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Abstract

The object of the present article is to describe some of the most important results in
the theory of the Dobrakov integral, emphasizing particularly those which are not shared
by other classical Lebesgue-type generalizations of the abstract Lebesgue integral.

1 Introduction

Among the various Lebesgue-type integration theories, the important ones are the follow-
ing:

(a) Integration of scalar functions with respect to a σ-additive scalar measure-usual abstract
Lebesgue integral.

(b) Integration of vector functions with respect to a σ-additive scalar measure-the Bochner
and the Pettis integrals.

(c) Integration of scalar functions with respect to a σ-additive vector measure-spectral
integrals,the Bartle-Dunford-Schwartz integral.

(d) Integration of vector functions with respect to a σ-additive vector measure-the Bartle
bilinear and (*) integrals.

(e) Integration of vector functions with respect to a strongly σ-additive operator valued
measure of finite variation on a δ-ring-the Dinculeanu integral.

(f) Integration of vector functions with respect to a strongly σ-additive operator valued
measure of finite semivariation on a δ-ring-the Dobrakov integral.

To consider the abstract Lebesgue integral, let (T,S) be a measurable space and let
µ : S → [0,∞] or CI be σ-additive with µ(∅) = 0. Let f : T → CI be an S-measurable function.
Then f is µ-integrable if and only if

∫
T |f |dv(µ) < ∞ and hence if and only if |f | is v(µ)-

integrable. We shall describe this as the property of absolute integrability of the abstract
Lebesgue integral. In this terminology, the Bochner and the Dinculeanu integrals generalize
the abstract Lebesgue integral so as to maintain the property of absolute integrability. See
Section 8 for details.

1The research was partially supported by the C.D.C.H.T. project C-586 of the Universidad de los Andes,
Mérida, and by the project of international cooperation between CONICIT-Venezuela and CNR-Italy.
1991 AMS subject classification:28-02,28B05,46G10
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Again, for a µ-integrable scalar function f , the set function ν(.) =
∫

(·) fdµ is σ-additive,
so that

∑∞
1 ν(Ei) is unconditionally convergent whenever (Ei)∞1 is a disjoint sequence in

S. Let us refer to this as the property of unconditional convergence of the integral. Then
the Bartle-Dunford-Schwartz integral, the Bartle bilinear and (*) integrals and the Dobrakov
integral have only the property of unconditional convergence.

Dobrakov, adapting suitably the procedure followed in [2,27], developed a theory of in-
tegration exhaustively over a long period of 18 years since 1970, and published a series of
papers [9-14,21,22,24] on the theme. The object of the present article is to describe some of
the most important results in this theory, emphasizing how some of them are not shared by
other Lebesgue-type generalizations. Here we also include some of his unpublished results
such as Example 1, Theorem 16,etc. The present work is elaborated in our lecture notes [26].

Like the other integrals, the Dobrakov integral too coincides with the abstract Lebesgue
integral when the functions and the measure are scalar valued. But, for the vector or operator
case, the Bochner,the Dinculeanu and the Bartle (*) integrals are only special cases of the
Dobrakov integral. In fact, the reader can observe in Section 8 that the Dobrakov integral
gives a complete generalization of the abstract Lebesgue integral,whereas the Bochner and
the Dinculeanu integrals give only a partial generalization. Moreover, the Dobrakov integral
is related to the topological structure or dimension of the range space of the operators m(E)
of the measure m. (See Section 7.)

2 Preliminaries

In this section we fix notation and terminology and give some definitions and results from
the theory of vector measures.

T denotes a non void set. P(resp. S) is a δ-ring (resp. a σ-ring) of subsets of T . σ(P)
denotes the σ-ring generated by P. IK denotes the scalar field IR or CI. X,Y, Z are Banach
spaces over IK with norm denoted by | · |. When X and Y are over the same scalar field IK,
L(X,Y ) denotes the Banach space of all bounded linear transformations T : X → Y , with
|T | = sup{|Tx| : |x| ≤ 1}. The dual X? of X is the Banach space L(X, IK), IK being the
scalar field of X.

c0 is the Banach space of all scalar sequences (λn) converging to zero, with |(λn)| =
sup
n
|λn|. The Banach space X is said to contain a copy of c0 if there is a topological isomor-

phism Φ of c0 onto a subspace of X, and in that case, we write c0 ⊂ X. Otherwise, we say
that X contains no copy of c0 and write c0 6⊂ X.

The following theorem of Bessaga-Pelczyński [5] characterizes the Banach spaces X which
contain no copy of c0.

Theorem 1 The Banach space X contains no copy of c0 if and only if every formal series∑∞
1 xn of vectors in X satisfying

∑∞
1 |x?(xn)| < ∞ for each x? ∈ X? is unconditionally

convergent in norm.
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Definition 1 A set funtion γ : P → X is called a vector measure if it is additive; i.e., if

γ(A ∪ B) = γ(A) + γ(B) for A,B ∈ P with A ∩ B = ∅. The vector measure γ : P → X is

said to be σ-additive if |γ (
⋃∞

1 Ai)−
∑n

1 γ(Ai)| → 0 as n→∞, whenever (Ai)∞1 is a disjoint

sequence in P with
⋃∞

1 Ai ∈ P. Then γ (
⋃∞

1 Ai) =
∑∞

1 γ(Ai).

Definition 2 A family (γi)i∈I of X-valued σ-additive vector measures defined on the σ-ring
S is said to be uniformly σ-additive if, given ε > 0 and a sequence An ↘ ∅ of members of S,
there exists n0 such that supi∈I |γi(An)| < ε for n ≥ n0.

The following theorem plays a crucial role in the definition of the Dobrakov integral.

Theorem 2 (Vitali-Hahn-Saks-Nikodým(VHSN)) Let γn : S → X,n = 1, 2, . . . , are
σ-additive and let limn γn(E) = γ(E) exist in X for each E ∈ S. Then γn, n = 1, 2, . . . , are
uniformly σ-additive and consequently, γ is a σ-additive vector measure on S.

The above theorem is proved for a σ-algebra S in Chapter 1 of [7]. However, the result is
easily extended to a σ-ring S.

Definition 3 A set function η : S → [0,∞] is called a submeasure if η(∅) = 0, η is monotone

(i.e., η(A) ≤ η(B) for A,B ∈ S with A ⊂ B) and subadditive (i.e., η(A∪B) ≤ η(A)+η(B) for

A,B ∈ S). A submeasure η on S is said to be continuous (resp. σ-subadditive) if η(An)↘ 0

whenever the sequence An ↘ ∅ in S (resp. if η(
⋃∞

1 An) ≤
∑∞

1 η(An) for any sequence (An)∞1
in S).

Definition 4 Let γ : P → X be a vector measure. Then the semivariation ‖γ‖ : σ(P) →
[0,∞] of γ is defined by

‖γ‖(A) = sup

{∣∣∣∣∣
r∑
1

λiγ(A ∩Ai)

∣∣∣∣∣ : (Ai)r1 ⊂ P, disjoint, λi ∈ IK, |λi| ≤ 1, r ∈ IN

}

for A ∈ σ(P). We define ‖γ‖(T ) = sup{‖γ‖(A) : A ∈ σ(P)}. The supremation γ of γ is
defined by

γ(A) = sup{|γ(B)| : B ⊂ A, B ∈ P}

for A ∈ σ(P) and we define γ(T ) = sup {γ(A) : A ∈ σ(P)}.

Theorem 3 Let γ : σ(P)→ X be a σ-additive vector measure. Then:

(i) ‖γ‖, γ : σ(P)→ [0,∞) are continuous σ-subadditive submeasures.

(ii) γ(A) ≤ ‖γ‖(A) ≤ 4γ(A) for A ∈ σ(P) and moreover, ‖γ‖(T ) <∞.
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3 Semivariation and Scalar Semivariation of Operator Valued
Measures

Since the Dobrakov integral of a vector valued function is given with respect to an
operator valued measure, we devote this section to define an operator valued measure m on
P with values in L(X,Y ) and to introduce two extended real valued set functions m̂ and ‖m‖
associated with m.

Definition 5 A set function m : P → L(X,Y ) is called an operator valued measure if
m(·)x : P → Y is a σ-additive vector measure for each x ∈ X; in other words, if m(·) is
σ-additive in the strong operator topology of L(X,Y ).

Unless otherwise specified, m will denote an operator valued measure on P
with values in L(X,Y ).

Note 1 A σ-additive scalar measure µ on P can be considered as an operator valued measure
µ : P → L(X,Y ) with X = Y=IK, if we define µ(E)x = µ(E).x for E ∈ P and x ∈ X. A
σ-additive vector measure γ : P → Y can also be considered as an operator valued measure
γ : P → L(X,Y ) with X = IK, the scalar field of Y , if we define γ(E)x = x.γ(E) for E ∈ P
and x ∈ X. Thus the notion of an operator valued measure subsumes those of σ-additive
scalar and vector measures. We shall return to this observation in Note 2 below and later, in
Section 8.

Notation 1 We write (Ai)r1 is (D) in P to mean that (Ai)r1 is a finite disjoint sequence of
members of P.

The concept given in Definition 4 is suitably modified to define the semivariation of an
operator valued measure as below.

Definition 6 Let m : P → L(X,Y ) be an operator valued measure. Then we define the
semivariation m̂(A), scalar semivariation ‖m‖(A) and variation v(m,A) in A ∈ σ(P) ∪ {T}
by

m̂(A) = sup

{∣∣∣∣∣
r∑
1

m(A ∩Ai)xi

∣∣∣∣∣ : (Ai)r1 is (D) in P, xi ∈ X, |xi| ≤ 1, r ∈ IN

}
,

‖m‖(A) = sup

{∣∣∣∣∣
r∑
1

λim(A ∩Ai)

∣∣∣∣∣ : (Ai)r1 is (D) inP, λi ∈ IK, |λi| ≤ 1, r ∈ IN

}

and

v(m,A) = sup

{
r∑
i

|m(A ∩Ai)| : (Ai)r1 is (D) inP

}
.

Note that the scalar semivariation ‖m‖ is the same as that given in Definition 4, if we
treat m as an L(X,Y )-valued vector measure. Also observe that ‖m‖(T ) = sup{‖m‖(A) :
A ∈ σ(P)}, m̂(T ) = sup{m̂(A) : A ∈ σ(P)} and v(m,T ) = sup{v(m,A) : A ∈ σ(P)}.
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Note 2 When µ(resp. γ) is a σ-additive scalar (resp. vector) measure, by Note 1 µ (resp. γ)
can be considered as an operator valued measure, and in that case, v(µ, ·) = ‖µ‖ = µ̂ (resp.
‖γ‖ = γ̂).

Note 3 For an operator valued measure m on P, ‖m‖ ≤ m̂ ≤ v(m, .). Moreover, ‖m‖(A) =
0⇔ m̂(A) = 0, A ∈ σ(P).

4 X-valued P-measurable Functions

Since the integral is defined on a subclass of measurable functions, we give the notion of
X-valued P-measurable functions in a very restricted sense, involving only σ(P) and not the
operator valued measure m on P. This definition is a natural extension of that of measura-
bility for scalar functions (see Halmos [29]). The success of the integration theory of
Dobrakov lies in adopting such a definition (See Definition 8) for P-measurability
of X-valued functions, in stead of adapting the classical measurability definition
used in the theory of the Bochner integral.

Definition 7 An X-valued P-simple function s on T is a function s : T → X with range a
finite set of vectors x1, x2, . . . , xk such that f−1({xi}) ∈ P whenever xi 6= 0, i = 1, 2, . . . , k.
Then an X-valued P-simple function s is of the form

s =
r∑
1

xiχAi , (Ai)r1 is (D) in P, xi 6= 0, i = 1, 2, . . . , r. (?)

Convention 1 Whenever an X-valued P-simple function s is written in the form
s =

∑r
1 xiχAi, it is tacitly assumed that the Ai and xi satisfy the conditions given

in (?).

Notation 2 S(P, X) = {s : P → X : s P−simple} is a normed space under the operations
of pointwise addition and scalar multiplication with norm ‖·‖T given by ‖s‖T = maxt∈T |s(t)|
. Let ‖f‖T = sup{|f(t)| : t ∈ T} for a function f : T → X. Then S(P, X) denotes the closure
of S(P, X) in the space of all X-valued bounded functions on T with respect to norm ‖.‖T .

Definition 8 An X-valued function f on T is said to be P-measurable if there exists a
sequence (sn)∞1 in S(P, X) such that sn(t) → s(t) for each t ∈ T . The set of all X-valued
P-measurable functions is denoted by M(P, X).

Notation 3 For a function f : T → X, N(f) denotes the set {t ∈ T : f(t) 6= 0}.

Clearly, M(P, X) is a vector space with respect to the operations of pointwise addition
and scalar multiplication. The fact that M(P, X) is also closed under the formation of
pointwise sequential limits is an immediate consequence of the equivalence of (i) and (ii) of
the following strengthened version of the classical Pettis measurability criterion (see Theorem
III.6.11 of [27]). To prove the following theorem one can use the notions of X-valued σ-simple
and P-elementary functions and modify the arguments given in §1 of [32].

Theorem 4 For an X-valued function f on T the following are equivalent:
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(i) f is P-measurable.

(ii) f has separable range and is weakly P-measurable in the sense that x?f is P-measurable
for each x? ∈ X?.

(iii) f has separable range and f−1(E) ∩N(f) ∈ σ(P) for each Borel set E in X.

Consequently, if fn(t) → f(t) ∈ X for each t ∈ T and if (fn)∞1 ⊂ M(P, X), then
f ∈M(P, X).

Definition 9 A sequence (fn) of X-valued functions on T is said to converge m-a.e. on T
to an X-valued function f , if there exists a set N ∈ σ(P) with ‖m‖(N) = 0 (⇔ m̂(N) = 0)
such that fn(t) → f(t) for each t ∈ T \ N . If η : P → [0,∞] is a submeasure, similarly we
define η-a.e. convergence on T .

The following theorem plays a vital role in the development of the theory. For example,
see the proof of Theorem 6 below.

Theorem 5 (Egoroff-Lusin) Let η be a continuous submeasure on σ(P) and let (fn)∞1 ⊂
M(P, X). Suppose there is a function f0 ∈M(P, X) such that fn(t)→ f0(t) η-a.e. on T . If

F =
⋃∞
n=0N(fn), then there exists a set N ∈ σ(P) with η(N) = 0 and a sequence Fk ↗ F \N

with (Fk)∞1 ⊂ P such that fn → f0 uniformly on each Fk, k = 1, 2, . . . .

5 Dobrakov Integral of P-measurable Functions

As is customary in such theories, we first define the integral for s ∈ S(P, X) and then
extend the integral to a wider class of P-measurable functions. The reader should note
that the wider class, called the class of the Dobrakov integrable functions, is not
obtained as the completion of S(P, X) with respect to a suitable pseudonorm.
The extension procedure given here is an adaptation of that in [2] and its importance is
highlighted in Note 6 below.

Definition 10 For an X-valued P-simple function s =
∑r

1 xiχAi, we define

m(s,A) =
∫
A
s dm =

r∑
i=1

m(A ∩Ai)xi ∈ Y for A ∈ σ(P) ∪ {T}.

It is easy to show that m(s,A) is well defined.

Proposition 1 Let s ∈ S(P, X) and A ∈ σ(P) ∪ {T}. Then:

(i) m(s,A) = m(s,A ∩N(s)).

(ii) m(s, ·) : σ(P)→ Y is a σ-additive vector measure.

(iii) m(·, A) : S(P, X)→ Y is linear.

(iv) When A is fixed, m(·, A) : S(P, X) → Y is a bounded linear mapping if and only if
m̂(A) is finite.
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Since the finiteness of m̂ on P is essential for the present extension procedure, and since
m̂(E) can be infinite for some E ∈ P even though P is a σ-algebra (see Example 5, p. 517
of [9]), we make the following assumption to hold in the sequel.

BASIC ASSUMPTION 1 The operator valued measure m on P satisfies the hy-
pothesis that m̂(E) <∞ for each E ∈ P.

We emphasize that m̂(T ) is not assumed to be finite. If m̂(T ) <∞, then the integral can
be easily extended to all f ∈ S(P, X) (see Notation 2).

Notation 4 With Basic Assumption 1 holding for m, each s ∈ S(P, X) is called a P-simple
m-integrable function and S(P, X) is now denoted by Is(m), or simply by Is when there is
no ambiguity about m.

The whole integration theory rests on the following theorem. Therefore, we also include
its proof from [26].

Theorem 6 Let f ∈ M(P, X). Suppose there is a sequence (sn)∞1 ⊂ Is such that sn(t) →
f(t) m-a.e. on T . Let γn(·) =

∫
(·) sn dm : σ(P) → Y , for n = 1, 2, . . . . Then the following

are equivalent :

(i) lim
n
γn(A) = γ(A) exists in Y for each A ∈ σ(P).

(ii) γn, n = 1, 2, . . . , are uniformly σ-additive on σ(P).

(iii) lim
n
γn(A) exists in Y uniformly with respect to A ∈ σ(P).

If anyone of (i),(ii) or (iii) holds, then the remaining hold. Moreover, for each A ∈ σ(P),
the limit is independent of the sequence (sn).

Proof. By VHSN, (i)⇒(ii) and obviously (iii)⇒(i). Now let (ii) hold.
Let

η(A) =
∞∑
n=1

1
2n

γn(A)
1 + γn(T )

, A ∈ σ(P).

Then, by Theorem 3(i), η is a continuous submeasure on σ(P). Let F =
⋃∞

1 N(sn)
⋃
N(f).

By the Egoroff-Lusin theorem there exists a set N ∈ σ(P) with η(N) = 0 and a sequence
Fk ↗ F \N in P such that sn → f uniformly on each Fk. As (F \N) \ Fk ↘ ∅, given ε > 0,
by (ii) there exists k0 such that ‖γn‖((F \N) \Fk0) < ε

3 for all n. Since sn → f uniformly on
Fk0 and since m̂(Fk0) < ∞ as Fk0 ∈ P, ( there exists n0 such that ‖sn − sp‖Fk0

m̂(Fk0) < ε
3

for n, p ≥ n0. Then it follows that∣∣∣∣∫
A
sn dm−

∫
A
sp dm

∣∣∣∣ ≤
∣∣∣∣∣
∫

(A\N)\Fk0

sn dm

∣∣∣∣∣+
∣∣∣∣∣
∫

(A\N)\Fk0

sp dm

∣∣∣∣∣+

∣∣∣∣∣
∫

(A\N)∩Fk0

(sn − sp) dm

∣∣∣∣∣
7



≤ ‖γn‖(F \N \ Fk0) + ‖γp‖(F \N \ Fk0) + ‖sn − sp‖Fk0
m̂(Fk0) < ε

for all n, p ≥ n0 and for all A ∈ σ(P). Now (iii) holds as Y is complete.
Let (hn)∞1 ⊂ Is with hn(t) → f(t) m-a.e. on T . Let γ′n(·) =

∫
(·) hn dm, n = 1, 2, . . . ,

and let anyone of (i), (ii) or (iii) hold for (γ′n)∞n=1. Then by the first part γ′n, n = 1, 2, . . . ,
are uniformly σ-additive. If w2n = hn, w2n−1 = sn, n = 1, 2, . . . ,then wn(t)→ f(t) m-a.e. on
T and γ′′n(·) =

∫
(·)wn dm : σ(P) → Y , n = 1, 2, . . . , are uniformly σ-additive. Consequently,

by the first part lim
n
γ′′n(A) exists in Y for each A ∈ σ(P). Then lim

n
γn(A) = lim

n
γ′′2n−1(A) =

lim
n
γ′′n(A) and similarly, lim

n
γ′n(A) = lim

n
γ′′n(A) for A ∈ σ(P). Hence the last part holds.

The above theorem suggests the following definition for integrable functions.

Definition 11 A function f ∈M(P, X) is said to be m-integrable (in the sense of Dobrakov)
if there exists a sequence (sn)∞1 in Is such that sn → f m-a.e. on T and such that anyone
of conditions (i), (ii) or (iii) of Theorem 6 holds. In that case, we define∫

A
f dm = lim

n

∫
A
sn dm , A ∈ σ(P) ∪ {T}.

The class of all m-integrable functions is denoted by I(m), or simply by I if there is no
ambiguity about m.

In the following theorem we list the basic properties of I(m) and the integral. (Cf.
Proposition 1.)

Theorem 7 I. Let f ∈ I and let γ(·) =
∫

(·) f dm : σ(P)→ Y . Then the following hold:

(a) Is ⊂ I and for s ∈ Is, the integrals given in Definitions 10 and 11 coincide.

(b) γ(·) is a Y -valued σ-additive vector measure and hence the Dobrakov integral has
the property of unconditional convergence (see Introduction).

(c) γ << ‖m‖ (resp. γ << m̂) in the sense that, given ε > 0, there exists δ > 0 such
that ‖m‖(E) < δ (resp. m̂(E) < δ) for E ∈ σ(P) implies |γ(E)| < ε.

(d) I is a vector space and for a fixed A ∈ σ(P), the mapping f →
∫
A f dm is linear

on I.

(e) If ϕ is a bounded P-measurable scalar function on T and if f ∈ I, then ϕ.f ∈ I.
Consequently, if s ∈ Is and if ϕ is a scalar valued bounded, P-measurable function
which is not P-simple, then ϕ.s ∈ I and ϕ.s 6∈ Is. Thus, in general Is is a proper
subset of I.

(f) If f is a bounded P-measurable function on T and if m̂ is continuous on P, then
fχA ∈ I for each A ∈ P.

II. Let U ∈ L(Y, Z). If m : P → L(X,Y ) is σ-additive in the strong (resp. uniform )
operator topology, then the following hold:

(a) Um : P → L(X,Z) is σ-additive in the strong (resp. uniform ) operator topology.

(b) Ûm ≤ |U |m̂ on σ(P). Thus Ûm is finite on P.
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(c) I(m) ⊂ I(Um) and for f ∈ I(m)

U

(∫
A
f dm

)
=
∫
A
f d(Um) , A ∈ σ(P) ∪ {T}.

III. Let Is denote the closure of Is with respect to ‖ · ‖T in the space of X-valued bounded
functions. Then an X-valued function f on T belongs to Is if and only if the following
conditions are satisfied:

(a) f is P-measurable.

(b) f(T ) is relatively compact in X.

(c) for each ε > 0, there is a set A ∈ P such that ‖f‖T\A < ε.

Consequently, for A ∈ σ(P) with m̂(A) < ∞, and for f in the ‖ · ‖T -closure of bounded in-
tegrable functions(=BI), fχA ∈ I. Particularly, if m̂(T ) <∞, then Is ⊂ BI and BI = BI.

Note 4 The hypothesis that m̂ is continuous on P is indispensable in (f) of part I of the
above theorem. See [22,39].

Theorem 8 For f ∈ I, there exists a sequence (sn) in Is such that sn(t) → f(t) and
|sn(t)| ↗ |f(t)| for all t ∈ T and such that

lim
n

∫
A
sn dm =

∫
A
f dm , A ∈ σ(P) ∪ {T}. (8.1)

Consequently, for each A ∈ σ(P)

m̂(A) = sup
{∣∣∣∣∫

A
f dm

∣∣∣∣ : f ∈ I(m), ‖f‖A ≤ 1
}

so that ∣∣∣∣∫
A
f dm

∣∣∣∣ ≤ m̂(A).‖f‖A for f ∈ I and for A ∈ σ(P) ∪ {T}.

Note 5 Unlike the abstract Lebesgue integral and the Bochner integral, there is
no guarantee that (8.1) holds for any sequence (sn) in Is with sn(t) → f(t) and
|sn(t)| ↗ |f(t)| for all t ∈ T . Cf. Corollary 1 of theorem 15 below.

Theorem 8 is needed to prove the following closure theorem, which is one of the impor-
tant results that distinguish the Dobrakov integral from the other theories of Lebesge-type
integration. See Note 6 below and Section 8.

Theorem 9 (Theorem of closure or interchange of limit and integral) Let (fn)∞1 ⊂
I, f ∈ M(P, X) and fn → f m-a.e. on T . Let γn(·) =

∫
(·) fn dm : σ(P) → Y for

n = 1, 2, . . . . Then the following are equivalent:

(i) lim γn(A) = γ(A) exists in Y for each A ∈ σ(P).
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(ii) γn, n = 1, 2, . . . , are uniformly σ-additive.

(iii) lim
n
γn(A) = γ(A) exists in Y uniformly with respect to A ∈ σ(P).

If anyone of (i), (ii) or (iii) holds, then the remaining hold, f is also m-integrable and∫
A
f dm =

∫
A

(lim
n
fn) dm = lim

n

∫
A
fn dm , A ∈ σ(P). (9.1)

Note 6 (i) The above theorem is called closure theorem since the extension
process stops with I(m). In other words, if the procedure in Theorem 6
is repeated starting with sequences of m-integrable functions instead of se-
quences in Is(m), we only get back the class I(m) and no new function from
M(P, X) is included.

(ii) Equation (9.1) shows that Theorem 9 gives necessary and sufficient condi-
tions for the validity of the interchange of limit and integral. In the classical
abstract Lebesgue integral, the bounded and the dominated convergence
theorems give only sufficient conditions for its validity. Again, only these
theorems are generalized to vector case in the distinct Lebesge-type theo-
ries of integration referred to in the introduction. Cf. Theorems 15 and 17
below.

(iii) We also note that I(m) is the smallest class for which Theorem 9 holds.
More precisely, let J(m) be another class of X-valued P-measurable functions
which are m-integrable in a different sense, and let the integral of f ∈ J(m) be
denoted by (J)

∫
(·) f dm. If

∫
A s dm = (J)

∫
A s dm for s ∈ Is(m) and for A ∈ σ(P),

and if Theorem 9 holds also for J(m), then I(m) ⊂ J(m). This observation will
be used later in Section 8 while studying the relation between the Dobrakov
and the Bochner (resp. the Dinculeanu) integrals.

We now pass on to the discussion of weakly m-integrable functions.

Definition 12 A function f ∈M(P, X) is said to be weakly m-integrable if f ∈ I(y?m) for
each y? ∈ Y ?.

Theorem 10 Let f ∈M(P, X). Then:

(i) If f ∈ I(m), then f is weakly m-integrable and

y?(
∫
A
fdm) =

∫
A
fd(y?m), A ∈ σ(P), y? ∈ Y ?.

(ii) Suppose c0 6⊂ Y . Then f is m-integrable if and only if it is weakly m-integrable.

(iii) f ∈ I(m) if and only if it is weakly m-integrable and for each A ∈ σ(P) there exists a
vector yA ∈ Y such that

y?(yA) =
∫
A
fd(y?m)

for each y? ∈ Y ?. In that case, yA =
∫
A fdm,A ∈ σ(P).

Note 7 If c0 ⊂ Y , then we can give examples of functions f ∈ M(P, X) which are weakly
m-integrable, but not m-integrable. See Example on p.533 of [9].
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6 The L1-Spaces Associated with m

In the classical Lebesgue-type integration theories, integrable functions are obtained as
those measurable functions which belong to the completion of the class of all integrable sim-
ple functions with respect to a suitable pseudonorm. But, as the reader would have observed
in the previous section, the class I(m) is defined without any reference to a pseudonorm
on Is(m)-a distinguished feature of the Dobrakov integral. The proceedure adopted by Do-
brakov is a modification of that of Bartle-Dunford-Schwartz [2,22] given in connection with
integration of scalar functions with respect to a σ-additive vector measure. See Section 8
below.

Interpreting the semivariation m̂(A) as m̂(χA), Dobrakov modified Definition 6 suitably
in [8] to define m̂(., T ) :M(P, X)→ [0,∞] and showed that m̂(f, T ) is a pseudonorm when-
ever it is finite. Using m̂(f, T ) for f ∈M(P, X), four distinct complete pseudonormed spaces
are defined, which we denote by L1M(m), L1I(m),L1Is(m) and L1(m). The corresponding
quotient spaces, with respect to the equivalence relation “f ∼ g if and only if f = g m-a.e.”,
are called the L1-spaces associated with m. While the classical Lebesgue-type integration
theories induce only one L1-space, Dobrakov’s theory, being most general, gives rise to four
such spaces, and when the Banach space c0 6⊂ Y it turns out that all these spaces coincide.

Definition 13 Let g ∈M(P, X) and A ∈ σ(P). The L1-gauge m̂(g,A) of g on the set A is
defined by

m̂(g,A) = sup{
∣∣∣∣∫
A
fdm

∣∣∣∣ : f ∈ Is(m), |f(t)| ≤ |g(t)| for t ∈ A}

and the L1-gauge m̂(g, T ) = sup{m̂(g,A) : A ∈ σ(P)}.

The following proposition lists some of the basic properties of m̂(·, ·).

Proposition 2 Let f, g ∈M(P, X) and let A ∈ σ(P). Then:

(i) m̂(f, ·) is a σ-subadditive submeasure on σ(P).

(ii) m̂(f,A) ≤ m̂(g,A) if |f(t)| ≤ |g(t)| m-a.e. in A.

(iii) m̂(f,A) = sup{|
∫
A hdm| : h ∈ I(m), |h(t)| ≤ |f(t)| for t ∈ A} and consequently,

|
∫
A
fdm| ≤ m̂(f,A) for f ∈ I(m).

(iv) m̂(f + g,A) ≤ m̂(f,A) + m̂(g,A) for each A ∈ σ(P) and consequently,

m̂(f + g, T ) ≤ m̂(f, T ) + m̂(g, T ).

In the light of Proposition 2(iv),{f ∈M(P, X) : m̂(f, T ) <∞} is a pseudonormed space
and so we are justified in calling m̂(f, T ) as L1-psedonorm of f.
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Definition 14 A sequence (gn)∞1 of functions in M(P, X) is said to converge in L1-mean
(or in L1-pseudonorm) to a function g ∈ M(P, X) if m̂(gn − g, T ) → 0 as n → ∞; the
sequence (gn)∞1 is said to be Cauchy in L1-mean if m̂(gn − gp, T )→ 0 as n, p→∞.

We observe that for g ∈M(P, X), m̂(g, T ) = 0 if and only if g = 0 m-a.e. on T .

Definition 15 Two functions f and g in M(P, X) are said to be m-equivalent if f = g
m-a.e. on T . In that case, we write f ∼ g [m], or simply f ∼ g when there is no ambiguity
about m.

Obviously, ∼ is an equivalence relation on M(P, X) and for f, g ∈ M(P, X), f ∼ g if
and only if m̂(f − g, T ) = 0. Also it is easy to verify that L1-mean convergence determines
the limit uniquely in the equivalence classes of M(P, X).

Theorem 11 Let (fn)∞1 ⊂M(P, X) be Cauchy in L1-mean. Then:

(i) There exists f ∈M(P, X) such that fn → f in L1-mean.

(ii) If each fn is m-integrable, then the same is true for f .

(iii) If the submeasure m̂(fn, ·) is continuous on σ(P) for each n, then the submeasure m̂(f, ·)
is also continuous on σ(P).(See Definition 3.)

Now we give the definition of the L1- and L1-spaces associated with the operator valued
measure m.

Definition 16 Let L1M(m) (resp.L1I(m)) be the set {f ∈M(P, X) : m̂(f, T ) <∞} (resp.
the set {f ∈ I(m) : m̂(f, T ) <∞}. The closure of Is(m) in L1M(m) in L1-mean is denoted
by L1Is(m). The set {f ∈M(P, X) : m̂(f, ·) continuous on σ(P)} is denoted by L1(m).

By Proposition 2(iv), L1M(m), L1I(m), L1Is(m) and L1(m) are pseudonormed spaces
with respect to the pseudonorm m̂(·, T ) and consequently, the corresponding quotient spaces
with respect to ∼ are normed spaces and are denoted by L1M(m), L1I(m), L1Is(m) and
L1(m), respectively. These spaces will be referred to as the L1- and L1-spaces associated
with m. Results (i) and (ii) of the following theorem are immediate from Theorem 11.

Theorem 12 (i) The spaces L1M(m), L1I(m), L1Is(m) and L1(m) are complete pseudo-
normed spaces. Consequently, L1M(m), L1I(m), L1Is(m) and L1(m) are Banach
spaces.

(ii) L1M(m) ⊃ L1I(m) ⊃ L1Is(m) ⊃ L1(m).

(iii) If the Banach space c0 6⊂ Y , then

L1M(m) = L1I(m) = L1Is(m) = L1(m).

(iv) L1Is(m) = L1(m) if and only if the semivariation m̂(·) is continuous on P.

By using Theorem 1 it can be shown that m̂ is continuous on P and m̂(g, ·) is continuous
on σ(P) for g ∈ L1M(m), whenever the Banach space c0 6⊂ Y . This fact gets reflected as
result (iii) of the above theorem.
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Note 8 When c0 ⊂ Y , it can happen that L1M(m) % L1I(m) % L1Is(m) % L1(m), as is
illustrated in the following example.

Example 1 Let T = IN,P = P(IN), X be the real space l1 and Y the real space c0. For
x = (x1, x2, ...) ∈ l1, let us define{

m({1})x = (x1, 0, 0, ...){
m({2})x = (0, 1

2x3, 0, 0, ...)
m({3})x = (0, 1

2x5, 0, 0, ...)
m({4})x = (0, 0, 1

3x7, 0, 0, ...)
m({5})x = (0, 0, 1

3x9, 0, 0, ...)
m({6})x = (0, 0, 1

3x11, 0, 0, ...)

and so on. For E ⊂ IN ,let m(E)x =
∑

n∈Em({n})x if E 6= ∅ and m(E) = 0 if E = ∅. Then
it can be shown that m : P → L(l1, c0) is σ-additive in the uniform operator topology.Clearly
m̂(T ) = 1.

Let f(n) = e2n, n ∈ IN , where en = (0, 0, ..., 0, 1︸ ︷︷ ︸
n

, 0, ...) ∈ l1. Let g(n) = e2n−1, n ∈ IN .

Then f, g ∈ M(P, X). Clearly, f is m-integrable and obviously,
∫
A fdm = 0 for each

A ∈ σ(P). By Proposition 2(iii) and Theorem 8, m̂(f, T ) ≤ ||f ||T m̂(T )≤ 1, and hence
f ∈ L1I(m). Since m̂(·) is not continuous on σ(P) = P, it can be shown that f is not
approximable by a sequence (sn)∞1 ⊂ Is(m) in L1-mean. Thus f 6∈ L1Is(m). This shows that
L1I(m) % L1Is(m).
For the function g defined above we have

∫
{1}

gdm = e1 ;
∫
{2}

gdm =
∫
{3}

gdm =
1
2
e2

∫
{4}

gdm =
∫
{5}

gdm =
∫
{6}

gdm =
1
3
e3

and so on. This shows that

∞∑
1

∫
{n}

gdm =
∞∑
1

ek 6∈ c0

and hence g is not m-integrable. However, m̂(g, T ) ≤ ||g||T m̂(T ) = 1. Thus g ∈ L1M(m),
but g 6∈ L1I(m). This shows that L1M(m) % L1I(m).

Since m̂(·) is not continuous on P, by Theorem 12(iv) we have L1Is(m) % L1(m).

Thus, for the present choice of P, X, Y and m we have shown that

L1M(m) % L1I(m) % L1Is(m) % L1(m).
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From the above results we observe that the Dobrakov integral is related to
the topological structure of the underlying Banach space Y such as c0 6⊂ Y or
c0 ⊂ Y . A similar involvement of the space Y is absent in other Lebesgue-type
integration theories. See Section 8 below.

Now we take up the study of the separability of the L1-spaces.

Definition 17 Let P1 = {E ∈ σ(P) : m̂(E) < ∞}. We define ρ(E,F ) = m̂(E∆F ) for
E,F ∈ P1.

Clearly, ρ is a pseudometric on P1. It is routine to verify that (P1, ρ) is complete. In
terms of ρ we have the following sufficient condition for the continuity of m̂(·) on P.

Theorem 13 If (P, ρ) is separable, then the semivariation m̂(·) is continuous on P. Conse-
quently, L1Is(m) = L1(m) (by Theorem 12(iv)). More generally, if Ω is anyone of the spaces
L1M(m), L1I(m), L1Is(m) or L1(m) and if Ω is separable, then Ω = L1(m).

Since any separable L1-space coincides with L1(m), it follows that only the space L1(m)
can be separable. Now we shall give a characterization of separable L1(m).

Theorem 14 Let L1(m) be non trivial. Then it is separable if and only if the space (P0, ρ)
and X are separable, where P0 = {A ∈ P : m̂(A ∩ En) ↘ 0 for each sequenceEn ↘ ∅ in
σ(P)}. Consequently, if P0 is the δ-ring generated by a countable family of sets and if X is
separable, then L1(m) is separable.

Note that the last part of the above theorem generalizes its corresponding classical ana-
logue.

7 Generalizations of Classical Convergence Theorems to L1(m)

The Lebesgue dominated convergence theorem (shortly, LDCT),the Lebesgue bounded
convergence theorem (shortly,LBCT) and the monotone convergence theorem (shortly, MCT)
are suitably generalized to the space L1(m). The space L1(m) is characterized as the biggest
class of m-integrable functions for which LDCT holds. Also Theorem 8 is strengthened for
functions in L1(m) as shown in Corollary 1 of Theorem 15. Finally, the complete analogue
of the classical Vitali convergence theorem also holds for this class.

Theorem 15 (LDCT)Suppose (fn)∞1 ⊂ M(P, X) and f ∈ M(P, X) and suppose fn → f
m-a.e. on T . If there is a function g ∈ L1(m) such that |fn(t)| ≤ |g(t)| m-a.e. on T for n =
1, 2, ..., then f, fn ∈ L1(m) for n = 1, 2, ..., and m̂(fn−f, T )→ 0. Consequently,f, fn ∈ I(m)
for n = 1, 2, ..., and

lim
n

∫
A
fndm =

∫
A
fdm

uniformly with respect to A ∈ σ(P).
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The following corollary gives a strengthened version of Theorem 8 for functions in L1(m).

Corollary 1 Let f ∈ L1(m). Then for each sequence (sn)∞1 in Is(m) with sn → f and
|sn| ↗ |f | m-a.e. on T ,

lim
n

∫
A
sndm =

∫
A
fdm

uniformly with respect to A ∈ σ(P).

Now we give a characterization of the space L1(m) in terms of LDCT.

Theorem 16 (A CHARACTERIZATION OF L1(m)) A function g ∈ M(P, X) belongs to
L1(m) if and only if every f ∈ M(P, X) with |f | ≤ |g| m-a.e. on T is m-integrable. (In
that case, f ∈ L1(m).) Consequently, L1(m) is the largest class of m-integrable functions
for which LDCT holds in the sense that, if the hypotheses that f, fn, n = 1, 2, ..., are in
M(P, X), fn → f m-a.e. on T and there exists g ∈ M(P, X) such that |fn| ≤ |g| m-a.e.
imply that f, fn ∈ I(m) for n = 1, 2, ..., then g ∈ L1(m).

Now we state the generalized Lebesgue bounded convergence theorem.

Theorem 17 (LBCT) Suppose m̂(·) is continuous on σ(P),or equivalently, suppose every
bounded f ∈ M(P, X) is m-integrable. Let f, fn, n = 1, 2, ..., be in M(P, X) such that
fn → f m-a.e. on T . If there is a finite constant C such that |fn(t)| ≤ C m-a.e. on T for
n = 1, 2, ..., then f, fn ∈ L1(m) for all n, m̂(fn − f, T )→ 0 as n→∞ and

lim
n

∫
A
fndm =

∫
A
fdm

uniformly with respect to A ∈ σ(P).

The reader is referred to [8] for the generalization of the Vitali convergence theorem to
L1Is(m), and to [10] for the generalizations of the MCT and the Vitali convergence theorem
to L1(m). Another theorem, called diagonal convergence theorem, is given in [9] with many
interesting applications. Because of lack of space, we omit their discussion here.

8 Comparison with Classical Lebesgue-type Integration The-
ories

As mentioned in the introduction, the Dobrakov integral is now compared with the ab-
stract Lebesgue integral, the Bochner and the Pettis integrals, the Bartle-Dunford-Schwartz
integral, the Bartle bilinear integral and the Dinculeanu integral. As observed in Note 1, the
reader can consider a σ-additive scalar or vector measure as a particular case of an operator
valued measure by taking IK = X, or IK = X and X = Y , respectively. Thus the comparison
is possible.

Here it is observed that the Dobrakov integral is the same as the abstract Lebesgue in-
tegral when the functions and the measure are scalar valued (Theorem 18). Moreover, it is
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pointed out that the Dobrakov integral is the complete all pervading generalization of the
abstract Lebesgue integral, while the other integrals such as the Bochner,the Bartle and the
Dinculeanu integrals generalize only partially. See Theorem 19 and the comments following
Example 2, and Theorems 21 and 22 along with the comments following Example 3. In the
case of the Pettis integral, for X-valued P-measurable functions, the concepts of integrability
and integral coincide in both the theories.(See Theorem 20(i)).

(a) The abstract Lebesgue integral

Let µ : S → [0,∞] or CI be σ-additive and let P = {E ∈ S : v(µ,E) < ∞}. Since each
µ-integrable function f has N(f) σ-finite, it follows that f is P-measurable in the sense of
Definition 8. By Note 1, µ is an operator valued measure with µ(E) ∈ L(IK, IK) for E ∈ P.

Theorem 18 Let S, µ and P be as above. A scalar function f on T is µ-integrable in the
usual sense if and only if it is Dobrakov µ-integrable and moreover, both integrals coincide on
each A ∈ S. Thus I(µ) coincides with the class of all µ-integrable (in the usual sense) scalar
functions. Further,

µ̂(f,A) =
∫
A
|f |dv(µ, ·), A ∈ S

and I(µ) = L1M(µ) = L1I(µ) = L1Is(µ) = L1(µ).

(b) The Bochner integral [22,24]

Let S, µ,P, be as in (a). If f is an X-valued Bochner µ-integrable function, then N(f) is
σ-finite and consequently, f is P-measurable in the sense of Definition 8. Take Y = X and
consider µ(E) as the operator µ(E)I, where I is the identity operator on X.

Theorem 19 Let S, µ,P be as in the above. If f is an X-valued Bochner µ-integrable func-
tion, then f is Dobrakov µ-integrable and both integrals coincide on each A ∈ S. Consequently,
if θ is a complex Radon measure in the sense of Bourbaki [4] on a locally compact Hausdorff
space T , and if µθ is the complex measure induced by θ in the sense of [29,31], then each
function f : T → X which is θ-integrable in the sense of Bourbaki [4] is µθ-integrable in the
sense of Dobrakov and both integrals coincide on each Borel subset of T . (See also [30]).

It is well known that an X-valued P-measurable function f is Bochner µ-integrable if
and only if

∫
T |f |dv(µ, ·) < ∞. As the following example illustrates, when X is infinite

dimensional there exist X-valued functions on T which are Dobrakov µ-integrable,but not
Bochner µ-inegrable for a suitably chosen σ-additive scalar measure.

Example 2 Let dim X = ∞ and choose by the Dvoretzky-Roger theorem in [5] a sequence
(xn)∞1 in X such that

∑
xn converges unconditionally in norm, with

∑
|xn| = ∞. Let

S = P(IN) and µ(E) = ]E if E is finite and µ(E) = ∞ otherwise. Let P = {E ⊂ IN :
E finite}. If f(n) = xn, n ∈ IN, then f is P-measurable and by the unconditional convergence
of
∑
xn it follows that f is Dobrakov µ-integrable. But f is not Bochner µ-integrable, since∫

IN |f |dµ =
∑∞

1 |xn| =∞.
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Since dim X = ∞ is the only hypothesis that was used in the above example, we can
state the following:

When dim X = ∞, one can always define P and a σ-additive scalar measure
µ on P such that the class of all Bochner µ-integrable X-valued functions is a
proper subset of I(µ). In that case, by Note 5(iii) the theorem on interchange
of limit and integral is not valid for the class of the Bochner µ-integrable functions.

Recall that an X-valued P-measurable function is Bochner µ-integrable if and only if |f |
is v(µ, .)-integrable and hence, in terms of the terminology given in the introduction, the
Bochner integral generalizes the abstract Lebesgue integral in such a way as to
maintain the property of absolute integrability. On the other hand, the Dobrakov
integral maintains only the property of unconditional convergence, and not that
of absolute integrability.

Finally, for an X-valued P-measurable function f it can be easily verified that µ̂(f,A) =∫
A |f |dv(µ, ·) for A ∈ σ(P) and hence f is Bochner µ-integrable if and only if µ̂(f, T ) < ∞.

In that case, µ̂(f.·) : S → [0,∞) is a σ-additive finite measure and hence is continu-
ous on S. Thus the class of all Bochner µ-integrable functions coincides with
L1M(µ) = L1I(µ) = L1Is(µ) =L1(µ) of Dobrakov.

The above observation motivates the following

Definition 18 For an operator valued measure m, the associted space L1(m) ( or L1(m)) is
called the Bochner class of m.

(c) The Pettis integral [24]

Let S, µ,P be as in (a). Recall that an X-valued weakly P-measurable function f is said
to be Pettis integrable if x?f is µ-integrable for each x? ∈ X? and if for each A ∈ σ(P) there
exists a vector xA ∈ X such that

x?(xA) =
∫
A
x?fdµ.

In that case, the Pettis integral of f over A is defined by

(P )
∫
A
fdµ = xA, A ∈ σ(P).

Considering µ(E) as µ(E)I ∈ L(X,X), one can compare the Pettis integral with the
Dobrakov integral. In fact, the following theorem describes their relationship.

Theorem 20 Let S, µ,P be as in the above. Let f be an X-valued function on T . Then the
following hold:

(i) If f ∈M(P, X), then it is Pettis µ-integrable if and only if it is Dobrakov µ-integrable
and both integrals coincide.
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(ii) There exist weakly P-measurable functions which are not P-measurable. Hence there
exist functions which are Pettis integrable, but not Dobrakov integrable.

(d) The Bartle-Dunford-Schwartz integral [2,22]

When P is a σ-algebra, the Dobrakov integral of a P-measurable scalar function with
respect to a σ-additive vector measure γ on P (see Note 1) is the same as the Bartle-Dunford-
Schwartz integral. This is not surprising, since Dobrakov adapted the proceedure followed
in [2] to define the integral of vector valued functions with respect to an operator valued
measure and since ||γ|| = γ̂ (see Note 2). Note that this integral maintains only the property
of unconditional convergence and not that of absolute integrability.

(e) The Bartle integral [1]

Bartle has developed a theory of integral in [1] for X-valued functions with respect to a
set function µ : S → L(X,Y ), where µ is σ-additive in the uniform operator topology and S
is a σ-algebra of sets. We shall refer to this integral as the Bartle integral. Further, when
µ satisfies the condition (?) on p.346 of [1],we shall call it (?)-integral of Bartle.From the
discussion on p.535 of [7], we have the following results.

Theorem 21 Let m : S → L(X,Y ) be σ-additive in the uniform operator topology,where S
is a σ-algebra. Then the following hold:

(i) The Bartle integral maintains the property of unconditional convergence.

(ii) Each X-valued Bartle m-integrable function is Dobrakov m-integrable and both integrals
coincide.

(iii) m̂(·) is continuous on S if and only if m satisfies the (?)-condition of Bartle. Thus,if
m̂(·) is continuous on S (for example, if c0 6⊂ Y ),then the theory of (?)-integral
of Bartle is the same as the theory of the Dobrakov integral.

(iv) The function f in Example 1 above is not even measurable in the sense of Bartle (and
hence not Bartle m-integrable). Thus the theorem on interchange of limit and in-
tegral is in general not valid for the class of all Bartle m-integrable functions
(see Note 5(iii)).

In [1] the Bartle (?)-integral is compared with other Lebesgue-type integrals that are not
discussed here. The reader is referred to [1].

(f) The Dinculeanu integral [6]

In [6] Dinculeanu has developed a theory of integral for vector valued functions with
respect to an operator valued measure m of finite variation on a δ-ring P. Since m̂(·) ≤ v(m, ·)
on σ(P) and N(f) is σ-finite with respect to v(m, ·), the following result holds.

Theorem 22 Let m : P → L(X,Y ) be an operator valued measure of finite variation. If
f : T → X is m-integrable in the sense of Dinculeanu, then f is Dobrakov m-integrable,
both integrals coincide on each A ∈ σ(P) and f belongs to the Bochner class of m (see

18



Definition 18).Moreover, a function f ∈ M(P, X) is Dinculeanu m-integrable if and only
if
∫
T |f |dv(m, ·) < ∞ and hence the Dinculeanu integral maintains the property of absolute

integrability.

Example 3 Let T = IN and P = {E ⊂ IN,E finite}. Then σ(P) = P(IN). Let dim Y =∞
and let X = IK, the scalar field of Y . By the Dvoretzky-Roger theorem in [5], choose (yn)∞1 in
Y such that

∑
yn converges unconditionally with

∑
|yn| = ∞. Define m(E) =

∑
n∈E yn for

E ∈ σ(P). Then m is a well defined Y -valued σ-additive vector measure on σ(P) and hence
by Note 2, m̂(T ) = ||m||(T ) is finite. Note that v(m,E) is finite for each E ∈ P and hence
the Dinculeanu integral can be defined with respect to m (see Note 2). However, observe that
v(m,T ) =

∑
|yn| =∞.

Clearly, the function χT is P-measurable. Let sk = χ{1,2,...,k} Then sk → χT pointwise
and for A ⊂ T ,

|
∫
A
skdm−

∫
A
sk+pdm| → 0

as k → ∞. Thus χT is Dobrakov m-integrable. Moreover, χT ∈ L1I(m), since m̂(χT , T ) =
m̂(T ) < ∞. On the other hand,

∫
T χTdv(m, ·) =

∑∞
n=1 |yn| = ∞ and hence χT is not Din-

culeanu m-integrable. Further, if c0 6⊂ Y , then by Theorem 12(iii), L1M(m) = L1I(m) =
L1Is(m) = L1(m) and hence χT ∈ L1(m).

The above example establishes the following:

If dim Y = ∞, then there exists a δ-ring P and an operator valued measure
m : P → L(X,Y ) of finite variation such that the class Di(m) of all Dinculeanu
m-integrable functions is a proper subset of I(m), so that the theorem on inter-
change of limit and integral does not hold for Di(m) by Note 5(iii). Moreover,
one can also have L1(m) % Di(m) (for example,when c0 6⊂ Y ). LDCT holds for
Di(m) and L1(m) (cf. Theorem 16).

For X-valued vector functions the Dinculeanu integral with respect to a σ-additive scalar
measure on P (see Note 1) is the same as the Bochner integral and hence the Dinculeanu
integral is a direct generalization of the Bochner integral for operator valued measures of
finite variation on a δ-ring. Note that the Bochner and the Dinculeanu integrals share the
property of absolute integrability of the abstract Lebesgue integral.

Since the assumption that the operator valued measure m is of finite variation
on P is very restrictive in comparison with the finiteness of the semivariation m̂
on P (see Example 3), the Dobrakov theory permits the m-integrability of vector
functions when the operator valued measure m has only finite semivariation on
P. Note that such functions cannot be integrated in the sense of Dinculeanu,
when m is not of finite variation on P.

The advantage of the Dobrakov integral over that of Dinculeanu is that it permits an inte-
gral representation for weakly compact operators U : C0(T,X)→ Y , where C0(T,X) = {f :
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T → X, f continuous and vanishes at∞} and T is a locally compact Hausdorff space.(See[20].)

9 Concluding Remarks

Maynard obtained a powerful Radon-Nikodým theorem for the Dobrakov integral in [26].
Dobrakov proved the Fubini type theorem for operator valued product measures under cer-
tain restrictions in [9], and later, in 1988, he proved it in the most general form in [13]. The
validity of the Fubini type theorem also asserts that the Dobrakov integral is the apt gener-
alization of the abstract Lebesgue integral. Because of lack of space, we omit the discussion
of these interesting topics. The reader is referred to the bibliography.

The techniques and the ideas found in the Dobrakov theory are so powerful and profound
as to permit him to formulate a theory of multilinear integration of vector functions with
respect to an operator valued multimeasure.See [14-19,21]. This theory is more complete and
exhaustive than its particular cases given in [27,28,32].

Finally, the author wishes to acknowledge sincerely the financial assistance received from
Intercambios Cient́ıficos of the Universidad de los Andes, CONICIT and Fundación Polar of
Venezuela, to visit the Mathematical Institute in Bratislava. Also he wishes to express his
indebtedness to Professor Dobrakov for many fruitful and thought provoking discussions on
the subject during his visit to Bratislava.
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lished by IV Escuela Venezolana de Matemáticas, Universidad de los Andes, Mérida, Venezuela,
1991.

31. T. V. Panchapagesan, On complex Radon measures I, Czech. Math. J. 42(1992), 599–612.

32. K.Ylinen, On vector bimeasures, Annali Mat. Pura Appl. 117(1978), 115–138.

21


