A property of B_2 -groups

K.M. RANGASWAMY

Abstract. It is shown, under ZFC, that a B_2 -group has the interesting property of being \aleph_0 -prebalanced in every torsion-free abelian group in which it is a pure subgroup. As a consequence, we obtain alternate proofs of some well-known theorems on B_2 -groups.

Keywords: torsion-free abelian groups, Butler groups, B_2 -groups, \aleph_0 -prebalanced subgroups, completely decomposable groups, separative subgroups Classification: Primary 20K20

Introduction

All groups considered here, unless otherwise stated, are additively written torsion-free abelian groups. For unexplained terminology and notations, we refer to Fuchs [F-1]. A torsion-free abelian group G of infinite rank is called a B_2 -group if, for some ordinal τ , G is the union of a continuous well-ordered ascending chain of pure subgroups,

(*)
$$0 = G_0 \subset G_1 \subset \cdots \subset G_\alpha \subset \ldots \ldots, \quad (\alpha < \tau) \ldots \ldots$$

such that, for each $\alpha < \tau$, $G_{\alpha+1} = G_{\alpha} + B_{\alpha}$, where B_{α} is a finite rank pure subgroup of a completely decomposable group. Such groups B_{α} are also called Butler groups. Recently Fuchs [F-2] made striking advances in the study of B_2 -groups by employing the concept of \aleph_0 -prebalancedness introduced in [BF]. In this note we prove that a B_2 -group has the interesting property of being \aleph_0 -prebalanced in every torsion-free group in which it is a pure subgroup. A noteworthy corollary is that a B_2 -group A is a pure subgroup of index $\leq \aleph_1$ in a B_1 -group G, then Gitself becomes a B_2 -group. Taking A = 0 leads to a well-known theorem ([DHR]) that a B_1 -group of cardinality $\leq \aleph_1$ is a B_2 -group. An adaptation of our methods also leads to a direct and simple proof of a theorem of Hill and Megibben ([HM]) that completely decomposable groups are absolutely separative.

Preliminaries

A torsion-free group G is called a B_1 -group if $\text{Bext}^1(G, T) = 0$ for all torsion groups T. (Here Bext^1 denotes the subfunctor of Ext^1 consisting of all the balanced extensions.) The chain of subgroups (*) defined above for a B_2 -group G is called a B_2 -filtration of G. Let A be a pure subgroup of a torsion-free group G. A is called decent (prebalanced) in G if whenever L/A is a finite rank (rank one) pure subgroup of G/A, then L = A + B, for some finite rank Butler group B.

K.M. Rangaswamy

A is a TEP subgroup of G if, for any torsion group T, every homomorphism from A to T extends to a homomorphism from G to T. A is said to be \aleph_0 -prebalanced ([BF]) in G if, for each $g \in G \setminus A$ there is a countable subset $\{a_1, a_2, \ldots\} \subset A$ such that for each $a \in A$, there is an $n < \omega$ with $t(g+a) \leq \sup\{t(g+a_1), \ldots, t(g+a_n)\}$ where t(x) denotes the type of x. In the last definition, if A satisfies the stronger condition that $\chi(g+a) \leq \chi(g+a_i)$ for some $i < \omega$, then A is said to be separative (or in the terminology of [HM], separable) in G, where, as usual, $\chi(x)$ denotes the characteristic of x. An \aleph_0 -prebalanced chain for a group G is a continuous well-ordered ascending chain of \aleph_0 -prebalanced subgroups

$$0 = G_0 \subset G_1 \subset \ldots \subset G_\alpha \subset \ldots G_\tau = G \quad \text{(for some ordinal } \tau)$$

where all the factors $G_{\alpha+1}/G_{\alpha}$ are of rank one. A key result of Fuchs ([F-2, Corollary 2.4]) is that if G has an \aleph_0 -prebalanced chain, then G is of the form G = C/K, where C is completely decomposable and K is a balanced B_2 -subgroup. Another useful idea that we need from [BF] is the balanced-projective resolution of a group G relative to a pure subgroup A. To form this, consider all the rank-1 pure subgroups J_{α} in $G \setminus A$ and let C be the direct sum of all these J_{α} 's. Then the map $C \to B$ induced by the inclusion of the J_{α} in G together with the inclusion of A in G induces a balanced exact sequence

$$0 \longrightarrow K \longrightarrow A \oplus C \longrightarrow G \longrightarrow 0$$

which is called the balanced-projective resolution of G relative to A. An important result of Bican-Fuchs ([BF, Theorem 3.2]) that we shall be using asserts that if G/A is countable, then A is \aleph_0 -prebalanced in G exactly when K is a B_2 -group. We shall also need a result from [R] that if A is a TEP subgroup of B and if both A and B are B_2 -groups, then so is B/A. The reader is referred to [BF], [F-2] and [R] for background details.

The results

We shall begin with the following simple lemma.

Lemma 1. Let A and S be subgroups of a torsion-free group G. If $A \cap S$ is pure and decent in A, then S is pure and decent in A + S.

PROOF: We first show that given any finite subset X of A + S, there is a finite rank Butler subgroup B such that B+S is pure in A+S and contains X. Without loss of generality, we may assume that $X \subset A$. By the decency of $A \cap S$, there is a finite rank Butler subgroup B of A such that $B + (A \cap S)$ is pure in A and contains X. It is then readily seen that both B + S and S are pure in A + S. From this the decency of S follows.

Bican and Fuchs [BF] showed, under V = L, that every B_1 -group is "absolutely \aleph_0 -prebalanced", that is, it is an \aleph_0 -prebalanced subgroup of every group in which it is a pure subgroup. The next theorem says that this holds for any B_2 -group and we prove this under ZFC.

Theorem 2. Every B_2 -group is absolutely \aleph_0 -prebalanced.

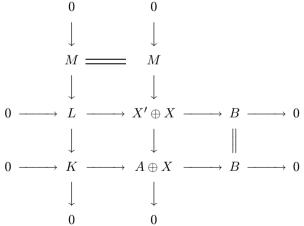
PROOF: Let A be a B_2 -group with and axiom-3 family \mathbb{C} of pure decent subgroups so chosen that for each $Y \in \mathbb{C}$, A/Y is again a B_2 -group (see [AH] for the construction of \mathbb{C}). Suppose A is a pure subgroup of a torsion-free group Bwith B/A countable. Then B = A + S, where S is a countable pure subgroup. Moreover, by the usual back and-forth argument, we could assume that $A \cap S =$ $Y \in \mathbb{C}$. By Lemma 1, S is decent and pure in B. Moreover, $B/S \cong A/Y$ is a B_2 -group. Since S is decent and countable, the pre-image of a B_2 -filtration of B/S gives rise to an \aleph_0 -prebalanced chain in B. In order to show that A is \aleph_0 prebalanced in B, consider a relative balanced-projective resolution (as explained in the Preliminaries)

$$0 \longrightarrow K \longrightarrow A \oplus X \longrightarrow B \rightarrow 0$$

where X is completely decomposable. Let

$$0 \longrightarrow M \longrightarrow X' \longrightarrow A \longrightarrow 0$$

be a balanced-projective resolution of A with X' completely decomposable. Then the obvious epimorphism $X' \oplus X \to A \oplus X$ induces the following commutative diagram:



Here all the rows and columns are balanced exact. Since B has an \aleph_0 -prebalanced chain, Corollary 2.4 of [F-2] implies that L is a B_2 -group. Since $A \oplus X$ is a B_2 -group, the middle column is TEP exact and, moreover, by [F-2] and [R], M is a B_2 -group. Clearly the first column is now TEP exact and Theorem 3 of [R] then yields that K is also a B_2 -group. An appeal to Theorem 3.2 of [BF] (alluded to in the Preliminaries) leads to the conclusion that A is \aleph_0 -prebalanced in B.

Corollary 3. Suppose A is a B_2 -group which is a pure subgroup of a torsion-free group B with B/A having cardinality $\leq \aleph_1$. Then

- (a) B has an \aleph_0 -prebalanced chain and Bext²(B,T) = 0 for all torsion groups T.
- (b) If B is a B_1 -group, then B is also a B_2 -group.

PROOF: (a) Now B is a union of a smooth ascending chain of pure subgroups

(1)
$$A = A_0 \subset A_1 \subset \ldots \subset A_\alpha \subset \ldots, \ \alpha < \omega_1, \ldots \ldots$$

where, for each α , $A_{\alpha+1}/A_{\alpha}$ is countable. Since a countable extension of an absolutely \aleph_0 -prebalanced subgroup is again absolutely \aleph_0 -prebalanced, the chain (1) gives rise to a \aleph_0 -prebalanced chain for B. By Corollary 2.3 of [F-2], Bext²(B, T) = 0.

(b) Follows from the fact (Theorem 4.1 of [F-2]) that a B_1 -group with an \aleph_0 -prebalanced chain is a B_2 -group.

In Corollary 3 (b) if we take A = 0, then we obtain the following

Corollary 4 ([DHR]). A B_1 -group of cardinality $\leq \aleph_1$ is a B_2 -group.

Corollary 5. If A is a pure B_2 -subgroup of a finitely Butler group B with B/A countable, then B itself is a B_2 -group.

PROOF: Since B is finitely Butler, the countable subgroup S in the first part of the proof of Theorem 2 is Butler and decent in B with B/S a B_2 -group. Clearly B is then a B_2 -group.

Note: The group ΠZ , the direct product of \aleph_0 copies of the group Z of integers, shows that Corollary 5 is false if B/A is uncountable.

If A is a completely decomposable group, then the subgroup S in the proof of Theorem 2 can actually be a direct summand, as the following lemma shows.

Lemma 6. Suppose A is a completely decomposable group and is a pure subgroup of a torsion-free group B with B/A countable. Then $B = A' \oplus S$, where $A' \subset A$ and S is countable.

PROOF: Now B = A + X, where X is a suitable countable pure subgroup of B. Then we can write $A = A' \oplus Y$, where Y is countable and $X \cap A \subset Y$. If S = Y + X, then clearly B = A' + S. Moreover, $A' \cap S = A' \cap A \cap S \subset A' \cap Y = 0$, so that $B = A' \oplus S$.

As an application we get a direct and simpler proof of theorem of Hill and Megibben ([HM]) that completely decomposable are absolutely separative.

Theorem 7 ([HM]). A completely decomposable group A is separative in every torsion-free group containing A as a pure subgroup.

PROOF: Let A be a pure subgroup of a torsion-free group G. Let $g \in G \setminus A$. If $B = \langle A, g \rangle^*$, the pure subgroup generated by A and g, then by Lemma 6 $B = A' \oplus S$, $A = A' \oplus C$, where S is countable and $C = A \cap S$. Write g = a' + s, where $a' \in A'$ and $s \in S$. Clearly, $H = \{-a' + c : c \in C\}$ is a countable subset of A. We claim that for any $a \in A$, there is an $h \in H$ such that $\chi(g+a) \leq \chi(g+h)$. Indeed if a = x + y, with $x \in A'$ and $y \in C$, then we have $\chi(g + a) = \chi(a' + s + x + y) = \chi((a' + x) + (s + y)) \leq \chi(s + y) = \chi(g + h)$, where $h = -a' + y \in L$. Thus A is separative in G.

References

- [AH] Albrecht U., Hill P., Butler groups of infinite rank and Axiom-3, Czech. Math. J. 37 (1987), 293–309.
- [BF] Bican L., Fuchs L., Subgroups of Butler groups, to appear.
- [DHR] Dugas M., Hill P., Rangaswamy K.M., Butler groups of infinite rank, Trans. Amer. Math. Soc. 320 (1990), 643–664.
- [F-1] Fuchs L., Infinite Abelian Groups, vol. 2, Academic Press, New York, 1973.
- [F-2] _____, Butler Groups of Infinite Rank, to appear.
- [HM] Hill P., Megibben C., Pure subgroups of torsion-free groups, Trans. Amer. Math. Soc. 303 (1987), 765–778.
- [R] Rangaswamy K.M., A homological characterization of abelian B₂-groups, Proc. Amer. Math. Soc., to appear.

Department of Mathematics, University of Colorado, Colorado Springs, CO 80933–7150, USA

(Received February 21, 1994)