Free ℓ -groups and free products of ℓ -groups

TON DAO-RONG

Abstract. In this paper we have given the construction of free ℓ -groups generated by a po-group and the construction of free products in any sub-product class \mathcal{U} of ℓ -groups. We have proved that the \mathcal{U} -free products satisfy the weak subalgebra property.

Keywords: lattice-ordered group (ℓ -group), free ℓ -group, free product of ℓ -groups, subproduct class of ℓ -groups

 $Classification: \ 06F15$

1. Introduction

We use the standard terminologies and notations of [1], [2], [5]. The group operation of an ℓ -group is written by additive notation. A po-group is a partially ordered group [G, P] where $P = \{x \in G \mid x \geq 0\}$ is the positive semigroup of G. Let G and H be two po-groups. A map $\varphi : G \to H$ is called a po-group homomorphism, if φ is a group homomorphism and $x \geq y$ implies $\varphi(x) \geq \varphi(y)$ for any $x, y \in G$. A po-group homomorphism φ is called a po-group isomorphism, if φ is an injection and φ^{\dashv} is also a po-group homomorphism.

A partial ℓ -group G is a set with partial operations corresponding to the usual ℓ -group operations \cdot , \dashv , \mid , \lor and \land such that whenever the operations are defined for elements of G, the the ℓ -group laws are satisfied. Suppose [G, P] is a po-group. Then G has implicit partial operations \lor and \land as determined by the partial order. That is,

 $x \lor y = y \lor x = y$ if and only if $x \le y$

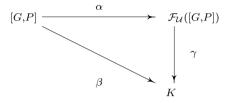
and

$$x \wedge y = y \wedge x = x$$
 if and only if $x \leq y$.

Using these partial lattice operations together with the full group operations, G can be considered as a partial ℓ -group. Then we have the following definition as a special case of the \mathcal{U} -free algebra generated by a partial algebra.

Definition 1.1. Let \mathcal{U} be a class of ℓ -groups and [G, P] be a po-group. The ℓ -group $\mathcal{F}_{\mathcal{U}}[G, P]$ is called the \mathcal{U} -free ℓ -group generated by [G, P] (or \mathcal{U} -free ℓ -group over [G, P]) if the following conditions are satisfied:

- (1) $\mathcal{F}_{\mathcal{U}}([G, P]) \in \mathcal{U};$
- (2) there exists a po-group isomorphism $\alpha: G \to \mathcal{F}_{\mathcal{U}}([G, P])$ such that $\alpha(G)$ generates $\mathcal{F}_{\mathcal{U}}([G, P])$ as an ℓ -group;
- (3) if $K \in \mathcal{U}$ and $\beta: G \to K$ is a po-group homomorphism, then there exists an ℓ -homomorphism $\gamma : \mathcal{F}_{\mathcal{U}}([G, P]) \to K$ such that $\gamma \alpha = \beta$.



Definition 1.2. Let \mathcal{U} be a class of ℓ -groups and $\{G_{\lambda} \mid \lambda \in \Lambda\}$ be a family of ℓ -groups in \mathcal{U} . The \mathcal{U} -free product of G_{λ} is an ℓ -group G, denoted by $\mathcal{U} \coprod_{\lambda \in \Lambda} G$, together with a family of injective ℓ -homomorphisms $\alpha_{\lambda}: G_{\lambda} \to G$ (called coprojections) such that

- (1) $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda} \in \mathcal{U};$
- (2) $\bigcup_{\lambda \in \Lambda} \alpha_{\lambda}(G_{\lambda})$ generates $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$ as an ℓ -group; (3) if $K \in \mathcal{U}$ and $\{\beta_{\lambda} : G_{\lambda} \to K \mid \lambda \in \Lambda\}$ is a family of ℓ -homomorphisms, then there exists a (necessarily) unique ℓ -homomorphism $\gamma : G \to K$ satisfying $\beta_{\lambda} = \gamma \alpha_{\lambda}$ for all $\lambda \in \Lambda$.

A family \mathcal{U} of ℓ -groups is called a sub-product class, if it is closed under taking (1) ℓ -groups and (2) direct products. All our sub-product classes of ℓ -groups are always assumed to contain along with a given ℓ -group all its ℓ -isomorphic copies. Clearly, all varieties of ℓ -groups are sub-product classes of ℓ -groups. Let \mathcal{L}, \mathcal{R} and \mathcal{A} be the varieties of all ℓ -groups, representable ℓ -groups and abelian ℓ -groups, respectively.

In this paper we will discuss the existence and constructions of free ℓ -groups generated by a po-group and free products in any sub-product classes of ℓ -groups. In what follows, \mathcal{U} is always denoted a sub-product class of ℓ -groups.

2. Construction for a \mathcal{U} -free ℓ -group generated by a po-group

In 1963 and 1965, E.C. Weinberg initially considered the \mathcal{A} -free ℓ -group generated by a po-group [G, P]. He has given a necessary and sufficient condition for existence and a simple description of $\mathcal{F}_{\mathcal{A}}([G, P])$ in [17], [18].

In 1970, P. Conrad generalized Weinberg's result as follows.

Lemma 2.1 ([3]).

(1) There exists an \mathcal{L} -free ℓ -group $\mathcal{F}_{\mathcal{L}}([G, P])$ generated by [G, P], if and only if there exists a po-group isomorphism of [G, P] into an ℓ -group, if and only if P is the intersection of right order on G.

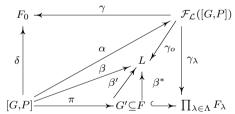
(2) Suppose that $P = \bigcap_{\lambda \in \Lambda} P_{\lambda}$ where $\{P_{\lambda} \mid \lambda \in \Lambda\}$ is the set of all right orders of G such that $P_{\lambda} \supseteq P$. If G_{λ} is G with one such right order, then denote by $A(G_{\lambda})$ the ℓ -group of order preserving permutations of G_{λ} . Each $x \in G$ corresponds to an element ρ_x of $A(G_{\lambda})$ defined by $\rho_x g = g + x$. Then $\mathcal{F}_{\mathcal{L}}([G, P])$ is the sublattice of $\prod_{\lambda \in \Lambda} A(G_{\lambda})$ generated by the long constants $\langle g \rangle$ $(g \in G)$.

By Grätzer existence theorem on a free algebra generated by a partial algebra (Theorem 28.2 of [6]) we have

Theorem 2.2. There exists a \mathcal{U} -free ℓ -group $\mathcal{F}_{\mathcal{U}}([G, P])$ generated by a po-group [G, P] if and only if [G, P] is po-group isomorphic to an ℓ -group in \mathcal{U} .

Lemma 2.3 (Lemma 11.3.1 of [5]). Let L and L' be ℓ -groups and M be a subgroup of L which generates L as a lattice. Let $\varphi : M \to L'$ be a group homomorphism such that for each finite subset $\{x_{jk} \mid j \in J, k \in K\}$ of M, $\bigvee_{j \in J} \bigwedge_{k \in K} x_{jk} = 0$ implies $\bigvee_{j \in J} \bigwedge_{k \in K} \varphi(x_{jk}) = 0$. Then φ can be uniquely extended to an ℓ -homomorphism $\varphi' : L \to L'$.

Let \mathcal{U} be a sub-product class of ℓ -groups. An ℓ -homomorphic image H of an ℓ -group G is said to be a \mathcal{U} -homomorphic image, if $H \in \mathcal{U}$. Suppose that a pogroup [G, P] is po-group isomorphic into an ℓ -group $F_0 \in \mathcal{U}$ with the po-group isomorphism δ . By Lemma 2.1 (1) there exists the \mathcal{L} -free ℓ -group $\mathcal{F}_{\mathcal{L}}([G, P])$ generated by [G, P] with the po-group isomorphism $\alpha : [G, P] \to \mathcal{F}_{\mathcal{L}}([G, P])$. By Definition 1.1 there exists an ℓ -homomorphism $\gamma : \mathcal{F}_{\mathcal{L}}([G, P]) \to F_0$ such that $\gamma \alpha = \delta$. Let $D = \{F_{\lambda} \mid \lambda \in \Lambda\}$ be the set of all \mathcal{U} -homomorphic images of $\mathcal{F}_{\mathcal{L}}([G, P])$ with the ℓ -homomorphisms γ_{λ} ($\lambda \in \Lambda$). Thus $\gamma(\mathcal{F}_{\mathcal{L}}([G, P])) \in D$ and D is not empty.



For each $\lambda \in \Lambda$, $\gamma_{\lambda}\alpha$ is a po-group homomorphism of [G, P] into F_{λ} . Then the direct product $\prod_{\lambda \in \Lambda} F_{\lambda}$ is an ℓ -group in \mathcal{U} . Let π be the natural map of G onto the subgroup G' of long constants of $\prod_{\lambda \in \Lambda} F_{\lambda}$. That is,

$$\pi(g) = (\dots, \gamma_{\lambda} \alpha(g), \dots)$$

for $g \in G$. Since $\gamma \alpha = \delta$ is a po-group isomorphism, π is a po-group isomorphism. Let F be the sublattice of $\prod_{\lambda \in \Lambda} F_{\lambda}$ generated by G'. Then F is an ℓ -subgroup of $\prod_{\lambda \in \Lambda}$, and so $F \in \mathcal{U}$. **Theorem 2.4.** Suppose that a po-group [G, P] is po-group isomorphic into an ℓ -group in a sub-product class of ℓ -groups. Then the \mathcal{U} -free ℓ -group $\mathcal{F}_{\mathcal{U}}([G, P])$ generated by [G, P] is the sublattice F of the direct product $\prod_{\lambda \in \Lambda} F_{\lambda}$ generated by the po-group isomorphic image G' of G where $\{F_{\lambda} \mid \lambda \in \Lambda\}$ are all ℓ -homomorphic images of the \mathcal{L} -free ℓ -group $\mathcal{F}_{\mathcal{L}}([G, P])$ generated by [G, P].

PROOF: We have already known that $F \in \mathcal{U}$ and [G, P] is po-group isomorphic into F. Suppose that β is a po-group homomorphism of [G, P] into an ℓ -group $L \in \mathcal{U}$. Then there exists an ℓ -homomorphism $\gamma_o : \mathcal{F}_{\mathcal{L}}([G, P]) \to L$ such that $\gamma_o \alpha = \beta$. So $\gamma'(\mathcal{F}_{\mathcal{L}}([G, P])) \in D$. For $g' = \pi(g) \in G'$ $(g \in G)$, put

$$\beta'(g') = \beta(g).$$

Then β' is a group homomorphism of G' into L and $\beta'\pi = \beta$. By Lemma 2.3 we only need to show that for each finite subset $\{g_{jk} \mid j \in J, k \in K\} \subseteq G$, $\bigvee_{j \in J} \bigwedge_{k \in K} \beta' \pi(g_{jk}) \neq 0$ implies $\bigvee_{j \in J} \bigwedge_{k \in K} \pi(g_{jk}) \neq 0$. In fact,

$$\bigvee_{j \in J} \bigwedge_{k \in K} \gamma_o \alpha(g_{jk}) = \bigvee_{j \in J} \bigwedge_{k \in K} \beta(g_{jk}) = \bigvee_{j \in J} \bigwedge_{k \in K} \beta' \pi(g_{jk}) \neq 0.$$

Hence

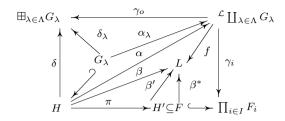
$$\bigvee_{j \in J} \bigwedge_{k \in K} \pi(g_{jk}) = \bigvee_{j \in J} \bigwedge_{k \in K} (\dots, \gamma_o \alpha(g_{jk}), \dots)$$
$$= (\dots, \bigvee_{j \in J} \bigwedge_{k \in K} \gamma_o \alpha(g_{jk}), \dots) \neq 0.$$

Therefore β' can be uniquely extended to an ℓ -homomorphism $\beta^* : F \to L$. \Box

3. Construction of \mathcal{U} -free products

Let \mathcal{U} be a sub-product class of ℓ -groups and $\{G_{\lambda} \mid \lambda \in \Lambda\}$ be a family of ℓ -groups in \mathcal{U} . By Corollary 2 of Theorem 2 of [6] the \mathcal{U} -free product $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$ always exists. Specifically, there exists an \mathcal{L} -free product $\mathcal{L} \coprod_{\lambda \in \Lambda} G_{\lambda}$ with the coprojection α_{λ} . In [7]–[14] J. Martinez, W. Powell and C. Tsinakis have given several descriptions and some properties for the free products in the varieties \mathcal{R} and \mathcal{A} . W.C. Holland and E. Scrimger have given a description for \mathcal{L} -free product. Let H be the group free product of $\{G_{\lambda} \mid \lambda \in \Lambda\}$. Let $P = \{h \in H \mid h \text{ be a sum of conjugates in <math>H$ of elements of $\bigcup_{\lambda \in \Lambda} G_{\lambda}^+\}$ and $P' = \{Q \mid Q \text{ is the positive cone of a right order on <math>H$ with $P \subseteq Q\}$. Then [H, P'] is a po-group and its \mathcal{L} -free extension $\mathcal{F}_{\mathcal{L}}([H, P'])$ by the ℓ -ideal generated by $\{g^- \wedge g^+ \mid g \in \bigcup_{\lambda \in \Lambda} G_{\lambda}\}$ (Theorem 3.7 of [4]). There exists a group homomorphism $\alpha : H \to \mathcal{L} \coprod_{\lambda \in \Lambda} G_{\lambda}$ which extends every α_{λ} ($\lambda \in \Lambda$).

It is clear that the cardinal sum $\boxplus G_{\lambda}$ is an ℓ -group in \mathcal{U} and every G_{λ} ($\lambda \in \Lambda$) can naturally be embedded into $\boxplus_{\lambda \in \Lambda} G_{\lambda}$ as an ℓ -group with embedding δ_{λ} . Hence there exists a group homomorphism $\delta : H \to \boxplus_{\lambda \in \Lambda} G_{\lambda}$ which extends each δ_{λ}



 $(\lambda \in \Lambda)$ and there exists an ℓ -homomorphism $\gamma_o : {}^{\mathcal{L}} \coprod_{\lambda \in \Lambda} G_{\lambda} \to \boxplus_{\lambda \in \Lambda} G_{\lambda}$ such that $\gamma_o \alpha_{\lambda} = \delta_{\lambda}$ for each $\lambda \in \Lambda$. Let $D = \{F_i \mid i \in I\}$ be the set of all \mathcal{U} -homomorphic images of ${}^{\mathcal{L}} \coprod_{\lambda \in \Lambda} G_{\lambda}$ with the ℓ -homomorphisms γ_i $(i \in I)$. Thus, $\boxplus_{\lambda \in \Lambda} G_{\lambda} \in D$ and D is not empty. For each $\lambda \in \Lambda$ and each $i \in I$, $\gamma_i \alpha_{\lambda}$ is an ℓ -homomorphism of G_{λ} into F_i . The direct product $\prod_{i \in I} F_i$ is an ℓ -group in \mathcal{U} . For each $\lambda \in \Lambda$, let π_{λ} be the natural ℓ -homomorphism of G_{λ} onto the ℓ -subgroup G'_{λ} of $\prod_{i \in I} F_i$. That is,

$$\pi_{\lambda}(g_{\lambda}) = (\dots, \gamma_i \alpha_{\lambda}(g_{\lambda}), \dots)$$

for $g_{\lambda} \in G_{\lambda}$. Let H' be the subgroup of $\prod_{i \in I} F_i$ generated by $\bigcup_{\lambda \in \Lambda} G'_{\lambda}$. Let π be the group homomorphism of H onto H' which extends every π_{λ} ($\lambda \in \Lambda$). That is,

$$\pi(h) = (\ldots, \gamma_i \alpha(h), \ldots)$$

for $h \in H$. Since $\boxplus_{\lambda \in \Lambda} G_{\lambda} \in D$ and every δ_{λ} ($\lambda \in \Lambda$) is an ℓ -isomorphism, π_{λ} is an ℓ -isomorphism for each $\lambda \in \Lambda$. Let F be the sublattice of $\prod_{i \in I} F_i$ generated by H'. For each $h \in H$, put $h' = \pi(h)$. Since $\prod_{i \in I} F_i$ is a distributive lattice,

$$F = \left\{ \bigvee_{j \in J} \bigwedge_{k \in K} h'_{jk} \mid h_{jk} \in H, \ J \text{ and } K \text{ finite} \right\}.$$

Then we have the following construction theorem for $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$.

Theorem 3.1. Suppose that $\{G_{\lambda} \mid \lambda \in \Lambda\}$ is a family of ℓ -groups in a subproduct class of ℓ -groups. Then the \mathcal{U} -free product $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$ is the sublattice F of the direct product $\prod_{i \in I} F_i$ generated by the group homomorphic image H'of the group free product H of G_{λ} , where $\{F_i \mid i \in I\}$ are all \mathcal{U} -homomorphic images of the \mathcal{L} -free product $\mathcal{L} \coprod_{\lambda \in \Lambda} G_{\lambda}$.

PROOF: We have seen that $F \in \mathcal{U}$ and each G_{λ} ($\lambda \in \Lambda$) can be embedded into F as an ℓ -group. Suppose that $L \in \mathcal{U}$ and $\{\beta_{\lambda} : G_{\lambda} \to L \mid \lambda \in \Lambda\}$ is a family of ℓ -homomorphisms. We must show that there exists a unique ℓ -homomorphism $\beta^* : F \to L$ such that $\beta^* \pi_{\lambda} = \beta_{\lambda}$. By the universal property of group free product, there exists a group homomorphism $\beta : H \to L$ which extends every β_{λ} ($\lambda \in \Lambda$). For any $h' = \pi(h) \in H'$, put

$$\beta'(h') = \beta(h).$$

By the universal property of an \mathcal{L} -free product, there exists a unique ℓ -homomorphism $f : {}^{\mathcal{L}} \coprod_{\lambda \in \Lambda} G_{\lambda} \to L$ such that $\beta_{\lambda} = f \alpha_{\lambda}$ for each $\lambda \in \Lambda$. Then

$$f\alpha = \beta'\pi = \beta.$$

By Lemma 2.3 we only need to show that for each finite subset $\{h_{jk} \mid j \in J, k \in K\} \subseteq H$, $\bigvee_{j \in J} \bigwedge_{k \in K} \beta' \pi(h_{jk}) \neq 0$ implies $\bigvee_{j \in J} \bigwedge_{k \in K} \pi(h_{jk}) \neq 0$. In fact,

$$\bigvee_{j \in J} \bigwedge_{k \in K} f\alpha(h_{jk}) = \bigvee_{j \in J} \bigwedge_{k \in K} \beta' \pi(h_{jk}) \neq 0.$$

Because $f(\mathcal{L} \coprod_{\lambda \in \Lambda} G_{\lambda}) \in D$, $\bigvee_{j \in J} \bigwedge_{k \in K} \gamma_i \alpha(h_{jk}) \neq 0$ for some $i \in I$. So

$$\bigvee_{j \in J} \bigwedge_{k \in K} \pi(h_{jk}) = \bigvee_{j \in J} \bigwedge_{k \in K} (\dots, \gamma_i \alpha(h_{jk}), \dots)$$
$$= (\dots, \bigvee_{j \in J} \bigwedge_{k \in K} \gamma_i \alpha(h_{jk}), \dots) \neq 0.$$

Therefore β' can be uniquely extended to an ℓ -homomorphism $\beta^* : F \to L$. \Box

By using the similar proof as the one for Theorem 3.1 we can get the following result.

Theorem 3.2. Suppose that \mathcal{U} is a sub-product class of ℓ -groups which is contained in \mathcal{A} and $\{G_{\lambda} \mid \lambda \in \Lambda\}$ is a family in \mathcal{U} . Then the \mathcal{U} -free product $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$ is the sublattice of $\prod_{i \in I} F_i$ generated by the group homomorphic image H' of the group free product H of G_{λ} , where $\{F_i \mid i \in I\}$ are all ℓ homomorphic images of the \mathcal{A} -free product $\mathcal{A} \coprod_{\lambda \in \Lambda} G_{\lambda}$.

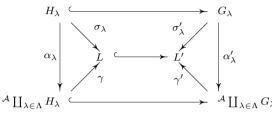
4. The weak subalgebra property

Let \mathcal{U} be a sub-product class of ℓ -groups. \mathcal{U} -free products are said to have the subalgebra property if for any family $\{G_{\lambda} \mid \lambda \in \Lambda\}$ in \mathcal{U} with ℓ -subgroups $H_{\lambda} \in G_{\lambda}$, $\mathcal{U} \coprod_{\lambda \in \Lambda} H_{\lambda}$ is simply the ℓ -subgroup of $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$ generated by $\bigcup_{\lambda \in \Lambda} H_{\lambda}$. It is well known that \mathcal{A} -free products satisfy the subalgebra property (Theorem 3.2 of [11]). \mathcal{U} -free products are said to have the weak subalgebra property if $\{G_{\lambda} \mid \lambda \in \Lambda\}$ is a family in \mathcal{U} with ℓ -subgroups $H_{\lambda} \subseteq G_{\lambda}$ and any family of ℓ -homomorphisms $\sigma_{\lambda} : H_{\lambda} \to L \in \mathcal{U}$ can be extended to a family of ℓ -homomorphisms $\sigma'_{\lambda} : G_{\lambda} \to L' \in \mathcal{U}$ such that L is an ℓ -subgroup of L' and $\sigma'_{\lambda}|_{H_{\lambda}} = \sigma_{\lambda}$, then $\mathcal{U} \coprod_{\lambda \in \Lambda} H_{\lambda}$ is the ℓ -subgroup of $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$ generated by $\bigcup_{\lambda \in \Lambda} H_{\lambda}$.

Theorem 4.1. Suppose that \mathcal{U} is a sub-product class of ℓ -groups which is contained in \mathcal{A} . Then \mathcal{U} -free products satisfy the weak subalgebra property.

PROOF: Suppose that $\{G_{\lambda} \mid \lambda \in \Lambda\}$ is a family in \mathcal{U} with ℓ -subgroups $H_{\lambda} \subseteq G_{\lambda}$ and any family of ℓ -homomorphisms $\sigma_{\lambda} : H_{\lambda} \to L \in \mathcal{U}$ can be extended to a family of ℓ -homomorphisms $\sigma'_{\lambda} : G_{\lambda} \to L' \in \mathcal{U}$ such that L is an ℓ -subgroup of L' and $\sigma'_{\lambda}|_{H_{\lambda}} = \sigma_{\lambda}$. We see that $\mathcal{A} \coprod_{\lambda \in \Lambda} H_{\lambda}$ is the ℓ -subgroup of $\mathcal{A} \coprod_{\lambda \in \Lambda} G_{\lambda}$ generated by $\bigcup_{\lambda \in \Lambda} H_{\lambda}$.

(1) First we show that any ℓ -homomorphism $\gamma : {}^{\mathcal{A}} \coprod_{\lambda \in \Lambda} H_{\lambda} \to L \in \mathcal{U}$ can be extended to an ℓ -homomorphism $\gamma' : {}^{\mathcal{A}} \coprod_{\lambda \in \Lambda} G_{\lambda} \to L' \in \mathcal{U}$ such that Lis an ℓ -subgroup of L' and $\gamma'|_{\mathcal{A} \coprod_{\lambda \in \Lambda} H_{\lambda}} = \gamma$. In fact, any ℓ -homomorphism $\gamma : {}^{\mathcal{A}} \coprod_{\lambda \in \Lambda} H_{\lambda} \to L \in \mathcal{U}$ induces a family of ℓ -homomorphisms $\sigma_{\lambda} : H_{\lambda} \to L \in \mathcal{U}$ such that $\gamma \alpha_{\lambda} = \sigma_{\lambda}$ for each $\lambda \in \Lambda$ where α_{λ} is the inclusion map. Thus σ_{λ} can

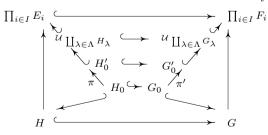


be extended to a family of ℓ -homomorphisms $\sigma'_{\lambda} : G_{\lambda} \to L' \in \mathcal{U}$ such that L is an ℓ -subgroup of L' and $\sigma'_{\lambda}|_{H_{\lambda}} = \sigma_{\lambda}$. By the universal property there exists an ℓ -homomorphism $\gamma' : {}^{\mathcal{A}} \coprod_{\lambda \in \Lambda} G_{\lambda} \to L'$ such that $\gamma' \alpha'_{\lambda} = \sigma'_{\lambda}$ for each $\lambda \in \Lambda$ where α'_{λ} is the inclusion map. Hence

$$\sigma_{\lambda} = \sigma_{\lambda}'|_{H_{\lambda}} = (\gamma' \alpha_{\lambda}')|_{H_{\lambda}} = \gamma'|_{H_{\lambda}}$$

for each $\lambda \in \Lambda$. By the uniqueness $\gamma'|_{\mathcal{A} \coprod_{\lambda \in \Lambda} H_{\lambda}} = \gamma$.

(2) Now we show that $\mathcal{U} \coprod_{\lambda \in \Lambda} H_{\lambda}$ is the ℓ -subgroup of $\mathcal{U} \coprod_{\lambda \in \Lambda} G_{\lambda}$ generated by the $\bigcup_{\lambda \in \Lambda} H_{\lambda}$. Let $G_0 = \bigoplus_{\lambda \in \Lambda} G_{\lambda}$, $H_0 = \bigoplus_{\lambda \in \Lambda} H_{\lambda}$, $G = \mathcal{A} \coprod_{\lambda \in \Lambda} G_{\lambda}$ and $H = \mathcal{A} \coprod_{\lambda \in \Lambda} H_{\lambda}$. Then G_0 and H_0 are subgroups of G and H, respectively, and H_0 is a subgroup of G_0 , H is a subgroup of G. Let $D = \{F_i \mid i \in I\}$ be the set of all \mathcal{U} -homomorphic images of G with the ℓ -homomorphisms γ'_i $(i \in I)$. For each



 $i \in I, \gamma'_i|_H(H)$ is a \mathcal{U} -homomorphic image of H. Conversely, if E is a \mathcal{U} -homomorphic image of H with the ℓ -homomorphism γ . It follows from (1) that γ can be extended to an ℓ -homomorphism $\gamma' : G \to F \in \mathcal{U}$ such that E is an

 ℓ -subgroup of F and $\gamma'|_{H} = \gamma$. Hence the set of all \mathcal{U} -homomorphic images of His $C = \{E_i \mid i \in I\}$ where E_i is an ℓ -subgroup of F_i and $\gamma'_i|_{H}(H) = E_i$ for each $i \in I$. By Theorem 3.2 we see that \mathcal{U} -free product ${}^{\mathcal{U}} \coprod_{\lambda \in \Lambda} G_{\lambda}$ is the sublattice of the direct product $\prod_{i \in I} F_i$ generated by the group homomorphic image G'_0 of G_0 with the group homomorphism π' , and the \mathcal{U} -free product ${}^{\mathcal{U}} \coprod_{\lambda \in \Lambda} H_{\lambda}$ is the sublattice of the direct product $\prod_{i \in I} E_i$ generated by the group homomorphic image H'_0 of H_0 with the group homomorphism π . $\pi'|_{G_{\lambda}}$ and $\pi|_{H_{\lambda}}$ are all ℓ -homomorphisms for $\lambda \in \Lambda$. Hence ${}^{\mathcal{U}} \coprod_{\lambda \in \Lambda} G_{\lambda}$ is the ℓ -subgroup of $\prod_{i \in I} F_i$ generated by $\bigcup_{\lambda \in \Lambda} G'_{\lambda}$ where $G'_{\lambda} = \pi'(G_{\lambda})$ and ${}^{\mathcal{U}} \coprod_{\lambda \in \Lambda} H_{\lambda}$ is the ℓ -subgroup of $\prod_{i \in I} E_i$ generated by $\bigcup_{\lambda \in \Lambda} H'_{\lambda}$ where $H'_{\lambda} = \pi(H_{\lambda})$. From the above we see that $\prod_{\in I} E_i$ is an ℓ -subgroup of $\prod_{i \in I} F_i$ and

$$\pi'|_{H_0} = \pi$$

Therefore ${}^{\mathcal{U}}\coprod_{\lambda\in\Lambda}H_{\lambda}$ is the ℓ -subgroup of $\prod_{i\in I}F_i$ generated by $\bigcup_{\lambda\in\Lambda}H'_{\lambda}$, and so ${}^{\mathcal{U}}\coprod_{\lambda\in\Lambda}H_{\lambda}$ is also the ℓ -subgroup of ${}^{\mathcal{U}}\coprod_{\lambda\in\Lambda}G_{\lambda}$ generated by $\bigcup_{\lambda\in\Lambda}H'_{\lambda}$. \Box

5. An example

Theorem 2.4 and Theorem 2.1 are applicable to all varieties of ℓ -groups. But here we give an example of a class of ℓ -groups which is not a variety.

An ℓ -group G is said to be weak Hamiltonian if each closed convex ℓ -subgroup of G is normal. Let WH be the set of all weak Hamiltonian ℓ -groups. It is easy to show that WH is a sub-product class of ℓ -groups (see [16]) and

$$\mathcal{A} \subseteq WH \subseteq \mathcal{R} \subseteq \mathcal{L}.$$

So we have the construction theorem for the WH-free product.

Theorem 5.1. Suppose that $\{G_{\lambda} \mid \lambda \in \Lambda\}$ is a family in WH. Then ^{WH} $\coprod_{\lambda \in \Lambda} G_{\lambda}$ is the sublattice of $\prod_{i \in I} F_i$ generated by the group homomorphic image H' of the group free product H of G_{λ} , where $\{F_i \mid i \in I\}$ are all weak Hamiltonian ℓ -homomorphic images of $\mathcal{L} \coprod_{\lambda \in \Lambda} G_{\lambda}$.

References

- Anderson M., Feil T., Lattice-Ordered Groups (An Introduction), D. Reidel Publishing Company, 1988.
- [2] Conrad P., Lattice-Ordered Groups, Tulane Lecture Notes, Tulane University, 1970.
- [3] _____, Free lattice-ordered groups, J. of Algebra 16 (1970), 191–203.
- [4] Holland W.C., Scringer E., Free products of lattice-ordered groups, Algebra Universalis 2 (1972), 247–254.
- [5] Glass A.M.W., Holland W.C., Lattice-Ordered Groups(Advances and Techniques), Kluwer Academic Publishers, 1989.
- [6] Grätzer G., Universal Algebra, 2nd ed., Springer-Verlag, New York, 1979.
- [7] Martinez J., Free products in varieties of lattice-ordered groups, Czech. Math. J. 22 (1972), 535–553.

- [8] _____, Free products of abelian *l*-groups, Czech. Math. J. 23 (1973), 349–361.
- Martinez J. (ed.), Ordered Algebraic Structure, Kluwer Academic Publishers, 1989, pp. 11–49.
- [10] Powell W.B., Tsinakis C., Free products of abelian l-groups are cardinally indecomposable, Proc. A.M.S. 86 (1982), 385–390.
- [11] _____, Free products in the class of abelian l-groups, Pacific J. Math. 104 (1983), 429–442.
- [12] _____, The distributive lattice free products as a sublattice of the abelian l-group free product, J. Austral. Math. Soc. 34 (1993), 92–100.
- [13] _____, Free products of lattice-ordered groups, Algebra Universalis 18 (1984), 178–198.
- [14] _____, Disjointness conditions for free products of l-groups, Arkiv. der Math. 46 (1986), 491–498.
- [15] _____, Disjoint sets in free products of representable l-groups, Proc. A.M.S. 104 (1988), 1014–1020.
- [16] Dao-Rong Ton, Free weak Hamiltonian l-groups, Northeast Mathematics 10 (2) (1994), 235–240.
- [17] Weinberg E.C., Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187–199.
- [18] _____, Free lattice-ordered abelian groups II, Math. Ann. 159 (1965), 217–222.

29-305, 3 Xikang Road, Nanjing, 210024, China

(Received April 28, 1994)