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The fixed point set of open mappings

on extremally disconnected spaces

Egbert Thümmel

Abstract. We give an example of an extremally disconnected compact Hausdorff space
with an open continuous selfmap such that the fixed point set is nonvoid and nowhere
dense, resp. that there is exactly one nonisolated fixed point.
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1. Introduction

Let X be an extremally disconnected compact Hausdorff space and let f :
X −→ X be a continuous selfmap. We are interested in the fixed point set
Fix = {x ∈ X : f(x) = x}. At first we will collect some known facts about Fix.

For arbitrary T ⊆ X , we are looking for the smallest closed T # ⊇ T such that
X\T # is invariant. We proceed by induction:

T0 = T ,

Tα+1 = Tα ∪ f−1[Tα],

Tα =
⋃

β<α

Tβ for α a limit number.

There is a κ where the procedure is terminating, i.e. Tκ = Tκ+1. Put T # = Tκ.

Surely, T # will be the smallest closed subset ofX containing T and its complement
being invariant. By induction we easily prove the following:

(i) If T is invariant then T # is invariant too.

(ii) If T is open then T # is open and closed.

(iii) If Fix ⊆ T # and T is closed then Fix ⊆ T .

(For proving (ii) and (iii) use the fact that X is extremally disconnected.)
Abramovich, Arenson, and Kitover [AAK] showed

(iv) Fix# is open and closed.



790 E. Thümmel

Define now

X1 = X\(Fix#)

X2 = (int(Fix))#

X3 = X\(X1 ∪ X2)

X1 is invariant by the definition of the operator
#. From (i) we infer that X2

is invariant too. Fix# is invariant by (i), X\(int(Fix))# is invariant by the

definition of #, so X3 = Fix# ∩ X\(int(Fix))# is also invariant. Fix# is open
and closed by (iv), so X1 is open and closed. X2 is open and closed by (ii). It
follows that X3 is also open and closed. We have got a partition of X into three
invariant open and closed components with

in X1 Fix = ∅
in X2 Fix is open and closed Fix# = X2

in X3 Fix is nowhere dense Fix# = X3.

As a result of this considerations we notice the following. When we are ex-
amining our situation, i.e. an extremally disconnected compact Hausdorff space
with a continuous mapping on it, we can assume that Fix has one of these three
properties.
In 1968 Froĺık [F] proved that the fixed point set of a continuous selfmap of

a compact extremally disconnected Hausdorff space is open under the assumption
that f is 1-1. That means that under this condition X3 = ∅. The natural
question whether this holds true also for f is open, was posed by Abramovich,
Arenson, and Kitover [AAK] and asked also by Vermeer [V]. We will give here
a counterexample, namely a compact extremally disconnected Hausdorff space
X and an open continuous mapping f on it such that its fixed point set Fix
is nowhere dense and nonvoid. Furthermore, we construct under additional set-
theoretic assumptions an example of this situation with exactly one fixed point.
It remains an open question to me, to what extent these examples are typical.

2. Preliminaries

(a) The Ellentuck space

Recall the definition [E] of the Ellentuck topology on Y = [ω]ω, generated by
the base

E = {[s, A] : s ∈ [ω]<ω, A ∈ [ω]ω,max s < minA}

where [s, A] = {M ∈ [ω]ω : s ⊂ M ⊆ s ∪ A}. Note that E ′ = {[s, A] ∈ E : s 6= ∅}
is already a base. The basic open sets [s, A] are open and closed.
In Y , the following strengthening of the Galvin-Prikry lemma holds. We will

quote it only in a weaker form needed here.

Lemma (Ellentuck [E]). Let {Si}i<n be a finite cover of Y by Borel sets Si

(Borel in the sense of the Ellentuck topology). Then there is an A ∈ [ω]ω and an
i < n such that [A]ω ⊆ Si.
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(b) The lemma of Krawczyk and Steprāns

Furthermore, we need the following lemma, which generalizes the lemma of the
three sets from the discrete case to zerodimensional spaces.

Lemma (Krawczyk, Steprāns [KS]). Let X be a zerodimensional compact Haus-
dorff space and let f : X −→ X be continuous. Fix = ∅ iff there is a partition
(W1, W2, W3) of X into open and closed sets with Wi ∩ f [Wi] = ∅.

(c) The absolute

Let us recall the notion of the absolute. The absolute E(Y ) of a topological
space Y is defined as the Stone space of the Boolean algebra of all regular open
subsets of Y . For every regular open subset U of Y we define E(U) = {x ∈
E(Y ) : U ∈ x}. The E(U)’s form a base in E(Y ).
A set B of non-void open sets is called π-base iff for any non-void open set U

there is V ∈ B such that V ⊆ U . If B is a π-base of regular open sets in Y then
{E(U) : U ∈ B} is a π-base in E(Y ).
Let g : Y −→ Y be open and continuous. We define the absolute E(g) :

E(Y ) −→ E(Y ) of g as follows: let E(g)(x) be the ultrafilter generated by

{int(g[U ]) : U ∈ x}. E(g) is open and continuous, too.

(d) Selective ultrafilters (see e.g. [CN])

Call a uniform ultrafilter U on a cardinal κ selective iff for any {Aα}α<κ ⊂ U
there is A ∈ U such that for all α, β ∈ A, α < β it holds β ∈ Aα. The existence of
selective ultrafilters is independent from ZFC. Selective ultrafilters are κ-complete,
i.e. for any β < κ, {Aα}α<β ⊂ U we have

⋂
{Aα}α<β ∈ U .

3. The main construction

We are ready to formulate our main result:

Theorem 1. There is an example of an extremally disconnected compact Haus-

dorff space X with an open continuous selfmap f : X −→ X such that the fixed
point set Fix is nowhere dense and not empty.

Proof: Let Y = [ω]ω be equipped with the Ellentuck topology. Define a map
g : Y −→ Y by g(M) =M\{minM}. g is continuous since g−1[[s, A]] =

⋃
{[{n}∪

s, A] : n < min s} and open since g[[s, A]] = [s\{min s}, A] for any [s, A] ∈ E ′.
Take the absolute X = E(Y ) of Y and the absolute f = E(g) : X −→ X of

the open mapping g. We have constructed a compact extremally disconnected
Hausdorff space X with an open continuous map f on it.
Since E(U) ∩ f [E(U)] = E(U) ∩ E(int(g[U ])) = E(U ∩ int(g[U ])) = E(∅) = ∅

for U ∈ E ′ and these E(U)’s form a π-base, we conclude that Fix is nowhere
dense.
It remains to show that Fix 6= ∅. Assume by contradiction that Fix = ∅.

By the lemma of Krawczyk and Steprāns, this is equivalent with the existence
of a clopen partition (W1, W2, W3) of X with Wi ∩ f [Wi] = ∅. Translate this to
the space Y and find there regular open U1, U2, U3 with Wi = E(Ui). The union
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of the Ui’s is dense in Y and Ui ∩ g[Ui] = ∅. So, U1 ∪ U2 ∪ U3 is a finite cover
of Y = [ω]ω by Borel sets. By the theorem of Ellentuck, there is A ∈ [ω]ω with
[A]ω contained in one element of the cover, say [A]ω ⊆ U io . Since [A]

ω = [∅, A] is
open and Ui0 is regular open, we have [A]

ω ⊆ Ui0 . But now, g[[A]
ω] ⊂ [A]ω and

Ui0 ∩ g[Ui0 ] = ∅, a contradiction. �

4. Single fixed point

We are now going to construct a compact extremally disconnected Hausdorff
space and an open continuous map on it, such that there is exactly one nonisolated
fixed point. The assumption of the existence of a selective uniform ultrafilter U
on a cardinal κ is needed. We proceed along the line of the main example. Equip
Y = [κ]ω with the topology generated by

EU = {[s, A] : s ∈ [κ]<ω, A ∈ U , max s < minA}

where [s, A] = {M ∈ [κ]ω : s ⊂ M ⊆ s ∪ A}.
We continue with two lemmas for the space Y .

Lemma 1. Let U be a uniform selective ultrafilter on κ, U ⊆ Y and assume that
there is no A ∈ U such that [∅, A] ⊆ U . Then there is a C ∈ U such that there
are no t ∈ [C]<ω, D ∈ U with D ⊆ C, max t < minD and [t, D] ⊆ U .

Proof: For s ∈ [κ]<ω, define

Bs = {α < κ : ∃As,α ∈ U : max s < α < minAs,α & [s ∪ {α}, As,α] ⊆ U}.

Case 1 : Bs ∈ U
Since U is selective, we find an As ∈ U , As ⊆ Bs such that if α, β ∈ As, α < β

then β ∈ As,α.

Case 2 : Bs /∈ U
Put As = κ\Bs. Then As ∈ U .

For α < κ, define now Aα =
⋂
{As : s ∈ [κ]<ω,max s ≤ α}. Since U is κ-closed,

Aα ∈ U . Once more we can apply that U is selective. We find A ∈ U such that
for all α, β ∈ A, α < β we have β ∈ Aα. Put C = A\{minA}. Surely, C ∈ U .
We claim that C is as desired, i.e. there are no t ∈ [C]<ω, D ∈ U with D ⊆ C,

max t < minD and [t, D] ⊆ U . Suppose by contradiction the existence of such
t, D. We can assume that t is of minimal length. t 6= ∅ by the assumption of
the lemma. Put γ = max t and t′ = t\{γ}. If t′ 6= ∅ then put γ′ = max t′ else
γ′ = minA. We have [t′ ∪ {γ}, D] ⊆ U , so γ ∈ Bt′ . On the other hand, γ, γ′ ∈ A,
γ > γ′ and therefore γ ∈ Aγ′ ⊆ At′ . It follows that Case 1 applies when s = t′.
If E ⊂ κ then E(> α) denotes the set {β ∈ E : β > α}. We have for any

α ∈ D:

α ∈ D = D(> γ′) ⊆ C(> γ′) ⊆ A(> γ′) ⊆ Aγ′ ⊆ At′ ⊆ Bt′
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and therefore

D(> α) ⊆ C(> α) ⊆ A(> α) ⊆ Aα(> α) ⊆ At′(> α) ⊆ At′,α.

It follows

[t′, D] =
⋃

{[t′ ∪ {α}, D(> α)] : α ∈ D} ⊆
⋃

{[t′ ∪ {α}, At′,α] : α ∈ D} ⊆ U.

But this is in contradiction with the minimality of the length of t. �

Lemma 2. Let U be a selective ultrafilter on κ, U an open subset of Y. Then
there is A ∈ U such that [∅, A] ⊆ U or [∅, A] ∩ U = ∅.

Proof: Assume that there is no A ∈ U such that [∅, A] ⊆ U . By Lemma 1, we
find C ∈ U such that there are no t ∈ [C]<ω, D ∈ U with D ⊆ C, max t < minD
and [t, D] ⊆ U . We claim that [∅, C] ∩ U = ∅. Assume by contradiction that
[∅, C] ∩ U 6= ∅. U is of the form

⋃
i∈I [si, Ai] with si ∈ [κ]

<ω, Ai ∈ U . So there
is i ∈ I such that [∅, C] ∩ [si, Ai] 6= ∅. But then si ∈ [C]<ω, Ai ∩ C ∈ U and
[si, Ai ∩ C] ⊆ U – in contradiction to our assumption. �

We are now able to prove the following theorem:

Theorem 2. If there exists a selective uniform ultrafilter U on a cardinal κ then
there is an example of an extremally disconnected compact Hausdorff space X
with an open continuous selfmap f : X −→ X such that there is exactly one fixed
point which is not isolated.

Proof: Let Y = [κ]ω be equipped with the topology EU as above. Define
g : Y −→ Y by g(M) = M\{minM}. g is open and continuous by the same
arguments as above. Take again the absolutes X = E(Y ) and f = E(g). Once
more, we have got a compact extremally disconnected Hausdorff space and an
open continuous mapping on it, such that the fixed point set is nowhere dense.
Define Z =

⋂
{E([∅, A]) : A ∈ U}. Z is an intersection of a centered system of

closed invariant sets. Hence it is nonvoid and invariant. We claim Fix ⊆ Z. To
see this, note that for any A, B ∈ U , s ∈ [κ]<ω we have

f |s|[E([s, B])] ∩ E[∅, A] = E([∅, B]) ∩ E([∅, A]) = E([∅, A ∩ B]) 6= ∅.

This is equivalent to E([s, B])∩ f−|s|E([∅, A]) 6= ∅ and therefore E([∅, A])# = X .
From this and the assertion (iii) of the introduction, it follows that Fix ⊆ E([∅, A])
for any A ∈ U , i.e. Fix ⊆ Z.
We will now show that Z = {x0}. From this, it will be clear that x0 is the only

fixed point. Take an arbitrary regular open subset U of Y . By Lemma 2 we find
A ∈ U such that [∅, A] ⊆ U or [∅, A] ∩ U = ∅. But that means in the first case
Z ⊆ E([∅, A]) ⊆ E(U) and in the second case Z ∩ E(U) ⊆ E([∅, A]) ∩ E(U) = ∅.
Since the E(U)′s form a base of X , we get Z = {x0}. �
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