x .

The proof is complete.

For the rest of this subsection it will be convenient to work with continuous
periodic cyclic homology. Recall that this means that all algebras have compatible
locally convex topologies, that we use complete projective tensor products, and that
the projections A → A/I have continuous linear splittings, which implies that A ≃
A/I ⊕ I as locally convex vector spaces. Moreover, since the excision theorem
is known only for m–algebras [13], we shall also assume that our algebras are m–
algebras, that is, that their topology is generated by a family of sub-multiplicative
seminorms. Slightly weaker results hold for general topological algebras and discrete
periodic cyclic cohomology.

There is an analog of Theorem 2.7 for actions of compact Lie groups. If G is
a compact Lie group acting smoothly on a complete locally convex algebra A by
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α : G× A→ A, then the smooth crossed product algebra is A⋊G = C∞(G,A), with
the convolution product ∗,

f0 ∗ f1(g) =

∫

G

f0(h)αh(f1(h
−1g))dh,

the integration being with respect to the normalized Haar measure on G. As before,
if I ⊂ A is a complemented G-invariant ideal of A, we get an exact sequence of smooth
crossed products

0→ I ⋊G→ A⋊G→ (A/I) ⋊G→ 0.(22)

Still assuming that G is compact, let R(G) be the representation ring of G. Then
the group HP∗(A ⋊G) has a natural R(G)–module structure defined as follows (see
also [31]). The diagonal inclusion A ⋊ G →֒ Mn(A) ⋊G induces an isomorphism in
cyclic cohomology, with inverse induced by the morphism

1

n
Tr : Mn(A⋊G)♮ → (A ⋊G)♮

of cyclic objects. Then, for any representation π : G → Mn(C), we obtain a unit
preserving morphism

µπ : A⋊G→Mn(A⋊G),

defined by µπ(f)(g) = f(g)π(g) ∈ C∞(G,Mn(A)), for any f ∈ C∞(G,A). Finally, if
π ∈ R(G), we define the multiplication by π to be the morphism

(Tr ◦ µπ)∗ : HP∗cont(A⋊G)→ HP∗cont(A ⋊G).

Thus, πx = x ◦ Tr ◦ µπ .

Theorem. 2.8. Let A be a locally convex m–algebra and I ⊂ A a complemented
G–invariant two-sided ideal. Then the boundary morphism associated to the exact
sequence (22),

∂I⋊G,A⋊G : HP∗cont(I ⋊G)→ HP∗+1cont((A/I) ⋊G),

is R(G)-linear.

Proof. First, we observe that the morphism Tr : Mn(A)♮ → A♮ is functorial, and,
consequently, that it gives a commutative diagram

0 // X

��

// Mn(A ⋊G)♮

��

// (Mn(A/I) ⋊G)♮

��

// 0

0 // (A ⋊G, I ⋊G)♮ // (A⋊G)♮ // ((A/I) ⋊G)♮ // 0

where X = (Mn(A ⋊G),Mn(I ⋊G))♮ and whose vertical arrows are given by Tr.
Regarding this commutative diagram as a morphism of extensions, we obtain

that

Tr ◦ [Mn(A) ⋊G,Mn(I) ⋊G] = [A⋊G, I ⋊G] ◦ Tr.(23)

Then, using a similar reasoning, we also obtain that

[Mn(A) ⋊G,Mn(I) ⋊G] ◦ µπ = µπ ◦ [A⋊G, I ⋊G].(24)

Now let ξ ∈ HP∗cont(I ⋊ G), which we may assume, by Theorem 2.4, to be an
element of the form ξ = ξ0 ◦jI⋊G,A⋊G, for some ξ0 ∈ ExtiΛ((A⋊G, I⋊G)♮,C♮). Using
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equations (23) and (24) and that the inclusion j = jI⋊G,A⋊G, by the naturality of µπ,
is R(G)-linear, we finally get

∂(πξ) = ∂(π(ξ0 ◦ j)) = ∂((πξ0) ◦ j) =

= ∂(ξ0 ◦ Tr ◦ µπ ◦ j) = ξ0 ◦ Tr ◦ µπ ◦ [A⋊G, I ⋊G] =

= ξ0 ◦ [Mn(A ⋊G),Mn(I ⋊G)] ◦ Tr ◦ µπ = ∂(ξ) ◦ Tr ◦ µπ = π∂(ξ)

The proof is now complete.

In the same spirit and in the same framework as in Theorem 2.8, we now con-
sider the action of Lie algebra cohomology on the periodic cyclic cohomology exact
sequence.

Assume that G is compact and connected, and denote by g its Lie algebra and
by H∗(g) the Lie algebra homology of g. Since G is compact and connected, we
can identify H∗(g) with the bi-invariant currents on G. Let µ : G × G → G be
the multiplication. Then one can alternatively define the product on H∗(g) as the
composition

H∗(g)⊗ H∗(g) ≃ HP∗cont(C
∞(G)) ⊗HP∗cont(C

∞(G))

×−→ HP∗cont(C
∞(G×G))

µ∗−→ HP∗cont(C
∞(G)) ≃ H∗(g).

We now recall the definition of the product H∗(g) ⊗ HP∗cont(A) → HP∗cont(A).
Denote by ϕ : A → C∞(G,A) the morphism ϕ(a)(g) = αg(a), where, this time,
C∞(G,A) is endowed with the pointwise product. Then x× ξ ∈ HP∗cont(C

∞(G)⊗̂A)
is a (continuous) cocycle on C∞(G,A) ≃ C∞(G)⊗̂A, and we define xξ = ϕ∗(x ⊗ ξ).
The associativity of the ×-product shows that HP∗cont(A) becomes a H∗(g)–module
with respect to this action.

Theorem. 2.9. Suppose that a compact connected Lie group G acts smoothly on a
complete locally convex algebra A and that I is a closed invariant two-sided ideal of
A, complemented as a topological vector space. Then

∂(xξ) = x(∂ξ),

for any x ∈ H∗(g) and ξ ∈ HP∗cont(I) .

Proof. The proof is similar to the proof of Theorem 2.8, using the morphism of exact
sequences

0 // (A, I)♮

��

// A♮

��

// (A/I)♮

��

// 0

0 // X // C∞(G,A)♮ // C∞(G,A/I)♮ // 0

where X = (C∞(G,A), C∞(G, I))♮.

2.4. Relation to the bivariant Chern–Connes character. A different type
of property of the boundary morphism in periodic cyclic cohomology is its compat-
ibility (effectively an identification) with the bivariant Chern-Connes character [30].
Before we can state this result, need to recall a few constructions from [30].

Let A and B be unital locally convex algebras and assume that a continuous
linear map

β : A→ B(H)⊗̂B
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is given, such that the cocycle ℓ(a0, a1) = β(a0)β(a1) − β(a0a1) factors as a compo-
sition A⊗̂A → Cp(H)⊗̂B → B(H)⊗̂B of continuous maps. (Recall that Cp(H) is the

ideal of p–summable operators and that ⊗̂ is the complete projective tensor product.)
Using the cocycle ℓ, we define on Eβ = A⊕ Cp(H)⊗̂B an associative product by the
formula

(a1, x1)(a2, x2) = (a1a2, β(a1)x2 + x1β(a2) + ℓ(a1, a2)).

Then the algebra Eβ fits into the exact sequence

0→ Cp(H)⊗̂B → Eβ → A→ 0.(25)

An exact sequence

[E] : 0→ Cp(H)⊗̂B → E → A→ 0.(26)

that is isomorphic to an exact sequence of the form (25) will be called an admissible
exact sequence. If [E] is an admissible exact sequence and n ≥ p − 1, then [30,
Theorem 3.5] associates to [E] an element

ch2n+11 ([E]) ∈ Ext2n+1Λ,cont(A
♮, B♮),(27)

which for B = C recovers Connes’ Chern character in K-homology [10]. (The sub-
script “cont” stresses that we are considering the version of the Yoneda Ext defined
for locally convex cyclic objects.)

Let Tr : C1(H) → C be the ordinary trace, i.e., Tr(T ) =
∑
n(Ten, en) for any

orthonormal basis (en)n≥0 of the Hilbert space H. Using the trace Tr we define
Trn ∈ HC2n(Cp(H)), for 2n ≥ p− 1, to be the class of the cyclic cocycle

Trn(a0, a1, . . . , a2n) = (−1)n
n!

(2n)!
Tr(a0a1 . . . a2n).(28)

The normalization factor was chosen such that Trn = SnTr1 = SnTr on C1(H). We
have the following compatibility between the bivariant Chern-Connes character and
the Cuntz–Quillen boundary morphism.

Let HP∗cont ∋ ξ → ξdisc ∈ HP∗disc := HP∗ be the natural transformation that “for-
gets continuity” from continuous to ordinary (or discrete) periodic cyclic cohomology.
We include the subscript “disc” only when we need to stress that discrete homology
is used. By contrast, the subscript “cont” will always be included.

Theorem. 2.10. Let 0 → Cp(H)⊗̂B → E → A → 0 be an admissible exact se-

quence and ch2n+11 ([E]) ∈ Ext2n+1Λ,cont(A
♮, B♮) be its bivariant Chern–Connes character,

equation (27). If Trn is as in equation (28) and n ≥ p− 1, then

∂(Trn ⊗ ξ)disc = (ξ ◦ ch2n+11 ([E]))disc ∈ HPq+1(A),

for each ξ ∈ HPqcont(B).

This theorem provides us–at least in principle–with formulæ to compute the
boundary morphism in periodic cyclic cohomology, see [29] and [30], Proposition 2.3.

Before proceeding with the proof, we recall a construction implicit in [30]. The

algebra RA = ⊕j≥0A⊗̂j is the tensor algebra of A, and rA is the kernel of the map
RA → A+. Because A has a unit, we have a canonical isomorphism A+ ≃ C ⊕ A.
We do not consider any topology on RA, but in addition to (RA)♮, the cyclic object
associated to RA, we consider a completion of it in a natural topology with respect
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to which all structural maps are continuous. The new, completed, cyclic object is

denoted (RA)♮cont and is obtained as follows. Let RkA = ⊕kj=0A⊗̂j . Then

(RA)♮cont,n = lim
k→∞

(RkA)⊗̂n+1,

with the inductive limit topology.

Proof. We begin with a series of reductions that reduce the proof of the Theorem to
the proof of (29).

Since [E] is an admissible extension, there exists by definition a continuous linear
section s : A → E of the projection π : E → A (i.e., π ◦ s = id). Then s defines a
commutative diagram

0 // rA

��
ϕ

// RA

��
ψ

// A+

��
πA

// 0

0 // Cp⊗̂B // E // A // 0 ,

where the right hand vertical map is the projection A+ ≃ C⊕A→ A.
By increasing q if necessary, we may assume that the cocycle ξ ∈ HPqcont(B)

comes from a cocycle, also denoted ξ, in HCqcont(B). Let

ξ1 = (Trn ⊗ ξ)disc ∈ HCq+2ndisc (Cp⊗̂B) := HCq+2n(Cp⊗̂B)

be as in the statement of the theorem.
We claim that it is enough to show that

∂(ϕ∗ξ1) ◦ jA = (ξ ◦ ch2n+11 ([E]))disc,(29)

where jA = A♮ → (A+)♮ is the inclusion.
Indeed, assuming (29) and using the above commutative diagram and the natu-

rality of the boundary morphism, we obtain

(ξ ◦ ch2n+11 ([E]))disc = ∂(ϕ∗ξ1) ◦ jA = π∗A(∂ξ1) ◦ jA = ∂ξ1 ◦ πA ◦ jA = ∂ξ1,

as stated in theorem, because πA ◦ jA = id.
Let jrA,RA : (rA)♭ →֒ (RA, rA)♮ be the morphism (inclusion) considered in The-

orem 2.4. Also, let ξ2 ∈ HCndisc((RA, rA)♮) = ExtnΛ((RA, rA)♮,C♮) satisfy

ξ2 ◦ jrA,RA = ϕ∗ξ1 ∈ HCndisc((rA)♭) = ExtnΛ((rA)♭,C♮).(30)

(In words: “ξ2 restricts to ϕ∗ξ1 on (rA)♭.”) Then, using equation (19), we have

∂(ϕ∗ξ1) = ξ2 ◦ [RA, rA].(31)

The rest of the proof consists of showing that the construction of the odd bivariant
Chern-Connes character [30] provides us with ξ2 satisfying equations (30) and (32):

ξ2 ◦ [RA, rA] ◦ jA = (ξ ◦ ch2n+11 ([E]))disc.(32)

This is enough to complete the proof because equations (31) and (32) imply (29) and,
as we have already shown, equation (30) implies equation (31). So, to complete the
proof, we now proceed to construct ξ2 satisfying (30) and (32).

Recall from [30] that the ideal rA defines a natural increasing filtration of

(RA)♮cont by cyclic vector spaces:

(RA)♮cont = F0(RA)♮cont ⊃ F−1(RA)♮cont ⊃ . . . ,
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such that (rA)♭ ⊂ F−1(RA)♮cont = (RA, rA)♮. If (rA)♭k is the k–th component of the
cyclic vector space (rA)♭ (and if, in general, the lower index stands for the Z+–grading
of a cyclic vector space) then we have the more precise relation

(rA)♭k ⊂ (F−n−1(RA)♮cont)k , for k ≥ n.(33)

It follows that the morphism of cyclic vector spaces

τ̃n = Tr ◦ F−n−1(ψ) : F−n−1(RA)♮cont → B♮

(defined in [30], page 579) satisfies τ̃n = Tr ◦ϕ on (rA)♭k, for k ≥ n ≥ p− 1. Fix then

k = q + 2n, and conclude that ξ1 = Trn ⊗ ξdisc ∈ HCq+2n(Cp⊗̂B) satisfies

ϕ∗ξ1 = ϕ∗(Trn ⊗ ξ) = ξdisc ◦ Snτ̃n(34)

on (rA)♭k ⊂ F−n−1(RA)♮cont, because Trn restricts to SnTr on C1(H). Now recall the
crucial fact that there exists an extension

C2n0 (RA) ∈ Ext2nΛ,cont(F−1(RA)♮cont, F−n−1(RA)♮cont)

that has the property that C2n0 (RA) ◦ i = Sn, if i : F−n−1(RA)♮cont → F−1(RA)♮cont is
the inclusion (see [30], Corollary 2.2). Using this extension, we finally define

ξ2 = (ξ ◦ τ̃n ◦ C2n0 (RA))disc ∈ ExtnΛ(F−1(RA)♮cont,C
♮).

Since ξ2 has order k = q + 2n ≥ 2n ≥ n, we obtain from the equations (33) and

(34) that ξ2 satisfies (30) (i.e., that it restricts to ϕ∗ξ1 on (rA)♭k ⊂ F−n−1(RA)♮cont),
as desired.

The last thing that needs to be checked for the proof to be complete is that ξ2
satisfies equation (32). By definition, the odd bivariant Chern-Connes character ([30],
page 579) is

ch2n+11 ([E]) = τ̃n ◦ ch2n+11 (RA) ◦ jA,(35)

where ch2n+11 (RA) = C2n+11 (RA) = C2n0 (RA) ◦ q0(RA), and jA : A♮ → (A+)♮ is the
inclusion (see [30], page 568, definition 2.4. page 574, and the discussion on page
579). Moreover q0(RA) is nothing but a continuous version of [RA, rA], that is

q0(RA)disc = [RA, rA],

and hence

ξ2 ◦ [RA, rA] ◦ jA = (ξ ◦ τ̃n ◦ C2n0 (RA) ◦ q0(RA) ◦ jA)disc = (ξ ◦ ch2n+11 ([E]))disc.

Since ξ2 satisfies equation (30) and (32), which imply equation (29), the proof is
complete.

For any locally convex algebra B and ξ ∈ HP∗(B), the discrete periodic cyclic
cohomology of B, we say that ξ is a continuous class if it can be represented by
a continuous cocycle on B. Put differently, this means that ξ = ζdisc, for some
ζ ∈ HP∗cont(B). Since the bivariant Chern–Connes character can, at least in principle,
be expressed by an explicit formula, it preserves continuity. This gives the following
corollary.

Corollary. 2.11. The periodic cyclic cohomology boundary map ∂ associated to
an admissible extension maps a class of the form Trn ⊗ ξ, for ξ a continuous class,
to a continuous class.
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It is likely that recent results of Cuntz, see [12, 13], will give the above result for
all continuous classes in HP∗(Cp⊗̂B) (not just the ones of the form Trn ⊗ ξ).

Using the above corollary, we obtain the compatibility between the bivariant
Chern–Connes character and the index morphism in full generality. This result had
been known before only in particular cases [30].

Theorem. 2.12. Let 0→ Cp(H)⊗̂B → E → A→ 0 be an admissible exact sequence
and ch2n+11 ([E]) ∈ Ext2n+1Λ (A♮, B♮) be its bivariant Chern–Connes character, equation

(27). If Trn is as in equation (28) and Ind : Kalg1 (A) → Kalg0 (Cp(H)⊗̂B) is the
connecting morphism in algebraic K–Theory then, for any ϕ ∈ HP0cont(B) and [u] ∈
Kalg1 (A), we have

〈Trn ⊗ ϕ, Ind[u] 〉 = 〈 ch2n+11 ([E]) ◦ϕ, [u] 〉 .(36)

3. The index theorem for coverings

Using the methods we have developed, we now give a new proof of Connes–Moscovici’s

index theorem for coverings. To a covering M̃ → M with covering group Γ, Connes
and Moscovici associated an extension

0 −→ Cn+1 ⊗C[Γ] −→ ECM −→ C∞(S∗M) −→ 0, n = dimM,

(the Connes–Moscovici exact sequence), defined using invariant pseudodifferential

operators on M̃ ; see equation (45). If ϕ ∈ H∗(Γ) ⊂ HP∗cont(Cn+1 ⊗ C[Γ]) is an even
cyclic cocycle, then the Connes–Moscovici index theorem computes the morphisms

ϕ∗ ◦ Ind : Kalg1 (C∞(S∗M)) −→ C,

where Ind is the index morphism associated to the Connes–Moscovici exact sequence.
Our method of proof then is to use the compatibility between the connecting mor-
phisms in algebraic K–Theory and ∂, the connecting morphism in periodic cyclic
cohomology (Theorem 1.5), to reduce the proof to the computation of ∂. This com-
putation is now a problem to which the properties of ∂ established in Section 2 can
be applied.

We first show how to obtain the Connes–Moscovici exact sequence from another
exact sequence, the Atiyah–Singer exact sequence, by a purely algebraic construc-
tion. Then, using the naturality of ∂ and Theorem 2.6, we determine the connecting
morphism ∂CM of the Connes–Moscovici exact sequence in terms of the connecting
morphism ∂AS of the Atiyah–Singer exact sequence. For the Atiyah–Singer exact
sequence the procedure can be reversed and we now use the Atiyah-Singer Index
Theorem and Theorem 1.5 to compute ∂AS .

A comment about the interplay of continuous and discrete periodic cyclic co-
homology in the proof below is in order. We have to use continuous periodic cyclic
cohomology whenever we want explicit computations with the periodic cyclic coho-
mology of groupoid algebras, because only the continuous version of periodic cyclic
cohomology is known for groupoid algebras associated to étale groupoids [7]. On the
other hand, in order to be able to use Theorem 1.5, we have to consider ordinary (or
discrete) periodic cyclic cohomology as well. This is not an essential difficulty because,
using Corollary 2.11, we know that the index classes are represented by continuous
cocycles.
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3.1. Groupoids and the cyclic cohomology of their algebras. Our com-
putations are based on groupoids, so we first recall a few facts about groupoids.

A groupoid is a small category in which every morphism is invertible. (Think of
a groupoid as a set of points joined arrows; the following examples should clarify this
abstract definition of groupoids.) A smooth étale groupoid is a groupoid whose set of
morphisms (also called arrows) and whose set of objects (also called units) are smooth
manifolds such that the domain and range maps are étale (i.e., local diffeomorphisms).
To any smooth étale groupoid G, assumed Hausdorff for simplicity, there is associated
the algebra C∞c (G) of compactly supported functions on the set of arrows of G and
endowed with the convolution product ∗,

(f0 ∗ f1)(g) =
∑

r(γ)=r(g)

f0(γ)f1(γ
−1g).

Here r is the range map and r(γ) = r(g) is the condition that γ−1 and g be compos-
able. Whenever dealing with C∞c (G), we will use continuous cyclic cohomology, as
in [7]. See [7] for more details on étale groupoids, and [35] for the general theory of
locally compact groupoids.

Étale groupoids conveniently accommodate in the same framework smooth man-
ifolds and (discrete) groups, two extreme examples in the following sense: the smooth
étale groupoid associated to a smooth manifold M has only identity morphisms,
whereas the smooth étale groupoid associated to the (discrete) group Γ has only one
object, the identity of Γ. The algebras C∞c (G) associated to these groupoids are
C∞c (M) and, respectively, the group algebra C[Γ]. Here are other examples used in
the paper.

The groupoid RI associated to an equivalence relation on a discrete set I has I
as the set of units and exactly one arrow for any ordered pair of equivalent objects.
If I is a finite set with k elements and all objects of I are equivalent (i.e., if RI is
the total equivalence relation on I) then C∞c (RI) ≃ Mk(C) and its classifying space
in the sense of Grothendieck [34], the space BRI , is contractable [17, 34].

Another example, the gluing groupoid GU , mimics the definition a manifold M
in terms of “gluing coordinate charts.” The groupoid GU is defined [7] using an open
cover U = (Uα)α∈I of M , i.e., M = ∪α∈IUα. Then GU has units G0U = ∪α∈IUα × {α}
and arrows

G(1)U = {(x, α, β), α, β ∈ I, x ∈ Uα ∩ Uβ}.
If RI is the total equivalence relation on I, then there is an injective morphism
l : GU →֒M ×RI of étale groupoids.

Let f : G1 → G2 be an étale morphism of groupoids, that is, a morphism of
étale groupoids that is a local diffeomorphism. Then the map f defines a con-
tinuous map, Bf : BG2 → BG1, of classifying spaces and a group morphism,
fTr : HP∗cont(C

∞
c (G1)) → HP∗cont(C

∞
c (G2)). If f is injective when restricted to

units, then there exists an algebra morphism ι(f) : C∞c (G1) → C∞c (G2) such that
fTR = ι(f)∗.

The following theorem, a generalization of [7], Theorem 5.7. (2), is based on the
fact that all isomorphisms in the proof of that theorem are functorial with respect to
étale morphisms. It is the reason why we use continuous periodic cyclic cohomology
when working with groupoid algebras. Note that the cyclic object associated to
C∞c (G), for G an étale groupoid, is an inductive limit of locally convex nuclear spaces.
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Theorem. 3.1. If G is a Hausdorff étale groupoid of dimension n, and if o is
the complexified orientation sheaf of B G, then there exists a natural embedding
Φ : H∗+n(BG, o) →֒ HP∗cont(C

∞
c (G)). Here “natural” means that if f : G1 → G2

is an étale morphism of groupoids, then the diagram

H∗+n(B G2, o2)

��
(Bf)∗

// HP∗cont(C
∞
c (G2))

��
fTr

H∗+n(B G1, o1) // HP∗cont(C
∞
c (G1)),

whose horizontal lines are the morphisms Φ, commutes.

For discrete groups, Theorem 3.1 recovers the embedding

H∗(Γ) = H∗(B Γ,C) →֒ HP∗cont(C[Γ])

of [8, 20].
For smooth manifolds, the embedding Φ of Theorem 3.1 is just the Poincaré

duality–an isomorphism. This isomorphism has a very concrete form. Indeed, let
ξ ∈ Hn−i(M, o) be an element of the singular cohomology of M with coefficients in
the orientation sheaf, let η ∈ Hi

c(M) be an element of the singular cohomology of M
with compact supports (all cohomology groups have complex coefficients), and let

χ : HPconti (C∞c (M)) ≃ ⊕k Hi+2k
c,DR(M) = ⊕k Hi+2k

c (M)

be the canonical isomorphism induced by the Hochschild-Kostant-Rosenberg map χ,
equation (12). Then the isomorphism Φ is determined by

〈Φ(ξ), η〉 = 〈ξ ∧ χ(η), [M ]〉 ∈ C,(37)

where the first pairing is the map HP∗cont(C
∞
c (M)) ⊗ HPcont∗ (C∞c (M)) → C and the

second pairing is the evaluation on the fundamental class.
Typically, we shall use these results for the manifold S∗M , for which there is

an isomorphism H∗−1(S∗M) ≃ HP∗cont(C
∞(S∗M)), because S∗M is oriented. (The

orientation of S∗M is the one induced from that of T ∗M as in [5]. More precisely
B∗M , the disk bundle of M , is given the orientation in which the “the horizontal part
is real and the vertical part is imaginary,” and S∗M is oriented as the boundary of
an oriented manifold.) The shift in the Z2-degree is due to the fact that S∗M is odd
dimensional.

3.2. Morita invariance and coverings. Let M be a smooth compact manifold

and q : M̃ →M be a covering with Galois group Γ; said differently, M̃ is a principal
Γ–bundle over M . We fix a finite cover U = (Uα)α∈I of M by trivializing open
sets, i.e., q−1(Uα) ≃ Uα × Γ and M = ∪Uα. The transition functions between two
trivializing isomorphisms on their common domain, the open set Uα ∩ Uβ, defines a

1–cocycle γαβ that completely determines the covering q : M̃ →M .

In what follows, we shall need to lift the covering q : M̃ → M to a covering

q : S∗M̃ → S∗M , using the canonical projection p : S∗M → M . All constructions
then lift, from M to S∗M , canonically. In particular, Vα = p−1(Uα) is a finite
covering of S∗M with trivializing open sets, and the associated 1–cocycle is (still)

γαβ . Moreover, if f0 : M → B Γ classifies the covering q : M̃ → M , then f = f0 ◦ p
classifies the covering S∗M̃ → S∗M .
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Suppose that the trivializing cover V = (Vα)α∈I of S∗M consists of k open sets,
and let

∑
ϕ2α = 1 be a partition of unity subordinated to V. The cocycle identity

γαβγβδ = γαδ ensures then that the matrix

p = [ϕαγαβϕβ]α,β∈I ∈Mk(C∞(M)) ⊗C[Γ](38)

is an idempotent, called the Mishchenko idempotent; a different choice of a trivializing
cover and of a partition of unity gives an equivalent idempotent.

Using the Mishchenko idempotent p, we now define the morphism

λ : C∞(S∗M)→Mk(C∞(S∗M))⊗ C[Γ]

by λ(a) = ap, for a ∈ C∞(S∗M); explicitly,

λ(a)(x) = a(x)p(x) = [a(x)ϕα(x)ϕβ(x) ⊗ γαβ ].(39)

Because the morphism λ is used to define the Connes–Moscovici extension, equation
(45) below, we need to identify the induced morphism

λ∗ : HP∗cont(C
∞(S∗M)⊗ C[Γ])→ HP∗cont(C

∞(S∗M)).

The identification of λ, Proposition 3.3, is based on writing λ as a composition of
three simpler morphisms, morphisms that will play an auxiliary role. The next few
paragraphs before Proposition 3.3 will deal with the definition and properties of these
morphisms.

We define the first auxiliary morphism ι(g) to be induced by an étale morphism
of groupoids. Let GV be the gluing groupoid associated to the cover V = (Vα)α∈I
of S∗M . Using the cocycle (γαβ)α,β∈I associated to V that identifies the covering

S∗M̃ → S∗M , we define the étale morphism of groupoids g by

GV ∋ (x, α, β)
g−→ (x, α, β, γαβ) ∈ GV × Γ,

which induces a morphism ι(g) : C∞c (GV) → C∞c (GV) ⊗ C[Γ] and a continuous map
B g : BGV → B(GV × Γ) = B GV × B Γ.

The projection t : GV → S∗M is an etale morphism of groupoids that induces a
homotopy equivalence BGV → S∗M and hence also an isomorphism

tTr : HP∗cont(C
∞(S∗M))→ HP∗cont(C

∞
c (GV)).

By definition, tTr = Tr ◦ ι(l)∗, where l : GV → S∗M × RI is the natural inclu-
sion considered also before, and Tr is the generic notation for the isomorphisms
Tr : HP∗(Mn(A)) ≃ HP∗(A), induced by the trace. In particular, ι(l)∗ is also an
isomorphism.

Using the homotopy equivalence B t of BGV and S∗M , we obtain a continuous
map

h0 : S∗M → S∗M ×B Γ,

uniquely determined by the condition h0 ◦ B t = (B t× id) ◦ B g.

Lemma. 3.2. The map h0 defined above coincides, up to homotopy, with the product

function (idS∗M , f), where f : S∗M → B Γ classifies S∗M̃ → S∗M .

Proof. Denote by p1 and p2 the projections of S∗M×B Γ onto components. The map
p1 ◦ h0 is easily seen to be the identity, so h0 = idS∗M × h1 where h1 : S∗M → B Γ is
induced by the non-étale morphism of topological groupoids GV ∋ (x, α, β)→ γαβ ∈ Γ.
In order to show that h1 coincides with f , up to homotopy, it is enough to show
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that the principal Γ-bundle (i.e., covering) that h1 pulls back from B Γ to S∗M is

isomorphic to the covering S∗M̃ → M̃ .
Let GU be the gluing groupoid associated to the cover U = (Uα)α∈I of M . It is

seen from the definition that GV → Γ factors as GV → GU → Γ, where the function
GV → Γ acts as (m,α, β)→ γαβ . Thus we may replace S∗M by M everywhere in the
proof.

Since the the covering M̃ → M is determined by its restriction to loops, we
may assume that M is the circle S1. Cover M = S1 by two contractable intervals
I0 ∩ I1 which intersect in two small disjoint neighborhoods of 1 and −1: I0 ∩ I1 =
(z, z−1)∪ (−z,−z−1) where z ∈ S′ and |z−1| is very small. We may also assume that
the transition cocycle is the identity on (z, z−1) and γ ∈ Γ on (−z,−z−1) (we have
replaced constant Γ–cocycles with locally constant Γ–cocycles). The map h1 maps
each of the units of GU and each of the 1-cells corresponding to the right hand interval
(z, z−1) to the only 0-cell of B Γ, the cell corresponding to the identity e ∈ Γ. (Recall
that the classifying space of a topological groupoid is the geometrical realization of the
simplicial space of composable arrows [34], and that that there is a 0 cell for each unit,
a 1-cell for each non-identity arrow, a 2-cell for each pair of non-identity composable
arrows, and so on). The other 1-cells (i.e., corresponding to the arrows leaving from
a point on the left hand side interval) will map to the 1-cell corresponding γ. This
shows that, on homotopy groups, the induced map Z = π1(S

1)→ Γ = π1(BΓ) sends
the generator 1 to γ. This completes the proof of the lemma.

We need to introduce one more auxiliary morphism before we can determine λ∗.
Using the partition of unity

∑
α ϕ
2
α = 1 subordinated to V = (Vα)α∈I , we define

ν : C∞(S∗M)→ C∞c (GV ) by

ν(f)(x, α, β) = f(x)ϕα(x)ϕβ(x),

which turns out to be a morphism of algebras. Because the composition

C∞(S∗M)
ν−→ C∞c (GV)

ι(l)−→ C∞c (S∗M × RI) = Mk(C∞(S∗M))

is (unitarily equivalent to) the upper–left corner embedding, we obtain that the mor-
phism ν∗ : HP∗cont(C

∞
c (GV))→ HP∗cont(C

∞(S∗M)) is the inverse of tTr .
We are now ready to determine the morphism

λ∗ : HP∗cont(C
∞(S∗M)⊗ C[Γ])→ HP∗cont(C

∞(S∗M)).

In order to simplify notation, in the statement of the following result we shall identify
HP∗cont(Mk(C∞(S∗M)) ⊗C[Γ]) with HP∗cont(C

∞(S∗M)⊗ C[Γ]), and we shall do the
same in the proof.

Proposition. 3.3. The composition

H∗−1(S∗M × B Γ;C) →֒ HP∗cont(C
∞(S∗M)⊗ C[Γ])

λ∗−→
→ HP∗cont(C

∞(S∗M)) ≃ H∗−1(S∗M ;C)

is Φ−1 ◦ λ∗ ◦ Φ = (id × f)∗.

Proof. Consider as before the morphism l : GV → S∗M × RI of groupoids, which
defines an injective morphism of algebras ι(l) : C∞(GV) → C∞(S∗M × RI) =
Mk(C∞(S∗M)), and hence also a morphism

ι(l)⊗ id = ι(l× id) : C∞(GV × Γ) →֒ C∞(S∗M × RI × Γ) = Mk(C∞(S∗M))⊗ C[Γ].
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Then we can write

λ = ι(l× id) ◦ ι(g) ◦ ν,
where g : GV → GV × Γ is as defined before: g(x, α, β) = (x, α, β, γαβ).

Because ν∗ = (tTr)
−1, we have that Φ−1 ◦ ν∗ ◦ Φ = (B t)∗−1, by Theorem 3.1.

Also by Theorem 3.1, we have ι(g)∗ ◦Φ = Φ◦ (B g)∗ and ι(l× id)∗ ◦Φ = Φ◦ (B l× id)∗.
This gives then

Φ−1 ◦λ∗◦Φ = Φ−1 ◦ν∗◦Φ◦ (Bg)∗ ◦ (B l× id)∗ = (B t)∗−1 ◦Φ◦ (Bg)∗ ◦ (B l× id)∗ = h∗0.

Since Lemma 3.2 states that h0 = id× f , up to homotopy, the proof is complete.

3.3. The Atiyah–Singer exact sequence. Let M be a smooth compact man-
ifold (without boundary). We shall denote by Ψk(M) the space of classical, order
at most k pseudodifferential operators on M . Fix a smooth, nowhere vanishing den-
sity on M . Then Ψ0(M) acts on L2(M) by bounded operators and, if an operator
T ∈ Ψ0(M) is compact, then it is of order −1. More precisely, it is known that order
−1 pseudodifferential operators satisfy Ψ−1(M) ⊂ Cp = Cp(L2(M)) for any p > n.
(Recall that Cp(H) is the ideal of p–summable operators on H, equation (8)).

It will be convenient to include all (n + 1)–summable operators in our calculus,
so we let EAS = Ψ0(M) + Cn+1, and obtain in this way an extension of algebras,

0→ Cn+1 → EAS
σ0−→ C∞(S∗M)→ 0,(40)

called the Atiyah-Singer exact sequence. The boundary morphisms in periodic cyclic
cohomology associated to the Atiyah-Singer exact sequence defines a morphism

∂AS : HP∗(Cn+1)→ HP∗+1(C∞(S∗M)).

Let Trn ∈ HP0cont(Cn+1) be as in (28) (i.e., Trn(a0, . . . , a2n) = CTr(a0 . . . a2n), for
some constant C), and denote

J (M) = ∂AS(Trn) ∈ HP1cont(C
∞(S∗M)) ⊂ HP1(C∞(S∗M)),(41)

which is justified by Corollary 2.11.
We shall determine J (M) using Theorem 1.5. In order to do this, we need to

make explicit the relation between ch, the Chern character in cyclic homology, and
Ch, the classical Chern character as defined, for example, in [27]. Let E → M be a
smooth complex vector bundle, embedded in a trivial bundle: E ⊂ M × CN , and
let e ∈ MN (C∞(M)) be the orthogonal projection on E. If we endow E with the
connection edDRe, acting on Γ∞(E) ⊂ C∞(M)N , then the curvature Ω of this con-
nection turns out to be Ω = e(dDRe)

2. The classical Chern character Ch(E) is then
the cohomology class of the form Tr(exp( Ω2πı)) in the even (de Rham) cohomology
of M . Comparing this definition with the definition of the Chern character in cyclic
cohomology via the Hochschild-Kostant-Rosenberg map, we see that the two of them
are equal–up to a renormalization with a factor of 2πı. (If ξ ∈ H∗(M) = ⊕k Hk(M)
is a cohomology class, we denote by ξk its component in Hk(M).) Explicitly, let

χ : HPconti (C∞c (S∗M)) ≃ ⊕k∈ZHi+2k(S∗M) be the canonical isomorphism induced
by the Hochschild-Kostant-Rosenberg map χ, equation (12), then

χ(ch(ξ)) =
∑

k∈Z

(2πı)mCh(ξ)2m−i ∈ H2m−i(M)(42)

for i ∈ {0, 1} and ξ ∈ Kalgi (C∞(M)). (Note the ‘−i’).
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Proposition. 3.4. Let T (M) ∈ Heven(S∗M) be the Todd class of the complexifi-
cation of T ∗M , lifted to S∗M , and Φ : Heven(S∗M) → HP1cont(C

∞(S∗M)) be the
isomorphism of Theorem 3.1. Then

J (M) = (−1)n
∑

k

(2πı)n−kΦ(T (M)2k) ∈ HP1cont(C
∞(S∗M)).

Proof. We need to verify the equality of two classes in HP1cont(C
∞(S∗M)). It is

hence enough to check that their pairings with ch([u]) are equal, for any [u] ∈
Kalg1 (C∞(S∗M)), because of the classical result that the Chern character

ch : Kalg1 (C∞(S∗M))→ HPcont1 (C∞(S∗M))

is onto.
If Ind is the index morphism of the Atiyah–Singer exact sequence then the Atiyah-

Singer index formula [5] states the equality

Ind[u] = (−1)n〈Ch[u], T (M) 〉.(43)

Using equation (41) and Theorem 1.5 (see also the discussion following that theorem),
we obtain that Ind[u] = 〈 ch[u],J (M) 〉. Equations (37) and (43) then complete the
proof.

3.4. The Connes–Moscovici exact sequence and proof of the theorem.
We now extend the constructions leading to the Atiyah–Singer exact sequence, equa-
tion (40), to covering spaces.

Let M be a smooth compact manifold and let E1 = Mk(E) ⊗ C[Γ], which fits
into the exact sequence

0 −→Mk(Cn+1) ⊗C[Γ] −→ E1
σ0−→Mk(C∞(S∗M))⊗ C[Γ] −→ 0.(44)

Let Γ → M̃ → M be a covering of M with Galois group Γ. Using the Mishchenko
idempotent p associated to this covering and the injective morphism

λ : C∞(S∗M)→ p(Mk(C∞(S∗M)) ⊗C[Γ])p,

equation 39, we define the Connes–Moscovici algebra ECM as the fibered product

ECM = {(T, a) ∈ pE1p⊕ C∞(S∗M), σ0(T ) = λ(a)}.
By definition, the algebra ECM fits into the exact sequence

0 −→ p
(
Mk(Cn+1)⊗C[Γ]

)
p −→ ECM −→ C∞(S∗M) −→ 0.

We now take a closer look at the algebra ECM and the exact sequence it defines.

Observe first that p acts on (L2(M)⊗ l2(Γ))k and that p(L2(M) ⊗ l2(Γ))k ≃ L2(M̃)
via a Γ–invariant isometry. Since E1 can be regarded as an algebra of operators on
(L2(M) ⊗ l2(Γ))k that commute with the (right) action of Γ, we obtain that ECM
can also be interpreted as an algebra of operators commuting with the action of Γ on

L2(M̃). Using also [11], Lemma 5.1, page 376, this recovers the usual description of

ECM that uses properly supported Γ–invariant pseudodifferential operators on M̃ .
Also observe that “Mk” is superfluous in Mk(Cn+1) because Mk(Cn+1) ≃ Cn+1;

actually, even “p” is superfluous in p
(
Mk(Cn+1)⊗ C[Γ]

)
p because

p
(
Mk(Cn+1)⊗ C[Γ]

)
p ≃ Cn+1 ⊗C[Γ]
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by an isomorphism that is uniquely determined up to an inner automorphism. Thus
the Connes–Moscovici extension becomes

0 −→ Cn+1 ⊗C[Γ] −→ ECM −→ C∞(S∗M)) −→ 0,(45)

up to an inner automorphism.
We now proceed as for the Atiyah–Singer exact sequence. The boundary mor-

phisms in periodic cyclic cohomology associated to the Connes–Moscovici extensions
defines a map

∂CM : HP∗(Cn+1 ⊗ C[Γ])→ HP∗+1(C∞(S∗M)),

and the Connes–Moscovici Index Theorem amounts to the identification of the classes

∂CM(Trn ⊗ ξ) ∈ HP∗+1cont(C
∞(S∗M)) ⊂ HP∗+1(C∞(S∗M)),

for cocycles ξ coming from the cohomology of Γ.
In order to determine ∂CM (Trn ⊗ ξ), we need the following theorem.

Theorem. 3.5. Let G1 and G2 be smooth étale groupoids. Then the diagram

H∗+n(B G1, o1)⊗H∗+m(BG2, o2)

��
×

//Φ
HP∗cont(C

∞
c (G2)) ⊗HP∗cont(C

∞
c (G2))

��
⊗

H∗+n+m(B(G1 × G2), o) //Φ
HP∗cont(C

∞
c (G1 × G2))

is commutative. Here the left product × is the external product in cohomology and o1,
o2, and o are the orientation sheaves.

Proof. The proof is a long but straightforward verification that the sequence of
isomorphisms in [7] is compatible with products.

Using [30], Proposition 1.5. (c), page 563, which states that the ×-products are
compatible with the tensor products of mixed complexes, we replace everywhere cyclic
vector spaces by mixed complexes. Then we go through the specific steps of the proof
as in [7]. This amounts to verify the following facts:

(i) The Hochschild-Kostant-Rosenberg map χ (equation (12)) transforms the
differential B ⊗ 1 + 1⊗B into the de Rham differential of the product.

(ii) By the Eilenberg-Zilber Theorem [25], the augmentation map ǫ ([7] Proposi-
tion 4.2 (1)), and the isomorphism it induces, are compatible with products.

(iii) The chain map f in the Moore isomorphism (see [6], Theorems 4.1 and
4.2, page 32) is compatible with products. This too involves the Eilenberg-Zilber
theorem.

We remark that the proof of the above theorem is easier if both groupoids are of
the same “type,” i.e., if they are both groups or smooth manifolds, in which case our
theorem is part of folklore. However, in the case we shall use this theorem–that of a
group and a manifold–there are no significant simplifications: one has to go through
all the steps of the proof given above.

Lemma. 3.6. Let λ : C∞(S∗M)→Mk(C∞(S∗M))⊗C[Γ] be as defined in (39) and
Trn ∈ HP0(Cn+1) be as in (28). Then, for any cyclic cocycle η ∈ HP∗cont(C[Γ]), we
have

∂CM (Trn ⊗ η) = λ∗(J (M)⊗ η) ∈ HP∗+1cont(C
∞(S∗M)) ⊂ HP∗+1(C∞(S∗M)).
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Proof. Denote by ∂1 : HP∗cont(Cn+1⊗C[Γ])→ HP∗+1(C∞(S∗M⊗C[Γ])) the boundary
morphism of the exact sequence (44). Using Theorem 2.6, we obtain

∂1(Trn ⊗ η) = ∂AS(Trn)⊗ η = J (M)⊗ η ∈ HP∗+1cont(C
∞(S∗M)⊗ C[Γ]) ⊂

HP∗+1(C∞(S∗M)⊗ C[Γ]).

Then, the naturality of the boundary map and Theorem 2.10 show that ∂CM = λ∗◦∂1.
This completes the proof.

Let T (M) ∈ Heven(S∗M) be the Todd class of TM ⊗ C lifted to S∗M and Ch
be the classical Chern character on K–Theory, as before. Also, recall that Theorem
3.1 defines an embedding Φ : H∗(B Γ) = H∗(Γ)→ HP∗cont(C[Γ]) = HP∗(C[Γ]).

We are now ready to state Connes–Moscovici’s Index Theorem for elliptic sys-
tems, see [11][Theorem 5.4], page 379, which computes the “higher index” of a matrix
of P of properly supported, order zero, Γ-invariant elliptic pseudodifferential operators

on M̃ , with principal symbol the invertible matrix u = σ0(P ) ∈Mm(C∞(S∗M)).

Theorem. 3.7 (Connes–Moscovici). Let M̃ → M be a covering with Galois group
Γ of a smooth compact manifold M of dimension n, and let f : S∗M → B Γ the

continuous map that classifies the covering S∗M̃ → S∗M . Then, for each cohomology
class ξ ∈ H2q(B Γ) and each [u] ∈ K1(S∗M), we have

ξ̃∗(Ind[u]) =
(−1)n

(2πı)q
〈Ch(u) ∧ T (M) ∧ f∗ξ, [S∗M ] 〉,

where ξ̃ = Trn ⊗Φ(ξ) ∈ HP0(Cn+1 ⊗ C[Γ]).

Proof. All ingredients of the proof are in place, and we just need to put them together.
Let ξ ∈ H2q(B Γ) and ξ̃ = Trn ⊗Φ(ξ) be as in the statement of the theorem. Then

(−1)nξ̃∗(Ind[u]) =

= (−1)n
(
∂CM ξ̃

)
∗
[u] by Theorem 1.5

= (−1)n
(
λ∗(J (M)⊗Φ(ξ))

)
∗
[u] by Lemma 3.6

= (−1)n
(
λ∗ ◦ Φ(Φ−1(J (M)) × ξ)

)
∗
[u] by Theorem 3.5

= (−1)n
(
Φ ◦ (id × f)∗(Φ−1(J (M))× ξ)

)
∗
[u] by Proposition 3.3

= (−1)n〈Φ(Φ−1(J (M)) ∧ f∗ξ), ch([u])〉
= (−1)n〈Φ−1(J (M)) ∧ f∗ξ) ∧ χ(ch[u]), [S∗M ] 〉 by equation (37)

=
∑

k+j=n−q

(2πı)k−n〈T (M)2k∧f∗ξ∧χ(ch[u])2j−1, [S
∗M ]〉 by Proposition 3.4

=
∑

k+j=n−q
(2πı)−q〈T (M)2k ∧ f∗ξ ∧ Ch2j−1[u], [S∗M ]〉 by equation (42)

= (2πı)−q〈Ch[u] ∧ T (M) ∧ f∗ξ, [S∗M ]〉.
The proof is now complete.

For q = 0 and ξ = 1 ∈ H0(B Γ) ≃ C, we obtain that τ = Φ(ξ) is the von
Neumann trace on C[Γ], that is τ(

∑
aγγ) = ae, the coefficient of the identity, and the

above theorem recovers Atiyah’s L2–index theorem for coverings [2]. The reason for

Documenta Mathematica 2 (1997) 263–295



294 Victor Nistor

obtaining a different constant than in [11] is due to different normalizations. See [19]
for a discussion on how to obtain the usual index theorems from the index theorems
for elliptic systems.
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Abstract. Let F be a field of characteristic different from 2, ψ a quadratic
F -form of dimension ≥ 5, and D a central simple F -algebra of exponent 2.
We denote by F (ψ,D) the function field of the product Xψ × XD, where
Xψ is the projective quadric determined by ψ and XD is the Severi-Brauer
variety determined by D. We compute the relative Galois cohomology group
H3(F (ψ,D)/F,Z/2Z) under the assumption that the index of D goes down
when extending the scalars to F (ψ). Using this, we give a new, shorter
proof of the theorem [23, Th. 1] originally proved by A. Laghribi, and a new,
shorter, and more elementary proof of the assertion [2, Cor. 9.2] originally
proved by H. Esnault, B. Kahn, M. Levine, and E. Viehweg.

1991 Mathematics Subject Classification: 19E15, 12G05, 11E81.

Let ψ be a quadratic form and D be an exponent 2 central simple algebra over a field
F (always assumed to be of characteristic not 2). Let Xψ be the projective quadric
determined by ψ, XD the Severi-Brauer variety determined by D, and F (ψ,D) the
function field of the product Xψ ×XD.

A computation of the relative Galois cohomology group

H3(F (ψ,D)/F )
def
= ker

(
H3(F,Z/2Z)→ H3(F (ψ,D),Z/2Z)

)

plays a crucial role in obtaining the results of [8] and [10] concerning the problem of
isotropy of quadratic forms over the function fields of quadrics.

The group H3(F (ψ,D)/F ) is closely related to the Chow group CH2(Xψ ×XD)
of 2-codimensional cycles on the product Xψ ×XD . The main result of this paper is
the following theorem, where both groups are computed assuming dimψ ≥ 5 and the
index of D goes down when extending the scalars to the function field of ψ:

Theorem 0.1. Let D be a central simple F -algebra of exponent 2. Let ψ be
a quadratic form of dimension ≥ 5. Suppose that indDF(ψ) < indD. Then

Tors CH2(Xψ ×XD) = 0 and H3(F (ψ,D)/F ) = [D] ∪H1(F ).

A proof is given in §8. The essential part of the proof is Theorem 6.9, dealing
with the special case where D is a division algebra of degree 8. This theorem has two
applications in the theory of quadratic forms. The first one is a new, shorter proof of
the following assertion, originally proved by A. Laghribi ([23, Th. 1]):
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Corollary 0.2. Let φ ∈ I2(F ) be an 8-dimensional quadratic form such that
indC(φ) = 8. Let ψ be a quadratic form of dimension ≥ 5 such that φF(ψ) is isotropic.
Then there exists a half-neighbor φ∗ of φ such that ψ ⊂ φ∗.

The other application we demonstrate is a new, shorter, and more elementary
proof of the assertion, originally proved by H. Esnault, B. Kahn, M. Levine, and E.
Viehweg ([2, Cor. 9.2]):

Corollary 0.3. Let φ ∈ I2(F ) be any quadratic form such that indC(φ) ≥ 8. Let A
be a central simple F -algebra Brauer equivalent to C(φ) and let F (A) be the function
field of the Severi-Brauer variety of A. Then φF(A) /∈ I4(F (A)). In particular, φF(A)
is not hyperbolic. Moreover, if dimφ = 8 then φF(A) is anisotropic.

Our proofs of Corollaries 0.2 and 0.3 are given in §7.
An important part in the proof of Theorem 6.9 is played by the formula of

Proposition 4.5, which is in fact applicable to a wide class of algebraic varieties.
A computation of the group H3(F (ψ,D)/F ) in some cases not covered by The-

orem 0.1 is given in [8] and [10].

1. Terminology, notation, and backgrounds

1.1. Quadratic forms. Mainly, we use notation of [24] and [30]. However there is
a slight difference: we denote by 〈〈a1, . . . , an〉〉 the n-fold Pfister form

〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 .
The set of all n-fold Pfister forms over F is denoted by Pn(F ); GPn(F ) is the set of
forms similar to a form from Pn(F ).

We recall that a quadratic form ψ is called a (Pfister) neighbor (of a Pfister form
π), if it is similar to a subform in π and dimφ > 1

2
dimπ. Two quadratic forms φ and

φ∗ are half-neighbors, if dimφ = dimφ∗ and there exists s ∈ F ∗ such that the sum
φ⊥sφ∗ is similar to a Pfister form.

For a quadratic form φ of dimension ≥ 3, we denote by Xφ the projective variety
given by the equation φ = 0 and we set F (φ) = F (Xφ).

1.2. Generic splitting tower. Let γ be a non-hyperbolic quadratic form over F .

Put F0
def
= F and γ0

def
= γan. For i ≥ 1 let Fi

def
= Fi−1(γi−1) and γi

def
= ((γi−1)Fi )an.

The smallest h such that dimγh ≤ 1 is called the height of γ. The sequence
F0, F1, . . . , Fh is called the generic splitting tower of γ ([21]). We need some properties
of the fields Fs:

Lemma 1.3 ([22]). Let M/F be a field extension such that dim(γM )an = dimγs.
Then the field extension MFs/M is purely transcendental.

The following proposition is a consequence of the index reduction formula [25].

Proposition 1.4 (see [6, Th. 1.6] or [5, Prop. 2.1]). Let φ ∈ I2(F ) be a quadratic
form with ind(C(φ)) ≥ 2r > 1. Then there is s (0 ≤ s ≤ h(φ)) such that dimφs =
2r + 2 and indC(φs) = 2r.

Corollary 1.5. Let φ ∈ I2(F ) be a quadratic form with ind(C(φ)) ≥ 8. Then there
is s (0 ≤ s ≤ h(φ)) such that dimφs = 8 and indC(φs) = 8.
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1.6. Central simple algebras. We are working with finite-dimensional associa-
tive algebras over a field. Let D be a central simple F -algebra. We denote by XD
the Severi-Brauer variety of D and by F (D) the function field F (XD).

For another central simple F -algebra D′ and for a quadratic F -form ψ of dimen-

sion ≥ 3, we set F (D′, D)
def
= F (XD′ ×XD) and F (ψ,D)

def
= F (Xψ ×XD).

1.7. Galois cohomology. By H∗(F ) we denote the graded ring of Galois coho-
mology

H∗(F,Z/2Z) = H∗(Gal(Fsep/F ),Z/2Z).

For any field extension L/F , we set H∗(L/F )
def
= ker(H∗(F )→ H∗(L)).

We use the standard canonical isomorphisms H0(F ) = Z/2Z, H1(F ) = F ∗/F ∗2,
and H2(F ) = Br2(F ).

We also work with the cohomology groups Hn(F,Q/Z(i)), i = 0, 1, 2 (see e.g.
[12] for the definition). For any field extension L/F , we set

H∗(L/F,Q/Z(i))
def
= ker

(
H∗(F,Q/Z(i))→ H∗(L,Q/Z(i))

)
.

For n = 1, 2, 3, the group Hn(F ) is naturally identified with

Tors2H
n(F,Q/Z(n− 1)) .

1.8. K-theory and Chow groups. We are mainly working with smooth algebraic
varieties over a field, although the smoothness assumption is not always essential.

Let X be a smooth algebraic F -variety. The Grothendieck ring of X is denoted
by K(X). This ring is supplied with the filtration “by codimension of support” (which
respects multiplication); the adjoint graded ring is denoted by G∗K(X). There is a
canonical surjective homomorphism of the graded Chow ring CH∗(X) onto G∗K(X);
its kernel consists only of torsion elements and is trivial in the 0-th, 1-st and 2-nd
graded components ([32, §9]). In particular we have the following

Lemma 1.9. The homomorphism CHi(X) → GiK(X) is bijective if at least one of
the following conditions holds:

• i = 0, 1, or 2,
• CHi(X) is torsion-free.

Let X be a variety over F and E/F be a field extension. We denote by iE/F
the restriction homomorphism K(X) → K(XE). We use the same notation for the
restriction homomorphisms CH∗(X) → CH∗(XE) and G∗K(X) → G∗K(XE). Note
that for any projective homogeneous variety X, the homomorphism iE/F : K(X) →
K(XE) is injective by [27].

1.10. Other notations. We denote by F̄ a separable closure of the field F . The

order of a set S is denoted by |S| (if S is infinite, we set |S| def= ∞).
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2. The group TorsG∗K(X)

Lemma 2.1. Let X be a variety over F and E/F be a field extension such that
the homomorphism iE/F : K(X) → K(XE) is injective and the factor group
K(XE)/iE/F (K(X)) is finite. Then

| ker(G∗K(X) → G∗K(XE)| = |G
∗K(XE)/iE/F (G∗K(X))|
|K(XE)/iE/F (K(X))|

Proof. The proof is the same as the proof of [15, Prop. 2].

Lemma 2.2. Let X be a variety, i be an integer, and E/F be a field extension such
that the group GiK(XE) is torsion-free. Then

ker(GiK(X) → GiK(XE)) = TorsGiK(X) .

Proof. Since GiK(XE) is torsion-free, one has ker(GiK(X) → GiK(XE)) ⊃
TorsGiK(X).

To prove the inverse inclusion, let us take an intermediate field E0 such that
the extension E0/F is purely transcendental while the extension E/E0 is algebraic.
The specialization argument shows that the homomorphism GiK(X) → GiK(XE0 )
is injective; the transfer argument shows that ker(GiK(XE0 ) → GiK(XE)) ⊂
TorsGiK(XE0). Therefore ker(GiK(X) → GiK(XE)) ⊂ TorsGiK(X).

Lemma 2.3. Let X be a smooth variety, i be an integer, and E/F be a field extension
such that the group CHi(XE) is torsion-free. Then

• CHi(XE) ≃ GiK(XE) (and hence the group GiK(XE) is torsion-free),
• CHi(XE)/iE/F (CHi(X)) ≃ GiK(XE)/iE/F (GiK(X)).

Proof. The first assertion is contained in Lemma 1.9. The canonical homomorphism
CHi(XE)→ GiK(XE) induces a homomorphism

CHi(XE)/iE/F (CHi(X)) → GiK(XE)/iE/F (GiK(X))

which is bijective since CHi(XE) → GiK(XE) is bijective and CHi(X) → GiK(X)
is surjective.

Proposition 2.4. Suppose that a smooth F -variety X and a field extension E/F
satisfy the following three conditions:

• the homomorphism iE/F : K(X) → K(XE) is injective,
• the factor group K(XE)/iE/F (K(X)) is finite,
• the group CH∗(XE) is torsion-free.

Then

|TorsG∗K(X)| = |G
∗K(XE)/iE/F (G∗K(X))|
|K(XE)/iE/F (K(X))| =

|CH∗(XE)/iE/F (CH∗K(X))|
|K(XE)/iE/F (K(X))|

Proof. It is an obvious consequence of Lemmas 2.1, 2.2, and 2.3.
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3. Auxiliary lemmas

For an Abelian group A we use the notation rk(A) = dimQ(A⊗Z Q).

Lemma 3.1. Let A0 ⊂ A, B0 ⊂ B be free Abelian groups such that rkA0 = rkA = rA,
rkB0 = rkB = rB. Then ∣∣∣∣

A⊗Z B
A0 ⊗Z B0

∣∣∣∣ =

∣∣∣∣
A

A0

∣∣∣∣
rB

·
∣∣∣∣
B

B0

∣∣∣∣
rA

.

Proof. One has

(A⊗ B)/(A0 ⊗ B) ≃ (A/A0) ⊗B ≃ (A/A0) ⊗ ZrB ≃ (A/A0)
rB ,

(A0 ⊗ B)/(A0 ⊗ B0) ≃ A0 ⊗ (B/B0) ≃ ZrA ⊗ (B/B0) ≃ (B/B0)
rA .

Therefore, ∣∣∣∣
A⊗ B
A0 ⊗ B0

∣∣∣∣ =

∣∣∣∣
A⊗ B
A0 ⊗B

∣∣∣∣ ·
∣∣∣∣
A0 ⊗B
A0 ⊗ B0

∣∣∣∣ =

∣∣∣∣
A

A0

∣∣∣∣
rB

·
∣∣∣∣
B

B0

∣∣∣∣
rA

.

The following lemma is well-known.

Lemma 3.2. Let A be an Abelian group with a finite filtration A = F0A ⊃ F1A ⊃
· · · ⊃ FkA = 0. Let B be a subgroup of A with the filtration FpB = B ∩ FpA. Let
G∗A =

⊕
p≥0FpA/Fp+1A and G∗B =

⊕
p≥0FpB/Fp+1B. Then

• |A/B| = |G∗A/G∗B|,
• if A is a finitely generated group then rkG∗A = rkA.

In the following lemma the term “ring” means a commutative ring with unit.

Lemma 3.3. Let A and B be rings whose additive groups are finitely generated Abelian
groups. Let I be a nilpotent ideal of A such that A/I ≃ Z. Let R be a subring of
A⊗ZB and AR be a subring of A such that AR⊗1 ⊂ R. Then the following inequality
holds ∣∣∣∣

A⊗Z B
R

∣∣∣∣ ≤
∣∣∣∣
A

AR

∣∣∣∣
rB

·
∣∣∣∣

A⊗Z B
R+ (I ⊗Z B)

∣∣∣∣
rA

where rA = rkA and rB = rkB.

Proof. Let us denote by BR the image of R under the following composition A⊗B →
(A/I) ⊗ B ≃ Z⊗B ≃ B. Obviously,

∣∣∣∣
A⊗Z B

R+ (I ⊗Z B)

∣∣∣∣ =

∣∣∣∣
B

BR

∣∣∣∣ .

For any p ≥ 0 we set FpA = {a ∈ A | ∃m ∈ N such that ma ∈ Ip}. Clearly,
Tors(A/FpA) = 0, and so A/Fp is a free Abelian group. Therefore all factor groups
FpA/Fp+1A (p = 0, 1, . . .) are free Abelian. Since A/I ≃ Z, it follows that F1A = I.
Thus A/F1A ≃ Z. Since I is a nilpotent ideal of A, there exists k such that Ik = 0.
Then FkA = 0. Thus the filtration A = F0A ⊃ F1A ⊃ F2A ⊃ . . . is finite and
results of Lemma 3.2 can be applied.

Let FpAR def= R ∩FpA, Fp(A⊗B)
def
= im(FpA⊗B → A⊗B), and FpR def= R ∩

Fp(A⊗B). If K is one of the rings A, AR, A⊗B, or R, we set GpK
def
= FpK/Fp+1K

and G∗K
def
=
⊕

p≥0 FpK/Fp+1K. Obviously, FpK · FqK ⊂ Fp+qK for all p and q.
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Therefore, K = F0K ⊃ F1K ⊃ · · · ⊃ FpK ⊃ . . . is a ring filtration. Hence, the
adjoint graded group G∗K has a graded ring structure. Since the additive group of
B is free, we have a natural ring isomorphism G∗A ⊗B ≃ G∗(A⊗ B).

Since AR ⊗ 1 ⊂ R, we have G∗AR ⊗ 1 ⊂ G∗R. Clearly G0(A⊗B) = (A/I) ⊗B,
and G0R coincides with the image of the composition R → A ⊗ B → (A/I) ⊗ B.
By definition of BR, one has G0R = 1G∗A ⊗ BR (here 1G∗A denotes the unit of the
ring G∗A). Therefore 1G∗A ⊗ BR ⊂ G∗R. Since G∗AR ⊗ 1 ⊂ G∗R, 1G∗A ⊗ BR ⊂
G∗R, and G∗R is a subring of G∗A ⊗ B, we have G∗AR ⊗ BR ⊂ G∗R. Therefore
|G∗(A ⊗ B)/G∗R| ≤ |(G∗A ⊗ B)/(G∗AR ⊗ BR)|. Applying Lemmas 3.1 and 3.2, we
have

∣∣∣∣
A⊗ B
R

∣∣∣∣ =

∣∣∣∣
G∗(A ⊗B)

G∗R

∣∣∣∣ ≤
∣∣∣∣
G∗A⊗ B
G∗AR ⊗ BR

∣∣∣∣ =

∣∣∣∣
G∗A

G∗AR

∣∣∣∣
rB

·
∣∣∣∣
B

BR

∣∣∣∣
rA

=

=

∣∣∣∣
A

AR

∣∣∣∣
rB

·
∣∣∣∣
B

BR

∣∣∣∣
rA

=

∣∣∣∣
A

AR

∣∣∣∣
rB

·
∣∣∣∣

A ⊗Z B
R+ (I ⊗Z B)

∣∣∣∣
rA

.

4. On the group CH∗(X × Y )

Let X be a smooth variety. We denote by FpCH∗(X) the group
⊕

i≥p

CHi(X) .

Let Y be another smooth variety. For a subgroup A of CH∗(X) and a subgroup B
of CH∗(Y ), we denote by A ⊠ B the image of the composition A ⊗ B → CH∗(X) ⊗
CH∗(Y )→ CH∗(X × Y ).

The following assertion is evident (see also [20, §3] or [11]).

Proposition 4.1. Let X and Y be smooth varieties over F . Then

• the natural homomorphism CH∗(X × Y )→ CH∗(YF(X)) is surjective,
• the kernel of the homomorphism CH∗(X×Y )→ CH∗(YF(X)) contains the group
F1CH∗(X) ⊠ CH∗(Y ).

Corollary 4.2. If the natural homomorphism CH∗(X) ⊗ CH∗(Y ) → CH∗(X × Y )
is bijective and CH∗(Y ) is torsion-free, then the homomorphism CH∗(X × Y ) →
CH∗(YF(X)) induces an isomorphism

CH∗(X × Y )

F1CH∗(X) ⊠CH∗(Y )
→ CH∗(YF(X)).

Proof. Since CH∗(X)⊗CH∗(Y ) ≃ CH∗(X×Y ) and CH∗(X)/F1CH∗(X) ≃ CH0(X),
the factor group CH∗(X × Y )/(F1CH∗(X) ⊠ CH∗(Y )) is isomorphic to CH0(X) ⊗Z
CH∗(Y ) ≃ Z ⊗Z CH∗(Y ) ≃ CH∗(Y ). Thus, it is sufficient to prove that the ho-
momorphism CH∗(Y ) → CH∗(YF(X)) is injective. This is obvious since CH∗(Y ) is
torsion-free.
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Corollary 4.3. Let X and Y be smooth varieties and E/F be a field extension such
that the natural homomorphism CH∗(XE) ⊗ CH∗(YE) → CH∗(XE × YE) is bijective
and CH∗(YE) is torsion-free. Then there exists an isomorphism

CH∗(XE × YE)

iE/F (CH∗(X × Y )) +F1CH∗(XE)⊠CH∗(YE)
≃ CH∗(YE(X))

iE(X)/F(X)(CH∗(YF(X)))

Proof. Obvious in view of Corollary 4.2.

Remark 4.4. It was noticed by the referee that the conditions of Corollary 4.3 (which
appear also in Proposition 4.5) hold, if the variety YE possess a cellular decomposition
(see e.g. [13, Def. 3.2] for the definition of cellular decomposition). In the case of
complete varieties X and Y , this statement follows e.g. from [19, Th. 6.5]. In the
present paper, we shall apply Corollary 4.3 only to the case where YE is isomorphic
to a projective space.

Proposition 4.5. Let X and Y be smooth varieties over F and E/F be a field
extension such that the following conditions hold

• CH∗(XE) is a free Abelian group of rank rX,
• CH∗(YE) is a free Abelian group of rank rY ,
• the canonical homomorphism CH∗(XE) ⊗Z CH∗(YE) → CH∗(XE × YE) is an
isomorphism.

Then∣∣∣∣
CH∗(XE × YE)

iE/F (CH∗(X × Y ))

∣∣∣∣ ≤
∣∣∣∣

CH∗(XE)

iE/F (CH∗(X))

∣∣∣∣
rY

·
∣∣∣∣

CH∗(YE(X))

iE(X)/F(X)(CH∗(YF(X)))

∣∣∣∣
rX

.

Proof. Let A = CH∗(XE), AR = iE/F (CH∗(X)) and I =
⊕

p>0CHp(XE) =

F1CH∗(XE). Let B = CH∗(YE). By our assumption, we have CH∗(XE × YE) ≃
A ⊗Z B. We denote by R the image of the composition CH∗(X × Y ) → CH∗(XE ⊗
YE) ≃ A⊗Z B. Clearly, all conditions of Lemma 3.3 hold. Moreover,

∣∣∣∣
CH∗(XE × YE)

iE/F (CH∗(X × Y ))

∣∣∣∣ =

∣∣∣∣
A⊗Z B
R

∣∣∣∣ and

∣∣∣∣
CH∗(XE)

iE/F (CH∗(X))

∣∣∣∣ =

∣∣∣∣
A

AR

∣∣∣∣ .

By Corollary 4.3 we have
∣∣∣∣

A⊗Z B
R + (I ⊗Z B)

∣∣∣∣ =

∣∣∣∣
CH∗(YE(X))

iE(X)/F(X)(CH∗(YF(X)))

∣∣∣∣ .

To complete the prove it suffices to apply Lemma 3.3.

5. The group Tors CH2(Xψ ×XD)

The aim of this section is Corollary 5.6.

Proposition 5.1 (see [14, §2.1]). Let ψ be a (2n + 1)-dimensional quadratic form

over a separably closed field. Set X
def
= Xψ and d

def
= dimX = 2n − 1. Then for all

0 ≤ p ≤ d the group CHp(X) is canonically isomorphic to Z (for other p the group
CHp(X) is trivial). Moreover,

• if 0 ≤ p < n, then CHp(X) = Z · hp, where h ∈ CH1(X) denotes the class of a
hyperplane section of X;
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• if n ≤ p ≤ d, then CHp(X) = Z · ld−p, where ld−p denotes the class of a linear
subspace in X of dimension d− p, besides 2ld−p = hp.

Corollary 5.2. Let ψ be a (2n + 1)-dimensional quadratic form over F and let
X = Xψ . Then

• CH∗(XF̄ ) is a free Abelian group of rank 2n,
• if 0 ≤ p < n then |CHp(XF̄ )/iF̄ /F (CHp(X))| = 1,
• if n ≤ p ≤ 2n− 1 then |CHp(XF̄ )/iF̄ /F (CHp(X))| ≤ 2,

• |CH∗(XF̄ )/iF̄ /F (CH∗(X))| ≤ 2n.

Proposition 5.3. Let D be a central simple F -algebra of exponent 2 and of degree 8.
Let E/L/F be field extensions such that indDL = 4 and indDE = 1. Let Y = SB(D).
For any 0 ≤ p ≤ dimY = 7, the group CHp(YE) is canonically isomorphic to Z.
Moreover, the image of the homomorphism iE/L : CHp(YL)→ CHp(YE) ≃ Z contains
1 if p = 0, 4; 2 if p = 1, 2, 5, 6; 4 if p = 3, 7.

Proof. Since degD = 8 and indDE = 1, YE is isomorphic to P7E . Hence, the group
CHp(YE) ∼= CHp(P7E) (where p = 0, . . . , 7) is generated by the class hp of a linear
subspace ([4]).

The rest part of the proposition is contained in [16, Th.]. For the reader’s con-
venience, we also give a direct construction of the elements required. The class of
YL itself gives 1 ∈ iE/L(CH0(YL)). Let ξ be the tautological line bundle on the pro-

jective space P7E ≃ YE . Since expD = 2, the bundle ξ⊗2 is defined over F and, in
particular, over L. Its first Chern class gives 2 ∈ iE/L(CH1(YL)). Since indDL = 4,

the bundle ξ⊕4 is defined over L. Its second Chern class gives 6 ∈ iE/L(CH2(YL)).1

Thus 2 ∈ iE/L(CH2(YL)). The third Chern class of ξ⊕4 gives 4 ∈ iE/L(CH3(YL)).

The fourth Chern class of ξ⊕4 gives 1 ∈ iE/L(CH4(YL)). Finally, taking the product
of the cycles constructed in codimensions 1, 2, and 3 with the cycle of codimension
4, one gets the cycles of codimensions 5, 6, and 7 required.

Corollary 5.4. Under the condition of Proposition 5.3, we have

|CH∗(YE)/iE/L(CH∗(YL))| ≤ 256 .

Proof.
7∏
p=0
|CHp(YE)/iE/L(CHp(YL))| ≤ 1 · 2 · 2 · 4 · 1 · 2 · 2 · 4 = 256 .

Proposition 5.5. Let D be a central division F -algebra of degree 8 and exponent 2.
Let ψ be a 5-dimensional quadratic F -form. Suppose that DF(ψ) is not a skewfield.
Then TorsG∗K(Xψ ×XD) = 0.

Proof. Let X = Xψ and Y = XD. Corollary 5.2 shows that CH∗(XF̄ ) is a free abelian
group of rank rX = 4 and |CH∗(XF̄ )/iF̄ /F (CH∗(X))| ≤ 22 = 4.

Since D is a division algebra of degree 8 and DF(ψ) is not division algebra, it

follows that indDF(X) = 4. Applying Corollary 5.4 to the case L = F (X), E = F̄ (X),
we have |CH∗(YF̄ (X))/iF̄ (X)/F(X)(CH∗(YF(X)))| ≤ 256.

1In fact, it is enough only to know that the Grothendieck classes of the bundles ξ⊗2 and ξ⊕4 are
in K(YL) what can be also seen from the computation of the K-theory.
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Since YF̄ = SB(DF̄ ) ≃ P7
F̄

, the group CH∗(YF̄ ) is a free Abelian of rank rY = 8
and CH∗(XF̄ )⊗CH∗(YF̄ ) ≃ CH∗(XF̄ ×YF̄ ) (see [3, Prop. 14.6.5]). Thus all conditions
of Proposition 4.5 hold for X, Y , E = F̄ and we have

∣∣∣∣∣
CH∗(XF̄ × YF̄ )

iF̄ /F (CH∗(X × Y ))

∣∣∣∣∣ ≤ 48 · 2564 = 248.

Using [29, Th. 4.1 of §8] and [33, Th. 9.1], we get a natural (with respect to
extensions of F ) isomorphism

K(X × Y ) ≃K
(
(F×3 × C)⊗F (F×4 ×D×4)

)
≃

≃ K
(
F×12 × C×4 ×D×12 × (C ⊗F D)×4

)

where C
def
= C0(ψ) is the even Clifford algebra of ψ. Note that C is a central simple

F -algebra of the degree 22. Since DF(ψ) is not a skew field, [25, Th. 1] states that
D ≃ C ⊗F B with some central division F -algebra B. Therefore, indC = degC = 22

and indC ⊗D = indB = degB = 2. Hence
∣∣∣∣∣

K(XF̄ × YF̄ )

iF̄ /F (K(X × Y ))

∣∣∣∣∣ = (indC)4 · (indD)12 · (indC ⊗D)4 = 22·4+3·12+1·4 = 248 .

Applying Proposition 2.4 to the variety X × Y and E = F̄ , we have

|TorsG∗K(X × Y )| =
|CH∗(XF̄ × YF̄ )/iF̄ /F (CH∗(X × Y ))|
|K(XF̄ × YF̄ )/iF̄ /F (K(X × Y ))| ≤ 248

248
= 1 .

Therefore, TorsG∗K(X × Y ) = 0.

Applying Lemma 1.9 we get the following

Corollary 5.6. Under the condition of Proposition 5.5, the group CH2(Xψ ×XD)
is torsion-free.

6. A special case of Theorem 0.1

In this section we prove Theorem 0.1 in the special case where D is a division algebra
of degree 8.

Proposition 6.1 ([1, Satz 5.6]). Let ψ be a quadratic F -form of dimension ≥ 5. The
group H3(F (ψ)/F ) is non-trivial iff ψ is a neighbor of an anisotropic 3-Pfister form.

Proposition 6.2 (see [28, Prop. 4.1 and Rem. 4.1]). Let D be a central division F -
algebra of exponent 2. Suppose that D is decomposable (in the tensor product of two
proper subalgebras). Then H3(F (D)/F ) = [D] ∪H1(F ).

Proposition 6.3. If D and D′ are Brauer equivalent central simple F -algebras, then
the function fields F (D) and F (D′) are stably equivalent.2

2Two field extensionsE/F and E′/F are called stably equivalent, if some finitely generated purely

transcendental extension of E is isomorphic (over F ) to some finitely generated purely transcendental
extension of E′.
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Proof. Since the algebras DF(D′) and D′F(D) are split, the field extensions

F (D,D′)/F (D′) and F (D,D′)/F (D)

are purely transcendental. Therefore each of the field extensions F (D)/F and
F (D′)/F is stably equivalent to the extension F (D,D′)/F .

Corollary 6.4. Fix a quadratic F -form ψ and integers i, j ∈ Z. For any central
simple F -algebra D, the groups Hi(F (D)/F ), Hi(F (D)/F,Q/Z(j)), Hi(F (ψ,D)/F ),
Hi(F (ψ,D)/F,Q/Z(j)) only depend on the Brauer class of D.

Proposition 6.5. Let D be a central simple F -algebra of exponent 2 and let ψ be a
quadratic F -form. The group H3(F (ψ,D)/F,Q/Z(2)) is annihilated by 2.

Proof. Let ψ0 be a 3-dimensional subform of ψ. Clearly,

H3(F (ψ,D)/F,Q/Z(2)) ⊂ H3(F (ψ0, D)/F,Q/Z(2)) .

Therefore, it suffices to show that the latter cohomology group is annihilated by 2.
Replacing ψ0 by the quaternion algebra C0(ψ0), we come to a statement covered by
[7, Lemma A.8].

Corollary 6.6. In the conditions of Proposition 6.5, one has
H3(F (ψ,D)/F,Q/Z(2)) = H3(F (ψ,D)/F ) .

Proposition 6.7. Let D be a central simple F -algebra of exponent 2 and let ψ be a
quadratic F -form of dimension ≥ 3. Suppose that indDF(ψ) < indD. Then ψ is not
a 3-Pfister neighbor and there is an isomorphism

H3(F (ψ,D)/F )

H3(F (ψ)/F ) + [D] ∪H1(F )
≃ Tors CH2(Xψ ×XD) .

Proof. By [9, Prop. 2.2], there is an isomorphism

H3(F (ψ,D)/F,Q/Z(2))

H3(F (ψ)/F,Q/Z(2)) +H3(F (D)/F,Q/Z(2))
≃

≃ Tors CH2(Xψ ×XD)

pr∗ψ Tors CH2(Xψ) + pr∗D Tors CH2(XD)
.

By Corollary 6.6, we have H3(F (ψ,D)/F,Q/Z(2)) = H3(F (ψ,D)/F ); by [9, Lemma
2.8], we have H3(F (ψ)/F,Q/Z(2)) = H3(F (ψ)/F ); and by [7, Lemma A.8], we have
H3(F (D)/F,Q/Z(2)) = H3(F (D)/F ).

Let D′ be a division algebra Brauer equivalent to D. By Corollary 6.4, we
have H3(F (D)/F ) = H3(F (D′)/F ); by [18, Prop. 1.1], we have Tors CH2(XD) ≃
Tors CH2(XD′). Since D′F(ψ) is no more a skew field, there is a homomorphism of F -

algebras C0(ψ)→ D′ ([34, Th. 1], see also [26, Th. 2]). Although the algebra C0(ψ)
is not always central simple, it always contains a non-trivial subalgebra central simple
over F . Therefore, D′ is decomposable, what implies H3(F (D′)/F ) = [D] ∪H1(F )
(Proposition 6.2) and Tors CH2(XD′) = 0 ([17, Prop. 5.3]). Finally, the existence of
a homomorphism C0(ψ) → D′ implies that ψ is not a 3-Pfister neighbor; therefore
Tors CH2(Xψ) = 0 ([14, Th. 6.1]).
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Corollary 6.8. Let D be a central division F -algebra of degree 8 and exponent 2.
Let ψ be a 5-dimensional quadratic F -form. Suppose that DF(ψ) is not a skew field.

Then H3(F (ψ,D)/F ) = [D] ∪H1(F ).

Proof. It is a direct consequence of Proposition 6.7, Corollary 5.6, and Proposition
6.1.

Theorem 6.9. Theorem 0.1 is true if D is a division algebra of degree 8.

Proof. Let ψ0 be a 5-dimensional subform of ψ. Applying Corollary 6.8, we have
[D] ∪ H1(F ) ⊂ H3(F (ψ,D)/F ) ⊂ H3(F (ψ0, D)/F ) = [D] ∪ H1(F ). Hence
H3(F (ψ,D)/F ) = [D] ∪H1(F ).

The assertion on Tors CH2(Xψ ×XD) is Corollary 5.6.

Corollary 6.10. Let φ ∈ I2(F ) be a 8-dimensional quadratic form such that
indC(φ) = 8. Let D be a degree 8 central simple algebra such that c(φ) = [D].
Let ψ be a quadratic form of dimension ≥ 5 such that φF(ψ) is isotropic. Then

1) D is a division algebra;
2) DF(ψ) is not a division algebra;
3) H3(F (ψ,D)/F ) = [D] ∪H1(F ).

7. Proof of Corollaries 0.2 and 0.3

We need several lemmas.

Lemma 7.1. Let φ ∈ I2(F ) be a 8-dimensional quadratic form and let D be an algebra
such that c(φ) = [D]. Then φF(D) ∈ GP3(F (D)).

Proof. We have c(φF(D)) = c(φ)F(D) = [DF(D)] = 0. Hence φF(D) ∈ I3(F (D)). Since
dimφ = 8, we are done by the Arason-Pfister Hauptsatz.

Lemma 7.2. Let φ, φ∗ ∈ I2(F ) be 8-dimensional quadratic forms such that c(φ) =
c(φ∗) = [D], where D is a triquaternion division algebra.3 Suppose that there is a
quadratic form ψ of dimension ≥ 5 such that the forms φF(ψ,D) and φ

∗
F(ψ,D) are

isotropic. Then φ and φ∗ are half-neighbors.

Proof. Lemma 7.1 implies that φF(ψ,D), φ
∗
F(ψ,D) ∈ GP3(F (ψ,D)). By the assumption

of the lemma, φF(ψ,D) and φ∗F(ψ,D) are isotropic. Hence φF(ψ,D) and φ∗F(ψ,D) are

hyperbolic. Thus φ, φ∗ ∈W (F (ψ,D)/F ).
Let τ = φ ⊥ φ∗. Clearly τ ∈ W (F (ψ,D)/F ). Since c(τ) = c(φ) + c(φ∗) =

[D] + [D] = 0, we have τ ∈ I3(F ). Thus e3(τ) ∈ H3(F (ψ,D)/F ). It follows from
Corollary 6.10 that e3(τ) ∈ [D] ∪ H1(F ). Hence there exists s ∈ F ∗ such that
e3(τ) = [D] ∪ (s). We have e3(τ) = [D] ∪ (s) = c(φ) ∪ (s) = e3(φ 〈〈s〉〉). Since
ker(e3 : I3(F ) → H3(F )) = I4(F ), we have τ ≡ φ 〈〈s〉〉 (mod I4(F )). Therefore
φ+ φ∗ = τ ≡ φ 〈〈s〉〉 = φ− sφ (mod I4(F )). Hence φ∗ + sφ ∈ I4(F ). Hence φ and φ∗

are half-neighbors.

The following statement was pointed out by Laghribi ([23]) as an easy conse-
quence of the index reduction formula [25].

3An F -algebra is called triquaternion, if it is isomorphic to a tensor product of three quaternion
F -algebras.
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Lemma 7.3. Let ψ be a quadratic form of dimension ≥ 5 and D be a division tri-
quaternion algebra. Suppose that DF(ψ) is not a division algebra. Then there exists

an 8-dimensional quadratic form φ∗ ∈ I2(F ) such that ψ ⊂ φ∗ and c(φ∗) = [D].

Proof of Corollary 0.2. Let D be triquaternion algebra such that c(φ) = [D]. Since
indC(φ) = 8, it follows that D is a division algebra. Since φF(ψ) is isotropic, DF(ψ) is
not a division algebra. It follows from Lemma 7.3 that there exists an 8-dimensional
quadratic form φ∗ ∈ I2(F ) such that ψ ⊂ φ∗ and c(φ∗) = [D]. Obviously, all
conditions of Lemma 7.2 hold. Hence φ and φ∗ are half-neighbors.

Lemma 7.4. Let D be a division triquaternion algebra over F . Then there exist a field
extension E/F and an 8-dimensional quadratic form φ∗ ∈ I2(E) with the following
properties:

(i) DE is a division algebra,
(ii) c(φ∗) = [DE ],
(iii) φ∗E(D) is anisotropic.

Proof. Let φ ∈ I2(F ) be an arbitrary F -form such that c(φ) = [D]. Let K =
F (X, Y, Z) and γ = φK ⊥ 〈〈X, Y, Z〉〉 be a K-form. Let K = K0, K1, . . . , Kh;
γ0, γ1, . . . , γh be a generic splitting tower of γ.

Since γ ≡ φK (mod I3(K)), we have c(γ) = c(φK) = [DK ]. Since K/F is purely
transcendental, indDK = indD = 8. Hence indC(γ) = 8. It follows from Corollary
1.5 that there exists s such that dimγs = 8 and indC(γs) = 8. We set E = Es,
φ∗ = γs.

We claim that the condition (i)–(iii) of the lemma hold. Since c(φ∗) = c(γE) =
c(φE) = [DE ], condition (ii) holds. Since [DE ] = c(φ∗) = c(γs), we have indDE =
indC(γs) = 8 and thus condition (i) holds.

Now we only need to verify that (iii) holds. Let M0/F be an arbitrary field
extension such that φM0 is hyperbolic. Let M = M0(X, Y, Z). We have γM = φM ⊥
〈〈X, Y, Z〉〉M . Clearly 〈〈X, Y, Z〉〉 is anisotropic over M . Since φM is hyperbolic, we
have (γM )an = 〈〈X, Y, Z〉〉M and hence dim(γM )an = 8. Therefore dim(γM )an =
dimγs. By Lemma 1.3, we see that the field extension ME/M = MKs/M is purely
transcendental. Hence dim(γME)an = dim(γM )an = 8. Since (φ∗ME)an = (γME)an,
we see that φ∗ME is anisotropic. Since φM is hyperbolic, it follows that [DM ] =
c(φM ) = 0. Hence [DME] = 0 and therefore the field extension ME(D)/ME is purely
transcendental. Hence φ∗ME(D) is anisotropic. Therefore φ∗E(D) is anisotropic.

Lemma 7.5. Let φ, φ∗ ∈ I2(F ) be 8-dimensional quadratic forms such that c(φ) =
c(φ∗) = [D], where D is a triquaternion division algebra. Suppose that φ∗F(D) is

anisotropic. Then φF(D) is anisotropic.

Proof. Suppose at the moment that φF(D) is isotropic. Then letting ψ
def
= φ∗, we see

that all conditions of Lemma 7.2 hold. Hence φ and φ∗ are half-neighbors, i.e., there
exists s ∈ F ∗ such that φ∗ + sφ ∈ I4(F ). Therefore φ∗F(D) + sφF(D) ∈ I4(F (D)).

Since φF(D) is isotropic, it is hyperbolic and we see that φ∗F(D) ∈ I4(F (D)). By the

Arason-Pfister Hauptsatz, we see that φ∗F(D) is hyperbolic. So we get a contradiction

to the assumption of the lemma.
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Proposition 7.6. Let φ ∈ I2(F ) be an 8-dimensional quadratic form such that
indC(φ) = 8. Let A be an algebra such that c(φ) = [A]. Then φF(A) is anisotropic.

Proof. Let D be a triquaternion algebra such that c(φ) = [D]. Since indC(φ) = 8,
D is a division algebra. Let E/F and φ∗ be such that in Lemma 7.4. All conditions
of Lemma 7.5 hold for E, φE , φ∗, and DE . Therefore φE(D) is anisotropic. Hence
φF(D) is anisotropic. Since [A] = c(φ) = [D], the field extension F (A)/F is stably
isomorphic to F (D)/F (Proposition 6.3). Therefore φF(A) is anisotropic.

Proof of Corollary 0.3. Suppose at the moment that φF(A) ∈ I4(F (A)). Since
indC(φ) ≥ 8, it follows that dimφ ≥ 8. By Corollary 1.5 there exists a field ex-
tension E/F such that dim(φE)an = 8, indC(φE) = 8. Since dim(φE)an = 8 and
φE(A) ∈ I4(E(A)), the Arason-Pfister Hauptsatz shows that ((φE)an)E(A) is hyper-
bolic. We get a contradiction to Proposition 7.6.

8. Proof of Theorem 0.1

By Proposition 6.7, there is a surjection

H3(F (ψ,D)/F )

[D] ∪H1(F )
։ TorsCH2(Xψ ×XD) .

Thus, it suffices to prove the second formula of Theorem 0.1.
Proving the second formula, we may assume that dimψ = 5 (compare to the proof

of Theorem 6.9) and D is a division algebra (Corollary 6.4). Under these assumptions,
we can write down D as the tensor product C0(ψ) ⊗F B (using [25, Th. 1]). In
particular, we see that C0(ψ) is a division algebra, i.e. indC0(ψ) = degC0(ψ) = 4.

If degD < 8, then D ≃ C0(ψ). In this case, ψF(D) is a 5-dimensional qua-
dratic form with trivial Clifford algebra; therefore ψF(D) is isotropic; by this rea-
son, the field extension F (ψ,D)/F (D) is purely transcendental and consequently
H3(F (ψ,D)/F (D)) = 0. It follows that

H3(F (ψ,D)/F ) = H3(F (D)/F ) = [D] ∪H1(F ) ,

where the last equality holds by Proposition 6.2.
If degD > 8, then indB ≥ 4. Applying the index reduction formula [31, Th.

1.3], we get
indC0(ψ)F(D) = min{indC0(ψ), indB} = 4 .

Therefore ψF(D) is not a 3-Pfister neighbor and by Proposition 6.1 the group
H3(F (ψ,D)/F (D)) is trivial. Thus once again

H3(F (ψ,D)/F ) = H3(F (D)/F ) = [D] ∪H1(F ) .

Finally, if degD = 8, then we are done by Theorem 6.9 and Proposition 6.7.
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1–26. To appear in K-Theory.

[18] Karpenko, N. A. Cycles de codimension 2 en produits de variétés de Severi-
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Abstract. We study Darboux and Christoffel transforms of isothermic
surfaces in Euclidean space. Using quaternionic calculus we derive a Riccati
type equation which characterizes all Darboux transforms of a given isother-
mic surface. Surfaces of constant mean curvature turn out to be special
among all isothermic surfaces: their parallel surfaces of constant mean cur-
vature are Christoffel and Darboux transforms at the same time. We prove
— as a generalization of Bianchi’s theorem on minimal Darboux transforms
of minimal surfaces — that constant mean curvature surfaces in Euclidean
space allow ∞3 Darboux transforms into surfaces of constant mean cur-
vature. We indicate the relation between these Darboux transforms and
Bäcklund transforms of spherical surfaces.
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1 Introduction

Transformations play an important role connecting surface theory with the theory
of integrable systems. A well known example is the Bäcklund transformation of
pseudospherical (and spherical [1]) surfaces in Euclidean 3-space which “adds solitons”
to a given surface. In case of isothermic surfaces the Darboux transformation takes
the role of the Bäcklund transform for pseudospherical surfaces. Darboux transforms
of isothermic surfaces naturally arise in 1-parameter families (“associated families”)

1Partially supported by the Alexander von Humboldt Stiftung and by NSF grant DMS 93-12087.
2Partially supported by NSF grant DMS 93-12087.

Documenta Mathematica 2 (1997) 313–333



314 U. Jeromin, F. Pedit

allowing to rewrite the underlying (system of) partial differential equation(s) as an
(infinite dimensional) integrable system [6], [4]. It is mainly for this reason that
Darboux transformations provoke new interest among contemporary geometers —
even though the subject was well studied around the turn of the century [5], [7]
and [2]. A key tool in the study of Darboux transforms of an isothermic surface in
Euclidean space is a careful analysis of the Christoffel transform (or dual isothermic
surface) of the surface — which may be considered as a certain limiting case of
Darboux transforms. In the present paper, we develop classical results further using
quaternionic calculus which makes definitions elegant and calculations more efficient.
Characterizations thus obtained turned out to be necessary in the development of the
corresponding discrete theory [10].

In the first part of the paper, we develop isothermic surface theory in codimen-
sion 2 — which is a more appropriate setting when using quaternionic calculus. When
restricting to codimension 1, all notions become classical. Here, we rely on the charac-
terizations of Darboux and Christoffel pairs in IHP 1 given in [9]. The consequent use
of the quaternionic setup yields a new and unified description for these surface pairs
in IR4 ∼= IH. Even though the quaternionic calculus (as developed in [9]) provides a
setting to study the global geometry of surface pairs in Möbius geometry (cf.[11]) we
will restrict to local geometry in this paper, for two reasons: first, there are a number
of possible definitions of a “globally isothermic surface” whose consequences have not
yet been worked out. For example, definition 1 may well be read as a global defini-
tion but it is far too general to provide any global results. Secondly, Christoffel and
Darboux transforms of a (compact) surface generally do not exist globally. Moreover,
around certain types of umbilics they may not even exist locally. However, up to the
problem of closing periods, the results on constant mean curvature surfaces can well
be read as global results: here, the Christoffel transform can be determined without
integration which ensures its global existence (with branch points at the umbilics of
the original surface).

A central result is obtained by carefully analyzing the relation between Dar-
boux and Christoffel pairs: we derive a Riccati type equation describing all Darboux
transforms of a given isothermic surface. This equation is crucial for the explicit cal-
culation of Darboux transforms — in the smooth case (all the pictures shown in this
paper are obtained from this equation) as well as in the theory of discrete isothermic
nets [10]. Moreover, most of our remaining results are different applications of the
Riccati equation: first, we extend Bianchi’s permutability theorems for Darboux and
Christoffel transforms for the codimension 2 setup. We then discuss constant mean
curvature surfaces in 3-dimensional Euclidean space as “special” isothermic surfaces:
they can be characterized by the fact that their Christoffel transforms arise as Dar-
boux transforms3. Together with the Riccati equation, this provides more detailed
knowledge about the ∞3 constant mean curvature Darboux transforms of a constant
mean curvature surface — whose existence is a classical result due to Bianchi [1].
Our new proof shows that any such Darboux transform has (pointwise) constant dis-
tance to the Christoffel transform. This fact provides a geometric definition for a

3While the notion of “Darboux pairs” is naturally a conformal notion (i.e. relates surfaces in
Möbius space) the notion of “Christoffel pairs” is a Euclidean one. This might explain the (untypical)
fact that constant mean curvature surfaces in Euclidean space have a special position, not constant
mean curvature surfaces in any space of constant curvature.
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Figure 1: A Darboux transform of a torus of revolution

discrete analog of smooth constant mean curvature surfaces [10]. We conclude this
paper relating this 3-dimensional family with the Bianchi-Bäcklund transformation
for constant mean curvature surfaces discussed in [12] (cf.[1]).

2 Darboux pairs in the conformal 4-sphere

In 3-dimensional Möbius space (the conformal sphere S3) an isothermic surface may
be characterized by the existence of conformal curvature line coordinates around
each (nonumbilic) point4. Note that the notion of principal curvature directions
is conformally invariant — even though the second fundamental form is not. In
higher codimensions the second fundamental form (with respect to any metric in the
conformal class) takes values in the normal bundle. In order to diagonalize this vector
valued second fundamental form, i.e. simultaneously diagonalize all components of a

4As mentioned earlier, there is a variety of possible definitions for isothermic surfaces which are
all equivalent away from umbilics — for example, any of the characterizations of isothermic surfaces
(cf.[9]) given in this paper could be used as (global) definitions instead of definition 1 (cf.[11]).
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basis representation, the surface’s normal bundle has to be flat5. This is an implicit
prerequisite in the following

Definition 1 A (2-dimensional) surface in (4-dimensional) Möbius space is called
isothermic if around each (nonumbilic) point there exist conformal curvature line
coordinates, i.e. conformal coordinates which diagonalize the (vector valued) second
fundamental form taken with respect to any conformal metric of the ambient space.

In order to understand the notion of a “Darboux pair of isothermic surfaces” we
also have to learn what a “sphere congruence” is and what we will mean by “envelope
of a sphere congruence”:

Definition 2 A congruence of 2-spheres in (4-dimensional) Möbius space is a 2-
parameter family of 2-spheres.
A 2-dimensional surface is said to envelope a congruence of 2-spheres if at each

point it is tangent6 to a corresponding 2-sphere.

Note that the requirements on a congruence of 2-spheres in 4-space to be en-
veloped by two surfaces are much more restrictive than on a hypersphere congruence
[9]. Also, a congruence of 2-spheres in S4 may have only one envelope — which gener-
ically does not occur in the hypersphere case. In the second half of the paper we will
concentrate on the more familiar situation in 3-space.

If, however, we have two surfaces which envelope a congruence of 2-spheres the
congruence will establish a point to point correspondence between its two envelopes
by assigning the point of contact on one surface to the point of contact on the other
surface. For a 3-dimensional ambient space it is well known [3] (cf. [7]) that two
cases can occur if this correspondence preserves curvature lines7 and is conformal:
the congruence consists of planes in a certain space of constant curvature — in which
case the two envelopes are Möbius equivalent — or, both envelopes are isothermic —
in this case one surface is called a “Darboux transform” of the other (see [9], compare
[3] or [4]). These remarks may motivate the following

Definition 3 If a congruence of 2-spheres (which is not a plane congruence in a
certain space of constant curvature) is enveloped by two isothermic surfaces, the cor-
respondence between its two envelopes being conformal and curvature line preserving,
the surfaces are said to form a Darboux pair. Each of the two surfaces is called a
Darboux transform of the other.

Before studying Darboux pairs in Euclidean space we will recall

3 A basic characterization for Darboux pairs

In order to discuss (Darboux) pairs of surfaces in 4- (or 3-) dimensional Möbius
geometry we consider the conformal 4-sphere as the quaternionic projective line [9]:

S4 ∼= IHP 1 = {x · IH | x ∈ IH2}. (1)

5Since the principal directions of the (scalar) second fundamental forms with respect to any
normal vector are conformally invariant, as in the codimension 1 case, the flatness of the normal
bundle is a conformal invariant, too.
6As usually done in the 3-dimensional case, we also want to allow the surface to degenerate.
7This is what is called a “Ribaucour sphere congruence”.
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Note that we consider the space IH2 of homogeneous coordinates of the quaternionic
projective line as a right vector space over the quaternions IH.

Now, let (f, f̂) : M2 → P be an immersion into the (symmetric) space of point
pairs8 in S4,

P := {(x, y) ∈ S4 × S4 | x 6= y}. (2)

We may write the derivatives of f and f̂ as9

df = fϕ + f̂ω, df̂ = fω̂ + f̂ ϕ̂ (3)

where ϕ, ω, ϕ̂, ω̂ : TM → IH denote suitable quaternionic valued 1-forms. Then, the
integrability conditions d2f = d2f̂ = 0 for f and f̂ — the Maurer Cartan equations
— read

0 = dϕ+ ϕ ∧ ϕ+ ω̂ ∧ ω (Gauß equation for f),
0 = dω + ω ∧ ϕ+ ϕ̂ ∧ ω (Codazzi equation for f),

0 = dω̂ + ω̂ ∧ ϕ̂+ ϕ ∧ ω̂ (Codazzi equation for f̂),

0 = dϕ̂+ ϕ̂ ∧ ϕ̂+ ω ∧ ω̂ (Gauß equation for f̂).

(4)

Since the quaternions are not commutative ϕ ∧ ϕ 6= 0 in general. Before continuing,
let us list some useful identities for quaternionic 1-forms: let α, β : TM → IH be
quaternionic valued 1-forms and g : M → IH be a quaternionic valued function; then

α ∧ gβ = αg ∧ β,
α ∧ β = −β̄ ∧ ᾱ,
d(gα) = dg ∧ α+ g · dα,
d(αg) = −α ∧ dg + dα · g,

(5)

where (α ∧ β)(x, y) := α(x)β(y) − α(y)β(x).
In this framework we are now able to state a basic characterization for Darboux

pairs of isothermic surfaces (for more details10 including a proof see [9]):

Proposition 1 A pair of surfaces (f, f̂) : M2 → P is a Darboux pair if and only if

ω ∧ ω̂ = ω̂ ∧ ω = 0 (6)

where ω, ω̂ : TM → IH are defined by

df = fϕ + f̂ω, df̂ = fω̂ + f̂ ϕ̂. (7)

It is easy to see that this characterization does not depend upon the choice
of homogeneous coordinates for the two surfaces: given a change of homogeneous
coordinates (f, f̂) 7→ (fa, f̂ â), a, â : M → IH, we have

d(fa) = (fa) · (a−1ϕa + a−1da) + (f̂ â) · (â−1ωa),

d(f̂ â) = (fa) · (a−1ω̂â) + (f̂ â) · (â−1ϕ̂â+ â−1dâ).
(8)

8The homogeneous coordinates of a pair of (different) points in IHP1 form a basis of IH2. Thus, P

can be identified with the symmetric space
Gl(2,IH)
IH∗×IH∗

. Sometimes it is more convenient to use suitably

normalized coordinates: the group Gl(2, IH) may be replaced by a 15-dimensional subgroup Sl(2, IH)
which is a double cover of the group of orientation preserving Möbius transformations of S4 [9].
9We will use “f” and “f̂” for the point maps into S4 as well as for their homogeneous coordinates.
10In fact, this proposition states the connection between Darboux pairs and “curved flats” [8] in
the symmetric space of point pairs.
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4 Christoffel pairs of isothermic surfaces in Euclidean space

Another observation is that introducing a real parameter into the Maurer Cartan
equations (4) we can obtain the Darboux pair equations (6) together with the original
integrability conditions as integrability conditions of a 1-parameter family of Darboux
pairs — the “associated family” of Darboux pairs11: writing

dfr = frϕ+ f̂r(r
2ω), df̂r = fr(r

2ω̂) + f̂rϕ̂ (9)

with a parameter r ∈ IR the Gauß equations for fr and f̂r become

0 = dϕ+ ϕ ∧ ϕ + r4 · ω̂ ∧ ω,
0 = dϕ̂+ ϕ̂ ∧ ϕ̂ + r4 · ω ∧ ω̂ (10)

while the Codazzi equations remain unchanged. This shows that if there exist surface
pairs — not necessarily Darboux — (fr , f̂r) for more than one value of r > 0, then,
we have a whole 1-parameter family of Darboux pairs.

Assuming we have such a 1-parameter family (fr , f̂r) of Darboux pairs a special
situation will occur when r → 0. To discuss this, we assume ϕ = ϕ̂ = 0 without loss
of generality: we have 0 = dϕ + ϕ ∧ ϕ and 0 = dϕ̂ + ϕ̂ ∧ ϕ̂ and thus at least locally
ϕ = −da a−1 and ϕ̂ = −dâ â−1 with suitable functions a, â : M → IH. Rescaling by
those and applying (8) gives ϕ = ϕ̂ = 0. Thus,

dfr = f̂r(r
2ω), df̂r = fr(r

2ω̂), (11)

and after the rescaling (f, f̂) 7→ (f 1
r
, f̂r) (or (f, f̂) 7→ (fr, f̂ 1

r
), respectively) we see

that f̂ (or f) becomes a fixed point in the conformal 4-sphere — which should be

interpreted as a point at infinity. Thus, the other limit surfaces, f0 and f̂0, naturally
lie in (different) Euclidean spaces. Identifying these two Euclidean spaces “correctly”

we obtain df0 = ω̄ and df̂0 = ω̂ [9].

These two limit surfaces f̂c0 := f0 and fc0 := f̂0 usually do not form a Darboux
pair — in general they do not even envelope a congruence of 2-spheres12. But they
do form what is called a Christoffel pair:

Definition 4 Two surfaces f0, f̂0 : M2 → IR4 ∼= IH in Euclidean 4-space are said to
form a Christoffel pair if they induce conformally equivalent metrics on M and have
parallel tangent planes with opposite orientations. Each of the surfaces of a Christoffel
pair is called a Christoffel transform or dual of the other.

Note that the two surfaces of a Christoffel pair are automatically isothermic; in
fact, isothermic surfaces can be characterized by the (local) existence of a Christoffel
transform [9]. The Christoffel transform of an isothermic surface is unique13 up to a

11As we mentioned in a previous footnote (10) Darboux pairs are actually curved flats in the
symmetric space of point pairs — and curved flats arise in associated families.
12This might seem more natural if we remember that f0 and f̂0 take values in “different”Euclidean
spaces (cf. [4]). — However, one of these surfaces and the point at infinity (which are the remains
of the other surface) do form a (degenerate) Darboux pair.
13Except in one case: Christoffel transforms of the 2-sphere appear in 1-parameter families. We
will discuss this case later (see page 324).
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homothety and a translation — so that in the sequel we will denote the Christoffel
transform of an isothermic surface f by fc.

Finally, let us state a characterization of Christoffel pairs similar to that for
Darboux pairs:

Proposition 2 Two surfaces f0, f̂0 : M2 → IR4 ∼= IH form a Christoffel pair if and
only if

df̄0 ∧ df̂0 = df̂0 ∧ df̄0 = 0. (12)

Both surfaces of a Christoffel pair are isothermic.

As for the characterization of Darboux pairs (page 317) a proof may be found
in [9]. However, in case of 3-dimensional ambient space we will present an easy proof
later (page 323) using some of the calculus we are going to develop.

Now we are prepared to study

5 Darboux pairs in IR4

Let (f, f̂) : M2 → P denote a pair of surfaces with

df = fϕ + f̂ω, df̂ = fω̂ + f̂ ϕ̂, (13)

as before. Assuming that f, f̂ : M → IH × {1} ∼= IH take values in Euclidean 4-space
we see that ϕ = −ω and ϕ̂ = −ω̂, and hence

df = (f̂ − f) · ω, df̂ = (f − f̂) · ω̂. (14)

This allows us to rewrite condition (6) on f and f̂ to form a Darboux pair14 as

0 = df ∧ (f − f̂)−1df̂ = df̂ ∧ (f̂ − f)−1df. (15)

As a first consequence of these equations we derive the equations

0 = df ∧ (f̂ − f)−1df̂(f̂ − f)−1 = (f̂ − f)−1df̂(f̂ − f)−1 ∧ df,
0 = df̂ ∧ (f − f̂)−1df(f − f̂)−1 = (f − f̂)−1df(f − f̂)−1 ∧ df̂ (16)

for any Darboux pair (f, f̂). Since (15) also implies

0 = d[(f̂ − f)−1df̂(f̂ − f)−1] = d[(f − f̂)−1df(f − f̂)−1] (17)

we conclude that the Christoffel transforms fc and f̂c of f and f̂ are given by

dfc = (f̂ − f)−1df̂(f̂ − f)−1,

df̂c = (f − f̂)−1df(f − f̂)−1.
(18)

Finally, if we fix the translations of fc and f̂c such that

(fc − f̂c) = (f − f̂)−1 (19)

— note that d(f − f̂)
−1

= d(fc − f̂c) — we learn from the above characterization

(15) of Darboux pairs that fc and f̂c also form a Darboux pair (cf. [2]):

14Hopefully, the reader will forgive our context dependent notation: f and f̂ denote points in
IHP1 ∼= S4, vectors in IH2 or numbers in IH ∼= IR4.
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Theorem 1 If f, f̂ : M2 → IR4 form a Darboux pair, then, their Christoffel trans-
forms fc, f̂c : M2 → IR4 (if correctly scaled and positioned) form a Darboux pair,
too.

So far we learned how to derive the Christoffel transforms fc and f̂c of two
surfaces f and f̂ forming a Darboux pair. But usually it will be much easier to
determine an isothermic surface’s Christoffel transform than a Darboux transform.
In the next section we will see that deriving Darboux transforms f̂ and f̂c of two
surfaces f and fc forming a Christoffel pair15 comes down to solving

6 A Riccati type equation

Solving (18) for df̂ we obtain df̂ = (f̂ − f)df̄c(f̂ − f). This yields the following

Riccati type partial differential equation16 for g := (f̂ − f):

dg = g df̄c g − df. (20)

Using our characterization (12) of Christoffel pairs it is easily seen that this equation
is “completely” (Frobenius) integrable. Note that — in agreement with our previous
results — the common transform gc = ḡ−1 for Riccati equations yields

dgc = gc df̄ gc − dfc, (21)

showing that f̂c = fc + gc will provide a Darboux transform of fc whenever f + g is
a Darboux transform of f coming from a solution g of (20).

Since every Darboux transform f̂ of an isothermic surface f provides a Christoffel
transform fc of f via (18) every Darboux transform comes from a solution of (20) —
if we do not fix the scaling of the Christoffel transform fc. On the other hand every
solution g of (20) defines a Darboux transform f̂ = f+g of f since df ∧ g−1d(f+g) =
d(f + g) ∧ g−1df = 0. This seems to be worth formulating as a

Theorem 2 If f, fc : M2 → IR4 form a Christoffel pair of isothermic surfaces every
solution of the integrable Riccati type partial differential equation

dg = g df̄c g − df (22)

provides a Darboux transform f̂ = f + g of f. On the other hand, every Darboux
transform f̂ of f is obtained this way — if we do not fix the scaling of fc.

At this point, we should discuss the effect of a rescaling of the Christoffel trans-
form fc in the equation (20). For this purpose we examine the equations

dg = g (±r4df̄c) g − df (23)

15Note that the notation f̂c for a Darboux transform of fc makes sense because of our previous

theorem: we have f̂c = f̂c.
16The pictures in this paper were produced usingMathematica to numerically integrate this Riccati
type equation.
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Figure 2: Darboux transforms of the Catenoid when Hc →∞

where r 6= 0 is a real parameter. For the derivatives of f and a Darboux transform
f̂ = f + g of f this yields

df = f · [−g−1df ] + f̂ · [g−1df ],

df̂ = f · [∓r4df̄c g] + f̂ · [±r4df̄c g]. (24)

Interpreting f, f̂ : M2 → IH ∼= IH×{1} as homogeneous coordinates of the point pair

map (f, f̂) : M2 → P we may choose new homogeneous coordinates by performing a

rescaling (f, f̂) 7→ (fr, f̂(rg)−1) to obtain17

d[fr] = [fr] · [−g−1df ] + [f̂(rg)−1] · [r2df ],

d[f̂(rg)−1] = [fr] · [∓r2df̄c] + [f̂(rg)−1] · [df g−1]. (25)

Even though this system resembles very much our original system (9) which describes
the associated family of Darboux pairs, there is an essential difference: in (9) the
forms ϕ, ω, ϕ̂ and ω̂ are independent of the parameter r whereas the forms g−1df and
df g−1 in the system we just derived do depend on r. In fact, in the associated family
(fr , f̂r) of Darboux pairs obtained from (9) both surfaces, fr as well as f̂r, change
with the parameter r whereas the parameter contained in the Riccati equation just
effects the Darboux transform f̂ = f̂r while the original surface f remains unchanged.
However, the original system (9) appears in the linearization of our Riccati equation18

which indicates a close relation of these two parameters.
As a first application of this parameter which occurs from rescalings of the

Christoffel transform fc in our Riccati equation we may prove an extension of
Bianchi’s permutability theorem [2] for Darboux transforms:

Theorem 3 Let f̂1,2 : M2 → IH be two Darboux transforms of an isothermic surface
f : M2 → IH,

df̂1,2 = r1,2(f̂1,2 − f) df̄c(f̂1,2 − f), (26)

where we fixed any scaling for the Christoffel transform fc of f. Then, there exists
an isothermic surface f̂ : M2 → IH which is an r1-Darboux transform of f̂2 and an

17Note that this rescaling provides an Sl(2, IH) framing of the point pair map (f, f̂) [9].
18Here, we would like to thank Fran Burstall for helpful discussions.

Documenta Mathematica 2 (1997) 313–333



322 U. Jeromin, F. Pedit

r2-Darboux transform of f̂1 at the same time
19:

df̂ = r2,1(f̂ − f̂1,2) d¯̂
f
c

1,2(f̂ − f̂1,2). (27)

Moreover, the points of f̂ lie on the circles determined by the corresponding points of
f, f̂1 and f̂2, the four surfaces having a constant (real) cross ratio

20

r2
r1
≡ (f − f̂1)(f̂1 − f̂)−1(f̂ − f̂2)(f̂2 − f)−1. (28)

To prove this theorem we simply define the surface f̂ : M2 → IH by solving the
cross ratio equation21 (28) for f̂ :

f̂ := [r2f̂1(f̂1 − f)−1 − r1f̂2(f̂2 − f)−1] · [r2(f̂1 − f)−1 − r1(f̂2 − f)−1]−1. (29)

Using this ansatz, it is a straightforward calculation to verify the Riccati equations
(27) which proves the theorem.

As indicated earlier, from now on we will concentrate on surfaces in 3-dimensional
Euclidean space IR3 ∼= ImIH:

7 Christoffel pairs in IR3

In this situation, much of our previously developed calculus will simplify considerably.
For example, we will be able to give an easy proof of our characterization of Christoffel
pairs and to write down the Christoffel transform of an isothermic surface quite explic-
itly. First we note that our characterizations (15) and (12) of Darboux and Christoffel

pairs of isothermic surfaces reduce to just one equation: if f, f̂ : M2 → ImIH both
take values in the imaginary quaternions,

df̂ ∧ df̄ = −df̄ ∧ df̂,
df̂ ∧ (f̂ − f)−1df = −df ∧ (f − f̂)−1df̂.

(30)

In order to continue we will collect some identities present in the codimension 1 case.
We may orient an immersion f : M2 → IR3 ∼= ImIH by choosing a unit normal field
n : M2 → S2. This defines the complex structure J on M via

df ◦ J = ndf (31)

— note that since f and n take values in the imaginary quaternions

ndf = −〈n, df〉 + n × df = n× df = −df n. (32)

The Hodge operator is then given as the dual of this complex structure:

∗η = −η ◦ J (33)

19Note, that this claim makes no sense before we fix a scaling for the Christoffel transforms f̂c1,2
of f̂1,2. But, according to our “permutability theorem” for Christoffel and Darboux transforms

(theorem 1) there is a canonical scaling for f̂c1,2 after we fixed the scaling of f
c.

20For a comprehensive discussion of the (complex) cross ratio in IR4 ∼= IH see [10]. The idea for
the proof given in this paper actually originated from the discrete version of this theorem.
21Note that the denominator does not vanish as long as f̂1 6= f̂2. For r1 = r2 we get f̂ = f .
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for any 1-form η on M .
With this notation we are now able to give a useful reformulation22 of the equation

arising in our characterizations of Darboux pairs and Christoffel pairs: if η : TM → IH
is any quaternionic valued 1-form we have

(df ∧ η)(x, Jx) = df(x) · (− ∗ η(x) + n η(x)) (34)

for any x ∈ TM . Consequently, df ∧ η = 0 if and only if

∗η = n η. (35)

This criterium shows that the space of imaginary solutions η : TM → ImIH of the
equation 0 = df ∧η is pointwise 2-dimensional23 — if η is an (injective) solution, then,
every other solution η̃ is of the form

η̃ = (a + b n) · η (36)

with suitable functions a, b : M → IR. But one (imaginary) solution to the equation
0 = df ∧ η is easily found: it is well known that

d ∗ df = −dn ∧ df = H df ∧ df (37)

where H is the mean curvature of f . Thus

df ∧ (dn+H df) = 0 (38)

which gives an injective solution η = dn+H df away from umbilics of f .
At this point, we are ready to give the announced proof of our characterization

of Christoffel pairs (12) in the 3-dimensional case:

Theorem 4 Two surfaces f, fc : M2 → IR3 ∼= ImIH form a Christoffel pair if and
only if

df ∧ dfc = 0. (39)

Generically, the Christoffel transform fc of f is uniquely determined by f up to
homotheties and translations of IR3.

The fact that both surfaces of a Christoffel pair in 3-space are isothermic is
classical (see for example [5]) — and thus we omit this calculation.

Now, in order to prove this theorem we note that from the above we know that
fc : M2 → ImIH satisfies (39) if and only if

∗dfc = ndfc. (40)

22At this point we would like to thank Ulrich Pinkall for many helpful discussions — this criterium
is actually due to him.
23The space of solutions with values in the full quaternions is 4-dimensional as is easily seen: (36)
becomes

η̃ = (a+ b n) · η + (∗α+ nα)

with an arbitrary real 1-form α : TM → IR.
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But this equation means that in corresponding points f and fc have parallel tangent
planes and that the almost complex structure induced by fc with respect to nc := −n
is just J — the same as that induced by f with respect to n. Thus,

df ∧ dfc = 0 (41)

if and only if f, fc : M2 → IR3 have parallel tangent planes with opposite orientations
and they induce conformally equivalent metrics, i.e. they form a Christoffel pair.

Now assume we have not just one but two Christoffel transforms fc and f̃c of an
isothermic surface f : M2 → IR3. Then we know from (36) that

df̃c = (a+ b n) · dfc. (42)

The integrability condition for f̃c reads

0 = da ∧ dfc + db∧ ∗dfc + bHcdfc ∧ dfc (43)

showing that a = const and b = 0 since dfc∧ dfc takes values in normal direction while
all other components are tangential — provided that fc is not a minimal surface24.
This concludes the proof.

With (38) it also follows that

dn+H df = (a+ b n)dfc (44)

for suitable functions a, b : M → IR. Similarly, we obtain

−dn+Hc dfc = (ac + bcn)df (45)

by interchanging the roles of f and fc. Adding these two equations yields a = Hc,
ac = H and b = bc = 0 since the forms df , ndf , dfc and ndfc are linearly independent
(over the reals). As a consequence, we have a quite explicit formula relating the two
surfaces of a Christoffel pair:

Hcdfc = dn+H df. (46)

This equation shows that whenever one of the surfaces of a Christoffel pair is a
minimal surface the other is totally umbilic (namely, a scaling of its Gauß map) and
vice versa. This brings us back to our previous problem of the uniqueness of Christoffel
transforms: assume we have a Christoffel pair (f, n) consisting of a minimal surface
f and its Gauß map n. Then all the pairs

( a

∫
(cos(t) + sin(t)n) · df , n ) (47)

with real constants a and t will also form Christoffel pairs. Up to homotheties (given
by a) this will run us through the associated family of minimal surfaces (given by t)
reflecting the fact that associated minimal surfaces have the same Gauß map25.

Another fact that can be derived from (46) is that the (correctly scaled and
positioned) Christoffel transform of a surface of constant mean curvature H 6= 0 is its

24The case of minimal Christoffel transforms will be discussed below.
25However, choosing “curvature lines” for the Gauß map will fix the minimal surface [9].
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Figure 3: A Darboux transform of the Catenoid
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parallel surface f + 1
Hn of the same constant mean curvature Hc = H. Note that this

parallel surface induces a conformally equivalent metric on the underlying manifold
M2 and consequently it is also a Darboux transform of the original surface26 — the
enveloped sphere congruence consisting of spheres with constant radius 1

2H . Later, we
will see that constant mean curvature surfaces in Euclidean space can be characterized
by the fact that their Christoffel transforms are Darboux transforms too. Thus, in
the remaining part of this paper we will study constant mean curvature (H 6= 0 or
H = 0) Darboux transforms of

8 Surfaces of constant mean curvature

Using the reformulation (35) of our characterizing equation (15) of Darboux pairs we

conclude that for any Darboux transform f̂ = f + g of f : M2 → IR3

∗g df̂ = n g df̂ (48)

where we used the fact that g−1 = − 1
|g|2 g for g ∈ ImIH. Consequently, the normal

field n̂ of f̂ is given by27

n̂ =
gng

|g|2 =
1

|g|2 (|g|2n− 2〈n, g〉g) (49)

since we must have ∗df̂ = −n̂df̂ .
Thus, if the normal field of a Darboux transform f̂ of an isothermic surface

f : M2 → ImIH equals that of its Christoffel transform,

n̂ = nc = −n, (50)

then g = an for a suitable constant a ∈ IR (remark that a has to be constant in order

to obtain parallel tangent planes of f̂ and f). With (46) we conclude

Hdf + dn = Hcdfc = Hc(df + dg) = Hcdf +Hca dn (51)

which implies that either one of the surfaces is minimal and the other is totally umbilic,
or, H = Hc = 1

a which means that f and f̂ = fc form a pair of parallel constant
mean curvature surfaces.

Together with our previous remark (page 326) this leaves us with the following
characterization of constant mean curvature surfaces:

26Note that in order to obtain g = n
H
as a solution of our Riccati type equation (20) the Christoffel

transform dfc of f has to be scaled such that Hc = 1
H
— then, the Riccati equation is equivalent

to (46). This means that the parallel constant mean curvature surface appears at a well defined
location in the associated family.
27Note that with this formula we easily see that f̂ is the second envelope of a sphere congruence
enveloped by f :

2〈g,n〉f + |g|2n = 2〈g,n〉f̂ + |g|2n̂.

The second fundamental form of f̂ is quite complicated, but at least, when introducing frames it
can be seen that it has the same principal directions as the second fundamental form of fc. Since
f̂ also induces the conformally equivalent metric |df̂ |2 = |g|4|dfc|2 we get half of a proof for our
characterization (15) of Darboux pairs in the case of 3-dimensional ambient space.
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Theorem 5 The (correctly scaled and positioned) Christoffel transform fc of an

isothermic surface f : M2 → IR3 is also a Darboux transform f̂ of f if and only
if f is a surface of constant mean curvature H 6= 0. In this case f̂ = fc is the parallel
surface of constant mean curvature.

In order to study constant mean curvature Darboux transforms of constant mean
curvature surfaces in general we have to calculate the mean curvature of a Darboux
transform f̂ of an isothermic surface. We will eventually derive the existence of a 3-
parameter family of constant mean curvature Darboux transforms of a constant mean
curvature surface, all of them having (pointwise) constant distance from the parallel
constant mean curvature surface of the original surface. There are several ways to do
so: we could calculate the second fundamental form of f̂ — which is not convenient
because this second fundamental form looks quite difficult — or, we could use (37)
to directly calculate Ĥ with the help of our Riccati type equation (20). This second
way is quite straightforward but not very interesting. So, we will present another way
which grew out of discussions with Ulrich Pinkall28: observing that if df̂ = −ḡdfcg,
the integrability condition for f̂ becomes

0 = ḡ(dg g−1 ∧ dfc − dfc ∧ dg g−1)g, (52)

i.e. the reality of the form dfc ∧ dg g−1. Since the volume form 1
2df

c ∧ ∗ dfc induced
by fc is a basis of the real 2-forms on M this may be reformulated as

0 = dfc ∧ (dg g−1 − 1

2
U ∗ dfc) (53)

with a suitable function U : M → IR. With (35) we obtain the equivalent equation

ncdg − ∗dg = U dfcg (54)

— the “Dirac equation” with reference immersion fc.
Using this equation we may calculate the mean curvature Ĥ of f̂ in terms of the

function U via

d ∗ df̂ =
1

|g|2 (U −Hc) df̂ ∧ df̂ (55)

since
∗α ∧ ∗β = α ∧ β (56)

for any two 1-forms α, β : TM → IH on a Riemann surface and hence

∗dfc ∧ dg =
1

2
(∗dfc ∧ dg − ∗dfc ∧ ∗ ∗ dg) =

1

2
dfc ∧ (ncdg − ∗dg). (57)

Substituting our Riccati equation (20) into the Dirac equation yields U = 2〈n, g〉 and
consequently

Ĥ =
1

|g|2 (2〈n, g〉 −Hc). (58)

28The Dirac equation (54) which we will discover on our way can be considered as a replacement
for the Cauchy Riemann equations in a generalized “Weierstraß representation” for surfaces in IR3.
Given an immersion f :M2 → IR3 this generalized “Weierstraß representation” will provide us with
any immersion f̂ which induces the same complex structure on M .
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Figure 4: Darboux transforms of the Catenoid when Hc → 0

Now we assume the mean curvature H of our original surface f to be constant
— and consequently Hc is constant too — and rewrite this equation as

0 = hĤ(g) := Ĥ |g|2 − 2〈n, g〉+Hc. (59)

Taking the derivative of this function hC where C denotes any constant and assuming
Hc to be constant yields

dhC(g) = −2〈dfc, g〉 · hC(g) − 2〈df, g〉 · (C −H) (60)

where we got rid of dn by using (46). This shows that whenever we choose an initial
value g(p0) = g0 for a function g : M2 → ImIH such that hH(g0) = 0 the trivial
solution hH ≡ 0 will be the unique solution to the above (linear and homogeneous:
C = H) differential equation. Thus our Riccati type equation (20) will produce a

Darboux transform f̂ = f + g of constant mean curvature Ĥ = H out of a surface of
constant mean curvature (H 6= 0 or H = 0).

To conclude let us study the geometry of the condition hH(g) = 0: for a minimal

surface this simply says that the points f̂(p) of f̂ = f+g always lie in distance 1
2
Hc off

the tangent planes f(p) +dpf(TpM) of f . Since we also have the freedom of rescaling
the Christoffel transform fc of f we end up with a 3-parameter family of minimal
Darboux transforms of a minimal surface (cf. [2]). A minimal Darboux transform
of the Catenoid is shown in figure 3. Sending Hc → ±∞ — note that in case of
surfaces of constant mean curvature the associated family of Darboux pairs may be
parameterized by Hc — the Darboux transforms look more and more like the original
surface (Fig. 2) while sending Hc → 0 the Darboux transforms approach a planar
surface patch — the best compromise between the Catenoid’s Christoffel transform
and a minimal surface (Fig. 4).

In case of a surface of constant mean curvature H 6= 0 we may reformulate the
condition hH(g) = 0 as

|H g − n|2 = 1−HcH (61)

showing that the points f̂(p) lie on spheres centered on the parallel surface f + 1
H
n

and with constant radius 1H
√

1−HcH. Since the radius has to be real to provide real
Darboux transforms we see that we have to have HcH ≤ 1 which restricts the range of
the parameter Hc to a ray Hc ≤ 1

H
containing 0 (without loss of generality we assume
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H ≥ 0). As Hc → −∞ and Hc → 0 we obtain the original surface and its Christoffel
transform, respectively. But now, we obtain the Christoffel transform a second time
— as a Darboux transform when Hc = 1

H
, i.e. when the spheres hH(g) = 0 collapse

to points. Figures 5 and 6 show constant mean curvature Darboux transforms of the
cylinder.

To summarize the results we found in this section we formulate a theorem gen-
eralizing Bianchi’s theorem on minimal Darboux transforms of minimal surfaces [2]:

Theorem 6 Any surface of constant mean curvature (H 6= 0 or H = 0) in Euclidean
3-space allows a 3-parameter family of Darboux transforms into surfaces of the same
constant mean curvature.
In case of a minimal surface all its minimal Darboux transforms have (pointwise)

constant normal distance from the original surface while,
in case of a surface of constant mean curvature H 6= 0, all the constant mean

curvature Darboux transforms have (pointwise) constant distance from the parallel
constant mean curvature surface of the original surface.

Having a second look at the Darboux transform of the cylinder shown in figure
5 we recognize a strong similarity to Ivan Sterling’s “doublebubbleton” [12]. This
suggests a relation between our constant mean curvature Darboux transform and

9 The Bianchi-Bäcklund transform of constant mean curvature sur-
faces

We may supply any surface f : M2 → IR3 of constant mean curvature H = 1
2 with

conformal coordinates (x, y) : M2→ IR2 such that

I = e2u(dx2 + dy2),
II = eu(sinh(u)dx2 + cosh(u)dy2)

(62)

— reflecting the fact that every surface of constant mean curvature is isothermic.
Then, a new surface of constant mean curvature — a “Bianchi-Bäcklund transform”
of the original surface — can be obtained as f̂ = f + g where

g =
2

sinh(β) cosh(β + ϕ)

(
cosh(β)e−u[cosψfx − sinψfy ]− sinhϕn

)
, (63)

β denoting a real parameter and ϕ + iψ = θ being given by the linear system

θx + iuy = sinhβ sinh θ coshu+ cosh β cosh θ sinhu
iθy + ux = − sinhβ cosh θ sinhu− cosh β sinh θ coshu.

(64)

In fact, this transformation is obtained by applying two successive Bäcklund trans-
forms to the surface of constant Gauß curvature [1] which is parallel to the original
surface of constant mean curvature and then, taking the (correct) parallel surface of
constant mean curvature [12]. In this construction, the second Bäcklund transform
has to be matched to the first one such that the resulting surface of constant Gauß
curvature is a real surface again.
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Figure 5: A Darboux transform of the cylinder
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Fixing the scaling of the Christoffel transform fc of f such that Hc = H = 1
2 ,

i.e. fc = f + 2n, it is an unpleasant but straightforward calculation to see that our
Riccati type equation

dg = g(
sinh2(β)

4
dfc)g − df (65)

is equivalent to the above linear system (64) defining the function θ. Thus we have:

Theorem 7 Any Bianchi-Bäcklund transform of a surface of constant mean curva-
ture is a Darboux transform.

Analyzing the effect of the three parameters (β and initial values for ϕ and ψ)
contained in the Bianchi-Bäcklund transform on the function g : M → IR3 at an initial
point we find that any solution of our Riccati equation (20) with a positive multiple
of the parallel constant mean curvature surface f + 2n as Christoffel transform fc

can be obtained via a Bianchi-Bäcklund transform29. Those constant mean curva-
ture Darboux transforms of a constant mean curvature surface where the Christoffel
transform is taken a negative multiple of the parallel constant mean curvature surface
(see Fig. 6) seem not to occur as Bianchi-Bäcklund transforms.

29Hereby, we also have to allow singularities ϕ→∞ to obtain vertical values of g too.
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Figure 6: Another Darboux transform of the cylinder
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1. Introduction

It is well known that the orientation preserving Möbius transformations of the “con-
formal 2-sphere” S2 ∼= /C ∪ {∞} can be described as fractional linear transformations
z 7→ a11z+a12

a21z+a22
where a = (aij) ∈ Sl(2, /C). The reason for this fact is that the conformal

2-sphere S2 ∼= /CP 1 can be identified with the complex projective line. Introducing
homogeneous coordinates p = vp/C, vp ∈ /C2, on /CP 1 the special linear group Sl(2, /C)
acts on /CP 1 by projective transformations — which are, for 1-dimensional projective
spaces, identical with Möbius transformations — via vp/C 7→ Avp/C = vq/C. Thus, in
affine coordinates one has

(
z
1

)
7→
(
a11 a12
a21 a22

)
·
(
z
1

)
≃
(
a11z+a12
a21z+a22

1

)
.

This (algebraic) model of Möbius geometry in dimension 2 complements the (“geo-
metric”) model commonly used in differential geometry: here, the conformal 2-sphere
(or, more general, the conformal n-sphere) is considered as a quadric in the real pro-
jective 3-space IRP 3 and the group of Möbius transformations is isomorphic to the
group of projective transformations of IRP 3 that map the “absolute quadric” S2 onto
itself (cf.[3]). Equipping the space of homogeneous coordinates of IRP 3 with a Lorentz
scalar product that has the points of S2 as isotropic (null) lines, the Möbius group
can be identified with the pseudo orthogonal group of this Minkowski space IR41.

Several attempts have been made to generalize the described algebraic model
to higher dimensions — in particular to dimensions 3 and 4, by using quaternions
(cf.[14],[15]): analogous to the above model, the conformal 4-sphere is identified with
the quaternionic projective line, S4 ∼= IHP 1, with Sl(2, IH) acting on it by Möbius
transformations. In order to use such an “algebraic model” in Möbius differential
geometry, it is not enough to describe the underlying space and the Möbius group
acting on it, though. One also needs a convenient description for (hyper-) spheres since
the geometry of surfaces in Möbius geometry is often closely related to the geometry
of an enveloped sphere congruence (cf.[3]). For example, Willmore surfaces in S3 can
be related to minimal surfaces in the space of 2-spheres in S3, and the geometry of
isothermic surfaces is related to that of “sphere surfaces” with flat normal bundle,
“Ribaucour sphere congruences”.

One way is to identify a hypersphere s ⊂ IHP 1 with the inversion at this sphere.
The problem with this approach is, that only the orientation preserving Möbius trans-
formations are naturally described in the algebraic model — but, inversions are ori-
entation reversing Möbius transformations. Adjoining the (quaternionic) conjugation
as a basic orientation reversing Möbius transformation and working with the larger
group of all Möbius transformations, works relatively fine for 2-dimensional Möbius
geometry, but turns into a nightmare1) in dimension 4 since the quaternions form a
non commutative field.

Another way is to identify a sphere s ⊂ S4 ∼= IHP 1 with that quaternionic her-
mitian form on the space IH2 of homogeneous coordinates that has this sphere s as a

1) Identifying 2-spheres in S3 ⊂ S4 ∼= IHP 1 with inversions in S4 provides a solution in the codimension
1 case, though: as the composition of two inversions at hyperspheres, the inversion at a 2-sphere in S4 is
orientation preserving.
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null cone. After discussing some basics in quaternionic linear algebra we will follow
this approach — to obtain not only a description for the space of spheres but also to
establish the relation with the classical “geometric” model of Möbius geometry: the
space of quaternionic hermitian forms will canonically turn into a real six dimensional
Minkowski space, the classical model space.

This (second) way, we combine the advantages of both models for Möbius differ-
ential geometry: on one side, we introduce a rich algebraic structure which provides
a significant simplification of calculations and, at the same time, we also obtain a cal-
culus that will be more suitable to discuss the global geometry of surfaces in Möbius
geometry, as well as the geometry of discrete nets. On the other side, we keep a close
connection to the classical model of Möbius geometry which will make it easier to
understand the results geometrically. In particular, our calculus will provide an ideal
setting for the study of surface pairs, maps into the (symmetric) space of point pairs
in IHP 1 — in Möbius differential geometry, surfaces often occur naturally in pairs,
as envelopes of certain distinguished sphere congruences: for example, Willmore sur-
faces come in dual pairs as envelopes of their common central sphere congruences,
and isothermic surfaces permit pairings via Darboux (and Christoffel) transforms.

The latter will be examined in the remaining part of the paper, on one side
to see the calculus at work, on the other side to demonstrate some new results:
here, our quaternionic calculus provides very elegant characterizations for Darboux
and Christoffel pairs of isothermic surfaces that led to the discovery of the Riccati
type equation (cf.[11]) for the Darboux transformation of isothermic surfaces — an
equation that apparently cannot be derived in the classical calculus (cf.[2]). This is
one reason, why the presented calculus was necessary to develop the definition of the
discrete version of the Darboux transformation for discrete isothermic nets and the
(geometric) definition of discrete cmc nets (cf.[10]). The mentioned characterizations
rely on the relation between Darboux pairs of isothermic surfaces and curved flats in
the space of point pairs — since this space will turn out to be symmetric the notion
of curved flats makes sense. Although this relation was already established in [6] for
the codimension 1 case, it might be of interest to see that it also holds in the higher
codimension case2) of Darboux pairs in IHP 1 (cf.[13]). Even though our calculus
also provides a framework to discuss global aspects of isothermic surfaces (cf.[12]) we
will only focus on their local geometry: there is a variety of possible definitions of
“globally isothermic surfaces” whose degree of generality and whose consequences are
yet to be worked out. However, computer experiments seem to indicate that Darboux
(and Christoffel) transforms of isothermic surfaces only exist locally, in general. And,
worse, near certain types of umbilics even their local existence is not clear — resp.
depends on the chosen definition of a “globally isothermic surface” ...

In the last section, we study minimal and constant mean curvature surfaces in 3-
dimensional spaces of constant curvature. These are “special” isothermic surfaces, and
a suitable Christoffel transform in IR3 can be determined algebraically (in the general
case, an integration has to be carried out). Examining the effect of the spectral
parameter that comes with a curved flat, we obtain a new interpretation for the
relations between surfaces of constant curvature in certain space forms. In fact, these

2) Most recently, these results were generalized to arbitrary codimension using an extension of the
presented calculus [5].
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relations can be interpreted in terms of Bianchi’s “T-transformation” for isothermic
surfaces [2]. For example, the well known relation between minimal surfaces in the
(metric) 3-sphere and surfaces of constant mean curvature in Euclidean space, as
well as the relation between minimal surfaces in Euclidean 3-space and surfaces of
constant mean curvature 1 in hyperbolic 3-space are discussed. In case of the constant
mean curvature 1 surfaces in hyperbolic 3-space, a new form of Bryant’s Weierstrass
type representation [4] is given. In this context, the classical Enneper-Weierstrass
representation for minimal surfaces in Euclidean 3-space is described as a Goursat
type transform of the (multiply covered) plane — similar to the way certain surfaces
of constant Gauss curvature are described as a Bäcklund transforms of a line. Finally,
the classical Goursat transformation for minimal surfaces is generalized for isothermic
surfaces in Euclidean space.

2. The Study determinant

Throughout this paper we will use various well known models [1] for the non commu-
tative field of quaternions:

IH ∼= {a+ v | a ∈ IR ∼= ReIH, v ∈ IR3 ∼= ImIH}
∼= {a0 + a1i+ a2j + a3k | a0, a1, a2, a3 ∈ IR}
∼= {x+ y j | x, y ∈ /C}
∼= {A ∈M(2× 2, /C) | trA ∈ IR,A+A∗ ∈ IRI}.

Herein, we can identify i, j, k with the standard basis vectors of IR3 ∼= ImIH: if
v, w ∈ ImIH are two “vectors” their product v w = −v ·w+ v×w which is equivalent
to the familiar identities i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj and
ki = j = −ik. Obviously, the first model will turn out particularly useful when
focusing on the geometry of 3-space while the decomposition IH ∼= /C + /C j will prove
useful in the context of surfaces, 2-dimensional submanifolds, since their tangent
planes (and normal planes) carry a natural complex structure. We will switch between
these models as it appears convenient.

As the quaternions can be thought of as a Euclidean 4-space, IR4 ∼= IH, the
(conformal) 4-sphere S4 ∼= IR4∪{∞} can be identified with the quaternionic projective
line: S4 ∼= IHP 1 = {lines through 0 in IH2}. Thus, a point p ∈ S4 of the conformal
4-sphere is described by its homogeneous coordinates vp ∈ IH2; and its stereographic
projection onto Euclidean 4-space IR4 ∼= {v ∈ IH2 | v2 = 1} is obtained by normalizing
the second component of vp.

Since the quaternions form a non commutative field, we have to agree whether
the scalar multiplication in a quaternionic vector space is from the right or left: in
this paper, IH2 will be considered a right vector space over the quaternions. This
way, quaternionic linear transformations can be described by the multiplication (of
column vectors) with (quaternionic) matrices from the left : A(vλ) = (Av)λ. For a
quaternionic 2-by-2 matrix A ∈ M(2 × 2, IH) we introduce the Study determinant3)

[1] (cf. Study’s “Nablafunktion” [14])

D(A) := det(A∗A)
= |a11|2|a22|2 + |a12|2|a21|2 − (ā11a12ā22a21 + ā21a22ā12a11).

3) Note, that the notion of determinant makes sense for self adjoint matrices A ∈M(2× 2, IH).
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This is exactly the determinant of the complex 4-by-4 matrix corresponding to A
when using the complex matrix model for the quaternions. Thus, D clearly satisfies
the usual multiplication law, D(AB) = D(A)D(B), and vanishes exactly when A is
singular. The multiplication law implies that D is actually an invariant of the linear
transformation described by a matrix: D(U−1AU) = D(A) for any basis transforma-
tion U : IH2 → IH2. Also note that 0 ≤ D(A) ∈ IR.

Definition. The general and special linear groups of IH2 will be denoted by

Gl(2, IH) := {A ∈M(2× 2, IH) | D(A) 6= 0}
Sl(2, IH) := {A ∈M(2× 2, IH) | D(A) = 1}.

With the help of Study’s determinant, the inverse of a quaternionic 2-by-2 matrix
A ∈ Gl(2, IH) can be expressed directly as

A−1 =
1

D(A)

(
|a22|2ā11 − ā21a22ā12 |a12|2ā21 − ā11a12ā22
|a21|2ā12 − ā22a21ā11 |a11|2ā22 − ā12a11ā21

)
.

Note also, that Sl(2, IH) is a 15-dimensional Lie group — it will turn out to be a
double cover of the identity component of the Möbius group of S4.

Considering D : IH2 × IH2 → IR as a function of two (column) vectors we see
that D(v, v + w) = D(v, w) and D(v, wλ) = |λ|2D(v, w) — similar formulas holding
for the first entry since D is symmetric: D(v, w) = D(w, v). Reformulating our
previous statement, we also obtain that D(v, w) = 0 if and only if v and w are
linearly dependent4). Particularly, if v and w are points in an affine quaternionic line,
say the Euclidean 4-space {v ∈ IH2 | v2 = 1}, then D(v, w) = |v1 −w1|2 measures the
distance between v and w with respect to a Euclidean metric. This fact can be used
to express the cross ratio of four points in Euclidean 4-space (cf.[10]) in terms of the
Study determinant5):

|DV (h1, h2, h3, h4)|2 =

D
(
h1 h2

1 1

)
D
(
h3 h4

1 1

)

D
(
h2 h3

1 1

)
D
(
h4 h1

1 1

) .

The expression on the right hand is obviously invariant under individual rescalings of
the vectors which shows that the cross ratio is, in fact, an invariant of four points in
the quaternionic projective line IHP 1.

3. Quaternionic hermitian forms

will be a key tool in our calculus for Möbius geometry: any quaternionic hermitian
form s : IH2 × IH2 → IH,

s(v, w1λ+ w2µ) = s(v, w1)λ + s(v, w2)µ
s(v1λ+ v2µ, w) = λ̄s(v1, w) + µ̄s(v2, w)

s(w, v) = s(v, w),

4) All these properties are also easily checked directly, without using the complex matrix representation
of the quaternions.

5) For a more complete discussion of the complex cross ratio of four points in space consult [10].
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is determined by its values on a basis (e1, e2) of IH2, sij = s(ei, ej). Since s is
hermitian, s11, s22 ∈ IR and s21 = s̄12 ∈ IH, the quaternionic hermitian forms on IH2

form a 6-dimensional (real) vector space. Clearly, Gl(2, IH) operates on this vector
space via (A, s) 7→ As := [(v, w) 7→ s(Av,Aw)], or, in the matrix representation of s,
via (A, s) 7→ A∗sA. A straightforward calculation shows that det(As) = D(A)det(s).
This enables us to introduce a Lorentz scalar product

〈s, s〉 := −det(s) = |s12|2 − s11s22
on the space IR61 of quaternionic hermitian forms, which is well defined up to a scale6)

(or, the choice of a basis in IH2). Fixing a scaling of this Lorentz product, the special
linear transformations act as isometries on IR61 — Sl(2, IH) is a double cover of the
identity component7) of SO1(6), which itself is isomorphic to the group of orientation
preserving Möbius transformations of S4. Thus, restricting our attention to Euclidean
4-space {e1h+e2 | h ∈ IH}, the orientation preserving Möbius transformations appear
as fractional linear transformations (cf.[14],[15])

(
h
1

)
7→
(
a11 a12
a21 a22

)(
h
1

)
≃
(

(a11h+ a12)(a21h+ a22)
−1

1

)
.

If s 6= 0 lies in the light cone of IR61, 〈s, s〉 = 0, then the corresponding quadratic
form v 7→ s(v, v) annihilates exactly one direction vIH ⊂ IH2: 0 = s(v, v) vanishes iff
0 = |s11v1+s12v2|2 or 0 = |s21v1+s22v2|2 since at least one, s11 or s22 does not vanish.
Hence, we can identify a point p = vIH ∈ IHP 1 of the quaternionic projective line —
the 4-sphere — with the null line of quaternionic hermitian forms in the Minkowski
IR61 that annihilate this point. In homogeneous coordinates, this identification can be
given by8)

v =

(
v1
v2

)
↔
(
|v2|2 −v1v̄2
−v2v̄1 |v1|2

)
= sv. (1)

Note, that with this identification, 〈sv, s〉 = −s(v, v) for any quaternionic hermitian
form s ∈ IR61. If s = sw is an isotropic form too, then 〈sv , sw〉 = −D(v, w).

If, on the other hand, 〈s, s〉 = 1 we obtain — depending on whether s11 = 0 or
s11 6= 0 in the chosen basis (e1, e2) of IH2 —

s =

(
0 −n
−n̄ 2d

)
or s =

1

r

(
1 −m
−m̄ |m|2 − r2

)

with suitable n resp. m ∈ IH and d resp. r ∈ IR: the null cone of s is a plane with unit
normal n and distance d from the origin or a sphere with center m and radius r in
Euclidean 4-space {e1h + e2 | h ∈ IH}. Consequently, we identify the Lorentz sphere
S51 ⊂ IR61 with the space of spheres and planes in Euclidean 4-space, or with the space
of spheres in S4 — as the readers familiar with the classical model (cf.[3]) of Möbius
geometry might already have suspected. The incidence of a point p ∈ S4 ∼= IHP 1 and
a sphere s ⊂ S4, i.e. s ∈ S51 , is equivalent to s(p, p) = 0 in our quaternionic model.

A key concept in

6) At this point, we notice that the geometrically significant space is the projective 5-space IRP 5 with
absolute quadric Q = {IRx | 〈x,x〉 = 0}, not its space of homogeneous coordinates, IR61.

7) Using a basis of quaternionic hermitian forms, it is an unpleasant but straightforward calculation to
establish a Lie algebra isomorphism sl(2, IH)↔ o1(6).

8) Note the analogy with the Veronese embedding.
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4. Möbius differential geometry

is that of (hyper-) sphere congruences and envelopes of sphere congruences:

Definition. An immersion f : M → S4 is called an envelope of a hypersphere
congruence s : M → S51 if, at each point p ∈ M , f touches the corresponding sphere
s(p): f(p) ∈ s(p) and dpf(TpM) ⊂ Tf(p)s(p).

According to our previous discussion, the first condition — the incidence of f(p) and
the corresponding sphere s(p) — is equivalent to s(f, f) = 0 in our quaternionic model.

Calculating, for a moment, in a Euclidean setting — i.e. s = 1
r

(
1 −m
−m̄ |m|2 − r2

)
— we

find s(f, df) + s(df, f) = 2
r
(f −m) · df . Thus9),

Lemma. An immersion f : M → IHP 1 envelopes a sphere congruence s : M → S51 if
and only if s(f, f) = 0 and s(f, df) + s(df, f) = 0.

Before going on, we introduce the symmetric space of point pairs: given two (distinct)
points of the quaternionic projective line IHP 1, we may identify these points with a
quaternionic linear transformation P which maps a (fixed) basis (e1, e2) of IH2 to their
homogeneous coordinates — or, in coordinates, with a matrix having for columns the
homogeneous coordinates of the two points. This linear transformation P is obviously
not uniquely determined by the two points in IHP 1: any gauge transform P · H of
P with H in the isotropy subgroup K := {H ∈ Gl(2, IH) |He1 = e1λ,He2 = e2µ}
determines the same point pair. Thus, the space P of point pairs in the conformal 4-
sphere IHP 1 is a homogeneous space, P = Gl(2, IH)/K. Moreover, the decomposition
gl(2, IH) = k ⊕ p with

k = {X ∈ gl(2, IH) |Xe1 = e1λ,Xe2 = e2µ}
p = {X ∈ gl(2, IH) |Xe1 = e2λ,Xe2 = e1µ} (2)

is a Cartan decomposition since [k, k] ⊂ k [k, p] ⊂ p and [p, p] ⊂ k so that P is, in fact,
a symmetric space.

Now, if F = (f, f̂) : M → Gl(2, IH) is a framing (lift) of a point pair map
M → P, a simple calculation using (1) shows that

Ff =

(
0 0
0 1

)
and F f̂ =

(
1 0
0 0

)

if the relative scaling of f and f̂ is chosen such that F takes values in the special linear
group Sl(2, IH). Since Sl(2, IH) acts by isometries on the space IR61 of quaternionic
hermitian forms, for any sphere congruence s : M → S51 containing the points of f

and f̂ , we have

Fs =

(
0 s0
s̄0 0

)

9) Note, that with the identification (1) of points in IHP 1 with isotropic quaternionic hermitian forms,
s(f, df) + s(df, f) = −〈s, df〉 which gives the link with the classical model of Möbius geometry.
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with a suitable function s0 : M → S3 ⊂ IH taking values in the unit quaternions.
Passing to another set of homogeneous coordinates by means of a gauge transfor-
mation (f, f̂) 7→ (fλ, f̂ λ̂) results in s0 7→ λ̄s0λ̂. Thus, depending on a given sphere

congruence s, we may fix the homogeneous coordinates of f and f̂ such that s0 ≡ 1 —
leaving us with a scaling freedom (f, f̂) 7→ (fλ, f̂ λ̄−1) with λ ∈ IH. A second sphere
congruence s̃ (orthogonal to the first one) can be used to further fix the scalings via
s̃0 ≡ i up to λ ∈ /C. Giving a complete set of four accompanying orthogonal sphere
congruences and fixing a third one, ŝ, to satisfy ŝ0 ≡ j leaves us with the familiar
real scaling freedom, λ ∈ IR (cf.[3]). These choices of accompanying spheres, and

accordingly these choices of homogeneous coordinates for a point pair map (f, f̂) are
the only aspect of the presented calculus that will generally not work globally.

Writing down the derivatives df = fϕ + f̂ψ and df̂ = fψ̂ + f̂ ϕ̂ of f and f̂ , we
obtain the connection form

Φ := F−1dF =

(
ϕ ψ̂
ψ ϕ̂

)
: TM → gl(2, IH)

of a framing F : M → Gl(2, IH). A gauge transformation (f, f̂) 7→ (fλ, f̂ λ̂) of the
frame will result in a change

(
ϕ ψ̂
ψ ϕ̂

)
7→
(
λ−1ϕλ λ−1ψ̂λ̂
λ̂−1ψλ λ̂−1ϕ̂λ̂

)
+

(
λ−1dλ 0

0 λ̂−1dλ̂

)
(3)

of the connection form Φ. The integrability conditions 0 = d2f = d2f̂ yield the
Maurer-Cartan equation 0 = dΦ + Φ ∧ Φ for the connection form: the Gauss-Ricci
equations for f resp. f̂ ,

0 = dϕ+ ϕ ∧ ϕ+ ψ̂ ∧ ψ
0 = dϕ̂+ ϕ̂ ∧ ϕ̂+ ψ ∧ ψ̂, (4)

and the Codazzi equations,

0 = dψ + ψ ∧ ϕ+ ϕ̂ ∧ ψ
0 = dψ̂ + ψ̂ ∧ ϕ̂+ ϕ ∧ ψ̂. (5)

Note, that since the quaternions are not commutative, generally ϕ∧ϕ 6= 0. Moreover,
d(λϕ) = dλ∧ϕ+λdϕ, d(ϕλ) = dϕλ−ϕ∧dλ and ϕ ∧ ψ = −ψ̄∧ ϕ̄ for any quaternion
valued 1-forms ϕ and ψ and function λ : M → IH.

If s : M → IR61 is a map into the vector space of quaternionic hermitian forms,
then its derivative, ds : TM → IR61 is a 1-form with values in the quaternionic
hermitian forms. If Fs ≡ const, this derivative can be expressed in terms of the
connection form Φ of F : since d(Fs) = 0,

F ds = −F [s(.,Φ) + s(Φ, .)] ≃ −[Fs ·Φ + Φ∗ · Fs] (6)

when using the matrix representation for quaternionic hermitian forms.
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5. Curved flats and Isothermic surfaces

The concept of curved flats in symmetric spaces was first introduced by D. Ferus
and F. Pedit [9] as a natural generalization of developable surfaces: a curved flat
is an envelope of a congruence of flats in a symmetric space or, more technical, a
submanifold of a symmetric space (with semisimple isometry group) whose tangent
spaces are maximal abelian subalgebras in the tangent spaces of that symmetric space.
In [6] it was then applied to the geometry of isothermic surfaces in 3-space. To
demonstrate our quaternionic calculus at work, we are going to discuss curved flats
in the symmetric space P of point pairs in IHP 1. As in the codimension 1 case, these
will turn out to be Darboux pairs of isothermic surfaces in 4-space: given a point pair
map (f, f̂) : M → P, we choose a framing F : M → Sl(2, IH) and write its connection
form Φ = Φk + Φp : TM → sl(2, IH) = k ⊕ p. Then10),

Definition. A map (f, f̂) : M → P into the symmetric space of point pairs is called
a curved flat if Φp ∧ Φp = 0.

Note, that the defining equation is invariant under gauge transformations (3) of F ,
i.e. does not depend on a choice of homogeneous coordinates. Thus, the notion of a
curved flat is a well defined notion for a point pair map (f, f̂) : M → P.

In order to understand the geometry of a curved flat (f, f̂) : M2 → P in the
symmetric space of point pairs we will first express its connection form in a simpler
form, and then interpret it geometrically in a second step11). We start with an
Sl(2, IH)-framing F : M2 → Sl(2, IH) and write its connection form

Φ =

(
ϕ1 + ϕ2j ψ̂1 + ψ̂ j
ψ1 + ψ j ϕ̂1 + ϕ̂2j

)

in terms of complex valued 1-forms. Using a rescaling (f, f̂) 7→ (fλ, f̂ λ̂) we can

achieve ψ1 = 0; then, the curved flat equations read (we assume ψ 6= 0) ψ̂1 = 0

and ψ̂ ∧ ψ̄ = 0. A rescaling (f, f̂) 7→ (fλ̄, f̂λ−1) with a complex valued function

λ results in (ψ, ψ̂) 7→ (λ2ψ, λ̄−2ψ̂); as any 1-form on M2 has an integrating factor,

we may assume dψ = 0, i.e. ψ = dw. Since ψ̂ ∧ ψ̄ = 0, ψ̂ = ā4dw̄ with a suitable
function a : M → /C. From the Codazzi equations, da ∧ dw = 0 — thus, by a
holomorphic change zw = a2 of coordinates, ψ = a−2dz and ψ̂ = ā2dz̄, or, after
rescaling again with λ = a, ψ = dz and ψ̂ = dz̄. Now, the Codazzi equations
also yield ϕ̂2 ∧ dz = ϕ̄2 ∧ dz̄ and ϕ̂2 ∧ dz̄ = ϕ̄2 ∧ dz. Thus, ϕ2 = q1dz − q̄2dz̄ and
ϕ̂2 = −q̄1dz+q2dz̄ with suitable functions q1, q2 : M → /C. This way, ϕ2∧ϕ̄2 = ϕ̂2∧ ¯̂ϕ2
such that dϕ1 = dϕ̂1 from the Gauss-Ricci equations. With the ansatz ϕ̂1−ϕ1 = 2a,
we find that a rescaling (f, f̂) 7→ (fλ, f̂λ−1) with λ = ea yields ϕ1 = ϕ̂1. At the same

time, (ψ, ψ̂) 7→ (euψ, e−uψ̂) with u = a+ ā. So, we end up with a connection form

Φ =

(
iη + (q1dz − q̄2dz̄)j e−udz̄ j

eudz j iη + (−q̄1dz + q2dz̄)j

)
(7)

10) For simplicity of notation, we reduce the definition to the case under investigation.

11) Note that, from this point on, we will restrict to local geometry: as Darboux pairs of isothermic
surfaces generally only exist locally so do curved flats in the space of point pairs. Also, some of the
presented arguments require the dondegeneracy of the curvature line net of the surfaces.
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where u : M → IR, q1, q2 : M → /C and η : TM → IR is a real valued 1-form —
remember that we have chosen an Sl(2, IH)-framing from the beginning.

In order to interpret this connection form geometrically, we first note that all
sphere congruences

sc := F−1
(

0 c
c̄ 0

)
: M → S51

with c = eiϑ are enveloped by the two maps f and f̂ :

Fdsc = −
(

0 2[−Re(c̄q1)dz + Re(cq2)dz̄]j
2[Re(c̄q1)dz −Re(cq2)dz̄]j 0

)

Thus, in the IR61-model of Möbius geometry, the sc can be viewed as common normal

fields of f and f̂ . Using the identification (1) of points in IHP 1 and isotropic lines in
IR61, we obtain

df = F−1
(

0 eudz j
−eudz j 0

)
and df̂ = F−1

(
0 −e−udz̄ j

e−udz̄ j 0

)

as the derivatives (6) of f and f̂ . Calculating the induced metrics

〈df, df〉 = e2u|dz|2 and 〈df̂, df̂〉 = e−2u|dz|2

of f and f̂ , and their second fundamental forms with respect to sc,

−〈df, dsc〉 = eu[−2Re(c̄q1)|dz|2+ Re(cq2)(dz
2 + dz̄2)],

−〈df̂ , dsc〉 = e−u[−2Re(cq2)|dz|2+ Re(c̄q1)(dz
2 + dz̄2)],

we see that f and f̂ have well defined principal curvature directions (independent
of the normal direction sc) which do correspond on both surfaces ({sc | c ∈ S1} is a

“Ribaucour sphere pencil”), and that f and f̂ induce conformally equivalent metrics
on M . Moreover, z : M → /C are conformal curvature line coordinates on both sur-
faces, i.e. both surfaces are isothermic. Consequently, (f, f̂) : M → P is a “Darboux
pair” of isothermic surfaces in 4-space12):

Definition. Two surfaces are said to form a Darboux pair if they envelope a (non-
trivial) congruence of 2-spheres (two orthogonal congruences of 3-spheres in 4-space)
such that the curvature lines on both surfaces correspond and the induced metrics in
corresponding points are conformally equivalent.

Conversely, if (f, f̂) : M → P envelope two congruences of orthogonal spheres, say
s1, si : M → S51 , then the connection form

Φ =

(
ϕ1 + ϕ2j ψ̂ j
ψ j ϕ̂1 + ϕ̂2j

)

12) This geometric description of Darboux pairs of isothermic surfaces can obviously be used to define
isothermic surfaces and Darboux pairs of any codimension — as the one below for Christoffel pairs can
(cf.[13]). Note, that the flatness of the normal bundle of a surface — which is necessary to make sense of
the notion of curvature lines — is a conformal notion, i.e. it is invariant under conformal changes of the
ambient space’s metric.
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with complex 1-forms ψ, ψ̂ : TM → /C. Assuming the curvature lines of f and f̂ to
correspond, and their induced metrics to be conformally equivalent, we can introduce
common curvature line coordinates: ψ = euω and ψ̂ = e−uω, or ψ̂ = e−uω̄. In both
cases, from the Gauss-Ricci equations Re[d(ϕ1− ϕ̂1)] = 0, so that after a suitable real

rescaling of f and f̂ , Re(ϕ1 − ϕ̂1) = 0. Then, in the first case, the Codazzi equations

imply u ≡ const: the sphere congruences enveloped by f and f̂ lie in a fixed linear
complex, consequently f and f̂ are congruent in some space of constant curvature
(cf.[3], [6]) — and are not considered to form a Darboux pair. In the other case, the
Codazzi equations yield dω = 0 — we have conformal curvature line parameters, i.e.
f and f̂ are isothermic; we could also have concluded this from the fact that f and f̂
obviously form a curved flat:

Theorem. A surface pair (f, f̂) : M2 → P is a curved flat if and only if f and f̂
form a Darboux pair. Two surfaces forming a Darboux pair are isothermic.

The k-part — see (2) — of the Maurer-Cartan equation of a Gl(2, IH)-framing reads
0 = dΦk + Φk ∧ Φk + Φp ∧ Φp. Thus, for a curved flat, Φk = H−1dH with a suitable

H : M → K: if λ and λ̂ are given by

λ−1dλ = iη + (q1dz − q̄2dz̄)j and λ̂−1dλ̂ = iη + (−q̄1dz + q2dz̄)j

then a gauge transformation (f, f̂) 7→ (fλ−1, f̂ λ̂−1) of our previous framing with
connection form (7) leaves us with

Φ =

(
0 λ(e−udz̄ j)λ̂−1

λ̂(eudz j)λ−1 0

)
=:

(
0 ω̂
ω 0

)
.

The Codazzi equations for this new framing simply read dω = dω̂ = 0 showing that
ω̄ = df0 and ω̂ = df̂0 with suitable maps f0, f̂0 : M → IH. Here, we identify the two
copies of the quaternions sitting in p = IH ⊕ IH as the eigenspaces of adC : p → p,
C =

(
1 0
0 −1

)
, by means of the real endomorphism X 7→ X∗ of p. Note, that since

the 1-forms λ−1dλ, λ̂−1dλ̂ : TM → ImIH take values in the imaginary quaternions,
|λ| = |λ̂| ≡ 1. Consequently, the induced metrics of f0 : M → IH and f̂0 : M → IH,
IH ∼= IR4 considered as a Euclidean space, are

df0 · df0 = e2u|dz|2 and df̂0 · df̂0 = e−2u|dz|2.

Moreover, with the common unit normal fields nc = −λcλ̂−1 of f0 and f̂0, where
c = eiϑ, their second fundamental forms become

−df0 · dnc = eu[−2Re(cq1)|dz|2 + Re(c̄q2)(dz
2 + dz̄2)],

−df̂0 · dn̂c = e−u[−2Re(c̄q2)|dz|2 + Re(cq1)(dz
2 + dz̄2)].

(8)

Thus, f0 and f̂0 are two isothermic surfaces that carry common curvature line coor-
dinates — and, f̂0 and f̄0 have parallel tangent planes. Hence, we define13):

13) If f0 , f̂0 : M2 → ImIH , this definition yields the classical notion of a Christoffel pair (cf.[6]).

Documenta Mathematica 2 (1997) 335–350



346 Udo Hertrich-Jeromin

Definition. Two (non homothetic) surfaces f0, f̂0 : M2 → IH with parallel tangent
planes in corresponding points are said to form a Christoffel pair if the curvature lines
on both surfaces correspond and the induced metrics are conformally equivalent.

Conversely, if two surfaces f0, f̂0 : M2 → IH carry conformally equivalent metrics
and have parallel tangent planes in corresponding points f0(p) and f̂0(p) then14),

df0 = λeuψ jλ̂−1 and df̂0 = ±λe−uψ jλ̂−1, or df̂0 = λe−uψ̄ jλ̂−1 with a real valued
function u, a complex 1-form ψ : TM → /C and suitable quaternionic functions
λ, λ̂ : M → IH — where |λ| = |λ̂| ≡ 1 without loss of generality. In the first case, the

integrability conditions yield 0 = du∧ ψ showing that u ≡ const. Consequently, f̂0 is
homothetic to f0 — and f0 and f̂0 are not considered to form a Christoffel pair. In
the second case, df̄0 ∧ df̂0 = df̂0 ∧ df̄0 = 0. Hence, the surface pair f0, f̂0 : M → IH

gives rise to a curved flat by integrating Φ :=

(
0 df̂0
df̄0 0

)
— we obtain the following

Theorem. Two surfaces f0, f̂0 : M2 → IH form a Christoffel pair if and only if
df̄0 ∧ df̂0 = df̂0 ∧ df̄0 = 0. Two surfaces forming a Christoffel pair are isothermic.

Curved flats — or, Darboux pairs of isothermic surfaces — naturally arise in 1-
parameter families [9]: if Φ = Φk+Φp denotes one of the connection forms associated

to a curved flat (f, f̂) : M2 → P, then, with a real parameter ̺ ∈ IR, all the connection
forms

Φ̺ := Φk + ̺2Φp : TM2 → sl(2, IH) = k ⊕ p (9)

are integrable and give rise to curved flats (f̺, f̺̂) : M2 → P; in fact, if the connection
forms (9) are integrable for more than one value of ̺2, then the associated point pair
maps are necessarily curved flats. From (3), we learn that this 1-parameter family
of curved flats does not depend on the framing chosen to describe the curved flat
(f, f̂). Moreover, sending the parameter ̺→ 0, and rescaling (f̺, f̺̂) 7→ (̺−1f̺, ̺f̺̂)

or (f̺, f̺̂) 7→ (̺f̺ , ̺
−1f̺̂) at the same time, provides us with

(f̺=0, f̺̂=0) =

(
1 0
f̄0 1

)
or (f̺=0, f̺̂=0) =

(
1 f̂0
0 1

)
.

Hence, we may think of the Christoffel pair (f0, f̂0) — that is, as before, associated
to a 1-parameter family of curved flats by integrating

Φ̺ =

(
0 ̺2df̂0

̺2df̄0 0

)

— as a limiting case for the Darboux pairs (f̺, f̺̂). Comparison with (3) shows that
the spectral parameter ̺ corresponds to the scaling ambiguity of the members of a
Christoffel pair: one of the surfaces of a Christoffel pair is determined by the other
only up to a homothety (and translation).

We will use those facts to discuss perturbation methods (cf.[16]) for the construc-
tion of constant mean curvature surfaces and, in particular, for Bryant’s Weierstrass
type representation [4] for

14) If p is not an umbilic for either surface, it follows that the principal curvature directions of both
surfaces correspond. In case one of the surfaces is totally umbilic we need also to assume that the curvature
lines on both surfaces coincide — otherwise we might find two associated minimal surfaces.
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6. Constant mean curvature surfaces

in hyperbolic space forms. We restrict our attention to codimension 1 by assuming
that our surfaces lie in a fixed conformal 3-sphere, say s1. Thus the connection form
(7) of a Darboux pair (f, f̂) : M2 → IHP 1 takes the form

Φ =

(
i[η + 1

2(e
uHdz − e−uĤdz̄)j] e−udz̄ j

eudz j i[η + 1
2(e

uHdz − e−uĤdz̄)j]

)
(10)

where the (real) functions H, Ĥ can be interpreted as the mean curvature functions of

the members f0 and f̂0 of the limiting Christoffel pair: from (10) we see that a rescaling

(f, f̂) 7→ (fλ, f̂λ) will provide us with Φk = 0, such that df0, df̂0 : TM → ImIH. The
second fundamental forms (8) with respect to the remaining common normal field
ni = −λiλ−1 = −n̂i become

−df0 · dni = He2u|dz|2 − 1
2
Ĥ(dz2 + dz̄2)],

−df̂0 · dn̂i = Ĥe−2u|dz|2 − 1
2H(dz2 + dz̄2)].

The Codazzi equations (5) yield η = i
2(−uzdz + uz̄dz̄) and from (4) we recover the

classical Gauss equation 0 = uzz̄ + 1
4(H

2e2u − Ĥ2e−2u) holding for both surfaces

f0 and f̂0, and the classical Codazzi equations dH ∧ eudz = dĤ ∧ e−udz̄. Hence,
H ≡ const if and only if Ĥ ≡ const, reflecting the fact that a pair of parallel constant
mean curvature surfaces, or a minimal surface and its Gauss map form Christoffel
pairs (cf.[11]).

Calculating the derivative of the sphere congruence si enveloped by the two
surfaces f and f̂ — which form the Darboux pair associated with the Christoffel pair
(f0, f̂0) — we find

Fdsi =

(
0 (Heudz − Ĥe−udz̄)j

(−Heudz + Ĥe−udz̄)j 0

)
= H · F df + Ĥ · F df̂ .

Hence, the vector N := si−Hf−Ĥ f̂ is constant as soon as one of the mean curvatures,
H or Ĥ, is. In order to interpret this fact geometrically, we have to distinguish two
cases:

If HĤ 6= 0, i.e. (f0, f̂0) is equivalent to a pair of parallel constant mean curvature

surfaces, then 〈N, 2
Ĥ
f〉 ≡ 1 and 〈N, 2H f̂〉 ≡ 1 — and consequently (cf.[3]), the two

surfaces 1
Ĥ
f, 1

H
f̂ : M2 → s1 ≃ S3 ⊂ IHP 1 can be interpreted as surfaces in the space

M3
N := {y ∈ IR61 | 〈N, y〉 = 1, 〈s1, y〉 = 0, 〈y, y〉 = 0} of constant sectional curvature

κ = −〈N,N〉 = −(1−HĤ). Their induced metrics are

〈d( 2
Ĥ
f), d( 2

Ĥ
f)〉 = 4

Ĥ2
e2u|dz|2 and 〈d( 2

H f̂), d( 2
H f̂)〉 = 4

H2
e−2u|dz|2

while, with the unit normal fields t = si − 2
Ĥ
f and t̂ = si − 2

H f̂ in that space M3
N ,

their second fundamental forms become

−〈d( 2
Ĥ
f), dt〉 = 4

Ĥ2
e2u(1− 1

2
HĤ) |dz|2+ (dz2 + dz̄2)

−〈d( 2H f̂), dt̂〉 = 4
H2 e

−2u(1− 12HĤ) |dz|2+ (dz2 + dz̄2)
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— showing that both surfaces have the same constant mean curvature 1− 12HĤ. As

a special case, H = 1 and Ĥ = 2, this provides the well known relation between
constant mean curvature surfaces in Euclidean space IR3 and minimal surfaces in the
3-sphere S3.

If HĤ = 0, one of the surfaces f0 or f̂0 is a minimal surface, say Ĥ = 0, while the
other is homothetic to its Gauss map, say n = H f0. Now, the surface 2

H
f̂ : M2 →M3

N

lies in hyperbolic space, κ = −1, while f is the hyperbolic Gauss map (cf.[4]) of 2H f̂
since 〈N, f〉 ≡ 0, i.e. f takes values in the infinity boundary N ∈ S51 of M3

N . As

before, the mean curvature of 2
H f̂ : M2 → M3

N is easily calculated to be constant
= 1. This is how Bryant’s Weierstrass type representation [4] for surfaces of constant
mean curvature 1 in hyperbolic 3-space H3 can be obtained in this context: we write
the differential df̂0 = 1

2
(i + gj)ω̄j(i + gj) of a minimal immersion f̂0 : M2 → IR3

(and its Christoffel transform, its Gauss map f0 = (i+ gj)i(i + gj)−1 : M2 → S2) in
terms of a holomorphic 1-form ω : TM2 → /C and the (meromorphic) stereographic
projection g : M → /C of its Gauss map. Then, the constant mean curvature surface
f̂ : M2 → H3 (and its hyperbolic Gauss map f : M2 → N ≃ S2) are obtained by
integrating the connection form15)

Φ =

(
0 1

2
(i+ gj)ω̄j(i+ gj)

−2(i+ gj)−1dg j(i+ gj)−1 0

)
, (11)

to the framing (f, f̂) ≃ F : M2 → Gl(2, IH) where dF = FΦ — thus (locally)
characterizing Bryant’s Weierstrass type representation of surfaces of constant mean
curvature 1 in hyperbolic space as Bianchi’s T-transform [2] of minimal surfaces in
Euclidean space. In fact, introducing the spectral parameter (9), surfaces of constant
mean curvature c in hyperbolic space forms of curvature κ = −c2 arise by “perturba-
tion” of minimal surfaces in Euclidean 3-space (cf.[16]).

Parametrizing a minimal surface patch f̂0 in terms of curvature line parameters,
z = x+ iy, the above representation of f̂0 becomes the classical Enneper-Weierstrass
representation, i.e. ω = dz

g′
. Performing a Möbius transformation on the Gauss map

g (resp. f0 — its Christoffel transform) and integrating the Enneper-Weierstrass rep-
resentation again (i.e. taking the Christoffel transform of the Möbius transformed
Gauss map) yields the classical Goursat transformation of the minimal surface patch.
But, a closer look at the connection form (11) suggests that the Enneper-Weierstrass
representation itself can be interpreted as a Goursat type transformation of a pla-
nar patch: considering gj,

∫
ω̄j : M2 → /Cj as a (highly degenerate) Christoffel pair,

the corresponding minimal surface f̂0 is obtained as a Christoffel transformation of
f0 = 1

1+|g|2 [(1 − |g|2)i + 2gj], the stereographic projection of gj (“the” Christoffel

transform of
∫
ω̄j) into S2. This Goursat type transformation can (obviously) be

generalized to arbitrary Christoffel pairs of isothermic surfaces: if f0, f̂0 : M2 → IH
form a Christoffel pair, then, for any (constant) a ∈ IH, the quaternionic 1-forms

15) With the ansatz F =

(
2(x21g + x22)(i+ gj)−1 j(x21i− x22j)

2j(x11g + x12)(i+ gj)−1 −(x11i− x12j)

)
, the common form of Bryant’s

representation is obtained as xx∗ : M2 → H3 ⊂ {y ∈ Gl(2, /C) | y = y∗} ∼= IR41 where the scalar product on

H3 is induced by the Lorentz scalar product |y|2 = −det(y) on IR41.
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(a+ f̄0)
−1df̄0(a+ f̄0)

−1 and (a+ f̄0)df̂0(a+ f̄0) are closed — and consequently give
rise to a new Christoffel pair.
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Abstract. The theory of theta functions for arithmetic groups Γ that act
on the Drinfeld upper half-plane is extended to allow degenerate parameters.
This is used to investigate the cuspidal divisor class groups of Drinfeld mo-
dular curves. These groups are finite for congruence subgroups Γ and may
be described through the corresponding quotients of the Bruhat-Tits tree by
Γ. The description given is fairly explicit, notably in the most important
special case of Hecke congruence subgroups Γ over a polynomial ring.
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groups

Introduction.

Drinfeld modular curves are the substitutes in positive characteristics of classical
modular curves. Like these, they have a rich structure where various mathematical
disciplines interact: number theory, algebraic geometry, (non-Archimedean) function
theory, representation theory and automorphic forms, and others. They encode im-
portant pieces of the arithmetic of global function fields, notably those related to
two-dimensional Galois representations and elliptic curves, in a way similar to the
correspondence ascribed to Shimura, Taniyama and Weil and partially proven by A.
Wiles.

By their very construction, these curves come equipped with a uniformization
through the Drinfeld upper half-plane Ω, a one-dimensional rigid analytic symmetric
space. Hence many questions about such a curve MΓ may be attacked by function
theoretic means, through the construction and investigation of analytic functions on
Ω (analogues of elliptic modular forms, or of theta functions) that satisfy functional
equations under Γ, the group that uniformizes MΓ = Γ \ Ω.

Leaving aside Tate’s elliptic curves, the first appearance of non-Archimedean
uniformized curves is in work of Mumford [16] and of Manin-Drinfeld [14], where the
acting group Γ is a Schottky group, that is, a finitely generated free group consisting

Documenta Mathematica 2 (1997) 351–374



352 Ernst-Ulrich Gekeler

of hyperbolic elements. For the correspondingMumford curves, Gerritzen and van der
Put in their monograph [11] obtained a very satisfactory description of the minimal
model, the Jacobian, the Abel-Jacobi map, ...

A similar program for Drinfeld modular curves was started in [10], whose main
results were the construction of the Jacobian JΓ of MΓ through non-Archimedean
theta functions θΓ(ω, η, z) and, as an application, the analytic description of “Weil
uniformizations” of elliptic curves over global functions fields. Apart from the fact
that a Drinfeld modular curve is defined over a global field (which gives an abundance
of arithmetic structure), the crucial difference to Mumford curves is that MΓ = Γ \Ω
by construction is an affine curve, and has to be “compactified” to a smooth projective
curve MΓ by adding a finite number of “cusps” of Γ. Several natural questions (with
important arithmetical applications) arise, about the

• structure of the group C generated in the Jacobian JΓ by the cusps;

• degeneration of the theta functions θΓ(ω, η, z) if the parameters ω, η ∈ Ω ap-
proach cusps of Γ;

• relationship between C and the minimal model of MΓ.

It turns out that these questions have satisfactory answers in terms of the associated
almost finite graphs Γ\T , which can be mechanically calculated from the initial data
that define Γ, e.g., from congruence conditions.

In order to give more precise statements, we now introduce some notation.

We start with a function field K in one variable with exact field of constants Fq,
the finite field with q = pr elements. In K, we fix a place “∞”, and we let A ⊂ K
be the Dedekind subring of elements regular away from ∞. Then A is a discrete
and cocompact subring of the completion K∞. We finally need C, the completed
algebraic closure of K∞. By an arithmetic subgroup of GL(2, K), we understand a
subgroup commensurable with GL(2, A). Such a group Γ acts with finite stabilizers
on Ω = C − K∞, and MΓ will be the uniquely determined algebraic curve whose
space of C-points is given by Γ \ Ω. The cusps are given as the orbits Γ \ P1(K) on
the projective line P1(K). It is customary to recall here the obvious analogy of the
data K, A, K∞, C, Ω, GL(2, A) with Q, Z, R, C, H = complex upper half-plane,
SL(2,Z) (or rather H± = C −R and GL(2,Z)), respectively.

In [10], we studied theta functions θΓ(ω, η, z), which are defined as certain infinite
products depending on parameters ω, η ∈ Ω. These functions are meromorphic on Ω
with zeros (resp. poles) at the orbits of ω (resp. η); they transform according to a
character c(ω, η) : Γ −→ C∗, have a nice behavior at the boundary ∂Ω = P1(K) of Ω,
and give rise to a pairing Γ×Γ −→ K∗∞ on the maximal torsion-free Abelian quotient
Γ of Γ. The analytic space Ω has a canonical covering through standard rational
subsets of P1(C), the nerve of which equals the Bruhat-Tits tree T of GL(2, K∞).
There results a GL(2, K∞)-equivariant map λ : Ω −→ T (R) that allows to describe
many properties of MΓ and of related objects in terms of the graph Γ \ T . The main
results of the present paper go into this direction. They are:

• Theorem 3.8 and its corollaries, which give the link between theta functions,
cuspidal divisors on MΓ, and harmonic Γ-invariant cochains on T ;
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• the description, given in sections 4 and 5, of the cuspidal divisor class group
C(Γ) of MΓ and of the canonical map from C(Γ) to Φ∞(Γ) = group of connected
components of the Néron model of JΓ at∞ (here Γ is assumed to be a congruence
subgroup);

• the determination of the subgroup generated by the θΓ(ω, η, z) (ω, η ∈ P1(K))
in the group of all theta functions for Γ (Thm. 5.4), valid for Hecke congruence
subgroups Γ of GL(2, A), where A is a polynomial ring.

These results depend on an extension of the theory developed in [10] to the case of
theta functions θΓ(ω, η, z) whose parameters ω, η are allowed to lie in the boundary
of Ω. This is carried out in section two: proof of convergence, functional equation,
behavior at the boundary. Roughly speaking, theta functions with degenerate pa-
rameters behave similar to those with ω, η ∈ Ω, and analytic dependence on the
parameters holds at least for the associated multipliers c(ω, η). That part of the the-
ory, as well as the links (given in section three) with harmonic cochains on T and
cuspidal divisor groups on MΓ, works in the context of arbitrary groups Γ commen-
surable with GL(2, A), and may thus be used also for the study of non-congruence
subgroups. From section four on we specialize to congruence subgroups Γ and use the
known finiteness of C(Γ) in this case (i.e., the analogue of Manin-Drinfeld’s theorem,
cf. [2], [5]) to express it through the graph Γ \ T . C(Γ) agrees (modulo finite groups
annihilated by qdeg ∞ − 1) with H/H ! ⊕H⊥! , where H = H(T ,Z)Γ is the group of
Γ-invariant Z-valued harmonic cochains on T , H ! is the subgroup of cochains with
compact support mod Γ, and H⊥! its ortho-complement in H.

A refinement of the above in the important special case of Hecke congruence
subgroups Γ0(n) over A = Fq[T ] is given in section five. Here we use in a crucial way
the known results (cf. [9]) about the structure of the graph Γ0(n)\T . We conclude, in
section six, with a worked-out example (hopefully instructive), where the canonical
map can∞ : C(Γ) −→ Φ∞(Γ) fails to be injective or surjective even for a Hecke
congruence group Γ with prime conductor. The existence of a non-trivial kernel of
can∞ is reflected in congruence properties of a corresponding “Eisenstein quotient”
of JΓ, an elliptic curve in the example treated.

The notation of the present paper is largely compatible to that of [10], to which
it is a sequel. Thus without further explanation, for a group G acting on a set X and
x ∈ X, Gx is the stabilizer, Gx the orbit, G \X the set of all orbits, Gab the maximal
Abelian quotient of G. We often write gx for g(x), g ∈ G. As far as misconceptions
are unlikely, we do not distinguish between matrices in GL(2) and their classes in
PGL(2), and between varieties over C or K∞, their associated analytic spaces, and
their sets of C-valued points.

1. Background [10].

(1.1) We let K be the function field of a smooth projective geometrically connected
curve C over Fq (q = power of the rational prime p) and ∞ ∈ C a closed point fixed
once for all. Attached to these data, we dispose of

• the subring A of K of functions regular away from ∞;

• the completion K∞ of K at ∞;

• the completed algebraic closure C = C∞ of K∞;
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• Drinfeld’s upper half-plane Ω = C − K∞, on which GL(2, K∞) acts through(
a b
c d

)
z = az+b

cz+d
;

• the Bruhat-Tits tree T of GL(2, K∞).

Recall that T is a (q∞ + 1)-regular tree (q∞ = qdeg ∞ = size of residue class field
Fq(∞)) provided with a GL(2, K∞)-action and an equivariant map λ from Ω to the
real points T (R) of T .

The group GL(2, K) acts from the right on the space K2 of row vectors. For an
A-lattice (= projective A-submodule of rank two) Y →֒ K2, we let GL(Y ) = {γ ∈
GL(2, K) | Y γ = Y }.

(1.2) An arithmetic subgroup Γ of GL(2, K) is a subgroup commensurable with
some GL(Y ), i.e., Γ ∩ GL(Y ) has finite index in both Γ and GL(Y ), and which
acts without inversion on T . A congruence subgroup is some Γ that satisfies
GL(Y, n) ⊂ Γ ⊂ GL(Y ), where 0 6= n ⊂ A is an ideal and GL(Y, n) is the kernel
of the reduction map GL(Y ) −→ GL(Y/nY ). According to [20] II Thm. 12, there
are “many” subgroups of finite index of GL(Y ) that are not congruence subgroups,
although it is not easy to display examples.

Now fix some arithmetic subgroup Γ as above. The following facts, in the case
of congruence subgroups, are proved and/or described in more detail in [10] I - III;
their generalization to arbitrary arithmetic subgroups is obvious .

(1.2.1) Γ acts with finite stabilizers on Ω and T . Hence e.g. the quotient Γ \ Ω
may be defined as an analytic space.

(1.2.2) Γ has finite covolume in GL(2, K∞) modulo its center.
(1.2.3) The quotient Γ\T is (in an essentially unique fashion, loc. cit.) the union

of a finite graph and a finite number of half-lines • − − − • − − − • − − − • · · ·, the
ends of Γ \ T .

(1.2.4) There exists a smooth connected affine algebraic curve MΓ/C (which may
even be defined over a finite field extension K′ ⊂ K∞ of K) whose set MΓ(C) of C-
points agrees with Γ \ Ω as an analytic space. The MΓ or their canonical smooth
compactifications MΓ are what we here call Drinfeld modular curves.

(1.2.5) There are canonical bijections between the sets of

(a) ends of Γ \ T ,

(b) cusps MΓ(C)−MΓ(C) of MΓ, and

(c) orbits Γ \ P1(K) on the projective line P1(K).

In the sequel, we will not distinguish between (a), (b), (c) and label it by cusp(Γ).
Its cardinality is denoted by c = c(Γ).

(1.2.6) The genus g = g(Γ) of MΓ agrees with the number of dimQH1(Γ \ T ,Q)
of independent cycles of the graph Γ\T , which in turn equals the rank rk(Γab) of the
factor commutator group Γab of Γ.

Let Γ = Γab/tor(Γab) ∼= Zg(Γ) and Γf be the subgroup of Γ generated by the
elements of finite order. It follows from [20] I Thm. 13, Cor. 1 that

(1.2.7) (i) Γ/Γf is free in g generators,
(ii) tor(Γab) is generated by the image of Γf in Γab, and

(iii) the canonical map Γ −→ (Γ/Γf)ab is an isomorphism.
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(1.3) Let X(T ) and Y (T ) be the sets of vertices, of oriented edges of T , re-
spectively. As in [10], H(T ,Z) is the right GL(2, K∞)-module of Z-valued harmonic
cochains in T , i.e., of maps ϕ : Y (T ) −→ Z that satisfy ϕ(e) = −ϕ(e) (e = e oriented
inversely) and

(1.3.1)
∑

e∈Y (T ) with origin v

ϕ(e) = 0 (v ∈ X(T )).

Further, H(T ,Z)Γ denotes the Γ-invariants in H(T ,Z) and H !(T ,Z)Γ ⊂
H(T ,Z)Γ the subgroup of those ϕ with finite support modulo Γ. It follows
from (1.2.3) and simple graph-theoretical arguments that H !(T ,Z)Γ is free Abelian
of rank g = g(Γ), and is a direct factor of the free Abelian group H(T ,Z)Γ of rank
g + c − 1. In fact, there is a canonical injection with finite p-free cokernel (loc. cit.
sect. 3, 6)

j : H1(Γ \ T ,Z)
∼=−→ Γ →֒ H !(T ,Z)Γ,

which turns out to be bijective in important cases.
(1.4) A holomorphic theta function for Γ is an invertible holomorphic function

f : Ω −→ C that for each γ ∈ Γ satisfies

f(γz) = cf(γ) f(z)

with some cf(γ) ∈ C∗, and is holomorphic non-zero at the cusps of Γ ([10] 5.1). For
meromorphic theta functions, we allow poles and zeros on Ω, but not at the cusps.
The homomorphism cf : Γ −→ Γab −→ C∗ that maps γ to cf (γ) is the multiplier of
the (holomorphic or meromorphic) theta function f . The main construction of such
functions is as follows. Let ω, η be fixed elements of Ω, and put

(1.4.1) θΓ(ω, η, z) =
∏

γ∈Γ̃

(
z − γω
z − γη

)
.

Note that the product is not over Γ but over its quotient Γ̃ by its center (the latter
being isomorphic with a subgroup of A∗ = F∗q), which acts effectively on Ω. The
next theorem collects the principal properties of the θΓ. In the case of congruence
subgroups Γ, it is the synopsis of several results proved in [10], mainly Thm. 5.4.1,
Thm. 5.4.12, Thm. 5.7.1 and their corollaries. The reader will easily convince himself
that the arguments given there apply verbatim to the case of general arithmetic
subgroups as defined in (1.2).
1.5 Theorem. (i)The product (1.4.1) for θ(ω, η, z) = θΓ(ω, η, z) converges locally

uniformly (loc. cit. (5.2.2)) in z ∈ Ω and defines a meromorphic theta function for
Γ. It is invertible (holomorphic nowhere zero) if the orbits Γω, Γη agree, and has its
only zeroes and poles at Γω, Γη, of order ♯Γ̃ω, ♯Γ̃η, respectively, if Γω 6= Γη.
(ii) The multiplier c(ω, η, ·) : Γ −→ C of θ(ω, η, ·) factors through Γ.
(iii) Given α ∈ Γ, the holomorphic theta function uα(z) = θ(ω, αω, z) is well-defined
independently of ω ∈ Ω, and depends only on the class of α in Γ. Further, uαβ =
uαuβ.

(iv) c(ω, η, α) = uα(η)
uα(ω)

, and in particular, is holomorphic in ω and η.

(v) Let cα( · ) = c(ω, αω, ·) be the multiplier of uα. The rule (α, β) 7−→ cα(β) defines
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a symmetric bilinear map on Γ× Γ, which takes its values in K∗∞ →֒ C∗.
(vi) Let v∞ : K∗∞ −→ Z be the valuation and (α, β) := −v∞(cα(β)). Then (. , .) :
Γ × Γ −→ Z is positive definite.

As a consequence of (vi), the map c : Γ −→ Hom(Γ, C∗) induced by α 7−→ cα is
injective, and the analytic group variety Hom(Γ, C∗)/c(Γ) carries the structure of an
Abelian variety JΓ defined over K∞.
1.6 Theorem ([10] Thm. 7.4.1). JΓ equals the Jacobian variety of the curve

MΓ, and the Abel-Jacobi map with base point [ω] ∈ Γ\Ω = MΓ(C) is given by [η] 7−→
class of c(ω, η, ·) modulo c(Γ).

Again, the proof given in loc. cit. (including its ingredients (6.5.4) and (6.4.4)
carries over to the case of a general arithmetic Γ.

2. Theta functions with degenerate parameters.

(2.1) We show how functions θΓ(ω, η, z) with similar properties can be defined when
the parameters ω, η are allowed to take values in

(2.1.1) Ω = Ω ∪ P1(K).

Here Γ is any arithmetic subgroup of GL(2, K) and Γ̃ →֒ PGL(2, K) its factor group
modulo the center. For ω, η ∈ Ω we define the rational function F (ω, η, z) in z ∈ P1(C)
as

(2.1.2)

z−ω
z−η if ω 6=∞ 6= η

(1− z
η )−1 if ω =∞, η 6= 0,∞

1− z
ω

if η =∞, ω 6= 0,∞
z−1 if ω =∞, η = 0
z if η =∞, ω = 0
1 if ω = η =∞.

Hence, up to cancelling, F (z) = F (ω, η, z) has a simple zero at ω, a simple pole at η,
and is normalized such that F (∞) = 1 (resp. F (0) = 1, resp. F (1) = 1) whenever
the first of these conditions makes sense. We further put

(2.1.3) θΓ(ω, η, z) =
∏

γ∈Γ̃

F (γω, γη, z),

which specializes to (1.4.1) if both ω and η are in Ω.
(2.2) Our first task will be to establish the locally uniform convergence of the

product. We let “| . |”: C −→ R≥0 be the extension of the normalized absolute value
on K∞ to C and “| . |i”: C −→ R≥0 the “imaginary part” map, i.e., |z|i = inf{|z−x| |
x ∈ K∞}. Besides several obvious properties, it also satisfies

(2.2.1) |γz|i =
det γ

|cz + d|2 |z|i

for z ∈ Ω, γ =
(
a b
c d

)
∈ GL(2, K∞). We will perform the relevant estimates on the sets

(2.2.2) Un = {z ∈ Ω | |z| ≤ qn∞, |z|i ≥ q−n∞ }.

These are affinoid subsets of P1(C), and Ω =
⋃
n∈N Un is an admissible covering.
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2.3 Proposition. Let ω, η ∈ Ω be fixed. The product (2.1.3) for θΓ(ω, η, z)
converges locally uniformly for z ∈ Ω and defines a meromorphic function on Ω. If
both ω, η are in P1(K) or if Γω = Γη, it is even invertible on Ω. Otherwise, θΓ(ω, η, z)

has zeroes of order ♯Γ̃ω at Γω, poles of order ♯Γ̃η at Γη, and no further zeroes or poles
on Ω.
Proof. It is easily seen that the assertion is stable under replacing Γ by a com-

mensurable group. Since any Γ is commensurable with GL(2, A), we may assume
Γ = GL(2, A). Now for ω, η ∈ Ω, the result is [10] Prop. 5.2.3. Hence suppose that
at least one of ω and η lies in P1(K). Without restriction, ω ∈ P1(K), ω 6= η, and
ω 6=∞ 6= η. We need the following facts, which result from (2.2.1) and/or elementary
calculations:

(2.3.1) {γ ∈ Γ | γUn ∩ Un 6= ∅} is finite for each n ∈ N;

(2.3.2)
z−γω
z−γη − 1 = (det γ)(η−ω)

(z−γη)(cω+d)(cη+d)

(γ =
(
a b
c d

)
∈ Γ, γω 6=∞ 6= γη);

(2.3.3)
γ =

(
a b
c d

)
and γ′ =

(
a′ b′

c′ d′

)
define the same element in Γ∞ \ Γ

if and only if (c′, d′) = u(c, d) with some u ∈ F∗q ;

(2.3.4) |z − γη| ≥ q−n∞ whenever z ∈ Un, γη 6∈ Un.

Combining (2.3.1) and (2.3.4) yields the existence of c1(n, ω, η) > 0 such that

(2.3.5)
|det γ| |η−ω|
|z−γη| ≤ c1(n, ω, η)

uniformly on Un for almost all γ ∈ Γ.

In view of (2.3.2), we must estimate |(cω + d)(cη + d)| from below.
2.3.6 Claim. For given c2 > 0, the number of classes of pairs (c, d) as in (2.3.3)

(i.e., of classes of γ =
(
a b
c d

)
in Γ∞ \Γ) such that |(cω+d)(cη+d)| < c2 holds, is finite.

Proof of claim. First, exclude the finite (!) number of pairs (c, d) with cω+d = 0
or cη+ d = 0. There exists c3(ω) > 0 such that the non-vanishing elements cω + d of
the fractional ideal Aω + A ⊂K satisfy

(2.3.7) |cω + d| ≥ c3(ω).

Hence, if η ∈ Ω, the claim follows from:

(2.3.8)
For any c4 > 0, the number of pairs (c, d) with
|cη + d| < c4 is finite.

If η ∈ K, we consider the map (c, d) 7−→ (cω + d, cη + d) from A × A to K∞ ×K∞,
which by ω 6= η is injective. Its image is an A-lattice, which implies:

(2.3.9)
Given c5, c6 > 0, the simultaneous inequalities
|cω + d| ≤ c5, |cη+ d| ≤ c6 are possible for
a finite number of pairs only.
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Since the possible values of |cω+d|, |cη+d| are discrete and bounded from below (cf.
(2.3.7)), the assertion (2.3.6) follows.

Next we observe:

(2.3.10)
If (c, d) as above, n ∈ N and c7 > 0 are fixed,
then |z − γω| ≥ c7 uniformly in z ∈ Un for almost all

γ ∈ Γ of the form γ =
(
a b
c d

)
.

Now (2.3.2) together with (2.3.5), (2.3.6) and (2.3.10) yields the following:

(2.3.11)

Given ǫ > 0 and n ∈ N, almost all of the factors
of type z−γω

z−γη that appear in (2.1.3) satisfy∣∣∣ z−γωz−γη − 1
∣∣∣ < ǫ

uniformly in z ∈ Un.

It remains to verify the analogous statement for the other factors in (2.1.3). They are
of type

(2.3.12)

(a) (1− z
γη

)−1 if γω =∞, γη 6= 0,∞
(b) (1− z

γω ) if γη =∞, γω 6= 0,∞
(c) z−1 if γω =∞, γη = 0

(d) z if γη =∞, γω = 0.

Now cases (c) and (d) can occur only finitely many times since Γ∞ ∩ Γ0 is finite.
Cases (a) and (b) are similar, so we restrict to (b). Let γ0 be such that γ0η = ∞.
The other such elements of Γ are the γγ0, where γ ∈ Γ∞ = {

(
a b
0 d

)
| a, d ∈ F∗q , b ∈ A}.

Thus we have to show that
(
a b
0 d

)
γ0ω = a

dγ0ω + b
d tends with b to infinity in absolute

value, which is clear. Hence the product (2.1.3) converges uniformly on each Un to a
meromorphic function with the asserted divisor. �

From now on, we omit the subscript Γ in θ(ω, η, z) = θΓ(ω, η, z).
2.4 Proposition. For α ∈ Γ, θ(ω, η, z) satisfies a functional equation

θ(ω, η, αz) = c(ω, η, α) θ(ω, η, z)

with c(ω, η, α) ∈ C∗ independent of z ∈ Ω.
Proof. We let h(ω, η, α) be the quotient of F (ω, η, αz) by F (α−1ω, α−1η, z).

Since the two rational functions have the same divisors, h(ω, η, α) is well-defined and
constant. Now

θ(ω, η, αz) =
∏

γ∈Γ̃

F (γω, γη, αz)

=
∏
h(γω, γη, α) ·∏F (α−1γω, α−1γη, z)

=
∏
h(γω, γη, α) θ(ω, η, z),

whence the convergence of c(ω, η, α) :=
∏

γ∈Γ̃

h(γω, γη, α) results from that of θ(ω, η, z),

i.e., from (2.3). �
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(2.5) The next step is to describe the behavior of θ(ω, η, z) at the boundary, i.e.,
at s ∈ P1(K) = Ω−Ω. As usual, possibly replacing Γ by its conjugate γΓγ−1, where
γ ∈ GL(2, K) satisfies γ∞ = s, it suffices to discuss the case s = ∞. The stabilizer
Γ̃∞ in Γ̃ is represented by matrices

(
a b
0 1

)
, where a runs through a subgroup W∞ (of

order w∞, say) of F∗q , and b through an infinite-dimensional Fp-vector space b ⊂ K
commensurable with a fractional A-ideal. In particular, b ∈ C is discrete, which
ensures the convergence of the infinite product written below. Put

(2.5.1) t∞(z) = e−1b (z),

where eb : C −→ C is the function

eb(z) = z
∏

0 6=b∈b

(1− z

b
).

For the essential properties of such functions, see e.g. [12] I, IV. We need the obser-
vation:

(2.5.2) eb is F-linear, where F ⊂ Fq is the subfield generated by W∞. Hence for
a ∈W∞, t∞(az) = a−1t∞(z) and tw∞∞ (az) = tw∞∞ (z).

It results from the fact that b is even an F-vector space.

(2.5.3) The subspace Ωc = {z ∈ Ω | |z|i ≥ c} of Ω is stable under Γ̃∞ and
Γ̃u∞ = {

(
1 b
0 1

)
| b ∈ b}, and for a suitable c≫ 0, t∞ identifies Γ̃u∞ \Ωc = b \Ωc with a

small pointed ball Bǫ(0) − {0} = {t ∈ C | 0 < |t| ≤ ǫ}. Again for c≫ 0, Γ̃∞ \ Ωc is
an open subspace of Γ \ Ω →֒ Γ \ Ω (since γΩc ∩ Ωc 6= ∅ implies γ ∈ Γ∞, cf. (2.2.1)),
and tw∞∞ is a uniformizer around the point ∞. This allows to define holomorphy,
meromorphy, vanishing order at∞, ... for functions on Ωc invariant under Γ̃u∞ or Γ̃∞.
(For more details, see e.g. [5] V or [10] 2.7.)

As results from (2.4) and (2.3), θ(ω, η, z) is invariant under Γ̃u∞ and has neither
zeroes nor poles on b \ Ωc, provided c is large (or ǫ is small) enough. It has therefore
a Laurent expansion with respect to t∞. Now the factors of type z−γω

z−γη in (2.1.3) tend

to 1 uniformly in γ if |z|i −→∞, i.e., if |t∞(z)| −→ 0, hence they contribute 1+o(t∞)
to the Laurent expansion. Therefore,

(2.5.4)
θ(ω, η, z) is invertible around t∞ = 0 if
neither Γω nor Γη contains ∞.

(2.5.5) Suppose that∞ ∈ Γη 6= Γω. Without restriction, we may even assume η =∞.
The factors of type (b) and (d) in (2.3.12) yield

∏

γ∈Γ̃∞
γω=0

z
∏

γ∈Γ̃∞
γω 6=0

(1 − z

γω
) =

∏

γ∈Γ̃∞
γω=0

z
∏

γ∈Γ̃∞
γω 6=0

(1− z

aω + b
),

writing γ ∈ Γ̃∞ in the form
(
a b
0 1

)
as above. That product defines an entire function

f : C −→ C with its zeroes at the points z0 of shape z0 = aω + b, each of the same
order ♯{

(
a b
0 1

)
∈ Γ̃ | aω + b = z0}.

Let first ω 6∈ b . Since an entire function is determined up to constants by its
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divisor, we have, using (2.5.2):

const. f(z) =
∏

a∈W∞

eb(z − aω)

=
∏

a

(eb(z)− aeb(ω))

=
∏

a

(t−1∞ (1 + o(t∞)))

= t−w∞∞ (1 + o(t∞)).

Next, let ω ∈ b . Then f has zeroes of order w∞ at the points of b, which gives

const. f(z) = eb(z)
w∞ = t−w∞∞ .

It is straight from definitions that for a ∈W∞ (i.e.,
(
a0
0 1

)
∈ Γ̃∞),

θ(ω, η, az) = θ(ω, η, z)

holds. Hence, by (2.5.2), the Laurent expansion of θ(ω, η, z) w.r.t. t∞ is actually a
series in tw∞∞ . Therefore, under our condition ∞ ∈ Γη 6= Γω, θ(ω, η, z) has a simple
pole at the cusp represented by ∞ w.r.t. its correct uniformizer tw∞∞ . Analogous
assertions hold if ∞ ∈ Γω 6= Γη, or if Γω = Γη (in which case the possible zeroes and
poles at the cusps cancel).

We collect what has been proven.
2.6 Proposition. The function θ(ω, η, ·) has a meromorphic continuation to

the boundary P1(K) of Ω. With respect to the uniformizer twss at the cusp [s] of MΓ

represented by s ∈ P1(K), it

has a simple zero, if s ∈ Γω 6= Γη,
has a simple pole, if s ∈ Γη 6= Γω,
is invertible, if Γω = Γη (whether or not s ∈ Γω = Γη). �

Here of course, ws is the weight of [s], i.e., the size of the non-p part Ws of Γ̃s (cf.
(2.5)).
2.7 Corollary. The holomorphic function uα(z) := θ(ω, αω, z) on Ω (ω ∈ Ω,

α ∈ Γ fixed) does not depend on the choice of ω.
Proof. In view of (2.6), it suffices to verify this for z ∈ Ω. If the parameters ω, η

are in Ω, we get as in [10] Thm. 5.4.1 (iv):

θ(ω, αω, z)

θ(η, αη, z)
=

∏

γ∈Γ̃

(
z − γω
z − γαω

)(
z − γαη
z − γη

)
=
∏

γ∈Γ̃

(
z − γω
z − γη

)(
z − γαη
z − γαω

)

= θ(ω, η, z)θ(η, ω, z) = 1

The reader will easily verify through a case-by-case consideration that the same can-
celling takes place if ω, η are allowed to take values in P1(K). �
2.8 Definition. A cuspidal theta function for Γ is an invertible holomorphic

function f on Ω that for each γ ∈ Γ satisfies

f(γz) = cf(γ)f(z)
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with some cf (γ) ∈ C∗, and is meromorphic at the cusps. This means that, compared
to (1.4), we allow zeroes and poles at the cusps.

The prototype of a cuspidal theta function is θ(ω, η, ·), where both ω and η are
in P1(K).
2.9 Lemma.Let ω, η ∈ Ω, α, γ ∈ Γ. The factors F ( . , . , . ) of (2.1.2) satisfy

F (γω, γη, αz)

F (γω, γη, z)
=
F (γ−1αz, γ−1z, ω)

F (γ−1αz, γ−1z, η)

(identity of rational functions in z ∈ P1(C)).
Proof. We may assume that ω 6= η. Let

D(a, b, c, d) :=
a− c
b− c /

a− d
b− d (a, b, c, d ∈ P1(C))

be the cross-ratio which, through the usual conventions, delivers a well-defined element
of P 1(C) if at least three of a, b, c, d are different. Going through the cases, it is easily
seen that F (a, b, c)/F (a, b, d) = D(c, d, a, b), and hence the assertion follows from the
invariance of D(a, b, c, d) under projective transformations, in particular, under the
Klein group of order 4. �

2.10 Corollary. Let α ∈ Γ be fixed. The multiplier c(ω, η, α) satisfies

c(ω, η, α) = uα(η)
uα(ω)

. In particular, it is holomorphic on Ω and at the cusps, considered

as a function in ω with η fixed (resp. in η with ω fixed).
Proof. Let ω, η ∈ Ω be given. Then

c(ω, η, α) =
θ(ω, η, αz)

θ(ω, η, z)
=
∏

γ∈Γ̃

F (γω, γη, αz)

F (γω, γη, z)

=
∏

γ∈Γ̃

F (γ−1αz, γ−1z, ω)

F (γ−1αz, γ−1z, η)
=
uα(η)

uα(ω)
,

where the last equality follows from (2.7). �
2.11 Corollary. Let ω, η ∈ Ω. The constant c(ω, η, α) and the function uα

depend only on the class of α in Γ = Γab/tor(Γab).
Proof. By (2.10), the statement about c(ω, η, α) follows from that on uα. But

uα = θ(ω, αω, ·) may be described with an arbitrary base point ω ∈ Ω, so the result
follows from (1.5) (iii). �
2.12 Remark. As in Shimura’s book [21], we may provide Ω with a topology

coming from the strong topology on P1(C). To do so, it suffices to describe a funda-
mental system of neighborhoods for s ∈ P1(K). By the usual homogeneity argument,
we may even assume s =∞, in which case the system of sets {∞} ∪ Ωc (c ∈ N) is as
desired. It is then natural to expect that our theta functions satisfy

(2.12.1) lim
ω→ω0, η→η0

θ(ω, η, z) = θ(ω0, η0, z)

with respect to that topology. This is easy to verify if e.g. all of ω0, η0, z 6∈ Γω0 ∪Γη0
belong to Ω. On the other hand, for ω, η ∈ Ω, θ(ω, η, z) is normalized such that it
takes the value 1 at z =∞, whereas θ(∞, η, z) has a simple zero at z =∞ if η 6∈ Γ∞.
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This rules out the possibility of (2.12.1) if one of the parameters ω0, η0 belongs to the
boundary. The best we can hope for is the continuous dependence on parameters of
the multiplier instead of the theta functions themselves.
2.13 Corollary. Let ω0, η0 ∈ Ω, α ∈ Γ. Then

lim
ω→ω0, η→η0

c(ω, η, α) = c(ω0, η0, α),

where the double limit with respect to the topology defined in (2.12) is taken in arbitrary
order.
Proof. Apply (2.10). �
We finally note the observation, which is immediate from the product for

θ(ω, η, ·):
(2.14) The multiplier c(ω, η, ·) : Γ −→ C∗ has values in K∗∞ if both ω, η are in

P1(K).

3. Relationship with harmonic cochains.

Recall Marius van der Put’s exact sequence ([24], [1])

(3.1) 0 −→ C∗ −→ OΩ(Ω)∗
r−→ H(T ,Z) −→ 0

of right GL(2, K∞)-modules, where the middle term is the group of invertible func-
tions on Ω. As is explained in [10], the map r plays the role of logarithmic derivation.
We briefly sketch the construction of r, and refer to loc. cit. for details and notations.

Let f ∈ OΩ(Ω)∗ and e be an oriented edge of T with origin v and terminus w.
Then |f | is constant on the rational subdomains λ−1(v) and λ−1(w) of Ω determined
by v and w. Both of these are isomorphic with a projective line P1(C) with q∞ + 1
disjoint open balls deleted. The value of r(f) on e is then

(3.1.1) r(f)(e) = log
|f |λ−1(w)
|f |λ−1(v)

,

where here and in the sequel, log = logq∞ is the logarithm to base q∞.
Let Γ be any arithmetic subgroup of GL(2, K). We put Θh(Γ) ⊂ Θc(Γ) for the

groups of holomorphic and cuspidal theta functions for Γ as defined in (1.4) and (2.8),
respectively. We have a commutative diagram

(3.2)

Γ
����)

PPPPq
u j

Θh(Γ)/C∗
rh−→ H!(T ,Z)Γ

∩ ∩↓ ↓
Θc(Γ)/C∗

rc−→ H(T ,Z)Γ,

where u is derived from α 7−→ uα and the horizontal maps from r. Recall that j is
injective with finite prime-to-p cokernel ([10] 6.44; the proof given there applies to
general arithmetic groups), and is bijective at least if Γ̃ has no prime-to-p torsion, or
if K is a rational function field, ∞ the usual place at infinity, and Γ is a congruence
subgroup of GL(2, A) [9].
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(3.3) Next, we let b ⊂ K, Γ̃∞, Γ̃u∞, eb, t∞ etc. be as in (2.5). The function eb is
invertible on Ω and so r(eb) is defined. The quotient graph Γ̃u∞ \ T = b \ T has the
following shape:

s s s

s s s

s s s

s s · · · · · · >∞

where the distinguished end points to ∞.
Since r(eb) ∈ H(T ,Z) is invariant under Γ̃u∞, it follows from the way how edges

of T are identified mod b (see e.g. proof of Proposition 3.5.1 in [10]) that for edges
sufficiently close to ∞, the function r(eb) grows by a factor q∞ for each step towards
∞. In view of (3.1.1), this allows to describe the growth of eb(z) (or the decay of
t∞ = e−1b (z)) if z −→∞ in the topology introduced in (2.12). It is given by

(3.3.1) c1q
c2|z|i
∞ ≤ log |eb(z)| ≤ c′1qc2|z|i∞ (|z|i ≫ 0)

for suitable constants 0 < c1 < c′1, c2 > 0 depending on b. (These constants can be
made explicit if the need arises, see e.g. [7] for the case of A = Fq [T ].) Note that
multiplying z by the inverse π−1∞ of a uniformizer π∞ of K∞ corresponds to shifting
λ(z) by one towards ∞, using again the terminology of [10].

Similarly, if f ∈ OΩ(Ω)∗ is invariant under Γ̃u∞, its logarithmic derivative r(f)
may be considered as a function on edges of b \ T , which implies that f must satisfy
similar estimates

c3q
c4|z|i
∞ ≤ log |f(z)| ≤ c′3qc4|z|i∞

for |z|i large. Hence, multiplying f(z) by a suitable power tk∞ of t∞, the resulting
tk∞f(z) will be bounded around t∞ = 0, and f(z) is meromorphic at ∞. The same
reasoning applies to the other cusps. Thus:

(3.3.2) If f ∈ OΩ(Ω)∗ is invariant under the unipotent radical Γ̃us of Γ̃s then f is
meromorphic at the cusp represented by s ∈ P1(K).
3.4 Proposition. The maps rh and rc in (3.2) are bijective.
Proof. For rh, this is [10] 6.4.3. Injectivity of rc follows directly from (3.1). Thus

let ϕ ∈ H(T ,Z)Γ equal r(f) with f ∈ OΩ(Ω)∗. Then f satisfies f(γz) = cf(γ)f(z)
for γ ∈ Γ. The map γ 7−→ cf (γ) is a homomorphism, which vanishes on p-groups of

type Γ̃us . By (3.3.2), f is meromorphic at the cusps, and is therefore a cuspidal theta
function. �

(3.5) We let Θ′c(Γ) ⊂ Θc(Γ) be the subgroup of cuspidal theta functions f whose
multiplier cf : Γ̃ab −→ C∗ factors over Γ = Γab/tor(Γab) = Γ̃ab/tor(Γ̃ab). Since the

prime-to-p torsion of Γ̃ab is always finite ([20] II, sect. 2, Ex. 2), the inclusion

(3.5.1)
Θc(Γ)/Θ′c(Γ) →֒ Hom(tor(Γ̃ab), C∗)

f 7−→ cf | tor(Γ̃ab)
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shows that the index [Θc(Γ) : Θ′c(Γ)] is always finite and not divisible by p. Note
that Hom(tor(Γ̃ab), C∗) is trivial if Γ̃ has no prime-to-p torsion, as follows e.g. from
(1.2.7) (ii). Hence Θc(Γ) = Θ′c(Γ) in this case.
3.6 Lemma. Let j : Γ →֒ H !(T ,Z)Γ be the canonical inclusion. We have

j(Γ) = H !(T ,Z)Γ ∩ r(Θ′c(Γ)).

Proof. The inclusion of j(Γ) in r(Θ′c(Γ)) comes from (1.5) (ii), i.e., the fact that cα
factors through Γ. The opposite inclusion is [10] Cor. 7.5.3. �

(3.7) We next interpret the quotient r(Θ′c(Γ))/j(Γ) as the group of cuspidal
divisors of degree zero on the curve MΓ. Recall that cusp(Γ) = Γ \ P1(K) is the set
of cusps, of order c = c(Γ), and for each [s] ∈ cusp(Γ), ws = [Γ̃s : Γ̃us ] is its weight.
We put

D∞ := D∞(Γ) := Z[cusp(Γ)]

for the group of cuspidal divisors on MΓ. At [s], each f ∈ Θc(Γ) has an expansion
w.r.t. ts, and even w.r.t. twss if f ∈ Θ′c(Γ). We let ord[s](f) be the order of f w.r.t.
ts (which clearly depends only on the class [s] of s) and

(3.7.1) div(f) =
∑

[s]∈cusp(Γ)

ord[s]f

ws
[s] ∈ D∞ ⊗Q.

3.8 Theorem. The map f 7−→ div(f) induces an isomorphism

div : r(Θ′c(Γ))/j(Γ)
∼=−→ D0∞,

where D0∞ →֒D∞ is the subgroup of divisors of zero degree.
Proof. For f ∈ Θ′c(Γ), div(f) lies in D∞, as follows from (2.5.2). Clearly, div

restricted to H !(T ,Z)Γ (or more precisely, to those f such that r(f) ∈ H !(T ,Z)Γ) is
trivial, hence div is well-defined. It is surjective by (2.6) and injective since, by (3.4)
and (3.6), r(Θ′c(Γ)/j(Γ) is free Abelian of rank c(Γ)− 1. �
3.9 Corollary. Θ′c(Γ) is the group generated by the constants C∗ and the

functions θ(ω, η, ·) with ω, η ∈ P1(K).
Proof. Obvious from (3.8), (3.6), (3.4), and (2.11). �
For what follows, we write Θ′c for Θ′c(Γ), and abbreviate H(T ,Z)Γ and H !(T ,Z)Γ

by H and H !, respectively. Let l be the least common multiple of the weights ws,
[s] ∈ cusp(Γ).

3.10 Corollary. The index of (H ! + r(Θ′c))/H !
∼=−→ r(Θ′c)/j(Γ)

∼=−→ D0∞ in

H/H ! is a divisor of l−1
∏

[s]∈cusp(Γ)

ws, and the quotient group is annihilated by q − 1.

Proof. We may extend div to a map from H/H ! into the elements of degree zero
of ⊕[s]w−1s Z[s] →֒ D∞ ⊗ Q. The inverse image of D0∞ is precisely (H ! + r(Θ′c))/H !,
as follows from (3.8). The assertion now results from chasing in the diagram

(3.10.1)

0 −→ D0∞ −→ D∞
deg−→ Z −→ 0

∩ ∩ ∩
↓ ↓ ↓

0 −→ (⊕w−1s Z[s])0 −→ ⊕w−1s Z[s] −→ l−1Z −→ 0
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and noting that the ws are divisors of q − 1. �
(3.11) Since H ! is a space of functions with finite support on the edges of the

graph Γ \ T , it is provided with a natural bilinear form

(. , .) : H ! ×H ! −→ Q.

If Γ̃e is the stabilizer of e ∈ Y (T ), the volume of the corresponding edge of Γ \ T is
1
2
♯(Γ̃e)

−1. Two remarks are in order.
(3.11.1) (. , .) as defined above is the restriction of the Petersson scalar product

on H !(T ,C)Γ, which is a space of automorphic forms. In fact, the restriction of (. , .)

to Γ
∼=−→ j(Γ) →֒ H ! agrees with the pairing (. , .) in (1.5) (vi) ([10] 5.7.1), and in

particular, takes its values in Z.
(3.11.2) There exists a natural extension of (. , .) to a pairing labeled by the same

symbol
(. , .) : H ! ×H −→ Q.

It is characterized through its restriction to j(Γ)× r(Θ′c), where it satisfies

(3.11.3) (r(uα), r(f)) = −v∞(cf (α)),

compare (3.2) and (1.5) (vi). Finally, we put

(3.11.4) H⊥! := {ϕ ∈ H(T ,Z)Γ | (H !, ϕ) = 0}.

Then H⊥! is a direct factor of H and “almost complementary” to H !, i.e.,
H/H ! ⊕ H⊥! is finite. We will see at once that this group is closely related to the
cuspidal divisor class group of MΓ.

4. The cuspidal divisor class group.

From now on, we assume that Γ is a congruence subgroup of some GL(Y ). The next
result follows from determining the divisors of certain modular units (analogues of
classical Weber or Fricke functions) and expressing them through partial zeta func-
tions. This has been carried out in detail in the special cases where

a) the base ring A is a polynomial ring Fq[T ] and Γ ⊂ GL(2, A) is an arbitrary
congruence subgroup [2], or

b) the base ring A is subject only to the conditions given in (1.1), but Γ = GL(Y ) is
the full linear group of a rank-two A-lattice Y [5].

The proof of the general case (A and Γ without further restrictions) will follow e.g.
by combining the methods of [2] and [5]. The necessary ingredients are sketched in
[5] VI.5.13, but still some work has to be done to complete the argument. A rather
short proof which avoids the difficult calculations of loc. cit. will be given in [8].
4.1 Theorem. Let Γ be a congruence subgroup of GL(2, K). The cuspidal

divisors of degree zero on MΓ generate a finite subgroup C(Γ) of the Jacobian JΓ of
MΓ.

The corresponding result for classical modular curves has been proven by Manin
and Drinfeld [14]; a different proof has been given by Kubert and Lang [13]. Our aim
is now to give a more accurate description of C = C(Γ).
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4.2 Proposition. Let f be a modular unit, i.e., a meromorphic function on MΓ

with its divisor supported by the cusps. Then r(f) ∈ H⊥! = H !(T ,Z)Γ)⊥. Conversely,
if f ∈ Θ′c(Γ) is such that r(f) ∈ H⊥! then fq∞−1 is a modular unit.
Proof. Since f is invertible on Ω, r(f) is defined, and r(f) ∈ H⊥! follows from

(3.11.3). Let f ∈ Θ′c be such that r(f) ∈ H⊥! , and let χ = cf be its multiplier. By
(4.1) there exists n ∈ N and a modular unit g such that fn/g is holomorphic on Ω
and at the cusps. From [10] 7.5.3 fn/g = const. uα for some α ∈ Γ, hence χn = cα.
Since r(f)⊥j(Γ), we have |cα(β)| = 1 for all β ∈ Γ, which gives cα = 1. Therefore, χ
has finite order, which by (3.9) and (2.14) is a divisor of q∞ − 1. �

(4.3) We let P∞ be the divisors of modular units, i.e., the principal divisors on
MΓ supported by the cusps. The map div(f) 7−→ r(f) identifies P∞ with a subgroup
of H⊥! →֒H, which by abuse of language will be labeled by the same symbol P∞. By
the above,

(4.3.1) (q∞ − 1)(H⊥! ∩ r(Θ′c)) ⊂ P∞ ⊂ H⊥! ∩ r(Θ′c),
and the group C of cuspidal divisor classes is

(4.3.2) C = D0∞/P∞
∼=−→ r(Θ′c)/(j(Γ)⊕ P∞).

We therefore have an exact sequence

(4.3.3) 0 −→ U −→ C −→ V −→ 0,

where U = H⊥! ∩ r(Θ′c)/P∞ is isomorphic with a quotient of (Z/(q∞−1)Z)c(Γ)−1 and
V = r(Θ′c)/(j(Γ) ⊕H⊥! ∩ r(Θ′c)) →֒ H/H ⊕H⊥! . The following diagram displays the
inclusions.

(4.4)

�
�
�

�
�
�

@
@

@
@

@
@

�
�
�

�
�
�

@
@

@
@

@
@

r(Θ′c)

H = r(Θc)

H⊥! H !

(q∞−1)(H
⊥
! ∩ r(Θ

′
c))⊂P∞⊂H

⊥
! ∩ r(Θ

′
c) H ! ∩ r(Θ

′
c) = j(Γ)




֒→Hom(tor(Γ̃ab), C∗)

. . . . . . . . . . . . . . . . . .


D0∞

4.5 Remarks. (i) As follows from (1.2.7), the vertical inclusions are bijective if Γ
has no non-p torsion, in which case V = H/H ! ⊕H⊥! .
(ii) In the general case, both U and the cokernel of V in H/H !⊕H⊥! have prime-to-p
order. Hence the p-parts of C and of H/H ! ⊕H⊥! always agree.
(iii) We know of no single example of a congruence group Γ such that j(Γ) 6= H ! =
H !(T ,Z)Γ. The two groups agree at least if A = Fq [T ] (see [9]). However, there are
examples, given in the next section, where r(Θ′c) and even r(Θ′c) +H ! differs from H.

The description for the Jacobian JΓ of MΓ given in (1.6) is valid over each
complete subextension of C/K∞, in particular, over K∞ itself. We let φ∞(Γ) be the
group of connected components of the Néron model JΓ of JΓ/K∞.

Documenta Mathematica 2 (1997) 351–374



On the Cuspidal Divisor Class Group . . . 367

4.6 Theorem. φ∞(Γ) is canonically isomorphic with Hom(Γ,Z)/i(Γ), where
i : Γ →֒ Hom(Γ,Z) comes from the pairing (. , .) on Γ.

Proof. Easy consequence of the construction of JΓ ([10] sect. 7) and Mumford’s
results [17] on degenerating Abelian varieties. Details are given in [6] Cor. 2.11. The
assumption of A = Fq [T ] made in that paper is not used in an essential fashion. �

There is a canonical map can∞ from C = C(Γ) to φ∞(Γ), which to each divisor
class [D] associates the component of the reduction of [D] at infinity. Combining
what we know about these groups ((4.3), (4.4), (4.6)) yields the following description
of can∞.

4.7 Corollary. The map can∞ : C(Γ) −→ φ∞(Γ) is given by

C(Γ)
∼=−→ r(Θ′c)/(j(Γ)⊕ P∞) −→ Hom(Γ,Z)/i(Γ)

∼=−→ φ∞(Γ)
class of r(f) 7−→ class of (−v∞ ◦ cf).

Here cf : Γ −→ K∗∞ is the multiplier of f and v∞ : K∗∞ −→ Z the valuation.

Obviously, the kernel of can∞ is j(Γ)⊕ (H⊥! ∩ r(Θ′c))/j(Γ)⊕ P∞, i.e., the group
U of (4.3.3). As we will see, can∞ need neither be injective nor surjective.

We finally recall the fact that each congruence subgroup Γ′ contains a congruence
subgroup Γ without prime-to-p torsion. For such Γ, (4.5) (i) applies, and (4.7) becomes

(4.8) C(Γ)
∼=−→ H/H ! ⊕ P∞

proj.−→ H/H ! ⊕H⊥! →֒ Hom(H !,Z)/i(H !)
∼=−→ φ∞(Γ).

Hence in this case, φ∞(Γ) as well as the image φcusp∞ (Γ) := can∞(C(Γ)) of the cuspidal
divisor classes may be described entirely in terms of the almost finite graph Γ \ T .
Note that assertions similar to (4.6) - (4.8) are valid also in the case of a general
arithmetic group Γ (i.e., without the assumption of being a congruence subgroup),
except for the finiteness of C(Γ). By analogy with the number field case [18], that
latter is unlikely to hold.

5. The case of Hecke congruence subgroups over a polynomial ring.

We now assume that A equals the polynomial ring Fq [T ] and Γ is the Hecke congruence

subgroup Γ0(n) = {
(
a b
c d

)
∈ GL(2, A) | c ≡ 0 mod n} for a certain n ∈ A. A lot

of material about these groups, including structural properties of Γ \ T , formulae for
g(Γ), c(Γ) etc., may be found in [9]. Note in particular that (loc. cit., Thm. 3.3)

(5.1) H1(Γ \ T ,Z) ∼= Γ
∼=−→
j
H! = H !(T ,Z)Γ.

(5.2) We start with a few examples that illustrate how can∞ : C(Γ) −→ φ∞(Γ) may
be calculated. Let q = 2. Apart from the general advantage that g(Γ) and c(Γ) are
then small, q = 2 forces that

(5.2.1) the group U of (4.3.3) is trivial, hence

(5.2.2) can∞ : C(Γ) is injective, and

(5.2.3) C(Γ) = H/H! ⊕H⊥! , due to (3.10).

5.3 Examples.

(5.3.1) Γ = Γ0(n), n = T (T 2 + T + 1) ∈ F2[T ]. The graph Γ \ T looks:
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Here · · · > indicates a cusp. Let γ1, γ2 be the two cycles of length 4, oriented counter-
clockwise, and ϕ1, ϕ2, ϕ3 the Z-valued harmonic cochains flowing from the SW, the
SE, the NE cusp, respectively, to the NW cusp, going the way round counter-clockwise.
Then {γ1, γ2} and {γ1, γ2, ϕ1, ϕ2, ϕ3} are Z-bases of H ! and H, respectively. With
respect to these bases, the pairing (. , .) : H ! ×H −→ Z is given by

γ1 γ2 ϕ1 ϕ2 ϕ3
γ1 4 −1 2 1 1
γ2 −1 4 3 2 1

.

We get ♯φ∞(Γ) =
∣∣∣det

(
4,
−1,
−1
4

)∣∣∣ = 15, and after an elementary computation, ♯C(Γ) =

[H : H ! ⊕H⊥! ] = 15, too. Hence can∞ is bijective.

N.B. JΓ splits into two elliptic curves with 3 resp. 5 rational points over K =
F2(T ), which are therefore all “cuspidal” ([6] 4.4).

(5.3.2) Drawings of the graphs Γ \ T (Γ = Γ0(n)) for the next examples may be
found in [19]. For these, the matrix of (. , .) : H ! × H −→ Z and thus C and φ∞
may be calculated as above. We restrict to giving the results. In all cases, can∞ is
bijective (which, however, is not typical: see (5.3.3)!).

n ∈ F2[T ] g(Γ) c(Γ) C(Γ)

T 2(T + 1) 1 6 Z/6Z
T 3 1 4 Z/4Z

T 3 + T + 1 2 2 Z/7Z
(T 2 + T + 1)2 2 5 Z/2Z× Z/10Z

T 4 3 6 Z/2Z× Z/8Z× Z/8Z

(5.3.3) Γ = Γ0(n), where (i) n = T 4 + T 3 + 1 or (ii) n = T 4 + T + 1, which both
are irreducible over F2. In both cases, g(Γ) = 4, c(Γ) = 2, ♯C(Γ) = 5 (see also (5.6)).
However, φ∞(Γ) ∼= Z/2Z×Z/80Z for (i) and φ∞(Γ) ∼= Z/45Z for (ii). Hence can∞ is
not surjective in these cases.

We let now again Fq be an arbitrary finite field, n a monic polynomial of degree
d in A = Fq [T ], and Γ = Γ0(n). We give an intrinsic description of the group Θ′c(Γ)
of (3.5).

5.4 Theorem. Let n have h different monic prime divisors in A. Then Θ′c(Γ)

has index (q − 1)2
h−1

in Θc(Γ).
Proof. Without restriction, we may assume q > 2.

(i) By (5.1) and (3.6), H ! ⊂ r(Θ′c), hence Θc/Θ
′
c

∼=−→ H/r(Θ′c). Consider the commu-
tative diagram with exact rows:
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(5.4.1)

0 → r(Θ′c)/H !→ H/H ! → H/r(Θ′c) → 0

≀‖|↓ ∩↓ div |↓α

0 → Div0∞ →(
⊕

[s]∈cusp(Γ)

w−1s Z[s])0 → (
⊕
w−1s Z[s] /Z[s])0→ 0

The right hand arrow α is injective; it suffices therefore to calculate its image.

(ii) From [9] 2.15 we know that Γ has precisely 2h cusps [s] with ws = q − 1 (the
regular cusps), and for the other (irregular) cusps, ws = 1. Hence the lower right
group in (5.4.1) equals (Z/(q − 1)Z)reg(Γ),0, the subgroup of elements of degree zero
in (Z/(q−1)Z)reg(Γ), where reg(Γ) is the set of regular cusps. Using this identification,

α : r(Θc)/r(Θ
′
c) = H/r(Θ′c) →֒ (Z/(q − 1)Z)reg(Γ),0

associates with each r(f) ∈ H the 2h-tuple (. . . , ord[s]f mod q − 1, . . .).

(iii) We have to introduce some more notation. Suppose from now on that d :=
deg n ≥ 2. (The case d = 1, which leads to g(Γ) = 0, c(Γ) = 2, Γ \ T isomorphic
with a straight line · · · − −− •−−− • −−− • · · ·, is easily dealt with directly. The
result follows in this case also from (5.7).)
Then to each cusp [s] there corresponds a maximal half-line hl[s] of Γ \ T . We let e[s]
be the first edge of hl[s], oriented away from [s], and call it the base edge of [s].

s s s� . . . . . . . . . .- [s]
e[s]

5.4.3 Claim. For each f ∈ Θc, we have ord[s]f = r(f)(e[s]).
For the proof of this fact, it suffices to verify r(ts)(e[s]) = 1, where ts is the

corresponding uniformizer, cf. (2.5). As usual, possibly replacing Γ by a conjugate,
we may assume s =∞, in which case the assertion is a consequence of

• Proposition 1.14 of [7],

• the way how vertices and edges of T are identified under Γ∞,

and the trivial but crucial fact:

• each fractional ideal b of K has a direct complement of the form (πr∞) in K∞.
Here π∞ is a uniformizer at ∞, e.g. π∞ = T−1.

(iv) Let ϕ ∈ H = H(T ,Z)Γ. The harmonicity condition (1.3.1) for ϕ as a function
on Γ \ T reads

(5.4.4)
∑

e∈Y (Γ\T )
o(e)=v

m(e)ϕ(e) = 0

for each vertex v of Γ \ T , where the multiplicity m(e) (1 ≤ m(e) ≤ q + 1) takes care

of the identification of edges of T modulo Γ. Clearly,
∑

o(e)=v

m(e) = q + 1.
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(v) The next statements result from the description of Γ \ T given in [9]. As
usual, [0] and [∞] denote the cusps represented by (0 : 1) and (1 : 0), respec-
tively. Their corresponding half-lines hl[0] and hl[∞] in Γ \ T are connected by
a path γ consisting of a sequence of d − 2 edges e1, . . . , ed−2 of valence 3. The
edges e = e[0], e1, e1, . . . , ed−2, ed−2, e[∞] enter with multiplicity m(e) = 1 into (5.4.4),
whereas the d − 1 edges connecting hl[0] ∪ γ ∪ hl[∞] with the rest of Γ \ T have
multiplicity q − 1, always with respect to vertices on γ. This is the picture:

(5.4.5)

� -....... ....... .....-..... - - �u u u uu u
γ

[0]
e[0] e1 ed−2 e[∞]

[∞]

︸ ︷︷ ︸
hl[0]

︸ ︷︷ ︸
edges e with m(e) = q − 1

︸ ︷︷ ︸
hl[∞]

(vi) By the above, for any ϕ ∈ H we have

ϕ(e[0]) ≡ ϕ(e1) ≡ · · · ≡ ϕ(ed−2) ≡ −ϕ(e[∞]) mod q − 1.

The group W of Atkin-Lehner-involutions (which acts on MΓ as well as on Γ\T ) acts
transitively on reg(Γ), and some pair ([s], [s′]) of regular cusps lies in the W -orbit of
([0], [∞]) if and only if [s′] = w[s], where w = wn is the total involution induced from
the matrix

(
0 1
n 0

)
∈ GL(2, K). Hence for any ϕ ∈ H ∈ reg(Γ),

(5.4.6) ϕ(e[s]) ≡ −ϕ(ew[s]) mod q − 1

holds. On the other hand, it is obvious from (5.4.5) that for each pair ([s], w[s]) of w-
conjugate regular cusps there exists a harmonic cochain ϕ ∈ H such that ϕ(e[s]) = 1,

ϕ(ew[s]) = −1. Hence the image of α in (Z/(q− 1)Z)reg(Γ),0 (see (5.4.2)) agrees with

the free Z/(q − 1)Z-submodule of rank 1
2
♯ reg(Γ) = 2h−1 defined by the congruence

condition (5.4.6), which finally yields the result. �

5.5 Corollary. With notations as in (5.4), the cokernel φ∞/φ
cusp
∞ of can∞ :

C(Γ) −→ φ∞(Γ) has order a multiple of (q − 1)2
h−1

: [H⊥! : H⊥! ∩ r(Θ′c)].
Proof. With identifications as in (4.7), φcusp∞ = r(Θ′c)/H ! ⊕ H⊥! ∩ r(Θ′c) →֒

H/H ! ⊕H⊥! →֒ φ∞. The stated value is the index of φcusp∞ in H/H ! ⊕H⊥! . �
For the remainder of this section, we suppose in addition that n is prime. The

cuspidal divisor class group C = C(Γ) of Γ = Γ0(n) has been determined in [3] and,
with different methods, in [7]. The result is

5.6 Theorem. In the above situation, C is cyclic of order qd−1q2−1 if d = deg n is

even and qd−1
q−1 if d is odd.

Here c(Γ) = 2 with the two cusps [0] and [∞]. A meromorphic function f on MΓ

with divisor ♯(C)([0] − [∞]) may be constructed as follows. Let ∆ : Ω −→ C be the
Drinfeld discriminant (see e.g. [7]) and ∆n(z) = ∆(nz). Then ∆/∆n is a modular
function (i.e., invariant) for Γ and div(∆/∆n) = (qd− 1)([0]− [∞]) (loc. cit. (3.11)).
Let now

r := (q2 − 1)(q − 1) for even d
= (q − 1)2 for odd d.

Using the machinery of Drinfeld modular forms, it is further shown in [7] 3.18:
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5.7 Theorem. ∆/∆n admits an r-th root in OΩ(Ω)∗, and r is maximal with
this property.

(5.8) Let Dn be such an r-th root. It transforms under Γ through a certain
character ωn : Γ −→ F∗q →֒ C∗ of precise order q− 1 (loc. cit. 3.21, 3.22). Therefore,
Dq−1
n (but no smaller power of Dn) is Γ-invariant, and it has the asserted divisor

♯(C)([0]− [∞]) on MΓ. Put finally

(5.8.1) t := gcd(q − 1, ♯(C)).

Then yet

div(D(q−1)/tn =
♯(C)
t

([0]− [∞])

is an integral divisor, whose class generates the subgroup Ut of order t in C. A look
at (4.7) shows that Ut is contained in the kernel of can∞, with which it must agree
in view of (5.7).
5.9 Theorem. Let n be an irreducible monic polynomial of degree d in A =

Fq [T ], let Γ = Γ0(n) be the Hecke congruence subgroup, and t as given in (5.8.1).

(i) There is an exact sequence 0 −→ Ut −→ C can∞−→ φ∞, where Ut is the unique
subgroup of order t in C = C(Γ).
(ii) The cokernel φ∞/φ

cusp
∞ of can∞ has order a multiple of t.

Proof. (i) has been shown. (ii) comes from (5.5), noting that [H⊥! : H⊥! ∩r(Θ′c)] =
(q − 1)/t. �

Pairs (q, d) where t > 1 are for example (4,3), (7,3), (13,3) with t = 3 and (3,4),
(5,4) with t = 2. In the final section, we work out an example with (q, d) = (7, 3).

6. An example.

We consider in detail the case where n is a prime of degree 3 in A = Fq[T ]. The graph
Γ \ T looks ([4] 5.3, Γ := Γ0(n)):

(6.1) u u u

u u

- - �

?? -

u� ... -. . .[0]
e[0] e1 e[∞]

[∞]

ẽ[0] ẽ[∞]

ẽx

Here - stands for q edges ẽx indexed by x ∈ Fq. The multiplicities m(e) (see
(5.4.4)) of all drawn edges and their inverses are 1 except for ẽ[0] and ẽ[∞] , which enter
with multiplicity q− 1 into the harmonicity condition w.r.t. their origins. Hence e.g.

(q − 1)ϕ(ẽ[∞]) − ϕ(e1) − ϕ(e[∞]) = 0

for ϕ ∈ H. The scalar product on H ! = H !(T ,Z)Γ is such that each pair {e, e} of
inversely oriented edges contributes volume 1 except for {e1, e1}, which has volume
q − 1. For each x ∈ Fq , let ϕx be the unique element of H ! with

ϕx(ẽ[∞]) = −1, ϕx(ẽy) = δx,y (y ∈ Fq).
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Let further ψ ∈ H be such that

ψ(e[0]) = 1 = ψ(e1) = −ψ(e[∞])

and ψ vanishes off the line from [0] to [∞]. Next, let δ ∈ H be defined as

δ =
∑

x∈Fq

ϕx + (q2 + q + 1)ψ.

Then, as is easily verified:
(6.2) (i) {ϕx | x ∈ Fq} is a basis of H !.

(ii) {ϕx | x ∈ Fq} ∪ {ψ} is a basis of H.

(iii) H⊥! = Zδ

(iv) r(Θ′c) = H ! + (q − 1)Zψ (use (5.4)!)

(v) H⊥! ∩ r(Θ′c) = q−1
t Zδ (t := gcd(q − 1, q2 + q + 1))

(vi) P∞ = (q − 1)Zδ (see (4.3)).
Furthermore,

(6.3) (i) C = r(Θ′c)/H ! ⊕ P∞
∼=−→ Z/(q2 + q + 1)Z

ϕ 7−→ ϕ(e[0])
(in accordance with (5.6)) and
(ii) ♯(φ∞) = q2 + q + 1 = ♯(C) (from calculating the determinant of
(. , .) : H! × H ! −→ Z), but can∞ : C −→ φ∞ has kernel and cokernel each of
size t. (It is easy to show that in this case, φ∞ is cyclic, too.)

(6.4) As is explained in [10], the splitting of the Jacobian J := J0(n) of MΓ

corresponds to the splitting ofH !⊗Q under the Hecke algebra, which can be calculated
by the formulae in [4], or by the approach via modular symbols proposed in [23]. Let
now, more specifically

(6.4.1) q = 7 and n = T 3−2 ∈ F7[T ], which gives ♯(C) = 57 and t = gcd(6, 57) =
3. In that case, H ! ⊗ Q splits under the Hecke algebra into an irreducible piece of
dimension 6 and the eigenspace generated by (see [4], table 10.3)

(6.4.2) ϕ =
∑

x∈F7

axϕx with (a0, . . . , a6) = (4, 1, 1,−2, 1,−2,−2).

This means, there exists an elliptic curve E/K, uniquely determined up to isogeny,
with good reduction outside of the two places ∞, (n) of K = F7(T ), multiplicative
reduction at (n) and split multiplicative reduction at ∞, which has a “Weil uni-
formization” π : MΓ −→ E, and whose reduction at (T − x) has 8 + ax rational
points over A/(T − x) = F7. We have

(6.4.3) (ϕ, ϕ) = 39, m := min{(ϕ, α) > 0 | α ∈ H !} = 3, hence ([6] 3.19, 3.20)
deg π = 39/3 = 13 and v∞(jE) = −3 for the j-invariant jE of E, π supposed to be a
“strong Weil uniformization”. Comparing with [4] table 9.3, case 3a and performing
the unramified quadratic twist to get split multiplicative reduction at ∞ yields the
following equation for E:

(6.4.4) Y 2 = X3 + aX + b
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with a = −3T (T 3 + 2), b = −2T 6 + 3T 3 + 1. It can be shown by routine methods
that (6.4.4) in fact yields the strong Weil curve in the given isogeny class, and that

(6.4.5) E(K) = {0, (3T 2,±4(T 3 − 2))} ∼= Z/3Z.

(We should note here that the equation given in [23] p. 289, dealing with the same
example, does not describe the isogeny factor E of J but its unramified quadratic
twist. Hence some conclusions derived there must be slightly modified.)

Similar to (4.7), there is a map can∞,E : CE −→ φ∞,E and a commutative
diagram

(6.4.6)

C can∞−→ φ∞

↓ ↓
CE can∞,E−→ φ∞,E ,

where CE is the image of the map C −→ E(K) derived from π and φ∞,E the group
of connected components of E at ∞, isomorphic with Z/mZ = Z/3Z. Further,
as results from the calculation of Hecke operators, C −→ E(K) is non-trivial, hence
C −→ CE = E(K) ∼= Z/3Z, and E is the quotient of J corresponding to the Eisenstein
prime number l = 3 ([15], [22]). Since, by (5.9), can∞ kills the subgroup of order t = 3
in C, (6.4.6) forces can∞,E to be trivial. In other words:

(6.4.7) The rational 3-division points (6.4.5) of E map to the connected compo-
nent of the Néron model at ∞.
Of course, this is easy to see directly. An equivalent form of stating this fact is as

follows: Let f ∈ Θc(Γ) be such that r(f) = δ, and regard ϕ ∈ H !
∼=←− Γ as the class

of some element of Γ. Then f6 is a modular unit and, up to scaling, a 6-th root of
∆/∆n. Its third root f2 belongs to Θ′c(Γ) and transforms under Γ through a character
χ = cf2 , and χ(ϕ) is a non-trivial third root of unity.

(6.5) The above example (and similar ones) suggests to refine the investigation
(begun in [3] and, much more deeply, in [22]) of the Eisenstein ideal, the Eisenstein
quotient of J etc., i.e., of data defined by means of the cuspidal divisor class group
C(Γ), by taking into account the Hecke module φ∞(Γ) and the map can∞ : C(Γ) −→
φ∞(Γ).
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Abstract. We show that there exists a C∗-algebra B such that M2(B) is
stable, but B is not stable. Hence stability of C∗-algebras is not a stable
property. More generally, we find for each integer n ≥ 2 a C∗-algebra B
so that Mn(B) is stable and Mk(B) is not stable when 1 ≤ k < n. The
C∗-algebras we exhibit have the additional properties that they are simple,
nuclear and of stable rank one.

The construction is similar to Jesper Villadsen’s construction in [7] of a
simple C∗-algebra with perforation in its ordered K0-group.

1991 Mathematics Subject Classification: 46L05, 46L35, 19K14

Keywords: Stable C∗-algebras, perforation in K0, scaled ordered Abelian
groups.

1 Introduction

A C∗-algebra A is said to be stable if A ∼= A ⊗ K, where K is the C∗-algebra of
compact operators on a separable, infinite dimensional Hilbert space. The problem
of deciding which C∗-algebras are stable relates to structure problems of simple C∗-
algebras. For example, as shown in [3, Proposition 5.2], if all non-unital hereditary
sub-C∗-algebras of a given C∗-algebra A are stable, and if A is simple and not of type
I, then A must be purely infinite. It was also remarked in [3, Proposition 5.1] that an
AF-algebra is stable if and only if it admits no bounded (densely defined) traces, and
it was asked if a similar characterization might hold in general. In more detail, is a
C∗-algebra A stable if and only if A admits no bounded (quasi-)trace and no quotient
of A is unital?

It is a consequence of the examples produced in this article that the answer to
this question is no. Indeed, let A be a C∗-algebra such that M2(A) is stable and A is
not stable. Then M2(A) admits no bounded (quasi-)trace, and no quotient of M2(A)
is unital. This is easily seen to imply that A admits no bounded (quasi-)trace, and
that no quotient of A is unital.
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Jesper Villadsen gave in [7] the first examples of simple C∗-algebras whose or-
dered K0-groups have perforation. As shown in Proposition 3.3, the examples con-
structed here must also have perforation in their K0-group (at least when they admit
an approximate unit consisting of projections). We shall in this article make extensive
use of the techniques developed by Villadsen.

2 A preliminary result

Let A be a C∗-algebra and consider the set Γ(A) consisting of those integers n ≥ 1
where Mn(A) is stable. The result below shows that this set must be either empty,
N, or equal to {n, n+1, n+2, . . .} for some n ≥ 2. Clearly, the empty set and N arise
as Γ(A) for appropriate C∗-algebras A. The main result of this article (Theorem 5.3)
shows that the remaining sets are also realized.

Proposition 2.1 Let A be a σ-unital C∗-algebra, let n ≥ 1 be an integer, and suppose
that Mn(A) is stable. Then Mn+1(A) is stable.

Proof: By [3, Theorem 2.1 and Proposition 2.2] it suffices to show that one for all
positive elements a ∈Mn+1(A) and all ε > 0 can find positive elements b, c ∈Mn+1(A)
with ‖a−b‖ ≤ ε, ‖bc‖ ≤ ε, and b ∼ c (i.e. b = x∗x and c = xx∗ for some x ∈Mn+1(A)).
To obtain this it suffices to find positive elements e, f ∈ Mn+1(A)+ with e ∼ f , e ⊥ f ,
and ea close to a. Indeed, if e = x∗x and f = xx∗, then set y = xa1/2, and note that
y∗y is close to a and that (yy∗)(y∗y) is small.

Now,

a =

(
a1 z
z∗ a2

)
,

where a1 ∈ Mn(A)+, a2 ∈ A+ and z ∈ Mn,1(A). Let ε > 0, and let ϕε : R+ → [0, 1]
be a continuous function which is zero on [0, ε/2] and equal to 1 on [ε,∞). Set

e′ =

(
ϕε(a1) 0

0 ϕε(a2)

)
.

Then e′a is close to to a if ε > 0 is small.
Since Mn(A) is stable, we can find positive elements e1, f1, f2 ∈ Mn(A) and

e2 ∈ A such that e1 ∼ f1, e2 ∼ f2 (in the sense that e2 = x∗x and f2 = xx∗ for some
x ∈Mn,1(A)), e1, f1, f2 are mutually orthogonal, e1 is close to ϕε(a1), and e2 is close
to ϕε(a2). Set

e =

(
e1 0
0 e2

)
, f =

(
f1 + f2 0

0 0

)
.

Then ea is close to a, e ∼ f , and e ⊥ f as desired. �

3 Stability and the scale of K0

We investigate in this section the connection between the scaled ordered group of a
C∗-algebra and stability of matrix algebras over the C∗-algebra. Recall that if A is a
C∗-algebra, then

K0(A)+ = {[p]0 | p ∈ P (A⊗K)} ⊆ K0(A), Σ(A) = {[p]0 | p ∈ P (A)} ⊆ K0(A)+,
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where P (A⊗K) and P (A) denote the set of projections in A⊗K, respectively, A.
One can in some cases see from the triple (K0(A), K0(A)+,Σ(A)) if A is stable.

A C∗-algebra A is said to have the cancellation property if p+ r ∼ q+ r implies that
p ∼ q for all projections p, q, r ∈ A⊗K with p ⊥ r and q ⊥ r. If A has the cancellation
property, then [p]0 = [q]0 in K0(A) implies p ∼ q for all projections p, q ∈ A ⊗ K.
Recall also that A has the cancellation property if A is of stable rank one (see [1,
Proposition 6.5.1]).

Proposition 3.1 Let A be a C∗-algebra with the cancellation property and with a
countable approximate unit consisting of projections. Then A is stable if and only if
Σ(A) = K0(A)+.

Proof: The “only if” part is trivial. To show the “if” part, assume that Σ(A) =
K0(A)+. By [3, Theorem 3.3] it suffices to show that for each projection p ∈ A there
exists a projection q ∈ A with p ∼ q and p ⊥ q. Let a projection p ∈ A be given.
By the assumptions that A has an approximate unit consisting of projections, and
Σ(A) = K0(A)+, there exist projections e, f ∈ A such that [e]0 = 2[p]0 = [p ⊕ p]0,
e ≤ f and p ≤ f . Since A has the cancellation property, this implies that e ∼ p⊕ p,
which again implies that e = e1 + e2, where e1 ∼ e2 ∼ p. Now, [f − p]0 = [f − e1]0,
and so p ∼ e2 ≤ f − e1 ∼ f − p. Hence p is equivalent to a subprojection q of f − p
as desired. �

Definition 3.2 A triple (G,G+,Σ) will be called a scaled, ordered abelian group if
(G,G+) is an ordered abelian group, and Σ is an upper directed, hereditary, full subset
of G+, ie.,

(i) ∀x1, x2 ∈ Σ ∃x ∈ Σ : x1 ≤ x, x2 ≤ x,
(ii) ∀x ∈ G+ ∀y ∈ Σ : x ≤ y =⇒ x ∈ Σ,

(iii) ∀x ∈ G+ ∃y ∈ Σ ∃k ∈ N : x ≤ ky.

Let (G,G+) be an ordered abelian group, and let Σ1 and Σ2 be upper directed,
hereditary, full subsets of G+. Define Σ1 +̂ Σ2 to be the set of all elements x ∈ G+ for
which there exist x1 ∈ Σ1 and x2 ∈ Σ2 with x ≤ x1+ x2. Observe that Σ1 +̂ Σ2 is an
upper directed, hereditary, full subset of G+. Denote the k-fold sum Σ +̂ Σ +̂ · · · +̂ Σ
by k ·̂Σ. Using that Σ is upper directed we see that y ∈ k ·̂Σ if and only if 0 ≤ y ≤ kx
for some x ∈ Σ.

If A is a stably finite C∗-algebra with the cancellation property and with an
approximate unit consisting of projections, then (K0(A), K0(A)+,Σ(A)) is a scaled,
ordered abelian group. If A has these properties, then

(
K0(Mk(A)), K0(Mk(A))+,Σ(Mk(A))

) ∼= (K0(A), K0(A)+, k ·̂Σ(A)). (1)

Suppose that n ≥ 2 and that (G,G+,Σ) is a scaled, ordered Abelian group
such that (n − 1) ·̂Σ 6= G+ and n ·̂Σ = G+, and suppose that A is a C∗-
algebra of stable rank one and with an approximate unit of projections such that
(K0(A), K0(A)+,Σ(A)) ∼= (G,G+,Σ). Then it follows from Proposition 3.1 and (1)
that Mn(A) is stable and Mk(A) is not stable for 1 ≤ k < n.

Recall that an ordered Abelian group (G,G+) is called weakly unperforated if
ng ∈ G+ \ {0} for some n ∈ N and some g ∈ G implies g ∈ G+.
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Proposition 3.3 Let (G,G+,Σ) be a weakly unperforated, scaled, ordered, Abelian
group, and suppose that n ·̂Σ = G+ for some n ∈ N. Then Σ = G+.

Proof: Let g be an element of G+, and choose a non-zero element u ∈ G+. Since
n ·̂Σ = G+, there is an element x ∈ Σ with nx ≥ ng+u. Now, n(x− g) ≥ u > 0, and
this entails that x − g ≥ 0, by the assumption that (G,G+) is weakly unperforated.
By the hereditary property of Σ we get that g ∈ Σ. Thus Σ = G+. �

We give below an explicit example of a scaled, ordered Abelian group (G,G+,Σ)
with Σ +̂ Σ = G+ and Σ 6= G+. Note that this ordered group necessarily must be
perforated (by Proposition 3.3 above).

It is not known if every (countable) scaled ordered Abelian group is the scaled
ordered Abelian group of a C∗-algebra — the problem here lies in realizing the given
order structure, not in realizing the given scale. We can therefore not immediately
conclude from the example below that there exists a non-stable C∗-algebra B where
M2(B) is stable. Actually, it is not known (to the author) if the ordered Abelian
group constructed below is the ordered K0-group of any C∗-algebra.

Example 3.4 Let Z2 denote the group Z/2Z, and let Z(∞)2 denote the group of all
sequences t = (tj)

∞
j=1, with tj ∈ Z2 and where tj 6= 0 only for finitely many j. For

each t ∈ Z(∞)2 , let d(t) be the number of elements in {j ∈ N | tj 6= 0}. Set

G2 = Z⊕ Z(∞)2 , G+2 = {(k, t) | d(t) ≤ k}, Σ2 = {(k, t) | d(t) = k}.

Then (G2, G
+
2 ,Σ2) is a scaled, ordered Abelian group with Σ2 6= G+2 and Σ2 +̂ Σ2 =

G+2 . To see this, let ej ∈ Z(∞)2 be the element which is a generator of Z2 at the jth
coordinate and zero elsewhere, set gj = (1, ej) ∈ G+, and set hj = g1 + g2 + · · ·+ gj.
Then

Σ2 =
∞⋃

j=1

{x ∈ G+ | x ≤ hj}. (2)

The claims made about (G2, G
+
2 ,Σ2) are now easy to verify.

Notice that Σ2 + Σ2 6= Σ2 +̂ Σ2, since for example (3, e1 + e2) /∈ Σ2 + Σ2. This
was pointed out to me by Jacob Hjelmborg, and it shows that the sum of two scales
is not a scale in general. �

Example 3.5 Let n ≥ 2 be an integer. Let Z(∞)n be the Abelian group of all sequences

(tj)
∞
j=1 with tj ∈ Zn (= Z/nZ), and tj 6= 0 only for finitely many j. Let ej ∈ Z(∞)n be

a generator of the jth copy of Zn. Then each t ∈ Z(∞)n is a sum t =
∑∞
j=1 rjej with

0 ≤ rj < n and where rj = 0 for all but finitely many j. Set d(t) =
∑∞
j=1 rj, and set

Gn = Z⊕ Z(∞)n , G+n = {(k, t) | d(t) ≤ k}, Σn =
∞⋃

j=1

{x ∈ G+ | x ≤ hj},

where gj = (1, ej) and hj = g1+g2+ · · ·+gj . Then (Gn, G
+
n ,Σn) is a scaled, ordered,

Abelian group, (n− 1) ·̂Σn 6= G+n and n ·̂Σn = G+n . �
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Adopt the following (standard) notation. If e ∈ Mn(A) and f ∈ Mm(A) are projec-
tions, then let e⊕f denote the projection diag(e, f) ∈Mn+m(A). Write e ∼ f if there
is an element v ∈ Mm,n(A) with e = v∗v and f = vv∗ , and write e - f if e ∼ f0 for
some subprojection f0 of f . Denote the k-fold direct sum e⊕ e⊕ · · · ⊕ e by e⊗ 1k. If
A has the cancellation property (see the introduction to this section), and if e, f ∈ A
are projections, then [e]0 ≤ [f ]0 if and only if e - f .

Proposition 3.6 Let A be a C∗-algebra, let n ≥ 2 be an integer, and suppose that
A contains projections e, p1, p2, p3, . . . that satisfy

(i) e⊗ 1n ∼ pj ⊗ 1n for all j,

(ii) e is not equivalent to a subprojection of (p1 ⊕ p2 ⊕ · · · ⊕ pj)⊗ 1n−1 for any j.

Set qj = p1⊕p2⊕· · ·⊕pj, and embed all matrix algebras over A coherently into A⊗K
so that qj belongs to A ⊗K for all j. Set

B =
∞⋃

j=1

qj(A⊗K)qj. (3)

Then Mk(B) is not stable for 1 ≤ k < n, but Mn(B) is stable.
Let H be the subgroup of K0(B) generated by the K0-classes of the projections

e, p1, p2, p3, . . . . Assume that B has the cancellation property. Then

(H,H ∩K0(B)+, H ∩ Σ(B)) ∼= (Gn, G
+
n ,Σn), (4)

where the triple on the right hand-side is the scaled, ordered, Abelian group defined in
Example 3.5.

Proof: Observe that

Mk(B) =
∞⋃

j=1

(qj ⊗ 1k)(A⊗K)(qj ⊗ 1k),

for each k, and that {qj ⊗ 1k}∞j=1 is an approximate unit for Mk(B).
To show that Mk(B) is not stable for 1 ≤ k < n it suffices by Proposition 2.1 to

show that Mn−1(B) is not stable.
If Mn−1(B) were stable, then there would exist a projection q ∈ Mn−1(B) such

that q ∼ p1 ⊗ 1n−1 and q ⊥ p1 ⊗ 1n−1. (This is rather easy to see directly, and one
can also obtain this from [3, Theorem 3.3].) Since {qj ⊗ 1n−1 − p1 ⊗ 1n−1}∞j=1 is an
approximate unit for (1−p1⊗1n−1)Mn−1(B)(1−p1⊗1n−1), there is a j, so that q is
equivalent to a subprojection of qj ⊗ 1n−1− p1⊗ 1n−1 (= (p2⊕ p3⊕· · ·⊕ pj)⊗ 1n−1).
By assumption (i),

e - e⊗ 1n ∼ p1 ⊗ 1n - (p1 ⊗ 1n−1)⊕ (p1 ⊗ 1n−1) - (p1 ⊗ 1n−1)⊕ q
- (p1 ⊕ p2 ⊕ · · · ⊕ pj) ⊗ 1n−1,

in contradiction with assumption (ii).
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We proceed to show that Mn(B) is stable. By (i), qj ⊗ 1n is equivalent to the
direct sum of e⊗ 1n with itself j times. It follows quite easily from this that Mn(B)
is stable. We can also use [3, Theorem 3.3] to obtain this conclusion by showing that
there for each projection p in Mn(B) exists a projection q in Mn(B) with p ∼ q and
p ⊥ q. One can here reduce to the case where p is a subprojection of qj ⊗ 1n for some
j, and the result then follows from the fact that q2j ⊗ 1n − qj ⊗ 1n ∼ qj ⊗ 1n.

Assume now that B has the cancellation property. To establish the isomorphism
(4), note first that n([pj]0 − [e]0) = 0 by (i). Retaining the notation from Example
3.5, we define a group homomorphism ϕ : Gn → H by ϕ(1, 0) = [e]0 and ϕ(0, ej) =

[pj]0−[e]0. ϕ is clearly surjective. For any (k, t) ∈ Gn with t =
∑N
j=1 rjej , 0 ≤ rj < n,

ϕ(k, t) = k[e]0 +
N∑

j=1

rj
(
[pj]0 − [e]0

)
=
(
k − d(t)

)
[e]0 +

N∑

j=1

rj[pj]0.

It follows that ϕ(k, t) ≥ 0 if (k, t) ≥ 0. Conversely, if (k, t) is not positive, then
k − d(t) ≤ −1, and so

ϕ(k, t) =
(
k − d(t)

)
[e]0 +

N∑

j=1

rj[pj]0 ≤ (n− 1)
(
[p1]0 + [p2]0 + · · ·+ [pN ]0

)
− [e]0.

By (ii) and the assumption that B has the cancellation property, the element on
the right-hand side of this inequality is not positive. All in all we have shown that
ϕ(k, t) ≥ 0 if and only if (k, t) ≥ 0. This entails that ϕ is injective and that ϕ(G+n ) =
H ∩K0(B)+.

Since {qj}∞j=1 is an approximate unit for B, an element g ∈ K0(B) lies in Σ(B) if
and only if 0 ≤ g ≤ [qj]0 for some j. Notice that ϕ(hj) = [qj]0. Hence ϕ(k, t) ∈ Σ(B)
if and only if 0 ≤ (k, t) ≤ hj for some j, and this shows that ϕ(Σn) = H ∩ Σ(B). �

Remark 3.7 Corollary 4.2 and Proposition 5.2 contain for each prime number n
examples of C∗-algebras with projections e, p1, p2, p3, . . . satisfying (i) and (ii) of
Proposition 3.6. The C∗-algebras in Proposition 5.2 have the cancellation property
(being of stable rank one).

Remark 3.8 One can replace condition (i) in Proposition 3.6 by a weaker condition
such as for example e - pj ⊗ 1n for all j, and still obtain that the C∗-algebra B
defined in (3) has the property that Mk(B) is not stable for 1 ≤ k < n and Mn(B) is
stable. However, with this weaker condition one would not have a description of the
scaled ordered group as in (4).

4 The commutative case

We realize for each positive prime number n projections e, p1, p2, p3, . . . satisfying
conditions (i) and (ii) of Proposition 3.6, with respect to that n, inside a C∗-algebra
which is stably isomorphic to a commutative C∗-algebra. At the same time, Lemma
4.1 below, is a key ingredient in Section 5.

If π : X1 → X2 is a continuous function, then π∗ will denote the map from the
cohomology groups of X2 to the cohomology groups of X1, and the same symbol will
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be used to denote the map from vector bundles over X2 to vector bundles over X1.
By naturality of the Euler class, e(π∗(ξ)) = π∗(e(ξ)) for all complex vector bundles ξ
over Y .

The proof of Lemma 4.1 below is almost identical to the proof of [6, Theorem 3.4].
The statements of Lemma 4.1 and of [6, Theorem 3.4] are, however, quite different.
Therefore, and for the convenience of the reader, we include a proof of Lemma 4.1.

Let D denote the unit disk in the complex plane. Consider for each integer n ≥ 2
the equivalence relation ∼ on D given by: z ∼ w if z = w or if |z| = |w| = 1 and
zn = wn. Put Yn = D/∼.

Lemma 4.1 Let n be a positive prime number, and put X = Y n−1n . There exists
a complex line bundle ω over X with the following properties. Let m be a positive
integer, let π1, π2, . . . , πm : Xm → X be the coordinate maps, and set

ξ
(m)
k = π∗1(ω) ⊕ π∗2(ω) ⊕ · · · ⊕ π∗k(ω), 1 ≤ k ≤m,

which is a complex vector bundle over Xm of dimension k. Let θd denote the trivial
complex vector bundle (over X or Xm) of (complex) dimension d. Then

(i) nω ∼= θn,

(ii) if (n− 1)ξ
(m)
k ⊕ θd1 ∼= η ⊕ θd2 for some complex vector bundle η over Xm, and

some positive integers d1 and d2, then d1 ≥ d2, and
(iii) ω ⊕ η ∼= θn for some (n− 1)-dimensional complex vector bundle η over X.

Proof: Recall that H2(Yn;Z) ∼= Z/nZ. There is a complex line bundle ζ over Yn with
non-trivial Euler class e(ζ) ∈ H2(Yn;Z), and with nζ ∼= θn. Let ν1, ν2, . . . , νn−1 : X =
Y n−1n → Yn be the coordinate projections, and set

ω = ν∗1(ζ) ⊗ ν∗2(ζ)⊗ · · · ⊗ ν∗n−1(ζ).
Then ω is a complex line bundle over X, and successive applications of the isomor-
phism nζ ∼= θn = nθ1, yield nω ∼= θn. Hence (i) holds, and (iii) is a trivial consequence
of (i).

To prove claim (ii) we first show that the Euler class, e((n− 1)ξ
(m)
k ), is non-zero.

The Euler class of ω is given by

e(ω) =
n−1∑

j=1

ν∗j (e(ζ)), (5)

cf. [4, Proposition V.3.10]. By the product formula for the Euler class, cf. [4, Propo-
sition V.3.10],

e((n − 1)ξ
(m)
k ) =

k∏

j=1

π∗j (e(ω)n−1). (6)

Since e(ζ)2 ∈ H4(Yn;Z) and H4(Yn;Z) = 0, it follows from (5) and (6) that

e(ω)n−1 = (n− 1)!
n−1∏

i=1

ν∗i (e(ζ)).
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Let ρ1, ρ2, . . . , ρk : Xk → X and π : Xm → Xk be the projections maps. Then πj =
ρj ◦ π, and π∗ : H2k(Xk;Z)→ H2k(Xm;Z) is an injection. The map

µ : H2(Yn;Z)⊗H2(Yn;Z)⊗ · · · ⊗H2(Yn;Z)→ H2k(n−1)(Xk;Z)

given by

µ(x1,1 ⊗ x1,2 ⊗ · · · ⊗ xk,n−1) =
k∏

j=1

n−1∏

i=1

(ρ∗j ◦ ν∗i )(xi,j),

is injective by the Künneth formula. Now,

e((n − 1)ξ
(m)
k ) =

k∏

j=1

π∗j (e(ω)n−1)

=
k∏

j=1

π∗j
(
(n− 1)!

n−1∏

i=1

ν∗i (e(ζ))
)

= (n − 1)!kπ∗
( k∏

j=1

n−1∏

i=1

(ρ∗j ◦ ν∗i )(e(ζ)
)

= (π∗ ◦ µ)
(
(n − 1)!ke(ζ) ⊗ e(ζ) ⊗ · · · ⊗ e(ζ)

)
.

The element e(ζ) ⊗ e(ζ) ⊗ · · · ⊗ e(ζ) has order n in H2(Yn;Z) ⊗ H2(Yn;Z) ⊗ · · · ⊗
H2(Yn;Z). Because n is assumed to be prime, and because π∗ ◦µ is injective, we get

that e((n − 1)ξ
(m)
k ) 6= 0.

Assume (ii) were false. Then (n − 1)ξ
(m)
k ⊕ θd1

∼= η ⊕ θd2 for some η and

some positive integers d1 < d2. Hence (n − 1)ξ
(m)
k would be stably isomorphic to

η ⊕ θd2−d1 . The Euler class is invariant under stable isomorphism, and the Euler
class of a trivial bundle (of dimension ≥ 1) is zero, and so by the product formula we

get e((n− 1)ξ
(m)
k ) = 0, a contradiction. �

George Elliott pointed out to me that one obtains the following corollary from Lemma
4.1:

Corollary 4.2 Let n be a positive prime number, let Z be the infinite Cartesian
product of Yn with itself. Then there exist projections e, p1, p2, p3, . . . in Mn(C(Z))
satisfying

(i) e⊗ 1n ∼ pj ⊗ 1n for all j,

(ii) e is not equivalent to a subprojection of (p1⊕p2⊕· · ·⊕pj)⊗1n−1 for any j ≥ 1.

Proof: Let ω be the complex line bundle over X = Y n−1n from Lemma 4.1 and use
Lemma 4.1 (iii) to find a projection p ∈ C(X,Mn(C)) = Mn(C(X)) that corresponds
to ω. Identify Z with

∏∞
j=1X, and let πj : Z → X, j ∈ N, be the coordinate maps.

Put pj = p ◦ πj ∈ C(Z,Mn(C)) = Mn(C(Z)), and let e ∈ Mn(C(Z)) be a one-
dimensional constant projection. It follows from Lemma 4.1 (i) that pj ⊗ 1n ∼ e⊗ 1n
for all j. To see (ii), view Mn(C(Z)) as the inductive limit,

Mn(C(X))→Mn(C(X2))→Mn(C(X3))→ · · · →Mn(C(Z)),
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so that e, p1, p2, . . . , pj ∈ Mn(C(Xj)). Then, by Lemma 4.1 (ii), for each k and for
each m ≥ k, e is not equivalent to a subprojection of (p1 ⊕ p2 ⊕ · · · ⊕ pk) ⊗ 1n−1 in
(a matrix algebra over) Mn(C(Xm)). This implies that (ii) holds. �

Combining Corollary 4.2 with Proposition 3.6 we get for each prime number n a
hereditary sub-C∗-algebra B of C(Z)⊗K such that Mk(B) is not stable for 1 ≤ k < n,
and Mn(B) is stable. Proceeding as in the proof of Theorem 5.3 one can find such
examples B for all integers n ≥ 2.

5 The simple case

We use an inductive limit construction, like the one Villadsen used in [7], to obtain
projections as in Proposition 3.6 inside a simple C∗-algebra.

Fix a positive prime number n. Let {kj}∞j=1 be a sequence of positive integers
chosen large enough so that

∞∑

j=1

(
1−

∞∏

i=j

ki
1 + ki

)
<

1

n − 1
. (7)

Define inductively another sequence of integers {mj}∞j=1 by m1 = 1 and mj+1 =
mj(kj + 1).

Let Yn = D/∼ be as defined in Section 4, and put X = Y n−1n . Define inductively

a sequence of spaces {Xj}∞j=1 by setting X1 = X and Xj+1 = X
kj
j ×Xmj+1 . Set

Aj = M2n−1mj (C(Xj)) = C(Xj,M2n−1mj (C)).

Choose xj ∈ Xj appropriately (in a way which will be made precise later), and define
∗-homomorphisms ϕj : Aj → Aj+1 by

ϕj(f)(x) = diag((f ◦πj1)(x), (f ◦πj2)(x), . . . , (f ◦πjkj)(x), f(xj)), x ∈ Xj+1, f ∈ Aj,

where πj1, π
j
2, . . . , π

j
kj

: Xj+1 = X
kj
j ×Xmj+1 → Xj are the projections from the first

factor of Xj+1.
Let (A, µj : Aj → A) be the inductive limit of the sequence

A1
ϕ1 // A2

ϕ2 // A3
ϕ3 // · · · .

It will be convenient to have an expression for the composed connecting maps
ϕi,j : Aj → Ai for i > j. For this purpose set

ki,j =
i−1∏

n=j

kn, li,j =
i−1∏

n=j

(kn + 1)−
i−1∏

n=j

kn, mi,j =
i∑

n=j+1

mnki,n, (8)

(with the convention that ki,i = 1). Then Xi = X
ki,j
j × Xmi,j , and the composed

connecting maps are up to unitary equivalence given by

ϕi,j(f)(x)

= diag
(
(f ◦ πi,j1 )(x), (f ◦ πi,j2 )(x), . . . , (f ◦ πi,jki,j)(x), f(xi,j1 ), f(xi,j2 ), . . . , f(xi,jli,j )

)
.
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The maps πi,j1 , π
i,j
2 , . . . , π

i,j
ki,j

: Xi = X
ki,j
j ×Xmi,j → Xj are here the projections onto

the first ki,j coordinates of Xi, the set

Xi
j := {xi,j1 , xi,j2 , . . . , xi,jli,j} ⊆ Xj

is for i ≥ j + 2 equal to Xi−1
j ∪ {πi,j1 (xi), π

i,j
2 (xi), . . . , π

i,j
ki,j

(xi)}, where each element

of the first set is repeated ki + 1 times, and Xj+1
j = {xj}.

Choose the points xj ∈ Xj such that
⋃∞
r=j+1 X

r
j is dense in Xj for each j ∈ N.

Since each Xi
j is finite and since no Xj has isolated points this will entail that

⋃∞
r=iX

r
j

is dense in Xj for each j ∈ N and for every i > j.
By [2, Proposition 1] and [7, Proposition 10] we get:

Proposition 5.1 The C∗-algebra A is simple and has stable rank one.

With the C∗-algebra A and the prime number n as above, we have:

Proposition 5.2 There exist projections e, p1, p2, p3, . . . in A so that

(i) pj ⊗ 1n ∼ e⊗ 1n for all j ≥ 1, and

(ii) e is not equivalent to a subprojection of (p1⊕p2⊕· · ·⊕pj)⊗1n−1 for any j ≥ 1.

Proof: By Lemma 4.1 (iii) there exists a projection q ∈ A1 = M2n−1(C(X)) which

corresponds to the complex line bundle ω. Let ρ1, ρ2, . . . , ρmj : Xj = X
kj−1
j−1 ×Xmj →

X be coordinate projections corresponding to the last factor of Xj . Set q1 = q, set

qj = diag(q ◦ ρ1, q ◦ ρ2, . . . , q ◦ ρmj ) ∈ Aj ,

for j ≥ 2, and set pj = µj(qj) ∈ A. Let e1 ∈ A1 be a constant projection of dimension
1, so that e1 corresponds to the trivial complex line bundle θ1, and set e = µ1(e1) ∈ A.

It follows from Lemma 4.1 (i) that q ⊗ 1n ∼ e1 ⊗ 1n. This implies that qj ⊗ 1n
is equivalent to a constant projection. Since ϕj,1(e1)⊗ 1n is a constant projection (in
Mn(Aj)) of the same dimension as qj ⊗ 1n, we find that qj ⊗ 1n ∼ ϕj,1(e1) ⊗ 1n in
Mn(Aj). Hence

pj ⊗ 1n = µj(qj ⊗ 1n) ∼ µj(ϕj,1(e1)⊗ 1n) = e⊗ 1n

in Mn(A).
For i ≥ j, put

fi,j = ϕi,1(q1)⊕ ϕi,2(q2)⊕ · · · ⊕ ϕi,j(qj).

Then p1 ⊕ p2 ⊕ · · · ⊕ pj = µi(fi,j), and fi,j = ϕi,j(fj,j). Observe that Xj = Xdj ,
where d1 = 1 and dj+1 = njkj+mj+1. By inspection of the formula for the composed
connecting maps ϕj,l, we find that the projection fj,j corresponds to the vector bundle

ξ
(dj)
dj
⊕ θcj , where cj =

∑j
r=1mrlj,r, cf. (8). From this we get that the projection

fi,j corresponds to the vector bundle ξ
(di)
ai,j ⊕ θbi,j over Xi, where ai,j = ki,jdj and

bi,j =
∑j
r=1mrli,r, possibly after a permutation of the coordinates of Xi.
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The trivial projection ϕi,1(e1) has dimension mi and corresponds therefore to
the trivial vector bundle θmi . Now,

1

mi
bi,j =

1

mi

j∑

r=1

mrli,r

=
1

mi

j∑

r=1

r−1∏

s=1

(1 + ks)
( i−1∏

s=r

(1 + ks)−
i−1∏

s=r

ks
)

=

j∑

r=1

(
1−

i−1∏

s=r

ks
1 + ks

)

≤
∞∑

r=1

(
1−

∞∏

s=r

ks
1 + ks

)
<

1

n− 1
,

where the last inequality follows from (5). This shows that (n − 1)bi,j < mi. By
Lemma 4.1 (ii), there exists no vector bundle η over Xi such that

η ⊕ θmi ∼= (n− 1)ξ(di)ai,j
⊕ θ(n−1)bi,j (= (n − 1)(ξ(di)ai,j

⊕ θbi,j)),

or, equivalently, ϕi,1(e1) is not equivalent to a subprojection of fi,j⊗1n−1. Since this
holds for all i > j, e is not equivalent to a subprojection of (p1⊕p2⊕· · ·⊕pj)⊗1n−1,
and this completes the proof. �

Theorem 5.3 For each integer n ≥ 2 there exists a C∗-algebra B such that Mn(B)
is stable, and Mk(B) is not stable for 1 ≤ k < n. Moreover, B can be chosen to
be simple, nuclear, with stable rank one and with an approximate unit consisting of
projections.

Proof: Consider first the case where n is prime. Let B be the C∗-algebra defined in
display (3) in Proposition 3.6 corresponding to the C∗-algebraA and to the projections
e, p1, p2, p3, . . . found in Proposition 5.2. Then B is a hereditary subalgebra of A⊗K,
and since A is simple, nuclear and has stable rank one, it follows that B also has
these properties (see [5, Theorem 3.3] for the last claim). The sequence {qj}∞j=1 is an
approximate unit for B. By Proposition 3.6, Mk(B) is not stable for 1 ≤ k < n and
Mn(B) is stable.

Suppose now that n ≥ 2 is an arbitrary integer. Observe that all integers ≥
(n − 1)2 belong to the set

∞⋃

m=1

((n− 1)m, nm].

Choose a prime number p ≥ (n − 1)2. Then there exists an integer m ≥ 1 so that
(n − 1)m < p ≤ nm. By the first part of the proof there exists a C∗-algebra D
with Mp(D) stable and Mk(D) not stable for 1 ≤ k < p. Set B = Mm(D). Then
B is simple, nuclear, and has stable rank one and an approximate unit consisting of
projections because D has these properties. Moreover, Mk(B) = Mkm(D), and so,
by Proposition 2.1, Mk(B) is stable if and only if km ≥ p, which, by the choice of p
and m, happens if and only if k ≥ n. �
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