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A note on the centralizer

of topological isometric extensions

Artur Siemaszko

Abstract. The centralizer of a semisimple isometric extension of a minimal flow is de-
scribed.
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If S : X −→ X is a homeomorphism of a compact metric space X then a pair
(X,S) is called a compact metric flow . Such a homeomorphism “generates” a
continuous action of the group Z on X :

X × Z ∋ (x, n) 7−→ Sn(x) ∈ X.

A flow (X,S) is called minimal if for every closed subset F ⊂ X with S(F ) = F
either F = ∅ or F = X . Equivalently, (X,S) is minimal iff every orbit is dense
in X : cl{Sn(x) : n ∈ Z} = X for each x ∈ X .
Let us consider the following commutative diagram

(1)

X

ψ

��

ϕ

��
@

@
@

@
@

@
@

@

Y π
// Z

where X = (X,S), Y = (Y, T ), Z = (Z,U) are compact metric flows and ϕ is a
group (say G-) extension. In a case of Z being minimal, Y is called an isometric
extension of Z. As a straightforward corollary of Theorem 3.1 of [3] we have the
following.

Proposition 1. Assume that in (1) Z is minimal. Then every minimal subflow
of Y is an isometric extension of Z.

Proof: Let N ⊂ Y be a minimal subset. Take a minimal subset M ⊂ ψ−1(N).
By Theorem 3.1 of [3], there exists a closed subgroupH < G and a homomorphism
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φ : (M,S) −→ Z such that φ is an H-extension. Since for every x ∈ M , φ(x) =
ϕ(x) and obviously ψ(M) = N , we have the following commutative diagram

(M,S)

ψ|M
��

φ

""E
E

E
E

E
E

E
E

E

(N,T )
π|N

// Z

thus (N,T ) is an isometric extension of Z. �

Remark 1. In Theorem 3.1 of [3] Z is assumed to be a minimal rotation. Never-
theless, the arguments are valid for an arbitrary minimal flow.

Remark 2. If we assume that in (1) Y is semisimple, the above proposition
“allows” us to consider only isometric extensions of Z.

It is well-known that if in (1) Y is a minimal isometric extension of Z, then X
can be assumed to be minimal and one may easily verify that X is a K-extension
of Y, where K = {g ∈ G : ∀x∈X ψ(gx) = ψ(x)} and that π−1(z) is homeomorphic
to a homogeneous space G/K for every z ∈ Z.
We will be interested in special kinds of isometric extensions, which are factors

of “cocycle” extensions of minimal flows. Let Z = (Z,U) be a minimal flow and
α : Z −→ G be a continuous function (called a topological cocycle) with values in
a compact topological group. We define a homeomorphism Uα : Z×G −→ Z×G
by Uα(z, g) = (Uz, α(z)g). Of course (Z ×G,Uα) is a G-extension of Z. Now let
K < G be a closed subgroup. We define a homeomorphism UG,K,α : Z×G/K −→
Z×G/K by UG,K,α(z, gK) = (Uz, α(z)gK). Then, obviously, (Z×G/K,UG,K,α)
is an isometric extension of Z.

Remark 3. We can realize a group extension ϕ : X −→ Z as a topological cocycle
if and only if there is a continuous selector of the homomorphism ϕ (i.e. there
exists a continuous map j : Z −→ X such that ϕ ◦ j = IdZ).

Let us now consider the situation described by the following commutative di-
agram:

(Z ×G′, Uα′)

ψ′

��

ϕ′

))RRRRRRRRRRRRRRR

(Z ×G,Uα)

ϕ

vvmmmmmmmmmmmmmm

ψ

��

(Z ×G′/K ′, UG′,K ′,α′)
π′

// (Z,U) (Z ×G/K,UG,K,α)π
oo

where ϕ, ϕ′, π and π′ are projections onto the first coordinate, while ψ and ψ′

are natural projections along the second coordinate.



The centralizer of isometric extensions 139

Our first aim is to describe those homomorphisms

t : (Z ×G′/K ′, UG′,K ′,α′) −→ (Z ×G/K,UG,K,α),

which are lifting of some element of

Aut(Z) = {S : Z −→ Z| S is a homeomorphism and S ◦ U = U ◦ S}.

The methods used in the proof of the next proposition, as well as in the rest
of the paper, are adapted from the proof of Theorem 1.4 and other parts of [2].
The main difficulty is that, in contrary to the measure theoretical case, we do not
have at our disposal continuous selectors for a continuous map, in general. So for
instance not every group extension is a cocycle extension and we are not able to
use transform functions (which are constructed with use of measurable selectors)
to define some maps. Moreover, on various groups we have different topological
structures (in this paper, on the centralizer we consider the uniform topology,
while in the measure theoretical case the centralizer is furnished with the weak
topology).

Proposition 2. Assume that

t : (Z ×G′/K ′, UG′,K ′,α′) −→ (Z ×G/K,UG,K,α)

is a homomorphism between two minimal isometric extensions of Z for which
there exists s ∈ Aut(Z) such that s ◦ π′ = π ◦ t. Let K < G be irreducible (i.e. K
does not contain nontrivial normal subgroups of G). Then

(i) there exist a continuous group epimorphism l : G′ −→ G and a continuous
function f : Z −→ G such that

(2) t(z, g′K ′) = (s(z), f(z)l(g′)K),

l(K ′) ⊂ K and

(3) l(α′(z)) = f(Uz)−1α(sz)f(z);

(ii) l−1(K) = K ′ if and only if t is an isomorphism;
(iii) if l|K ′ is one-to-one then K ′ < G′ is irreducible;

(iv) if K ′ < G′ is irreducible and t is an isomorphism then l is one-to-one and
l(K ′) = K.

Proof: (i) First observe that (z, g′, sz, g)
J

7−→ (z, g′, g) establishes an isomor-
phism between ((ϕ′ × ϕ)−1Graph(s), Uα′ × Uα) and (Z × G′ × G,Uα′×α◦s),
where (α′ × α ◦ s)(z) = (α′(z), α ◦ s(z)). Let us take a Uα′×α◦s-minimal sub-

set M ⊂ J((ψ′ × ψ)−1Graph(t)) ⊂ J((ϕ′ × ϕ)−1Graph(s)).
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Let ρ : Z ×G′/K ′ −→ G/K be a continuous map determined by

(4) t(z, g′K ′) = (s(z), ρ(z, g′K ′)).

Since t is a homomorphism of flows, ρ satisfies

(5) ρ(Uz, α′(z)g′K ′) = α ◦ s(z)ρ(z, g′K ′).

From (5) it follows that a continuous map

Z ×G′ ×G ∋ (z, g′, g)
F
7−→ g−1ρ(z, g′K ′) ∈ G/K

is Uα′×α◦s-invariant. Therefore F |M is constant, hence there is k ∈ G such that

(6) ρ(z, g′K ′) = gkK

for every (z, g′, g) ∈ M . Without loss of generality we may assume that k = 1G,
for if k 6= 1G, replace α, M and t by α1(z) = kα(z)k−1, M1 = {(z, g′, kgk−1) :
(z, g′, g) ∈M} and t1(z, g

′K ′) = (s(z), kgk−1K) if t(z, g′K ′) = (z, gkK), respec-
tively. Then all corresponding objects are isomorphic and ρ1 : Z×G

′/K ′ −→ G/K
(defined as above for t1) satisfies ρ1(z, g

′K ′) = gK for all (z, g′, g) ∈M1.
Put H = {(g′, g)|M(g′, g) =M}. Then H is a closed subgroup of G′ ×G. �

Theorem 3 ([3, Theorem 3.1]). The flow (M,Uα′×α◦s) is an H-extension of Z.

Now let NG′ = {g′ ∈ G′ : (g′, 1G) ∈ H} and NG = {g ∈ G : (1G′ , g) ∈ H}.
Both NG′ and NG are closed normal subgroups of H (by the assumption of
minimality, H has full projections onto both coordinates).

Lemma 4 ([3, Lemma 3.4]). There exists a continuous group homomorphism
ξ : G′/NG′ −→ G/NG such that

H =
⋃

g′∈G′

τ ′
−1
(g′NG′)× τ−1(ξ(g′NG′)),

where τ ′ : G′ −→ G′/NG′ and τ : G −→ G/NG are natural homomorphisms.

Proof: Let us take k ∈ NG. For each (z, g
′, g) ∈ M , (z, g′, gk) ∈ M since

(1G′ , k) ∈ H . By the choice of M , we have t(z, g′K ′) = (s(z), gK) = (s(z), gkK),
hence k ∈ K. Thus NG < K, hence by irreducibility of K < G, NG = {1G}. It
follows that if l = ξ ◦ τ ′ then H = {(g′, l(g′)) : g′ ∈ G′}. Now put f : Z −→ G,

(7) f(z) = gl(g′)−1,
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if (z, g′, g) ∈ M . Observe that if (z, g′, g), (z, g′1, g1) ∈ M then (g′−1g′1, g
−1g1) ∈

H and since l is a group homomorphism, f is well-defined. Obviously f is con-
tinuous. Therefore (4), (6) (with k = 1G) and (7) give (2). Also, by (7) and the
invariance of M , we have (3).
Now take k′ ∈ K ′. Find z ∈ Z and k ∈ K such that (z, k′, k) ∈M . Then

(s(z), f(z)K) = t(z,K ′) = t(z, k′K ′) = (s(z), f(z)l(k′)K)

and thus l(k′) ∈ K. Therefore l(K ′) ⊂ K.
(ii) If t is an isomorphism and g′ ∈ l−1(K) then we have

t(z, g′K ′) = (s(z), f(z)l(g′)K) = (s(z), f(z)K) = t(z,K ′),

hence g′ ∈ K ′.

Now if l−1(K) = K ′ and t(z, g′K ′) = t(z1, g
′
1K

′) then z = z1 and l(g
′−1g′1) ∈

K, hence g′−1g′1 ∈ K ′.
Now (iii) and (iv) are obvious. �

Given a flow (Z,U), by C(Z,U) (C(U) for short, if the phase space Z is
established) let us denote the centralizer of (Z,U), i.e. the set of all continuous
transformations from Z onto Z which commute with U . If we endow the subset
Aut(Z) = Aut(U) ⊂ C(Z,U) of all invertible elements with the topology of
uniform convergence (we denote the closure operation in this topology by “cl”),
it becomes a Polish group.
As an immediate consequence of the above proposition we have the following.

Proposition 5. Let (Z ×G/K,UG,K,α) be a minimal isometric extension of Z.
Then every lift s̃ ∈ C(UG,K,α) of s ∈ Aut(Z) is of the form

s̃(z, gK) = sf,l(z, gK) = (s(z), f(z)l(g)K),

where f : Z −→ G is a continuous function and l : G −→ G is a continuous group
epimorphism such that l(K) ⊂ K and

(8) l(α(z)) = f(Uz)−1α(sz)f(z).

Moreover sf,l is invertible if and only if so is l. In such a case l(K) = K.

Denote Adk : G −→ G, Adk(g) = k−1gk and NG(K) = {g ∈ G : g−1Kg =
K}.

Corollary 6. (i) Every s ∈ Aut(Z) which can be lifted to C(UG,K,α) can also
be lifted to C(Uα).

(ii) If Z is a minimal rotation then every element of C(UG,K,α) is a lift of
some s ∈ Aut(Z).
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(iii) If Z is a minimal rotation and all elements of C(Uα) are invertible then
so are all elements of C(UG,K,α).

(iv) If Ĩd ∈ C(UG,K,α) is a lift of IdZ then

Ĩd(z, gK) = (z, gkK) = (IdZ)k,Adk
(z, gK),

where k ∈ NG(K).
(v) All lifts of the identity are invertible.
(vi) If s, s−1 ∈ Aut(Z) and s, s−1 can both be lifted to C(UG,K,α) then all

lifts of s are invertible.

Proof: One can easily check that (i), (ii) and (iii) follow. To show (iv) put

Ĩd = (IdZ)f,l and observe that, by (8) (with s = IdZ), a continuous map Z×G ∋

(z, g) 7−→ g−1f(z)l(g) ∈ G is Uα-invariant, hence constant. Thus there exists
k ∈ G such that for every (z, g) ∈ Z ×G

(9) f(z)l(g) = gk.

Putting g = 1G in (9), we get f(z) = k for every z ∈ Z and then l(g) = k−1gk
for each g ∈ G, so that l = Adk. Since Adk is invertible, we immediately have
that k ∈ NG(K).
Now (v) and (vi) follow from (iv) and Proposition 5. �

Remark 4. Proposition 5 generalizes some results of Section 3 of [3] and Sec-
tion 2 of [4] where the case of group extensions (instead of isometric extensions)
is considered.

Now put

LK(U,α) = {s ∈ Aut(Z) : s, s−1 can be lifted to C(UG,K,α)},

C̃(UG,K,α) = {s̃ ∈ C(UG,K,α) : s̃ is a lift of some s ∈ LK(U,α)}.

From Corollary 6(vi) it follows that the above sets are groups. Notice also that

C̃(UG,K,α) is a closed subgroup of Aut(UG,K,α) (from Proposition 5 it follows

that s̃ ∈ C̃(UG,K,α) iff the factor Z is invariant under s̃).

Let us define σ : NG(K)/K −→ C̃(UG,K,α) by σ(kK) = Idk,Adk
. We easily

see that σ is an injective group homomorphism.
Using Proposition 5 define a map πK : C̃(UG,K,α) −→ Aut(Z) by πK(sf,l) = s,

which is a continuous group homomorphism. Moreover, by Corollary 6(iv),
Im(σ) = Ker(πK), hence the image of σ is a closed subgroup. If we endow
NG(K)/K with the quotient topology, σ becomes a continuous injective homo-
morphism between Polish groups. Therefore σ is open.
On LK(U,α) = C̃(UG,K,α)/Ker(πK) consider the quotient topology and call it
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the LK -topology. By [1], LK(U,α) furnished with the LK -topology becomes a
Polish group. Notice also that the LK -topology is stronger than the uniform
topology on Aut(Z) restricted to LK(U,α).
We have constructed the following short exact sequence of Polish topological

groups.

(10) 1 −→ NG(K)/K
σ

−→ C̃(UG,K,α)
π
K−→ LK(U,α) −→ 1.

Proposition 7. If Aut(Z) = cl{Un : n ∈ Z} = LK(U,α), then

C̃(UG,K,α) = cl{σ(kK) ◦ (UG,K,α)
n : n ∈ Z, k ∈ NG(K)}.

Proof: Since Aut(Z) = LK(U,α) the LK -topology and uniform topology are
equal. To end the proof notice that, by Corollary 6(iv),

π−1K ({U
n : n ∈ Z}) = {σ(kK) ◦ (UG,K,α)

n : n ∈ Z, k ∈ NG(K)}.

Since the uniform topology on Aut(Z) is equal to the quotient topology (with
respect to Ker(πk)), the pre-image of the dense in Aut(Z) set {U

n : n ∈ Z} is
dense in C̃(UG,K,α). �

Corollary 8. Let Z be a minimal rotation. If K 6= {1G} and K < G is irre-
ducible, then LK(U,α) 6= C(U).

Proof: Recall that an arbitrary minimal flow Z is a rotation iff Aut(Z) is
compact, notice that NG(K)/K is compact and use (10) to finish the proof. �
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