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On the cardinality of Hausdorff
spaces and Pol-Sapirovskii technique

ALEJANDRO RAMIREZ-PARAMO

Abstract. In this paper we make use of the Pol-Sapirovskii technique to prove three
cardinal inequalities. The first two results are due to Fedeli [2] and the third theorem of
this paper is a common generalization to: (a) (Arhangel’skii [1]) If X is a T} space such
that (i) L(X)t(X) < &, (i) ¥(X) < 2%, and (iii) for all A € [X]<?", |4] < 2%, then
|X| < 2%; and (b) (Fedeli [2]) If X is a Ty-space then |X| < 22al(X)t(X)ve(X),
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In [2], Fedeli proved, using the language of elementary submodels, two cardinal
inequalities which state (1) “if X € To, then |X| < 22¢(XDHU(X)» and (2) «if
X € To, then |X| < le(X)mx(X)¥e(X)» - Each of these inequalities improve the
well known Hajnal-Juhdsz’s inequality: “for X € 7o, |X| < 2¢COX(X)» 1 the
first part of this paper we give a proof of the inequalities (1) and (2) without using
elementary submodels. Our proof makes use of the Pol-Sapirovskii technique.
This technique provides a unified approach to the difficult inequalities in the
theory of cardinal functions. The reader is referred to [4] and [3] for a detailed
discussion like for additional inequalities in cardinal functions which can be proved
using the Pol-Sapirovskii technique.

We refer the reader to [3], [2] and [5] for definitions and terminology not ex-
plicitly given. Let L, ¢, x, ¥, ¥, Tx, t, denote the following standard cardinal
functions: Lindelof degree, celularity, character, pseudocharacter, closed pseu-
docharacter, m-character and tightness, respectively.

Let X be a Hausdorff space. The Hausdorff pseudocharacter, denoted Hy(X),
is the smallest infinite cardinal x such that for every x € X there is a collection Uy,
of open neighborhoods of x with |U,| < x and such that (%) if z # y, there exist
UclUyand V ely withUNV = (). If U is a collection of open neighborhoods
of = which satisfies (*), we say that U, is a H-pseudobase of z.

Definition 1. Let X be a topological space:

(a) ac(X) is the smallest infinite cardinal x such that there is a subset S of X
with |S| < 2% and for every open collection U in X, there is a V € [U]=F, with

UucSuU{v vevl.
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(b) 1c(X) is the smallest infinite cardinal x such that there is a closed subset F’
of X with |F| < 2% and for every open collection U/ in X, there is a V € [U]=",
with JU C FUU{V : V e V}.

(c) aql(X) is the smallest infinite cardinal s such that there is a subset S of X
such that |S| < 2% and for every open cover U of X there is a V € [U]=" with
X=SuUV).

Clearly ac(X) < le(X) < ¢(X), and aql(X) < L(X) for every topological
space.

Theorem 2. If X is a Ty-space then | X| < 22¢(X)Hu(X),

PROOF: Let k = ac(X)Hy(X), and let S be a subset of X with |S| < 2% and
witnessing that ac(X) < k. For each x € X, let B; an H-pseudobase of z in X,
with |Bz| < k.

Construct a sequence {Aa 0<a< IQJ'_} of sets in X and a sequence
{Va 0<a< Ii+} of open collections in X such that

(1) |[Aa| €£25;0< a < kT,

(2) Va=U{Bs 2 € Upca Ap}s 0 < a < k75

(3) if C = {Cy : v € A} is a collection (A < k) of closed sets in X such
that each Cy has the form J{V :V €Uy}, where Uy € [Vo|=F, and if
X —(SulJC) #0, then A, — (SUYC) #0.

The construction is by transfinite induction. Let 0 < o < xT, and assume
that Ag and V3 have been constructed for each 8 < a. Note that V, is defined
by (2). For each collection C = {Cy : v € A} with X\ < & of closed sets in X such
that each Cy has the form (J{V : V € Uy}, where U, € [Va]=", and such that
X # SUU{Cy : v € A}, choose one point in X — (SUJ{Cy : v € A}). Let A, be
the set of points chosen in this way. To show that |Ay| < 2%, let F = Uﬁ<a Ag;
then Vo = Uyep Bz, hence Vo| < > cp|Be| < &-|F| < & - Zﬁe«x ’Aﬁ‘ =
k- |al - 2F = 2% Since |Aa| < [[Va]®]®| < (2%)" = 2%, we have [Ay| < 2%. This
completes the construction.

Now let A = J, <+ Aa and let U = J {Va o€ /1"'}; clearly, |A| < 2%,

The proof is complete if X = (S U A). Suppose not, and let p € X — (SU A).
Let B = {By : v € A} be a family of open neighbourhoodsof p in X, such
that N{By : v € A} = {p} with A < k. For each v € A, let V;, = X — B,
and let Wy, = {V e U : V C Vy}. Since ac(X) < k, for each v € X there
exists U € [Wﬂgﬁ such that UW, C SUU{V : V €U, }. Note that for each
yeMNpgSUU{V:V elUy}. Finally, let Cy = J{V : V €Uy} for each v € A.
Since U~ C U and ’Z/{y’ < k, for all ¥ € ), by the regularity of k¥ there is an
a € k1 such that C = {C, : v € A} is a collection of < £ closed sets in X,
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such that each C has the form (J{V : V € Uy}, where Uy € [Va]=". Moreover
X — (SUU{Cy : v € A}) # 0, therefore, by (3), Aa — (SUU{Cy : v € A}) # 0.
Since Ao € A C SUJ{C, : v € A}, we reach a contradiction. Thus X = SU A
and | X| =[S UA| <2~ O

Theorem 3. If X is a Ty-space then | X| < 21e(X)mx(X)ve(X)

PRrROOF: Let k = le(X)mx(X)ve(X), and let F' be a closed set in X with |F| < 2%
and witnessing that le(X) < k. For each z € X, let V; a m-base local of x in X
such that |B;| < k.

Construct a sequence {Aa o€ I€+} of sets in X and a sequence {Ba o€ I€+}
of open collections in X such that:

(1) aer®, [Aa] <25 0<a < kT

(2) Va = U{Bx SRS U5<QA5}; 0<a<rt;

(3) ifC ={Cy : v € A}, with A < &, is a collection of closed sets in X, where each
C, has the form (J{V : V € U, }, where U € [Va]SF and X—(FUJC) # 0,
then Ao — (FUJC) # 0.

The construction is by transfinite induction. Let 0 < o < kT, and assume that
Ag and Vg have been constructed for each 3 < .. Note that V, is defined by (2).
Let P, = Uﬁ<a Ag; we have Vo = |J{By : v € Pa}. Now, for each collection
C ={C, :v €A}, A <k, of closed sets in X such that each C, has the form
U{V:V €Uy}, where Uy € [Va]SF and X # F U U{C5 : v € A}, choose one
point in X — (FUJ{Cy : v € A}). Let A, be the set of points chosen in this way.
Observe that |Aq| < ‘[[VQ]S“]§“| < 2%, This completes the construction.

Let A = J{Aa:a€rT} and let U = J{Va:aerT}. It is clear that
|A| < 2%. The proof is complete if X = F'U A. Assume, on the contrary, that
p € X — (FUA), and consider V = {By : v € A}, where A < &, a family of
neighbourhoods of p in X such that (\{By : v € A} = {p}. For each vy € A, let
Vy =X — By and let Wy = {V C V) : V € U}. Since le(X) < & for each v € A,
there exists Uy € [W,] < Such that Uw, C FU{UV :V €Uy}. Observe that,
foreachy € A\, p¢ FUU{V :V €Uy}. Let W = J{W, : v € A\}. Finally, for
cach v € A, let C, = (J{V : V €U,}. Since Uy C U and |Uy| < & for all y € A,
then by the regularity of kT there exists & € x* such that C = {Cy : v € A} is a
collection of < k closed sets in X and each C., has the form [J{V : V € Uy }, where
Uy € |U{Vs : © € Aq}]=". Moreover, X—(FUU{Cy : v € A}) # 0, hence by (3),
Aa—(FUU{C»y:’ye)\});é(D. Since Aqg CACUW C FUU{Cy : v €A}, we
reach a contradiction. Thus X = F U A; therefore | X| < 2. O

Now we turn to the second part of this paper. Another well known cardinal
inequality is due to Arhangel’skii [3]: “For X € T3, |X| < 2LCOUX)Y(X) 7 Fedeli
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[2] proved, making use of elementary submodels, that: if X is a T-space then
|X| < 22al(X)H(X)ve(X)  This result generalizes the Arhangel’skii’s inequality. On
the other hand, in [1], Arhangel’skii proved that: (a) “If X is a T} space such
that (i) L(X)t(X) < &, (i) ¥(X) < 2%, and (iii) for all A € [X]S?", [4] < 2F,
then | X| < 2%”. From this result one easily obtains the Arhangel’skii’s inequality
mentioned above.

Since aql(X) < L(X) for every topological space X, it is natural to ask if L
can be replace by aql in the inequality (a). The next theorem gives an affirmative
answer to this question. Our proof makes use of the Pol-Sapirovskii technique.

Theorem 4. Let X be a Tj-space such that (i) aql(X)t(X) < &, (ii) (X)) < 2",
and (iii) if A € [X]<2" then |A| < 2F. Then |X| < 2.

PROOF: Let S be an element of [X]=2" witnessing that aql(X) < x. For each

x € X, let By an pseudobase of x in X such that |Bg| < k.
Construct an increasing sequence {Aa o€ n"'} of closed sets in X and a
sequence {Va o€ /{"} of open collections in X such that

(1) |4al <25, 0 < 0 < wH;

(2) Vo =U{Bs: 2z € Aun};

(3)ifu U {Bx cz €y (Ug<a Aﬁ)} with [U| < & and X — (S UJU) # 0,
then Ao — (SUUU) # 0.

The construction is by transfinite induction. Let 0 < av < kT and assume that
Ag and Vg have been constructed for each 3 € a. Note that V, is defined by (2).

Let Py, = cly (Uﬁ<a Aﬁ) and let Co, = |J{Bz : « € Py}. Since U6<a Aﬁ‘ < 2K,
it follows by (iii) that |Py| < 2%, hence, |Cq| < 27. For each U C C,, with [U| < &
and X — (SUJU) # 0, choose one point in X — (S UJU). Let Ly be the set of
points chosen in this way. Clearly |Ly| < 2%. Let Aq = Py U Lo. This completes
the construction.

Let A= {Aa o€ IQJ'_} and note that A is closed in X; moreover, clearly
|A] < 2% Let V = J{Va:a€rT}. The proof is complete if X = S U A.
Suppose not, let p € X — (S U A) and for each z € A, choose V; € By such
that p ¢ V. Then {V, : z € A} together with {X — A} cover X; hence, there
exists B C [A]=* such that X = SU (J{Va:2€B}) U (X — A). Let U =
U{Vz : z € B}. Since |B| < k, by the regularity of k™ there exists a € x™ such

that {Vz :2 € B} C|J {Bz rx €cly (U5<a Ag)}, that is U is the union of < k

elements of | J {Bz rx €cly (U5<a Ag)} and X — (SUU) # 0. Hence by (3),

Aq — (SUU) # 0. Since A, € A C SUU, we reach a contradiction. Thus
X =SUA. O

Now we have the inequality (a), as a consequence of our theorem.
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Corollary 5 (Arhangel’skii). Let X be a Tj-space such that: (i) L(X)t(X) < &,
(i) ¥ (X) < 2%, and (iii) for all A € [X]S?", |A| < 2%. Then |X| < 2".

Another consequence of Theorem 5 is the next theorem due to Fedeli.
Corollary 6. If X is a Ty-space then | X| < 28al(X)1e(X)HX)

PROOF: Let x = aql(X)te(X)t(X). It is enough to note that for all A € [X]<2",
|4| <2~ 0
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