
Comment.Math.Univ.Carolin. 35,4 (1994)705–720 705

Galerkin approximations for nonlinear evolution inclusions

Shouchuan Hu*, Nikolaos S. Papageorgiou

Abstract. In this paper we study the convergence properties of the Galerkin approxima-
tions to a nonlinear, nonautonomous evolution inclusion and use them to determine the
structural properties of the solution set and establish the existence of periodic solutions.
An example of a multivalued parabolic p.d.e. is also worked out in detail.
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1. Introduction

In this paper we study the properties of the solution set of a class of nonlinear,
nonautonomous evolution inclusions and also establish the existence of periodic
trajectories. This is done by developing a general abstract approximation frame-
work and a convergence theory for the Galerkin approximations of the system
under consideration. We employ standard Galerkin techniques (see for example
the book of Strang-Fix [11]) to obtain a sequence of approximating multivalued
systems. Under readily verifiable hypotheses on the data, we demonstrate that
the solutions of the finite dimensional approximations converge to those of the
original infinite dimensional evolution inclusion. This approximation procedure
allows us to establish certain useful properties of the solution set and also prove
the existence of periodic trajectories. More precisely, we show that the solution set
is compact and connected in the Lebesgue-Bochner space Lp(T, H). This is done
for both systems with and without state constraints. For the first as expected, we
employ a tangential condition. Also using a well-known fixed point theorem for
pseudo-acyclic multifunctions on the Galerkin approximations and then passing
to the limit, we prove the existence of periodic solutions under a weak tangential
condition. An example of a nonlinear multivalued distributed parameter system
is also worked out in detail. We note that evolution inclusions are the right device
to model distributed parameter control systems with a priori feedbacks, as well
as other infinite dimensional systems with multivalued terms. Furthermore, our
analytical framework based on Galerkin approximations can be useful in compu-
tational considerations.

*This work was done while the first author was on sabbatical leave at Florida Tech.
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2. Preliminaries

Let T = [0, b], H a separable Hilbert space and X a subspace of H carrying the
structure of a reflexive separable Banach space, which embeds intoH continuously
and densely. Identifying H with its dual (pivot space), we have X → H → X∗

with all embeddings being continuous and dense. A triple (X, H, X∗) is known as
an “evolution triple” (cf. Zeidler [12]). We will also assume that the embeddings
are compact. By ‖ · ‖ (resp. | · |, ‖ · ‖∗) we will denote the norm of X (resp.
of H , X∗). Also by (·, ·) we will denote the inner product in H and by 〈·, ·〉
the duality brackets for the pair (X, X∗). The two are compatible in the sense

that (·, ·) = 〈·, ·〉|X×H . Let 1 < p, q < ∞ and 1p +
1
q = 1. We define the space

Wpq(T ) = {x ∈ Lp(T, X) : ẋ ∈ Lq(T, X∗)}. In this definition the derivative of x(·)
is understood in the sense of vector valued distributions. Furnished with the norm
‖x‖Wpq(T ) = [‖x‖

2
Lp(T,X)+‖ẋ‖

2
Lq(T,X∗)]

1/2,Wpq(T ) becomes a reflexive separable

Banach space. In fact, if p = q = 2, then W22(T ) = W (T ) is a separable Hilbert
space with inner product (x, y)Wpq(T ) = (x, y)L2(T,X) + (ẋ, ẏ)L2(T,X∗). Recall

(cf. Zeidler [12]) that Wpq(T ) embeds continuously in C(T, H) and compactly in
Lp(T, H).
In what follows, by Pfc(H) we will denote the family of nonempty, closed and

convex subsets of H . A multifunction (set-valued function) F : T → Pfc(H) is
said to be measurable, if for all y ∈ H , t → d(y, F (t)) = inf{‖y−x‖ : x ∈ F (t)} is
measurable. Given a multifunction G : H → Pfc(H), its graph is the set GrG =
{(x, y) ∈ H × H : y ∈ G(x)}. We will say that G(·) is upper semicontinuous
(u.s.c.), if for every U ⊆ H open, the set G+(U) = {x ∈ H : G(x) ⊆ U} is open.
Recall (cf. DeBlasi-Myjak [2]) that if G(·) is u.s.c., then GrG is a closed subset
of H × H .
Let Y be any Banach space and Pf (Y ) = {C ⊆ Y : nonempty and closed}.

Let B1 = {y ∈ Y : ‖y‖Y ≤ 1}. For C, D ∈ Pf (Y ), we define

h∗(C, D) = inf{ε > 0 : C ⊆ D + εB1} = sup[d(c, D) : c ∈ C]

and h∗(D, C) = inf{ε > 0 : D ⊆ C + εB1} = sup[d(b, C) : b ∈ D].

Then we set h(C, D) = max[h∗(C, D), h∗(D, C)]. It is well known that h(·, ·)
is a generalized metric on Pf (Y ) (a metric on the bounded sets in Pf (Y )), known
as the Hausdorff metric and (Pf (Y ), h) is a complete metric space, with Pfc(Y )

a closed subset of it. Also if {Cn}n≥1 ⊆ 2
Y \ {∅} we define

limCn = {y ∈ Y : lim d(y, Cn) = 0}

= {y ∈ Y : y = lim yn, yn ∈ Cn, n ≥ 1}

and limCn = {y ∈ Y : lim d(y, Cn) = 0}

= {y ∈ Y : y = lim ynk
, ynk

∈ Cnk
, n1 < n2 < · · · < nk < . . . }.

Clearly we always have that limCn ⊆ limCn and both sets are closed, maybe
empty. We say that the Cn’s convergence to C in the Kuratowski sense, denoted
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by Cn
K
−→ C, if limCn = limCn = C. Finally, convergence in the Hausdorff

metric will be denoted by
h
−→; i.e. Cn

h
−→ C if and only if h(Cn, C)→ 0 as n → ∞.

In the rest of this section we will prove some auxiliary results that we will need
in the sequel.

Proposition 1. If {Cn}n≥1 ⊆ Pf (Y ), Cn
K
−→ C and there exists a nonempty

compact set V such that Cn ⊆ V for all n ≥ 1, then Cn
h
−→ C as n → ∞.

Proof: Note that since V is compact, h∗(Cn, C) = d(cn, C) with cn ∈ Cn ⊆ V .
So by passing to a subsequence if necessary, we may assume that cn → c, with

c ∈ C since by hypothesis Cn
K
−→ C. Hence d(cn, C) → 0 ⇒ h∗(Cn, C) → 0.

Also h∗(C, Cn) = d(ĉn, Cn) with ĉn ∈ C. Again we may assume that ĉn → ĉ∈C.

Then note that d(ĉn, Cn) ≤ ‖ĉn − ĉ‖Y + d(ĉ, Cn) → 0, since Cn
K
−→ C. So

d(ĉn, Cn) = h∗(C, Cn)→ 0⇒ h(Cn, C)→ 0. �

The next auxiliary result shows that connectedness is preserved by Hausdorff
convergence.

Proposition 2. If {Cn}n≥1 ⊆ Pk(Y ), for every n ≥ 1, Cn is connected and

Cn
h
−→ C as n → ∞, then C ∈ Pf (Y ) is connected, too.

Proof: Suppose not. Then there exists U1, U2 ⊆ Y open such that U1 ∩U2 = ∅,

C ⊆ U1∪U2 and C∩U1 6= ∅, C∩U2 6= ∅. Let ε > 0 be such that C ⊆
◦
Cε ⊆ U1∪U2,

where
◦

Cε = {y ∈ Y : d(y, C) < ε}. Then since Cn
h
−→ C, we can find N(ε) ≥ 1

such that if n ≥ N(ε), Cn ⊆
◦

Cε ⊆ U1 ∪ U2 and Cn ∩ U1 6= ∅, Cn ∩ U2 6= ∅, ⇒ Cn

is disconnected for n ≥ N(ε), a contradiction. �

Recall that if C ∈ Pfc(H), then the metric projection map proj [·;C] : H → C

defined by proj [x;C] = {c ∈ C : |x−c| = d(x, C)} is a single-valued, nonexpansive
map. We have the following result:

Proposition 3. If F : T → Pfc(H) is a measurable function, then (t, x) →
proj [x;F (t)] is measurable in t and continuous and x (i.e. a Carathéodory func-
tion).

Proof: We only need to show the measurability in t. Note thatGr proj [x;F (·)] =
{(t, v) ∈ GrF : d(x, F (t)) = |x−v|}. But since F (·) is measurable, GrF ∈ B(T )×
B(H), with B(T ) (resp. B(H)) being the Borel σ-field of T (resp. of H). Also
for the same reason, t → d(x, F (t)) is measurable. Therefore Gr proj [x;F (·)] ∈
B(T )× B(H) and so t → proj [x;F (t)] is Lebesgue measurable. �

Remark. This proposition implies that (t, x)→ proj [x;F (t)] is superpositionally
measurable; i.e. if T → H is measurable, then t → proj [x(t);F (t)] is measurable.

Now let us introduce our Galerkin approximation scheme. For each n ≥ 1,
let Hn be a finite dimensional subspace of H which is also contained in X . Let
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pn : H → Hn be the orthogonal projection of H onto Hn with respect to the inner
product (·, ·). We assume that the approximating spaces Hn and the projections
pn(·) satisfy

(∗) “for each x ∈ X , we have lim ‖pnx − x‖ = 0.”

Note that (∗) and the Uniform Boundedness Principle imply that there exists
γ > 0 such that ‖pnx−x‖ ≤ γ‖x‖ for all n ≥ 1 and all x ∈ X . Furthermore, since
X embeds continuously and densely into H , we also have lim |pnx− x| = 0 for all
x ∈ H . In what follows, by Xn we will denote the linear space Hn equipped with
the X-norm (i.e. Xn is considered as a subspace of X rather than of H). Since
dimHn < ∞, we see that X∗

n is the space Hn equipped with the X∗-norm.
We will be studying the following evolution inclusion defined on T = [0, b] and

the evolution triple (X, H, X∗):

(1)

{
ẋ(t) +A(t, x(t)) ∈ F (t, x(t)) a.e.

x(0) = x0.

}

Here A : T × X → X∗ and F : T × H → Pfc(H). By a solution of (1) we
mean a function x(·) ∈ Wpq(T ) such that ẋ(t)+A(t, x(t)) = f(t) a.e. in X∗, with
f ∈ Lq(T, H), f(t) ∈ F (t, x(t)) a.a. and x(0) = x0. We will denote the solution
set of (1) by S ⊆ Wpq(T ) ⊆ Lp(T, H).
For each n ≥ 1, define An : T ×Xn → X∗

n to be the restriction of the operator
A(t, ·) to Xn, by An(t, x) = y for x ∈ Xn, where y satisfies

〈A(t, x), v〉 = 〈y, v〉 for all v ∈ Xn.

Then from the Riesz Representation theorem, this is a well defined operator
which furthermore is measurable in t, if t → A(t, x) is.
We consider the following sequence of Galerkin approximations to (1):

(1)n

{
ẋn(t) +An(t, xn(t)) ∈ pnF (t, xn(t)) a.e.

xn(0) = pnx0 = xn
0 .

}

We denote the solution set of (1)n by Sn ⊆ Wpq(T ) ⊆ Lp(T, H).

3. Convergence results

In this section, we examine how the solution sets Sn approximate S.
We will need the following hypotheses on the data:

H(A): A : T × X → X∗ is an operator such that

(1) t → A(t, x) is measurable,
(2) x → A(t, x) is hemicontinuous, monotone (i.e. for every x, y, z ∈ X ,

λ → 〈A(t, x + λy), z〉 is continuous from [0, 1] into R (hemicontinuity)
and 〈A(t, x) − A(t, y), x − y〉 ≥ 0 for all x, y ∈ X (monotonicity)),

(3) 〈A(t, x), x〉 ≥ c‖x‖p for all x ∈ X and almost all t ∈ T , with c > 0,
(4) ‖A(t, x)‖∗ ≤ a1(t) + c1‖x‖

p−1 for all x ∈ X and almost all t ∈ T , with

a1(·) ∈ Lq(T ), c1 > 0 and 2 ≤ p < ∞, 1p +
1
q = 1.
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H(F ): F : T × H → Pfc(H) is a multifunction such that

(1) t → F (t, x) is measurable,
(2) x → F (t, x) has a graph which is sequentially closed in H × Hw with Hw

being the Hilbert space H equipped with the weak topology,

(3) |F (t, x)| = sup{|v| : v ∈ F (t, x)} ≤ a2(t) + c2|x|
2/q a.e. in t and for all

x ∈ H , with a2(·) ∈ Lq(T ), c2 > 0.

Theorem 4. If hypotheses H(A), H(F ) hold and x0 ∈ H , then limSn ⊆ S and

h∗(Sn, S)→ 0 in Lp(T, H).

Proof: Using hypothesis H(F ) (1), we see that the multifunction t → pnF (t, x)
= Gn(t, x) is measurable. Also from hypothesis H(F ) (2) we see that the mul-
tifunction x → pnF (t, x) = Gn(t, x) has a closed graph. Combining this with
hypothesis H(F ) (3) we get that Gn(t, ·)|K is u.s.c. for every K ⊆ Xn compact.
Invoking Lemma 8 of Papageorgiou [8], we get that Gn(t, ·) is u.s.c. Furthermore
(t, x)→ An(t, x) is Carathéodory, monotone in x and

|pnF (t, x)| ≤ ‖pn‖ℓ|F (t, x)| ≤ a2(t) + c2|x|
2/q a.e.

while ‖An(t, x)‖∗ ≤ a1(t) + c1‖x‖
p−1 a.e.

So from Theorem 3.1 of Papageorgiou [10], we see that Sn ⊆ Wpq(T ) ⊆
Lp(T, H) is nonempty and closed.
Now we will establish some a priori bounds for the sets Sn which are uniform

in n ≥ 1. So let xn(·) ∈ Sn, n ≥ 1. We have:

〈ẋn(t), xn(t)〉+ 〈An(t, xn(t)), xn(t)〉 = (pnfn(t), xn(t)) a.e.

⇒ 〈ẋn(t), xn(t)〉 + 〈A(t, xn(t)), xn(t)〉 = (pnfn(t), xn(t)) a.e.

with fn ∈ Lq(T, H), fn(t) ∈ F (t, xn(t)) a.e. So we get
d

dt
|xn(t)|

2 + 2c‖xn(t)‖
p ≤ 2|fn(t)| · |xn(t)| ≤ 2|fn(t)|β‖xn(t)‖ a.e.

with β > 0 such that | · | ≤ β‖ · ‖. Such a β > 0 exists since X embeds into
H continuously. Applying on the right hand side of the last inequality, Young’s
inequality with ε > 0, we get

d

dt
|xn(t)|

2 + 2c‖xn(t)‖
p ≤ 2β

(
εq

q
|fn(t)|

q +
1

εpp
‖xn(t)‖

p
)
a.e.

We choose ε > 0 so that 2βεpp = 2c ⇒ ε =
(

β
cp

)1/p
. Hence we get

d

dt
|xn(t)|

2 ≤ ĉ|fn(t)|
q a.e. with ĉ =

2β

q

(
β

cp

)p−1

⇒
d

dt
|xn(t)|

2 ≤ ĉ(a2(t) + c2|xn(t)|
2/q)q

≤ 2q−1ĉa2(t) + 2
q−1c2|xn(t)|

2 a.e.

⇒ |xn(t)|
2 ≤ |x0|

2 + 2q−1ĉ‖a‖q
q + 2

q−1c2

∫ t

0
|xn(s)|

2 ds (recall |xn
0 | ≤ |x0|).
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Apply Gronwall’s lemma to get M1 > 0 such that

|xn(t)| ≤ M1 for all n ≥ 1 and all t ∈ T.

Then we have

d

dt
|xn(t)|

2 + 2c‖xn(t)‖
p ≤ 2M1|fn(t)| a.e.

⇒ 2c

∫ b

0
‖xn(t)‖

p dt ≤ |x0|
2 + 2M1

∫ b

0
|fn(t)| dt

≤ |x0|
2 + 2M1

∫ b

0
(a(t) + c1M

2/q
1 ) dt.

Hence there exists M2 > 0 such that

‖xn‖Lp(T,X) ≤ M2 for all n ≥ 1.

Finally, since ẋn(t) = −An(t, xn(t)) + fn(t) a.e., and by using hypothesis
H(A) (4) and the definition of An(t) from the above estimates, we get M3 > 0
such that

‖ẋn‖Lp(T,X∗) ≤ M3 for all n ≥ 1.

Let V = {x ∈ Wpq(T ) : ‖x‖Lp(T,X) ≤ M2, ‖ẋ‖Lq(T,X∗) ≤ M3}. This is

a bounded closed convex subset ofWpq(T ). By the Eberlein-Smulian theorem (see
for example Lakshmikantham-Leela [6, Theorem 1.1.12, p. 7]), we have that V

is sequentially weakly compact in Wpq(T ). Also since Wpq(T ) embeds compactly
into Lp(T, H) (see Zeidler [12, p. 450]), we get that V is a compact subset of
Lp(T, H) and furthermore for all n ≥ 1, Sn ⊆ V .
Now let xn ∈ Sn, n ≥ 1, and assume that xn → x ∈ Lp(T, H). Since

{xn}n≥1 ⊆ V by passing to a subsequence if necessary, we may assume that

xn
w
−→ x in Wpq(T ). By definition we have

{
ẋn(t) +An(t, xn(t)) = pnfn(t) a.e.

xn(0) = xn
0

}

with fn(t) ∈ F (t, xn(t)) a.e., fn(·) ∈ Lq(T, H). Since |fn(t)| ≤ a2(t)+c2|xn(t)|2/q

≤ a2(t)+c2M
2/q
1 = â2(t) a.e. with â2(·) ∈ Lq(T ), we may assume that fn

w
−→ f in

Lq(T, H) (recall that Lq(T, H) is a separable, reflexive Banach space). Invoking
Theorem 3.1 of Papageorgiou [7], we get

f(t) ∈ convw- lim{fn(t)}n≥1 ⊆ convw- limF (t, xn(t)) ⊆ F (t, x(t)) a.e.,

the last inclusion being a consequence of hypothesis H(F ) (2). In what follows,

let Ân(·) be the Nemitsky (superposition) operator corresponding to An(t, x);

i.e. Ân : Lp(T, Xn) → Lq(T, X∗
n) is defined by Ân(x)(·) = An(·, x(·)). Then if
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by ((·, ·))0 we denote the duality brackets for the pair (L
p(T, X), Lq(T, X∗)) (i.e.

((f, g))0 =
∫ b
0 〈f(t), g(t)〉 dt, f ∈ Lp(T, X), g ∈ Lq(T, X∗)), we have

((ẋn, xn − x))0 + ((Â(xn), xn − x))0 = ((pnfn, xn − x))0 .

From the integration by parts formula for functions inWpq(T ) (see Zeidler [12,
Proposition 23.23, p. 422]), we get that

((ẋn − ẋ, xn − x))0 =
1

2
|xn(b)− x(b)|2 −

1

2
|pnx0 − x0|

2 ⇒ ((ẋn, xn − x))0

=
1

2
|xn(b)− x(b)|2 −

1

2
|pnx0 − x0|

2 + ((ẋ, xn − x))0 → 0 as n → ∞.

Also we have

((pnfn, xn − x))0 =

∫ b

0
〈pnfn(t), xn(t)− x(t)〉 dt =

∫ b

0
(pnfn(t), xn(t)− x(t)) dt

=

∫ b

0
(fn(t), xn(t)− pnx(t)) dt.

Recall that |pnx(t) − x(t)| → 0 as n → ∞. So we get

((pnfn, xn − x))0 =

∫ b

0
(fn(t), xn(t)− pnx(t)) dt → 0 as n → ∞.

Thus finally we have

lim((Ân(xn), xn − x))0 = 0.

Then we write

((Â(xn), xn − x))0 = ((Â(xn)− Ân(xn), xn − x))0 + ((Ân(xn), xn − x))0

= ((Â(xn)− Ân(xn), xn − pnx))0

+ ((Â(xn)− Ân(xn), pnx − x))0 + ((Ân(xn), xn − x))0

= ((Â(xn)− Ân(xn), pnx − x))0 + ((Ân(xn), xn − x))0

(recall the definition of An(t, x)). Since ‖Â(xn)‖Lq(T,X∗), ‖Ân(xn)‖Lq(T,X∗) ≤

M4 for all n ≥ 1 and some M4 > 0 (cf. hypothesis H(A) (4)) and pnx(·) → x(·)
in Lp(T, X), we get

lim((Â(xn), xn − x))0 = 0.
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But Â(·) is hemicontinuous monotone, since A(t, ·) is. Hence it has property

(M) (cf. Zeidler [12, pp. 583–588]). Therefore, Â(xn)
w
−→ Â(x) in Lq(T, X∗) ⇒

Ân(xn)
w
−→ Â(x) in Lq(T, X∗). Therefore for every u ∈ Lp(T, X), we have

((ẋn, u))0 + ((Ân(xn), u))0 = ((pnfn, u))0

→ ((ẋ, u))0 + ((Â(x), u))0 = ((f, u))0

⇒ ẋ(t) +A(t, x(t)) = f(t) a.e., x(0) = x0

with f ∈ Lq(T, H), f(t) ∈ F (t, x(t)) a.e.

Thus x ∈ S and so we have proved that

limSn ⊆ S.

Recalling that Sn ⊆ V = compact subset of Lp(T, H), from the proof of Propo-
sition 1, we also conclude that

h∗(Sn, S)→ 0 as n → ∞.

�

If we strengthen our hypotheses, we can improve the conclusion of Theorem 4
above.

H(A)1: A : T × X → X∗ is an operator such that

(1) t → A(t, x) is measurable,
(2) x → A(t, x) is continuous, monotone,
(3) 〈A(t, x), x〉 ≥ c‖x‖p for all x ∈ X and almost all t ∈ T , with c > 0,
(4) ‖A(t, x)‖∗ ≤ a1(t) + c1‖x‖

p−1 for all x ∈ X and almost all t ∈ T , with

a2(·) ∈ Lq(T ), c1 > 0 and 2 ≤ p < ∞, 1p +
1
q = 1.

H(F )1: F : T × H → Pfc(H) is a multifunction such that

(1) t → F (t, x) is measurable,
(2) h(F (t, x)F (t, y)) ≤ k(t)|x − y| a.e. with k(·) ∈ L1(T ),

(3) |F (t, x)| ≤ a2(t) + c2|x|
2/q a.e. with a2(·) ∈ Lq(T ), c2 > 0.

Theorem 5. If hypotheses H(A)1, H(F )1 hold and x0 ∈ H , then Sn
K
−→
h

S in

Lp(T, H).

Proof: From Theorem 4, we know that

(2) limSn ⊆ S in Lp(T, H).

In what follows we will show that we also have S ⊆ limSn in Lp(T, H).
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To this end, let x ∈ S. Then by definition we have{
ẋ(t) +A(t, x(t)) = f(t) a.e.

x(0) = x0

}

with f ∈ Lq(T, H) ∈ F (t, x(T )) a.e. Define gn(t) = proj [f(t); pnF (t, x(t))] and
vn(t, x) = proj [gn(t); pnF (t, x)]. From Proposition 3, we have gn(·) ∈ Lq(T, H)
and t → vn(t, x) is measurable. Also from Theorem 3.33, p. 322 of Attouch [1],
we have that x → vn(t, x) is continuous. Then consider the following problem:

(3)

{
ẋn(t) +An(t, xn(t)) = vn(t, xn(t)) a.e.

xn(0) = pnx0 = xn
0 .

}

From Papageorgiou [10], we know that problem (3) above has at least one
solution xn(·) ∈ Wpq(T ). Then we have

(4)

〈ẋ(t)− ẋn(t), x(t)− xn(t)〉+ 〈A(t, x(t)) − An(t, xn(t)), x(t) − xn(t)〉

= (f(t)− vn(t, xn(t)), x(t) − xn(t)) a.e.

⇒
1

2

d

dt
|x(t) − xn(t)|

2 = (f(t)− vn(t, xn(t)), x(t) − xn(t))

+ 〈A(t, x(t)) − An(t, xn(t)), xn(t)− x(t)〉 a.e.

⇒
1

2

d

dt
|x(t) − xn(t)|

2 ≤
1

2
|x0 − xn

0 |
2

+

∫ t

0
(f(s)− vn(s, xn(s)), xn(s)− x(s)) ds

+

∫ t

0
〈A(s, x(s)) − An(s, xn(s)), xn(s)− x(s)〉 ds.

We investigate the third summand in the right-hand side of the above inequal-
ity. We have:
∫ t

0
〈A(s, x(s)) − An(s, xn(s)), xn(s)− x(s)〉 ds

=

∫ t

0
〈A(s, x(s)) − A(s, pnx(s)) +A(s, pnx(s))− An(s, xn(s)), xn(s)− x(s)〉 ds

=

∫ t

0
〈A(s, x(s)) − A(s, pnx(s)), xn(s)− x(s)〉 ds

+

∫ t

0
〈A(s, pnx(s))− An(s, xn(s)), xn(s)− x(s)〉 ds.

Note that since pnx(s)→ x(s) in X , we have A(s, pnx(s))→ A(s, x(s)) in X∗

(cf. hypothesis H(A)1 (2)). So since ‖xn‖Lp(T,X) ≤ M2, n ≥ 1 (check the proof

of Theorem 4), we have
∫ t

0
〈A(s, x(s)) − A(s, pnx(s)), xn(s)− x(s)〉 ds → 0 as n → ∞.
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Also we have
∫ t

0
〈A(s, pnx(s)) − An(s, xn(s)), xn(s)− x(s)〉 ds

=

∫ t

0
〈A(s, pnx(s)) − An(s, xn(s)), xn(s)− pnx(s)〉 ds

+

∫ t

0
〈A(s, pnx(s)) − An(s, xn(s)), pnx(s)− x(s)〉 ds

=

∫ t

0
〈A(s, pnx(s)) − A(s, xn(s)), xn(s)− pnx(s)〉 ds

+

∫ t

0
〈A(s, pnx(s)) − An(s, xn(s)), pnx(s)− x(s)〉 ds

≤

∫ t

0
〈A(s, pnx(s)) − An(s, xn(s)), pnx(s)− x(s)〉 ds → 0 as n → ∞,

since pnx(s) → x(s) in X and {A(·, pnx(·))}n≥1, {An(·, xn(·))}n≥1 are both
bounded in Lq(T, X∗). Then going back to (4), we have

1

2
|x(t) − xn(t)|

2 ≤
1

2
|x0 − xn

0 |
2 +

∫ t

0
(f(s)− vn(s, xn(s)), x(s) − xn(s)) ds

+

∫ t

0
〈A(s, x(s)) − A(s, pnx(s)), xn(s)− x(s)〉 ds

+

∫ t

0
〈A(s, pnx(s)) − An(s, xn(s)), xn(s)− x(s)〉 ds.

From the above convergence observations, we see that given ε > 0, we can find
n0(ε) ≥ 1 such that for n ≥ n0(ε) we have

|xn(t)− x(t)|2 ≤ ε+ 2

∫ t

0
(f(s)− vn(s, xn(s)), x(s) − xn(s)) ds

≤ ε+ 2

∫ t

0
|f(s)− vn(s, xn(s))| · |x(s) − xn(s)| ds

≤ ε+ 2

∫ t

0
(|f(s)− vn(s, x(s))| + |vn(s, x(s)) − vn(s, xn(s))|)|xn(s)− x(s)| ds

≤ ε+ 2

∫ t

0
[d(f(s), pnF (s, x(s))) + d(gn(s), pnF (s, xn(s)))]|xn(s)− x(s)| ds

≤ ε+ 2

∫ t

0
[d(f(s), pnF (s, x(s))) + h(pnF (s, x(s)), pnF (s, xn(s)))]|xn(s)− x(s)| ds

≤ ε+ 2

∫ t

0
[|f(s)− pnf(s)|+ k(s)|xn(s)− x(s)|]|xn(s)− x(s)| ds.
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Note that |f(s) − pnf(s)| → 0 as n → ∞. So we can find n1(ε) ≥ n0(ε) such
that for n ≥ n1(ε), we have

|x(t) − xn(t)|
2 ≤ 2ε+ 2

∫ t

0
k(s)|x(s) − xn(s)|

2 ds

⇒ |x(t)− xn(t)|
2 ≤ 2ε exp 2‖k‖1 for all t ∈ T and all n ≥ n1(ε).

Thus xn → x in C(T, H), hence in Lp(T, H). Since xn ∈ Sn, we have

(5) S ⊆ limSn.

From (2) and (5), we deduce that Sn
K
−→ S in Lp(T, H). Since Sn ⊆ V with

V compact in Lp(T, H), from Proposition 1, we also have that Sn
h
−→ S. �

4. The structure of the solution set and periodic solutions

In this section we use Theorems 4 and 5 to examine the structural properties
of S even when state constraints are present, and to establish the existence of
periodic solutions.

Theorem 6. If hypotheses H(A)1, H(F )1 hold and x0 ∈ H , then S ⊆ Lp(T, H)
is compact and connected.

Proof: From DeBlasi-Myjak [3], we know that for every n ≥ 1, Sn ⊆ C(T, H) is
compact and connected in Lp(T, H). So from Proposition 2 and Theorem 5, we
conclude that S is compact and connected in Lp(T, H). �

Remark. In fact, a careful reading of the proof of DeBlasi-Myjak [3] reveals that
for each n ≥ 1, Sn is the Hausdorff limit of a sequence {Snm}m≥1 ⊆ Lp(T, H)
of contractible sets and for all n, m ≥ 1, Snm ⊆ K, with K being compact in
Lp(T, H). Hence from Theorem 5 and Corollary 1.18, p. 37 of Attouch [1], we
deduce that there exists a sequence m → n(m) with n(m)→ ∞ as m → ∞, such

that Sn(m)m
h
−→ S.

We can have a similar structural result for the solution set when state con-
straints are present. So we consider the following problem:

(6)






ẋ(t) +A(t, x(t)) ∈ F (t, x(t)) a.e.

x(0) = x0 ∈ K

x(t) ∈ K for all t ∈ [0, b].






Here K ⊆ H is a nonempty, bounded, closed and convex subset of H such that
Kn = pn(K) = K ∩ Hn, n ≥ 1. In what follows by T ′

K(x) we will denote the
Bouligand tangent cone to K at x ∈ K in X∗; i.e.

T ′
K(x) = {h ∈ X∗ : limλ↓0

d∗(x+λh,K)
λ = 0} with d∗(x + λh, K) = inf{‖x+ λh −

k‖∗ : k ∈ K}. It is well-known that this is a closed and convex cone in X∗.
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We will need the following strong tangential condition:

Hτ : for all (t, x) ∈ T × (K ∩ X), [F (t, x)− A(t, x)] ⊆ T ′
K(x).

Also denote by S(K) the solution set of (6). We have the following structural
result:

Theorem 7. If hypotheses H(A)1, H(F )1 and Hτ hold, then S(K) is compact
and connected in Lp(T, H).

Proof: We claim that for every n ≥ 1 and every t ∈ T , x ∈ K ∩ Xn = Kn, we
have

pnF (t, x)− An(t, x) ⊆ TKn
(x).

To this end, fix (t, x) ∈ T × Kn and let v ∈ F (t, x) − A(t, x). Then v =
g − A(t, x) with g ∈ F (t, x). We will show that png − An(t, x) ∈ TKn

(x). So let

w ∈ NKn
(x) = TKn

(x)− = {h ∈ Xn : 〈h, u〉 ≤ 0 for all u ∈ TKn
(x)} = {h ∈ Xn :

〈h, x〉 = supk∈K〈h, pnk〉} (the normal cone to Kn at x). We have

〈png − An(t, x), w〉 = 〈png, w〉 − 〈An(t, x), w〉

= 〈g, w〉 − 〈A(t, x), w〉 (note that pnw = w and recall the definition of An)

= 〈g − A(t, x), w〉.

Since w ∈ NKn
(x), by definition we have

〈w, pnk〉 ≤ 〈w, x〉 for all k ∈ K,

⇒ 〈w, k〉 ≤ 〈w, x〉 for all k ∈ K,

⇒ w ∈ N ′
K(x) = T ′

K(x)
− ⊆ X.

Therefore we have that 〈g−A(t, x), w〉 ≤ 0⇒ 〈png−An(t, x), w〉 ≤ 0 and since
w ∈ NKn

(x) was arbitrary, we conclude that png − An(t, x) ∈ TKn
(x). So indeed

pnF (t, x)− An(t, x) ⊆ TKn
(x).

Hence from Papageorgiou [9], we have that Sn(K) = Sn and S(K) = S. Also

from Theorem 5 we know that Sn
h
−→ S and for each n ≥ 1, Sn is compact and

connected in Lp(T, H). Hence by Proposition 2, so is S ⊆ Lp(T, H). �

Finally using Theorem 4, together with a well known fixed point theorem of
Eilenberg-Montgomery [4], we can establish the existence of periodic trajectories.
More precisely, we consider the following problem:

(7)

{
ẋ(t) +A(t, x(t)) ∈ F (t, x(t)) a.e.

x(0) = x(b).

}

We will need the following hypotheses:

H(K): K ⊆ H is a nonempty, bounded, closed and convex set such that

Kn = pn(K) = K ∩ Hn, n ≥ 1.

H ′
τ : for all (t, x) ∈ T × (K ∩ X), we have that [F (t, x) − A(t, x)] ∩ T ′

K(x) 6= ∅.
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Theorem 8. If hypotheses H(A), H(F ), H(K) and H ′
τ hold, then problem (7)

admits a solution.

Proof: As in the proof of Theorem 7, we can show that for all n ≥ 1, all t ∈ T

and all x ∈ Kn
[pnF (t, x) − An(t, x)] ∩ TKn

(x) 6= ∅.

Then from Hu-Papageorgiou [5], we know that the Galerkin approximation
(1)n has a nonempty set of solutions which remain in K (i.e. K is invariant

with respect to (1)n). Denote by Ŝ(Kn)(x
n
0 ) this solution set. We know (cf.

Hu-Papageorgiou [5]) that Ŝ(Kn) is an Rδ-compact in Lp(T, H), in particular,

then acyclic. Also x0 → Ŝ(Kn)(x0) is u.s.c. Therefore Γn : Kn → 2Kn \ {∅}

defined by Γn(v) = eb ◦ Ŝ(Kn)(v) (with eb(·) being the evaluation at b map;

since Ŝ(Kn)(v) ⊆ Wpq(T ) ⊆ C(T, H), this map is well defined) is pseudo-acyclic.
Apply the Eilenberg-Montgomery [4] fixed point theorem to get vn ∈ Γn(vn),
n ≥ 1. Let xn(·) ∈ C(T, H) be the trajectory for (1)n (with xn

0 = vn) such that
xn(0) = xn(b). From the proof of Theorem 4 and since by hypothesis H(K), K is
bounded, we have that {xn}n≥1 is bounded in Wpq(T ). So we may assume that
xn → x in Lp(T, H). From Theorem 4, we know that ẋ(t)+A(t, x(t)) ∈ F (t, x(t))
a.e., x(0) = x(b); i.e. x(·) ∈ Wpq(T ) solves (7). �

5. Example

We conclude this work with an example illustrating the applicability of our
abstract results.
Let Z ⊆ R

N be a bounded domain with smooth boundary ∂Z = Γ. We
consider the following periodic multivalued distributed system (p ≥ 2):

(8)






∂x

∂t
−

N∑

k=1

Dk(ak(t, z)|Dkx|p−2Dkx) = h(z) a.e. on T × Z

x(0, z) = x(b, z) a.e. on Z, x|T×Γ = 0,

f1(t, z, x(z)) ≤ h(z) ≤ f2(t, z, x(z)) a.e.






We will need the following hypotheses on the data:

H(a): ak : T × Z → R is a measurable function and 0 < β1 ≤ ak(t, z) ≤ β2
a.e. on T × Z, k ∈ {1, . . . , N}.

H(f): fi : T × Z × R → R, i = 1, 2, are functions such that f1 ≤ f2 and

(1) (t, z)→ fi(t, z, x) is measurable,
(2) x → f1(t, z, x) is l.s.c., while x → f2(t, z, x) is u.s.c.,
(3) |fi(t, z, x)| ≤ a(t, z) + c(z)|x| a.e., with a(·, ·) ∈ Lq(T, L2(Z)) and c(·) ∈

L∞(Z).

H ′′
τ : for every x ∈ L2(Z) with ‖x‖L2(Z) = r, we have

∫
Z u(z)x(z) dz ≤

∑N
k=1

∫
Z ak(t, z)|Dkx|p dz for some u ∈ L2(Z), with f1(t, z, x(z)) ≤

u(z) ≤ f2(t, z, x(z)) a.e.
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Theorem 9. If hypotheses H(a), H(f) and H ′′
τ hold, then problem (8) admits

a solution x(·, ·) ∈ C(T, L2(Z))∩Lp(T, W
1,p
0 (Z)) such that

∂x
∂t ∈ Lq(T, W−1,q(Z)).

Proof: In this case the evolution triple consists of X = W
1,p
0 (Z), H = L2(Z)

and X∗ =W−1,q(Z). Then from the Sobolev embedding theorem, we know that
all embeddings are continuous dense and compact.
Let â : T × X × X → R be the time varying Dirichlet form defined by

â(t, x, y) =

∫

Z

N∑

k=1

ak(t, z)|Dkx|p−2DkxDky dz.

Applying Hölder’s inequality, we get

|â(t, x, y)| ≤ β2

N∑

k=1

(∫

Z
|Dkx|p dz

)1/q(∫

Z
|Dky|p dz

)1/p

≤ β̂2‖x‖
p−1‖y‖ for some β̂2 > 0.

We have just seen that ‖A(t, x)‖∗ ≤ β‖x‖p−1, β > 0. Recalling the basic
inequality

22−p|γ − δ|p ≤ (γ|γ|p−2 − δ|δ|p−2)(γ − δ) γ, δ ∈ R,

we get that there exists θ > 0 such that

θ‖x − y‖p ≤ â(t, x, x − y)− â(t, y, x − y) = 〈A(t, x), x − y〉 − 〈A(t, y), x − y〉.

Also it is clear that x → A(t, x) is continuous, while from Fubini’s theorem
we have that t → 〈A(t, x), y〉 is measurable ⇒ t → A(t, x) is weakly measurable
and since X∗ = W−1,q(Z) is separable, from the Pettis measurability theorem,
we conclude that t → A(t, x) is measurable.
Next let F : T × H → Pfc(H) be defined by

F (t, x) = {u ∈ L2(Z) : f1(t, z, x(z)) ≤ u(z) ≤ f2(t, z, x(z)) a.e.}

Claim #1. t → F (t, x) is measurable.

Note that GrF (·, x) = {(t, u) ∈ T × H :
∫
C f1(t, z, x(z)) dz ≤

∫
C u(z) dz ≤∫

C f2(t, z, x(z)) dz for all C ∈ B(Z) = Borel σ-field of Z}. Recall that B(Z) is
countably generated, i.e. B(Z) = σ({Cn}n≥1). Let L be the field generated by

{Cn}n≥1. Then L is countable; i.e. L = {Ĉn}n≥1. So

GrF (·, x) =
⋂

n≥1

{
(t, u) ∈ T × H :

∫ bCn

f1(t, z, x(z)) dz ≤

∫ bCn

u(z) dz

≤

∫ bCn

f2(t, z, x(z)) dz
}
,

⇒ GrF (·, x) ∈ B(T )× B(H) (Fubini’s theorem),

⇒ t → F (t, x) is measurable.
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Claim #2. GrF (t, ·) = {[x, u] ∈ H × H : u ∈ F (t, x)} is sequentially closed in
L2(Z)× L2(Z)w.

Let [xn, un]
s×w
−−−→ [xn, un] ∈ GrF (t, ·). We have

∫

C
f1(t, z, xn(z)) dz ≤

∫

C
un(z) dz ≤

∫

C
f2(t, z, xn(z)) dz, n ≥ 1, C ∈ B(Z).

Using hypothesis H(f), together with Fatou’s lemma, in the limit as n → ∞,
we get

∫

C
f1(t, z, x(z)) dz ≤

∫

C
u(z) dz ≤

∫

C
f2(t, z, x(z)) dz, C ∈ B(Z), ⇒ u ∈ F (t, x).

Claim #3. |F (t, x)| = sup{‖u‖2 : u ∈ F (t, x)} ≤ â(t) + ĉ|x|2/q a.e. with â ∈
Lq(T ), ĉ > 0.

Indeed from hypothesis H(f) (3), we have

∫

Z
|fi(t, z, x(z))|2 dz ≤

∫

Z
2a(t, z)2 dz +

∫

Z
2c(z)2|x(z)|2 dz

≤ â(t)2 + ĉ2|x|2 with â(·) ∈ Lq(T ), ĉ > 0

⇒ |hfi(t, x)(·)| ≤ â(t) + ĉ|x| (with f̂i(t, x)(·) = fi(t, ·, x(·))) ≤ â(t) + ĉ1|x|
2/q

(applying on the second summand of the right-hand side of the previous inequality,

Young’s inequality ab ≤
ε

p
ap +

1

qeq bq,
1

p
+
1

q
= 1, p =

2

q
> 1).

So F (t, x) satisfies hypothesis H(F ).

Next let K = rBH = {u ∈ H : |v| ≤ r}. Then for each x ∈ W
1,p
0 (Z)

T ′
K =

{
W−1,q(Z) if |x| < r

{v ∈ W−1,q(Z) : 〈v, x〉 ≤ 0} if |x| = r.

From hypothesis H ′′
τ , we get that

[F (t, x) − A(t, x)] ∩ T ′
K(x) 6= ∅, x ∈ K ∩ X.

Rewrite (8) in the equivalent abstract form (6). Then apply Theorem 8 to get

x ∈ C(T, L2(Z))∩Lp(T, W
1,p
0 (Z)), a solution of (8) with

∂x
∂t ∈ Lq(T, W−1,q(Z)).

�
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