Hardy and Cowling-Price theorems for a Cherednik type operator on the real line

Mohamed Ali Mourou

Abstract

This paper is aimed to establish Hardy and Cowling-Price type theorems for the Fourier transform tied to a generalized Cherednik operator on the real line.

Keywords: differential-difference operator; generalized Fourier transform; Hardy and Cowling-Price theorems

Classification: 33C45, 43A15, 43A32, 44A15

1. Introduction

In his 1933 paper [8], Hardy obtained the following famous theorem:
Theorem 1.1. Let $1 \leq p, q \leq \infty$ with at least one of them finite. Let f be a measurable function on \mathbb{R} such that

$$
\begin{equation*}
e^{a x^{2}} f \in L^{p}(\mathbb{R}) \text { and } e^{b \lambda^{2}} \mathcal{F}_{u}(f) \in L^{q}(\mathbb{R}) \tag{1}
\end{equation*}
$$

for some positive constants a and b. Then

- if $a b \geq 1 / 4$, we have $f=0$ almost everywhere;
- if $a b<1 / 4$, there are infinitely many nonzero functions satisfying (1).

Above mentioned \mathcal{F}_{u} stands for the ordinary Fourier transform on \mathbb{R} given by

$$
\mathcal{F}_{u}(f)(\lambda)=\int_{\mathbb{R}} f(x) e^{-i \lambda x} d x
$$

Later, Cowling and Price [4] obtained the following L^{p} version of Theorem 1.1:
Theorem 1.2. Let f be a measurable function on \mathbb{R} such that

$$
\begin{equation*}
e^{a x^{2}} f \in L^{\infty}(\mathbb{R}) \text { and } e^{b \lambda^{2}} \mathcal{F}_{u}(f) \in L^{\infty}(\mathbb{R}) \tag{2}
\end{equation*}
$$

for some positive constants a and b. Then

- if $a b>1 / 4$, we have $f=0$ almost everywhere;
- if $a b=1 / 4$, the function f is of the form $f(x)=c_{0} e^{-a x^{2}}, c_{0} \in \mathbb{C}$;
- if $a b<1 / 4$, there are infinitely many nonzero functions satisfying (2).

Many generalizations of Theorems 1.1 and 1.2 to new contexts have been discovered. For instance, these theorems have been obtained in [2] for semi-simple Lie groups, in [5] for the motion group and in [15] for Chébli-Trimèche hypergroups.

The intention of this paper is to establish analogues of Theorems 1.1 and 1.2 when in (1) and (2) the usual Fourier transform \mathcal{F}_{u} is substituted by a generalized Fourier transform \mathcal{F}_{Λ} on \mathbb{R} associated with the first-order singular differentialdifference operator:

$$
\Lambda f(x)=\frac{d f}{d x}+\frac{A^{\prime}(x)}{A(x)}\left(\frac{f(x)-f(-x)}{2}\right)-\rho f(-x)
$$

where

$$
A(x)=|x|^{2 \alpha+1} B(x), \quad \alpha>-\frac{1}{2}
$$

B being a positive C^{∞} even function on \mathbb{R}, and $\rho>0$. In addition we suppose that
(i) A is increasing on $\left[0, \infty\left[\right.\right.$ and $\lim _{x \rightarrow \infty} A(x)=\infty$;
(ii) A^{\prime} / A is decreasing on $] 0, \infty\left[\right.$ and $\lim _{x \rightarrow \infty} A^{\prime}(x) / A(x)=2 \rho$;
(iii) there exists a constant $\delta>0$ such that the function $e^{\delta x}\left(A^{\prime}(x) / A(x)-2 \rho\right)$ is bounded for large $x>0$ together with its derivatives.

Notice that the differential-difference operator

$$
\begin{aligned}
D_{\alpha, \beta} f(x)= & \left.\frac{d f}{d x}+[(2 \alpha+1) \operatorname{coth} x+(2 \beta+1) \tanh x)\right]\left(\frac{f(x)-f(-x)}{2}\right) \\
& -(\alpha+\beta+1) f(-x)
\end{aligned}
$$

which is referred to as the Jacobi-Cherednik operator (see [7]) is of the same type as Λ with

$$
\left\{\begin{array}{l}
A(x)=(\sinh |x|)^{2 \alpha+1}(\cosh x)^{2 \beta+1} ; \quad \alpha \geq \beta>-1 / 2 \\
\rho=\alpha+\beta+1 ; \quad \delta=2
\end{array}\right.
$$

The one-dimensional Cherednik operator (see [3]) is a particular case of $D_{\alpha, \beta}$. Such operators have been used by Heckmann and Opdam to develop a theory generalizing harmonic analysis on symmetric spaces (see [9], [12]). For recent important results in this direction we refer to [13], [16], [17].

In [11] the author has initiated a quite new commutative harmonic analysis on the real line related to the differential-difference operator Λ in which several analytic structures on \mathbb{R} were generalized. The tools actually required for the discussion in the present paper, are essentially the Fourier transform and the Gaussian kernel tied to Λ.

2. Preliminaries

In [11] we have shown that for each $\lambda \in \mathbb{C}$, the differential-difference equation

$$
\Lambda u=i \lambda u, \quad u(0)=1
$$

admits a unique C^{∞} solution on \mathbb{R}, denoted Φ_{λ} and given by

$$
\Phi_{\lambda}(x)= \begin{cases}\varphi_{\lambda}(x)+\frac{1}{i \lambda-\rho} \frac{d}{d x} \varphi_{\lambda}(x) & \text { if } \lambda \neq-i \rho \tag{3}\\ 1+\frac{2 \rho}{A(x)} \int_{0}^{x} A(t) d t & \text { if } \lambda=-i \rho\end{cases}
$$

where φ_{λ} denotes the solution of the differential equation

$$
\begin{equation*}
\Delta u=-\left(\lambda^{2}+\rho^{2}\right) u, \quad u(0)=1, \quad u^{\prime}(0)=1 \tag{4}
\end{equation*}
$$

Δ being the second-order singular differential operator defined by

$$
\begin{equation*}
\Delta=\frac{1}{A(x)} \frac{d}{d x}\left(A(x) \frac{d}{d x}\right) . \tag{5}
\end{equation*}
$$

Moreover, $\Phi_{\lambda}(x)$ is entire in λ.
Remark 2.1. For $A(x)=(\sinh |x|)^{2 \alpha+1}(\cosh x)^{2 \beta+1}, \alpha \geq \beta>-1 / 2$, the differential operator Δ reduces to the so-called Jacobi operator. The eigenfunction φ_{λ} is given by

$$
\varphi_{\lambda}(x)={ }_{2} F_{1}\left(\frac{\alpha+\beta+1+i \lambda}{2}, \frac{\alpha+\beta+1-i \lambda}{2} ; \alpha+1 ;-(\sinh x)^{2}\right)
$$

where ${ }_{2} F_{1}$ is the Gauss hypergeometric function [10].
Lemma 2.1. (i) For every $x \in \mathbb{R}$,

$$
\begin{equation*}
e^{-\rho|x|} \leq \varphi_{0}(x) \leq 1 \tag{6}
\end{equation*}
$$

(ii) There is a constant $C>0$ such that

$$
\begin{equation*}
\left|\frac{d^{n}}{d \lambda^{n}} \varphi_{\lambda}(x)\right| \leq C(1+|x|)|x|^{n} e^{(|\operatorname{Im} \lambda|-\rho)|x|} \tag{7}
\end{equation*}
$$

for all $x \in \mathbb{R}, \lambda \in \mathbb{C}$ and $n=0,1, \ldots$.
Proof: Assertion (i) may be found in [14, p. 99]. Let us prove (ii). By [14, Equation (I.2)] we know that for $x \neq 0$,

$$
\varphi_{\lambda}(x)=\int_{0}^{|x|} \mathcal{K}(x, y) \cos \lambda y d y
$$

where $\mathcal{K}(x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is an even positive C^{∞} function on $]-|x|,|x|[$, with support in $[-|x|,|x|]$. So using the derivation theorem under the integral sign we find

$$
\begin{aligned}
\left|\frac{d^{n}}{d \lambda^{n}} \varphi_{\lambda}(x)\right| & =\left|\int_{0}^{|x|} \mathcal{K}(x, y) y^{n} \cos (\lambda y+n \pi / 2) d y\right| \\
& \leq \int_{0}^{|x|} \mathcal{K}(x, y) y^{n} e^{|\operatorname{Im} \lambda||y|} d y \\
& \leq|x|^{n} e^{|\operatorname{Im} \lambda||x|} \int_{0}^{|x|} \mathcal{K}(x, y) d y \\
& =|x|^{n} e^{|\operatorname{Im} \lambda||x|} \varphi_{0}(x)
\end{aligned}
$$

To conclude, recall from [14, p. 99] that there is a constant $C>0$ such that

$$
\varphi_{0}(x) \leq C(1+|x|) e^{-\rho|x|}
$$

for all $x \in \mathbb{R}$.
Analogous estimates for $\Phi_{\lambda}(x)$ are provided by the next statement.
Proposition 2.1. There is a constant $C>0$ such that

$$
\begin{equation*}
\left|\frac{d^{n}}{d \lambda^{n}} \Phi_{\lambda}(x)\right| \leq C(1+|\lambda|)(1+|x|)^{2}|x|^{n} e^{(|\operatorname{Im} \lambda|-\rho)|x|}, \tag{8}
\end{equation*}
$$

for all $x \in \mathbb{R}, \lambda \in \mathbb{C}$ and $n=0,1, \ldots$.
Proof: By (3),

$$
\frac{d^{n}}{d \lambda^{n}} \Phi_{\lambda}(x)=\frac{d^{n}}{d \lambda^{n}} \varphi_{\lambda}(x)+\frac{d^{n}}{d \lambda^{n}}\left(\frac{1}{i \lambda-\rho} \frac{d}{d x} \varphi_{\lambda}(x)\right) .
$$

As by (4),

$$
\begin{equation*}
\frac{d}{d x} \varphi_{\lambda}(x)=-\operatorname{sgn}(x) \frac{\lambda^{2}+\rho^{2}}{A(x)} \int_{0}^{|x|} \varphi_{\lambda}(t) A(t) d t \tag{9}
\end{equation*}
$$

we obtain

$$
\frac{d^{n}}{d \lambda^{n}}\left(\frac{1}{i \lambda-\rho} \frac{d}{d x} \varphi_{\lambda}(x)\right)=\frac{\operatorname{sgn}(x)}{A(x)} \int_{0}^{|x|} \frac{d^{n}}{d \lambda^{n}}\left[(i \lambda+\rho) \varphi_{\lambda}(t)\right] A(t) d t
$$

The result follows now from (7) and Leibniz formula.
Note 2.1. For a function f on \mathbb{R}, write $f_{e}(x)=(f(x)+f(-x)) / 2$ and $f_{o}(x)=$ $(f(x)-f(-x)) / 2$ respectively for its even and odd parts. We denote by

- $\mathcal{S}(\mathbb{R})$ the space of \mathcal{C}^{∞} functions f on \mathbb{R} which are rapidly decreasing together with their derivatives, i.e., such that for all $m, n=0,1, \ldots$,

$$
P_{m, n}(f)=\sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{m}\left|\frac{d^{n}}{d x^{n}} f(x)\right|<\infty
$$

The topology of $\mathcal{S}(\mathbb{R})$ is defined by the semi-norms $P_{m, n}, m, n=0,1, \ldots$.

- $\mathcal{S}_{e}(\mathbb{R})\left(\right.$ resp. $\left.\mathcal{S}_{o}(\mathbb{R})\right)$ the subspace of $\mathcal{S}(\mathbb{R})$ consisting of even (resp. odd) functions.
- $\mathcal{S}^{2}(\mathbb{R})$ the space of \mathcal{C}^{∞} functions f on \mathbb{R} such that for all $m, n=0,1, \ldots$,

$$
Q_{m, n}(f)=\sup _{x \in \mathbb{R}}\left(1+x^{2}\right)^{m} \varphi_{0}(x)^{-1}\left|\frac{d^{n}}{d x^{n}} f(x)\right|<\infty
$$

The topology of $\mathcal{S}^{2}(\mathbb{R})$ is defined by the semi-norms $Q_{m, n}, m, n=0,1, \ldots$.

- $\mathcal{S}_{e}^{2}(\mathbb{R})\left(\right.$ resp. $\left.\mathcal{S}_{o}^{2}(\mathbb{R})\right)$ the subspace of $\mathcal{S}^{2}(\mathbb{R})$ consisting of even (resp. odd) functions.
- \mathcal{J} the map defined by $\mathcal{J} h(x)=\int_{-\infty}^{x} h(t) d t, x \in \mathbb{R}$.

Remark 2.2. (i) By (6) we see that $\mathcal{S}^{2}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R})$.
(ii) It is easily checked that $\mathcal{S}^{2}(\mathbb{R})$ is invariant under the differential-difference operator Λ.
(iii) Due to our assumptions on the function A there is a positive constant k such that

$$
\begin{equation*}
A(x) \sim k e^{2 \rho|x|} \text { as }|x| \rightarrow \infty \tag{10}
\end{equation*}
$$

The following technical lemma will be useful.
Lemma 2.2. The map \mathcal{J} is a topological isomorphism from $\mathcal{S}_{o}^{2}(\mathbb{R})$ onto $\mathcal{S}_{e}^{2}(\mathbb{R})$.
Proof: It is sufficient to show that \mathcal{J} maps continuously $\mathcal{S}_{o}^{2}(\mathbb{R})$ into $\mathcal{S}_{e}^{2}(\mathbb{R})$. Let $f \in \mathcal{S}_{o}^{2}(\mathbb{R})$. Clearly $\mathcal{J} f$ is a C^{∞} even function on \mathbb{R}. For $n=1,2, \ldots$, $Q_{m, n}(\mathcal{J} f)=Q_{m, n-1}(f)$. Moreover, as by (9), φ_{0} is decreasing on $[0, \infty[$, we get

$$
\begin{aligned}
\left(1+x^{2}\right)^{m} \varphi_{0}(x)^{-1}|\mathcal{J} f(x)| & \leq\left(1+x^{2}\right)^{m} \varphi_{0}(x)^{-1} \int_{|x|}^{\infty}|f(t)| d t \\
& \leq \int_{|x|}^{\infty}\left(1+t^{2}\right)^{m} \varphi_{0}(t)^{-1}|f(t)| d t \\
& \leq Q_{m+1,0}(f) \int_{|x|}^{\infty} \frac{d t}{\left(1+t^{2}\right)}
\end{aligned}
$$

Hence $Q_{m, 0}(\mathcal{J} f) \leq \frac{\pi}{2} Q_{m+1,0}(f)$. This ends the proof.
The generalized Fourier transform of a suitable function f on \mathbb{R} is defined by

$$
\mathcal{F}_{\Lambda}(f)(\lambda)=\int_{\mathbb{R}} f(x) \Phi_{-\lambda}(x) A(x) d x, \quad \lambda \in \mathbb{R}
$$

Remark 2.3. According to (7), (8) and (10), the generalized Fourier transform \mathcal{F}_{Λ} is well defined on $\mathcal{S}^{2}(\mathbb{R})$.
Proposition 2.2. For all $f \in \mathcal{S}^{2}(\mathbb{R})$,

$$
\begin{equation*}
\mathcal{F}_{\Lambda}(f)(\lambda)=\mathcal{F}_{\Delta}\left(f_{e}\right)(\lambda)+(i \lambda-\rho) \mathcal{F}_{\Delta} \mathcal{J}\left(f_{o}\right)(\lambda) \tag{11}
\end{equation*}
$$

where \mathcal{F}_{Δ} stands for the Fourier transform related to the differential operator Δ, defined on $\mathcal{S}_{e}^{2}(\mathbb{R})$ by

$$
\mathcal{F}_{\Delta}(h)(\lambda)=\int_{\mathbb{R}} h(x) \varphi_{\lambda}(x) A(x) d x, \quad \lambda \in \mathbb{R}
$$

Proof: If $f \in \mathcal{S}_{e}^{2}(\mathbb{R})$, identity (11) is obvious. Assume $f \in \mathcal{S}_{o}^{2}(\mathbb{R})$. By using (3), (4), (5) and by integrating by parts we obtain

$$
\begin{aligned}
\mathcal{F}_{\Lambda}(f)(\lambda) & =\frac{-1}{i \lambda+\rho} \int_{\mathbb{R}} f(x) \varphi_{\lambda}^{\prime}(x) A(x) d x \\
& =\frac{1}{i \lambda+\rho} \int_{\mathbb{R}} \mathcal{J} f(x)\left(A(x) \varphi_{\lambda}^{\prime}(x)\right)^{\prime} d x \\
& =\frac{1}{i \lambda+\rho} \int_{\mathbb{R}} \mathcal{J} f(x) \Delta \varphi_{\lambda}(x) A(x) d x \\
& =(i \lambda-\rho) \int_{\mathbb{R}} \mathcal{J} f(x) \varphi_{\lambda}(x) A(x) d x \\
& =(i \lambda-\rho) \mathcal{F}_{\Delta}(\mathcal{J} f)(\lambda)
\end{aligned}
$$

which completes the proof.
Remark 2.4. For $A(x)=(\sinh |x|)^{2 \alpha+1}(\cosh x)^{2 \beta+1}, \alpha \geq \beta>-1 / 2$, the transform \mathcal{F}_{Δ} coincides with the Jacobi transform of order (α, β) (see [10]).
Theorem 2.1. The generalized Fourier transform \mathcal{F}_{Λ} is a topological isomorphism between $\mathcal{S}^{2}(\mathbb{R})$ and $\mathcal{S}(\mathbb{R})$. Moreover,

$$
\mathcal{F}_{\Lambda}^{-1}(g)(x)=\mathcal{F}_{\Delta}^{-1}\left(g_{e}\right)(x)+\left(\rho \mathrm{I}+\frac{d}{d x}\right) \mathcal{F}_{\Delta}^{-1}\left(\frac{g_{o}}{i \lambda}\right)(x)
$$

for all $g \in \mathcal{S}(\mathbb{R})$.
Proof: By [14] we know that the transform \mathcal{F}_{Δ} is a topological isomorphism from $\mathcal{S}_{e}^{2}(\mathbb{R})$ onto $\mathcal{S}_{e}(\mathbb{R})$. Then the result follows from (11), Lemma 2.2 and the fact that the map $f \rightarrow \lambda f$ is a topological isomorphism from $\mathcal{S}_{e}(\mathbb{R})$ onto $\mathcal{S}_{o}(\mathbb{R})$. The identity above follows easily from (11).

Note 2.2. We denote by

- $\mathcal{D}_{a}(\mathbb{R}), a>0$, the space of C^{∞} functions on \mathbb{R} supported in $[-a, a]$, provided with the topology of compact convergence for all derivatives.
- $\mathcal{D}(\mathbb{R})=\bigcup_{a>0} \mathcal{D}_{a}(\mathbb{R})$ endowed with the inductive limit topology.
- $\mathcal{D}_{e}(\mathbb{R})\left(\right.$ resp. $\left.\mathcal{D}_{o}(\mathbb{R})\right)$ the subspace of $\mathcal{D}(\mathbb{R})$ consisting of even (resp. odd) functions.
- $\mathbf{H}_{a}, a>0$, the space of entire, rapidly decreasing functions of exponential type a; that is, $f \in \mathbf{H}_{a}$ if and only if f is entire on \mathbb{C} and for all $m=$ $0,1, \ldots$,

$$
p_{m}(f)=\sup _{\lambda \in \mathbb{C}}\left|(1+\lambda)^{m} f(\lambda) \mathrm{e}^{-a|\operatorname{Im} \lambda|}\right|<\infty .
$$

\mathbf{H}_{a} is equipped with the topology defined by the semi-norms $p_{m}, m=$ $0,1, \ldots$.

- $\mathbf{H}=\bigcup_{a>0} \mathbf{H}_{a}$, equipped with the inductive limit topology.
- $\mathcal{H}_{a}, a>0$, the space of entire, slowly increasing functions of exponential type a; that is, $f \in \mathcal{H}_{a}$ if and only if f is entire on \mathbb{C} and there is $m=0,1, \ldots$ such that

$$
\sup _{\lambda \in \mathbb{C}}\left|(1+|\lambda|)^{-m} f(\lambda) \mathrm{e}^{-a|\operatorname{Im} \lambda|}\right|<\infty .
$$

- $\mathcal{H}=\bigcup_{a>0} \mathcal{H}_{a}$.

Another standard result for the generalized Fourier transform \mathcal{F}_{Λ} is as follows.
Theorem 2.2 (Paley-Wiener). (i) The generalized Fourier transform \mathcal{F}_{Λ} is a bijection from $\mathcal{E}^{\prime}(\mathbb{R})$ onto \mathcal{H}. More precisely, T has its support in $[-a, a]$ if and only if $\mathcal{F}_{\Lambda}(T) \in \mathcal{H}_{a}$.
(ii) The generalized Fourier transform \mathcal{F}_{Λ} is a topological isomorphism from $\mathcal{D}(\mathbb{R})$ onto \mathbf{H}. More precisely, $f \in \mathcal{D}_{a}(\mathbb{R})$ if and only if $\mathcal{F}_{\Lambda}(f) \in \mathbf{H}_{a}$.
According to [11] the inverse generalized Fourier transform $\mathcal{F}_{\Lambda}^{-1}$ may also be expressed as follows.

Theorem 2.3. For all $g \in \mathcal{S}(\mathbb{R})$,

$$
\mathcal{F}_{\Lambda}^{-1}(g)(x)=\int_{\mathbb{R}} g(\lambda) \Phi_{-\lambda}(-x) d \sigma(\lambda)
$$

with

$$
\begin{equation*}
d \sigma(\lambda)=\left(\frac{\lambda-i \rho}{\lambda}\right) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \tag{12}
\end{equation*}
$$

where $c(s)$ is a continuous function on $] 0, \infty[$ such that

$$
\begin{align*}
& c(s)^{-1} \sim k_{1} s^{\alpha+\frac{1}{2}} \quad \text { as } s \rightarrow \infty \tag{13}\\
& c(s)^{-1} \sim k_{2} s, \text { as } s \rightarrow 0
\end{align*}
$$

for some $k_{1}, k_{2} \in \mathbb{C}$.

Remark 2.5. (i) The tempered measure σ is called the spectral measure associated with the differential-difference operator Λ.
(ii) Let $g \in \mathcal{S}_{e}(\mathbb{R})$. By (3) and (12),

$$
\begin{aligned}
\int_{\mathbb{R}} g(\lambda) \Phi_{-\lambda}(-x) d \sigma(\lambda)= & \int_{\mathbb{R}} g(\lambda) \varphi_{\lambda}(x)\left(1-\frac{i \rho}{\lambda}\right) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
& -i \int_{\mathbb{R}} g(\lambda) \frac{\varphi_{\lambda}^{\prime}(x)}{\lambda} \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
= & \int_{\mathbb{R}} g(\lambda) \varphi_{\lambda}(x) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}
\end{aligned}
$$

By comparing Theorems 2.1 and 2.3 we deduce that

$$
\mathcal{F}_{\Lambda}^{-1}(g)(x)=\int_{\mathbb{R}} g(\lambda) \varphi_{\lambda}(x) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}=\mathcal{F}_{\Delta}^{-1}(g)(x)
$$

This further shows that $\frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}$ is the spectral measure tied to the differential operator Δ.
(iii) For $A(x)=(\sinh |x|)^{2 \alpha+1}(\cosh x)^{2 \beta+1}, \alpha \geq \beta>-1 / 2$, we have

$$
c(s)=\frac{2^{\alpha+\beta+2-i s} \Gamma(i s) \Gamma(\alpha+1)}{\Gamma[(\alpha+\beta+1+i s) / 2] \Gamma[(\alpha-\beta+1+i s) / 2]}, \quad s>0 .
$$

The next statement provides a Parseval type formula for the generalized Fourier transform \mathcal{F}_{Λ}.

Theorem 2.4. For all $f, g \in \mathcal{D}(\mathbb{R})$,

$$
\int_{\mathbb{R}} f(x) g(-x) A(x) d x=\int_{\mathbb{R}} \mathcal{F}_{\Lambda}(f)(\lambda) \mathcal{F}_{\Lambda}(g)(\lambda) d \sigma(\lambda)
$$

To prove Theorem 2.4 we need some facts about the transform \mathcal{F}_{Δ}.
Lemma 2.3. (i) For all $f \in \mathcal{D}_{e}(\mathbb{R})$,

$$
\mathcal{F}_{\Delta}(\Delta f)(\lambda)=-\left(\lambda^{2}+\rho^{2}\right) \mathcal{F}_{\Delta}(f)(\lambda)
$$

(ii) For all $f, g \in \mathcal{D}_{e}(\mathbb{R})$,

$$
\int_{\mathbb{R}} f(x) g(x) A(x) d x=\int_{\mathbb{R}} \mathcal{F}_{\Delta}(f)(\lambda) \mathcal{F}_{\Delta}(g)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}
$$

Proof: (i) Using (4), (5) together with an integration by parts we have

$$
\begin{aligned}
\mathcal{F}_{\Delta}(\Delta f)(\lambda) & =\int_{\mathbb{R}} \Delta f(x) \varphi_{\lambda}(x) A(x) d x \\
& =\int_{\mathbb{R}}\left(A(x) f^{\prime}(x)\right)^{\prime} \varphi_{\lambda}(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =-\int_{\mathbb{R}} f^{\prime}(x) \varphi_{\lambda}^{\prime}(x) A(x) d x \\
& =\int_{\mathbb{R}} f(x)\left(A(x) \varphi_{\lambda}^{\prime}(x)\right)^{\prime} d x \\
& =\int_{\mathbb{R}} f(x) \Delta \varphi_{\lambda}(x) A(x) d x \\
& =-\left(\lambda^{2}+\rho^{2}\right) \mathcal{F}_{\Delta}(f)(\lambda)
\end{aligned}
$$

(ii) Notice that φ_{λ} is real whenever λ is real. So $\overline{\mathcal{F}_{\Delta}(g)(\lambda)}=\mathcal{F}_{\Delta}(\bar{g})(\lambda)$ for all $\lambda \in \mathbb{R}$. This when combined with a Parseval formula for the transform \mathcal{F}_{Δ} (see [14, Theorem II.4]) yields

$$
\begin{aligned}
\int_{\mathbb{R}} \mathcal{F}_{\Delta}(f)(\lambda) \mathcal{F}_{\Delta}(g)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} & =\int_{\mathbb{R}} \mathcal{F}_{\Delta}(f)(\lambda) \overline{\mathcal{F}_{\Delta}(\bar{g})(\lambda)} \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
& =\int_{\mathbb{R}} f(x) g(x) A(x) d x
\end{aligned}
$$

which achieves the proof.
Proof of Theorem 2.4: By (11),

$$
\begin{aligned}
\int_{\mathbb{R}} \mathcal{F}_{\Lambda}(f)(\lambda) \mathcal{F}_{\Lambda}(g)(\lambda) d \sigma(\lambda)= & \int_{\mathbb{R}} \mathcal{F}_{\Delta}\left(f_{e}\right)(\lambda) \mathcal{F}_{\Delta}\left(g_{e}\right)(\lambda) d \sigma(\lambda) \\
& +\int_{\mathbb{R}}(i \lambda-\rho) \mathcal{F}_{\Delta}\left(f_{e}\right)(\lambda) \mathcal{F}_{\Delta} \mathcal{J}\left(g_{o}\right)(\lambda) d \sigma(\lambda) \\
& +\int_{\mathbb{R}}(i \lambda-\rho) \mathcal{F}_{\Delta} \mathcal{J}\left(f_{o}\right)(\lambda) \mathcal{F}_{\Delta}\left(g_{e}\right)(\lambda) d \sigma(\lambda) \\
& +\int_{\mathbb{R}}(i \lambda-\rho)^{2} \mathcal{F}_{\Delta} \mathcal{J}\left(f_{o}\right)(\lambda) \mathcal{F}_{\Delta} \mathcal{J}\left(g_{o}\right)(\lambda) d \sigma(\lambda) \\
= & \kappa_{1}+\kappa_{2}+\kappa_{3}+\kappa_{4}
\end{aligned}
$$

By (12), we have

$$
\begin{aligned}
& \kappa_{2}=i \int_{\mathbb{R}} \frac{\lambda^{2}+\rho^{2}}{\lambda} \mathcal{F}_{\Delta}\left(f_{e}\right)(\lambda) \mathcal{F}_{\Delta} \mathcal{J}\left(g_{o}\right)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}=0 \\
& \kappa_{3}=i \int_{\mathbb{R}} \frac{\lambda^{2}+\rho^{2}}{\lambda} \mathcal{F}_{\Delta} \mathcal{J}\left(f_{o}\right)(\lambda) \mathcal{F}_{\Delta}\left(g_{e}\right)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}=0
\end{aligned}
$$

Again by (12) and Lemma 2.3,

$$
\begin{aligned}
\kappa_{1} & =\int_{\mathbb{R}}\left(1-\frac{i \rho}{\lambda}\right) \mathcal{F}_{\Delta}\left(f_{e}\right)(\lambda) \mathcal{F}_{\Delta}\left(g_{e}\right)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
& =\int_{\mathbb{R}} \mathcal{F}_{\Delta}\left(f_{e}\right)(\lambda) \mathcal{F}_{\Delta}\left(g_{e}\right)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
&=\int_{\mathbb{R}} f_{e}(x) g_{e}(x) A(x) d x \\
& \kappa_{4}=-\int_{\mathbb{R}}\left(1+\frac{i \rho}{\lambda}\right)\left(\lambda^{2}+\rho^{2}\right) \mathcal{F}_{\Delta} \mathcal{J}\left(f_{o}\right)(\lambda) \mathcal{F}_{\Delta} \mathcal{J}\left(g_{o}\right)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
&=-\int_{\mathbb{R}}\left(\lambda^{2}+\rho^{2}\right) \mathcal{F}_{\Delta} \mathcal{J}\left(f_{o}\right)(\lambda) \mathcal{F}_{\Delta} \mathcal{J}\left(g_{o}\right)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
&= \int_{\mathbb{R}} \mathcal{F}_{\Delta}\left(\Delta \mathcal{J} f_{o}\right)(\lambda) \mathcal{F}_{\Delta}\left(\mathcal{J} g_{o}\right)(\lambda) \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
&= \int_{\mathbb{R}} \Delta \mathcal{J}\left(f_{o}\right)(x) \mathcal{J}\left(g_{o}\right)(x) A(x) d x \\
&= \int_{\mathbb{R}}\left(A f_{o}\right)^{\prime}(x) \mathcal{J}\left(g_{o}\right)(x) d x \\
&=-\int_{\mathbb{R}} f_{o}(x) g_{o}(x) A(x) d x
\end{aligned}
$$

Hence

$$
\kappa_{1}+\kappa_{4}=\int_{\mathbb{R}}\left[f_{e}(x) g_{e}(x)-f_{o}(x) g_{o}(x)\right] A(x) d x=\int_{\mathbb{R}} f(x) g(-x) A(x) d x
$$

This concludes the proof.
Note 2.3. We denote by

- $L^{p}(\mathbb{R}, A(x) d x), 1 \leq p \leq \infty$, the class of measurable functions f on \mathbb{R} for which $\|f\|_{p, A}<\infty$, where

$$
\|f\|_{p, A}=\left(\int_{\mathbb{R}}|f(x)|^{p} A(x) d x\right)^{1 / p}, \quad \text { if } p<\infty,
$$

and $\|f\|_{\infty, A}=\|f\|_{\infty}$.

- $L^{p}(\mathbb{R},|\sigma|), 1 \leq p \leq \infty$, be the class of measurable functions f on \mathbb{R} for which $\|f\|_{p,|\sigma|}<\infty$, where

$$
\|f\|_{p,|\sigma|}=\left(\int_{\mathbb{R}}|f(\lambda)|^{p} d|\sigma|(\lambda)\right)^{1 / p}, \text { if } p<\infty,
$$

and $\|f\|_{\infty,|\sigma|}=\|f\|_{\infty}$.
Remark 2.6. By (8) there is a positive constant $k>0$ such that

$$
\left|\mathcal{F}_{\Lambda}(f)(\lambda)\right| \leq k(1+|\lambda|)\|f\|_{1, A}
$$

for all $f \in L^{1}(\mathbb{R}, A(x) d x)$.

Lemma 2.4. For all $f \in L^{1}(\mathbb{R}, A(x) d x)$ and $g \in \mathcal{D}(\mathbb{R})$,

$$
\int_{\mathbb{R}} f(x) g(-x) A(x) d x=\int_{\mathbb{R}} \mathcal{F}_{\Lambda}(f)(\lambda) \mathcal{F}_{\Lambda}(g)(\lambda) d \sigma(\lambda)
$$

Proof: Fix $g \in \mathcal{D}(\mathbb{R})$. For $f \in L^{1}(\mathbb{R}, A(x) d x)$ put

$$
l_{1}(f)=\int_{\mathbb{R}} f(x) g(-x) A(x) d x
$$

and

$$
l_{2}(f)=\int_{\mathbb{R}} \mathcal{F}_{\Lambda}(f)(\lambda) \mathcal{F}_{\Lambda}(g)(\lambda) d \sigma(\lambda)
$$

In view of Theorem 2.4, $l_{1}(f)=l_{2}(f)$ for each $f \in \mathcal{D}(\mathbb{R})$. Moreover,

$$
\left|l_{1}(f)\right| \leq\|g\|_{\infty}\|f\|_{1, A}
$$

and

$$
\left|l_{2}(f)\right| \leq k\|f\|_{1, A} \int_{\mathbb{R}}\left|\mathcal{F}_{\Lambda}(g)(\lambda)\right|(1+|\lambda|) d|\sigma|(\lambda)
$$

by virtue of Remark 2.6. This shows that the linear functionals l_{1} and l_{2} are bounded on $L^{1}(\mathbb{R}, A(x) d x)$. Therefore $l_{1}=l_{2}$, and the lemma is proved.

An immediate consequence of the lemma above is
Corollary 2.1. The generalized Fourier transform \mathcal{F}_{Λ} is injective on $L^{1}(\mathbb{R}, A(x) d x)$.

For $t>0$, the Gaussian kernel E_{t} associated with the differential-difference operator Λ is defined by

$$
\begin{equation*}
E_{t}(x)=\int_{\mathbb{R}} e^{-t\left(\lambda^{2}+\rho^{2}\right)} \Phi_{-\lambda}(-x) d \sigma(\lambda), \quad x \in \mathbb{R} \tag{14}
\end{equation*}
$$

This kernel enjoys the following properties.
Proposition 2.3.
(i) $E_{t} \in \mathcal{S}^{2}(\mathbb{R})$ and

$$
\begin{equation*}
\mathcal{F}_{\Lambda}\left(E_{t}\right)(\lambda)=e^{-t\left(\lambda^{2}+\rho^{2}\right)}, \text { for all } \lambda \in \mathbb{R} \tag{15}
\end{equation*}
$$

(ii) E_{t} is even, positive and $\int_{\mathbb{R}} E_{t}(x) A(x) d x=1$.
(iii) The function $u(x, t)=E_{t}(x)$ is C^{∞} on $\left.\mathbb{R} \times\right] 0, \infty[$ and solves the partial differential equation

$$
\Delta_{x} u(x, t)=\frac{\partial}{\partial t} u(x, t)
$$

where Δ is given by (5).
(iv) There are two positive constants $C_{1}(t)$ and $C_{2}(t)$ such that

$$
\begin{equation*}
C_{1}(t) \frac{e^{-\frac{x^{2}}{4 t}}}{\sqrt{B(x)}} \leq E_{t}(x) \leq C_{2}(t) \frac{e^{-\frac{x^{2}}{4 t}}}{\sqrt{B(x)}} \tag{16}
\end{equation*}
$$

(v) Let $p \in[0, \infty[$. Then there exists a positive constant $M(p, t)$ such that

$$
\begin{equation*}
\left(E_{t}(x)\right)^{p} \leq M(p, t) E_{t / p}(x) \tag{17}
\end{equation*}
$$

Proof: Assertion (i) follows directly from Theorems 2.1 and 2.3. A combination of (14) and Remark 2.5 (ii) yields

$$
\begin{equation*}
E_{t}(x)=\int_{0}^{\infty} e^{-t\left(\lambda^{2}+\rho^{2}\right)} \varphi_{\lambda}(x) \frac{d \lambda}{\pi|c(\lambda)|^{2}} \tag{18}
\end{equation*}
$$

But according to [6], the right hand side of (18) satisfies (ii), (iii) and (iv). According to our assumptions on the function A, there is a constant $k>0$ such that $B(x) \geq k$ for all $x \in \mathbb{R}$. The majorization (17) is then an easy consequence of (16).

3. Hardy and Cowling-Price theorems

The following technical lemmas will greatly simplify the proofs of our main theorems.
Lemma 3.1 ([1]). Let g be an entire function on \mathbb{C}. Suppose that

$$
|g(z)| \leq M(1+|z|)^{m} e^{a(R e z)^{2}} \quad \text { for all } z \in \mathbb{C}
$$

and

$$
|g(x)| \leq M \quad \text { for all } \quad x \in \mathbb{R}
$$

for some $a, M>0$ and $m \in \mathbb{N}$. Then g is constant on \mathbb{C}.
Lemma 3.2 ([1]). Let $q \in[1, \infty[$ and g be an entire function on \mathbb{C}. Suppose that

$$
\int_{\mathbb{R}}|g(x)|^{q} d x<\infty
$$

and

$$
|g(z)| \leq M(1+|z|)^{m} e^{a(\operatorname{Re} z)^{2}} \quad \text { for all } z \in \mathbb{C}
$$

for some $a, M>0$ and $m \in \mathbb{N}$. Then $g=0$ on \mathbb{C}.
Lemma 3.3. Let $q \in[1, \infty[$ and g be an entire function on \mathbb{C}. Suppose that

$$
\|g\|_{q,|\sigma|}<\infty
$$

and

$$
|g(z)| \leq M(1+|z|)^{m} e^{a(\operatorname{Rez})^{2}} \quad \text { for all } z \in \mathbb{C}
$$

for some $a, M>0$ and $m \in \mathbb{N}$. Then $g=0$ on \mathbb{C}.

Proof: By (12),

$$
\begin{aligned}
\|g\|_{q,|\sigma|}^{q} & \geq \int_{|\lambda| \geq 1}|g(\lambda)|^{q} d|\sigma|(\lambda) \\
& =\int_{|\lambda| \geq 1}|g(\lambda)|^{q}\left|\frac{\lambda-i \rho}{\lambda}\right| \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}} \\
& \geq \int_{|\lambda| \geq 1}|g(\lambda)|^{q} \frac{d \lambda}{2 \pi|c(|\lambda|)|^{2}}
\end{aligned}
$$

According to (13), there is a constant $k>0$ such that $|c(|\lambda|)|^{-2} \geq k|\lambda|^{2 \alpha+1}$ for all $\lambda \in \mathbb{R}$ with $|\lambda| \geq 1$. Therefore

$$
\|g\|_{q,|\sigma|}^{q} \geq \frac{k}{2 \pi} \int_{|\lambda| \geq 1}|g(\lambda)|^{q}|\lambda|^{2 \alpha+1} d \lambda \geq \frac{k}{2 \pi} \int_{|\lambda| \geq 1}|g(\lambda)|^{q} d \lambda,
$$

which shows that $\|g\|_{q}<\infty$. The result is now a direct consequence of Lemma 3.2.

Lemma 3.4. Let $a, b>0, d \geq 1, \gamma \in \mathbb{R}$ and

$$
g(y)=\int_{0}^{\infty} e^{-a(x-b y)^{2}}(1+x)^{d} e^{\gamma x} d x, \quad y \geq 0
$$

Then there is a positive constant C such that

$$
g(y) \leq C(1+y)^{d} e^{\gamma b y} \text { for all } y \geq 0
$$

Proof: By the convexity of x^{d} we have

$$
\begin{aligned}
g(y) & =e^{\gamma b y} \int_{-b y}^{\infty} e^{-a z^{2}+\gamma z}(1+z+b y)^{d} d z \\
& \leq e^{\gamma b y} \int_{-b y}^{\infty} e^{-a z^{2}+|\gamma||z|}(1+|z|+b y)^{d} d z \\
& \leq e^{\gamma b y} \int_{-\infty}^{\infty} e^{-a z^{2}+|\gamma||z|}(1+|z|+b y)^{d} d z \\
& =2 e^{\gamma b y} \int_{0}^{\infty} e^{-a z^{2}+|\gamma| z}(1+z+b y)^{d} d z \\
& \leq \text { const. } e^{\gamma b y} \int_{0}^{\infty} e^{-a z^{2}+|\gamma| z}\left(1+z^{d}+(b y)^{d}\right) d z \\
& =\text { const. } e^{\gamma b y}\left(\int_{0}^{\infty} e^{-a z^{2}+|\gamma| z}\left(1+z^{d}\right) d z+(b y)^{d} \int_{0}^{\infty} e^{-a z^{2}+|\gamma| z} d z\right) \\
& \leq \text { const. }\left(1+y^{d}\right) e^{\gamma b y} \\
& \leq \text { const. }(1+y)^{d} e^{\gamma b y}
\end{aligned}
$$

which ends the proof.

Lemma 3.5. Let $1 \leq q \leq \infty$ and $a>0$. Then there is a positive constant C such that for all $\lambda=\xi+i \eta \in \mathbb{R}+i \mathbb{R}$:
(i) $\left\|E_{\frac{1}{4 a}} \Phi_{-\lambda}\right\|_{\infty} \leq C(1+|\lambda|) e^{\frac{\eta^{2}}{4 a}}$;
(ii) $\left\|E_{\frac{1}{4 a}} \Phi_{-\lambda}\right\|_{q, A} \leq C(1+|\lambda|)^{3} e^{\frac{\eta^{2}}{4 a}+\frac{(2-q) \rho|\eta|}{2 a q}}$, if $q<\infty$.

Proof: As the function $1 / \sqrt{B(x)}$ is bounded, it follows from (8) and (16) that

$$
\begin{aligned}
\left|E_{\frac{1}{4 a}}(x) \Phi_{-\lambda}(x)\right| & \leq \text { const. }(1+|\lambda|)(1+|x|)^{2} e^{-a x^{2}+(|\eta|-\rho)|x|} \\
& =\text { const. }(1+|\lambda|)(1+|x|)^{2} e^{\frac{\eta^{2}}{4 a}} e^{-a\left(|x|-\frac{|\eta|}{2 a}\right)^{2}-\rho|x|}
\end{aligned}
$$

which proves (i). For $q<\infty$ we have

$$
\begin{aligned}
\left\|E_{\frac{1}{4 a}} \Phi_{-\lambda}\right\|_{q, A} & \leq \operatorname{const} .(1+|\lambda|) e^{\frac{\eta^{2}}{4 a}}\left(\int_{0}^{\infty} e^{-a q\left(x-\frac{|\eta|}{2 a}\right)^{2}}(1+x)^{2 q} e^{(2-q) \rho x} d x\right)^{1 / q} \\
& \leq \text { const. }(1+|\lambda|)(1+|\eta|)^{2} e^{\frac{\eta^{2}}{4 a}+\frac{(2-q) \rho|\eta|}{2 a q}} \\
& \leq \text { const. }(1+|\lambda|)^{3} e^{\frac{\eta^{2}}{4 a}+\frac{(2-q) \rho|\eta|}{2 a q}}
\end{aligned}
$$

by virtue of (10) and Lemma 3.4.
Lemma 3.6. Let $1 \leq p, p^{\prime} \leq \infty$ such that $1 / p+1 / p^{\prime}=1$. Let f be a measurable function on \mathbb{R} such that $\left\|E_{\frac{1}{4 a}}^{-1} f\right\|_{p, A}<\infty$ for some $a>0$. Then the generalized Fourier transform of f is well defined and entire on \mathbb{C}. Moreover, there is a positive constant C such that for all $\lambda=\xi+i \eta \in \mathbb{R}+i \mathbb{R}$:
(i) $\left|\mathcal{F}_{\Lambda}(f)(\lambda)\right| \leq C(1+|\lambda|) e^{\frac{\eta^{2}}{4 a}}$, if $p=1$;
(ii) $\left|\mathcal{F}_{\Lambda}(f)(\lambda)\right| \leq C(1+|\lambda|)^{3} e^{\frac{\eta^{2}}{\eta_{a}}+\frac{\left(2-p^{\prime}\right) \rho|\eta|}{2 a_{p} p^{\prime}}}$, if $p>1$.

Proof: The result follows easily by using Lemma 3.5, Hölder's inequality and the derivation theorem under the integral sign.

We can now state our main results.
Theorem 3.1. Let $1 \leq p, q \leq \infty$. Let f be a measurable function on \mathbb{R} such that

$$
\begin{equation*}
E_{\frac{1}{4 a}}^{-1} f \in L^{p}(\mathbb{R}, A(x) d x) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{b \lambda^{2}} \mathcal{F}_{\Lambda}(f) \in L^{q}(\mathbb{R},|\sigma|) \tag{20}
\end{equation*}
$$

for some positive constants a and b. Then

- if $a b>1 / 4$, we have $f=0$ almost everywhere;
- if $a b<1 / 4$, for all $t \in] b, 1 /(4 a)\left[, E_{t}\right.$ satisfies (19)-(20).

Proof: We divide the proof in two steps.
Step 1. $a b>1 / 4$.
Let $t \in] 1 /(4 a), b[$ and

$$
g(\lambda)=e^{t \lambda^{2}} \mathcal{F}_{\Lambda}(f)(\lambda), \quad \lambda \in \mathbb{C}
$$

By Lemma $3.6, g$ is entire in \mathbb{C}, and there is $C>0$ such that

$$
|g(\lambda)| \leq C(1+|\lambda|)^{3} e^{t(\operatorname{Re} \lambda)^{2}}
$$

for all $\lambda \in \mathbb{C}$. Furthermore,

$$
\|g\|_{q,|\sigma|}=\left\|e^{b \lambda^{2}} \mathcal{F}_{\Lambda}(f) e^{(t-b) \lambda^{2}}\right\|_{q,|\sigma|} \leq\left\|e^{b \lambda^{2}} \mathcal{F}_{\Lambda}(f)\right\|_{q,|\sigma|}<\infty
$$

(i) If $q<\infty$, it follows from Lemma 3.3 that $g(\lambda)=0$ for all $\lambda \in \mathbb{C}$. That is, $\mathcal{F}_{\Lambda}(f)(\lambda)=0$ for all $\lambda \in \mathbb{R}$. Therefore, $f=0$ a.e. on \mathbb{R}, by virtue of Corollary 2.1.
(ii) If $q=\infty$, then by Lemma 3.1 there is a constant $K \in \mathbb{C}$ such that $g(\lambda)=K$ for all $\lambda \in \mathbb{C}$. That is, $\mathcal{F}_{\Lambda}(f)(\lambda)=K e^{-t \lambda^{2}}$ for all $\lambda \in \mathbb{R}$. Hence, $f=K e^{t \rho^{2}} E_{t}$ a.e. on \mathbb{R}. But due to assumption (19), this is impossible unless $K=0$. Thus $f=0$ a.e. on \mathbb{R}.

Step 2. $a b<1 / 4$.
Let $t \in] b, 1 /(4 a)\left[\right.$. By (16), there are two positive constants $C_{1}(a, t)$ and $C_{2}(a, t)$ such that

$$
C_{1}(a, t) e^{-\left(\frac{1}{4 t}-a\right) x^{2}} \leq E_{\frac{1}{4 a}}^{-1}(x) E_{t}(x) \leq C_{2}(a, t) e^{-\left(\frac{1}{4 t}-a\right) x^{2}}
$$

for all $x \in \mathbb{R}$. This shows that $E_{\frac{1}{4 a}}^{-1} E_{t} \in L^{p}(\mathbb{R}, A(x) d x)$. Moreover,

$$
\left\|e^{b \lambda^{2}} \mathcal{F}_{\Lambda}\left(E_{t}\right)\right\|_{q,|\sigma|}=e^{-t \rho^{2}}\left\|e^{-(t-b) \lambda^{2}}\right\|_{q,|\sigma|}<\infty
$$

by virtue of (15) and the fact that σ is tempered. This completes the proof of Theorem 3.1.

Theorem 3.2. Let $1 \leq p \leq 2$ and $1 \leq q \leq \infty$. Let f be a measurable function on \mathbb{R} satisfying (19) and (20) for some positive constants a and b. If $a b=1 / 4$ then $f=0$ almost everywhere.

Proof: Let

$$
g(\lambda)=e^{b \lambda^{2}} \mathcal{F}_{\Lambda}(f)(\lambda), \quad \lambda \in \mathbb{C}
$$

Let p^{\prime} be the conjugate exponent of p. As by hypothesis $p^{\prime} \geq 2$, we deduce from Lemma 3.6 that g is entire on \mathbb{C}, and there is $C>0$ such that

$$
|g(\lambda)| \leq C(1+|\lambda|)^{3} e^{b(\operatorname{Re} \lambda)^{2}}
$$

for all $\lambda \in \mathbb{C}$. The rest of the proof is now analogous to Step 1 in the proof of Theorem 3.1.

Acknowledgments. The author is grateful to the referee for careful reading and useful comments.

References

[1] Ben Farah S., Mokni K., Uncertainty principle and $L^{p}-L^{q}$ sufficient pairs on noncompact real symmetric spaces, C.R. Acad. Sci. Paris 336 (2003), 889-892.
[2] Ben Farah S., Mokni K., Trimèche K., An $L^{p}-L^{q}$-version of Hardy's theorem for spherical Fourier transform on semi-simple Lie groups, Int. J. Math. Math. Sci. 33 (2004), 17571769.
[3] Cherednik I., A unification of Knizhnik-Zamolodchikov equations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432.
[4] Cowling M.G., Price J.F., Generalisations of Heisenberg's inequality, Lecture Notes in Mathematics, 992, Springer, Berlin, 1983, pp. 443-449.
[5] Eguchi M., Korzumi S., Kumahara K., An L^{p} version of the Hardy theorem for the motion group, J. Austral. Math. Soc. Ser. A 68 (2000), 55-67.
[6] Fitouhi A., Heat polynomials for a singular differential operator on $(0, \infty)$, J. Constr. Approx. 5 (1989), 241-270.
[7] Gallardo L., Trimèche K., Positivity of the Jacobi-Cherednik intertwining operator and its dual, Adv. Pure Appl. Math. 1 (2010), no. 2, 163-194.
[8] Hardy G.H., A theorem concerning Fourier transform, J. London Math. Soc. 8 (1933), 227-231.
[9] Heckman G.J., Schlichtkrull H., Harmonic Analysis and Special Functions on Symmetric Spaces, Academic Press, San Diego, CA, 1994.
[10] Koornwinder T.H., A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975), 145-159.
[11] Mourou M.A., Transmutation operators and Paley-Wiener theorem associated with a Cherednik type operator on the real line, Anal. Appl. (Singap.) 8 (2010), no. 4, 387-408.
[12] Opdam E., Dunkl Operators for Real and Complex Reflection Groups, MSJ Memoirs, 8, Mathematical Society of Japan, Tokyo, 2000.
[13] Schapira B., Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz spaces, heat kernel, Geom. Funct. Anal. 18 (2008), 222-250.
[14] Trimèche K., Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal. 4 (1997), 97-112.
[15] Trimèche K., Cowling-Price and Hardy theorems on Chébli-Trimèche hypergroups, Glob. J. Pure Appl. Math. 1 (2005), no. 3, 286-305.
[16] Trimèche K., The trigonometric Dunkl intertwining operator and its dual associated with the Cherednik operators and the Heckman-Opdam theory, Adv. Pure Appl. Math. 1 (2010), no. 3, 293-323.
[17] Trimèche K., Harmonic analysis associated with the Cherednik operators and the HeckmanOpdam theory, Adv. Pure Appl. Math. 2 (2011), no. 1, 23-46.

Department of Mathematics, College of Sciences for Girls, University of Dammam, P.O.Box 1982, Dammam 31441, Saudi Arabia
E-mail: mohamed_ali.mourou@yahoo.fr

