Duality theory of spaces of vector-valued continuous functions

Marian Nowak, Aleksandra Rzepka

Abstract. Let X be a completely regular Hausdorff space, E a real normed space, and let $C_b(X,E)$ be the space of all bounded continuous E-valued functions on X. We develop the general duality theory of the space $C_b(X,E)$ endowed with locally solid topologies; in particular with the strict topologies $\beta_z(X,E)$ for $z=\sigma,\tau,t$. As an application, we consider criteria for relative weak-star compactness in the spaces of vector measures $M_z(X,E')$ for $z=\sigma,\tau,t$. It is shown that if a subset E of E of E of E relatively E of E of

Keywords: vector-valued continuous functions, strict topologies, locally solid topologies, weak-star compactness, vector measures

Classification: 46E10, 46E15, 46E40, 46G10

1. Introduction and preliminaries

Let X be a completely regular Hausdorff space and let $(E, \|\cdot\|_E)$ be a real normed space. Let B_E and S_E stand for the closed unit ball and the unit sphere in E, and let E' stand for the topological dual of $(E, \|\cdot\|_E)$. Let $C_b(X, E)$ be the space of all bounded continuous functions $f: X \to E$. We will write $C_b(X)$ instead of $C_b(X, \mathbb{R})$, where \mathbb{R} is the field of real numbers. For a function $f \in C_b(X, E)$ we will write $\|f\|(x) = \|f(x)\|_E$ for $x \in X$. Then $\|f\| \in C_b(X)$ and the space $C_b(X, E)$ can be equipped with the norm $\|f\|_{\infty} = \sup_{x \in X} \|f\|(x) = \|\|f\|\|_{\infty}$, where $\|u\|_{\infty} = \sup_{x \in X} |u(x)|$ for $u \in C_b(X)$.

It turns out that the notion of solidness in the Riesz space (= vector lattice) $C_b(X)$ can be lifted in a natural way to $C_b(X, E)$ (see [NR]). Recall that a subset H of $C_b(X, E)$ is said to be solid whenever $||f_1|| \le ||f_2||$ (i.e., $||f_1(x)||_E \le ||f_2(x)||_E$ for all $x \in X$) and $f_1 \in C_b(X, E)$, $f_2 \in H$ imply $f_1 \in H$. A linear topology τ on $C_b(X, E)$ is said to be locally solid if it has a local base at 0 consisting of solid sets. A linear topology τ on $C_b(X, E)$ that is at the same time locally convex and locally solid will be called a locally convex-solid topology.

In [NR] we examine the general properties of locally solid topologies on the space $C_b(X, E)$. In particular, we consider the mutual relationship between locally solid topologies on $C_b(X, E)$ and $C_b(X)$. It is well known that the so-called

strict topologies $\beta_z(X, E)$ on $C_b(X, E)$ $(z = t, \tau, \sigma, g, p)$ are locally convex-solid topologies (see [Kh, Theorem 8.1], [KhO₂, Theorem 6], [KhV₁, Theorem 5]).

For a linear topological space (L,ξ) , by $(L,\xi)'$ (or L'_{ξ}) we will denote its topological dual. We will write $C_b(X,E)'$ and $C_b(X)'$ instead of $(C_b(X,E), \|\cdot\|_{\infty})'$ and $(C_b(X), \|\cdot\|_{\infty})'$ respectively. By $\sigma(L,M)$ and $\tau(L,M)$ we will denote the weak topology and the Mackey topology with respect to a dual pair $\langle L,M\rangle$. For terminology concerning locally solid Riesz spaces we refer to [AB₁], [AB₂].

In the present paper, we develop the duality theory of the space $C_b(X, E)$ endowed with locally solid topologies (in particular, the strict topologies $\beta_z(X, E)$, where $z = \sigma, \tau, t$).

In Section 2 we examine the topological dual of $C_b(X, E)$ endowed with a locally solid topology τ . We obtain that $(C_b(X, E), \tau)'$ is an ideal of $C_b(X, E)'$. We consider a mutual relationship between topological duals of the spaces $C_b(X)$ and $C_b(X, E)$, which allows us to examine in a unified manner continuous linear functionals on $C_b(X, E)$ by means of continuous linear functionals on $C_b(X)$.

In Section 3 we consider criteria for relative weak-star compactness in spaces of vector measures $M_z(X, E')$ for $z = \sigma, \tau, t$. In particular, we show that if a subset H of $M_z(X, E')$ is relatively $\sigma(M_z(X, E'), C_b(X, E))$ -compact, then conv (S(H)) is still relatively $\sigma(M_z(X, E'), C_b(X, E))$ -compact (here S(H) stand for the solid hull of H in $M_z(X, E')$; see Definition 3.1 below).

Section 4 deals with the absolute weak and the absolute Mackey topologies on $C_b(X, E)$. A Mackey-Arens type theorem for locally convex-solid topologies on $C_b(X, E)$ is obtained.

Now we recall some properties of locally solid topologies on $C_b(X, E)$ as set out in [NR]. A seminorm ρ on $C_b(X, E)$ is said to be *solid* whenever $\rho(f_1) \leq \rho(f_2)$ if $f_1, f_2 \in C_b(X, E)$ and $||f_1|| \leq ||f_2||$.

Note that a solid seminorm on the vector lattice $C_b(X)$ is usually called a Riesz seminorm (see [AB₁]).

Theorem 1.1 (see [NR, Theorem 2.2]). For a locally convex topology τ on $C_b(X, E)$ the following statements are equivalent:

- (i) τ is generated by some family of solid seminorms;
- (ii) τ is a locally convex-solid topology.

From Theorem 1.1 it follows that any locally convex-solid topology τ on $C_b(X, E)$ admits a local base at 0 formed by sets which are simultaneously absolutely convex and solid.

Recall that the algebraic tensor product $C_b(X) \otimes E$ is the subspace of $C_b(X, E)$ spanned by the functions of the form $u \otimes e$, $(u \otimes e)(x) = u(x)e$, where $u \in C_b(X)$ and $e \in E$.

Now we briefly explain the general relationship between locally convex-solid topologies on $C_b(X)$ and $C_b(X, E)$ (see [NR]). Given a Riesz seminorm p on

 $C_b(X)$ let us set

$$p^{\vee}(f) := p(\|f\|)$$
 for all $f \in C_b(X, E)$.

It is seen that p^{\vee} is a solid seminorm on $C_b(X, E)$. From now on let $e_0 \in S_E$ be fixed. Given a solid seminorm ρ on $C_b(X, E)$ one can define a Riesz seminorm ρ^{\wedge} on $C_b(X)$ by:

$$\rho^{\wedge}(u) := \rho(u \otimes e_0)$$
 for all $u \in C_b(X)$.

One can easily show:

Lemma 1.2 (see [NR, Lemma 3.1]). (i) If ρ is a solid seminorm on $C_b(X, E)$, then $(\rho^{\wedge})^{\vee}(f) = \rho(f)$ for all $f \in C_b(X, E)$.

(ii) If p is a Riesz seminorm on $C_b(X)$, then $(p^{\vee})^{\wedge}(u) = p(u)$ for all $u \in C_b(X)$.

Let τ be a locally convex-solid topology on $C_b(X, E)$ and let $\{\rho_\alpha : \alpha \in \mathcal{A}\}$ be a family of solid seminorms on $C_b(X, E)$ that generates τ . By τ^{\wedge} we will denote the locally convex-solid topology on $C_b(X)$ generated by the family $\{\rho_\alpha^{\wedge} : \alpha \in \mathcal{A}\}$.

Next, let ξ be a locally convex-solid topology on $C_b(X)$ and let $\{p_\alpha : \alpha \in \mathcal{A}\}$ be a family of solid seminorms on $C_b(X)$ that generates ξ . By ξ^{\vee} we will denote the locally convex-solid topology on $C_b(X, E)$ generated by the family $\{p_\alpha^{\vee} : \alpha \in \mathcal{A}\}$.

As an immediate consequence of Lemma 1.2 we have:

Theorem 1.3 (see [NR, Theorem 3.2]). For a locally convex-solid topology τ on $C_b(X, E)$ (resp. ξ on $C_b(X)$) we have:

$$(\tau^{\wedge})^{\vee} = \tau \quad (\text{resp. } (\xi^{\vee})^{\wedge} = \xi).$$

The strict topologies $\beta_z(X, E)$ on $C_b(X, E)$, where $z = t, \tau, \sigma, g, p$ have been examined in [F], [KhC], [Kh], [KhO₁], [KhO₂], [KhO₃], [KhV₁], [KhV₂]. In this paper we will consider the strict topologies $\beta_z(X, E)$, where $z = t, \tau, \sigma$. We will write $\beta_z(X)$ instead of $\beta_z(X, \mathbb{R})$.

Now we recall the concept of a strict topology on $C_b(X,E)$. Let βX stand for the Stone-Čech compactification of X. For $v \in C_b(X)$, \overline{v} denotes its unique continuous extension to βX . For a compact subset Q of $\beta X \setminus X$ let $C_Q(X) = \{v \in C_b(X) : \overline{v} \mid Q \equiv 0\}$. Let $\beta_Q(X,E)$ be the locally convex topology on $C_b(X,E)$ defined by the family of solid seminorms $\{\varrho_v : v \in C_Q(X)\}$, where $\varrho_v(f) = \sup_{x \in X} |v(x)| \, \|f\|(x)$ for $f \in C_b(X,E)$.

Now let \mathcal{C} be some family of compact subsets of $\beta X \setminus X$. The *strict topology* $\beta_{\mathcal{C}}(X, E)$ on $C_b(X, E)$ determined by \mathcal{C} is the greatest lower bound (in the class of locally convex topologies) of the topologies $\beta_{\mathcal{C}}(X, E)$, as \mathcal{C} runs over \mathcal{C} (see [NR] for more details). In particular, it is known that $\beta_{\mathcal{C}}(X, E)$ is locally solid (see [NR, Theorem 4.1]).

The strict topologies $\beta_{\tau}(X, E)$ and $\beta_{\sigma}(X, E)$ on $C_b(X, E)$ are obtained by choosing the family C_{τ} of all compact subsets of $\beta X \setminus X$ and the family C_{σ} of all zero subsets of $\beta X \setminus X$ as C, resp. In view of [NR, Corollary 4.4] for $z = \tau, \sigma$ we have

$$\beta_z(X)^{\vee} = \beta_z(X, E)$$
 and $\beta_z(X, E)^{\wedge} = \beta_z(X)$.

The strict topology $\beta_t(X, E)$ on $C_b(X, E)$ is generated by the family $\{\varrho_v : v \in C_0(X)\}$, where $C_0(X)$ denotes the space of scalar-valued continuous functions on X, vanishing at infinity. It is easy to show that

$$\beta_t(X)^{\vee} = \beta_t(X, E)$$
 and $\beta_t(X, E)^{\wedge} = \beta_t(X)$.

2. Topological dual of $C_b(X, E)$ with locally solid topologies

For a linear functional Φ on $C_b(X, E)$ let us put

$$|\Phi|(f) = \sup \{|\Phi(h)| : h \in C_b(X, E), ||h|| \le ||f||\}.$$

The next theorem gives a characterization of the space $C_b(X, E)'$.

Theorem 2.1. We have

$$C_b(X, E)' = \{ \Phi \in C_b(X, E)^{\#} : |\Phi|(f) < \infty \text{ for all } f \in C_b(X, E) \},$$

where $C_b(X, E)^{\#}$ denotes the algebraic dual of $C_b(X, E)$.

PROOF: Indeed, by the way of contradiction, assume that for some $\Phi_0 \in C_b(X, E)'$ we have $|\Phi_0|(f_0) = \infty$ for some $f_0 \in C_b(X, E)$. Hence there exists a sequence (h_n) in $C_b(X, E)$ such that $||h_n|| \leq ||f_0||$ and $|\Phi_0(h_n)| \geq n$ for all $n \in \mathbb{N}$. Since $||n^{-1}h_n||_{\infty} \to 0$, we get $n^{-1}\Phi_0(h_n) \to 0$, which is in contradiction with $|\Phi_0(h_n)| \geq n$.

Next, assume by the way of contradiction that there exists a linear functional Φ_0 on $C_b(X,E)$ such that $|\Phi_0|(f) < \infty$ for all $f \in C_b(X,E)$ and $\Phi_0 \notin C_b(X,E)'$. Then there exists a sequence (f_n) in $C_b(X,E)$ such that $||f_n||_{\infty} = 1$ and $|\Phi_0(f_n)| > n^3$ for all $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2} |||f_n|||_{\infty} < \infty$ and the space $(C_b(X), ||\cdot||_{\infty})$ is complete, there exists $u_0 \in C_b(X)^+$ such that $\sum_{n=1}^{\infty} \frac{1}{n^2} ||f_n|| = u_0$. Let $f_0 = u_0 \otimes e_0$ for some fixed $e_0 \in S_E$. Then $\frac{1}{n^2} ||f_n|| \le ||f_0|| = u_0$. Hence for all $n \in \mathbb{N}$, $n < |\Phi_0(f_n/n^2)| \le |\Phi_0|(f_n/n^2) \le |\Phi_0|(f_0) < \infty$, which is impossible. Thus the proof is complete.

Now we consider the concept of solidness in $C_b(X, E)'$.

Definition 2.1. For $\Phi_1, \Phi_2 \in C_b(X, E)'$ we will write $|\Phi_1| \leq |\Phi_2|$ whenever $|\Phi_1|(f) \leq |\Phi_2|(f)$ for all $f \in C_b(X, E)$. A subset A of $C_b(X, E)'$ is said to be solid whenever $|\Phi_1| \leq |\Phi_2|$ with $\Phi_1 \in C_b(X, E)'$ and $\Phi_2 \in A$ implies $\Phi_1 \in A$. A linear subspace I of $C_b(X, E)'$ will be called an *ideal* whenever I is solid.

Since the intersection of any family of solid subsets of $C_b(X, E)'$ is solid, every subset A of $C_b(X, E)'$ is contained in the smallest (with respect to the inclusion) solid set called the *solid hull* of A and denoted by S(A). Note that

$$S(A) = \{ \Phi \in C_b(X, E)' : |\Phi| \le |\Psi| \text{ for some } \Psi \in A \}.$$

Lemma 2.2. Let $\Phi \in C_b(X, E)'$. Then for $f \in C_b(X, E)$,

(*)
$$|\Phi|(f) = \sup \{ |\Psi(f)| : \Psi \in C_b(X, E)', |\Psi| \le |\Phi| \}.$$

Moreover, if A is a subset of $C_b(X, E)'$ then for $f \in C_b(X, E)$ we have

$$\sup \{|\Phi|(f): \Phi \in A\} = \sup \{|\Psi(f)|: \Psi \in S(A)\}$$
$$= \sup \{|\Psi(f)|: \Psi \in \operatorname{conv}(S(A))\}.$$

PROOF: Note first that $|\Phi|$ is a seminorm on $C_b(X, E)$. To see that $|\Phi|(f_1 + f_2) \le |\Phi|(f_1) + |\Phi|(f_2)$ holds for $f_1, f_2 \in C_b(X, E)$ with $f_1, f_2 \neq 0$, assume that $h \in C_b(X, E)$ and $||h|| \le ||f_1 + f_2||$. Then for $h_i = (||f_i||/(||f_1|| + ||f_2||))h$ for i = 1, 2 we have $h = h_1 + h_2$ and $||h_i|| \le ||f_i||$ for i = 1, 2. Thus $|\Phi(h)| \le |\Phi(h_1)| + |\Phi(h_2)| \le |\Phi|(h_1) + |\Phi|(h_2) \le |\Phi|(f_1) + |\Phi|(f_2)$. Hence $|\Phi|(f_1 + f_2) \le |\Phi|(f_1) + |\Phi|(f_2)$, as desired. Moreover, one can easily show that $|\Phi|(\lambda f) = |\lambda| |\Phi|(f)$ for all $\lambda \in \mathbb{R}$.

For a fixed $f_0 \in C_b(X, E)$ we define a functional Ψ_0 on the linear subspace $L_{f_0} = \{\lambda f_0 : \lambda \in \mathbb{R}\}$ of $C_b(X, E)$ by putting $\Psi_0(\lambda f_0) = \lambda |\Phi|(f_0)$ for $\lambda \in \mathbb{R}$. It is clear that Ψ_0 is a linear functional on L_{f_0} and $|\Psi_0(\lambda f_0)| = |\Phi|(\lambda f_0)$ for $\lambda \in \mathbb{R}$. Then by the Hahn-Banach extension theorem there exists a linear functional Ψ on $C_b(X, E)$ such that $\Psi(f) \leq |\Phi|(f)$ for all $f \in C_b(X, E)$ and $\Psi(\lambda f_0) = \Psi_0(\lambda f_0)$ for all $\lambda \in \mathbb{R}$. Since Ψ is linear and $|\Phi|(f) = |\Phi|(-f)$ we get $|\Psi(f)| \leq |\Phi|(f)$ for all $f \in C_b(X, E)$. To see that $|\Psi| \leq |\Phi|$ let $f \in C_b(X, E)$ and take $h \in C_b(X, E)$ with $||h|| \leq ||f||$. Then $|\Psi(h)| \leq |\Phi|(h) \leq |\Phi|(f)$, so $|\Psi|(f) \leq |\Phi|(f)$. Thus $|\Psi| \leq |\Phi|$. Moreover, $\Psi(f_0) = \Psi_0(f_0) = |\Phi|(f_0)$, so

$$|\Phi|(f_0) = \sup\{|\Psi(f_0)| : \Psi \in C_b(X, E)', |\Psi| \le |\Phi|\}.$$

Thus (*) is shown. As a consequence of (*) we easily obtain that (**) holds. \square

We now introduce the concept of a *solid dual system*. Let I be an ideal of $C_b(X, E)'$ separating the points of $C_b(X, E)$. Then the pair $\langle C_b(X, E), I \rangle$, under its natural duality

$$\langle f, \Phi \rangle = \Phi(f)$$
 for $f \in C_b(X, E)$, $\Phi \in I$

will be referred to as a *solid dual system*.

For a subset A of $C_b(X, E)$ and a subset B of I let us set

$$A^{0} = \{ \Phi \in I : |\langle f, \Phi \rangle| \le 1 \text{ for all } f \in A \},$$

$${}^{0}B = \{ f \in C_{b}(X, E) : |\langle f, \Phi \rangle| \le 1 \text{ for all } \Phi \in B \}.$$

By making use of Lemma 2.2 we can get the following result.

Theorem 2.3. Let $\langle C_b(X, E), I \rangle$ be a solid dual system.

- (i) If a subset A of $C_b(X, E)$ is solid, then A^0 is a solid subset of I.
- (ii) If a subset B of I is solid, then ${}^{0}B$ is a solid subset of $C_{b}(X, E)$.

PROOF: (i) Let $|\Phi_1| \leq |\Phi_2|$ with $\Phi_1 \in I$ and $\Phi_2 \in A^0$. Assume that $f \in A$ and let $h \in C_b(X, E)$ with $||h|| \leq ||f||$. Then $h \in A$, because A is solid, so $|\Phi_2(h)| \leq 1$. Hence $|\Phi_2|(f) \leq 1$. Thus $|\Phi_1(f)| \leq |\Phi_1|(f) \leq 1$, so $\Phi_1 \in A^0$. This means that A^0 is a solid subset of I.

(ii) Let $||f_1|| \leq ||f_2||$ with $f_1 \in C_b(X, E)$ and $f_2 \in {}^0B$. To see that $f_1 \in {}^0B$ assume that $\Phi \in B$. Since B is a solid subset of I, by Lemma 2.2 the identity $|\Phi|(f_2) = \sup\{|\Psi(f_2)| : \Psi \in B, \ |\Psi| \leq |\Phi|\}$ holds. Thus for every $\Psi \in B$ with $|\Psi| \leq |\Phi|$ we have $|\Psi(f_2)| \leq 1$, so $|\Phi|(f_2) \leq 1$. Since $|\Phi(f_1)| \leq |\Phi|(f_1) \leq |\Phi|(f_2) \leq 1$, we get $f_1 \in {}^0B$, as desired.

Theorem 2.4. Let τ be a locally solid topology on $C_b(X, E)$. Then $(C_b(X, E), \tau)'$ is an ideal of $C_b(X, E)'$.

PROOF: To show that $(C_b(X,E),\tau)' \subset C_b(X,E)'$, by the way of contradiction assume that for some $\Phi_0 \in (C_b(X,E),\tau)'$ we have $\Phi_0 \notin C_b(X,E)'$, so in view of Theorem 2.1 we get $|\Phi_0|(f_0) = \infty$ for some $f_0 \in C_b(X,E)$. Hence there exists a sequence (h_n) in $C_b(X,E)$ such that $||h_n|| \leq ||f_0||$ and $|\Phi_0(h_n)| \geq n$ for $n \in \mathbb{N}$. Since $n^{-1}f_0 \to 0$ for τ , and τ is locally solid, we get $n^{-1}h_n \to 0$ for τ . Hence $\Phi_0(n^{-1}h_n) \to 0$, which is in contradiction with $|\Phi_0(h_n)| \geq n$.

To see that $(C_b(X, E), \tau)'$ is an ideal of $C_b(X, E)'$ assume that $|\Phi_1| \leq |\Phi_2|$ with $\Phi_1 \in C_b(X, E)'$ and $\Phi_2 \in (C_b(X, E), \tau)'$. Let $f_\alpha \xrightarrow{\tau} 0$ and $\varepsilon > 0$ be given. Then there exists a net (h_α) in $C_b(X, E)$ such that $||h_\alpha|| \leq ||f_\alpha||$ for each α and $|\Phi_2|(f_\alpha) \leq |\Phi_2(h_\alpha)| + \varepsilon$. Clearly $h_\alpha \xrightarrow{\tau} 0$, because τ is locally solid, so $\Phi_2(h_\alpha) \to 0$. Since $|\Phi_1(f_\alpha)| \leq |\Phi_1|(f_\alpha) \leq |\Phi_2|(f_\alpha) \leq |\Phi_2(f_\alpha)| + \varepsilon$, we get $\Phi_1(f_\alpha) \to 0$, so $\Phi_1 \in (C_b(X, E), \tau)'$, as desired.

Theorem 2.5. For a Hausdorff locally convex topology τ on $C_b(X, E)$ the following statements are equivalent:

- (i) τ is locally solid;
- (ii) $(C_b(X, E), \tau)'$ is an ideal of $C_b(X, E)'$ and for every τ -equicontinuous subset A of $(C_b(X, E), \tau)'$ its solid hull S(A) is also τ -equicontinuous.

PROOF: (i) \Longrightarrow (ii) By Theorem 2.4 $(C_b(X, E), \tau)'$ is an ideal of $C_b(X, E)'$, and thus we have the solid dual system $\langle C_b(X, E), (C_b(X, E), \tau)' \rangle$. Assume that a subset A of $(C_b(X, E), \tau)'$ is equicontinuous. Hence $A \subset V^0$ for some solid τ -neighbourhood V of zero. Hence $S(A) \subset S(V^0) = V^0$ (see Theorem 2.3). This means that S(A) is a τ -equicontinuous subset of $(C_b(X, E), \tau)'$.

(ii) \Longrightarrow (i) Let \mathcal{B}_{τ} be a local base at zero for τ consisting of absolutely convex, τ -closed sets. Assume that V is τ -neighbourhood of zero. Then there exists $U \in \mathcal{B}_{\tau}$

such that $U \subset V$. Moreover, the polar set U^0 is a τ -equicontinuous subset of $(C_b(X,E),\tau)'$. By our assumption $S(U^0)$ is also τ -equicontinuous. Hence there exists $W \in \mathcal{B}_{\tau}$ such that $W \subset {}^0S(U^0)$. Since the set ${}^0S(U^0)$ is solid in $C_b(X,E)$, $S(W) \subset {}^0S(U^0) \subset {}^0(U^0) = \overline{\text{abs conv } U}^{\tau} = U \subset V$. This shows that τ is locally solid, as desired.

For each $\Phi \in C_b(X, E)'$ let

$$\varphi_{\Phi}(u) = \sup \{ |\Phi(h)| : h \in C_b(X, E), ||h|| \le u \} \text{ for } u \in C_b(X)^+.$$

One can easily show that $\varphi_{\Phi}: C_b(X)^+ \to \mathbb{R}^+$ is an additive and positively homogeneous mapping (see [KhO₁, Lemma 1]), so φ_{Φ} has a unique positive extension to a linear mapping from $C_b(X)$ to \mathbb{R} (denoted by φ_{Φ} again) and given by

$$\varphi_{\Phi}(u) = \varphi_{\Phi}(u^{+}) - \varphi_{\Phi}(u^{-})$$
 for all $u \in C_{b}(X)$

(see [AB, Lemma 3.1]). Hence $\varphi_{\Phi} = |\varphi_{\Phi}|$ holds on $C_b(X)^+$. Since $C_b(X)' = C_b(X)^{\sim}$ (the order dual of $C_b(X)$) (see [AB₂, Corollary 12.5]), we get $\varphi_{\Phi} \in C_b(X)'$. Moreover, we have:

$$\varphi_{\Phi}(\|f\|) = |\Phi|(f) \text{ for } f \in C_b(X, E)$$

and

$$\varphi_{\Phi}(u) = |\Phi|(u \otimes e_0) \text{ for } u \in C_b(X)^+.$$

The following lemma will be useful.

Lemma 2.6. (i) Assume that L is an ideal of $C_b(X)'$. Then the set

$$C_b(X, E)'_L := \{ \Phi \in C_b(X, E)' : \varphi_{\Phi} \in L \}$$

is an ideal of $C_b(X, E)'$.

(ii) Assume that I is an ideal of $C_b(X, E)'$. Then the set

$$C_b(X)_I' := \{ \varphi \in C_b(X)' : |\varphi| \le \varphi_{\Phi} \text{ for some } \Phi \in I \}$$

is an ideal of $C_b(X)'$ and $C_b(X, E)'_{C_b(X)'_T} = I$.

PROOF: (i) We first show that $C_b(X, E)'_L$ is a linear subspace of $C_b(X, E)'$. Assume that $\Phi_1, \Phi_2 \in C_b(X, E)'_L$, i.e., $\varphi_{\Phi_1}, \varphi_{\Phi_2} \in L$. It is easy to show that $\varphi_{\Phi_1+\Phi_2}(u) \leq (\varphi_{\Phi_1}+\varphi_{\Phi_2})(u)$ for $u \in C_b(X)^+$, so $\varphi_{\Phi_1+\Phi_2} \in L$, i.e., $\Phi_1+\Phi_2 \in C_b(X, E)'_L$. Next, let $\Phi \in C_b(X, E)'_L$ and $\lambda \in \mathbb{R}$. Then $\varphi_{\Phi} \in L$ and since $\varphi_{\lambda\Phi} = \lambda \varphi_{\Phi}$, we get $\lambda\Phi \in C_b(X, E)'_L$. To show that $C_b(X, E)'_L$ is solid in $C_b(X, E)'$, assume that $|\Phi_1| \leq |\Phi_2|$ with $\Phi_1 \in C_b(X, E)'$ and $\Phi_2 \in C_b(X, E)'_L$, i.e., $\varphi_{\Phi_2} \in L$. Then for $u \in C_b(X)^+$ we have $\varphi_{\Phi_1}(u) = |\Phi_1|(u \otimes e_0) \leq |\Phi_2|(u \otimes e_0) = \varphi_{\Phi_2}(u)$. Hence $\varphi_{\Phi_1} \in L$, because L is an ideal of $C_b(X)'$. Thus $\Phi_1 \in C_b(X, E)'_L$, as desired.

(ii) To prove that $C_b(X)'_I$ is an ideal of $C_b(X)'$ assume that $|\varphi_1| \leq |\varphi_2|$, where $\varphi_1 \in C_b(X)'$ and $\varphi_2 \in C_b(X)'_I$. Then $|\varphi_2| \leq \varphi_{\Phi}$ for some $\Phi \in I$, so $|\varphi_1| \leq \varphi_{\Phi}$, and this means that $\varphi_1 \in C_b(X)'_I$.

To show that $I \subset C_b(X, E)'_{C_b(X)'_I}$, assume that $\Phi \in I$. Then $\varphi_{\Phi} \in C_b(X)'_I$, so $\Phi \in C_b(X, E)'_{C_b(X)'_I}$.

Now, we assume that $\Phi \in C_b(X, E)'_{C_b(X)'_I}$, i.e., $\Phi \in C_b(X, E)'$ and $\varphi_{\Phi} \in C_b(X)'_I$. It follows that there exists $\Phi_0 \in I$ such that $\varphi_{\Phi} \leq \varphi_{\Phi_0}$. Hence for every $f \in C_b(X, E)$ we have $|\Phi|(f) = \varphi_{\Phi}(||f||) \leq \varphi_{\Phi_0}(||f||) = |\Phi_0|(f)$. Thus $\Phi \in I$, because I is an ideal of $C_b(X, E)'$.

Let A be a subset of $C_b(X, E)'_{\tau}$. Then $S(A) \subset C_b(X, E)'_{\tau}$ as $C_b(X, E)'_{\tau}$ is solid (by Theorem 2.4). Hence

$$S(A) = \{ \Phi \in C_b(X, E)'_{\tau} : |\Phi| \le |\Psi| \text{ for some } \Psi \in A \}.$$

In view of Lemma 2.2 for a subset A of $C_b(X, E)'$ and $f \in C_b(X, E)$ we have:

(+)
$$\sup \{|\Phi|(f): \Phi \in A\} = \sup \{\varphi_{\Phi}(||f||): \Phi \in A\}$$
$$= \sup \{|\Psi(f)|: \Psi \in S(A)\}.$$

Theorem 2.7. Let τ be a locally convex-solid Hausdorff topology on $C_b(X, E)$. Then for a subset A of $C_b(X, E)'$ the following statements are equivalent:

- (i) A is τ -equicontinuous;
- (ii) conv (S(A)) is τ -equicontinuous;
- (iii) S(A) is τ -equicontinuous;
- (iv) the subset $\{\varphi_{\Phi} : \Phi \in A\}$ of $C_b(X)'$ is τ^{\wedge} -equicontinuous.

PROOF: (i) \Longrightarrow (ii) In view of Theorem 2.4 we have a solid dual system $\langle C_b(X,E),C_b(X,E)'_{\tau}\rangle$. Let A be τ -equicontinuous. Then by Theorem 1.1 there is a convex solid τ -neighbourhood V of zero such that $A\subset V^0$. Hence $\operatorname{conv}(S(A))\subset \operatorname{conv}(S(V^0))=V^0$ (see Theorem 2.3), and this means that $\operatorname{conv}(S(A))$ is still τ -equicontinuous.

- $(ii) \Longrightarrow (iii)$ It is obvious.
- (iii) \Longrightarrow (iv) Assume that the subset S(A) of $C_b(X, E)'$ is τ -equicontinuous. Let $\{\rho_\alpha: \alpha \in \mathcal{A}\}$ be a family of solid seminorms on $C_b(X, E)$ that generates τ . Given $\varepsilon > 0$ there exist $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ and $\eta > 0$ such that $\sup\{|\Psi(f)|: \Psi \in S(A)\} \leq \varepsilon$

whenever $\rho_{\alpha_i}(f) \leq \eta$ for i = 1, 2, ..., n. To show that $\{\varphi_{\Phi} : \Phi \in A\}$ is τ^{\wedge} -equicontinuous, it is enough to show that $\sup\{|\varphi_{\Phi}(u)| : \Phi \in A\} \leq \varepsilon$ whenever $\rho_{\alpha_i}^{\wedge}(u) \leq \eta$ for i = 1, 2, ..., n. Indeed, let $u \in C_b(X)$ and $\rho_{\alpha_i}^{\wedge}(u) \leq \eta$ for i = 1, 2, ..., n. Then $\rho_{\alpha_i}(u \otimes e_0) \leq \eta$ (i = 1, 2, ..., n), so $\sup\{|\Psi(u \otimes e_0)| : \Psi \in S(A)\} \leq \varepsilon$. Hence, in view of (+) we obtain that $\sup\{\varphi_{\Phi}(|u|) : \Phi \in A\} \leq \varepsilon$, because $\|u \otimes e_0\| = |u|$. But $|\varphi_{\Phi}(u)| \leq \varphi_{\Phi}(|u|)$, and the proof is complete.

(iv) \Longrightarrow (i) Assume that the set $\{\varphi_{\Phi}: \Phi \in A\}$ is τ^{\wedge} -equicontinuous. Let $\{\rho_{\alpha}: \alpha \in \mathcal{A}\}$ be a family of solid seminorms on $C_b(X, E)$ that generates τ . Given $\varepsilon > 0$ there exist $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ and $\eta > 0$ such that $\sup\{|\varphi_{\Phi}(u)|: \Phi \in A\} \leq \varepsilon$ whenever $u \in C_b(X)$ and $\rho_{\alpha_i}^{\wedge}(u) \leq \eta$ for $i = 1, 2, \ldots, n$. Let $f \in C_b(X, E)$ with $\rho_{\alpha_i}(f) \leq \eta$ for $i = 1, 2, \ldots, n$. Since $\rho_{\alpha_i}^{\wedge}(\|f\|) = \rho_{\alpha_i}(\|f\| \otimes e_0) = \rho_{\alpha_i}(f)$ $(i = 1, 2, \ldots, n)$, $\sup\{|\varphi_{\Phi}(\|f\|)|: \Phi \in A\} \leq \varepsilon$. But $|\Phi(f)| \leq |\Phi|(f) = \varphi_{\Phi}(\|f\|)$, so $\sup\{|\Phi(f)|: \Phi \in A\} \leq \varepsilon$. This means that A is τ -equicontinuous. \square

Corollary 2.8. Let τ be a locally convex-solid topology on $C_b(X, E)$. Then for $\Phi \in C_b(X, E)'$ the following statements are equivalent:

- (i) Φ is τ -continuous;
- (ii) φ_{Φ} is τ^{\wedge} -continuous.

Corollary 2.9. Let ξ be a locally convex-solid topology on $C_b(X)$. Then for $\Phi \in C_b(X, E)'$ the following statements are equivalent:

- (i) Φ is ξ^{\vee} -continuous;
- (ii) φ_{Φ} is ξ -continuous.

Remark. For the equivalence (i) \iff (iv) of Theorem 2.7 for the strict topologies $\beta_z(X, E)$ ($z = \sigma, \tau, t, \infty, g$) see [KhO₃, Lemma 2].

Corollary 2.10. (i) Let ξ be a locally convex-solid topology on $C_b(X)$. Then

$$(C_b(X),\xi)' = \{ \varphi \in C_b(X)' : |\varphi| \le \varphi_{\Phi} \text{ for some } \Phi \in (C_b(X,E),\xi^{\vee})' \}.$$

(ii) Let τ be a locally convex-solid topology on $C_b(X, E)$. Then

$$\left(C_b(X),\tau^\wedge\right)' = \left\{\varphi \in C_b(X)': |\varphi| \leq \varphi_\Phi \text{ for some } \Phi \in \left(C_b(X,E),\tau\right)'\right\}.$$

PROOF: (i) Let $\varphi \in (C_b(X), \xi)'$. Define a linear functional Φ_0 on the subspace $C_b(X)(e_0)$ (= $\{u \otimes e_0 : u \in C_b(X)\}$) of $C_b(X, E)$ by putting $\Phi_0(u \otimes e_0) = \varphi(u)$ for $u \in C_b(X)$. Let $\{p_\alpha : \alpha \in \mathcal{A}\}$ be a family of Riesz seminorms generating ξ . Since $\varphi \in (C_b(X), \xi)'$, there exist c > 0 and $\alpha_1, \ldots, \alpha_n \in \mathcal{A}$ such that for $u \in C_b(X)$

$$\left|\Phi_0(u\otimes e_0)\right| = \left|\varphi(u)\right| \leq c \max_{1\leq i\leq n} p_{\alpha_i}(u) = c \max_{1\leq i\leq n} p_{\alpha_i}^{\vee}(u\otimes e_0).$$

This means that $\Phi_0 \in (C_b(X)(e_0), \xi^{\vee} | C_b(X)(e_0))'$, so by the Hahn-Banach extension theorem there is $\Phi \in (C_b(X, E), \xi^{\vee})'$ such that $\Phi(u \otimes e_0) = \varphi(u)$ for all $u \in C_b(X)$. We shall now show that $|\varphi| \leq \varphi_{\Phi}$, i.e., $|\varphi|(u) \leq \varphi_{\Phi}(u)$ for all $u \in C_b(X)^+$. Indeed, let $u \in C_b(X)^+$ be given and let $v \in C_b(X)$ with $|v| \leq u$. Then we have $|\varphi(v)| = |\Phi(v \otimes e_0)| \leq \varphi_{\Phi}(u)$, so $|\varphi| \leq \varphi_{\Phi}$, as desired.

Next, assume that $\varphi \in C_b(X)'$ with $|\varphi| \leq \varphi_{\Phi}$ for some $\Phi \in (C_b(X, E), \xi^{\vee})'$. In view of Corollary 2.9, $\varphi_{\Phi} \in (C_b(X), \xi)'$ and since $(C_b(X), \xi)'$ is an ideal of $C_b(X)'$, we conclude that $\varphi \in (C_b(X), \xi)'$.

(ii) It follows from (i), because
$$(\tau^{\wedge})^{\vee} = \tau$$
.

It is well known that if L is a σ -Dedekind complete vector-lattice and if H is a relatively $\sigma(L_n^{\sim}, L)$ -compact subset of L_n^{\sim} (resp. a relatively $\sigma(L_c^{\sim}, L)$ -compact subset of L_c^{\sim}), then the set conv (S(H)) is still relatively $\sigma(L_n^{\sim}, L)$ -compact (resp. relatively $\sigma(L_c^{\sim}, L)$ -compact) (see [AB, Corollary 20.12, Corollary 20.10]) (here L_n^{\sim} and L_c^{\sim} stand for the order continuous dual and the σ -order continuous dual of L resp.).

Now, we shall show that this property holds in $(C_b(X, E)'_{\beta_z}, \sigma(C_b(X, E)'_{\beta_z}, C_b(X, E)))$ for $z = \sigma, \tau, t$.

Recall that a completely regular Hausdorff space X is called a P-space if every G_{δ} set in X is open (see [GJ, p. 63]).

The following result will be of importance.

Theorem 2.11. Let H be a norm-bounded and $\sigma(C_b(X, E)'_{\beta_z}, C_b(X, E))$ -compact subset of $C_b(X, E)'_{\beta_z}$, where $z = \sigma$ (resp. $z = \tau$ and X is a paracompact space; resp. $z = \tau$ and X is a P-space). Then H is $\beta_z(X, E)$ -equicontinuous.

PROOF: See [KhO₁, Theorem 5] for $z = \sigma$; [Kh, Theorem 6.1] for $z = \tau$ and [KhC, Lemma 3] for z = t.

Now we are ready to state our main result.

Theorem 2.12. Let H be a norm bounded subset of $C_b(X, E)'_{\beta_z}$, where $z = \sigma$ (resp. $z = \tau$ and X is a paracompact space; resp. z = t and X is a P-space). Then the following statements are equivalent:

- (i) H is relatively countably $\sigma(C_b(X, E)'_{\beta_z}, C_b(X, E))$ -compact;
- (ii) H is $\beta_z(X, E)$ -equicontinuous;
- (iii) conv (S(H)) is relatively $\sigma(C_b(X, E)'_{\beta_z}, C_b(X, E))$ -compact;
- (iv) S(H) is relatively $\sigma(C_b(X, E)'_{\beta_z}, C_b(X, E))$ -compact;
- (v) H is relatively $\sigma(C_b(X, E)'_{\beta_z}, C_b(X, E))$ -compact.

PROOF: (i) \Longrightarrow (ii) See Theorem 2.11.

(ii) \Longrightarrow (iii) In view of Theorem 2.7 the set conv (S(H)) is $\beta_z(X, E)$ -equicontinuous, i.e., there is a neighbourhood of 0 for $\beta_z(X, E)$ such that conv $(S(H)) \subset V^0$

(= the polar set with respect to the dual pair $\langle C_b(X, E), C_b(X, E)'_{\beta_z} \rangle$). Then by the Banach-Alaoglu's theorem the set V^0 is $\sigma(C_b(X, E)'_{\beta_z}, C_b(X, E))$ -compact, so the set conv (S(H)) is relatively $\sigma(C_b(X, E)'_{\beta_z}, C_b(X, E))$ -compact.

$$(iii) \Longrightarrow (iv) \Longrightarrow (v) \Longrightarrow (i)$$
 It is obvious.

3. Weak-star compactness in some spaces of vector measures

In this section we consider criteria for relative weak-star compactness in some spaces of vector measures $M_z(X, E')$ for $z = \sigma, \tau, t$. In particular, by making use of Theorem 2.11 we show that if a subset H of $M_z(X, E')$ is relatively $\sigma(M_z(X, E'), C_b(X, E))$ -compact, then the set $\operatorname{conv}(S(H))$ is still relatively $\sigma(M_z(X, E'), C_b(X, E))$ -compact (here S(H) stand for the solid hull of H is $M_z(X, E')$). We start by recalling some notions and results concerning the topological measure theory (see [V], [S], [Wh]).

Let B(X) be the algebra of subsets of X generated by the zero sets. Let M(X) be the space of all bounded finitely additive regular (with respect to the zero sets) measures on B(X). The spaces of all σ -additive, τ -additive and tight members of M(X) will be denoted by $M_{\sigma}(X)$, $M_{\tau}(X)$ and $M_t(X)$ respectively (see [V], [Wh]). It is well known that $M_z(X)$ for $z = \sigma, \tau, t$ are ideals of M(X) (see [Wh, Theorem 7.2]).

Theorem 3.1 (A.D. Alexandroff; [Wh, Theorem 5.1]). For a linear functional $\varphi: C_b(X) \to \mathbb{R}$ the following statements are equivalent.

- (i) $\varphi \in C_b(X)'$.
- (ii) There exists a unique $\mu \in M(X)$ such that

$$\varphi(u) = \varphi_{\mu}(u) = \int_{X} u \, d\mu \quad \text{for all} \quad u \in C_b(X).$$

Moreover, $\mu \geq 0$ if and only if $\varphi_{\mu}(u) \geq 0$ for all $u \in C_b(X)^+$.

By M(X, E') we denote the set of all finitely additive measures $m: B(X) \to E'$ with the following properties:

- (i) For every $e \in E$, the function $m_e : B(X) \to \mathbb{R}$ defined by $m_e(A) = m(A)(e)$, belongs to M(X).
- (ii) $|m|(X) < \infty$, where for $A \in B(X)$

$$|m|(A) = \sup \left\{ \left| \sum_{i=1}^{n} m(B_i)(e_i) \right| : \bigcup_{i=1}^{n} B_i = A, \ B_i \in B(X), \ B_i \cap B_j = \emptyset \right.$$
for $i \neq j, \ e_i \in B_E, \ n \in \mathbb{N} \right\}.$

For $z = \sigma, \tau, t$ let

$$M_z(X, E') = \{ m \in M(X, E') : m_e \in M_z(X) \text{ for every } e \in E \}.$$

It is well known that $|m| \in M(X)$ (resp. $|m| \in M_z(X)$ for $z = \sigma, \tau, t$) whenever $m \in M(X, E')$ (resp. $m \in M_z(X, E')$ for $z = \sigma, \tau, t$) (see [F, Proposition 3.9]).

Now we are ready to define the notion of solidness in M(X, E').

Definition 3.1. For $m_1, m_2 \in M(X, E')$ we will write $|m_1| \leq |m_2|$ whenever $|m_1|(B) \leq |m_2|(B)$ for every $B \in B(X)$. A subset H of M(X, E') is said to be solid whenever $|m_1| \leq |m_2|$ with $m_1 \in M(X, E')$ and $m_2 \in H$ imply $m_1 \in H$. A linear subspace I of M(X, E') will be called an *ideal* of M(X, E') whenever I is a solid subset of M(X, E').

Proposition 3.2. $M_z(X, E')$ $(z = \sigma, \tau, t)$ is an ideal of M(X, E').

PROOF: Let $|m_1| \leq |m_2|$, where $m_1 \in M(X, E')$ and $m_2 \in M_z(X, E')$. Then $|m_1| \in M(X)$ and $|m_2| \in M_z(X)$, and since $M_z(X)$ is an ideal of M(X) we conclude that $|m_1| \in M_z(X)$. For each $e \in E$ we have $|(m_1)_e|(B) \leq ||e||_E |m_1|(B)$ for $B \in B(X)$, so $(m_1)_e \in M_z(X)$, i.e., $m_1 \in M_z(X, E')$.

Since the intersection of any family of solid subsets of M(X, E') is solid, every subset H of M(X, E') is contained in the smallest (with respect to inclusion) solid set called the *solid hull* of H and denoted by S(H). Note that

$$S(H) = \{ m \in M(X, E') : |m| \le |m'| \text{ for some } m' \in H \}.$$

Now we recall some results concerning a characterization of the topological duals of $(C_b(X, E), \beta_z(X, E))$ in terms of the spaces $M_z(X, E')$ ($z = \sigma, \tau, t$).

Theorem 3.3. Assume that $\beta_z(X, E)$ is the strict topology on $C_b(X, E)$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$; resp. z = t). Then for a linear functional Φ on $C_b(X, E)$ the following statements are equivalent.

- (i) Φ is $\beta_z(X, E)$ -continuous.
- (ii) There exists a unique $m \in M_z(X, E')$ such that

$$\Phi(f) = \Phi_m(f) = \int_X f \, \mathrm{d}m \quad \text{for every} \quad f \in C_b(X, E).$$

(iii) The functional φ_{Φ} is $\beta_z(X)$ -continuous.

Moreover, $\|\Phi_m\| = |m|(X)$ for $m \in M_z(X, E')$.

PROOF: (i) \iff (ii) See [Kh, Theorem 5.3] for $z = \sigma$; [Kh, Corollary 3.9] for $z = \tau$; [F₁, Theorem 3.13] for z = t.

(ii)
$$\iff$$
 (iii) It follows from Corollary 2.8, because $\beta_z(X, E)^{\wedge} = \beta_z(X)$.

Lemma 3.4. Assume that $m \in M_z(X, E')$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$; resp. z = t). Then

$$\varphi_{\Phi_m}(u) = \int_X u \, \mathrm{d}|m| = \varphi_{|m|}(u) \quad \text{for all} \quad u \in C_b(X).$$

PROOF: Let $u \in C_b(X)^+$ and $m \in M_z(X, E')$. Then for $h \in C_b(X, E)$ with $||h|| \le u$ by [F₂, Lemma 3.11] we have

$$|\Phi_m(h)| = \Big| \int_X h \, \mathrm{d}m \Big| \le \int_X ||h|| \, \mathrm{d}|m| \le \int_X u \, \mathrm{d}|m| = \varphi_{|m|}(u).$$

Hence

$$\varphi_{\Phi_m}(u) = |\Phi_m|(u \otimes e_0) = \sup\{|\Phi_m(h)| : h \in C_b(X, E), ||h|| \le u\} \le \varphi_{|m|}(u).$$

On the other hand, in view of [Kh, Theorem 2.1] we have

$$\varphi_{|m|}(u) = \int_X u \, \mathrm{d}|m| = \sup \left\{ |\Phi_m(g)| : g \in C_b(X) \otimes E, \quad \|g\| \le u \right\},$$

so
$$\varphi_{|m|}(u) \leq \varphi_{\Phi_m}(u)$$
. Thus $\varphi_{|m|}(u) = \varphi_{\Phi_m}(u)$ for all $u \in C_b(X)$.

Lemma 3.5. Assume that $m_1, m_2 \in M_z(X, E')$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$; resp. z = t). Then the following statements are equivalent:

- (i) $|m_1| \le |m_2|$, i.e., $|m_1|(B) \le |m_2|(B)$ for every $B \in B(X)$;
- (ii) $\varphi_{|m_1|}(u) \leq \varphi_{|m_2|}(u)$ for every $u \in C_b(X)^+$;
- (iii) $|\Phi_{m_1}|(f) \leq |\Phi_{m_2}|(f)$ for every $f \in C_b(X, E)$.

PROOF: (i) \iff (ii) It easily follows from Theorem 3.1.

 $(ii) \Longrightarrow (iii)$ In view of Lemma 3.4 we get

$$|\Phi_{m_1}|(f) = \varphi_{\Phi_{m_1}}(||f||) = \varphi_{|m_1|}(||f||)$$

$$\leq \varphi_{|m_2|}(||f||) = \varphi_{\Phi_{m_2}}(||f||) = |\Phi_{m_2}|(f).$$

(iii) \Longrightarrow (ii) By Lemma 3.3 for $u \in C_b(X)^+$ and $e_0 \in S_E$ we have

$$\varphi_{|m_1|}(u) = \varphi_{\Phi_{m_1}}(u) = |\Phi_{m_1}|(u \otimes e_0)$$

$$\leq |\Phi_{m_2}|(u \otimes e_0) = \varphi_{\Phi_{m_2}}(u) = \varphi_{|m_2|}(u).$$

Lemma 3.6. Assume that $H \subset M_z(X, E')$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$; resp. z = t), and let $\Phi_H = \{\Phi_m : m \in H\}$. Then $\operatorname{conv}(S(\Phi_H)) = \Phi_{\operatorname{conv}(S(H))}$.

PROOF: Assume that $\Phi \in \text{conv}(S(\Phi_H))$. Then $\Phi = \sum_{i=1}^n \alpha_i \Phi_{m_i} = \Phi_{\sum_{i=1}^n \alpha_i m_i}$, where $m_i \in M_z(X, E')$ and $\alpha_i \geq 0$ for i = 1, 2, ..., n with $\sum_{i=1}^n \alpha_i = 1$, and $|\Phi_{m_i}| \leq |\Phi_{m_i'}|$ for some $m_i' \in H$ and i = 1, 2, ..., n. In view of Lemma 3.5 $|m_i| \leq |m_i'|$, i.e., $m_i \in S(H)$ for i = 1, 2, ..., n and $\sum_{i=1}^n \alpha_i m_i \in \text{conv}(S(H))$. This means that $\Phi \in \Phi_{\text{conv}(S(H))}$.

Assume that $\Phi \in \Phi_{\operatorname{conv}(S(H))}$. Then $\Phi = \Phi_{\sum_{i=1}^n \alpha_i m_i} = \sum_{i=1}^n \alpha_i \Phi_{m_i}$, where $m_i \in M_z(X, E')$ and $\alpha_i \geq 0$ for $i = 1, 2, \dots, n$ with $\sum_{i=1}^n \alpha_i = 1$, and $|m_i| \leq |m_i'|$ for some $m_i' \in H$ and $i = 1, 2, \dots, n$. By Lemma 3.5 $|\Phi_{m_i}| \leq |\Phi_{m_i'}|$ for $i = 1, 2, \dots, n$, so $\Phi \in \operatorname{conv}(S(\Phi_H))$.

Corollary 3.7. Assume that $m_0 \in M_z(X, E')$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$; resp. z = t) and let $e \in S_E$. Then for every $u \in C_b(X)^+$ we have:

$$\int_X u \, \mathrm{d} |m_0| = \sup \Big\{ \Big| \int_X u \, \mathrm{d} m_e \Big| : m \in M_z(X, E'), \ |m| \le |m_0| \Big\}.$$

PROOF: Let $m_0 \in M_z(X, E')$ and $e \in S_E$. Assume that $\Phi \in C_b(X, E)'$ and $|\Phi| \le |\Phi_{m_0}|$. Since $\Phi_{m_0} \in C_b(X, E)'_{\beta_z}$ (see Theorem 3.3), by making use of Theorem 2.4 we get $\Phi \in C_b(X, E)'_{\beta_z}$. Hence in view of Theorem 3.3 and Lemma 3.5 we see that $\Phi = \Phi_m$ for some $m \in M_z(X, E')$ with $|m| \le |m_0|$.

Moreover, it is easy to observe that for every $m \in M(X, E')$ and $u \in C_b(X)$ we have:

$$\int_{Y} (u \otimes e) \, \mathrm{d}m = \int_{Y} u \, \mathrm{d}m_{e}.$$

Thus in view of Lemma 3.4, Lemma 2.2 and Lemma 3.5 we get:

$$\int_{X} u \, d|m_{0}| = \varphi_{\Phi_{m_{0}}}(u) = |\Phi_{m_{0}}|(u \otimes e)$$

$$= \sup \{ |\Phi(u \otimes e)| : \Phi \in C_{b}(X, E)', |\Phi| \leq |\Phi_{m_{0}}| \}$$

$$= \sup \{ |\Phi_{m}(u \otimes e)| : m \in M_{z}(X, E'), |m| \leq |m_{0}| \}$$

$$= \sup \{ |\int_{X} (u \otimes e) \, dm | : m \in M_{z}(X, E'), |m| \leq |m_{0}| \}$$

$$= \sup \{ |\int_{X} u \, dm_{e}| : m \in M_{z}(X, E'), |m| \leq |m_{0}| \}.$$

П

To state our main result we recall some definitions (see [Wh, Definition 11.13, Definition 11.23, Theorem 10.3]).

A subset A of $M_{\sigma}(X)$ (resp. $M_{\tau}(X)$) is said to be uniformly σ -additive (resp. uniformly τ -additive) if whenever $u_n(x) \downarrow 0$ for every $x \in X$, $u_n \in C_b(X)^+$ (resp. $u_{\alpha} \downarrow 0$ for every $x \in X$, $u_{\alpha} \in C_b(X)^+$), then $\sup\{|\int_X u_n \, \mathrm{d}\mu| : \mu \in A\} \xrightarrow{n} 0$ (resp. $\sup\{|\int_X u_{\alpha} \, \mathrm{d}\mu| : \mu \in A\} \xrightarrow{n} 0$).

A subset A of $M_t(X)$ is said to be uniformly tight if given $\varepsilon > 0$ there exists a compact subset K of X such that $\sup\{|\mu|(X \setminus K) : \mu \in A\} \le \varepsilon$.

Now we are in position to prove our desired result.

Theorem 3.8. For a subset H of $M_z(X, E')$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$ and X is paracompact; resp. z = t and X is a P-space) the following statements are equivalent.

- (i) H is relatively $\sigma(M_z(X, E'), C_b(X, E))$ -compact.
- (ii) conv (S(H)) is relatively $\sigma(M_z(X, E'), C_b(X, E))$ -compact.
- (iii) The set $\{|m|: m \in H\}$ in $M_z(X)^+$ is uniformly σ -additive for $z = \sigma$, (resp. uniformly τ -additive for $z = \tau$; resp. uniformly tight for z = t).

PROOF: (i) \Longrightarrow (ii) It is seen that H is relatively $\sigma(M_z(X,E'),C_b(X,E))$ -compact if and only if Φ_H is relatively $\sigma(C_b(X,E)'_{\beta_z},C_b(X,E))$ -compact. Hence by Theorem 2.12 and Lemma 3.6 the set $\Phi_{\operatorname{conv}(S(H))}$ is still relatively $\sigma(C_b(X,E)'_{\beta_z},C_b(X,E))$ -compact. This means that $\operatorname{conv}(S(H))$ is relatively $\sigma(M_z(X,E'),C_b(X,E))$ -compact.

- $(ii) \Longrightarrow (i)$ It is obvious.
- (i) \iff (iii) In view of Theorem 2.12 H is relatively $\sigma(M_z(X, E'), C_b(X, E))$ -compact if and only if Φ_H is $\beta_z(X, E)$ -equicontinuous; hence in view of Theorem 2.7 and Lemma 3.4 the subset $\{\varphi_{|m|} : m \in H\}$ of $(C_b(X), \beta_z(X))'$ is $\beta_z(X)$ -equicontinuous. It is known that the subset $\{\varphi_{|m|} : m \in H\}$ of $(C_b(X), \beta_z(X))'$ is $\beta_z(X)$ -equicontinuous if and only if the set $\{|m| : m \in H\}$ in $M_z(X)^+$ is uniformly σ -additive for $z = \sigma$ (see [Wh, Theorem 11.14]) (resp. uniformly τ -additive for $z = \tau$ (see [Wh, Theorem 11.24]); resp. uniformly tight for z = t (see [Wh, Theorem 10.7])).

4. A Mackey-Arens type theorem for locally convex-solid topologies on $\mathcal{C}_b(X,E)$

Let I be an ideal of $C_b(X, E)'$ separating points of $C_b(X, E)$. For each $\Phi \in I$ let us put

$$\rho_{\Phi}(f) = |\Phi|(f) \text{ for } f \in C_b(X, E).$$

One can show that ρ_{Φ} is a solid seminorm on $C_b(X, E)$ (see the proof of Lemma 2.2). We define the absolute weak topology $|\sigma|(C_b(X, E), I)$ on $C_b(X, E)$ as

the locally convex-solid topology generated by the family $\{\rho_{\Phi} : \Phi \in I\}$. In view of Lemma 2.2 we have

$$\rho_{\Phi}(f) = |\Phi|(f) = \sup\{|\Psi(f)| : \Psi \in I, \quad |\Psi| \le |\Phi|\}.$$

This means that $|\sigma|(C_b(X, E), I)$ is the topology of uniform convergence on sets of the form $\{\Psi \in I : |\Psi| \le |\Phi|\} = S(\{\Phi\})$, where $\Phi \in I$.

Assume that L is an ideal of $C_b(X)'$ separating the points of $C_b(X)$. For each $\varphi \in L$ the function $p_{\varphi}(u) = |\varphi|(|u|)$ for $u \in C_b(X)$ defines a Riesz seminorm on $C_b(X)$. The family $\{p_{\varphi} : \varphi \in I\}$ defines a locally convex-solid topology $|\sigma|(C_b(X), L)$ on $C_b(X)$, called the absolute weak topology generated by L (see [AB]).

Recall that $|\sigma|(C_b(X), L)^{\vee}$ is the locally convex-solid topology on $C_b(X, E)$ generated by the family $\{p_{\varphi}^{\vee} : \varphi \in L\}$, where $p_{\varphi}^{\vee}(f) = p_{\varphi}(||f||)$ for $f \in C_b(X, E)$.

We shall need the following result.

Lemma 4.1. Let I be an ideal of $C_b(X, E)'$ separating the points of $C_b(X, E)$. Then

$$|\sigma|(C_b(X,E),I) = |\sigma|(C_b(X),C_b(X)_I)^{\vee}$$

where $C_b(X)_I' = \{ \varphi \in C_b(X)' : |\varphi| \le \varphi_{\Phi} \text{ for some } \Phi \in I \}.$

PROOF: Let $\varphi \in C_b(X)'$, i.e., $|\varphi| \leq \varphi_{\Phi}$ for some $\Phi \in I$. Then for $f \in C_b(X, E)$ we have

$$p_{\varphi}^{\vee}(f) = p_{\varphi}(\|f\|) = |\varphi|(\|f\|) \le \varphi_{\Phi}(\|f\|) = |\Phi|(f) = \rho_{\Phi}(f).$$

This means that $|\sigma|(C_b(X), C_b(X)'_I)^{\vee} \subset |\sigma|(C_b(X, E), I)$. Next, let $\Phi \in I$. Then for $f \in C_b(X, E)$ we have

$$\rho_{\Phi}(f) = |\Phi|(f) = \varphi_{\Phi}(||f||) = p_{\varphi_{\Phi}}(||f||) = p_{\varphi_{\Phi}}^{\vee}(f).$$

This shows that $|\sigma|(C_b(X, E), I) \subset |\sigma|(C_b(X), C_b(X)_I)^{\vee}$, and the proof is complete.

Now we are ready to state the main result of this section.

Theorem 4.2. Let I be an ideal of $C_b(X, E)'$ separating the points of $C_b(X, E)$. Then

$$(C_b(X, E), |\sigma|(C_b(X, E), I))' = I.$$

PROOF: To see that $(C_b(X,E),|\sigma|(C_b(X,E),I))'\subset I$ assume that $\Phi\in (C_b(X,E),|\sigma|(C_b(X,E),I))'$. In view of Lemma 2.6 we have to show that $\Phi\in C_b(X,E)'_{C_b(X)'_I}$, that is $\Phi\in C_b(X,E)'$ and $\varphi_\Phi\in C_b(X)'_I$. In fact, we know

that $(C_b(X), |\sigma|(C_b(X), C_b(X)_I'))' = C_b(X)_I'$ (see [AB₁, Theorem 6.6]). Assume that $u_{\alpha} \to 0$ for $|\sigma|(C_b(X), C_b(X)_I')$. It is enough to show that $\varphi_{\Phi}(u_{\alpha}) \to 0$. Indeed, $u_{\alpha} \otimes e_0 \to 0$ for $|\sigma|(C_b(X), C_b(X)_I')^{\vee}$, because for each $\varphi \in C_b(X)_I'$, $p_{\varphi}^{\vee}(u_{\alpha} \otimes e_0) = p_{\varphi}(u_{\alpha})$. Hence by Theorem 4.1 $u_{\alpha} \otimes e_0 \to 0$ for $|\sigma|(C_b(X, E), I)$. Since $|\varphi_{\Phi}(u_{\alpha})| \leq |\varphi_{\Phi}(u_{\alpha})| = |\Phi|(u_{\alpha} \otimes e_0) = |\varphi_{\Phi}(u_{\alpha} \otimes e_0)|$, we obtain that $\varphi_{\Phi}(u_{\alpha}) \to 0$.

Now let $\Phi \in I$. Then for $f \in C_b(X, E)$, $|\Phi(f)| \leq |\Phi|(f) = \rho_{\Phi}(f)$, so Φ is $|\sigma|(C_b(X, E), I)$ -continuous, i.e., $\Phi \in (C_b(X, E), |\sigma|(C_b(X, E), I))'$, as desired.

As an application of Theorem 4.2 we have:

Corollary 4.3. Let I be an ideal of $C_b(X, E)'$ separating the points of $C_b(X, E)$. Then for a subset H of $C_b(X, E)$ the following statements are equivalent:

- (i) H is bounded for $\sigma(C_b(X, E), I)$;
- (ii) S(H) is bounded for $\sigma(C_b(X, E), I)$.

PROOF: (i) \Longrightarrow (ii) By Theorem 4.2 and the Mackey theorem (see [Wi, Theorem 8.4.1]) H is bounded for $|\sigma|(C_b(X,E),I)$. Since the topology $|\sigma|(C_b(X,E),I)$ is locally solid, S(H) is bounded for $|\sigma|(C_b(X,E),I)$. Hence S(H) is bounded for $\sigma(C_b(X,E),I)$.

$$(ii) \Longrightarrow (i)$$
 It is obvious.

Lemma 4.4. Let $I_z = \{\Phi_m : m \in M_z(X, E')\}$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$; resp. z = t). Then

$$C_b(X)'_{I_z} = \{ \varphi_\mu : \mu \in M_z(X) \}.$$

PROOF: Assume that $\varphi \in C_b(X)'_I$, i.e., $\varphi \in C_b(X)'$ and $|\varphi| \leq \varphi_{\Phi_m}$ for some $m \in M_z(X, E')$. Then $\varphi = \varphi_{\mu}$ for some $\mu \in M(X)$, and $|\varphi_{\mu}| = \varphi_{|\mu|} \leq \varphi_{\Phi_m} = \varphi_{|m|}$ (see Lemma 3.4). It follows that $|\mu| \leq |m|$, where $|m| \in M_{\sigma}(X)^+$. Since $M_z(X)$ is an ideal of M(X), we get $\mu \in M_z(X)$.

Conversely, assume that $\mu \in M_z(X)$ and $e_0 \in S_E$ and let $e^* \in E'$ be such that $e^*(e_0) = 1$ and $\|e^*\|_{E'} = 1$. Let us set $m(B) = \mu(B)e^*$ for all $B \in B(X)$. Then $m: B(X) \to E'$ is finitely additive, and for each $e \in E$ we have $m_e(B) = m(B)(e) = (e^*(e)\mu)(B)$ for all $B \in B(X)$. Hence $m_e \in M_z(X)$ for each $e \in E$. It is easy to show that $|m|(B) = |\mu|(B)$ for all $B \in B(X)$, so $|m| \in M_z(X)$. Hence $m \in M_z(X, E')$, and $|\varphi_{\mu}| = |\varphi_{\mu}| = |\varphi_{\mu}| = |\varphi_{\Phi}|$, so $|\varphi_{\mu}| \in C_b(X)'_{I_z}$, as desired.

As an application of Lemma 4.1 and Lemma 4.4 we get:

Corollary 4.5. For $z = \sigma$ and $C_b(X) \otimes E$ dense in $(C_b(E), \beta_{\sigma}(X, E))$ (resp. $z = \tau$; resp. z = t) we have:

$$|\sigma|(C_b(X, E), M_z(X, E')) = |\sigma|(C_b(X), M_z(X))^{\vee}$$

and

$$|\sigma|(C_b(X,E),M_z(X,E'))^{\wedge} = |\sigma|(C_b(X),M_z(X)).$$

We now define the absolute Mackey topology $|\tau|(C_b(X, E), I)$ on $C_b(X, E)$ as the topology on uniform convergence on the family of all solid absolutely convex $\sigma(I, C_b(X, E))$ -compact subsets of I. In view of Theorem 2.3 $|\tau|(C_b(X, E), I)$ is a locally convex-solid topology.

The following theorem strengthens the classical Mackey-Arens theorem for the class of locally convex-solid topologies on $C_b(X, E)$.

Theorem 4.6. Let τ be a locally convex-solid topology on $C_b(X, E)$ and let $(C_b(X, E), \tau)' = I_{\tau}$. Then

$$|\sigma|(C_b(X,E),I_\tau) \subset \tau \subset |\tau|(C_b(X,E),I_\tau).$$

PROOF: To show that $|\sigma|(C_b(X, E), I_\tau) \subset \tau$, assume that (f_α) is a sequence in $C_b(X, E)$ and $f_\alpha \xrightarrow{\tau} 0$. Let $\Phi \in I_\tau$ and $\varepsilon > 0$ be given. Then there exists a net (h_α) in $C_b(X, E)$ such that $||h_\alpha|| \le ||f_\alpha||$ and $\rho_\Phi(f_\alpha) = |\Phi|(f_\alpha) \le |\Phi(h_\alpha)| + \varepsilon$. Since τ is locally solid, $h_\alpha \xrightarrow{\tau} 0$. Hence $h_\alpha \to 0$ for $\sigma(C_b(X, E), I_\tau)$, so $\Phi(h_\alpha) \to 0$, because $\sigma(C_b(X, E), I_\tau) \subset \tau$. Thus $\rho_\Phi(f_\alpha) \to 0$, and this means that $f_\alpha \to 0$ for $|\sigma|(C_b(X, E), I_\tau)$.

Now we show that $\tau \subset |\tau|(C_b(X, E), I_\tau)$. Indeed, let \mathcal{B}_τ be a local base at zero for τ consisting of solid absolutely convex and τ -closed sets and let $V \in \mathcal{B}_\tau$. Then by Theorem 2.3 and the Banach-Alaoglu's theorem, V^0 is a solid absolutely convex and $\sigma(I_\tau, C_b(X, E))$ -compact subset of I_τ . Hence

$${}^{0}(V^{0}) = \overline{\operatorname{abs \, conv} \, V}^{\sigma} = \overline{\operatorname{abs \, conv} \, V}^{\tau} = V,$$

so τ is the topology of uniform convergence on the family $\{V^0 : V \in \mathcal{B}_{\tau}\}$. It follows that $\tau \subset |\tau|(C_b(X, E), I_{\tau})$.

Corollary 4.7. Let $I_z = \{\Phi_m : m \in M_z(X, E')\}$, where $z = \sigma$ and $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_z(X, E))$ (resp. $z = \tau$ and X is paracompact; resp. z = t and X is a P-space). Then

$$\beta_z(X, E) = |\tau| (C_b(X, E), M_z(X, E')) = \tau (C_b(X, E), M_z(X, E')),$$

and for a locally convex-solid topology τ on $C_b(X, E)$ with $C_b(X, E)'_{\tau} = I_z$ we have:

$$|\sigma|(C_b(X, E), M_z(X, E')) \subset \tau \subset \beta_z(X, E).$$

PROOF: It is known that under our assumptions $\beta_z(X, E)$ is a Mackey topology (see [KhO₁, Corollary 6] for $z = \sigma$, [Kh, Theorem 6.2] for $z = \tau$ and [Kh, Theorem 5] for z = t). Hence $\tau(C_b(X, E), M_z(X, E')) = \beta_z(X, E)$. On the other hand, since $\beta_z(X, E)$ is a locally convex-solid topology and $(C_b(X, E), \beta_z(X, E))' = I_z$, by Corollary 4.6 we get $\beta_z(X, E) \subset |\tau|(C_b(X, E), M_z(X, E'))$.

References

- [AB1] Aliprantis C.D., Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York, San Francisco, London, 1978.
- [AB₂] Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985.
- [F₁] Fontenot R.A., Strict topologies for vector-valued functions, Canad. J. Math. 26 (1974), 841–853.
- [F₂] Fontenot R.A., Strict topologies for vector-valued functions, Corrigendum, Canad. J. Math. 27 (1975), no. 5, 1183–1184.
- [GJ] Gillman L., Jerison M., Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
- [Kh] Khurana S.S., Topologies on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 241 (1978), 195–211.
- [KhC] Khurana S.S., Chao S.A., Strict topologies and P-spaces, Proc. Amer. Math. Soc. 61 (1976), 280–284.
- [KhO₁] Khurana S.S., Othman S.I., Convex compactness property in certain spaces of measures, Math. Ann. 279 (1987), 345–348.
- [KhO₂] Khurana S.S., Othman S.I., Grothendieck measures, J. London Math. Soc. (2) 39 (1989), 481–486.
- [KhO₃] Khurana S.S., Othman S.I., Completeness and sequential completeness in certain spaces of measures, Math. Slovaca 45 (1995), no. 2, 163–170.
- [KhV₁] Khurana S.S., Vielma J., Strict topologies and perfect measures, Czechoslovak Math. J. 40 (1990), no. 1, 1–7.
- [KhV2] Khurana S.S., Vielma J., Weak sequential convergence and weak compactness in spaces of vector-valued continuous functions, J. Math. Anal. Appl. 195 (1995), 251–260.
- [NR] Nowak M., Rzepka A., Locally solid topologies on spaces of vector-valued continuous functions, Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473–483.
- [S] Sentilles F.D., Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311–336.
- [V] Varadarajan V.S., Measures on topological spaces, Amer. Math. Soc. Translations (2) 48 (1965), 161–220.
- [Wh] Wheeler R.F., Survey of Baire measures and strict topologies, Exposition Math. 2 (1983), 97–190.
- [Wi] Wilansky A., Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978.

Faculty of Mathematics, Informatics and Econometrics, University of Zielona Góra, ul. Szafrana 4a, 65–516 Zielona Góra, Poland

E-mail: M.Nowak@wmie.uz.zgora.pl

(Received October 14, 2003, revised September 27, 2004)