Duality theory of spaces of vector-valued continuous functions

Marian Nowak, Aleksandra Rzepka

Abstract

Let X be a completely regular Hausdorff space, E a real normed space, and let $C_{b}(X, E)$ be the space of all bounded continuous E-valued functions on X. We develop the general duality theory of the space $C_{b}(X, E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta_{z}(X, E)$ for $z=\sigma, \tau, t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_{z}\left(X, E^{\prime}\right)$ for $z=\sigma, \tau, t$. It is shown that if a subset H of $M_{z}\left(X, E^{\prime}\right)$ is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$-compact, then the set $\operatorname{conv}(S(H))$ is still relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$-compact $\left(S(H)=\right.$ the solid hull of H in $\left.M_{z}\left(X, E^{\prime}\right)\right)$. A MackeyArens type theorem for locally convex-solid topologies on $C_{b}(X, E)$ is obtained.

Keywords: vector-valued continuous functions, strict topologies, locally solid topologies, weak-star compactness, vector measures

Classification: 46E10, 46E15, 46E40, 46G10

1. Introduction and preliminaries

Let X be a completely regular Hausdorff space and let $\left(E,\|\cdot\|_{E}\right)$ be a real normed space. Let B_{E} and S_{E} stand for the closed unit ball and the unit sphere in E, and let E^{\prime} stand for the topological dual of $\left(E,\|\cdot\|_{E}\right)$. Let $C_{b}(X, E)$ be the space of all bounded continuous functions $f: X \rightarrow E$. We will write $C_{b}(X)$ instead of $C_{b}(X, \mathbb{R})$, where \mathbb{R} is the field of real numbers. For a function $f \in C_{b}(X, E)$ we will write $\|f\|(x)=\|f(x)\|_{E}$ for $x \in X$. Then $\|f\| \in C_{b}(X)$ and the space $C_{b}(X, E)$ can be equipped with the norm $\|f\|_{\infty}=\sup _{x \in X}\|f\|(x)=\| \| f\| \|_{\infty}$, where $\|u\|_{\infty}=\sup _{x \in X}|u(x)|$ for $u \in C_{b}(X)$.

It turns out that the notion of solidness in the Riesz space (= vector lattice) $C_{b}(X)$ can be lifted in a natural way to $C_{b}(X, E)$ (see [NR]). Recall that a subset H of $C_{b}(X, E)$ is said to be solid whenever $\left\|f_{1}\right\| \leq\left\|f_{2}\right\|$ (i.e., $\left\|f_{1}(x)\right\|_{E} \leq\left\|f_{2}(x)\right\|_{E}$ for all $x \in X$) and $f_{1} \in C_{b}(X, E), f_{2} \in H$ imply $f_{1} \in H$. A linear topology τ on $C_{b}(X, E)$ is said to be locally solid if it has a local base at 0 consisting of solid sets. A linear topology τ on $C_{b}(X, E)$ that is at the same time locally convex and locally solid will be called a locally convex-solid topology.

In [NR] we examine the general properties of locally solid topologies on the space $C_{b}(X, E)$. In particular, we consider the mutual relationship between locally solid topologies on $C_{b}(X, E)$ and $C_{b}(X)$. It is well known that the so-called
strict topologies $\beta_{z}(X, E)$ on $C_{b}(X, E)(z=t, \tau, \sigma, g, p)$ are locally convex-solid topologies (see [Kh, Theorem 8.1], $\left[\mathrm{KhO}_{2}\right.$, Theorem 6], $\left[\mathrm{KhV}_{1}\right.$, Theorem 5]).

For a linear topological space (L, ξ), by $(L, \xi)^{\prime}$ (or L_{ξ}^{\prime}) we will denote its topological dual. We will write $C_{b}(X, E)^{\prime}$ and $C_{b}(X)^{\prime}$ instead of $\left(C_{b}(X, E),\|\cdot\|_{\infty}\right)^{\prime}$ and $\left(C_{b}(X),\|\cdot\|_{\infty}\right)^{\prime}$ respectively. By $\sigma(L, M)$ and $\tau(L, M)$ we will denote the weak topology and the Mackey topology with respect to a dual pair $\langle L, M\rangle$. For terminology concerning locally solid Riesz spaces we refer to $\left[\mathrm{AB}_{1}\right],\left[\mathrm{AB}_{2}\right]$.

In the present paper, we develop the duality theory of the space $C_{b}(X, E)$ endowed with locally solid topologies (in particular, the strict topologies $\beta_{z}(X, E)$, where $z=\sigma, \tau, t)$.

In Section 2 we examine the topological dual of $C_{b}(X, E)$ endowed with a locally solid topology τ. We obtain that $\left(C_{b}(X, E), \tau\right)^{\prime}$ is an ideal of $C_{b}(X, E)^{\prime}$. We consider a mutual relationship between topological duals of the spaces $C_{b}(X)$ and $C_{b}(X, E)$, which allows us to examine in a unified manner continuous linear functionals on $C_{b}(X, E)$ by means of continuous linear functionals on $C_{b}(X)$.

In Section 3 we consider criteria for relative weak-star compactness in spaces of vector measures $M_{z}\left(X, E^{\prime}\right)$ for $z=\sigma, \tau, t$. In particular, we show that if a subset H of $M_{z}\left(X, E^{\prime}\right)$ is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$-compact, then conv $(S(H))$ is still relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right.$)-compact (here $S(H)$ stand for the solid hull of H in $M_{z}\left(X, E^{\prime}\right)$; see Definition 3.1 below).

Section 4 deals with the absolute weak and the absolute Mackey topologies on $C_{b}(X, E)$. A Mackey-Arens type theorem for locally convex-solid topologies on $C_{b}(X, E)$ is obtained.

Now we recall some properties of locally solid topologies on $C_{b}(X, E)$ as set out in [NR]. A seminorm ρ on $C_{b}(X, E)$ is said to be solid whenever $\rho\left(f_{1}\right) \leq \rho\left(f_{2}\right)$ if $f_{1}, f_{2} \in C_{b}(X, E)$ and $\left\|f_{1}\right\| \leq\left\|f_{2}\right\|$.

Note that a solid seminorm on the vector lattice $C_{b}(X)$ is usually called a Riesz seminorm (see $\left[\mathrm{AB}_{1}\right]$).

Theorem 1.1 (see [NR, Theorem 2.2]). For a locally convex topology τ on $C_{b}(X, E)$ the following statements are equivalent:
(i) τ is generated by some family of solid seminorms;
(ii) τ is a locally convex-solid topology.

From Theorem 1.1 it follows that any locally convex-solid topology τ on $C_{b}(X, E)$ admits a local base at 0 formed by sets which are simultaneously absolutely convex and solid.

Recall that the algebraic tensor product $C_{b}(X) \otimes E$ is the subspace of $C_{b}(X, E)$ spanned by the functions of the form $u \otimes e,(u \otimes e)(x)=u(x) e$, where $u \in C_{b}(X)$ and $e \in E$.

Now we briefly explain the general relationship between locally convex-solid topologies on $C_{b}(X)$ and $C_{b}(X, E)$ (see [NR]). Given a Riesz seminorm p on
$C_{b}(X)$ let us set

$$
p^{\vee}(f):=p(\|f\|) \quad \text { for all } \quad f \in C_{b}(X, E)
$$

It is seen that p^{\vee} is a solid seminorm on $C_{b}(X, E)$. From now on let $e_{0} \in S_{E}$ be fixed. Given a solid seminorm ρ on $C_{b}(X, E)$ one can define a Riesz seminorm ρ^{\wedge} on $C_{b}(X)$ by:

$$
\rho^{\wedge}(u):=\rho\left(u \otimes e_{0}\right) \quad \text { for all } \quad u \in C_{b}(X)
$$

One can easily show:
Lemma 1.2 (see [NR, Lemma 3.1]). (i) If ρ is a solid seminorm on $C_{b}(X, E)$, then $\left(\rho^{\wedge}\right)^{\vee}(f)=\rho(f)$ for all $f \in C_{b}(X, E)$.
(ii) If p is a Riesz seminorm on $C_{b}(X)$, then $\left(p^{\vee}\right)^{\wedge}(u)=p(u)$ for all $u \in C_{b}(X)$.

Let τ be a locally convex-solid topology on $C_{b}(X, E)$ and let $\left\{\rho_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of solid seminorms on $C_{b}(X, E)$ that generates τ. By τ^{\wedge} we will denote the locally convex-solid topology on $C_{b}(X)$ generated by the family $\left\{\rho_{\alpha}^{\wedge}: \alpha \in \mathcal{A}\right\}$.

Next, let ξ be a locally convex-solid topology on $C_{b}(X)$ and let $\left\{p_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of solid seminorms on $C_{b}(X)$ that generates ξ. By ξ^{\vee} we will denote the locally convex-solid topology on $C_{b}(X, E)$ generated by the family $\left\{p_{\alpha}^{\vee}: \alpha \in \mathcal{A}\right\}$.

As an immediate consequence of Lemma 1.2 we have:
Theorem 1.3 (see [NR, Theorem 3.2]). For a locally convex-solid topology τ on $C_{b}(X, E)$ (resp. ξ on $\left.C_{b}(X)\right)$ we have:

$$
\left(\tau^{\wedge}\right)^{\vee}=\tau \quad\left(\operatorname{resp} .\left(\xi^{\vee}\right)^{\wedge}=\xi\right)
$$

The strict topologies $\beta_{z}(X, E)$ on $C_{b}(X, E)$, where $z=t, \tau, \sigma, g, p$ have been examined in $[\mathrm{F}]$, $[\mathrm{KhC}],[\mathrm{Kh}],\left[\mathrm{KhO}_{1}\right]$, $\left[\mathrm{KhO}_{2}\right],\left[\mathrm{KhO}_{3}\right],\left[\mathrm{KhV}_{1}\right]$, $\left[\mathrm{KhV}_{2}\right]$. In this paper we will consider the strict topologies $\beta_{z}(X, E)$, where $z=t, \tau, \sigma$. We will write $\beta_{z}(X)$ instead of $\beta_{z}(X, \mathbb{R})$.

Now we recall the concept of a strict topology on $C_{b}(X, E)$. Let βX stand for the Stone-Čech compactification of X. For $v \in C_{b}(X), \bar{v}$ denotes its unique continuous extension to βX. For a compact subset Q of $\beta X \backslash X$ let $C_{Q}(X)=$ $\left\{v \in C_{b}(X): \bar{v} \mid Q \equiv 0\right\}$. Let $\beta_{Q}(X, E)$ be the locally convex topology on $C_{b}(X, E)$ defined by the family of solid seminorms $\left\{\varrho_{v}: v \in C_{Q}(X)\right\}$, where $\varrho_{v}(f)=\sup _{x \in X}|v(x)|\|f\|(x)$ for $f \in C_{b}(X, E)$.

Now let \mathcal{C} be some family of compact subsets of $\beta X \backslash X$. The strict topology $\beta_{\mathcal{C}}(X, E)$ on $C_{b}(X, E)$ determined by \mathcal{C} is the greatest lower bound (in the class of locally convex topologies) of the topologies $\beta_{Q}(X, E)$, as Q runs over \mathcal{C} (see [NR] for more details). In particular, it is known that $\beta_{\mathcal{C}}(X, E)$ is locally solid (see [NR, Theorem 4.1]).

The strict topologies $\beta_{\tau}(X, E)$ and $\beta_{\sigma}(X, E)$ on $C_{b}(X, E)$ are obtained by choosing the family \mathcal{C}_{τ} of all compact subsets of $\beta X \backslash X$ and the family \mathcal{C}_{σ} of all zero subsets of $\beta X \backslash X$ as \mathcal{C}, resp. In view of [NR, Corollary 4.4] for $z=\tau, \sigma$ we have

$$
\beta_{z}(X)^{\vee}=\beta_{z}(X, E) \quad \text { and } \quad \beta_{z}(X, E)^{\wedge}=\beta_{z}(X)
$$

The strict topology $\beta_{t}(X, E)$ on $C_{b}(X, E)$ is generated by the family $\left\{\varrho_{v}: v \in\right.$ $\left.C_{0}(X)\right\}$, where $C_{0}(X)$ denotes the space of scalar-valued continuous functions on X, vanishing at infinity. It is easy to show that

$$
\beta_{t}(X)^{\vee}=\beta_{t}(X, E) \quad \text { and } \quad \beta_{t}(X, E)^{\wedge}=\beta_{t}(X)
$$

2. Topological dual of $C_{b}(X, E)$ with locally solid topologies

For a linear functional Φ on $C_{b}(X, E)$ let us put

$$
|\Phi|(f)=\sup \left\{|\Phi(h)|: h \in C_{b}(X, E),\|h\| \leq\|f\|\right\}
$$

The next theorem gives a characterization of the space $C_{b}(X, E)^{\prime}$.
Theorem 2.1. We have

$$
C_{b}(X, E)^{\prime}=\left\{\Phi \in C_{b}(X, E)^{\#}:|\Phi|(f)<\infty \text { for all } f \in C_{b}(X, E)\right\}
$$

where $C_{b}(X, E) \#$ denotes the algebraic dual of $C_{b}(X, E)$.
Proof: Indeed, by the way of contradiction, assume that for some $\Phi_{0} \in C_{b}(X, E)^{\prime}$ we have $\left|\Phi_{0}\right|\left(f_{0}\right)=\infty$ for some $f_{0} \in C_{b}(X, E)$. Hence there exists a sequence $\left(h_{n}\right)$ in $C_{b}(X, E)$ such that $\left\|h_{n}\right\|_{\leq} \leq\left\|f_{0}\right\|$ and $\left|\Phi_{0}\left(h_{n}\right)\right| \geq n$ for all $n \in \mathbb{N}$. Since $\left\|n^{-1} h_{n}\right\|_{\infty} \rightarrow 0$, we get $n^{-1} \Phi_{0}\left(h_{n}\right) \rightarrow 0$, which is in contradiction with $\left|\Phi_{0}\left(h_{n}\right)\right| \geq n$.

Next, assume by the way of contradiction that there exists a linear functional Φ_{0} on $C_{b}(X, E)$ such that $\left|\Phi_{0}\right|(f)<\infty$ for all $f \in C_{b}(X, E)$ and $\Phi_{0} \notin$ $C_{b}(X, E)^{\prime}$. Then there exists a sequence $\left(f_{n}\right)$ in $C_{b}(X, E)$ such that $\left\|f_{n}\right\|_{\infty}=1$ and $\left|\Phi_{0}\left(f_{n}\right)\right|>n^{3}$ for all $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}\| \| f_{n}\| \|_{\infty}<\infty$ and the space $\left(C_{b}(X),\|\cdot\|_{\infty}\right)$ is complete, there exists $u_{0} \in C_{b}(X)^{+}$such that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left\|f_{n}\right\|=u_{0}$. Let $f_{0}=u_{0} \otimes e_{0}$ for some fixed $e_{0} \in S_{E}$. Then $\frac{1}{n^{2}}\left\|f_{n}\right\| \leq\left\|f_{0}\right\|=u_{0}$. Hence for all $n \in \mathbb{N}, n<\left|\Phi_{0}\left(f_{n} / n^{2}\right)\right| \leq\left|\Phi_{0}\right|\left(f_{n} / n^{2}\right) \leq\left|\Phi_{0}\right|\left(f_{0}\right)<\infty$, which is impossible. Thus the proof is complete.

Now we consider the concept of solidness in $C_{b}(X, E)^{\prime}$.
Definition 2.1. For $\Phi_{1}, \Phi_{2} \in C_{b}(X, E)^{\prime}$ we will write $\left|\Phi_{1}\right| \leq\left|\Phi_{2}\right|$ whenever $\left|\Phi_{1}\right|(f) \leq\left|\Phi_{2}\right|(f)$ for all $f \in C_{b}(X, E)$. A subset A of $C_{b}(X, E)^{\prime}$ is said to be solid whenever $\left|\Phi_{1}\right| \leq\left|\Phi_{2}\right|$ with $\Phi_{1} \in C_{b}(X, E)^{\prime}$ and $\Phi_{2} \in A$ implies $\Phi_{1} \in A$. A linear subspace I of $C_{b}(X, E)^{\prime}$ will be called an ideal whenever I is solid.

Since the intersection of any family of solid subsets of $C_{b}(X, E)^{\prime}$ is solid, every subset A of $C_{b}(X, E)^{\prime}$ is contained in the smallest (with respect to the inclusion) solid set called the solid hull of A and denoted by $S(A)$. Note that

$$
S(A)=\left\{\Phi \in C_{b}(X, E)^{\prime}:|\Phi| \leq|\Psi| \quad \text { for some } \quad \Psi \in A\right\} .
$$

Lemma 2.2. Let $\Phi \in C_{b}(X, E)^{\prime}$. Then for $f \in C_{b}(X, E)$,

$$
\begin{equation*}
|\Phi|(f)=\sup \left\{|\Psi(f)|: \Psi \in C_{b}(X, E)^{\prime},|\Psi| \leq|\Phi|\right\} \tag{*}
\end{equation*}
$$

Moreover, if A is a subset of $C_{b}(X, E)^{\prime}$ then for $f \in C_{b}(X, E)$ we have

$$
\begin{align*}
\sup \{|\Phi|(f): \Phi \in A\} & =\sup \{|\Psi(f)|: \Psi \in S(A)\} \\
& =\sup \{|\Psi(f)|: \Psi \in \operatorname{conv}(S(A))\} \tag{**}
\end{align*}
$$

Proof: Note first that $|\Phi|$ is a seminorm on $C_{b}(X, E)$. To see that $|\Phi|\left(f_{1}+f_{2}\right) \leq$ $|\Phi|\left(f_{1}\right)+|\Phi|\left(f_{2}\right)$ holds for $f_{1}, f_{2} \in C_{b}(X, E)$ with $f_{1}, f_{2} \neq 0$, assume that $h \in$ $C_{b}(X, E)$ and $\|h\| \leq\left\|f_{1}+f_{2}\right\|$. Then for $h_{i}=\left(\left\|f_{i}\right\| /\left(\left\|f_{1}\right\|+\left\|f_{2}\right\|\right)\right) h$ for $i=1,2$ we have $h=h_{1}+h_{2}$ and $\left\|h_{i}\right\| \leq\left\|f_{i}\right\|$ for $i=1,2$. Thus $|\Phi(h)| \leq\left|\Phi\left(h_{1}\right)\right|+\left|\Phi\left(h_{2}\right)\right| \leq$ $|\Phi|\left(h_{1}\right)+|\Phi|\left(h_{2}\right) \leq|\Phi|\left(f_{1}\right)+|\Phi|\left(f_{2}\right)$. Hence $|\Phi|\left(f_{1}+f_{2}\right) \leq|\Phi|\left(f_{1}\right)+|\Phi|\left(f_{2}\right)$, as desired. Moreover, one can easily show that $|\Phi|(\lambda f)=|\lambda||\Phi|(f)$ for all $\lambda \in \mathbb{R}$.

For a fixed $f_{0} \in C_{b}(X, E)$ we define a functional Ψ_{0} on the linear subspace $L_{f_{0}}=\left\{\lambda f_{0}: \lambda \in \mathbb{R}\right\}$ of $C_{b}(X, E)$ by putting $\Psi_{0}\left(\lambda f_{0}\right)=\lambda|\Phi|\left(f_{0}\right)$ for $\lambda \in \mathbb{R}$. It is clear that Ψ_{0} is a linear functional on $L_{f_{0}}$ and $\left|\Psi_{0}\left(\lambda f_{0}\right)\right|=|\Phi|\left(\lambda f_{0}\right)$ for $\lambda \in \mathbb{R}$. Then by the Hahn-Banach extension theorem there exists a linear functional Ψ on $C_{b}(X, E)$ such that $\Psi(f) \leq|\Phi|(f)$ for all $f \in C_{b}(X, E)$ and $\Psi\left(\lambda f_{0}\right)=\Psi_{0}\left(\lambda f_{0}\right)$ for all $\lambda \in \mathbb{R}$. Since Ψ is linear and $|\Phi|(f)=|\Phi|(-f)$ we get $|\Psi(f)| \leq|\Phi|(f)$ for all $f \in C_{b}(X, E)$. To see that $|\Psi| \leq|\Phi|$ let $f \in C_{b}(X, E)$ and take $h \in C_{b}(X, E)$ with $\|h\| \leq\|f\|$. Then $|\Psi(h)| \leq|\Phi|(h) \leq|\Phi|(f)$, so $|\Psi|(f) \leq|\Phi|(f)$. Thus $|\Psi| \leq|\Phi|$. Moreover, $\Psi\left(f_{0}\right)=\Psi_{0}\left(f_{0}\right)=|\Phi|\left(f_{0}\right)$, so

$$
|\Phi|\left(f_{0}\right)=\sup \left\{\left|\Psi\left(f_{0}\right)\right|: \Psi \in C_{b}(X, E)^{\prime}, \quad|\Psi| \leq|\Phi|\right\} .
$$

Thus $(*)$ is shown. As a consequence of $(*)$ we easily obtain that $(* *)$ holds.
We now introduce the concept of a solid dual system. Let I be an ideal of $C_{b}(X, E)^{\prime}$ separating the points of $C_{b}(X, E)$. Then the pair $\left\langle C_{b}(X, E), I\right\rangle$, under its natural duality

$$
\langle f, \Phi\rangle=\Phi(f) \quad \text { for } \quad f \in C_{b}(X, E), \quad \Phi \in I
$$

will be referred to as a solid dual system.
For a subset A of $C_{b}(X, E)$ and a subset B of I let us set

$$
\begin{aligned}
& A^{0}=\{\Phi \in I:|\langle f, \Phi\rangle| \leq 1 \quad \text { for all } \quad f \in A\} \\
& { }^{0} B=\left\{f \in C_{b}(X, E):|\langle f, \Phi\rangle| \leq 1 \quad \text { for all } \quad \Phi \in B\right\} .
\end{aligned}
$$

By making use of Lemma 2.2 we can get the following result.

Theorem 2.3. Let $\left\langle C_{b}(X, E), I\right\rangle$ be a solid dual system.
(i) If a subset A of $C_{b}(X, E)$ is solid, then A^{0} is a solid subset of I.
(ii) If a subset B of I is solid, then ${ }^{0} B$ is a solid subset of $C_{b}(X, E)$.

Proof: (i) Let $\left|\Phi_{1}\right| \leq\left|\Phi_{2}\right|$ with $\Phi_{1} \in I$ and $\Phi_{2} \in A^{0}$. Assume that $f \in A$ and let $h \in C_{b}(X, E)$ with $\|h\| \leq\|f\|$. Then $h \in A$, because A is solid, so $\left|\Phi_{2}(h)\right| \leq 1$. Hence $\left|\Phi_{2}\right|(f) \leq 1$. Thus $\left|\Phi_{1}(f)\right| \leq\left|\Phi_{1}\right|(f) \leq 1$, so $\Phi_{1} \in A^{0}$. This means that A^{0} is a solid subset of I.
(ii) Let $\left\|f_{1}\right\| \leq\left\|f_{2}\right\|$ with $f_{1} \in C_{b}(X, E)$ and $f_{2} \in{ }^{0} B$. To see that $f_{1} \in{ }^{0} B$ assume that $\Phi \in B$. Since B is a solid subset of I, by Lemma 2.2 the identity $|\Phi|\left(f_{2}\right)=\sup \left\{\left|\Psi\left(f_{2}\right)\right|: \Psi \in B,|\Psi| \leq|\Phi|\right\}$ holds. Thus for every $\Psi \in B$ with $|\Psi| \leq|\Phi|$ we have $\left|\Psi\left(f_{2}\right)\right| \leq 1$, so $|\Phi|\left(f_{2}\right) \leq 1$. Since $\left|\Phi\left(f_{1}\right)\right| \leq|\Phi|\left(f_{1}\right) \leq|\Phi|\left(f_{2}\right) \leq$ 1 , we get $f_{1} \in{ }^{0} B$, as desired.

Theorem 2.4. Let τ be a locally solid topology on $C_{b}(X, E)$. Then $\left(C_{b}(X, E), \tau\right)^{\prime}$ is an ideal of $C_{b}(X, E)^{\prime}$.

Proof: To show that $\left(C_{b}(X, E), \tau\right)^{\prime} \subset C_{b}(X, E)^{\prime}$, by the way of contradiction assume that for some $\Phi_{0} \in\left(C_{b}(X, E), \tau\right)^{\prime}$ we have $\Phi_{0} \notin C_{b}(X, E)^{\prime}$, so in view of Theorem 2.1 we get $\left|\Phi_{0}\right|\left(f_{0}\right)=\infty$ for some $f_{0} \in C_{b}(X, E)$. Hence there exists a sequence $\left(h_{n}\right)$ in $C_{b}(X, E)$ such that $\left\|h_{n}\right\| \leq\left\|f_{0}\right\|$ and $\left|\Phi_{0}\left(h_{n}\right)\right| \geq n$ for $n \in \mathbb{N}$. Since $n^{-1} f_{0} \rightarrow 0$ for τ, and τ is locally solid, we get $n^{-1} h_{n} \rightarrow 0$ for τ. Hence $\Phi_{0}\left(n^{-1} h_{n}\right) \rightarrow 0$, which is in contradiction with $\left|\Phi_{0}\left(h_{n}\right)\right| \geq n$.

To see that $\left(C_{b}(X, E), \tau\right)^{\prime}$ is an ideal of $C_{b}(X, E)^{\prime}$ assume that $\left|\Phi_{1}\right| \leq\left|\Phi_{2}\right|$ with $\Phi_{1} \in C_{b}(X, E)^{\prime}$ and $\Phi_{2} \in\left(C_{b}(X, E), \tau\right)^{\prime}$. Let $f_{\alpha} \xrightarrow{\tau} 0$ and $\varepsilon>0$ be given. Then there exists a net $\left(h_{\alpha}\right)$ in $C_{b}(X, E)$ such that $\left\|h_{\alpha}\right\| \leq\left\|f_{\alpha}\right\|$ for each α and $\left|\Phi_{2}\right|\left(f_{\alpha}\right) \leq\left|\Phi_{2}\left(h_{\alpha}\right)\right|+\varepsilon$. Clearly $h_{\alpha} \xrightarrow{\tau} 0$, because τ is locally solid, so $\Phi_{2}\left(h_{\alpha}\right) \rightarrow 0$. Since $\left|\Phi_{1}\left(f_{\alpha}\right)\right| \leq\left|\Phi_{1}\right|\left(f_{\alpha}\right) \leq\left|\Phi_{2}\right|\left(f_{\alpha}\right) \leq\left|\Phi_{2}\left(f_{\alpha}\right)\right|+\varepsilon$, we get $\Phi_{1}\left(f_{\alpha}\right) \rightarrow 0$, so $\Phi_{1} \in\left(C_{b}(X, E), \tau\right)^{\prime}$, as desired.

Theorem 2.5. For a Hausdorff locally convex topology τ on $C_{b}(X, E)$ the following statements are equivalent:
(i) τ is locally solid;
(ii) $\left(C_{b}(X, E), \tau\right)^{\prime}$ is an ideal of $C_{b}(X, E)^{\prime}$ and for every τ-equicontinuous subset A of $\left(C_{b}(X, E), \tau\right)^{\prime}$ its solid hull $S(A)$ is also τ-equicontinuous.

Proof: (i) \Longrightarrow (ii) By Theorem $2.4\left(C_{b}(X, E), \tau\right)^{\prime}$ is an ideal of $C_{b}(X, E)^{\prime}$, and thus we have the solid dual system $\left\langle C_{b}(X, E),\left(C_{b}(X, E), \tau\right)^{\prime}\right\rangle$. Assume that a subset A of $\left(C_{b}(X, E), \tau\right)^{\prime}$ is equicontinuous. Hence $A \subset V^{0}$ for some solid τ neighbourhood V of zero. Hence $S(A) \subset S\left(V^{0}\right)=V^{0}$ (see Theorem 2.3). This means that $S(A)$ is a τ-equicontinuous subset of $\left(C_{b}(X, E), \tau\right)^{\prime}$.
(ii) \Longrightarrow (i) Let \mathcal{B}_{τ} be a local base at zero for τ consisting of absolutely convex, τ closed sets. Assume that V is τ-neighbourhood of zero. Then there exists $U \in \mathcal{B}_{\tau}$
such that $U \subset V$. Moreover, the polar set U^{0} is a τ-equicontinuous subset of $\left(C_{b}(X, E), \tau\right)^{\prime}$. By our assumption $S\left(U^{0}\right)$ is also τ-equicontinuous. Hence there exists $W \in \mathcal{B}_{\tau}$ such that $W \subset{ }^{0} S\left(U^{0}\right)$. Since the set ${ }^{0} S\left(U^{0}\right)$ is solid in $C_{b}(X, E)$, $S(W) \subset{ }^{0} S\left(U^{0}\right) \subset{ }^{0}\left(U^{0}\right)=\overline{\operatorname{abs} \operatorname{conv} U^{\tau}}=U \subset V$. This shows that τ is locally solid, as desired.

For each $\Phi \in C_{b}(X, E)^{\prime}$ let

$$
\varphi_{\Phi}(u)=\sup \left\{|\Phi(h)|: h \in C_{b}(X, E), \quad\|h\| \leq u\right\} \quad \text { for } \quad u \in C_{b}(X)^{+} .
$$

One can easily show that $\varphi_{\Phi}: C_{b}(X)^{+} \rightarrow \mathbb{R}^{+}$is an additive and positively homogeneous mapping (see $\left[\mathrm{KhO}_{1}\right.$, Lemma 1$]$), so φ_{Φ} has a unique positive extension to a linear mapping from $C_{b}(X)$ to \mathbb{R} (denoted by φ_{Φ} again) and given by

$$
\varphi_{\Phi}(u)=\varphi_{\Phi}\left(u^{+}\right)-\varphi_{\Phi}\left(u^{-}\right) \quad \text { for all } \quad u \in C_{b}(X)
$$

(see $\left[\mathrm{AB}\right.$, Lemma 3.1]). Hence $\varphi_{\Phi}=\left|\varphi_{\Phi}\right|$ holds on $C_{b}(X)^{+}$. Since $C_{b}(X)^{\prime}=$ $C_{b}(X)^{\sim}$ (the order dual of $C_{b}(X)$) (see $\left[\mathrm{AB}_{2}\right.$, Corollary 12.5]), we get $\varphi_{\Phi} \in$ $C_{b}(X)^{\prime}$. Moreover, we have:

$$
\varphi_{\Phi}(\|f\|)=|\Phi|(f) \quad \text { for } \quad f \in C_{b}(X, E)
$$

and

$$
\varphi_{\Phi}(u)=|\Phi|\left(u \otimes e_{0}\right) \quad \text { for } \quad u \in C_{b}(X)^{+}
$$

The following lemma will be useful.
Lemma 2.6. (i) Assume that L is an ideal of $C_{b}(X)^{\prime}$. Then the set

$$
C_{b}(X, E)_{L}^{\prime}:=\left\{\Phi \in C_{b}(X, E)^{\prime}: \varphi_{\Phi} \in L\right\}
$$

is an ideal of $C_{b}(X, E)^{\prime}$.
(ii) Assume that I is an ideal of $C_{b}(X, E)^{\prime}$. Then the set

$$
C_{b}(X)_{I}^{\prime}:=\left\{\varphi \in C_{b}(X)^{\prime}:|\varphi| \leq \varphi_{\Phi} \quad \text { for some } \quad \Phi \in I\right\}
$$

is an ideal of $C_{b}(X)^{\prime}$ and $C_{b}(X, E)_{C_{b}(X)_{I}^{\prime}}^{\prime}=I$.
Proof: (i) We first show that $C_{b}(X, E)_{L}^{\prime}$ is a linear subspace of $C_{b}(X, E)^{\prime}$. Assume that $\Phi_{1}, \Phi_{2} \in C_{b}(X, E)_{L}^{\prime}$, i.e., $\varphi_{\Phi_{1}}, \varphi_{\Phi_{2}} \in L$. It is easy to show that $\varphi_{\Phi_{1}+\Phi_{2}}(u) \leq\left(\varphi_{\Phi_{1}}+\varphi_{\Phi_{2}}\right)(u)$ for $u \in C_{b}(X)^{+}$, so $\varphi_{\Phi_{1}+\Phi_{2}} \in L$, i.e., $\Phi_{1}+\Phi_{2} \in$ $C_{b}(X, E)_{L}^{\prime}$. Next, let $\Phi \in C_{b}(X, E)_{L}^{\prime}$ and $\lambda \in \mathbb{R}$. Then $\varphi_{\Phi} \in L$ and since $\varphi_{\lambda \Phi}=\lambda \varphi_{\Phi}$, we get $\lambda \Phi \in C_{b}(X, E)_{L}^{\prime}$.

To show that $C_{b}(X, E)_{L}^{\prime}$ is solid in $C_{b}(X, E)^{\prime}$, assume that $\left|\Phi_{1}\right| \leq\left|\Phi_{2}\right|$ with $\Phi_{1} \in C_{b}(X, E)^{\prime}$ and $\Phi_{2} \in C_{b}(X, E)_{L}^{\prime}$, i.e., $\varphi_{\Phi_{2}} \in L$. Then for $u \in C_{b}(X)^{+}$we have $\varphi_{\Phi_{1}}(u)=\left|\Phi_{1}\right|\left(u \otimes e_{0}\right) \leq\left|\Phi_{2}\right|\left(u \otimes e_{0}\right)=\varphi_{\Phi_{2}}(u)$. Hence $\varphi_{\Phi_{1}} \in L$, because L is an ideal of $C_{b}(X)^{\prime}$. Thus $\Phi_{1} \in C_{b}(X, E)_{L}^{\prime}$, as desired.
(ii) To prove that $C_{b}(X)_{I}^{\prime}$ is an ideal of $C_{b}(X)^{\prime}$ assume that $\left|\varphi_{1}\right| \leq\left|\varphi_{2}\right|$, where $\varphi_{1} \in C_{b}(X)^{\prime}$ and $\varphi_{2} \in C_{b}(X)_{I}^{\prime}$. Then $\left|\varphi_{2}\right| \leq \varphi_{\Phi}$ for some $\Phi \in I$, so $\left|\varphi_{1}\right| \leq \varphi_{\Phi}$, and this means that $\varphi_{1} \in C_{b}(X)_{I}^{\prime}$.

To show that $I \subset C_{b}(X, E)_{C_{b}(X)_{I}^{\prime}}^{\prime}$, assume that $\Phi \in I$. Then $\varphi_{\Phi} \in C_{b}(X)_{I}^{\prime}$, so $\Phi \in C_{b}(X, E)_{C_{b}(X)_{I}^{\prime}}{ }^{\prime}$

Now, we assume that $\Phi \in C_{b}(X, E)_{C_{b}(X)_{I}^{\prime}}^{\prime}$, i.e., $\Phi \in C_{b}(X, E)^{\prime}$ and $\varphi_{\Phi} \in$ $C_{b}(X)_{I}^{\prime}$. It follows that there exists $\Phi_{0} \in I$ such that $\varphi_{\Phi} \leq \varphi_{\Phi_{0}}$. Hence for every $f \in C_{b}(X, E)$ we have $|\Phi|(f)=\varphi_{\Phi}(\|f\|) \leq \varphi_{\Phi_{0}}(\|f\|)=\left|\Phi_{0}\right|(f)$. Thus $\Phi \in I$, because I is an ideal of $C_{b}(X, E)^{\prime}$.

Let A be a subset of $C_{b}(X, E)_{\tau}^{\prime}$. Then $S(A) \subset C_{b}(X, E)_{\tau}^{\prime}$ as $C_{b}(X, E)_{\tau}^{\prime}$ is solid (by Theorem 2.4). Hence

$$
S(A)=\left\{\Phi \in C_{b}(X, E)_{\tau}^{\prime}: \quad|\Phi| \leq|\Psi| \quad \text { for some } \quad \Psi \in A\right\}
$$

In view of Lemma 2.2 for a subset A of $C_{b}(X, E)^{\prime}$ and $f \in C_{b}(X, E)$ we have:

$$
\begin{align*}
\sup \{|\Phi|(f): \Phi \in A\} & =\sup \left\{\varphi_{\Phi}(\|f\|): \Phi \in A\right\} \tag{+}\\
& =\sup \{|\Psi(f)|: \Psi \in S(A)\}
\end{align*}
$$

Theorem 2.7. Let τ be a locally convex-solid Hausdorff topology on $C_{b}(X, E)$. Then for a subset A of $C_{b}(X, E)^{\prime}$ the following statements are equivalent:
(i) A is τ-equicontinuous;
(ii) conv $(S(A))$ is τ-equicontinuous;
(iii) $S(A)$ is τ-equicontinuous;
(iv) the subset $\left\{\varphi_{\Phi}: \Phi \in A\right\}$ of $C_{b}(X)^{\prime}$ is τ^{\wedge}-equicontinuous.

Proof: (i) \Longrightarrow (ii) In view of Theorem 2.4 we have a solid dual system $\left\langle C_{b}(X, E), C_{b}(X, E)_{\tau}^{\prime}\right\rangle$. Let A be τ-equicontinuous. Then by Theorem 1.1 there is a convex solid τ-neighbourhood V of zero such that $A \subset V^{0}$. Hence conv $(S(A)) \subset$ $\operatorname{conv}\left(S\left(V^{0}\right)\right)=V^{0}$ (see Theorem 2.3), and this means that conv $(S(A))$ is still τ-equicontinuous.
(ii) \Longrightarrow (iii) It is obvious.
(iii) \Longrightarrow (iv) Assume that the subset $S(A)$ of $C_{b}(X, E)^{\prime}$ is τ-equicontinuous. Let $\left\{\rho_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of solid seminorms on $C_{b}(X, E)$ that generates τ. Given $\varepsilon>0$ there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{A}$ and $\eta>0$ such that $\sup \{|\Psi(f)|: \Psi \in S(A)\} \leq \varepsilon$
whenever $\rho_{\alpha_{i}}(f) \leq \eta$ for $i=1,2, \ldots, n$. To show that $\left\{\varphi_{\Phi}: \Phi \in A\right\}$ is τ^{\wedge} equicontinuous, it is enough to show that $\sup \left\{\left|\varphi_{\Phi}(u)\right|: \Phi \in A\right\} \leq \varepsilon$ whenever $\rho_{\alpha_{i}}^{\wedge}(u) \leq \eta$ for $i=1,2, \ldots, n$. Indeed, let $u \in C_{b}(X)$ and $\rho_{\alpha_{i}}^{\wedge}(u) \leq \eta$ for $i=$ $1,2, \ldots, n$. Then $\rho_{\alpha_{i}}\left(u \otimes e_{0}\right) \leq \eta(i=1,2, \ldots, n)$, so $\sup \left\{\left|\Psi\left(u \otimes e_{0}\right)\right|: \Psi \in\right.$ $S(A)\} \leq \varepsilon$. Hence, in view of $(+)$ we obtain that $\sup \left\{\varphi_{\Phi}(|u|): \Phi \in A\right\} \leq \varepsilon$, because $\left\|u \otimes e_{0}\right\|=|u|$. But $\left|\varphi_{\Phi}(u)\right| \leq \varphi_{\Phi}(|u|)$, and the proof is complete.
(iv) \Longrightarrow (i) Assume that the set $\left\{\varphi_{\Phi}: \Phi \in A\right\}$ is τ^{\wedge}-equicontinuous. Let $\left\{\rho_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of solid seminorms on $C_{b}(X, E)$ that generates τ. Given $\varepsilon>0$ there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{A}$ and $\eta>0$ such that $\sup \left\{\left|\varphi_{\Phi}(u)\right|: \Phi \in A\right\} \leq \varepsilon$ whenever $u \in C_{b}(X)$ and $\rho_{\alpha_{i}}^{\wedge}(u) \leq \eta$ for $i=1,2, \ldots, n$. Let $f \in C_{b}(X, E)$ with $\rho_{\alpha_{i}}(f) \leq \eta$ for $i=1,2, \ldots, n$. Since $\rho_{\alpha_{i}}^{\wedge}(\|f\|)=\rho_{\alpha_{i}}\left(\|f\| \otimes e_{0}\right)=\rho_{\alpha_{i}}(f)$ $(i=1,2, \ldots, n), \sup \left\{\left|\varphi_{\Phi}(\|f\|)\right|: \Phi \in A\right\} \leq \varepsilon$. But $|\Phi(f)| \leq|\Phi|(f)=\varphi_{\Phi}(\|f\|)$, so $\sup \{|\Phi(f)|: \Phi \in A\} \leq \varepsilon$. This means that A is τ-equicontinuous.
Corollary 2.8. Let τ be a locally convex-solid topology on $C_{b}(X, E)$. Then for $\Phi \in C_{b}(X, E)^{\prime}$ the following statements are equivalent:
(i) Φ is τ-continuous;
(ii) φ_{Φ} is τ^{\wedge}-continuous.

Corollary 2.9. Let ξ be a locally convex-solid topology on $C_{b}(X)$. Then for $\Phi \in C_{b}(X, E)^{\prime}$ the following statements are equivalent:
(i) Φ is ξ^{\vee}-continuous;
(ii) φ_{Φ} is ξ-continuous.

Remark. For the equivalence (i) \Longleftrightarrow (iv) of Theorem 2.7 for the strict topologies $\beta_{z}(X, E)(z=\sigma, \tau, t, \infty, g)$ see $\left[\mathrm{KhO}_{3}\right.$, Lemma 2].

Corollary 2.10. (i) Let ξ be a locally convex-solid topology on $C_{b}(X)$. Then

$$
\left(C_{b}(X), \xi\right)^{\prime}=\left\{\varphi \in C_{b}(X)^{\prime}:|\varphi| \leq \varphi_{\Phi} \quad \text { for some } \Phi \in\left(C_{b}(X, E), \xi^{\vee}\right)^{\prime}\right\}
$$

(ii) Let τ be a locally convex-solid topology on $C_{b}(X, E)$. Then

$$
\left(C_{b}(X), \tau^{\wedge}\right)^{\prime}=\left\{\varphi \in C_{b}(X)^{\prime}:|\varphi| \leq \varphi_{\Phi} \text { for some } \Phi \in\left(C_{b}(X, E), \tau\right)^{\prime}\right\}
$$

Proof: (i) Let $\varphi \in\left(C_{b}(X), \xi\right)^{\prime}$. Define a linear functional Φ_{0} on the subspace $C_{b}(X)\left(e_{0}\right)\left(=\left\{u \otimes e_{0}: u \in C_{b}(X)\right\}\right)$ of $C_{b}(X, E)$ by putting $\Phi_{0}\left(u \otimes e_{0}\right)=\varphi(u)$ for $u \in C_{b}(X)$. Let $\left\{p_{\alpha}: \alpha \in \mathcal{A}\right\}$ be a family of Riesz seminorms generating ξ. Since $\varphi \in\left(C_{b}(X), \xi\right)^{\prime}$, there exist $c>0$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{A}$ such that for $u \in C_{b}(X)$

$$
\left|\Phi_{0}\left(u \otimes e_{0}\right)\right|=|\varphi(u)| \leq c \max _{1 \leq i \leq n} p_{\alpha_{i}}(u)=c \max _{1 \leq i \leq n} p_{\alpha_{i}}^{\vee}\left(u \otimes e_{0}\right)
$$

This means that $\Phi_{0} \in\left(C_{b}(X)\left(e_{0}\right), \xi^{\vee} \mid C_{b}(X)\left(e_{0}\right)\right)^{\prime}$, so by the Hahn-Banach extension theorem there is $\Phi \in\left(C_{b}(X, E), \xi^{\vee}\right)^{\prime}$ such that $\Phi\left(u \otimes e_{0}\right)=\varphi(u)$ for all $u \in C_{b}(X)$. We shall now show that $|\varphi| \leq \varphi_{\Phi}$, i.e., $|\varphi|(u) \leq \varphi_{\Phi}(u)$ for all $u \in C_{b}(X)^{+}$. Indeed, let $u \in C_{b}(X)^{+}$be given and let $v \in C_{b}(X)$ with $|v| \leq u$. Then we have $|\varphi(v)|=\left|\Phi\left(v \otimes e_{0}\right)\right| \leq \varphi_{\Phi}(u)$, so $|\varphi| \leq \varphi_{\Phi}$, as desired.

Next, assume that $\varphi \in C_{b}(X)^{\prime}$ with $|\varphi| \leq \varphi_{\Phi}$ for some $\Phi \in\left(C_{b}(X, E), \xi^{\vee}\right)^{\prime}$. In view of Corollary 2.9, $\varphi_{\Phi} \in\left(C_{b}(X), \xi\right)^{\prime}$ and since $\left(C_{b}(X), \xi\right)^{\prime}$ is an ideal of $C_{b}(X)^{\prime}$, we conclude that $\varphi \in\left(C_{b}(X), \xi\right)^{\prime}$.
(ii) It follows from (i), because $\left(\tau^{\wedge}\right)^{\vee}=\tau$.

It is well known that if L is a σ-Dedekind complete vector-lattice and if H is a relatively $\sigma\left(L_{n}^{\sim}, L\right)$-compact subset of L_{n}^{\sim} (resp. a relatively $\sigma\left(L_{c}^{\sim}, L\right)$-compact subset of L_{c}^{\sim}), then the set conv $(S(H))$ is still relatively $\sigma\left(L_{n}^{\sim}, L\right)$-compact (resp. relatively $\sigma\left(L_{c}^{\sim}, L\right)$-compact) (see [AB, Corollary 20.12, Corollary 20.10]) (here L_{n}^{\sim} and L_{c}^{\sim} stand for the order continuous dual and the σ-order continuous dual of L resp.).

Now, we shall show that this property holds in $\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, \sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)\right)$ for $z=\sigma, \tau, t$.

Recall that a completely regular Hausdorff space X is called a P-space if every G_{δ} set in X is open (see [GJ, p. 63]).

The following result will be of importance.
Theorem 2.11. Let H be a norm-bounded and $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact subset of $C_{b}(X, E)_{\beta_{z}}^{\prime}$, where $z=\sigma$ (resp. $z=\tau$ and X is a paracompact space; resp. $z=\tau$ and X is a P-space). Then H is $\beta_{z}(X, E)$-equicontinuous.

Proof: See $\left[\mathrm{KhO}_{1}\right.$, Theorem 5] for $z=\sigma$; [Kh, Theorem 6.1] for $z=\tau$ and [KhC, Lemma 3] for $z=t$.

Now we are ready to state our main result.
Theorem 2.12. Let H be a norm bounded subset of $C_{b}(X, E)_{\beta_{z}}^{\prime}$, where $z=\sigma$ (resp. $z=\tau$ and X is a paracompact space; resp. $z=t$ and X is a P-space). Then the following statements are equivalent:
(i) H is relatively countably $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact;
(ii) H is $\beta_{z}(X, E)$-equicontinuous;
(iii) conv $(S(H))$ is relatively $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact;
(iv) $S(H)$ is relatively $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact;
(v) H is relatively $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact.

Proof: (i) \Longrightarrow (ii) See Theorem 2.11.
(ii) \Longrightarrow (iii) In view of Theorem 2.7 the set conv $(S(H))$ is $\beta_{z}(X, E)$-equicontinuous, i.e., there is a neighbourhood of 0 for $\beta_{z}(X, E)$ such that $\operatorname{conv}(S(H)) \subset V^{0}$
($=$ the polar set with respect to the dual pair $\left.\left\langle C_{b}(X, E), C_{b}(X, E)_{\beta_{z}}^{\prime}\right\rangle\right)$. Then by the Banach-Alaoglu's theorem the set V^{0} is $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact, so the set conv $(S(H))$ is relatively $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact.
(iii) \Longrightarrow (iv) \Longrightarrow (v) \Longrightarrow (i) It is obvious.

3. Weak-star compactness in some spaces of vector measures

In this section we consider criteria for relative weak-star compactness in some spaces of vector measures $M_{z}\left(X, E^{\prime}\right)$ for $z=\sigma, \tau, t$. In particular, by making use of Theorem 2.11 we show that if a subset H of $M_{z}\left(X, E^{\prime}\right)$ is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$-compact, then the set conv $(S(H))$ is still relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right.$)-compact (here $S(H)$ stand for the solid hull of H is $\left.M_{z}\left(X, E^{\prime}\right)\right)$. We start by recalling some notions and results concerning the topological measure theory (see [V], [S], [Wh]).

Let $B(X)$ be the algebra of subsets of X generated by the zero sets. Let $M(X)$ be the space of all bounded finitely additive regular (with respect to the zero sets) measures on $B(X)$. The spaces of all σ-additive, τ-additive and tight members of $M(X)$ will be denoted by $M_{\sigma}(X), M_{\tau}(X)$ and $M_{t}(X)$ respectively (see [V], [Wh]). It is well known that $M_{z}(X)$ for $z=\sigma, \tau, t$ are ideals of $M(X)$ (see [Wh, Theorem 7.2]).

Theorem 3.1 (A.D. Alexandroff; [Wh, Theorem 5.1]). For a linear functional $\varphi: C_{b}(X) \rightarrow \mathbb{R}$ the following statements are equivalent.
(i) $\varphi \in C_{b}(X)^{\prime}$.
(ii) There exists a unique $\mu \in M(X)$ such that

$$
\varphi(u)=\varphi_{\mu}(u)=\int_{X} u \mathrm{~d} \mu \quad \text { for all } \quad u \in C_{b}(X)
$$

Moreover, $\mu \geq 0$ if and only if $\varphi_{\mu}(u) \geq 0$ for all $u \in C_{b}(X)^{+}$.
By $M\left(X, E^{\prime}\right)$ we denote the set of all finitely additive measures $m: B(X) \rightarrow E^{\prime}$ with the following properties:
(i) For every $e \in E$, the function $m_{e}: B(X) \rightarrow \mathbb{R}$ defined by $m_{e}(A)=m(A)(e)$, belongs to $M(X)$.
(ii) $|m|(X)<\infty$, where for $A \in B(X)$

$$
\begin{aligned}
|m|(A)=\sup \left\{\left|\sum_{i=1}^{n} m\left(B_{i}\right)\left(e_{i}\right)\right|: \bigcup_{i=1}^{n} B_{i}=A,\right. & B_{i} \in B(X), B_{i} \cap B_{j}=\emptyset \\
& \text { for } \left.i \neq j, e_{i} \in B_{E}, n \in \mathbb{N}\right\}
\end{aligned}
$$

For $z=\sigma, \tau, t$ let

$$
M_{z}\left(X, E^{\prime}\right)=\left\{m \in M\left(X, E^{\prime}\right): m_{e} \in M_{z}(X) \text { for every } e \in E\right\}
$$

It is well known that $|m| \in M(X)$ (resp. $|m| \in M_{z}(X)$ for $\left.z=\sigma, \tau, t\right)$ whenever $m \in M\left(X, E^{\prime}\right)$ (resp. $m \in M_{z}\left(X, E^{\prime}\right)$ for $\left.z=\sigma, \tau, t\right)$ (see [F, Proposition 3.9]).

Now we are ready to define the notion of solidness in $M\left(X, E^{\prime}\right)$.
Definition 3.1. For $m_{1}, m_{2} \in M\left(X, E^{\prime}\right)$ we will write $\left|m_{1}\right| \leq\left|m_{2}\right|$ whenever $\left|m_{1}\right|(B) \leq\left|m_{2}\right|(B)$ for every $B \in B(X)$. A subset H of $M\left(X, E^{\prime}\right)$ is said to be solid whenever $\left|m_{1}\right| \leq\left|m_{2}\right|$ with $m_{1} \in M\left(X, E^{\prime}\right)$ and $m_{2} \in H$ imply $m_{1} \in H$. A linear subspace I of $M\left(X, E^{\prime}\right)$ will be called an ideal of $M\left(X, E^{\prime}\right)$ whenever I is a solid subset of $M\left(X, E^{\prime}\right)$.
Proposition 3.2. $M_{z}\left(X, E^{\prime}\right) \quad(z=\sigma, \tau, t)$ is an ideal of $M\left(X, E^{\prime}\right)$.
Proof: Let $\left|m_{1}\right| \leq\left|m_{2}\right|$, where $m_{1} \in M\left(X, E^{\prime}\right)$ and $m_{2} \in M_{z}\left(X, E^{\prime}\right)$. Then $\left|m_{1}\right| \in M(X)$ and $\left|m_{2}\right| \in M_{z}(X)$, and since $M_{z}(X)$ is an ideal of $M(X)$ we conclude that $\left|m_{1}\right| \in M_{z}(X)$. For each $e \in E$ we have $\left|\left(m_{1}\right)_{e}\right|(B) \leq\|e\|_{E}\left|m_{1}\right|(B)$ for $B \in B(X)$, so $\left(m_{1}\right)_{e} \in M_{z}(X)$, i.e., $m_{1} \in M_{z}\left(X, E^{\prime}\right)$.

Since the intersection of any family of solid subsets of $M\left(X, E^{\prime}\right)$ is solid, every subset H of $M\left(X, E^{\prime}\right)$ is contained in the smallest (with respect to inclusion) solid set called the solid hull of H and denoted by $S(H)$. Note that

$$
S(H)=\left\{m \in M\left(X, E^{\prime}\right):|m| \leq\left|m^{\prime}\right| \quad \text { for some } \quad m^{\prime} \in H\right\}
$$

Now we recall some results concerning a characterization of the topological duals of $\left(C_{b}(X, E), \beta_{z}(X, E)\right)$ in terms of the spaces $M_{z}\left(X, E^{\prime}\right)(z=\sigma, \tau, t)$.
Theorem 3.3. Assume that $\beta_{z}(X, E)$ is the strict topology on $C_{b}(X, E)$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{\sigma}(X, E)\right)($ resp. $z=\tau ;$ resp. $z=t)$. Then for a linear functional Φ on $C_{b}(X, E)$ the following statements are equivalent.
(i) Φ is $\beta_{z}(X, E)$-continuous.
(ii) There exists a unique $m \in M_{z}\left(X, E^{\prime}\right)$ such that

$$
\Phi(f)=\Phi_{m}(f)=\int_{X} f \mathrm{~d} m \quad \text { for every } \quad f \in C_{b}(X, E)
$$

(iii) The functional φ_{Φ} is $\beta_{z}(X)$-continuous.

Moreover, $\left\|\Phi_{m}\right\|=|m|(X)$ for $m \in M_{z}\left(X, E^{\prime}\right)$.
Proof: (i) \Longleftrightarrow (ii) See [Kh, Theorem 5.3] for $z=\sigma$; [Kh, Corollary 3.9] for $z=\tau ;\left[\mathrm{F}_{1}\right.$, Theorem 3.13] for $z=t$.
(ii) \Longleftrightarrow (iii) It follows from Corollary 2.8, because $\beta_{z}(X, E)^{\wedge}=\beta_{z}(X)$.

Lemma 3.4. Assume that $m \in M_{z}\left(X, E^{\prime}\right)$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{\sigma}(X, E)\right)($ resp. $z=\tau$; resp. $z=t)$. Then

$$
\varphi_{\Phi_{m}}(u)=\int_{X} u \mathrm{~d}|m|=\varphi_{|m|}(u) \quad \text { for all } \quad u \in C_{b}(X)
$$

Proof: Let $u \in C_{b}(X)^{+}$and $m \in M_{z}\left(X, E^{\prime}\right)$. Then for $h \in C_{b}(X, E)$ with $\|h\| \leq u$ by $\left[\mathrm{F}_{2}\right.$, Lemma 3.11] we have

$$
\left|\Phi_{m}(h)\right|=\left|\int_{X} h \mathrm{~d} m\right| \leq \int_{X}\|h\| \mathrm{d}|m| \leq \int_{X} u \mathrm{~d}|m|=\varphi_{|m|}(u) .
$$

Hence

$$
\varphi_{\Phi_{m}}(u)=\left|\Phi_{m}\right|\left(u \otimes e_{0}\right)=\sup \left\{\left|\Phi_{m}(h)\right|: h \in C_{b}(X, E),\|h\| \leq u\right\} \leq \varphi_{|m|}(u)
$$

On the other hand, in view of [Kh, Theorem 2.1] we have

$$
\varphi_{|m|}(u)=\int_{X} u \mathrm{~d}|m|=\sup \left\{\left|\Phi_{m}(g)\right|: g \in C_{b}(X) \otimes E, \quad\|g\| \leq u\right\}
$$

so $\varphi_{|m|}(u) \leq \varphi_{\Phi_{m}}(u)$. Thus $\varphi_{|m|}(u)=\varphi_{\Phi_{m}}(u)$ for all $u \in C_{b}(X)$.
Lemma 3.5. Assume that $m_{1}, m_{2} \in M_{z}\left(X, E^{\prime}\right)$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{\sigma}(X, E)\right)$ (resp. $z=\tau$; resp. $z=t$). Then the following statements are equivalent:
(i) $\left|m_{1}\right| \leq\left|m_{2}\right|$, i.e., $\left|m_{1}\right|(B) \leq\left|m_{2}\right|(B)$ for every $B \in B(X)$;
(ii) $\varphi_{\left|m_{1}\right|}(u) \leq \varphi_{\left|m_{2}\right|}(u)$ for every $u \in C_{b}(X)^{+}$;
(iii) $\left|\Phi_{m_{1}}\right|(f) \leq\left|\Phi_{m_{2}}\right|(f)$ for every $f \in C_{b}(X, E)$.

Proof: (i) \Longleftrightarrow (ii) It easily follows from Theorem 3.1.
(ii) \Longrightarrow (iii) In view of Lemma 3.4 we get

$$
\begin{aligned}
\left|\Phi_{m_{1}}\right|(f) & =\varphi_{\Phi_{m_{1}}}(\|f\|)=\varphi_{\left|m_{1}\right|}(\|f\|) \\
& \leq \varphi_{\left|m_{2}\right|}(\|f\|)=\varphi_{\Phi_{m_{2}}}(\|f\|)=\left|\Phi_{m_{2}}\right|(f) .
\end{aligned}
$$

(iii) \Longrightarrow (ii) By Lemma 3.3 for $u \in C_{b}(X)^{+}$and $e_{0} \in S_{E}$ we have

$$
\begin{aligned}
\varphi_{\left|m_{1}\right|}(u) & =\varphi_{\Phi_{m_{1}}}(u)=\left|\Phi_{m_{1}}\right|\left(u \otimes e_{0}\right) \\
& \leq\left|\Phi_{m_{2}}\right|\left(u \otimes e_{0}\right)=\varphi_{\Phi_{m_{2}}}(u)=\varphi_{\left|m_{2}\right|}(u) .
\end{aligned}
$$

Lemma 3.6. Assume that $H \subset M_{z}\left(X, E^{\prime}\right)$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{\sigma}(X, E)\right)$ (resp. $z=\tau$; resp. $\left.z=t\right)$, and let $\Phi_{H}=\left\{\Phi_{m}: m \in H\right\}$. Then conv $\left(S\left(\Phi_{H}\right)\right)=\Phi_{\text {conv }}(S(H))$.
Proof: Assume that $\Phi \in \operatorname{conv}\left(S\left(\Phi_{H}\right)\right)$. Then $\Phi=\sum_{i=1}^{n} \alpha_{i} \Phi_{m_{i}}=\Phi_{\sum_{i=1}^{n} \alpha_{i} m_{i}}$, where $m_{i} \in M_{z}\left(X, E^{\prime}\right)$ and $\alpha_{i} \geq 0$ for $i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \alpha_{i}=1$, and $\left|\Phi_{m_{i}}\right| \leq\left|\Phi_{m_{i}^{\prime}}\right|$ for some $m_{i}^{\prime} \in H$ and $i=1,2, \ldots, n$. In view of Lemma 3.5 $\left|m_{i}\right| \leq\left|m_{i}^{\prime}\right|$, i.e., $m_{i} \in S(H)$ for $i=1,2, \ldots, n$ and $\sum_{i=1}^{n} \alpha_{i} m_{i} \in \operatorname{conv}(S(H))$. This means that $\Phi \in \Phi_{\text {conv }(S(H))}$.

Assume that $\Phi \in \Phi_{\operatorname{conv}(S(H))}$. Then $\Phi=\Phi_{\sum_{i=1}^{n} \alpha_{i} m_{i}}=\sum_{i=1}^{n} \alpha_{i} \Phi_{m_{i}}$, where $m_{i} \in M_{z}\left(X, E^{\prime}\right)$ and $\alpha_{i} \geq 0$ for $i=1,2, \ldots, n$ with $\sum_{i=1}^{n} \alpha_{i}=1$, and $\left|m_{i}\right| \leq$ $\left|m_{i}^{\prime}\right|$ for some $m_{i}^{\prime} \in H$ and $i=1,2, \ldots, n$. By Lemma $3.5\left|\Phi_{m_{i}}\right| \leq\left|\Phi_{m_{i}^{\prime}}\right|$ for $i=1,2, \ldots, n$, so $\Phi \in \operatorname{conv}\left(S\left(\Phi_{H}\right)\right)$.
Corollary 3.7. Assume that $m_{0} \in M_{z}\left(X, E^{\prime}\right)$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{\sigma}(X, E)\right)$ (resp. $z=\tau$; resp. $z=t$) and let $e \in S_{E}$. Then for every $u \in C_{b}(X)^{+}$we have:

$$
\int_{X} u \mathrm{~d}\left|m_{0}\right|=\sup \left\{\left|\int_{X} u \mathrm{~d} m_{e}\right|: m \in M_{z}\left(X, E^{\prime}\right),|m| \leq\left|m_{0}\right|\right\}
$$

Proof: Let $m_{0} \in M_{z}\left(X, E^{\prime}\right)$ and $e \in S_{E}$. Assume that $\Phi \in C_{b}(X, E)^{\prime}$ and $|\Phi| \leq$ $\left|\Phi_{m_{0}}\right|$. Since $\Phi_{m_{0}} \in C_{b}(X, E)_{\beta_{z}}^{\prime}$ (see Theorem 3.3), by making use of Theorem 2.4 we get $\Phi \in C_{b}(X, E)_{\beta_{z}}^{\prime}$. Hence in view of Theorem 3.3 and Lemma 3.5 we see that $\Phi=\Phi_{m}$ for some $m \in M_{z}\left(X, E^{\prime}\right)$ with $|m| \leq\left|m_{0}\right|$.

Moreover, it is easy to observe that for every $m \in M\left(X, E^{\prime}\right)$ and $u \in C_{b}(X)$ we have:

$$
\int_{X}(u \otimes e) \mathrm{d} m=\int_{X} u \mathrm{~d} m_{e}
$$

Thus in view of Lemma 3.4, Lemma 2.2 and Lemma 3.5 we get:

$$
\begin{aligned}
\int_{X} u \mathrm{~d}\left|m_{0}\right| & =\varphi_{\Phi_{m_{0}}}(u)=\left|\Phi_{m_{0}}\right|(u \otimes e) \\
& =\sup \left\{|\Phi(u \otimes e)|: \Phi \in C_{b}(X, E)^{\prime},|\Phi| \leq\left|\Phi_{m_{0}}\right|\right\} \\
& =\sup \left\{\left|\Phi_{m}(u \otimes e)\right|: m \in M_{z}\left(X, E^{\prime}\right),|m| \leq\left|m_{0}\right|\right\} \\
& =\sup \left\{\left|\int_{X}(u \otimes e) \mathrm{d} m\right|: m \in M_{z}\left(X, E^{\prime}\right),|m| \leq\left|m_{0}\right|\right\} \\
& =\sup \left\{\left|\int_{X} u \mathrm{~d} m_{e}\right|: m \in M_{z}\left(X, E^{\prime}\right),|m| \leq\left|m_{0}\right|\right\}
\end{aligned}
$$

To state our main result we recall some definitions (see [Wh, Definition 11.13, Definition 11.23, Theorem 10.3]).

A subset A of $M_{\sigma}(X)$ (resp. $M_{\tau}(X)$) is said to be uniformly σ-additive (resp. uniformly τ-additive) if whenever $u_{n}(x) \downarrow 0$ for every $x \in X, u_{n} \in C_{b}(X)^{+}$(resp. $u_{\alpha} \downarrow 0$ for every $\left.x \in X, u_{\alpha} \in C_{b}(X)^{+}\right)$, then $\sup \left\{\left|\int_{X} u_{n} \mathrm{~d} \mu\right|: \mu \in A\right\} \underset{n}{\longrightarrow} 0$ (resp. $\sup \left\{\left|\int_{X} u_{\alpha} \mathrm{d} \mu\right|: \mu \in A\right\} \underset{\alpha}{\longrightarrow} 0$).

A subset A of $M_{t}(X)$ is said to be uniformly tight if given $\varepsilon>0$ there exists a compact subset K of X such that $\sup \{|\mu|(X \backslash K): \mu \in A\} \leq \varepsilon$.

Now we are in position to prove our desired result.
Theorem 3.8. For a subset H of $M_{z}\left(X, E^{\prime}\right)$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{\sigma}(X, E)\right.$) (resp. $z=\tau$ and X is paracompact; resp. $z=t$ and X is a P-space) the following statements are equivalent.
(i) H is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$-compact.
(ii) conv $(S(H))$ is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$-compact.
(iii) The set $\{|m|: m \in H\}$ in $M_{z}(X)^{+}$is uniformly σ-additive for $z=\sigma$, (resp. uniformly τ-additive for $z=\tau$; resp. uniformly tight for $z=t$).

Proof: (i) \Longrightarrow (ii) It is seen that H is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$ compact if and only if Φ_{H} is relatively $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right)$-compact. Hence by Theorem 2.12 and Lemma 3.6 the set $\Phi_{\operatorname{conv}(S(H))}$ is still relatively $\sigma\left(C_{b}(X, E)_{\beta_{z}}^{\prime}, C_{b}(X, E)\right.$)-compact. This means that $\operatorname{conv}(S(H))$ is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$-compact.
(ii) \Longrightarrow (i) It is obvious.
(i) \Longleftrightarrow (iii) In view of Theorem $2.12 H$ is relatively $\sigma\left(M_{z}\left(X, E^{\prime}\right), C_{b}(X, E)\right)$ compact if and only if Φ_{H} is $\beta_{z}(X, E)$-equicontinuous; hence in view of Theorem 2.7 and Lemma 3.4 the subset $\left\{\varphi_{|m|}: m \in H\right\}$ of $\left(C_{b}(X), \beta_{z}(X)\right)^{\prime}$ is $\beta_{z}(X)$ equicontinuous. It is known that the subset $\left\{\varphi_{|m|}: m \in H\right\}$ of $\left(C_{b}(X), \beta_{z}(X)\right)^{\prime}$ is $\beta_{z}(X)$-equicontinuous if and only if the set $\{|m|: m \in H\}$ in $M_{z}(X)^{+}$is uniformly σ-additive for $z=\sigma$ (see [Wh, Theorem 11.14]) (resp. uniformly τ-additive for $z=\tau$ (see [Wh, Theorem 11.24]); resp. uniformly tight for $z=t$ (see [Wh, Theorem 10.7])).

4. A Mackey-Arens type theorem for locally convex-solid topologies on $C_{b}(X, E)$

Let I be an ideal of $C_{b}(X, E)^{\prime}$ separating points of $C_{b}(X, E)$. For each $\Phi \in I$ let us put

$$
\rho_{\Phi}(f)=|\Phi|(f) \quad \text { for } \quad f \in C_{b}(X, E)
$$

One can show that ρ_{Φ} is a solid seminorm on $C_{b}(X, E)$ (see the proof of Lemma 2.2). We define the absolute weak topology $|\sigma|\left(C_{b}(X, E), I\right)$ on $C_{b}(X, E)$ as
the locally convex-solid topology generated by the family $\left\{\rho_{\Phi}: \Phi \in I\right\}$. In view of Lemma 2.2 we have

$$
\rho_{\Phi}(f)=|\Phi|(f)=\sup \{|\Psi(f)|: \Psi \in I, \quad|\Psi| \leq|\Phi|\} .
$$

This means that $|\sigma|\left(C_{b}(X, E), I\right)$ is the topology of uniform convergence on sets of the form $\{\Psi \in I:|\Psi| \leq|\Phi|\}=S(\{\Phi\})$, where $\Phi \in I$.

Assume that L is an ideal of $C_{b}(X)^{\prime}$ separating the points of $C_{b}(X)$. For each $\varphi \in L$ the function $p_{\varphi}(u)=|\varphi|(|u|)$ for $u \in C_{b}(X)$ defines a Riesz seminorm on $C_{b}(X)$. The family $\left\{p_{\varphi}: \varphi \in I\right\}$ defines a locally convex-solid topology $|\sigma|\left(C_{b}(X), L\right)$ on $C_{b}(X)$, called the absolute weak topology generated by L (see $[A B]$).

Recall that $|\sigma|\left(C_{b}(X), L\right)^{\vee}$ is the locally convex-solid topology on $C_{b}(X, E)$ generated by the family $\left\{p_{\varphi}^{\vee}: \varphi \in L\right\}$, where $p_{\varphi}^{\vee}(f)=p_{\varphi}(\|f\|)$ for $f \in C_{b}(X, E)$.

We shall need the following result.
Lemma 4.1. Let I be an ideal of $C_{b}(X, E)^{\prime}$ separating the points of $C_{b}(X, E)$. Then

$$
|\sigma|\left(C_{b}(X, E), I\right)=|\sigma|\left(C_{b}(X), C_{b}(X)_{I}^{\prime}\right)^{\vee}
$$

where $C_{b}(X)_{I}^{\prime}=\left\{\varphi \in C_{b}(X)^{\prime}:|\varphi| \leq \varphi_{\Phi}\right.$ for some $\left.\Phi \in I\right\}$.
Proof: Let $\varphi \in C_{b}(X)^{\prime}$, i.e., $|\varphi| \leq \varphi_{\Phi}$ for some $\Phi \in I$. Then for $f \in C_{b}(X, E)$ we have

$$
p_{\varphi}^{\vee}(f)=p_{\varphi}(\|f\|)=|\varphi|(\|f\|) \leq \varphi_{\Phi}(\|f\|)=|\Phi|(f)=\rho_{\Phi}(f)
$$

This means that $|\sigma|\left(C_{b}(X), C_{b}(X)_{I}^{\prime}\right)^{\vee} \subset|\sigma|\left(C_{b}(X, E), I\right)$.
Next, let $\Phi \in I$. Then for $f \in C_{b}(X, E)$ we have

$$
\rho_{\Phi}(f)=|\Phi|(f)=\varphi_{\Phi}(\|f\|)=p_{\varphi_{\Phi}}(\|f\|)=p_{\varphi_{\Phi}}^{\vee}(f)
$$

This shows that $|\sigma|\left(C_{b}(X, E), I\right) \subset|\sigma|\left(C_{b}(X), C_{b}(X)_{I}^{\prime}\right)^{\vee}$, and the proof is complete.

Now we are ready to state the main result of this section.
Theorem 4.2. Let I be an ideal of $C_{b}(X, E)^{\prime}$ separating the points of $C_{b}(X, E)$. Then

$$
\left(C_{b}(X, E),|\sigma|\left(C_{b}(X, E), I\right)\right)^{\prime}=I
$$

Proof: To see that $\left(C_{b}(X, E),|\sigma|\left(C_{b}(X, E), I\right)\right)^{\prime} \subset I$ assume that $\Phi \in$ $\left(C_{b}(X, E),|\sigma|\left(C_{b}(X, E), I\right)\right)^{\prime}$. In view of Lemma 2.6 we have to show that $\Phi \in$ $C_{b}(X, E)_{C_{b}(X)_{I}^{\prime}}^{\prime}$, that is $\Phi \in C_{b}(X, E)^{\prime}$ and $\varphi_{\Phi} \in C_{b}(X)_{I}^{\prime}$. In fact, we know
that $\left(C_{b}(X),|\sigma|\left(C_{b}(X), C_{b}(X)_{I}^{\prime}\right)\right)^{\prime}=C_{b}(X)_{I}^{\prime}$ (see $\left[\mathrm{AB}_{1}\right.$, Theorem 6.6]). Assume that $u_{\alpha} \rightarrow 0$ for $|\sigma|\left(C_{b}(X), C_{b}(X)_{I}^{\prime}\right)$. It is enough to show that $\varphi_{\Phi}\left(u_{\alpha}\right) \rightarrow 0$. Indeed, $u_{\alpha} \otimes e_{0} \rightarrow 0$ for $|\sigma|\left(C_{b}(X), C_{b}(X)_{I}^{\prime}\right)^{\vee}$, because for each $\varphi \in C_{b}(X)_{I}^{\prime}$, $p_{\varphi}^{\vee}\left(u_{\alpha} \otimes e_{0}\right)=p_{\varphi}\left(u_{\alpha}\right)$. Hence by Theorem $4.1 u_{\alpha} \otimes e_{0} \rightarrow 0$ for $|\sigma|\left(C_{b}(X, E), I\right)$. Since $\left|\varphi_{\Phi}\left(u_{\alpha}\right)\right| \leq \varphi_{\Phi}\left(\left|u_{\alpha}\right|\right)=|\Phi|\left(u_{\alpha} \otimes e_{0}\right)=\rho_{\Phi}\left(u_{\alpha} \otimes e_{0}\right)$, we obtain that $\varphi_{\Phi}\left(u_{\alpha}\right) \rightarrow 0$.

Now let $\Phi \in I$. Then for $f \in C_{b}(X, E),|\Phi(f)| \leq|\Phi|(f)=\rho_{\Phi}(f)$, so Φ is $|\sigma|\left(C_{b}(X, E), I\right)$-continuous, i.e., $\Phi \in\left(C_{b}(X, E),|\sigma|\left(C_{b}(X, E), I\right)\right)^{\prime}$, as desired.

As an application of Theorem 4.2 we have:
Corollary 4.3. Let I be an ideal of $C_{b}(X, E)^{\prime}$ separating the points of $C_{b}(X, E)$. Then for a subset H of $C_{b}(X, E)$ the following statements are equivalent:
(i) H is bounded for $\sigma\left(C_{b}(X, E), I\right)$;
(ii) $S(H)$ is bounded for $\sigma\left(C_{b}(X, E), I\right)$.

Proof: (i) \Longrightarrow (ii) By Theorem 4.2 and the Mackey theorem (see [Wi, Theorem 8.4.1]) H is bounded for $|\sigma|\left(C_{b}(X, E), I\right)$. Since the topology $|\sigma|\left(C_{b}(X, E), I\right)$ is locally solid, $S(H)$ is bounded for $|\sigma|\left(C_{b}(X, E), I\right)$. Hence $S(H)$ is bounded for $\sigma\left(C_{b}(X, E), I\right)$.
(ii) \Longrightarrow (i) It is obvious.

Lemma 4.4. Let $I_{z}=\left\{\Phi_{m}: m \in M_{z}\left(X, E^{\prime}\right)\right\}$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{\sigma}(X, E)\right)$ (resp. $z=\tau$; resp. $\left.z=t\right)$. Then

$$
C_{b}(X)_{I_{z}}^{\prime}=\left\{\varphi_{\mu}: \mu \in M_{z}(X)\right\}
$$

Proof: Assume that $\varphi \in C_{b}(X)_{I}^{\prime}$, i.e., $\varphi \in C_{b}(X)^{\prime}$ and $|\varphi| \leq \varphi_{\Phi_{m}}$ for some $m \in$ $M_{z}\left(X, E^{\prime}\right)$. Then $\varphi=\varphi_{\mu}$ for some $\mu \in M(X)$, and $\left|\varphi_{\mu}\right|=\varphi_{|\mu|} \leq \varphi_{\Phi_{m}}=\varphi_{|m|}$ (see Lemma 3.4). It follows that $|\mu| \leq|m|$, where $|m| \in M_{\sigma}(X)^{+}$. Since $M_{z}(X)$ is an ideal of $M(X)$, we get $\mu \in M_{z}(X)$.

Conversely, assume that $\mu \in M_{z}(X)$ and $e_{0} \in S_{E}$ and let $e^{*} \in E^{\prime}$ be such that $e^{*}\left(e_{0}\right)=1$ and $\left\|e^{*}\right\|_{E^{\prime}}=1$. Let us set $m(B)=\mu(B) e^{*}$ for all $B \in B(X)$. Then $m: B(X) \rightarrow E^{\prime}$ is finitely additive, and for each $e \in E$ we have $m_{e}(B)=$ $m(B)(e)=\left(e^{*}(e) \mu\right)(B)$ for all $B \in B(X)$. Hence $m_{e} \in M_{z}(X)$ for each $e \in E$. It is easy to show that $|m|(B)=|\mu|(B)$ for all $B \in B(X)$, so $|m| \in M_{z}(X)$. Hence $m \in M_{z}\left(X, E^{\prime}\right)$, and $\left|\varphi_{\mu}\right|=\varphi_{|\mu|}=\varphi_{|m|}=\varphi_{\Phi_{m}}$, so $\varphi_{\mu} \in C_{b}(X)_{I_{z}}^{\prime}$, as desired.

As an application of Lemma 4.1 and Lemma 4.4 we get:

Corollary 4.5. For $z=\sigma$ and $C_{b}(X) \otimes E$ dense in $\left(C_{b}(E), \beta_{\sigma}(X, E)\right.$) (resp. $z=\tau$; resp. $z=t$) we have:

$$
|\sigma|\left(C_{b}(X, E), M_{z}\left(X, E^{\prime}\right)\right)=|\sigma|\left(C_{b}(X), M_{z}(X)\right)^{\vee}
$$

and

$$
|\sigma|\left(C_{b}(X, E), M_{z}\left(X, E^{\prime}\right)\right)^{\wedge}=|\sigma|\left(C_{b}(X), M_{z}(X)\right)
$$

We now define the absolute Mackey topology $|\tau|\left(C_{b}(X, E), I\right)$ on $C_{b}(X, E)$ as the topology on uniform convergence on the family of all solid absolutely convex $\sigma\left(I, C_{b}(X, E)\right)$-compact subsets of I. In view of Theorem $2.3|\tau|\left(C_{b}(X, E), I\right)$ is a locally convex-solid topology.

The following theorem strengthens the classical Mackey-Arens theorem for the class of locally convex-solid topologies on $C_{b}(X, E)$.
Theorem 4.6. Let τ be a locally convex-solid topology on $C_{b}(X, E)$ and let $\left(C_{b}(X, E), \tau\right)^{\prime}=I_{\tau}$. Then

$$
|\sigma|\left(C_{b}(X, E), I_{\tau}\right) \subset \tau \subset|\tau|\left(C_{b}(X, E), I_{\tau}\right)
$$

Proof: To show that $|\sigma|\left(C_{b}(X, E), I_{\tau}\right) \subset \tau$, assume that $\left(f_{\alpha}\right)$ is a sequence in $C_{b}(X, E)$ and $f_{\alpha} \xrightarrow{\tau} 0$. Let $\Phi \in I_{\tau}$ and $\varepsilon>0$ be given. Then there exists a net $\left(h_{\alpha}\right)$ in $C_{b}(X, E)$ such that $\left\|h_{\alpha}\right\| \leq\left\|f_{\alpha}\right\|$ and $\rho_{\Phi}\left(f_{\alpha}\right)=|\Phi|\left(f_{\alpha}\right) \leq\left|\Phi\left(h_{\alpha}\right)\right|+$ ε. Since τ is locally solid, $h_{\alpha} \xrightarrow{\tau} 0$. Hence $h_{\alpha} \rightarrow 0$ for $\sigma\left(C_{b}(X, E), I_{\tau}\right)$, so $\Phi\left(h_{\alpha}\right) \rightarrow 0$, because $\sigma\left(C_{b}(X, E), I_{\tau}\right) \subset \tau$. Thus $\rho_{\Phi}\left(f_{\alpha}\right) \rightarrow 0$, and this means that $f_{\alpha} \rightarrow 0$ for $|\sigma|\left(C_{b}(X, E), I_{\tau}\right)$.

Now we show that $\tau \subset|\tau|\left(C_{b}(X, E), I_{\tau}\right)$. Indeed, let \mathcal{B}_{τ} be a local base at zero for τ consisting of solid absolutely convex and τ-closed sets and let $V \in \mathcal{B}_{\tau}$. Then by Theorem 2.3 and the Banach-Alaoglu's theorem, V^{0} is a solid absolutely convex and $\sigma\left(I_{\tau}, C_{b}(X, E)\right)$-compact subset of I_{τ}. Hence

$$
{ }^{0}\left(V^{0}\right)=\overline{\operatorname{absconv} V}^{\sigma}=\overline{\operatorname{absconv} V}^{\tau}=V,
$$

so τ is the topology of uniform convergence on the family $\left\{V^{0}: V \in \mathcal{B}_{\tau}\right\}$. It follows that $\tau \subset|\tau|\left(C_{b}(X, E), I_{\tau}\right)$.
Corollary 4.7. Let $I_{z}=\left\{\Phi_{m}: m \in M_{z}\left(X, E^{\prime}\right)\right\}$, where $z=\sigma$ and $C_{b}(X) \otimes E$ is dense in $\left(C_{b}(X, E), \beta_{z}(X, E)\right.$) (resp. $z=\tau$ and X is paracompact; resp. $z=t$ and X is a P-space). Then

$$
\beta_{z}(X, E)=|\tau|\left(C_{b}(X, E), M_{z}\left(X, E^{\prime}\right)\right)=\tau\left(C_{b}(X, E), M_{z}\left(X, E^{\prime}\right)\right)
$$

and for a locally convex-solid topology τ on $C_{b}(X, E)$ with $C_{b}(X, E)_{\tau}^{\prime}=I_{z}$ we have:

$$
|\sigma|\left(C_{b}(X, E), M_{z}\left(X, E^{\prime}\right)\right) \subset \tau \subset \beta_{z}(X, E)
$$

Proof: It is known that under our assumptions $\beta_{z}(X, E)$ is a Mackey topology (see $\left[\mathrm{KhO}_{1}\right.$, Corollary 6] for $z=\sigma$, [Kh, Theorem 6.2] for $z=\tau$ and [Kh, Theorem 5] for $z=t)$. Hence $\tau\left(C_{b}(X, E), M_{z}\left(X, E^{\prime}\right)\right)=\beta_{z}(X, E)$. On the other hand, since $\beta_{z}(X, E)$ is a locally convex-solid topology and $\left(C_{b}(X, E), \beta_{z}(X, E)\right)^{\prime}=I_{z}$, by Corollary 4.6 we get $\beta_{z}(X, E) \subset|\tau|\left(C_{b}(X, E), M_{z}\left(X, E^{\prime}\right)\right)$.

References

[$\left.\mathrm{AB}_{1}\right]$ Aliprantis C.D., Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York, San Francisco, London, 1978.
$\left[\mathrm{AB}_{2}\right]$ Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985.
[F1] Fontenot R.A., Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841-853.
[$\mathrm{F}_{\mathbf{2}}$] Fontenot R.A., Strict topologies for vector-valued functions, Corrigendum, Canad. J. Math. 27 (1975), no. 5, 1183-1184.
[GJ] Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
[Kh] Khurana S.S., Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195-211.
[KhC] Khurana S.S., Chao S.A., Strict topologies and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280-284.
$\left[\mathrm{KhO}_{1}\right]$ Khurana S.S., Othman S.I., Convex compactness property in certain spaces of measures, Math. Ann. 279 (1987), 345-348.
$\left[\mathrm{KhO}_{2}\right]$ Khurana S.S., Othman S.I., Grothendieck measures, J. London Math. Soc. (2) 39 (1989), 481-486.
$\left[\mathrm{KhO}_{3}\right]$ Khurana S.S., Othman S.I., Completeness and sequential completeness in certain spaces of measures, Math. Slovaca 45 (1995), no. 2, 163-170.
[KhV_{1}] Khurana S.S., Vielma J., Strict topologies and perfect measures, Czechoslovak Math. J. 40 (1990), no. 1, 1-7.
$\left[\mathrm{KhV}_{2}\right]$ Khurana S.S., Vielma J., Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions, J. Math. Anal. Appl. 195 (1995), 251-260.
[NR] Nowak M., Rzepka A., Locally solid topologies on spaces of vector-valued continuous functions, Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473-483.
[S] Sentilles F.D., Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336.
[V] Varadarajan V.S., Measures on topological spaces, Amer. Math. Soc. Translations (2) 48 (1965), 161-220.
[Wh] Wheeler R.F., Survey of Baire measures and strict topologies, Exposition Math. 2 (1983), 97-190.
[Wi] Wilansky A., Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.

Faculty of Mathematics, Informatics and Econometrics, University of Zielona Góra, ul. Szafrana 4a, 65-516 Zielona Góra, Poland
E-mail: M.Nowak@wmie.uz.zgora.pl
(Received October 14, 2003, revised September 27, 2004)

