A d.c. C^{1} function need not be difference of convex C^{1} functions

David Pavlica

Abstract

In [2] a delta convex function on \mathbb{R}^{2} is constructed which is strictly differentiable at 0 but it is not representable as a difference of two convex function of this property. We improve this result by constructing a delta convex function of class $C^{1}\left(\mathbb{R}^{2}\right)$ which cannot be represented as a difference of two convex functions differentiable at 0 . Further we give an example of a delta convex function differentiable everywhere which is not strictly differentiable at 0 .

Keywords: differentiability, delta-convex functions
Classification: Primary 26B25; Secondary 26B05

Let X be a normed vector space. We say that a function $f: X \rightarrow \mathbb{R}$ is delta convex (d.c.) if there exist continuous convex functions f_{1}, f_{2} on X such that $f=f_{1}-f_{2}$.

We denote $B(a, r)=\{x \in X:\|x-a\| \leq r\}$. Let g be a function defined on an open set $A \subset X$. We say that $L \in X^{*}$ is the strict derivative at a point $a \in A$ if for every $\varepsilon>0$ there exists $\delta>0$ such that for each $x, y \in B(a, \delta)$ we have

$$
|g(x)-g(y)-L(x-y)| \leq \varepsilon\|x-y\| .
$$

Note that if a convex function on X is Fréchet differentiable at a point a then it is strictly differentiable at a ([6, Proposition 3.8]).

If X is a finite dimensional space then every function $f \in C^{2}(X)$ can be represented as $f=f_{1}-f_{2}$, where f_{1}, f_{2} are convex and $f_{1} \in C^{2}(X), f_{2} \in C^{\infty}(X)$ (see [3], where other related results are obtained).

In [2], a d.c. function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is constructed which is strictly differentiable at 0 and is not representable as a difference of two convex functions with this property. But this function is not differentiable everywhere. We shall improve the construction of [2] to obtain a d.c. function of class $C^{1}\left(\mathbb{R}^{2}\right)$ not representable as a difference of convex functions differentiable at 0 .

We shall denote λ_{n} the Lebesgue measure on \mathbb{R}^{n}. We say that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is Lipschitz with the constant L if for each $x, y \in \mathbb{R}^{2}$ is $|f(x)-f(y)| \leq L\|x-y\|$.

In the following we shall use the notion of the dual convex function.
The author was supported by the grant GAČR 201/03/0931.

Definition. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. The dual function f^{*} of the function f is defined on $\left(\mathbb{R}^{n}\right)^{*}$ by

$$
f^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}^{n}}\left(\left\langle x, x^{*}\right\rangle-f(x)\right), \quad x^{*} \in\left(\mathbb{R}^{n}\right)^{*}
$$

It follows immediately from the definition that if $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex functions, $f \leq g$ and f^{*} is finite everywhere then g^{*} is finite everywhere. Therefore if $f \geq\|\cdot\|^{2}-1$ then f^{*} is finite everywhere.

As usual, we identify the dual space $\left(\mathbb{R}^{n}\right)^{*}$ with \mathbb{R}^{n} and $\langle\cdot, \cdot\rangle$ denotes both the duality and the scalar product.
Facts. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function and f^{*} is finite everywhere then

$$
\begin{align*}
& \left(f^{*}\right)^{*}=f \tag{1}\\
& x^{*} \in \partial f(x) \Leftrightarrow x \in \partial f^{*}\left(x^{*}\right) \tag{2}
\end{align*}
$$

The statement (1) can be found in [4, Theorem 12.2] and (2) in [4, Theorem 23.5].

In [2] a function $\bar{G}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is constructed in the following way.
Fix a sequence of positive integers $\left\{k_{i}\right\}$ such that $\cos \left(\frac{2 \pi}{k_{i}}\right) \geq 1-2^{-i-3}$ for $i \in \mathbb{N}$. Let us denote

$$
M:=\left\{\left(2^{-i} \cos \left(\frac{2 \pi k}{k_{i}}\right), 2^{-i} \sin \left(\frac{2 \pi k}{k_{i}}\right)\right): i \in \mathbb{N}, k \in\left\{1, \ldots, k_{i}\right\}\right\}
$$

Set

$$
F(x)=\|x\|+4\|x\|^{2} \quad \text { for } \quad x \in \mathbb{R}^{2} .
$$

For each $z \in M$ define

$$
G_{z}(x)=F(z)+\left\langle F^{\prime}(z), x-z\right\rangle=(8\|z\|+1) \frac{\langle x, z\rangle}{\|z\|}-4\|z\|^{2}
$$

Since F is convex we have $G_{z} \leq F$ on \mathbb{R}^{2}. Let us define for $x \in \mathbb{R}^{2}$

$$
\bar{G}(x)=\sup \left\{G_{z}(x): z \in M\right\}, \quad G(x)=\max \left\{\bar{G}(x),\|x\|^{2}-1\right\}
$$

Obviously \bar{G} and G are convex functions,
The following 3 lemmas are proved in [2] (Lemmas 3,4,5).
Lemma 1. The function \bar{G} satisfies

$$
\|x\|+\|x\|^{2} \leq \bar{G}(x) \leq\|x\|+4\|x\|^{2}=F(x)
$$

for $\|x\|<1$.

$$
\text { A d.c. } C^{1} \text { function need not be } \ldots
$$

Corollary 1. Therefore $G \equiv \bar{G}$ on $B(0,1)$ and $\partial G(0)=\partial \bar{G}(0)=B(0,1)$. (Indeed, $\partial\left(\|\cdot\|+a\|\cdot\|^{2}\right)(0)=B(0,1)$ for each $a \geq 0$.)
Lemma 2. If $x \in \mathbb{R}^{2},\|x\|<1, z \in M,\|z\| \leq \frac{\|x\|}{9}$ then

$$
G_{z}(x) \leq \bar{G}(x)-\frac{\|x\|^{2}}{9}
$$

Lemma 3. If $x \in \mathbb{R}^{2}, 0<\|x\|<\frac{1}{16}$ and

$$
M_{x}:=\{z \in M:\|z\| \leq 2\|x\|,\langle x, z\rangle \geq\|z\| \cdot\|x\|(1-8\|z\|)\}
$$

then

$$
\bar{G}(x)=\sup \left\{G_{z}(x): z \in M_{x}\right\} .
$$

Corollary 2. Let $x \in \mathbb{R}^{2}, 0<\|x\|<\frac{1}{16}$. Then there exists a neighbourhood W of x such that, for $w \in W$,

$$
G(w)=\sup \left\{G_{z}(w): z \in M_{x}\right\}
$$

holds.
Proof: The set $N_{z}:=\left\{u \in \mathbb{R}^{2}: 0<\|u\|<\frac{1}{16}, z \notin M_{u}\right\}$ is obviously open for all $z \in M$. Hence

is a neighbourhood of x. Since $M_{x} \cup B\left(0, \frac{\|x\|}{18}\right) \supset M_{w}$ for every $w \in U$, we conclude, using Lemma 2 and Lemma 3 for w, that we can put $W=U \cap B(x,\|x\| / 2)$.
Lemma 4. Let $\hat{G}_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \alpha \in A$, be a family of affine functions with the Lipschitz constant L and $\hat{G}(w)=\sup \left\{\hat{G}_{\alpha}(w): \alpha \in A\right\}$ for $w \in \mathbb{R}^{2}, \hat{G}: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Let $x \in \mathbb{R}^{2}$ and $u^{*} \in \partial \hat{G}(x)$. Then $\left\|u^{*}\right\| \leq L$.
Proof: The function $\hat{G}(w)$ is obviously Lipschitz with the constant L. Therefore $\left\|u^{*}\right\| \leq L$.
Lemma 5. If $x \in \mathbb{R}^{2}, 0<\|x\|<\frac{1}{16}$ and $x^{*} \in \partial G(x)$, then

$$
\left\|x^{*}-\frac{x}{\|x\|}\right\| \leq 24\|x\|^{1 / 2} .
$$

Proof: Let $z \in M_{x}$ and

$$
y^{*}=\frac{z}{\|z\|}+8 z \in \partial G_{z}(x)
$$

Clearly

$$
\left\|\frac{z}{\|z\|}-\frac{x}{\|x\|}\right\|^{2}=2-\frac{2\langle z, x\rangle}{\|z\| \cdot\|x\|}
$$

and by the definition of M_{x} we have $1-\frac{\langle z, x\rangle}{\|z\|\| \| x \|} \leq 8\|z\|$ and $\|z\| \leq 2\|x\|$. Therefore

$$
\begin{aligned}
\left\|y^{*}-\frac{x}{\|x\|}\right\| & \leq 8\|z\|+\left\|\frac{z}{\|z\|}-\frac{x}{\|x\|}\right\| \\
& =8\|z\|+\left(2-\frac{2\langle z, x\rangle}{\|z\| \cdot\|x\|}\right)^{1 / 2} \leq 16\|x\|+(2 \cdot 8\|z\|)^{1 / 2} \\
& \leq 16\|x\|^{1 / 2}+(32\|x\|)^{1 / 2} \leq 24\|x\|^{1 / 2}
\end{aligned}
$$

Therefore $G_{z}-\left\langle\frac{x}{\|x\|}, \cdot\right\rangle$ is Lipschitz with the constant $24\|x\|^{1 / 2}$ for $z \in M_{x}$. Using Corollary 2 and Lemma 4 applied for $G_{z}-\left\langle\frac{x}{\|x\|}, \cdot\right\rangle, z \in M_{x}$, we obtain $\left\|u^{*}\right\| \leq 24\|x\|^{1 / 2}$ for $u^{*} \in \partial\left(G-\left\langle\frac{x}{\|x\|}, \cdot\right\rangle\right)(x)$. Since

$$
x^{*}-\frac{x}{\|x\|} \in \partial\left(G-\left\langle\frac{x}{\|x\|}, \cdot\right\rangle\right)(x)
$$

whenever $x^{*} \in \partial G(x)$, this completes the proof of Lemma 5 .
By Corollary $1, G^{*} \equiv 0$ on $B(0,1)$ since $G(0)=0$.
Define a function $\alpha:[0,+\infty) \rightarrow \mathbb{R}$,

$$
\begin{aligned}
\alpha(t) & =0, & & t \in[0,1) \\
& =(t-1)^{4}, & & t \in[1,+\infty)
\end{aligned}
$$

and $\psi\left(x^{*}\right):=\alpha\left(\left\|x^{*}\right\|\right)$, for $x^{*} \in \mathbb{R}^{2}$. Then ψ is a convex function on \mathbb{R}^{2}, since $\|\cdot\|$ is convex and α is convex and increasing. Notice that

$$
\psi^{\prime}\left(x^{*}\right)=4\left(\left\|x^{*}\right\|-1\right)^{3} \frac{x^{*}}{\left\|x^{*}\right\|}
$$

for $\left\|x^{*}\right\| \geq 1$.
Set $K:=G^{*}+\psi$ and $\tilde{G}:=K^{*}$.
The function \tilde{G} is differentiable on $\mathbb{R}^{2} \backslash\{(0,0)\}$. Otherwise there exist $x \in$ $\mathbb{R}^{2} \backslash\{(0,0)\}$ and $x^{*}, y^{*} \in \partial \tilde{G}(x), x^{*} \neq y^{*}$. Then $x \in \partial K\left(x^{*}\right) \cap \partial K\left(y^{*}\right)$.

It is easy to see that then K is affine on $\operatorname{conv}\left\{x^{*}, y^{*}\right\}$ and $x \in \partial K\left(z^{*}\right)$, for each $z^{*} \in \operatorname{conv}\left\{x^{*}, y^{*}\right\}$. Since $K \equiv 0$ on $B(0,1)$ and $x \neq 0$, the interior of $B(0,1)$ is disjoint with $\operatorname{conv}\left\{x^{*}, y^{*}\right\}$. Further there is no line segment in $\partial B(0,1)$, consequently the function K is affine on some line segment in $\mathbb{R}^{2} \backslash B(0,1)$. Also ψ is affine on this line segment (since ψ and G^{*} are convex). But it is impossible since ψ^{\prime} is one-to-one on $\mathbb{R}^{2} \backslash B(0,1)$.

$$
\text { A d.c. } C^{1} \text { function need not be } \ldots
$$

Lemma 6. For every $\varepsilon>0$ there exists $\delta>0$ such that if $x \in \mathbb{R}^{2}, 0<\|x\|<\delta$, then

$$
\left\|(\tilde{G})^{\prime}(x)-\frac{x}{\|x\|}\right\| \leq \varepsilon
$$

Proof: Set

$$
\delta:=\min \left\{\left(\frac{\varepsilon}{9 \cdot 24^{3}}\right)^{2}, \frac{1}{16}\right\}
$$

Let $0<\|x\|<\delta$. Denote $x^{*}:=(\tilde{G})^{\prime}(x)$ and $x^{\prime}:=x-\psi^{\prime}\left(x^{*}\right)$. Then, by Fact (2), $x \in \partial K\left(x^{*}\right)$ and therefore, since $K \equiv 0$ on $B(0,1)$, we have $\left\|x^{*}\right\| \geq 1$.

Clearly $x^{\prime} \in \partial(K-\psi)\left(x^{*}\right)=\partial G^{*}\left(x^{*}\right)$ and, using again Fact (2), $x^{*} \in \partial G\left(x^{\prime}\right)$. Further $x^{\prime} \neq 0$, since if $\left\|x^{*}\right\|=1$ then clearly $x^{\prime}=x$ and if $\left\|x^{*}\right\|>1$ we use $x^{*} \in \partial G\left(x^{\prime}\right)$ and Corollary 1.

Since ∂G is monotone, $0 \in \partial G(0)$ and $x^{*} \in \partial G\left(x^{\prime}\right)$, we have $\left\langle x^{\prime}, x^{*}\right\rangle \geq 0$. Hence

$$
\left\langle x^{\prime}, \psi^{\prime}\left(x^{*}\right)\right\rangle=\left\langle x^{\prime}, x^{*}\right\rangle \frac{4\left(\left\|x^{*}\right\|-1\right)^{3}}{\left\|x^{*}\right\|} \geq 0
$$

Consequently $\left\|x^{\prime}\right\|^{2}=\left\langle x^{\prime}, x-\psi^{\prime}\left(x^{*}\right)\right\rangle \leq\left\langle x^{\prime}, x\right\rangle \leq\left\|x^{\prime}\right\| \cdot\|x\|$ which implies $\left\|x^{\prime}\right\| \leq$ $\|x\|<\delta$. Now we compute, using Lemma 5 for \bar{x}^{\prime},

$$
\begin{aligned}
\left\|(\tilde{G})^{\prime}(x)-\frac{x}{\|x\|}\right\| & \leq\left\|x^{*}-\frac{x^{\prime}}{\left\|x^{\prime}\right\|}\right\|+\left\|\frac{x^{\prime}}{\left\|x^{\prime}\right\|}-\frac{x}{\|x\|}\right\| \\
& \leq 24\left\|x^{\prime}\right\|^{1 / 2}+\left\|\frac{\left(\|x\| x^{\prime}-\left\|x^{\prime}\right\| x^{\prime}\right)+\left(\left\|x^{\prime}\right\| x^{\prime}-\left\|x^{\prime}\right\| x\right)}{\|x\| \cdot\left\|x^{\prime}\right\|}\right\| \\
& \leq 24\left\|x^{\prime}\right\|^{1 / 2}+\frac{2\left\|x-x^{\prime}\right\|}{\|x\|}=24\left\|x^{\prime}\right\|^{1 / 2}+\frac{2\left\|\psi^{\prime}\left(x^{*}\right)\right\|}{\|x\|} \\
& \leq 24 \delta^{1 / 2}+\frac{8\left(\left\|x^{*}\right\|-1\right)^{3}}{\|x\|} \leq 24 \delta^{1 / 2}+8 \frac{24^{3}\left\|x^{\prime}\right\|^{3 / 2}}{\|x\|} \\
& \leq \delta^{1 / 2}\left(24+8 \cdot 24^{3}\right) \leq \varepsilon
\end{aligned}
$$

since by Lemma 5 we also have $\left\|x^{*}\right\|-1 \leq 24\left\|x^{\prime}\right\|^{1 / 2}$.
Theorem. The function $H:=\tilde{G}-\|\cdot\|$ is a C^{1} delta-convex function on \mathbb{R}^{2} and there does not exists a convex function h differentiable at the origin such that $H+h$ is convex.
Proof: As was already proved, \tilde{G} is differentiable on $\mathbb{R}^{2} \backslash\{(0,0)\}$ and therefore, since it is convex, \tilde{G} is also C^{1} on $\mathbb{R}^{2} \backslash\{(0,0)\}$. Obviously $\|\cdot\|$ is C^{1} on $\mathbb{R}^{2} \backslash\{(0,0)\}$. Hence $H \in C^{1}\left(\mathbb{R}^{2} \backslash\{(0,0)\}\right)$. The Frechet derivative of H at the origin is 0 since, by Lemma 6 , for every $\varepsilon>0$ there exists $\delta>0$ such that

$$
|H(u)-H(0)|=\left|\int_{0}^{1}\left\langle u, H^{\prime}(t u)\right\rangle d t\right| \leq \int_{0}^{1}\left\|H^{\prime}(t u)\right\| d t\|u\| \leq \varepsilon\|u\|
$$

for each $u \in \mathbb{R}^{2}, 0<\|u\|<\delta$. It also follows immediately from Lemma 6 that H^{\prime} is continuous at the origin.

Now we shall prove that H has no control function differentiable at 0 . For a contradiction let us suppose that $h, h+H$ are convex functions on \mathbb{R}^{2} and h is differentiable at 0 . We may assume $h^{\prime}(0)=0$. Then 0 is the strict derivative of h at $0\left(\left[3\right.\right.$, Proposition 3.8]). Find $0<R<1 /\left(8^{2} \cdot 24^{6}\right)$ such that

$$
|h(x)-h(y)|<\frac{1}{48}\|x-y\| \quad \text { if } \quad x, y \in B(0,2 R)
$$

Denote for $z \in M$

$$
\begin{aligned}
& S_{z}:=\left\{x \in[-R / 2, R / 2]^{2}: G(x)=G_{z}(x)\right\} \\
& \hat{S}_{z}:=S_{z}+\psi^{\prime}\left(F^{\prime}(z)\right), \quad \hat{S}:=\bigcup_{z \in M} \hat{S}_{z}
\end{aligned}
$$

Claim 1. The function \tilde{G} is affine on \hat{S}_{z} for each $z \in M$. Further, for $z_{1}, z_{2} \in$ $M, z_{1} \neq z_{2}$, we have int $\hat{S}_{z_{1}} \cap \operatorname{int} \hat{S}_{z_{2}}=\emptyset$.
Proof of Claim 1 :
If $z \in M$ and $u \in S_{z}$ then clearly $F^{\prime}(z) \in \partial G(u)$. By Fact (2) we have $u \in \partial G^{*}\left(F^{\prime}(z)\right)$. Hence $u+\psi^{\prime}\left(F^{\prime}(z)\right) \in \partial K\left(F^{\prime}(z)\right)$. Now, again by Fact (2), $F^{\prime}(z) \in \partial \tilde{G}\left(u+\psi^{\prime}\left(F^{\prime}(z)\right)\right)$. Therefore \tilde{G} is affine on \hat{S}_{z}.

Finally int $\hat{S}_{z_{1}} \cap \operatorname{int} \hat{S}_{z_{2}}=\emptyset$ since $F^{\prime}\left(z_{1}\right) \neq F^{\prime}\left(z_{2}\right)$, for $z_{1} \neq z_{2}$.
Claim 2. $\hat{S}_{z} \subset[-R, R]^{2}$ for $z \in M$.

Proof of Claim 2:

Let $z \in M, u \in S_{z}$. By Lemma 5 , since $F^{\prime}(z) \in \partial G(u)$, we have $\left\|F^{\prime}(z)\right\|-1 \leq$ $24\|u\|^{1 / 2} \leq 24 \cdot(R)^{1 / 2}$.

We easily compute

$$
\left\|F^{\prime}(z)\right\|=\left\|\frac{z}{\|z\|}+8 z\right\|=1+8\|z\|>1
$$

Hence

$$
\begin{aligned}
\left\|\psi^{\prime}\left(F^{\prime}(z)\right)\right\| & =\left\|4\left(\left\|F^{\prime}(z)\right\|-1\right)^{3} \cdot \frac{F^{\prime}(z)}{\left\|F^{\prime}(z)\right\|}\right\| \leq 4 \cdot 24^{3} \cdot(R)^{3 / 2} \\
& <4 \cdot 24^{3}\left(\frac{1}{8^{2} \cdot 24^{6}}\right)^{1 / 2} R=\frac{R}{2}
\end{aligned}
$$

This proves Claim 2.

According to Lemma 2, for each $0<\delta<1, G=\sup \left\{G_{z}: z \in M \backslash B(0, \delta / 9)\right\}$ on $B(0,1) \backslash B(0, \delta)$.

Hence, for each $\delta>0$, the function G is defined on $B(0,1) \backslash B(0, \delta)$ as a supremum of finitely many G_{z}. Therefore $\bigcup_{z \in M} S_{z}=[-R / 2, R / 2] \backslash\{(0,0)\}$. Since S_{z} are convex we get by Claim 1

$$
\lambda_{2}(\hat{S})=\sum_{z \in M} \lambda_{2}\left(S_{z}\right)=R^{2}
$$

Without loss of generality we may assume

$$
\lambda_{2}\left(\hat{S} \cap\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}: 0 \leq t_{1} \leq R,-t_{1} \leq t_{2} \leq t_{1}\right\}\right) \geq \frac{R^{2}}{4}
$$

By Fubini's Theorem

$$
\int_{0}^{R} \lambda_{1}\left(\left\{t_{2} \in\left[-t_{1}, t_{1}\right]:\left(t_{1}, t_{2}\right) \in \hat{S}\right\}\right) d t_{1} \geq \frac{R^{2}}{4}
$$

Thus there exists $0<r<R$ such that

$$
\lambda_{1}\left(\left\{t_{2} \in[-r, r]:\left(r, t_{2}\right) \in \hat{S}\right\}\right) \geq \frac{R}{4}>\frac{r}{4}
$$

Let us denote for $t \in[-r, r]$

$$
\begin{aligned}
\phi(t) & :=\|(r, t)\|, \\
\gamma(t) & :=\tilde{G}((r, t)), \\
\kappa(t) & :=h((r, t)) .
\end{aligned}
$$

By Claim 1 the function γ is affine on the interval $\bar{S}_{z}:=\left\{t \in[-r, r]:(r, t) \in \hat{S}_{z}\right\}$ for $z \in M$ and $\lambda_{1}\left(\bigcup_{z \in M} \bar{S}_{z}\right) \geq r / 4$. Therefore there exist $-r \leq s_{1}<t_{1} \leq s_{2}<$ $t_{2} \leq \cdots \leq s_{k}<t_{k} \leq r, k \in \mathbb{N}$, such that γ is affine on $\left[s_{i}, t_{i}\right]$, for every $1 \leq i \leq k$, and $\sum_{i=1}^{k}\left(t_{i}-s_{i}\right) \geq r / 5$.

Since $\kappa+\gamma-\phi$ is convex on $[-r, r]$, for each $i=1, \ldots, k$

$$
\kappa_{-}^{\prime}\left(t_{i}\right)-\kappa_{+}^{\prime}\left(s_{i}\right)+\gamma_{-}^{\prime}\left(t_{i}\right)-\gamma_{+}^{\prime}\left(s_{i}\right)-\phi^{\prime}\left(t_{i}\right)+\phi^{\prime}\left(s_{i}\right) \geq 0
$$

holds. Obviously $\gamma_{-}^{\prime}\left(t_{i}\right)=\gamma_{+}^{\prime}\left(s_{i}\right), i=1, \ldots, k$.
Hence, by convexity of κ, we have $\kappa_{-}^{\prime}(r)-\kappa_{+}^{\prime}(-r) \geq \sum_{i=1}^{k}\left(\kappa_{-}^{\prime}\left(t_{i}\right)-\kappa_{+}^{\prime}\left(s_{i}\right)\right) \geq$ $\sum_{i=1}^{k}\left(\phi^{\prime}\left(t_{i}\right)-\phi^{\prime}\left(s_{i}\right)\right)$. Since κ is Lipschitz with the constant $1 / 48$ on $[-r, r]$, we have

$$
\left|\kappa_{-}^{\prime}(r)\right| \leq \frac{1}{48}, \quad\left|\kappa_{+}^{\prime}(-r)\right| \leq \frac{1}{48}
$$

By the Mean Value Theorem there exist $\left.\xi_{i} \in\right] s_{i}, t_{i}\left[\right.$ such that $\phi^{\prime}\left(t_{i}\right)-\phi^{\prime}\left(s_{i}\right)=$ $\phi^{\prime \prime}\left(\xi_{i}\right)\left(t_{i}-s_{i}\right), i=1, \ldots, k$.

$$
\phi^{\prime \prime}\left(\xi_{i}\right)=\frac{\left(r^{2}+\xi_{i}^{2}\right)^{1 / 2}-\frac{\xi_{i}^{2}}{\left(r^{2}+\xi_{i}^{2}\right)^{1 / 2}}}{r^{2}+\xi_{i}^{2}}=\frac{r^{2}}{\left(r^{2}+\xi^{2}\right)^{3 / 2}} \geq \frac{r^{2}}{\left(2 r^{2}\right)^{3 / 2}} \geq \frac{1}{4 r}
$$

Finally we obtain

$$
\begin{aligned}
\frac{1}{24} & \geq \kappa_{-}^{\prime}(r)-\kappa_{+}^{\prime}(-r) \geq \sum_{i=1}^{k}\left(\phi^{\prime}\left(t_{i}\right)-\phi^{\prime}\left(s_{i}\right)\right) \\
& \geq \frac{1}{4 r} \sum_{i=1}^{k}\left(t_{i}-s_{i}\right) \geq \frac{1}{20}
\end{aligned}
$$

a contradiction.
If a convex function on a Hilbert space is Fréchet differentiable at some point then it is strictly differentiable at this point. For d.c. functions this need not be true. First example (on \mathbb{R}^{2}) of this phenomenon is probably due to A. Shapiro (see [5], [1] or [6]). But none of these functions is differentiable everywhere.

We shall give an example of a d.c. function on \mathbb{R}^{2} differentiable at 0 which is of class C^{1} on $\mathbb{R}^{2} \backslash\{(0,0)\}$, but is not strictly differentiable at 0 .

Set for $(x, y) \in \mathbb{R}^{2}$

$$
\begin{aligned}
f_{1}(x, y) & =y & & \text { for } y \geq x^{2} \\
& =x^{2}+\frac{y^{2}}{x^{2}}-y & & \text { for } x^{2}>y>0 \\
& =x^{2}-y & & \text { for } 0 \geq y
\end{aligned}
$$

It is easy to check that f_{1} is a continuous function with a continuous derivative on $\mathbb{R}^{2} \backslash\{(0,0)\}$. The Hess's matrix of $y, x^{2}+\frac{y^{2}}{x^{2}}-y$ and $x^{2}-y$ is nonnegative definite for $y>x^{2}$, for $x^{2}>y>0$ and for $0>y$, respectively. Since the function f_{1} has a supporting affine functional at 0 and f_{1} is differentiable at the points of the sets $\left\{y=x^{2}, x \neq 0\right\}$ and $\{y=0, x \neq 0\}$, the function f_{1} is convex on every line, therefore it is convex.

Analogously we prove that

$$
\begin{aligned}
f_{2}(x, y) & =x^{2}+y & & \text { for } y \geq 0 \\
& =x^{2}+\frac{y^{2}}{x^{2}}+y & & \text { for } 0>y>-x^{2} \\
& =-y & & \text { for }-x^{2} \geq y
\end{aligned}
$$

is a convex function with continuous derivative on $\mathbb{R}^{2} \backslash\{(0,0)\}$.
It is easy to prove that for $(x, y) \in \mathbb{R}^{2}$

$$
\left|f_{1}(x, y)-f_{2}(x, y)\right| \leq 3 x^{2}
$$

therefore $f:=f_{1}-f_{2}$ is a d.c. function which is differentiable also at 0 . Since

$$
\frac{\partial f}{\partial y}(x, 0)=-2 \quad \text { for } \quad x \neq 0
$$

and

$$
\frac{\partial f}{\partial y}(0,0)=0
$$

the function f is not strictly differentiable at $(0,0)$.

References

[1] Hiriart-Urruty J.-B., Generalized differentiability, duality and optimization for problem dealing with difference of convex functions, Lecture Notes in Econom. and Math. Systems 256, J. Ponstein, Ed., Springer, Berlin, 1985, pp. 37-70.
[2] Kopecká E., Malý J., Remarks on delta-convex functions, Comment. Math. Univ. Carolinae 31.3 (1990), 501-510.
[3] Penot J.-P., Bougeard M.L., Approximation and decomposition properties of some classes of locally d.c. functions, Math. Programming 41 (1988), 195-227.
[4] Rockafellar R.T., Convex Analysis, Princeton University Press, Princeton, 1970.
[5] Shapiro A., On functions representable as a difference of two convex functions in inequality constrained optimization, Research report University of South Africa, 1983.
[6] Veselý L., Zajíček L., Delta-convex mappings between Banach spaces and applications, Dissertationes Math. 289 (1989), 1-52.

Charles University, Faculty of Mathematics and Physics, Department of Mathematical Analysis, Sokolovská 83, 18675 Praha 8, Czech Republic
E-mail: pavlica@karlin.mff.cuni.cz
(Received April 29, 2004, revised November 10, 2004)

