On the cardinality of Hausdorff spaces and Pol-Šapirovskii technique

Alejandro Ramírez-Páramo

Abstract. In this paper we make use of the Pol-Šapirovskii technique to prove three cardinal inequalities. The first two results are due to Fedeli [2] and the third theorem of this paper is a common generalization to: (a) (Arhangel'skii [1]) If X is a T_1 space such that (i) $L(X)t(X) \leq \kappa$, (ii) $\psi(X) \leq 2^{\kappa}$, and (iii) for all $A \in [X]^{\leq 2^{\kappa}}$, $|\overline{A}| \leq 2^{\kappa}$, then $|X| \leq 2^{\kappa}$; and (b) (Fedeli [2]) If X is a T_2 -space then $|X| \leq 2^{\operatorname{aql}(X)t(X)\psi_c(X)}$.

Keywords: cardinal functions, cardinal inequalities, Hausdorff space *Classification:* 54A25

In [2], Fedeli proved, using the language of elementary submodels, two cardinal inequalities which state (1) "if $X \in \mathcal{T}_2$, then $|X| \leq 2^{\operatorname{ac}(X)H\psi(X)}$ " and (2) "if $X \in \mathcal{T}_2$, then $|X| \leq 2^{\operatorname{lc}(X)\pi\chi(X)\psi_c(X)}$ ". Each of these inequalities improve the well known Hajnal-Juhász's inequality: "for $X \in \mathcal{T}_2$, $|X| \leq 2^{c(X)\chi(X)}$ ". In the first part of this paper we give a proof of the inequalities (1) and (2) without using elementary submodels. Our proof makes use of the Pol-Šapirovskii technique. This technique provides a unified approach to the difficult inequalities in the theory of cardinal functions. The reader is referred to [4] and [3] for a detailed discussion like for additional inequalities in cardinal functions which can be proved using the Pol-Šapirovskii technique.

We refer the reader to [3], [2] and [5] for definitions and terminology not explicitly given. Let $L, c, \chi, \psi, \psi_c, \pi\chi, t$, denote the following standard cardinal functions: Lindelöf degree, celularity, character, pseudocharacter, closed pseudocharacter, π -character and tightness, respectively.

Let X be a Hausdorff space. The Hausdorff pseudocharacter, denoted $H\psi(X)$, is the smallest infinite cardinal κ such that for every $x \in X$ there is a collection \mathcal{U}_x of open neighborhoods of x with $|\mathcal{U}_x| \leq \kappa$ and such that (*) if $x \neq y$, there exist $U \in \mathcal{U}_x$ and $V \in \mathcal{U}_y$ with $U \cap V = \emptyset$. If \mathcal{U}_x is a collection of open neighborhoods of x which satisfies (*), we say that \mathcal{U}_x is a H-pseudobase of x.

Definition 1. Let X be a topological space:

(a) $\operatorname{ac}(X)$ is the smallest infinite cardinal κ such that there is a subset S of X with $|S| \leq 2^{\kappa}$ and for every open collection \mathcal{U} in X, there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$, with $\bigcup \mathcal{U} \subseteq S \cup \bigcup \{\overline{V} : V \in \mathcal{V}\}$.

(b) lc(X) is the smallest infinite cardinal κ such that there is a closed subset F of X with $|F| \leq 2^{\kappa}$ and for every open collection \mathcal{U} in X, there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$, with $\bigcup \mathcal{U} \subseteq F \cup \bigcup \{\overline{V} : V \in \mathcal{V}\}$.

(c) $\operatorname{aql}(X)$ is the smallest infinite cardinal κ such that there is a subset S of X such that $|S| \leq 2^{\kappa}$ and for every open cover \mathcal{U} of X there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ with $X = S \cup (\bigcup \mathcal{V})$.

Clearly $\operatorname{ac}(X) \leq \operatorname{lc}(X) \leq c(X)$, and $\operatorname{aql}(X) \leq L(X)$ for every topological space.

Theorem 2. If X is a T_2 -space then $|X| \leq 2^{\operatorname{ac}(X)H\psi(X)}$.

PROOF: Let $\kappa = \operatorname{ac}(X)H\psi(X)$, and let S be a subset of X with $|S| \leq 2^{\kappa}$ and witnessing that $\operatorname{ac}(X) \leq \kappa$. For each $x \in X$, let \mathcal{B}_x an H-pseudobase of x in X, with $|\mathcal{B}_x| \leq \kappa$.

Construct a sequence $\{A_{\alpha} : 0 \leq \alpha < \kappa^+\}$ of sets in X and a sequence $\{\mathcal{V}_{\alpha} : 0 < \alpha < \kappa^+\}$ of open collections in X such that

- (1) $|A_{\alpha}| \leq 2^{\kappa}; 0 \leq \alpha < \kappa^+;$
- (2) $\mathcal{V}_{\alpha} = \bigcup \left\{ \mathcal{B}_x : x \in \bigcup_{\beta < \alpha} A_{\beta} \right\}; \ 0 < \alpha < \kappa^+;$
- (3) if $\mathcal{C} = \{C_{\gamma} : \gamma \in \lambda\}$ is a collection $(\lambda \leq \kappa)$ of closed sets in X such that each C_{γ} has the form $\bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$, where $\mathcal{U}_{\gamma} \in [\mathcal{V}_{\alpha}]^{\leq \kappa}$, and if $X (S \cup \bigcup \mathcal{C}) \neq \emptyset$, then $A_{\alpha} (S \cup \bigcup \mathcal{C}) \neq \emptyset$.

The construction is by transfinite induction. Let $0 < \alpha < \kappa^+$, and assume that A_β and \mathcal{V}_β have been constructed for each $\beta < \alpha$. Note that \mathcal{V}_α is defined by (2). For each collection $\mathcal{C} = \{C_\gamma : \gamma \in \lambda\}$ with $\lambda \leq \kappa$ of closed sets in X such that each C_γ has the form $\bigcup \{\overline{V} : V \in \mathcal{U}_\gamma\}$, where $\mathcal{U}_\gamma \in [\mathcal{V}_\alpha]^{\leq \kappa}$, and such that $X \neq S \cup \bigcup \{C_\gamma : \gamma \in \lambda\}$, choose one point in $X - (S \cup \bigcup \{C_\gamma : \gamma \in \lambda\})$. Let A_α be the set of points chosen in this way. To show that $|A_\alpha| \leq 2^\kappa$, let $F = \bigcup_{\beta < \alpha} A_\beta$; then $\mathcal{V}_\alpha = \bigcup_{x \in F} \mathcal{B}_x$, hence $|\mathcal{V}_\alpha| \leq \sum_{x \in F} |\mathcal{B}_x| \leq \kappa \cdot |F| \leq \kappa \cdot \sum_{\beta \in \alpha} |A_\beta| = \kappa \cdot |\alpha| \cdot 2^\kappa = 2^\kappa$. Since $|A_\alpha| \leq |[[\mathcal{V}_\alpha]^\kappa]^\kappa| \leq (2^\kappa)^\kappa = 2^\kappa$, we have $|A_\alpha| \leq 2^\kappa$. This completes the construction.

Now let $A = \bigcup_{\alpha < \kappa^+} A_{\alpha}$ and let $\mathcal{U} = \bigcup \{\mathcal{V}_{\alpha} : \alpha \in \kappa^+\}$; clearly, $|A| \le 2^{\kappa}$.

The proof is complete if $X = (S \cup A)$. Suppose not, and let $p \in X - (S \cup A)$. Let $\mathcal{B} = \{B_{\gamma} : \gamma \in \lambda\}$ be a family of open neighbourhoods p in X, such that $\bigcap \{\overline{B}_{\gamma} : \gamma \in \lambda\} = \{p\}$ with $\lambda \leq \kappa$. For each $\gamma \in \lambda$, let $V_{\gamma} = X - \overline{B}_{\gamma}$ and let $\mathcal{W}_{\gamma} = \{V \in \mathcal{U} : V \subseteq V_{\lambda}\}$. Since $\operatorname{ac}(X) \leq \kappa$, for each $\gamma \in \lambda$ there exists $\mathcal{U}_{\gamma} \in [\mathcal{W}_{\gamma}]^{\leq \kappa}$ such that $\bigcup \mathcal{W}_{\gamma} \subseteq S \cup \bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$. Note that for each $\gamma \in \lambda$, $p \notin S \cup \bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$. Finally, let $C_{\gamma} = \bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$ for each $\gamma \in \lambda$. Since $\mathcal{U}_{\gamma} \subseteq \mathcal{U}$ and $|\mathcal{U}_{\gamma}| \leq \kappa$, for all $\gamma \in \lambda$, by the regularity of κ^{+} there is an $\alpha \in \kappa^{+}$ such that $\mathcal{C} = \{C_{\gamma} : \gamma \in \lambda\}$ is a collection of $\leq \kappa$ closed sets in X, such that each C_{γ} has the form $\overline{\bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}}$, where $\mathcal{U}_{\gamma} \in [\mathcal{V}_{\alpha}]^{\leq \kappa}$. Moreover $X - (S \cup \bigcup \{C_{\gamma} : \gamma \in \lambda\}) \neq \emptyset$, therefore, by (3), $A_{\alpha} - (S \cup \bigcup \{C_{\gamma} : \gamma \in \lambda\}) \neq \emptyset$. Since $A_{\alpha} \subseteq A \subseteq S \cup \bigcup \{C_{\gamma} : \gamma \in \lambda\}$, we reach a contradiction. Thus $X = S \cup A$ and $|X| = |S \cup A| \leq 2^{\kappa}$.

Theorem 3. If X is a T_2 -space then $|X| \leq 2^{\operatorname{lc}(X)\pi\chi(X)\psi_c(X)}$.

PROOF: Let $\kappa = \operatorname{lc}(X)\pi\chi(X)\psi_c(X)$, and let F be a closed set in X with $|F| \leq 2^{\kappa}$ and witnessing that $\operatorname{lc}(X) \leq \kappa$. For each $x \in X$, let \mathcal{V}_x a π -base local of x in Xsuch that $|\mathcal{B}_x| \leq \kappa$.

Construct a sequence $\{A_{\alpha} : \alpha \in \kappa^+\}$ of sets in X and a sequence $\{\mathcal{B}_{\alpha} : \alpha \in \kappa^+\}$ of open collections in X such that:

(1) $\alpha \in \kappa^+, |A_{\alpha}| \le 2^{\kappa}; 0 \le \alpha \le \kappa^+;$

(2) $\mathcal{V}_{\alpha} = \bigcup \left\{ \mathcal{B}_x : x \in \bigcup_{\beta < \alpha} A_{\beta} \right\}; \ 0 < \alpha < \kappa^+;$

(3) if $C = \{C_{\gamma} : \gamma \in \lambda\}$, with $\lambda \leq \kappa$, is a collection of closed sets in X, where each C_{γ} has the form $\bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$, where $\mathcal{U}_{\gamma} \in [\mathcal{V}_{\alpha}]^{\leq \kappa}$ and $X - (F \cup \bigcup \mathcal{C}) \neq \emptyset$, then $A_{\alpha} - (F \cup \bigcup \mathcal{C}) \neq \emptyset$.

The construction is by transfinite induction. Let $0 < \alpha < \kappa^+$, and assume that A_β and \mathcal{V}_β have been constructed for each $\beta < \alpha$. Note that \mathcal{V}_α is defined by (2). Let $P_\alpha = \bigcup_{\beta < \alpha} A_\beta$; we have $\mathcal{V}_\alpha = \bigcup \{\mathcal{B}_x : x \in P_\alpha\}$. Now, for each collection $\mathcal{C} = \{C_\gamma : \gamma \in \lambda\}, \ \lambda \le \kappa$, of closed sets in X such that each C_γ has the form $\bigcup \{\overline{V} : V \in \mathcal{U}_\gamma\}$, where $\mathcal{U}_\gamma \in [\mathcal{V}_\alpha]^{\le \kappa}$ and $X \neq F \cup \bigcup \{C_\gamma : \gamma \in \lambda\}$, choose one point in $X - (F \cup \bigcup \{C_\gamma : \gamma \in \lambda\})$. Let A_α be the set of points chosen in this way. Observe that $|A_\alpha| \le |[[\mathcal{V}_\alpha]^{\le \kappa}]^{\le \kappa}| \le 2^{\kappa}$. This completes the construction.

Let $A = \bigcup \{A_{\alpha} : \alpha \in \kappa^+\}$ and let $\mathcal{U} = \bigcup \{\mathcal{V}_{\alpha} : \alpha \in \kappa^+\}$. It is clear that $|A| \leq 2^{\kappa}$. The proof is complete if $X = F \cup A$. Assume, on the contrary, that $p \in X - (F \cup A)$, and consider $\mathcal{V} = \{B_{\gamma} : \gamma \in \lambda\}$, where $\lambda \leq \kappa$, a family of neighbourhoods of p in X such that $\bigcap \{\overline{B}_{\gamma} : \gamma \in \lambda\} = \{p\}$. For each $\gamma \in \lambda$, let $V_{\gamma} = X - \overline{B}_{\gamma}$ and let $\mathcal{W}_{\gamma} = \{V \subseteq V_{\lambda} : V \in \mathcal{U}\}$. Since $lc(X) \leq \kappa$ for each $\gamma \in \lambda$, there exists $\mathcal{U}_{\gamma} \in [\mathcal{W}_{\gamma}]^{\leq \kappa}$ such that $\bigcup \mathcal{W}_{\gamma} \subseteq F \cup \{\overline{\bigcup V} : V \in \mathcal{U}_{\gamma}\}$. Observe that, for each $\gamma \in \lambda$, $p \notin F \cup \bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$. Let $\mathcal{W} = \bigcup \{\mathcal{W}_{\gamma} : \gamma \in \lambda\}$. Finally, for each $\gamma \in \lambda$, let $C_{\gamma} = \bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$. Since $\mathcal{U}_{\gamma} \subseteq \mathcal{U}$ and $|\mathcal{U}_{\gamma}| \leq \kappa$ for all $\gamma \in \lambda$, then by the regularity of κ^+ there exists $\alpha \in \kappa^+$ such that $\mathcal{C} = \{C_{\gamma} : \gamma \in \lambda\}$ is a collection of $\leq \kappa$ closed sets in X and each C_{γ} has the form $\bigcup \{\overline{V} : V \in \mathcal{U}_{\gamma}\}$, where $\mathcal{U}_{\gamma} \in [\bigcup \{\mathcal{V}_{x} : x \in A_{\alpha}\}]^{\leq \kappa}$. Moreover, $X - (F \cup \bigcup \{C_{\gamma} : \gamma \in \lambda\}) \neq \emptyset$, hence by (3), $A_{\alpha} - (F \cup \bigcup \{C_{\gamma} : \gamma \in \lambda\}) \neq \emptyset$. Since $A_{\alpha} \subseteq A \subseteq \bigcup \overline{\mathcal{W}} \subseteq F \cup \bigcup \{C_{\gamma} : \gamma \in \lambda\}$, we reach a contradiction. Thus $X = F \cup A$; therefore $|X| \leq 2^{\kappa}$.

Now we turn to the second part of this paper. Another well known cardinal inequality is due to Arhangel'skii [3]: "For $X \in \mathcal{T}_2$, $|X| \leq 2^{L(X)t(X)\psi(X)}$ ". Fedeli

[2] proved, making use of elementary submodels, that: if X is a T_2 -space then $|X| < 2^{\operatorname{aql}(X)t(X)\psi_c(X)}$. This result generalizes the Arhangel'skii's inequality. On the other hand, in [1], Arhangel'skii proved that: (a) "If X is a T_1 space such that (i) $L(X)t(X) \leq \kappa$, (ii) $\psi(X) \leq 2^{\kappa}$, and (iii) for all $A \in [X]^{\leq 2^{\kappa}}$, $|\overline{A}| \leq 2^{\kappa}$, then $|X| \leq 2^{\kappa n}$. From this result one easily obtains the Arhangel'skii's inequality mentioned above.

Since $aql(X) \leq L(X)$ for every topological space X, it is natural to ask if L can be replace by aql in the inequality (a). The next theorem gives an affirmative answer to this question. Our proof makes use of the Pol-Šapirovskii technique.

Theorem 4. Let X be a T_1 -space such that (i) $\operatorname{aql}(X)t(X) \leq \kappa$, (ii) $\psi(X) \leq 2^{\kappa}$, and (iii) if $A \in [X]^{\leq 2^{\kappa}}$ then $|\overline{A}| \leq 2^{\kappa}$. Then $|X| \leq 2^{\kappa}$.

PROOF: Let S be an element of $[X]^{\leq 2^{\kappa}}$ witnessing that $aql(X) \leq \kappa$. For each $x \in X$, let \mathcal{B}_x an pseudobase of x in X such that $|\mathcal{B}_x| \leq \kappa$.

Construct an increasing sequence $\{A_{\alpha} : \alpha \in \kappa^+\}$ of closed sets in X and a sequence $\{\mathcal{V}_{\alpha} : \alpha \in \kappa^+\}$ of open collections in X such that

- (1) $|A_{\alpha}| \leq 2^{\kappa}, 0 \leq \alpha < \kappa^+;$
- (2) $\mathcal{V}_{\alpha} = \bigcup \{ \mathcal{B}_x : x \in A_{\alpha} \};$
- (3) if $\mathcal{U} \subseteq \bigcup \left\{ \mathcal{B}_x : x \in \operatorname{cl}_X \left(\bigcup_{\beta < \alpha} A_\beta \right) \right\}$ with $|\mathcal{U}| \le \kappa$ and $X (S \cup \bigcup \mathcal{U}) \neq \emptyset$, then $A_\alpha (S \cup \bigcup \mathcal{U}) \neq \emptyset$.

The construction is by transfinite induction. Let $0 < \alpha < \kappa^+$ and assume that A_{β} and \mathcal{V}_{β} have been constructed for each $\beta \in \alpha$. Note that \mathcal{V}_{α} is defined by (2). Let $P_{\alpha} = \operatorname{cl}_X \left(\bigcup_{\beta < \alpha} A_{\beta} \right)$ and let $\mathcal{C}_{\alpha} = \bigcup \{ \mathcal{B}_x : x \in P_{\alpha} \}$. Since $\left| \bigcup_{\beta < \alpha} A_{\beta} \right| \le 2^{\kappa}$, it follows by (iii) that $|P_{\alpha}| \leq 2^{\kappa}$, hence, $|\mathcal{C}_{\alpha}| \leq 2^{\kappa}$. For each $\mathcal{U} \subseteq \mathcal{C}_{\alpha}$ with $|\mathcal{U}| \leq \kappa$ and $X - (S \cup \bigcup \mathcal{U}) \neq \emptyset$, choose one point in $X - (S \cup \bigcup \mathcal{U})$. Let L_{α} be the set of points chosen in this way. Clearly $|L_{\alpha}| \leq 2^{\kappa}$. Let $A_{\alpha} = \overline{P_{\alpha} \cup L_{\alpha}}$. This completes the construction.

Let $A = \bigcup \{A_{\alpha} : \alpha \in \kappa^+\}$ and note that A is closed in X; moreover, clearly $|A| \leq 2^{\kappa}$. Let $\mathcal{V} = \bigcup \{\mathcal{V}_{\alpha} : \alpha \in \kappa^+\}$. The proof is complete if $X = S \cup A$. Suppose not, let $p \in X - (S \cup A)$ and for each $x \in A$, choose $V_x \in \mathcal{B}_x$ such that $p \notin V_x$. Then $\{V_x : x \in A\}$ together with $\{X - A\}$ cover X; hence, there exists $B \subseteq [A]^{\leq \kappa}$ such that $X = S \cup (\bigcup \{V_x : x \in B\}) \cup (X - A)$. Let U = $\bigcup \{V_x : x \in B\}$. Since $|B| \leq \kappa$, by the regularity of κ^+ there exists $\alpha \in \kappa^+$ such that $\{V_x : x \in B\} \subseteq \bigcup \{\mathcal{B}_x : x \in \operatorname{cl}_X (\bigcup_{\beta < \alpha} A_\beta)\}$, that is U is the union of $\leq \kappa$ elements of $\bigcup \left\{ \mathcal{B}_x : x \in \operatorname{cl}_X \left(\bigcup_{\beta < \alpha} A_\beta \right) \right\}$ and $X - (S \cup U) \neq \emptyset$. Hence by (3), $A_\alpha - (S \cup U) \neq \emptyset$. Since $A_\alpha \subseteq A \subseteq S \cup U$, we reach a contradiction. Thus $X = S \cup A.$

Now we have the inequality (a), as a consequence of our theorem.

Corollary 5 (Arhangel'skii). Let X be a T_1 -space such that: (i) $L(X)t(X) \leq \kappa$, (ii) $\psi(X) \leq 2^{\kappa}$, and (iii) for all $A \in [X]^{\leq 2^{\kappa}}$, $|\overline{A}| \leq 2^{\kappa}$. Then $|X| \leq 2^{\kappa}$.

Another consequence of Theorem 5 is the next theorem due to Fedeli.

Corollary 6. If X is a T_2 -space then $|X| \leq 2^{\operatorname{aql}(X)\psi_c(X)t(X)}$.

PROOF: Let $\kappa = \operatorname{aql}(X)\psi_c(X)t(X)$. It is enough to note that for all $A \in [X]^{\leq 2^{\kappa}}$, $|\overline{A}| \leq 2^{\kappa}$.

Acknowledgments. The author would like to thank the referee for many valuable suggestions and very careful corrections. I also want to thank my wife Homaira Athenea Ramírez Gutiérrez.

References

- Arhangel'skii A.V., The structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys (1978), 33–96.
- Arhangel'skii A.V., The structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk 33 (1978), 29–84.
- [2] Fedeli A., On the cardinality of Hausdorff spaces, Comment. Math. Univ. Carolinae 39.3 (1998), 581–585.
- [3] Hodel R., Cardinal functions I, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 1–61.
- [4] Hodel R., A technique for proving inequalities in cardinal functions, Topology Proc. 4 (1979), 115–120.
- [5] Juhász I., Cardinal Functions in Topology Ten Years Later, Mathematisch Centrum, Amsterdam, 1980.

FACULTAD DE CIENCIAS, UNIVERSIDAD AUTÓNOMA DE PUEBLA, PUEBLA, MÉXICO *E-mail*: aparamo@fcfm.buap.mx

(Received April 29, 2004, revised November 2, 2004)