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Connectedness of some rings

of quotients of C(X) with the m-topology

F. Azarpanah, M. Paimann, A.R. Salehi

Abstract. In this article we define the m-topology on some rings of quotients of
C(X). Using this, we equip the classical ring of quotients q(X) of C(X) with the
m-topology and we show that C(X) with the r-topology is in fact a subspace
of q(X) with the m-topology. Characterization of the components of rings of
quotients of C(X) is given and using this, it turns out that q(X) with the m-
topology is connected if and only if X is a pseudocompact almost P -space, if and
only if C(X) with r-topology is connected. We also observe that the maximal
ring of quotients Q(X) of C(X) with the m-topology is connected if and only if
X is finite. Finally for each point x, we introduce a natural ring of quotients of
C(X)/Ox which is connected with the m-topology.
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1. Introduction

In this article, X stands for a completely regular Hausdorff space, C(X) for
the ring of all real valued continuous functions on X and C∗(X) denotes the
subring of C(X) consisting of bounded functions. If C(X) = C∗(X), we say
that X is pseudocompact. For each f ∈ C(X), Z(f) = {x ∈ X : f(x) = 0}
is called the zero-set of f . X \ Z(f) is called the cozero-set of f , denoted by
coz(f) and clXcoz(f) is called the support of f . Regular functions in C(X) are
non-zero divisors, and units in C(X) are invertible functions. It is easy to see that
r ∈ C(X) is regular if and only if intXZ(r) = ∅ (or equivalently, coz(r) is dense
in X) and u ∈ C(X) is a unit if and only if Z(f) = ∅. The set of all units and the
set of all regular elements of C(X) are denoted by U(X) and r(X) respectively
and we refer the reader to [4], [6], [16] and [17] for undefined terms and notations.

The m-topology on C(X) was first introduced in [10] by taking sets of the form

B(f, u) = {g ∈ C(X) : |f(x) − g(x)| < u(x), ∀x ∈ X}, u ∈ U+(X)

as a base for neighborhood system at f for each f ∈ C(X), where U+(X) is the
set of all positive units in C(X). The ring C(X) equipped with the m-topology is
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denoted by Cm(X) which is a Hausdorff topological ring. Next, the m-topology
on C(X) is also studied in [1], [7], [12] and [14]. In [8] the authors have defined
a finer topology, namely the r-topology on C(X), based on nonnegative regular
elements of C(X) instead of positive units. In that article, the r-topology on
C(X) is defined by taking sets of the form

R(f, r) = {g ∈ C(X) : |f(x)−g(x)| < r(x), ∀x ∈ coz(r)}, r ∈ r+(X), f ∈ C(X)

as a base for the topology, where r+(X) is the set of all nonnegative regular
elements of C(X). C(X) endowed with the r-topology is denoted by Cr(X)
which is a topological ring. It is easy to see that the r-topology coincides with
the m-topology on C(X) if and only if X is an almost P -space (a space in which
every nonempty Gδ-set has a nonempty interior), see also Theorem 1.8 in [8].

Now, as in [14], we let F be a filter of subsets of a topological space X and
P (X, F) be the set of all real-valued continuous functions with domains in F. If
f, g ∈ P (X, F), we define an equivalence relation ∼ on P (X, F) by f ∼ g if and
only if f agrees with g on a member of F or equivalently, {x ∈ D(f) ∩ D(g) :
f(x) = g(x)} ∈ F, where D(h) means the domain of h. If for each f and g in
P (X, F), we define f + g and f · g pointwise in D(f) ∩ D(g), then P (X, F)/ ∼ or
briefly P (X, F) is clearly a ring with identity. In addition, for each f, g ∈ P (X, F),
we define the partial ordering f ≤ g if and only if f(x) ≤ g(x) for all x in some
member of F contained in D(f) ∩D(g) and f ∧ g by (f ∧ g)(x) = inf{f(x), g(x)}
for each x in some member of F contained in D(f)∩D(g). Thus P (X, F) becomes
a lattice ordered ring.

Now we define a topology on P (X, F) whose base is the collection of all sets of
the form

N(f, e) = {g ∈ P (X, F) : |f − g| < e on some F ∈ F}

where f ∈ P (X, F) and e ∈ P+(X, F) = {f ∈ P (X, F) : f > 0} are arbitrary, see
also [14] (note that f > 0 means that f(x) > 0 for all x ∈ F , for some F ∈ F).

Whenever B is a base for the filter F, then P (X, F) = P (X, B). In fact if
f ∈ P (X, B), then clearly f ∈ P (X, F) and if f ∈ P (X, F), then f ∈ C(F )
for some F ∈ F. But F contains some B ∈ B and since f |B agrees with f
on B ∈ B, we have f |B = f , i.e., f ∼ f |B ∈ P (X, B). Now, if for each f ∈
P (X, F), we let the set N ′(f, e) = {g ∈ P (X, B) : |f − g| < e on some B ∈

B}, then clearly the topology on P (X, F) whose base is the set {N
′

(f, e) : f ∈
P (X, F) and e ∈ P+(X, B)}, coincides with the latter topology on P (X, F). We
call this topology the m-topology, and P (X, F) equipped with the m-topology is
denoted by Pm(X, F).

It is not hard to see that

+
(
N(f,

e

2
) × N(g,

e

2
)
)
⊆ N(f + g, e)

· (N(f, d) × N(g, d)) ⊆ N(fg, e)
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where 1 > d ∈ P+(X, F) and (1 + |f | + |g|)d < e. This means that Pm(X, F) is
a topological ring.

It is well-known that whenever F is considered as a filter with the base con-
sisting of all open dense subsets of X or whenever the collection of all dense
cozero-sets is considered as a base for the filter F, then P (X, F) is in fact the
maximal ring of quotients of C(X) and the classical ring of quotients of C(X)
respectively, see [5]. These rings are denoted by Q(X) and q(X) respectively and
we denote these rings with the m-topology by Qm(X) and qm(X). We show that
C(X) with r-topology (Cr(X)) is in fact a subspace of qm(X) and using this, we
characterize the spaces X for which Cr(X) is connected.

Proposition 1.1. If F is a filter of subsets of X with a base consisting of dense

sets, then Pm(X, F) is Hausdorff. In particular, Qm(X) and qm(X) are Hausdorff.

Proof: Let f, g ∈ Pm(X, F) and f 6= g. This implies that there exists x0 ∈ D =
D(f)∩D(g) such that f(x0) 6= g(x0). If we take |f(x0)−g(x0)| = α > 0, then we
have N(f, α4 )∩N(g, α4 ) = ∅. In fact, if h ∈ N(f, α4 )∩N(g, α4 ), then |h−f | < α

4 and
|h− g| < α

4 on dense open sets D1 and D2 respectively and therefore |f − g| < α
2

on dense open set D1 ∩ D2. But D1 ∩ D2 is dense in D, so |f − g| ≤ α
2 on D.

Since x0 ∈ D, we have α = |f(x0) − g(x0)| ≤
α
2 , a contradiction. �

Remark 1.2. The converse of the above proposition is not true, i.e., whenever
Pm(X, F) is Hausdorff, it is not necessary that F has a base with dense elements.
For instance, if a ∈ X , A ⊆ X and we take Fa = {F ⊆ X : a ∈ F} and
FA = {F ⊆ X : A ⊆ F}, then Pm(X,Fa) and Pm(X,FA) are both Hausdorff but
elements of Fa and FA are not necessarily dense. In fact Pm(X,Fa) = R with
usual topology and Pm(X,FA) = Cm(A) which are Hausdorff. If we also consider
a fixed z-ultrafilter Ap for some p ∈ X , again we have Pm(X,Ap) = R.

In the above remark, Fa and Ap are in fact a fixed ultrafilter and a fixed z-
ultrafilter respectively. We observe in the following result that not only for a fixed
ultrafilter but for each ultrafilter F, fixed or free, Pm(X, F) is Hausdorff.

Proposition 1.3. If F is an ultrafilter of subsets of X , then Pm(X, F) is Haus-

dorff.

Proof: Let f, g ∈ Pm(X, F) and f 6= g. Hence for every F ∈ F, there exists x ∈ F
such that f(x) 6= g(x). This implies that the set A = {x ∈ D(f) ∩ D(g) : f(x) 6=
g(x)} is a subset of X which intersects each member of F. But F is an ultrafilter,
then A ∈ F and therefore |f−g| is unit on A, consequently |f−g| ∈ P+(X, F). Now

N(f, |f−g|
2 ) and N(g, |f−g|

2 ) are disjoint open balls containing f and g respectively,
i.e., Pm(X, F) is Hausdorff. �

Using above propositions, we observe that for a filter F of subsets of X with a
base consisting dense sets and also for an ultrafilter F of subsets of X , Pm(X, F)
is completely regular because, it is a topological ring.

An element f ∈ P (X, F) is called bounded if f is bounded on some member of
F contained in D(f). We denote by P ∗(X, F), the set of all bounded elements of
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P (X, F). For example, if X = R and we consider the Frechet filter F with base
{[a,∞) : a ∈ R}, then the identity function i ∈ P (X, F) is not bounded. In fact, in
this case P ∗(X, F) = {f ∈ C(R) : f |[a,∞) is bounded for some a ∈ R}. P ∗(X, F)
may coincide with P (X, F). For instance if U is the filter of neighborhoods of 0 in
R, then P ∗(R, U) = P (R, U) for, if f ∈ C(G) for some G ∈ U, there exists ε > 0
such that [−ε, ε] ⊆ G and since f is bounded on [−ε, ε], f ∈ P ∗(X, U). Clearly,
P ∗(X, F) is a subring of P (X, F). We also observe in the following result that
P ∗(X, F) is a closed-open subset of Pm(X, F).

Proposition 1.4. P ∗(X, F) is a closed-open subset of Pm(X, F). In particular,

Q∗(X) (q∗(X)) is a closed-open subset of Qm(X) (qm(X)).

Proof: It is evident that whenever f ∈ P ∗(X, F), then N(f, 1) ⊆ P ∗(X, F) and
whenever f /∈ P ∗(X, F), then N(f, 1) ∩ P ∗(X, F) = ∅. �

Remark 1.5. Whenever P (X, F) = P ∗(X, F), then the members of F are not
necessarily pseudocompact. For example, if U is the filter of neighborhoods of 0
on R, then clearly (−ε, ε) ∈ U is not pseudocompact but we have already observed
that P (R, U) = P ∗(R, U). In the case where F is a filter with dense elements, if
f ∈ F is bounded, then f is bounded on some dense subset of X contained in D(f)
which implies that f is bounded on D(f). Hence, in this case, P (X, F) = P ∗(X, F)
if and only if each member of F is pseudocompact.

2. Pa-spaces

For every infinite cardinal number a, we define

ra(X) = {g ∈ r(X) : |Z(g)| ≤ a}.

We also define rf (X) = {g ∈ r(X) : |Z(g)| < ∞}. Corresponding to each infinite
cardinal number a, we consider a filter Fa on X with base Ba = {X \ Z(g) : g ∈
ra(X)} and we denote by Ff , a filter on X with base Bf = {X\Z(g) : g ∈ rf (X)}.
Whenever |X | = b, then clearly rb(X) = r(X) and for any infinite cardinal
numbers a ≤ d ≤ b, we have the following chain

U(X) ⊆ rf (X) ⊆ ra(X) ⊆ rd(X) ⊆ rb(X) = r(X).

For each infinite cardinal number a, we have a ring P (X, Fa) which is a ring
of quotients of C(X) since, C(X) ⊆ P (X, Fa) ⊆ q(X) ⊆ Q(X). As we de-
fined before, we consider the m-topology on P (X, Fa) by taking sets of the form
Na(f, e) = {g ∈ P (X, Fa) : |f − g| < e on some F ∈ Fa} as its base, where
f ∈ P (X, Fa) and e ∈ P+(X, Fa). P (X, Fa) with the m-topology is denoted by
Pm(X, Fa). For an infinite cardinal number a, we also define a topology, namely
ra-topology, on C(X) by taking sets of the form

Ra(f, u) = {g ∈ C(X) : |f(x) − g(x)| < u(x), ∀x ∈ coz(u)} , u ∈ r+
a (X), f ∈ C(X)

as a base for the topology, where r+
a (X) is the set of all nonnegative elements

of ra(X). We denote C(X) with ra-topology by Cra
(X). It is easy to see that
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Cra
(X) is a topological ring and whenever a ≥ |X |, then the ra-topology coincides

with the r-topology and Pm(X, Fa) = qm(X).
We call X a Pa-space if each member of Ba is C-embedded in X . In fact

a space X is a Pa-space if every dense cozero-set X \ Z(f) with |Z(f)| ≤ a is
C-embedded in X . We also call a space X a Pf -space if every cofinite dense
cozero-set is C-embedded in X . Note that a similar notation namely “Fα-space”
is used in the literature to refer to various sets and C∗-embedding, see [2] and [13]
for instance. To give some characterizations of Pa-spaces, we need the following
lemmas.

Lemma 2.1. If F is a filter of dense subsets of X , then P (X, F) = C(X) if and

only if each member of F is C-embedded in X .

Proof: If P (X, F) = C(X) and F ∈ F, then for each f ∈ C(F ), there exists
g ∈ C(X) such that f ∼ g, i.e., f = g on some E ∈ F contained in F . Since
E is dense in F , we have f = g on F which means that g is an extension of f
in C(X), i.e., F is C-embedded. Conversely, suppose that every element of F

is C-embedded. If f ∈ P (X, F), then f ∈ C(F ) for some F ∈ F and hence by
our hypothesis, there exists g ∈ C(X) such that f = g on F . This shows that
f ∼ g ∈ C(X), i.e., P (X, F) = C(X). �

Lemma 2.2. If a < b are two infinite cardinal numbers, then the following

statements are equivalent.

(1) ra(X) = rb(X).
(2) Cra

(X) = Crb
(X).

(3) If f ∈ C(X) and a < |Z(f)| ≤ b, then intXZ(f) 6= ∅.

Proof: Clearly (1) implies (2). Now let (2) holds, we show that rb(X) ⊆ ra(X)
(ra(X) ⊆ rb(X) is evident). Suppose, on the contrary, that rb(X) * ra(X), hence
there exists r ∈ rb(X) \ ra(X). Since Rb(0, |r|) is a neighborhood of 0 in Crb

(X)
and hence in Cra

(X), there exists t ∈ r+
a (X) such that Ra(0, t) ⊆ Rb(0, |r|). But

t
2 ∈ Ra(0, t) ⊆ Rb(0, |r|) implies that t(x)

2 < |r(x)| for each x ∈ coz(r). Since

coz(r) is dense in X , we have t(x)
2 ≤ |r(x)| for each x ∈ X , hence Z(r) ⊆ Z(t).

Therefore |Z(r)| ≤ |Z(t)|. But r ∈ rb(X) implies that |Z(r)| ≤ b, intXZ(r) = ∅
and r /∈ ra(X) implies that |Z(r)| > a for intXZ(r) = ∅. Hence a < |Z(r)| ≤ b

which contradicts |Z(r)| ≤ |Z(t)| ≤ a. Hence rb(X) ⊆ ra(X) and we are through.
Now we show that (1) and (3) are also equivalent. Let (1) apply and a < |Z(f)| ≤
b. If intXZ(f) = ∅, then f ∈ rb(X) = ra(X) which implies that |Z(f)| ≤ a, a
contradiction. Conversely suppose that (3) holds and r ∈ rb(X). Then |Z(r)| ≤ b

and intXZ(r) = ∅. If r /∈ ra(X), then |Z(r)| > a for intXZ(r) = ∅. Therefore
a < |Z(r)| ≤ b and intXZ(r) = ∅ which contradicts part (3). �

Corollary 2.3. For an infinite cardinal number a, the following statements hold.

(1) U(X) = ra(X) if and only if every nonempty zero-set with cardinal num-

ber less than or equal to a has a nonempty interior.



68 F. Azarpanah, M. Paimann, A.R. Salehi

(2) ra(X) = r(X) if and only if every zero-set with cardinal number greater

than a has a nonempty interior.

Proposition 2.4. For an infinite cardinal number a, the following statements

are equivalent.

(1) U(X) = ra(X).
(2) Every nonempty Gδ-set with cardinal number less than or equal to a has

a nonempty interior.

(3) Every nonempty zero-set with cardinal number less than or equal to a is

regular closed.

(4) Cm(X) = Cra
(X).

(5) X is a Pa-space.

(6) C(X) = P (X, Fa).

Proof: Equivalence of parts (1), (2) and (3) is evident by Corollary 2.3. Part (1)
clearly implies part (4) and by Lemma 2.2, part (4) also implies part (1). Parts
(1) and (5) are also equivalent. In fact, if U(X) = ra(X), then using part (1)
of Corollary 2.3, X does not contain a dense cozero-set whose complement has
cardinal number less than or equal to a except X itself, so X is a Pa-space.
Conversely, let X be a Pa-space and g ∈ ra(X) \U(X). Hence 1

g
∈ C(coz(g)) and

Z(g) 6= ∅. This implies that 1
g

has no extension in C(X), a contradiction. Finally

parts (5) and (6) are equivalent by Lemma 2.1. �

By the following result, every compact F -space is a Pℵ0
-space.

Proposition 2.5. The following statements are equivalent.

(1) X is a Pℵ0
-space.

(2) X is a Pf -space.

(3) Every cofinite cozero-set in X is C-embedded.

(4) Every Gδ-point in X is an isolated point.

(5) Every countable Gδ-set in X consists entirely of isolated points.

Proof: Clearly (1) implies (2) and (2) implies (3). Part (3) also implies (4),
in fact whenever {x} is a Gδ-set, then it is a zero-set, say Z(f). If x is not an
isolated point, then 1

f
∈ C(X \Z(f)) has no extension in C(X), which contradicts

part (3). Now, suppose part (4) holds and G is a countable Gδ-set, say G =
{a1, a2, . . . , an, . . . }. We claim that each ai is an isolated point. Fix ai ∈ G.
For each j ∈ N \ {i}, take an open set Uj containing ai but not aj . Clearly
{ai} =

⋂
j∈N\{i} Uj ∩ G is a Gδ-point and hence ai is an isolated point, by our

hypothesis. Finally, if part (5) holds, by equivalence of parts (2) and (5) of
Proposition 2.4, X is a Pℵ0

-space. �

Corollary 2.6. Every cocountable (cofinite) dense cozero-set in X is C-embedded

if and only if every cocountable (cofinite) cozero-set in X is C-embedded.

Proof: If every cocountable dense cozero-set in X is C-embedded, then X is a
Pℵ0

-space. Now let coz(f) be cocountable (not necessarily dense), then Z(f) is
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a countable Gδ-set and hence each element of Z(f) should be an isolated point
by Proposition 2.5. Therefore Z(f) is open, i.e., coz(f) is a closed-open set and
hence it is C-embedded. �

Using Proposition 2.5 and Corollary 2.6, the following result is now evident.

Corollary 2.7. Every cofinite cozero-set in X is C-embedded if and only if every

cocountable cozero-set in X is C-embedded if and only if every Gδ-point in X is

an isolated point.

Example 2.8. By Proposition 2.5, every sequentially compact quasi F -space
is a Pℵ0

-space. Because, every Gδ-point in a sequentially compact space has a
countable base and every point in a quasi F -space with a countable base is an
isolated point, see Proposition 5.5 in [3]. Thus, if X is a quasi F -space, then βX
is also a quasi F -space, by Theorem 5.1 in [3], so it is a Pℵ0

-space. In particular,
βΣ is a Pℵ0

-space, whereas it is not an almost P -space, see 4M in [6] for structure
of Σ. More generally, for an infinite cardinal number a, let X be a Pa-space
which is not an almost P -space. The largest cardinal number α exists such that
U(X) = rα(X). Now consider a cardinal number β with α < β ≤ |X |, then
U(X) 6= rβ(X) and this shows that X is a Pα-space but not a Pβ-space. By
part (4) of Proposition 2.5, we also note that X is a Pℵ0

-space if and only if υX
is.

Whenever a space X is a P|X|-space, then U(X) = r(X), by Proposition 2.4 and
hence X will be an almost P -space. The converse is also true, i.e., every almost P -
space X is a Pa-space for each infinite cardinal number a. Using Proposition 2.4,
whenever β > α and X is a Pβ-space, then it is also a Pα-space, but we already
observed that the converse is not true. For another example, take N∗ = βN \ N.
By Theorem 3.3 in [15], the cardinality of each infinite zero-set in N∗ is 2c (note,
every zero-set in N∗ is closed in βN for N∗ is closed in βN). On the other hand,
every nonempty zero-set in N has a nonempty interior, by Corollary 3.27 in [15],
i.e., N∗ is an almost P -space. Since every finite subset of N∗ has an empty interior,
the cardinality of every nonempty zero-set in N∗ is 2c. Now consider the space
X = R × N∗ and let Z be a zero-set in N∗. Then {0} × Z is a zero-set in X and
|{0} × Z| = 2c. Since intX({0} × Z) = ∅, we have U(X) 6= r2c(X) which means
that X is not a P2c -space. But X has no zero-sets with c points and this implies
that U(X) = rc(X), i.e., X is a Pc-space.

In the above examples, for the space X = R × N∗, we observed that U(X) =
rc(X) $ r2c(X) = r(X), i.e., X is a Pc-space but not a P2c -space. The space R
of real numbers is not even Pf -space and moreover, we have the ascending chain
U(R) $ rf (R) $ rℵ0

(R) $ rℵ1
(R) = r(R) by Lemma 2.2. In fact nonempty finite

subsets of R are zero-sets with empty interior, the set of natural numbers N is an
infinite countable zero-set in R with empty interior, and the Cantor set in R is
an uncountable zero-set with empty interior. In the following example, using an
appropriate space X , we extend this ascending chain with any arbitrary length.
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Example 2.9. For each infinite cardinal number α, we are going to construct
an ascending chain with length α of rings of quotients of C(X) contained in the
classical ring of quotients q(X) of C(X). To see this, let S be an ascending
chain of cardinal numbers with length α and for each a ∈ S, take a set Aa with
cardinality a. Put T =

⋃
a∈S Aa. Let Y = N∪{σ} be a one-point compactification

of N, Yt = N ∪ {σt} for each t ∈ T , be a copy of Y and consider the free union

X =
⋃̇
t∈TYt. Clearly Nt = {σt : t ∈ T } is the set of all non-almost P -points of

X which is a zero-set in X . Assume that |Nt| = δ. Hence every zero-set with
empty interior has at most the cardinality δ (in the other words, if |Z(f)| > δ,
then intXZ(f) 6= ∅) and this means that rδ(X) = r(X). Since every subset of
Nt is also a zero-set in X for each a ∈ S, we may have a zero-set in X with
cardinality a whose interior is empty (for example {σa : a ∈ Aa}). This implies
that for a, b ∈ S and a < b < δ, we have ra(X) $ rb(X) $ rδ(X) = r(X).
Therefore {ra(X) : a ∈ S} is an ascending chain with length α. Now using this,
P (X, Fa) $ P (X, Fb) $ P (X, Fδ) = q(X) and hence {P (X, Fa) : a ∈ S} is an
ascending chain with length α of rings of quotients of C(X) contained in q(X).
Moreover, {Cra

(X) : a ∈ S} is also an ascending chain with length α.

3. Connectedness of ring of quotients Pm(X, Fa) of C(X)

In [1], the authors have shown that the component of 0 in Cm(X) is the ideal
Cψ(X) consisting of all functions in C(X) with pseudocompact support, see [11]
for more details about the ideal Cψ(X). The set

{f ∈ C(X) : fg is bounded for each g ∈ C(X)}

is a different characterization of Cψ(X) which is given in [9]. This is equivalent to
saying that Cψ(X) is the set of all functions f ∈ C(X) such that fe is bounded
for each e ∈ U+(X). In imitation of [1], it seems that the component of 0 in
Pm(X, F) should be of the form

Pψ(X, F) = {f ∈ P (X, F) : ft is bounded, ∀ t ∈ P (X, F)}

= {f ∈ P (X, F) : fe is bounded, ∀ e ∈ P+(X, F)}.

We show that Pψ(X, F) is indeed the component of 0 in Pm(X, F).
By the definition of Pψ(X, F), we have Pψ(X, F) ⊆ P ∗(X, F). Moreover, for

a filter F with dense elements, the ideal Pψ(X, F) is in fact the set of functions
in Pm(X, F) with pseudocompact support, in the sense that f ∈ Pψ(X, F) if and
only if f |A ∈ Cψ(A), for all A ∈ F contained in D(f). In fact if f ∈ Pψ(X, F)
and D(f) ⊇ A ∈ F, then for each e ∈ C(A), fe is bounded on some B ∈ F and
B ⊆ A∩D(f) = A. But B is dense in A, so fe is bounded on A and hence f |Ae is
bounded which means that f |A ∈ Cψ(A). Conversely, suppose that f ∈ P (X, F)
such that f |A ∈ Cψ(A), for all A ∈ F contained in D(f) ∈ F. If t ∈ P (X, F), then
f |D(f)∩D(t) ∈ Cψ(D(f)∩D(t)). So ft is bounded on D(f)∩D(t) and this means
that ft is bounded, i.e., f ∈ Pψ(X, F).
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Using the characterization of the component of 0 in Pm(X, F), we may charac-
terize the connectedness of some rings of quotients of C(X). First, it is easy to
see that Pψ(X, F) is an ideal of P (X, F), we cite this result without proof.

Proposition 3.1. For a filter F on X , Pψ(X, F) is an ideal of P (X, F).

To characterize the components of Pm(X, F), we need the following basic
lemma.

Lemma 3.2. If f ∈ P (X, F), then the function ϕf : R → Pm(X, F) defined by

ϕf (r) = rf for each r ∈ R, is continuous if and only if f ∈ Pψ(X, F).

Proof: Let f ∈ Pψ(X, F), e ∈ P+(X, F), and r ∈ R. Hence 1
e
∈ P+(X, F)

and therefore, f
e

is bounded. Suppose that | f
e
| ≤ M for some integer M . Now,

ϕf (r − 1
M

, r + 1
M

) ⊆ N(rf, e). In fact, whenever s ∈ R and |s − r| < 1
M

, then

|sf − rf | = |s − r||f | < 1
M
|f | ≤ e. Conversely, let f ∈ P (X, F) and ϕf is

continuous, so it is continuous at 0. Hence for each g ∈ P (X, F), there exists
a positive real number ε such that ϕf (−ε, ε) ⊆ N(0, 1

1+|g| ). This implies that

| ε2f | < 1
1+|g| on some D ∈ F contained in D(f)∩D(g). Thus |fg| ≤ |f(1+|g|)| < 2

ε

on D ∈ F, i.e., fg is bounded and therefore f ∈ Pψ(X, F). �

Proposition 3.3. The ideal Pψ(X, F) is the component of 0 in Pm(X, F).

Proof: First by Lemma 3.2, the function ϕf : R → Pm(X, F) is continuous for
each f ∈ Pψ(X, F). Hence ϕf (R) is connected for each f ∈ Pψ(X, F). But
Pψ(X, F) =

⋃
f∈Pψ(X,F) ϕf (R) implies that Pψ(X, F) is connected (note that⋂

f∈Pψ(X,F) ϕf (R) 6= ∅, in fact it contains 0). Next suppose that J is the compo-

nent of 0 in Pm(X, F), so J is an ideal of P (X, F). We show that J ⊆ Pψ(X, F).
Let there exist f ∈ J \ Pψ(X, F). Hence there is t ∈ P (X, F) such that ft is not
bounded, i.e., ft /∈ P ∗(X, F). Now consider the sets J∩P ∗(X, F) and J\P ∗(X, F).
By Proposition 1.4, these two sets are open in J and since 0 ∈ J ∩ P ∗(X, F) and
ft ∈ J \P ∗(X, F), they are nonempty disjoint open subsets of J . This implies that
J is disconnected, a contradiction. Therefore, J ⊆ Pψ(X, F) and this means that
Pψ(X, F) is the largest connected ideal containing 0, so Pψ(X, F) is the component
of 0 in Pm(X, F). �

Remark 3.4. The ideal Pψ(X, F) is the quasicomponent of 0 in Pm(X, F) as well.
We recall that the intersection of all closed-open subsets of a space X containing
x ∈ X is called the quasicomponent of x. It is well known that quasicomponent
of x contains the component of x. Hence whenever the set K is considered as
the quasicomponent of 0 in Pm(X, F), then Pψ(X, F) ⊆ K. We show that K ⊆
Pψ(X, F) also holds. First, for each e ∈ P+(X, F), take Ae = {f ∈ P (X, F) :
ef is bounded }. Next each Ae is a closed-open subset of P (X, F), in fact for every
f ∈ Ae, we have N(f, 1

e
) ⊆ Ae and for each f /∈ Ae, we have N(f, 1

e
) ∩ Ae = ∅.

But K ⊆
⋂
e∈P+(X,F) Ae = Pψ(X, F) and we are through.

Part (b) of the following corollary is also given in Corollary 3.3 of [1].
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Corollary 3.5. (a) The ideal qψ(X) = {f ∈ q(X) : ef is bounded, ∀ e ∈
q(X)} is the component of 0 in qm(X) and is the quasicomponent of 0
in qm(X) as well.

(b) If F = {X}, then Pψ(X, F) = Cψ(X) is the component and the quasi-

component of 0 in Pm(X, F) = Cm(X).

To prove the main theorem of this section, we also need the following result
which shows that Cra

(X) is in fact a subspace of Pm(X, Fa).

Proposition 3.6. For any infinite cardinal number a, the identity function i :
Cra

(X) → Pm(X, Fa) carries Cra
(X) homeomorphically onto C(X) as a subspace

of Pm(X, Fa).

Proof: Let f ∈ Cra
(X) and e ∈ P+(X, Fa), then 0 < e ∈ C(coz(r)) for some

r ∈ r+
a (X). Without loss of generality, we let e be bounded, i.e., e ∈ C∗(coz(r)).

Now define

s(x) =

{
(1 ∧ r)(x)e(x), x ∈ X \ Z(r),

0, x ∈ Z(r).

Clearly s ≥ 0 and coz(s) = coz(r). To see that s ∈ r+
a (X), we must show that s is

continuous. To see this, it is enough to show that s is continuous at each x ∈ Z(r).
Since e ∈ C∗(coz(r)), there exists a positive number k such that |e(y)| < k, for
all y ∈ X \ Z(r). On the other hand, r is continuous at x ∈ Z(r), so given ǫ > 0,
there exists a neighborhood G of x in X such that |r(y)| < ǫ

k
, for all y ∈ G.

Therefore |s(y) − s(x)| = |s(y)| ≤ |e(y)r(y)| < k|r(y)| < ǫ for all y ∈ G ∩ coz(r),
i.e., s is continuous at x.

We claim that i(Ra(f, s)) ⊆ Na(f, e) and this means that i is continuous. In
fact whenever g ∈ i(Ra(f, s)), then g ∈ Ra(f, s) which implies that |g − f | < s
on coz(s) = coz(r). But s < e implies that |g − f | < e on coz(r) = D(e), i.e.,
g ∈ Na(f, e). Now we show that i : Cra

(X) → C(X) is open, where C(X) is
the subspace of Pm(X, Fa). To see this, it is enough to prove that i(Ra(f, r)) is
open in C(X) as a subspace of Pm(X, Fa) for each f ∈ C(X) and r ∈ r+

a (X). Let
g ∈ i(Ra(f, r)), then g ∈ Ra(f, r) which implies that |g − f | < r on coz(r). Since
coz(r−|f−g|) ⊇ coz(r), we have Na(f, r−|f−g|)∩C(X) ⊆ i(Ra(f, r)). In fact if
h ∈ Na(f, r−|f −g|)∩C(X), then |f −h| < r−|f −g| on coz(r−|f −g|)∩D(f)∩
D(h) = coz(r − |f − g|). Consequently, |g − f | < r on coz(r − |f − g|) and hence
on coz(r), i.e., h ∈ i(Ra(f, r)) (note that r − |f − g| ∈ r+

a (X) for coz(r − |f − g|)
contains coz(r) which is dense). �

As a consequence of Proposition 3.6, we have the following result which states
that Cr(X) is a subspace of qm(X).

Corollary 3.7. The identity function i : Cr(X) → qm(X) carries Cr(X) homeo-

morphically onto C(X) as a subspace of qm(X).

Theorem 3.8. For each infinite cardinal number a, the following statements are

equivalent.
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(a) Cra
(X) is connected.

(b) Pm(X, Fa) is connected.

(c) X is a pseudocompact Pa-space.

Proof: If Cra
(X) is connected, then C(X) as a subspace of Pm(X, Fa) is con-

nected by Proposition 3.6. Since 0 ∈ C(X), we have C(X) ⊆ Pψ(X, Fa) for
Pψ(X, Fa) is the largest connected set in Pm(X, Fa) containing 0. Hence 1 ∈
Pψ(X, Fa), i.e., Pψ(X, Fa) = Pm(X, Fa), so Pm(X, Fa) is connected.

Now suppose that Pm(X, Fa) is connected, then Pψ(X, Fa) = P (X, Fa). But
Pψ(X, Fa) ⊆ P ∗(X, Fa) implies that P (X, Fa) = P ∗(X, Fa) and hence X is a
pseudocompact space by Remark 1.5. To see that X is a Pa-space, let r ∈ ra(X),
hence 1

r
∈ C(coz(r)). Therefore 1

r
∈ P (X, Fa) = P ∗(X, Fa) which implies that 1

r

should be bounded, so r is unit, i.e., U(X) = ra(X). Now by Proposition 2.4, X
is a Pa-space.

Finally, suppose that X is a pseudocompact Pa-space. Since X is a Pa-space,
Cra

(X) = Cm(X) by Proposition 2.4. Now pseudocompactness of X implies that
Cm(X) is connected by Proposition 3.12 in [1] and this shows that Cra

(X) is also
connected. �

Corollary 3.9. If α ≤ β are two cardinal numbers and Pm(X, Fβ) (Crβ (X)) is

connected, then Pm(X, Fα) (Crα(X)) is also connected.

The following proposition states another characterization for connectedness
of Pm(X, F), where F is an arbitrary filter on X . Using this proposition and
Remark 1.5, whenever every member of a filter F is dense, then Pm(X, F) is
connected if and only if each member of F is pseudocompact.

Proposition 3.10. For each filter F, Pm(X, F) is connected if and only if

P (X, F) = P ∗(X, F).

Proof: If Pm(X, F) is connected, then clearly P (X, F) = P ∗(X, F), by Proposi-
tion 1.4. Conversely, let P (X, F) = P ∗(X, F) and f ∈ P (X, F) = P ∗(X, F). Since
each t ∈ P (X, F) is bounded, ft is bounded, i.e., f ∈ Pψ(X, F). This means that
P (X, F) = Pψ(X, F) and hence Pm(X, F) is connected. �

Corollary 3.11. The following statements are equivalent.

(a) Cr(X) is connected.

(b) qm(X) is connected.

(c) X is a pseudocompact almost P -space.

(d) q(X) = q∗(X) = C∗(X).
(e) Every dense cozero-set in X is pseuodocompact.

By the following lemma and proposition, we observe that whenever Cm(X)
is totally disconnected (equivalently, if βX \ υX is dense in βX , see [1]), then
Pm(X, Fa) for each infinite cardinal number a, is totally disconnected. In parti-
cular, whenever Cm(X) is totally disconnected, then so is qm(X).

Lemma 3.12. Every f ∈ Pψ(X, Fa) has an extension in Cψ(X) ⊆ C(X).
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Proof: Let f ∈ Pψ(X, Fa). Then f ∈ C(coz(r)) for some r ∈ ra(X). We define

f̂(x) =

{
f(x), x ∈ X \ Z(r),

0, x ∈ Z(r).

Since f ∈ Pψ(X, Fa), f 1
|r| is bounded on coz(r) and hence there exists a positive

integer M such that | f
r
| ≤ M on coz(r). To prove that f̂ is continuous, it is

enough to show that f̂ is continuous at each x ∈ Z(r). Let x0 ∈ Z(r). Since
r is continuous at x0, given ε > 0, there exists an open set G containing x0

such that |r(x)| < ε
M

for each x ∈ G. Now, for each x ∈ coz(r) ∩ G, we have

|f̂(x) − f̂(x0)| = |f̂(x)| = |f(x)| = | f(x)
r(x) ||r(x)| < M ε

M
= ε, this means that f̂

is continuous at x0. On the other hand, if u is a positive unit in C(X), clearly

fu|coz(r) is bounded and consequently f̂u is bounded, i.e. f̂ ∈ Cψ(X). �

Proposition 3.13. For each infinite cardinal number a, Pψ(X, Fa) ⊆ Cψ(X) ⊆
P (X, Fa).

Proof: If f ∈ Pψ(X, Fa), then f ∈ C(coz(r)) for some r ∈ ra(X). Now define

f̂ as in the proof of above lemma. Since f̂ |coz(r) = f , we have f̂ ∼ f , hence

f ∼ f̂ ∈ Cψ(X). �

Corollary 3.14. Let Cm(X) be totally disconnected. Then Pm(X, Fa) for each

infinite cardinal number a, is totally disconnected. In particular, qm(X) is also

totally disconnected.

By the following result, whenever X is infinite, then the maximal ring of quo-
tients Q(X) of C(X) with the m-topology is never connected.

Proposition 3.15. Qm(X) is connected if and only if X is finite.

Proof: If X is finite, then the only open dense subset of X is X itself, hence
Qm(X) = Cm(X) = Rn for some positive integer n and clearly it is connected.
Conversely, let Qm(X) be connected, then by Proposition 3.10, Q∗(X) = Q(X)
and by 3.6 in [5], X should be finite. �

We conclude the article by introducing a ring of quotients of C(X)/Op, p ∈
X which is connected with the m-topology (Note, Op = {f ∈ C(X) : p ∈
intXZ(f)}). If µp is a neighborhood system at p, we show in the following propo-
sitions that the ring P (X, µp) is a ring of quotients of the ring C(X)/Op and
Pm(X, µp) is connected.

Proposition 3.16. Let µp be a neighborhood system at p ∈ X . Then P (X, µp)
is a ring of quotients of C(X)/Op.

Proof: Let ϕ : C(X)/Op → P (X, µp) be defined by ϕ(f + Op) = [f ], where
f ∈ C(X) and [f ] is the equivalent class of f in P (X, µp). We show that ϕ is
an embedding. Clearly ϕ is a homomorphism. For injectivity of ϕ, let ϕ(f +
Op) = ϕ(g + Op), where f, g ∈ C(X). Hence [f ] = [g] implies that f ∼ g, i.e.,
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f = g on some B ∈ µp or equivalently, B ⊆ Z(f − g). Hence f − g ∈ Op, i.e.,
f + Op = g + Op and ϕ is injective. This means that C(X)/Op ⊆ P (X, µp). Now
suppose that 0 6= f ∈ P (X, µp), hence f ∈ C(B), for some B ∈ µp. Since f 6= 0,
p /∈ intBZB(f) = intXZB(f), where ZB(f) is the zeros of f in B, so there exists
g ∈ C(X) such that X \ B ⊆ intXZ(g) and g(p) = 1. We define

f̂ g(x) =

{
f(x)g(x), x /∈ intXZ(g),

0, x ∈ intXZ(g).

We show that f̂ g ∈ C(X). To see this, it is enough to show that f̂ g is continuous

at each x /∈ intXZ(g). But if x /∈ intXZ(g), then x ∈ B and f̂ g|B = fg|B
which is continuous on the open set B and hence at x ∈ B. Moreover p /∈

intXZ(f̂ g) for, if p ∈ intXZ(f̂ g), then there exists open set V containing p such
that V ⊆ ZB(f) ∪ Z(g). Therefore V ∩ g−1((1

2 , 3
2 )) ⊆ ZB(f) ∪ Z(g) implies that

V ∩g−1((1
2 , 3

2 )) ⊆ ZB(f) for V ∩g−1((1
2 , 3

2 ))∩Z(g) = ∅. But V ∩g−1((1
2 , 3

2 )) is an

open set containing p, hence p ∈ intXZ(f), a contradiction. Therefore f̂ g /∈ Op,

i.e., f̂ g + Op 6= 0 and f̂ g + Op ∈ C(X)/Op, so P (X, µp) is a ring of quotients of
C(X)/Op. �

Proposition 3.17. The ring of quotients P (X, µp) of C(X)/Op with the m-

topology is connected.

Proof: By Proposition 3.10, we must show that P (X, µp) = P ∗(X, µp). Let
f ∈ P (X, µp), hence f ∈ C(B) for some open set B ∈ µp. Take H = {x ∈ B :
|f(x)−f(p)| < 1}. Since H is open in B containing p and B is open in X , H ∈ µp.
But f is bounded on H ∈ µp and this implies that f is bounded. �
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