Galerkin approximations for nonlinear evolution inclusions

Shouchuan Hu*, Nikolaos S. Papageorgiou

Abstract

In this paper we study the convergence properties of the Galerkin approximations to a nonlinear, nonautonomous evolution inclusion and use them to determine the structural properties of the solution set and establish the existence of periodic solutions. An example of a multivalued parabolic p.d.e. is also worked out in detail.

Keywords: Galerkin approximations, evolution triple, monotone operator, hemicontinuous operator, compact embedding, periodic trajectory, tangent cone, connected set, acyclic set
Classification: 34G99, 35B10, 35K22, 35R70

1. Introduction

In this paper we study the properties of the solution set of a class of nonlinear, nonautonomous evolution inclusions and also establish the existence of periodic trajectories. This is done by developing a general abstract approximation framework and a convergence theory for the Galerkin approximations of the system under consideration. We employ standard Galerkin techniques (see for example the book of Strang-Fix [11]) to obtain a sequence of approximating multivalued systems. Under readily verifiable hypotheses on the data, we demonstrate that the solutions of the finite dimensional approximations converge to those of the original infinite dimensional evolution inclusion. This approximation procedure allows us to establish certain useful properties of the solution set and also prove the existence of periodic trajectories. More precisely, we show that the solution set is compact and connected in the Lebesgue-Bochner space $L^{p}(T, H)$. This is done for both systems with and without state constraints. For the first as expected, we employ a tangential condition. Also using a well-known fixed point theorem for pseudo-acyclic multifunctions on the Galerkin approximations and then passing to the limit, we prove the existence of periodic solutions under a weak tangential condition. An example of a nonlinear multivalued distributed parameter system is also worked out in detail. We note that evolution inclusions are the right device to model distributed parameter control systems with a priori feedbacks, as well as other infinite dimensional systems with multivalued terms. Furthermore, our analytical framework based on Galerkin approximations can be useful in computational considerations.

[^0]
2. Preliminaries

Let $T=[0, b], H$ a separable Hilbert space and X a subspace of H carrying the structure of a reflexive separable Banach space, which embeds into H continuously and densely. Identifying H with its dual (pivot space), we have $X \rightarrow H \rightarrow X^{*}$ with all embeddings being continuous and dense. A triple $\left(X, H, X^{*}\right)$ is known as an "evolution triple" (cf. Zeidler [12]). We will also assume that the embeddings are compact. By $\|\cdot\|$ (resp. $|\cdot|,\|\cdot\|_{*}$) we will denote the norm of X (resp. of H, X^{*}). Also by (\cdot, \cdot) we will denote the inner product in H and by $\langle\cdot, \cdot\rangle$ the duality brackets for the pair $\left(X, X^{*}\right)$. The two are compatible in the sense that $(\cdot, \cdot)=\left.\langle\cdot, \cdot\rangle\right|_{X \times H}$. Let $1<p, q<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. We define the space $W_{p q}(T)=\left\{x \in L^{p}(T, X): \dot{x} \in L^{q}\left(T, X^{*}\right)\right\}$. In this definition the derivative of $x(\cdot)$ is understood in the sense of vector valued distributions. Furnished with the norm $\|x\|_{W_{p q}(T)}=\left[\|x\|_{L^{p}(T, X)}^{2}+\|\dot{x}\|_{L^{q}\left(T, X^{*}\right)}^{2}\right]^{1 / 2}, W_{p q}(T)$ becomes a reflexive separable Banach space. In fact, if $p=q=2$, then $W_{22}(T)=W(T)$ is a separable Hilbert space with inner product $(x, y)_{W_{p q}(T)}=(x, y)_{L^{2}(T, X)}+(\dot{x}, \dot{y})_{L^{2}\left(T, X^{*}\right)}$. Recall (cf. Zeidler [12]) that $W_{p q}(T)$ embeds continuously in $C(T, H)$ and compactly in $L^{p}(T, H)$.

In what follows, by $P_{f c}(H)$ we will denote the family of nonempty, closed and convex subsets of H. A multifunction (set-valued function) $F: T \rightarrow P_{f c}(H)$ is said to be measurable, if for all $y \in H, t \rightarrow d(y, F(t))=\inf \{\|y-x\|: x \in F(t)\}$ is measurable. Given a multifunction $G: H \rightarrow P_{f c}(H)$, its graph is the set $G r G=$ $\{(x, y) \in H \times H: y \in G(x)\}$. We will say that $G(\cdot)$ is upper semicontinuous (u.s.c.), if for every $U \subseteq H$ open, the set $G^{+}(U)=\{x \in H: G(x) \subseteq U\}$ is open. Recall (cf. DeBlasi-Myjak [2]) that if $G(\cdot)$ is u.s.c., then $G r G$ is a closed subset of $H \times H$.

Let Y be any Banach space and $P_{f}(Y)=\{C \subseteq Y$: nonempty and closed $\}$. Let $B_{1}=\left\{y \in Y:\|y\|_{Y} \leq 1\right\}$. For $C, D \in P_{f}(Y)$, we define

$$
h^{*}(C, D)=\inf \left\{\varepsilon>0: C \subseteq D+\varepsilon B_{1}\right\}=\sup [d(c, D): c \in C]
$$

and $h^{*}(D, C)=\inf \left\{\varepsilon>0: D \subseteq C+\varepsilon B_{1}\right\}=\sup [d(b, C): b \in D]$.
Then we set $h(C, D)=\max \left[h^{*}(C, D), h^{*}(D, C)\right]$. It is well known that $h(\cdot, \cdot)$ is a generalized metric on $P_{f}(Y)$ (a metric on the bounded sets in $P_{f}(Y)$), known as the Hausdorff metric and $\left(P_{f}(Y), h\right)$ is a complete metric space, with $P_{f c}(Y)$ a closed subset of it. Also if $\left\{C_{n}\right\}_{n \geq 1} \subseteq 2^{Y} \backslash\{\emptyset\}$ we define

$$
\begin{aligned}
\underline{\lim } C_{n} & =\left\{y \in Y: \lim d\left(y, C_{n}\right)=0\right\} \\
& =\left\{y \in Y: y=\lim y_{n}, y_{n} \in C_{n}, n \geq 1\right\}
\end{aligned}
$$

and $\overline{\lim } C_{n}=\left\{y \in Y: \underline{\lim } d\left(y, C_{n}\right)=0\right\}$

$$
=\left\{y \in Y: y=\lim y_{n_{k}}, y_{n_{k}} \in C_{n_{k}}, n_{1}<n_{2}<\cdots<n_{k}<\ldots\right\} .
$$

Clearly we always have that $\underline{\lim } C_{n} \subseteq \overline{\lim } C_{n}$ and both sets are closed, maybe empty. We say that the C_{n} 's convergence to C in the Kuratowski sense, denoted
by $C_{n} \xrightarrow{K} C$, if $\underline{\lim } C_{n}=\varlimsup C_{n}=C$. Finally, convergence in the Hausdorff metric will be denoted by \xrightarrow{h}; i.e. $C_{n} \xrightarrow{h} C$ if and only if $h\left(C_{n}, C\right) \rightarrow 0$ as $n \rightarrow \infty$.

In the rest of this section we will prove some auxiliary results that we will need in the sequel.
Proposition 1. If $\left\{C_{n}\right\}_{n \geq 1} \subseteq P_{f}(Y), C_{n} \xrightarrow{K} C$ and there exists a nonempty compact set V such that $C_{n} \subseteq V$ for all $n \geq 1$, then $C_{n} \xrightarrow{h} C$ as $n \rightarrow \infty$.
Proof: Note that since V is compact, $h^{*}\left(C_{n}, C\right)=d\left(c_{n}, C\right)$ with $c_{n} \in C_{n} \subseteq V$. So by passing to a subsequence if necessary, we may assume that $c_{n} \rightarrow c$, with $c \in C$ since by hypothesis $C_{n} \xrightarrow{K} C$. Hence $d\left(c_{n}, C\right) \rightarrow 0 \Rightarrow h^{*}\left(C_{n}, C\right) \rightarrow 0$. Also $h^{*}\left(C, C_{n}\right)=d\left(\widehat{c}_{n}, C_{n}\right)$ with $\widehat{c}_{n} \in C$. Again we may assume that $\widehat{c}_{n} \rightarrow \widehat{c}_{\in} C$. Then note that $d\left(\widehat{c}_{n}, C_{n}\right) \leq\left\|\widehat{c}_{n}-\widehat{c}\right\|_{Y}+d\left(\widehat{c}, C_{n}\right) \rightarrow 0$, since $C_{n} \xrightarrow{K} C$. So $d\left(\widehat{c}_{n}, C_{n}\right)=h^{*}\left(C, C_{n}\right) \rightarrow 0 \Rightarrow h\left(C_{n}, C\right) \rightarrow 0$.

The next auxiliary result shows that connectedness is preserved by Hausdorff convergence.
Proposition 2. If $\left\{C_{n}\right\}_{n \geq 1} \subseteq P_{k}(Y)$, for every $n \geq 1, C_{n}$ is connected and $C_{n} \xrightarrow{h} C$ as $n \rightarrow \infty$, then $C \in P_{f}(Y)$ is connected, too.

Proof: Suppose not. Then there exists $U_{1}, U_{2} \subseteq Y$ open such that $U_{1} \cap U_{2}=\emptyset$, $C \subseteq U_{1} \cup U_{2}$ and $C \cap U_{1} \neq \emptyset, C \cap U_{2} \neq \emptyset$. Let $\varepsilon>0$ be such that $C \subseteq \stackrel{\circ}{C}_{\varepsilon} \subseteq U_{1} \cup U_{2}$, where $\stackrel{\circ}{C}_{\varepsilon}=\{y \in Y: d(y, C)<\varepsilon\}$. Then since $C_{n} \xrightarrow{h} C$, we can find $N(\varepsilon) \geq 1$ such that if $n \geq N(\varepsilon), C_{n} \subseteq \stackrel{\circ}{C}_{\varepsilon} \subseteq U_{1} \cup U_{2}$ and $C_{n} \cap U_{1} \neq \emptyset, C_{n} \cap U_{2} \neq \emptyset, \Rightarrow C_{n}$ is disconnected for $n \geq N(\varepsilon)$, a contradiction.

Recall that if $C \in P_{f c}(H)$, then the metric projection map proj $[\cdot ; C]: H \rightarrow C$ defined by proj $[x ; C]=\{c \in C:|x-c|=d(x, C)\}$ is a single-valued, nonexpansive map. We have the following result:
Proposition 3. If $F: T \rightarrow P_{f c}(H)$ is a measurable function, then $(t, x) \rightarrow$ $\operatorname{proj}[x ; F(t)]$ is measurable in t and continuous and x (i.e. a Carathéodory function).
Proof: We only need to show the measurability in t. Note that $G r$ proj $[x ; F(\cdot)]=$ $\{(t, v) \in G r F: d(x, F(t))=|x-v|\}$. But since $F(\cdot)$ is measurable, $G r F \in B(T) \times$ $B(H)$, with $B(T)$ (resp. $B(H)$) being the Borel σ-field of T (resp. of H). Also for the same reason, $t \rightarrow d(x, F(t))$ is measurable. Therefore $G r \operatorname{proj}[x ; F(\cdot)] \in$ $B(T) \times B(H)$ and so $t \rightarrow \operatorname{proj}[x ; F(t)]$ is Lebesgue measurable.

Remark. This proposition implies that $(t, x) \rightarrow \operatorname{proj}[x ; F(t)]$ is superpositionally measurable; i.e. if $T \rightarrow H$ is measurable, then $t \rightarrow \operatorname{proj}[x(t) ; F(t)]$ is measurable.

Now let us introduce our Galerkin approximation scheme. For each $n \geq 1$, let H_{n} be a finite dimensional subspace of H which is also contained in X. Let
$p_{n}: H \rightarrow H_{n}$ be the orthogonal projection of H onto H_{n} with respect to the inner product (\cdot, \cdot). We assume that the approximating spaces H_{n} and the projections $p_{n}(\cdot)$ satisfy

Note that $(*)$ and the Uniform Boundedness Principle imply that there exists $\gamma>0$ such that $\left\|p_{n} x-x\right\| \leq \gamma\|x\|$ for all $n \geq 1$ and all $x \in X$. Furthermore, since X embeds continuously and densely into H, we also have $\lim \left|p_{n} x-x\right|=0$ for all $x \in H$. In what follows, by X_{n} we will denote the linear space H_{n} equipped with the X-norm (i.e. X_{n} is considered as a subspace of X rather than of H). Since $\operatorname{dim} H_{n}<\infty$, we see that X_{n}^{*} is the space H_{n} equipped with the X^{*}-norm.

We will be studying the following evolution inclusion defined on $T=[0, b]$ and the evolution triple $\left(X, H, X^{*}\right)$:

$$
\left\{\begin{array}{c}
\dot{x}(t)+A(t, x(t)) \in F(t, x(t)) \text { a.e. } \tag{1}\\
x(0)=x_{0} .
\end{array}\right\}
$$

Here $A: T \times X \rightarrow X^{*}$ and $F: T \times H \rightarrow P_{f c}(H)$. By a solution of (1) we mean a function $x(\cdot) \in W_{p q}(T)$ such that $\dot{x}(t)+A(t, x(t))=f(t)$ a.e. in X^{*}, with $f \in L^{q}(T, H), f(t) \in F(t, x(t))$ a.a. and $x(0)=x_{0}$. We will denote the solution set of (1) by $S \subseteq W_{p q}(T) \subseteq L^{p}(T, H)$.

For each $n \geq 1$, define $A_{n}: T \times X_{n} \rightarrow X_{n}^{*}$ to be the restriction of the operator $A(t, \cdot)$ to X_{n}, by $A_{n}(t, x)=y$ for $x \in X_{n}$, where y satisfies

$$
\langle A(t, x), v\rangle=\langle y, v\rangle \text { for all } v \in X_{n}
$$

Then from the Riesz Representation theorem, this is a well defined operator which furthermore is measurable in t, if $t \rightarrow A(t, x)$ is.

We consider the following sequence of Galerkin approximations to (1):

$$
\left\{\begin{array}{c}
\dot{x}_{n}(t)+A_{n}\left(t, x_{n}(t)\right) \in p_{n} F\left(t, x_{n}(t)\right) \text { a.e. } \tag{1}\\
x_{n}(0)=p_{n} x_{0}=x_{0}^{n}
\end{array}\right\}
$$

We denote the solution set of $(1)_{n}$ by $S_{n} \subseteq W_{p q}(T) \subseteq L^{p}(T, H)$.

3. Convergence results

In this section, we examine how the solution sets S_{n} approximate S.
We will need the following hypotheses on the data:
$\underline{H(A)}: \quad A: T \times X \rightarrow X^{*}$ is an operator such that
(1) $t \rightarrow A(t, x)$ is measurable,
(2) $x \rightarrow A(t, x)$ is hemicontinuous, monotone (i.e. for every $x, y, z \in X$, $\lambda \rightarrow\langle A(t, x+\lambda y), z\rangle$ is continuous from $[0,1]$ into \mathbb{R} (hemicontinuity) and $\langle A(t, x)-A(t, y), x-y\rangle \geq 0$ for all $x, y \in X$ (monotonicity)),
(3) $\langle A(t, x), x\rangle \geq c\|x\|^{p}$ for all $x \in X$ and almost all $t \in T$, with $c>0$,
(4) $\|A(t, x)\|_{*} \leq a_{1}(t)+c_{1}\|x\|^{p-1}$ for all $x \in X$ and almost all $t \in T$, with $a_{1}(\cdot) \in L^{q}(T), c_{1}>0$ and $2 \leq p<\infty, \frac{1}{p}+\frac{1}{q}=1$.
$\underline{H(F)}: \quad F: T \times H \rightarrow P_{f c}(H)$ is a multifunction such that
(1) $t \rightarrow F(t, x)$ is measurable,
(2) $x \rightarrow F(t, x)$ has a graph which is sequentially closed in $H \times H_{w}$ with H_{w} being the Hilbert space H equipped with the weak topology,
(3) $|F(t, x)|=\sup \{|v|: v \in F(t, x)\} \leq a_{2}(t)+c_{2}|x|^{2 / q}$ a.e. in t and for all $x \in H$, with $a_{2}(\cdot) \in L^{q}(T), c_{2}>0$.
Theorem 4. If hypotheses $H(A), H(F)$ hold and $x_{0} \in H$, then $\varlimsup S_{n} \subseteq S$ and $h^{*}\left(S_{n}, S\right) \rightarrow 0$ in $L^{p}(T, H)$.
Proof: Using hypothesis $H(F)(1)$, we see that the multifunction $t \rightarrow p_{n} F(t, x)$ $=G_{n}(t, x)$ is measurable. Also from hypothesis $H(F)(2)$ we see that the multifunction $x \rightarrow p_{n} F(t, x)=G_{n}(t, x)$ has a closed graph. Combining this with hypothesis $H(F)(3)$ we get that $\left.G_{n}(t, \cdot)\right|_{K}$ is u.s.c. for every $K \subseteq X_{n}$ compact. Invoking Lemma 8 of Papageorgiou [8], we get that $G_{n}(t, \cdot)$ is u.s.c. Furthermore $(t, x) \rightarrow A_{n}(t, x)$ is Carathéodory, monotone in x and

$$
\left|p_{n} F(t, x)\right| \leq\left\|p_{n}\right\|_{\ell}|F(t, x)| \leq a_{2}(t)+c_{2}|x|^{2 / q} \text { a.e. }
$$

while $\left\|A_{n}(t, x)\right\|_{*} \leq a_{1}(t)+c_{1}\|x\|^{p-1}$ a.e.
So from Theorem 3.1 of Papageorgiou [10], we see that $S_{n} \subseteq W_{p q}(T) \subseteq$ $L^{p}(T, H)$ is nonempty and closed.

Now we will establish some a priori bounds for the sets S_{n} which are uniform in $n \geq 1$. So let $x_{n}(\cdot) \in S_{n}, n \geq 1$. We have:

$$
\begin{gathered}
\left\langle\dot{x}_{n}(t), x_{n}(t)\right\rangle+\left\langle A_{n}\left(t, x_{n}(t)\right), x_{n}(t)\right\rangle=\left(p_{n} f_{n}(t), x_{n}(t)\right) \text { a.e. } \\
\Rightarrow\left\langle\dot{x}_{n}(t), x_{n}(t)\right\rangle+\left\langle A\left(t, x_{n}(t)\right), x_{n}(t)\right\rangle=\left(p_{n} f_{n}(t), x_{n}(t)\right) \text { a.e. }
\end{gathered}
$$

with $f_{n} \in L^{q}(T, H), f_{n}(t) \in F\left(t, x_{n}(t)\right)$ a.e. So we get

$$
\frac{d}{d t}\left|x_{n}(t)\right|^{2}+2 c\left\|x_{n}(t)\right\|^{p} \leq 2\left|f_{n}(t)\right| \cdot\left|x_{n}(t)\right| \leq 2\left|f_{n}(t)\right| \beta\left\|x_{n}(t)\right\| \text { a.e. }
$$

with $\beta>0$ such that $|\cdot| \leq \beta\|\cdot\|$. Such a $\beta>0$ exists since X embeds into H continuously. Applying on the right hand side of the last inequality, Young's inequality with $\varepsilon>0$, we get

$$
\frac{d}{d t}\left|x_{n}(t)\right|^{2}+2 c\left\|x_{n}(t)\right\|^{p} \leq 2 \beta\left(\frac{\varepsilon^{q}}{q}\left|f_{n}(t)\right|^{q}+\frac{1}{\varepsilon^{p} p}\left\|x_{n}(t)\right\|^{p}\right) \text { a.e. }
$$

We choose $\varepsilon>0$ so that $\frac{2 \beta}{\varepsilon^{p} p}=2 c \Rightarrow \varepsilon=\left(\frac{\beta}{c p}\right)^{1 / p}$. Hence we get

$$
\begin{gathered}
\frac{d}{d t}\left|x_{n}(t)\right|^{2} \leq \widehat{c}\left|f_{n}(t)\right|^{q} \text { a.e. with } \widehat{c}=\frac{2 \beta}{q}\left(\frac{\beta}{c p}\right)^{p-1} \\
\Rightarrow \frac{d}{d t}\left|x_{n}(t)\right|^{2} \leq \widehat{c}\left(a_{2}(t)+c_{2}\left|x_{n}(t)\right|^{2 / q}\right)^{q} \\
\leq 2^{q-1} \widehat{c} a_{2}(t)+2^{q-1} c_{2}\left|x_{n}(t)\right|^{2} \text { a.e. } \\
\left.\Rightarrow\left|x_{n}(t)\right|^{2} \leq\left|x_{0}\right|^{2}+2^{q-1} \widehat{c}\|a\|_{q}^{q}+2^{q-1} c_{2} \int_{0}^{t}\left|x_{n}(s)\right|^{2} d s \quad \text { (recall }\left|x_{0}^{n}\right| \leq\left|x_{0}\right|\right)
\end{gathered}
$$

Apply Gronwall's lemma to get $M_{1}>0$ such that

$$
\left|x_{n}(t)\right| \leq M_{1} \text { for all } n \geq 1 \text { and all } t \in T
$$

Then we have

$$
\begin{gathered}
\frac{d}{d t}\left|x_{n}(t)\right|^{2}+2 c\left\|x_{n}(t)\right\|^{p} \leq 2 M_{1}\left|f_{n}(t)\right| \text { a.e. } \\
\Rightarrow 2 c \int_{0}^{b}\left\|x_{n}(t)\right\|^{p} d t \leq\left|x_{0}\right|^{2}+2 M_{1} \int_{0}^{b}\left|f_{n}(t)\right| d t \\
\quad \leq\left|x_{0}\right|^{2}+2 M_{1} \int_{0}^{b}\left(a(t)+c_{1} M_{1}^{2 / q}\right) d t
\end{gathered}
$$

Hence there exists $M_{2}>0$ such that

$$
\left\|x_{n}\right\|_{L^{p}(T, X)} \leq M_{2} \text { for all } n \geq 1
$$

Finally, since $\dot{x}_{n}(t)=-A_{n}\left(t, x_{n}(t)\right)+f_{n}(t)$ a.e., and by using hypothesis $H(A)(4)$ and the definition of $A_{n}(t)$ from the above estimates, we get $M_{3}>0$ such that

$$
\left\|\dot{x}_{n}\right\|_{L^{p}\left(T, X^{*}\right)} \leq M_{3} \text { for all } n \geq 1
$$

Let $V=\left\{x \in W_{p q}(T):\|x\|_{L^{p}(T, X)} \leq M_{2},\|\dot{x}\|_{L^{q}\left(T, X^{*}\right)} \leq M_{3}\right\}$. This is a bounded closed convex subset of $W_{p q}(T)$. By the Eberlein-Smulian theorem (see for example Lakshmikantham-Leela [6, Theorem 1.1.12, p. 7]), we have that V is sequentially weakly compact in $W_{p q}(T)$. Also since $W_{p q}(T)$ embeds compactly into $L^{p}(T, H)$ (see Zeidler [12, p. 450]), we get that V is a compact subset of $L^{p}(T, H)$ and furthermore for all $n \geq 1, S_{n} \subseteq V$.

Now let $x_{n} \in S_{n}, n \geq 1$, and assume that $x_{n} \rightarrow x \in L^{p}(T, H)$. Since $\left\{x_{n}\right\}_{n \geq 1} \subseteq V$ by passing to a subsequence if necessary, we may assume that $x_{n} \xrightarrow{w} x$ in $W_{p q}(T)$. By definition we have

$$
\left\{\begin{array}{c}
\dot{x}_{n}(t)+A_{n}\left(t, x_{n}(t)\right)=p_{n} f_{n}(t) \text { a.e. } \\
x_{n}(0)=x_{0}^{n}
\end{array}\right\}
$$

with $f_{n}(t) \in F\left(t, x_{n}(t)\right)$ a.e., $f_{n}(\cdot) \in L^{q}(T, H)$. Since $\left|f_{n}(t)\right| \leq a_{2}(t)+c_{2}\left|x_{n}(t)\right|^{2 / q}$ $\leq a_{2}(t)+c_{2} M_{1}^{2 / q}=\widehat{a}_{2}(t)$ a.e. with $\widehat{a}_{2}(\cdot) \in L^{q}(T)$, we may assume that $f_{n} \xrightarrow{w} f$ in $L^{q}(T, H)$ (recall that $L^{q}(T, H)$ is a separable, reflexive Banach space). Invoking Theorem 3.1 of Papageorgiou [7], we get

$$
f(t) \in \overline{\operatorname{conv}} w-\varlimsup\left\{f_{n}(t)\right\}_{n \geq 1} \subseteq \overline{\operatorname{conv}} w-\varlimsup \overline{\lim } F\left(t, x_{n}(t)\right) \subseteq F(t, x(t)) \text { a.e., }
$$

the last inclusion being a consequence of hypothesis $H(F)$ (2). In what follows, let $\widehat{A}_{n}(\cdot)$ be the Nemitsky (superposition) operator corresponding to $A_{n}(t, x)$; i.e. $\widehat{A}_{n}: L^{p}\left(T, X_{n}\right) \rightarrow L^{q}\left(T, X_{n}^{*}\right)$ is defined by $\widehat{A}_{n}(x)(\cdot)=A_{n}(\cdot, x(\cdot))$. Then if
by $((\cdot, \cdot))_{0}$ we denote the duality brackets for the pair $\left(L^{p}(T, X), L^{q}\left(T, X^{*}\right)\right)$ (i.e. $\left.((f, g))_{0}=\int_{0}^{b}\langle f(t), g(t)\rangle d t, f \in L^{p}(T, X), g \in L^{q}\left(T, X^{*}\right)\right)$, we have

$$
\left(\left(\dot{x}_{n}, x_{n}-x\right)\right)_{0}+\left(\left(\widehat{A}\left(x_{n}\right), x_{n}-x\right)\right)_{0}=\left(\left(p_{n} f_{n}, x_{n}-x\right)\right)_{0} .
$$

From the integration by parts formula for functions in $W_{p q}(T)$ (see Zeidler [12, Proposition 23.23, p. 422]), we get that

$$
\begin{aligned}
& \left(\left(\dot{x}_{n}-\dot{x}, x_{n}-x\right)\right)_{0}=\frac{1}{2}\left|x_{n}(b)-x(b)\right|^{2}-\frac{1}{2}\left|p_{n} x_{0}-x_{0}\right|^{2} \Rightarrow\left(\left(\dot{x}_{n}, x_{n}-x\right)\right)_{0} \\
& \quad=\frac{1}{2}\left|x_{n}(b)-x(b)\right|^{2}-\frac{1}{2}\left|p_{n} x_{0}-x_{0}\right|^{2}+\left(\left(\dot{x}, x_{n}-x\right)\right)_{0} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Also we have

$$
\begin{gathered}
\left(\left(p_{n} f_{n}, x_{n}-x\right)\right)_{0}=\int_{0}^{b}\left\langle p_{n} f_{n}(t), x_{n}(t)-x(t)\right\rangle d t=\int_{0}^{b}\left(p_{n} f_{n}(t), x_{n}(t)-x(t)\right) d t \\
=\int_{0}^{b}\left(f_{n}(t), x_{n}(t)-p_{n} x(t)\right) d t
\end{gathered}
$$

Recall that $\left|p_{n} x(t)-x(t)\right| \rightarrow 0$ as $n \rightarrow \infty$. So we get

$$
\left(\left(p_{n} f_{n}, x_{n}-x\right)\right)_{0}=\int_{0}^{b}\left(f_{n}(t), x_{n}(t)-p_{n} x(t)\right) d t \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus finally we have

$$
\lim \left(\left(\widehat{A}_{n}\left(x_{n}\right), x_{n}-x\right)\right)_{0}=0
$$

Then we write

$$
\begin{aligned}
& \left(\left(\widehat{A}\left(x_{n}\right), x_{n}-x\right)\right)_{0}=\left(\left(\widehat{A}\left(x_{n}\right)-\widehat{A}_{n}\left(x_{n}\right), x_{n}-x\right)\right)_{0}+\left(\left(\widehat{A}_{n}\left(x_{n}\right), x_{n}-x\right)\right)_{0} \\
& =\left(\left(\widehat{A}\left(x_{n}\right)-\widehat{A}_{n}\left(x_{n}\right), x_{n}-p_{n} x\right)\right)_{0} \\
& +\left(\left(\widehat{A}\left(x_{n}\right)-\widehat{A}_{n}\left(x_{n}\right), p_{n} x-x\right)\right)_{0}+\left(\left(\widehat{A}_{n}\left(x_{n}\right), x_{n}-x\right)\right)_{0} \\
& =\left(\left(\widehat{A}\left(x_{n}\right)-\widehat{A}_{n}\left(x_{n}\right), p_{n} x-x\right)\right)_{0}+\left(\left(\widehat{A}_{n}\left(x_{n}\right), x_{n}-x\right)\right)_{0}
\end{aligned}
$$

(recall the definition of $A_{n}(t, x)$). Since $\left\|\widehat{A}\left(x_{n}\right)\right\|_{L^{q}\left(T, X^{*}\right)},\left\|\widehat{A}_{n}\left(x_{n}\right)\right\|_{L^{q}\left(T, X^{*}\right)} \leq$ M_{4} for all $n \geq 1$ and some $M_{4}>0$ (cf. hypothesis $\left.H(A)(4)\right)$ and $p_{n} x(\cdot) \rightarrow x(\cdot)$ in $L^{p}(T, X)$, we get

$$
\lim \left(\left(\widehat{A}\left(x_{n}\right), x_{n}-x\right)\right)_{0}=0
$$

But $\widehat{A}(\cdot)$ is hemicontinuous monotone, since $A(t, \cdot)$ is. Hence it has property (M) (cf. Zeidler [12, pp. 583-588]). Therefore, $\widehat{A}\left(x_{n}\right) \xrightarrow{w} \widehat{A}(x)$ in $L^{q}\left(T, X^{*}\right) \Rightarrow$ $\widehat{A}_{n}\left(x_{n}\right) \xrightarrow{w} \widehat{A}(x)$ in $L^{q}\left(T, X^{*}\right)$. Therefore for every $u \in L^{p}(T, X)$, we have

$$
\begin{aligned}
& \left(\left(\dot{x}_{n}, u\right)\right)_{0}+\left(\left(\widehat{A}_{n}\left(x_{n}\right), u\right)\right)_{0}=\left(\left(p_{n} f_{n}, u\right)\right)_{0} \\
& \rightarrow((\dot{x}, u))_{0}+((\widehat{A}(x), u))_{0}=((f, u))_{0} \\
& \Rightarrow \dot{x}(t)+A(t, x(t))=f(t) \text { a.e., } x(0)=x_{0} \\
& \text { with } \quad f \in L^{q}(T, H), f(t) \in F(t, x(t)) \text { a.e. }
\end{aligned}
$$

Thus $x \in S$ and so we have proved that

$$
\overline{\lim } S_{n} \subseteq S
$$

Recalling that $S_{n} \subseteq V=$ compact subset of $L^{p}(T, H)$, from the proof of Proposition 1 , we also conclude that

$$
h^{*}\left(S_{n}, S\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

If we strengthen our hypotheses, we can improve the conclusion of Theorem 4 above.
$\underline{H(A)_{1}}: \quad A: T \times X \rightarrow X^{*}$ is an operator such that
(1) $t \rightarrow A(t, x)$ is measurable,
(2) $x \rightarrow A(t, x)$ is continuous, monotone,
(3) $\langle A(t, x), x\rangle \geq c\|x\|^{p}$ for all $x \in X$ and almost all $t \in T$, with $c>0$,
(4) $\|A(t, x)\|_{*} \leq a_{1}(t)+c_{1}\|x\|^{p-1}$ for all $x \in X$ and almost all $t \in T$, with $a_{2}(\cdot) \in L^{q}(T), c_{1}>0$ and $2 \leq p<\infty, \frac{1}{p}+\frac{1}{q}=1$.
$\underline{H(F)_{1}}: \quad F: T \times H \rightarrow P_{f c}(H)$ is a multifunction such that
(1) $t \rightarrow F(t, x)$ is measurable,
(2) $h(F(t, x) F(t, y)) \leq k(t)|x-y|$ a.e. with $k(\cdot) \in L^{1}(T)$,
(3) $|F(t, x)| \leq a_{2}(t)+c_{2}|x|^{2 / q}$ a.e. with $a_{2}(\cdot) \in L^{q}(T), c_{2}>0$.

Theorem 5. If hypotheses $H(A)_{1}, H(F)_{1}$ hold and $x_{0} \in H$, then $S_{n} \underset{h}{K} S$ in $L^{p}(T, H)$.

Proof: From Theorem 4, we know that

$$
\begin{equation*}
\overline{\lim } S_{n} \subseteq S \text { in } L^{p}(T, H) \tag{2}
\end{equation*}
$$

In what follows we will show that we also have $S \subseteq \underline{\lim } S_{n}$ in $L^{p}(T, H)$.

To this end, let $x \in S$. Then by definition we have

$$
\left\{\begin{array}{c}
\dot{x}(t)+A(t, x(t))=f(t) \text { a.e. } \\
x(0)=x_{0}
\end{array}\right\}
$$

with $f \in L^{q}(T, H) \in F(t, x(T))$ a.e. Define $g_{n}(t)=\operatorname{proj}\left[f(t) ; p_{n} F(t, x(t))\right]$ and $v_{n}(t, x)=\operatorname{proj}\left[g_{n}(t) ; p_{n} F(t, x)\right]$. From Proposition 3, we have $g_{n}(\cdot) \in L^{q}(T, H)$ and $t \rightarrow v_{n}(t, x)$ is measurable. Also from Theorem 3.33, p. 322 of Attouch [1], we have that $x \rightarrow v_{n}(t, x)$ is continuous. Then consider the following problem:

$$
\left\{\begin{array}{c}
\dot{x}_{n}(t)+A_{n}\left(t, x_{n}(t)\right)=v_{n}\left(t, x_{n}(t)\right) \text { a.e. } \tag{3}\\
x_{n}(0)=p_{n} x_{0}=x_{0}^{n}
\end{array}\right\}
$$

From Papageorgiou [10], we know that problem (3) above has at least one solution $x_{n}(\cdot) \in W_{p q}(T)$. Then we have

$$
\begin{aligned}
& \left\langle\dot{x}(t)-\dot{x}_{n}(t), x(t)-x_{n}(t)\right\rangle+\left\langle A(t, x(t))-A_{n}\left(t, x_{n}(t)\right), x(t)-x_{n}(t)\right\rangle \\
& =\left(f(t)-v_{n}\left(t, x_{n}(t)\right), x(t)-x_{n}(t)\right) \text { a.e. } \\
& \Rightarrow \frac{1}{2} \frac{d}{d t}\left|x(t)-x_{n}(t)\right|^{2}=\left(f(t)-v_{n}\left(t, x_{n}(t)\right), x(t)-x_{n}(t)\right) \\
& +\left\langle A(t, x(t))-A_{n}\left(t, x_{n}(t)\right), x_{n}(t)-x(t)\right\rangle \text { a.e. } \\
& \Rightarrow \frac{1}{2} \frac{d}{d t}\left|x(t)-x_{n}(t)\right|^{2} \leq \frac{1}{2}\left|x_{0}-x_{0}^{n}\right|^{2} \\
& +\int_{0}^{t}\left(f(s)-v_{n}\left(s, x_{n}(s)\right), x_{n}(s)-x(s)\right) d s \\
& +\int_{0}^{t}\left\langle A(s, x(s))-A_{n}\left(s, x_{n}(s)\right), x_{n}(s)-x(s)\right\rangle d s .
\end{aligned}
$$

We investigate the third summand in the right-hand side of the above inequality. We have:

$$
\begin{aligned}
& \int_{0}^{t}\left\langle A(s, x(s))-A_{n}\left(s, x_{n}(s)\right), x_{n}(s)-x(s)\right\rangle d s \\
& =\int_{0}^{t}\left\langle A(s, x(s))-A\left(s, p_{n} x(s)\right)+A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), x_{n}(s)-x(s)\right\rangle d s \\
& =\int_{0}^{t}\left\langle A(s, x(s))-A\left(s, p_{n} x(s)\right), x_{n}(s)-x(s)\right\rangle d s \\
& +\int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), x_{n}(s)-x(s)\right\rangle d s
\end{aligned}
$$

Note that since $p_{n} x(s) \rightarrow x(s)$ in X, we have $A\left(s, p_{n} x(s)\right) \rightarrow A(s, x(s))$ in X^{*} (cf. hypothesis $\left.H(A)_{1}(2)\right)$. So since $\left\|x_{n}\right\|_{L^{p}(T, X)} \leq M_{2}, n \geq 1$ (check the proof of Theorem 4), we have

$$
\int_{0}^{t}\left\langle A(s, x(s))-A\left(s, p_{n} x(s)\right), x_{n}(s)-x(s)\right\rangle d s \rightarrow 0 \text { as } n \rightarrow \infty
$$

Also we have

$$
\begin{aligned}
& \int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), x_{n}(s)-x(s)\right\rangle d s \\
& =\int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), x_{n}(s)-p_{n} x(s)\right\rangle d s \\
& +\int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), p_{n} x(s)-x(s)\right\rangle d s \\
& =\int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A\left(s, x_{n}(s)\right), x_{n}(s)-p_{n} x(s)\right\rangle d s \\
& +\int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), p_{n} x(s)-x(s)\right\rangle d s \\
& \leq \int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), p_{n} x(s)-x(s)\right\rangle d s \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

since $p_{n} x(s) \rightarrow x(s)$ in X and $\left\{A\left(\cdot, p_{n} x(\cdot)\right)\right\}_{n \geq 1}, \quad\left\{A_{n}\left(\cdot, x_{n}(\cdot)\right)\right\}_{n \geq 1}$ are both bounded in $L^{q}\left(T, X^{*}\right)$. Then going back to (4), we have

$$
\begin{aligned}
& \frac{1}{2}\left|x(t)-x_{n}(t)\right|^{2} \leq \frac{1}{2}\left|x_{0}-x_{0}^{n}\right|^{2}+\int_{0}^{t}\left(f(s)-v_{n}\left(s, x_{n}(s)\right), x(s)-x_{n}(s)\right) d s \\
& +\int_{0}^{t}\left\langle A(s, x(s))-A\left(s, p_{n} x(s)\right), x_{n}(s)-x(s)\right\rangle d s \\
& +\int_{0}^{t}\left\langle A\left(s, p_{n} x(s)\right)-A_{n}\left(s, x_{n}(s)\right), x_{n}(s)-x(s)\right\rangle d s
\end{aligned}
$$

From the above convergence observations, we see that given $\varepsilon>0$, we can find $n_{0}(\varepsilon) \geq 1$ such that for $n \geq n_{0}(\varepsilon)$ we have

$$
\begin{aligned}
& \left|x_{n}(t)-x(t)\right|^{2} \leq \varepsilon+2 \int_{0}^{t}\left(f(s)-v_{n}\left(s, x_{n}(s)\right), x(s)-x_{n}(s)\right) d s \\
& \leq \varepsilon+2 \int_{0}^{t}\left|f(s)-v_{n}\left(s, x_{n}(s)\right)\right| \cdot\left|x(s)-x_{n}(s)\right| d s \\
& \leq \varepsilon+2 \int_{0}^{t}\left(\left|f(s)-v_{n}(s, x(s))\right|+\left|v_{n}(s, x(s))-v_{n}\left(s, x_{n}(s)\right)\right|\right)\left|x_{n}(s)-x(s)\right| d s \\
& \leq \varepsilon+2 \int_{0}^{t}\left[d\left(f(s), p_{n} F(s, x(s))\right)+d\left(g_{n}(s), p_{n} F\left(s, x_{n}(s)\right)\right)\right]\left|x_{n}(s)-x(s)\right| d s \\
& \leq \varepsilon+2 \int_{0}^{t}\left[d\left(f(s), p_{n} F(s, x(s))\right)+h\left(p_{n} F(s, x(s)), p_{n} F\left(s, x_{n}(s)\right)\right)\right]\left|x_{n}(s)-x(s)\right| d s \\
& \leq \varepsilon+2 \int_{0}^{t}\left[\left|f(s)-p_{n} f(s)\right|+k(s)\left|x_{n}(s)-x(s)\right|\right]\left|x_{n}(s)-x(s)\right| d s
\end{aligned}
$$

Note that $\left|f(s)-p_{n} f(s)\right| \rightarrow 0$ as $n \rightarrow \infty$. So we can find $n_{1}(\varepsilon) \geq n_{0}(\varepsilon)$ such that for $n \geq n_{1}(\varepsilon)$, we have

$$
\begin{gathered}
\left|x(t)-x_{n}(t)\right|^{2} \leq 2 \varepsilon+2 \int_{0}^{t} k(s)\left|x(s)-x_{n}(s)\right|^{2} d s \\
\Rightarrow\left|x(t)-x_{n}(t)\right|^{2} \leq 2 \varepsilon \exp 2\|k\|_{1} \text { for all } t \in T \text { and all } n \geq n_{1}(\varepsilon)
\end{gathered}
$$

Thus $x_{n} \rightarrow x$ in $C(T, H)$, hence in $L^{p}(T, H)$. Since $x_{n} \in S_{n}$, we have

$$
\begin{equation*}
S \subseteq \underline{\lim } S_{n} . \tag{5}
\end{equation*}
$$

From (2) and (5), we deduce that $S_{n} \xrightarrow{K} S$ in $L^{p}(T, H)$. Since $S_{n} \subseteq V$ with V compact in $L^{p}(T, H)$, from Proposition 1, we also have that $S_{n} \xrightarrow{h} S$.

4. The structure of the solution set and periodic solutions

In this section we use Theorems 4 and 5 to examine the structural properties of S even when state constraints are present, and to establish the existence of periodic solutions.
Theorem 6. If hypotheses $H(A)_{1}, H(F)_{1}$ hold and $x_{0} \in H$, then $S \subseteq L^{p}(T, H)$ is compact and connected.

Proof: From DeBlasi-Myjak [3], we know that for every $n \geq 1, S_{n} \subseteq C(T, H)$ is compact and connected in $L^{p}(T, H)$. So from Proposition 2 and Theorem 5, we conclude that S is compact and connected in $L^{p}(T, H)$.
Remark. In fact, a careful reading of the proof of DeBlasi-Myjak [3] reveals that for each $n \geq 1, S_{n}$ is the Hausdorff limit of a sequence $\left\{S_{n m}\right\}_{m \geq 1} \subseteq L^{p}(T, H)$ of contractible sets and for all $n, m \geq 1, S_{n m} \subseteq K$, with K being compact in $L^{p}(T, H)$. Hence from Theorem 5 and Corollary 1.18, p. 37 of Attouch [1], we deduce that there exists a sequence $m \rightarrow n(m)$ with $n(m) \rightarrow \infty$ as $m \rightarrow \infty$, such that $S_{n(m) m} \xrightarrow{h} S$.

We can have a similar structural result for the solution set when state constraints are present. So we consider the following problem:

$$
\left\{\begin{array}{c}
\dot{x}(t)+A(t, x(t)) \in F(t, x(t)) \text { a.e. } \tag{6}\\
x(0)=x_{0} \in K \\
x(t) \in K \text { for all } t \in[0, b] .
\end{array}\right\}
$$

Here $K \subseteq H$ is a nonempty, bounded, closed and convex subset of H such that $K_{n}=p_{n}(K)=K \cap H_{n}, n \geq 1$. In what follows by $T_{K}^{\prime}(x)$ we will denote the Bouligand tangent cone to K at $x \in K$ in X^{*}; i.e.
$T_{K}^{\prime}(x)=\left\{h \in X^{*}: \underline{\lim }_{\lambda \downarrow 0} \frac{d_{*}(x+\lambda h, K)}{\lambda}=0\right\}$ with $d_{*}(x+\lambda h, K)=\inf \{\| x+\lambda h-$ $\left.k \|_{*}: k \in K\right\}$. It is well-known that this is a closed and convex cone in X^{*}.

We will need the following strong tangential condition:
$\underline{H_{\tau}}: \quad$ for all $(t, x) \in T \times(K \cap X),[F(t, x)-A(t, x)] \subseteq T_{K}^{\prime}(x)$.
Also denote by $S(K)$ the solution set of (6). We have the following structural result:

Theorem 7. If hypotheses $H(A)_{1}, H(F)_{1}$ and H_{τ} hold, then $S(K)$ is compact and connected in $L^{p}(T, H)$.
Proof: We claim that for every $n \geq 1$ and every $t \in T, x \in K \cap X_{n}=K_{n}$, we have

$$
p_{n} F(t, x)-A_{n}(t, x) \subseteq T_{K_{n}}(x)
$$

To this end, fix $(t, x) \in T \times K_{n}$ and let $v \in F(t, x)-A(t, x)$. Then $v=$ $g-A(t, x)$ with $g \in F(t, x)$. We will show that $p_{n} g-A_{n}(t, x) \in T_{K_{n}}(x)$. So let $w \in N_{K_{n}}(x)=T_{K_{n}}(x)^{-}=\left\{h \in X_{n}:\langle h, u\rangle \leq 0\right.$ for all $\left.u \in T_{K_{n}}(x)\right\}=\left\{h \in X_{n}:\right.$ $\left.\langle h, x\rangle=\sup _{k \in K}\left\langle h, p_{n} k\right\rangle\right\}$ (the normal cone to K_{n} at x). We have

$$
\left\langle p_{n} g-A_{n}(t, x), w\right\rangle=\left\langle p_{n} g, w\right\rangle-\left\langle A_{n}(t, x), w\right\rangle
$$

$=\langle g, w\rangle-\langle A(t, x), w\rangle \quad$ (note that $p_{n} w=w$ and recall the definition of A_{n}) $=\langle g-A(t, x), w\rangle$.
Since $w \in N_{K_{n}}(x)$, by definition we have

$$
\begin{aligned}
& \left\langle w, p_{n} k\right\rangle \leq\langle w, x\rangle \text { for all } k \in K, \\
& \Rightarrow\langle w, k\rangle \leq\langle w, x\rangle \text { for all } k \in K, \\
& \Rightarrow w \in N_{K}^{\prime}(x)=T_{K}^{\prime}(x)^{-} \subseteq X
\end{aligned}
$$

Therefore we have that $\langle g-A(t, x), w\rangle \leq 0 \Rightarrow\left\langle p_{n} g-A_{n}(t, x), w\right\rangle \leq 0$ and since $w \in N_{K_{n}}(x)$ was arbitrary, we conclude that $p_{n} g-A_{n}(t, x) \in T_{K_{n}}(x)$. So indeed

$$
p_{n} F(t, x)-A_{n}(t, x) \subseteq T_{K_{n}}(x)
$$

Hence from Papageorgiou [9], we have that $S_{n}(K)=S_{n}$ and $S(K)=S$. Also from Theorem 5 we know that $S_{n} \xrightarrow{h} S$ and for each $n \geq 1, S_{n}$ is compact and connected in $L^{p}(T, H)$. Hence by Proposition 2, so is $S \subseteq L^{p}(T, H)$.

Finally using Theorem 4, together with a well known fixed point theorem of Eilenberg-Montgomery [4], we can establish the existence of periodic trajectories. More precisely, we consider the following problem:

$$
\left\{\begin{array}{c}
\dot{x}(t)+A(t, x(t)) \in F(t, x(t)) \text { a.e. } \tag{7}\\
x(0)=x(b)
\end{array}\right\}
$$

We will need the following hypotheses:
$H(K): \quad K \subseteq H$ is a nonempty, bounded, closed and convex set such that

$$
K_{n}=p_{n}(K)=K \cap H_{n}, n \geq 1
$$

$\underline{H_{\tau}^{\prime}}: \quad$ for all $(t, x) \in T \times(K \cap X)$, we have that $[F(t, x)-A(t, x)] \cap T_{K}^{\prime}(x) \neq \emptyset$.

Theorem 8. If hypotheses $H(A), H(F), H(K)$ and H_{τ}^{\prime} hold, then problem (7) admits a solution.

Proof: As in the proof of Theorem 7, we can show that for all $n \geq 1$, all $t \in T$ and all $x \in K_{n}$

$$
\left[p_{n} F(t, x)-A_{n}(t, x)\right] \cap T_{K_{n}}(x) \neq \emptyset .
$$

Then from Hu-Papageorgiou [5], we know that the Galerkin approximation $(1)_{n}$ has a nonempty set of solutions which remain in K (i.e. K is invariant with respect to $\left.(1)_{n}\right)$. Denote by $\widehat{S}\left(K_{n}\right)\left(x_{0}^{n}\right)$ this solution set. We know (cf. Hu-Papageorgiou [5]) that $\widehat{S}\left(K_{n}\right)$ is an R_{δ}-compact in $L^{p}(T, H)$, in particular, then acyclic. Also $x_{0} \rightarrow \widehat{S}\left(K_{n}\right)\left(x_{0}\right)$ is u.s.c. Therefore $\Gamma_{n}: K_{n} \rightarrow 2^{K_{n}} \backslash\{\emptyset\}$ defined by $\Gamma_{n}(v)=e_{b} \circ \widehat{S}\left(K_{n}\right)(v)$ (with $e_{b}(\cdot)$ being the evaluation at b map; since $\widehat{S}\left(K_{n}\right)(v) \subseteq W_{p q}(T) \subseteq C(T, H)$, this map is well defined) is pseudo-acyclic. Apply the Eilenberg-Montgomery [4] fixed point theorem to get $v_{n} \in \Gamma_{n}\left(v_{n}\right)$, $n \geq 1$. Let $x_{n}(\cdot) \in C(T, H)$ be the trajectory for $(1)_{n}$ (with $\left.x_{0}^{n}=v_{n}\right)$ such that $x_{n}(0)=x_{n}(b)$. From the proof of Theorem 4 and since by hypothesis $H(K), K$ is bounded, we have that $\left\{x_{n}\right\}_{n \geq 1}$ is bounded in $W_{p q}(T)$. So we may assume that $x_{n} \rightarrow x$ in $L^{p}(T, H)$. From Theorem 4, we know that $\dot{x}(t)+A(t, x(t)) \in F(t, x(t))$ a.e., $x(0)=x(b)$; i.e. $x(\cdot) \in W_{p q}(T)$ solves (7).

5. Example

We conclude this work with an example illustrating the applicability of our abstract results.

Let $Z \subseteq \mathbb{R}^{N}$ be a bounded domain with smooth boundary $\partial Z=\Gamma$. We consider the following periodic multivalued distributed system $(p \geq 2)$:

$$
\left\{\begin{array}{c}
\frac{\partial x}{\partial t}-\sum_{k=1}^{N} D_{k}\left(a_{k}(t, z)\left|D_{k} x\right|^{p-2} D_{k} x\right)=h(z) \text { a.e. on } T \times Z \tag{8}\\
x(0, z)=x(b, z) \text { a.e. on } Z,\left.x\right|_{T \times \Gamma}=0 \\
f_{1}(t, z, x(z)) \leq h(z) \leq f_{2}(t, z, x(z)) \text { a.e. }
\end{array}\right\}
$$

We will need the following hypotheses on the data:
$H(a): \quad a_{k}: T \times Z \rightarrow \mathbb{R}$ is a measurable function and $0<\beta_{1} \leq a_{k}(t, z) \leq \beta_{2}$ a.e. on $T \times Z, k \in\{1, \ldots, N\}$.
$\underline{H(f)}: \quad f_{i}: T \times Z \times \mathbb{R} \rightarrow \mathbb{R}, i=1,2$, are functions such that $f_{1} \leq f_{2}$ and
(1) $(t, z) \rightarrow f_{i}(t, z, x)$ is measurable,
(2) $x \rightarrow f_{1}(t, z, x)$ is l.s.c., while $x \rightarrow f_{2}(t, z, x)$ is u.s.c.,
(3) $\left|f_{i}(t, z, x)\right| \leq a(t, z)+c(z)|x|$ a.e., with $a(\cdot, \cdot) \in L^{q}\left(T, L^{2}(Z)\right)$ and $c(\cdot) \in$ $L^{\infty}(Z)$.
$\underline{H_{\tau}^{\prime \prime}}: \quad$ for every $x \in L^{2}(Z)$ with $\|x\|_{L^{2}(Z)}=r$, we have $\int_{Z} u(z) x(z) d z \leq$ $\sum_{k=1}^{N} \int_{Z} a_{k}(t, z)\left|D_{k} x\right|^{p} d z$ for some $u \in L^{2}(Z)$, with $f_{1}(t, z, x(z)) \leq$
$u(z) \leq f_{2}(t, z, x(z))$ a.e.

Theorem 9. If hypotheses $H(a), H(f)$ and $H_{\tau}^{\prime \prime}$ hold, then problem (8) admits a solution $x(\cdot, \cdot) \in C\left(T, L^{2}(Z)\right) \cap L^{p}\left(T, W_{0}^{1, p}(Z)\right)$ such that $\frac{\partial x}{\partial t} \in L^{q}\left(T, W^{-1, q}(Z)\right)$. Proof: In this case the evolution triple consists of $X=W_{0}^{1, p}(Z), H=L^{2}(Z)$ and $X^{*}=W^{-1, q}(Z)$. Then from the Sobolev embedding theorem, we know that all embeddings are continuous dense and compact.

Let $\widehat{a}: T \times X \times X \rightarrow \mathbb{R}$ be the time varying Dirichlet form defined by

$$
\widehat{a}(t, x, y)=\int_{Z} \sum_{k=1}^{N} a_{k}(t, z)\left|D_{k} x\right|^{p-2} D_{k} x D_{k} y d z
$$

Applying Hölder's inequality, we get

$$
\begin{aligned}
|\widehat{a}(t, x, y)| & \leq \beta_{2} \sum_{k=1}^{N}\left(\int_{Z}\left|D_{k} x\right|^{p} d z\right)^{1 / q}\left(\int_{Z}\left|D_{k} y\right|^{p} d z\right)^{1 / p} \\
& \leq \widehat{\beta}_{2}\|x\|^{p-1}\|y\| \text { for some } \widehat{\beta}_{2}>0
\end{aligned}
$$

We have just seen that $\|A(t, x)\|_{*} \leq \beta\|x\|^{p-1}, \beta>0$. Recalling the basic inequality

$$
2^{2-p}|\gamma-\delta|^{p} \leq\left(\gamma|\gamma|^{p-2}-\delta|\delta|^{p-2}\right)(\gamma-\delta) \quad \gamma, \delta \in \mathbb{R}
$$

we get that there exists $\theta>0$ such that

$$
\theta\|x-y\|^{p} \leq \widehat{a}(t, x, x-y)-\widehat{a}(t, y, x-y)=\langle A(t, x), x-y\rangle-\langle A(t, y), x-y\rangle .
$$

Also it is clear that $x \rightarrow A(t, x)$ is continuous, while from Fubini's theorem we have that $t \rightarrow\langle A(t, x), y\rangle$ is measurable $\Rightarrow t \rightarrow A(t, x)$ is weakly measurable and since $X^{*}=W^{-1, q}(Z)$ is separable, from the Pettis measurability theorem, we conclude that $t \rightarrow A(t, x)$ is measurable.

Next let $F: T \times H \rightarrow P_{f c}(H)$ be defined by

$$
F(t, x)=\left\{u \in L^{2}(Z): f_{1}(t, z, x(z)) \leq u(z) \leq f_{2}(t, z, x(z)) \text { a.e. }\right\}
$$

Claim \#1. $t \rightarrow F(t, x)$ is measurable.
Note that $\operatorname{GrF}(\cdot, x)=\left\{(t, u) \in T \times H: \int_{C} f_{1}(t, z, x(z)) d z \leq \int_{C} u(z) d z \leq\right.$ $\int_{C} f_{2}(t, z, x(z)) d z$ for all $C \in B(Z)=$ Borel σ-field of $\left.Z\right\}$. Recall that $B(Z)$ is countably generated, i.e. $B(Z)=\sigma\left(\left\{C_{n}\right\}_{n \geq 1}\right)$. Let \mathcal{L} be the field generated by $\left\{C_{n}\right\}_{n \geq 1}$. Then \mathcal{L} is countable; i.e. $\mathcal{L}=\left\{\widehat{C}_{n}\right\}_{n \geq 1}$. So

$$
\begin{aligned}
G r F(\cdot, x) & =\bigcap_{n \geq 1}\left\{(t, u) \in T \times H: \int_{\widehat{C}_{n}} f_{1}(t, z, x(z)) d z \leq \int_{\widehat{C}_{n}} u(z) d z\right. \\
& \left.\leq \int_{\widehat{C}_{n}} f_{2}(t, z, x(z)) d z\right\} \\
& \Rightarrow G r F(\cdot, x) \in B(T) \times B(H) \quad \text { (Fubini's theorem) } \\
& \Rightarrow t \rightarrow F(t, x) \text { is measurable. }
\end{aligned}
$$

Claim \#2. $\operatorname{GrF}(t, \cdot)=\{[x, u] \in H \times H: u \in F(t, x)\}$ is sequentially closed in $L^{2}(Z) \times L^{2}(Z)_{w}$.

Let $\left[x_{n}, u_{n}\right] \xrightarrow{s \times w}\left[x_{n}, u_{n}\right] \in \operatorname{GrF}(t, \cdot)$. We have

$$
\int_{C} f_{1}\left(t, z, x_{n}(z)\right) d z \leq \int_{C} u_{n}(z) d z \leq \int_{C} f_{2}\left(t, z, x_{n}(z)\right) d z, n \geq 1, C \in B(Z)
$$

Using hypothesis $H(f)$, together with Fatou's lemma, in the limit as $n \rightarrow \infty$, we get
$\int_{C} f_{1}(t, z, x(z)) d z \leq \int_{C} u(z) d z \leq \int_{C} f_{2}(t, z, x(z)) d z, C \in B(Z), \Rightarrow u \in F(t, x)$.
Claim \#3. $|F(t, x)|=\sup \left\{\|u\|_{2}: u \in F(t, x)\right\} \leq \widehat{a}(t)+\widehat{c}|x|^{2 / q}$ a.e. with $\widehat{a} \in$ $L^{q}(T), \widehat{c}>0$.

Indeed from hypothesis $H(f)(3)$, we have
$\int_{Z}\left|f_{i}(t, z, x(z))\right|^{2} d z \leq \int_{Z} 2 a(t, z)^{2} d z+\int_{Z} 2 c(z)^{2}|x(z)|^{2} d z$
$\leq \widehat{a}(t)^{2}+\widehat{c}^{2}|x|^{2}$ with $\widehat{a}(\cdot) \in L^{q}(T), \widehat{c}>0$
$\Rightarrow\left|h f_{i}(t, x)(\cdot)\right| \leq \widehat{a}(t)+\widehat{c}|x| \quad\left(\right.$ with $\left.\quad \widehat{f}_{i}(t, x)(\cdot)=f_{i}(t, \cdot, x(\cdot))\right) \leq \widehat{a}(t)+\widehat{c}_{1}|x|^{2 / q}$
(applying on the second summand of the right-hand side of the previous inequality, Young's inequality $a b \leq \frac{\varepsilon}{p} a^{p}+\frac{1}{q e^{q}} b^{q}, \frac{1}{p}+\frac{1}{q}=1, p=\frac{2}{q}>1$).

So $F(t, x)$ satisfies hypothesis $H(F)$.
Next let $K=r B_{H}=\{u \in H:|v| \leq r\}$. Then for each $x \in W_{0}^{1, p}(Z)$

$$
T_{K}^{\prime}= \begin{cases}W^{-1, q}(Z) & \text { if }|x|<r \\ \left\{v \in W^{-1, q}(Z):\langle v, x\rangle \leq 0\right\} & \text { if }|x|=r\end{cases}
$$

From hypothesis $H_{\tau}^{\prime \prime}$, we get that

$$
[F(t, x)-A(t, x)] \cap T_{K}^{\prime}(x) \neq \emptyset, \quad x \in K \cap X
$$

Rewrite (8) in the equivalent abstract form (6). Then apply Theorem 8 to get $x \in C\left(T, L^{2}(Z)\right) \cap L^{p}\left(T, W_{0}^{1, p}(Z)\right)$, a solution of (8) with $\frac{\partial x}{\partial t} \in L^{q}\left(T, W^{-1, q}(Z)\right)$.

References

[1] Attouch H., Variational Convergence for Functional and Operator, Pitman, London, 1984.
[2] DeBlasi F.S., Myjak J., On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31.
[3] , On the solution sets for differential inclusions, Bulletin Polish Acad. Sci. 33 (1985), 17-23.
[4] Eilenberg S., Montgomery D., Fixed point theorems for multivalued transformations, Amer. J. Math. 68 (1946), 214-222.
[5] Hu S., Papageorgiou N.S., On the topological regularity of the solution set of differential inclusions with state constraints, J. Diff. Equations 107 (1994), in press.
[6] Lakshmikantham V., Leela S., Nonlinear Differential Equations in Abstract Spaces, Pergamon Press, Oxford, 1981.
[7] Papageorgiou N.S., Convergence theorems for Banach space valued integrable multifunctions, J. Math. Math. Sci. 10 (1987), 433-442.
[8] _, On infinite dimensional control systems with state and control constraints, Proc. Indian Acad. Sci. 100 (1990), 65-79.
[9] , A viability result for nonlinear time dependent evolution inclusion, Yokohama Math. Jour. 40 (1992), 73-86.
[10] _, On the bang-bang principle for nonlinear evolution inclusions, Aequationes Math. 45 (1993), 267-280.
[11] Strang G., Fix G., An Analysis of the FInite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1973.
[12] Zeidler E., Nonlinear Functional Analysis and its Application II, Springer Verlag, New York, 1990.

Southwest Missouri State University, Department of Mathematics, Springfield, Missouri 65804, USA

National Technical University, Department of Mathematics, Zografou Campus, Athens 15773, Greece
mailing address:
Florida Institute of Technology, Department of Applied Mathematics, 150 West University Blvd., Melbourne, Florida 32901-6988, USA
(Received February 3, 1994)

[^0]: *This work was done while the first author was on sabbatical leave at Florida Tech.

