On subsets of Alexandroff duplicates

Такемі Мізокамі

Abstract. We characterize the subsets of the Alexandroff duplicate which have a G_{δ} -diagonal and the subsets which are M-spaces in the sense of Morita.

Keywords: Alexandroff duplicate, resolution

Classification: 54B99, 54E18

1. Introduction

All spaces are assumed to be regular T_1 , and all mappings to be continuous. We denote all positive integers, real numbers by \mathbb{N} , \mathbb{R} , respectively.

As it is well known, the Alexandroff duplicate of \mathbb{R} does not have a G_{δ} -diagonal and the famous Michael line is not an M-space in the sense of Morita, although it is a subspace of the Alexandroff duplicate of \mathbb{R} . So, in this paper, we characterize the subspaces of the Alexandroff duplicate $X \times_{ad} (2)$ which have a G_{δ} -diagonal, where X has a G_{δ} -diagonal, and also characterize the subspaces of $Y \times_{ad} (2)$ which are M-spaces, where X is a metrizable space. The former gives an answer to the problem posed by S. Watson, [3, Problem 3.1.29], where he asks how to characterize the subsets of $[0,1] \times_{ad} (2)$ which have a G_{δ} -diagonal.

As for the properties of G_{δ} -diagonals and M-spaces used here, we refer to Gruenhage [1]. We recall the definition of the Alexandroff duplicate $X \times_{ad}(2)$ of a space X, stated in [3, Definition 3.1.1]. Let (X,τ) be a space. Define the topology on $Z = X \times 2$ by declaring that each (x,1) is open and that for each open $U \in \tau$, $U \times 2 \setminus \{(x,1)\}$ is open. The space Z so defined is denoted by $X \times_{ad}(2)$, where $_{ad}$ stands for Alexandroff duplicate. In the sequel, we write a subspace of $X \times_{ad}(2)$ in the following form:

$$T(A,B) = A \times \{1\} \cup B \times \{0\},\$$

where $A, B \subset X$.

2. On subspaces of Alexandroff duplicates

For a subset A of a space X, we denote by A^d the set of all accumulation points of A in X.

126 T. Mizokami

Theorem 2.1. Assume that a space X has a G_{δ} -diagonal and $T(A, B) \subset X \times_{ad}$ (2). Then T(A, B) has a G_{δ} -diagonal if and only if $A \cap B = \bigcup \{C_i : i \in \mathbb{N}\}$ with $(C_i)^d \cap B = \emptyset$ for each i.

PROOF: Only if part: Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a G_{δ} -diagonal sequence for T(A,B). For each $x\in A\cap B$, there exists $n(x)\in\mathbb{N}$ such that

$$(x,0) \notin S((x,1),\mathcal{U}_{n(x)}).$$

Let

$$C_n = \{x \in A \cap B : n(x) = n\}, \quad n \in \mathbb{N}.$$

Then $A \cap B = \bigcup_n C_n$. Assume that $(C_n)^d \cap B \neq \emptyset$ for some n. For a point $x \in (C_n)^d \cap B$, there exists $U \in \mathcal{U}_n$ such that $(x,0) \in U$. Since x is an accumulation point of C_n , there exists $x' \in C_n$ such that $(x',0), (x',1) \in U$, but this is impossible.

If part: Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be a G_δ -diagonal sequence for $A\cup B$. By the assumption, $A\cap B=\bigcup\{C_n:n\in\mathbb{N}\}$, where $(C_n)^d\cap B=\emptyset$ for each n. Since C_n is discrete in B, there exists a family $\{V(x):x\in C_n\}$ of open subsets of $A\cup B$ such that for each $x\in C_n, V(x)\cap B=\{x\}$ and $x\in V(x)\subset U$ for some $U\in\mathcal{U}_n$. For each $U\in\mathcal{U}_n, n\in\mathbb{N}$, let

$$\widehat{U} = (U \setminus \overline{C_n}) \times \{0,1\} \cap T(A,B).$$

For each $x \in C_n$, $n \in \mathbb{N}$, let

$$\hat{V}(x) = (V(x) \times \{0, 1\} \setminus \{(x, 1)\}) \cap T(A, B).$$

For each $n \in \mathbb{N}$, define an open cover

$$W(n) = \{ \widehat{U} : U \in \mathcal{U}_n \} \cup \{ \widehat{V}(x) : x \in C_n \} \cup \{ \{ (x, 1) \} : x \in A \}.$$

We show that $(W(n))_{n\in\mathbb{N}}$ is a G_{δ} -diagonal sequence for T(A,B). To this end, let

$$p=(x,s), \quad q=(y,t)$$

be different points of T(A, B). If $x \neq y$, then there exists $n \in \mathbb{N}$ such that $x \notin S(y, \mathcal{U}_n)$. Then it is easily seen that $p \notin S(q, \mathcal{W}(n))$. If x = y, s = 0, t = 1, then we have $x \in A \cap B$ and $x \in C_n$ for some $n \in \mathbb{N}$. In this case, we easily have

$$p \notin S(q, \mathcal{W}(n)) = \widehat{V}(x).$$

Hence T(A, B) has a G_{δ} -diagonal.

We give a remark to some special cases of X:

Remark 2.1. (1) If $X = \mathbb{R}$, T(A, B) has a G_{δ} -diagonal if and only if $A \cap B$ is countable. It is because any uncountable subset of \mathbb{R} has an accumulation point in \mathbb{R} .

(2) If X is metrizable, the above condition for T(A, B) to have a G_{δ} -diagonal is that for T(A, B) to be submetrizable. This follows from the fact that T(A, B) is paracompact.

Next, we characterize T(A,B) which is an M-space in the sense of Morita. A space X is called an M-space if there exists a sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ of open covers of X such that for each n, \mathcal{U}_{n+1} star-refines \mathcal{U}_n and if $x_n \in S(x,\mathcal{U}_n)$, then $\{x_n : n \in \mathbb{N}\}$ clusters in X. Such a sequence $(\mathcal{U}_n)_{n\in\mathbb{N}}$ is called an M-sequence for X. On the other hand, in 1963 Arhangel'skiĭ gave the concept of p-spaces. As it is well known, M-spaces and p-spaces are equivalent in the presence of paracompactness [1, Corollary 3.20], and paracompact p-spaces coincide with pre-images of a metric space under a perfect mapping [1, Corollary 3.7].

Let (X, d) be a metric space. We denote an open ball with center x and radius r by B(x, r). We note that the projection $\pi: T(A, B) \longrightarrow A \cup B$ is continuous.

In connection with the next theorem, the referee informed us about the interesting fact that E.G. Pytkeev wrote a paper in which he proved that if a space X is a Tychonoff space such that each subspace of X is a paracompact p-space, then the structure of X is very similar to that of the Alexandroff duplicate of a metric space; indeed, then the subspace of all non-isolated points is metrizable.

Theorem 2.2. Let $T(A,B) \subset X \times_{ad} (2)$, where X is a metric space. Then T(A,B) is an M-space if and only if B is a G_{δ} -set in $A \cup B$.

PROOF: Only if part: Assume that B were not a G_{δ} -set. Let $(\mathcal{U}_n)_{n\in\mathbb{N}}$ be an M-space for T(A,B). Since X is a metric space, without loss of generality we can assume that if $(x_n,s_n)\in S((x,s),\mathcal{U}_n),\ n\in\mathbb{N}$, then $x_n\longrightarrow x$ as $n\longrightarrow \infty$. Let $n\in\mathbb{N}$ be fixed. For each $x\in B$, there exists $U\in\mathcal{U}_n$ such that $(x,0)\in U$. There exists a basic open neighborhood N(x,r(x)) of (x,0) in $X\times_{ad}(2)$ such that

$$N(x, r(x)) = B(x, r(x)) \times \{0, 1\} \setminus \{(x, 1)\},\$$

 $N(x, r(x)) \cap T(A, B) \subset U.$

Let

$$G_n = \left(\bigcup \{B(x, r(x)) : x \in B\}\right) \cap (A \cup B),$$

which is open in $A \cup B$. By the assumption, there exists $a \in \bigcap_n G_n \setminus B$. Then for each $n \in \mathbb{N}$, there exists a point

$$(x_n,0) \in B \times \{0\} \cap S((a,1),\mathcal{U}_n).$$

Since (\mathcal{U}_n) is an M-sequence and $x_n \longrightarrow a$ as $n \longrightarrow \infty$, $\{(x_n, 0) : n \in \mathbb{N}\}$ clusters at (a, 1), but this is a contradiction because $\{(a, 1)\}$ is open.

128 T. Mizokami

If part: Let $B = \bigcap_n G_n$, $G_{n+1} \subset G_n$, $n \in \mathbb{N}$, where each G_n is open in $A \cup B$. Since $A \cup B$ is a metric space, there exists a development $(\mathcal{U}_n)_{n \in \mathbb{N}}$ for $A \cup B$ such that $\mathcal{U}_{n+1}^* < \mathcal{U}_n$, $n \in \mathbb{N}$. We construct a sequence $(\mathcal{V}_n)_{n \in \mathbb{N}}$ of open covers of T(A, B) as follows:

$$\mathcal{V}_n = \pi^{-1}(\mathcal{U}_n \mid G_n) \cup \{\{(x,1)\} \mid x \in A \setminus G_n\}, \quad n \in \mathbb{N}.$$

Then it is easily checked that each \mathcal{V}_{n+1} star-refines \mathcal{V}_n . We show that $(\mathcal{V}_n)_{n\in\mathbb{N}}$ is an M-sequence for T(A,B). Let

$$(x_n, r_n) \in S((x, r), \mathcal{V}_n), n \in \mathbb{N}.$$

If $x \in B$, then (x,0) is a cluster point of $\{(x_n,r_n) \mid n \in \mathbb{N}\}$. If $x \in A \setminus B$, then there exists $k \in \mathbb{N}$ such that $x \notin G_k$. From the construction of (\mathcal{V}_n) , it follows that $(x_n,r_n)=(x,0)$ for $n \geq k$, which means that $(x_n,r_n) \longrightarrow (x,0)$ as $n \longrightarrow \infty$.

Corollary 2.1. Let $T(A, B) \subset X \times_{ad} (2)$, where X is a metric space. Then T(A, B) is metrizable if and only if B is a G_{δ} -set in $A \cup B$ and $A \cap B = \bigcup_{i \in \mathbb{N}} C_i$, where for each i, $(C_i)^d \cap B = \emptyset$.

Here, we recall the definition of resolutions of spaces. Let X be a space and for each $x \in X$, let $f_x : X \setminus \{x\} \longrightarrow Y_x$ be a mapping. We topologize

$$Z = \bigcup \{ \{x\} \times Y_x : x \in X \}$$

by defining an open set $U \otimes V$ for each $x \in X$ and each open subset U of X with $x \in U$ and open subset V of Y_x as

$$U \otimes V = (\{x\} \times V) \cup \bigcup \{\{p\} \times Y_p : p \in U \cap f_x^{-1}(V)\}.$$

We call Z thus defined the resolution of X at each point $x \in X$ into Y_x by f_x [3, Definition 3.1.32], and we denote it by $Z = R(X, f_x, Y_x)$. We note that the projection $\pi: Z \longrightarrow X$ defined by $\pi((x,y)) = x$ for each $(x,y) \in Z$ is continuous.

Example 2.1. There exists a resolution $Z = R(X, f_x, Y_x)$ of a compact space X into paracompact M-spaces Y_x , $x \in X$, such that Z is not an M-space.

PROOF: Let $X = \omega_1 + 1$ with the order topology. For each $\alpha < \omega_1$, let Y_{α} be the copy of \mathbb{R} with the usual topology. Let $f_{\alpha}: X \setminus \{\alpha\} \longrightarrow Y_{\alpha}$ be a constant mapping such that $f_{\alpha}(X \setminus \{\alpha\}) = y_{\alpha} \in Y_{\alpha}$. For $\alpha = \omega_1, Y_{\omega_1} = \{\omega_1\}$ and let $f_{\omega_1}: X \setminus \{\omega_1\} \longrightarrow Y_{\omega_1}$ be a natural mapping. Let $Z = R(X, f_x, Y_x)$. Assume that there exists an M-sequence $(\mathcal{U}_n)_{n \in \mathbb{N}}$ for Z. For $p = (\omega_1, \omega_1)$, there exists $\alpha \in \omega_1$ such that

$$\{\alpha\} \times Y_{\alpha} \subset \bigcap_{n \in \mathbb{N}} S((\omega_1, \omega_1), \mathcal{U}_n).$$

Since Y_{α} is not countably compact, this is impossible.

We say that a subset Λ is \mathcal{F}_{σ} -discrete in X if $\Lambda = \bigcup_{n \in \mathbb{N}} \Lambda_n$, where each Λ_n is discrete and closed in X. Richardson and Watson showed that if X and each Y_x are metrizable and

$$\Lambda = \{ x \in X : |Y_x| > 1 \}$$

is F_{σ} -discrete in X, then $R(X, f_x, Y_x)$ is metrizable [2, Proposition 9]. We recall a characterization of paracompact p-spaces: a space X is a paracompact p-space if and only if there exists a perfect mapping of X onto a metric space.

Theorem 2.3. Let X be a metric space and each Y_x , $x \in X$, a paracompact p-space. If Λ , defined above, is F_{σ} -discrete in X, then $Z = R(X, f_x, Y_x)$ is a paracompact p-space.

PROOF: By the above characterization, for each $x \in X$ there exists a perfect mapping $g_x: Y_x \longrightarrow M_x$ with M_x metric. By the condition on Λ , the resolution $Z' = R(X, g_x f_x, M_x)$ is a metric space. So, it suffices to show that the mapping $\Phi: Z \longrightarrow Z'$ defined by

$$\Phi(x,y) = (x, g_x(y)), \quad (x,y) \in Z,$$

is a perfect mapping. It is easily checked that Φ is continuous. To see that Φ is closed, let W be an open set of Z containing $\Phi^{-1}(x,y')=\{x\}\times g_x^{-1}(y')$. There exists a finite open cover $\{U_i\otimes V_i\mid i=1,\ldots,k\}$ of $\Phi^{-1}(x,y')$ in Z such that

$$\Phi^{-1}(x,y') \subset \bigcup_{i=1}^k U_i \otimes V_i \subset W,$$

where each U_i is an open neighborhood of x in X. Since $g_x: Y_x \longrightarrow M_x$ is a perfect mapping, there exists an open neighborhood O of y' in M_x such that $g_x^{-1}(O) \subset \bigcup_{i=1}^k V_i$. Then we can easily see that $(\bigcap_{i=1}^k U_i) \otimes O$ is an open neighborhood of (x, y') in Z' such that $\Phi^{-1}((\bigcap_{i=1}^k U_i) \otimes O) \subset W$. Hence Φ is a perfect mapping.

Since $\pi: R(X, f_x, Y_x) \longrightarrow X$ is a perfect mapping if each Y_x is compact [2, Lemma 6], the following is easy to see:

Theorem 2.4. Let X be an M-space and let each Y_x be compact. Then $Z = R(X, f_x, Y_x)$ is an M-space.

References

[1] Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology, North-Holland, 1984, pp. 423–501.

130 T. Mizokami

- [2] Richardson K., Watson S., Metrisable and discrete special resolutions, Topology Appl. 122 (2002), 605–615.
- [3] Watson S., The construction of topological spaces: Planks and resolutions, Recent Progress in General Topology, North-Holland, Amsterdam, 1992, pp. 637–757.

Department of Mathematics, Joetsu University of Education, Joetsu, Niigata Prefecture, 943-8512, Japan

(Received February 19, 2004, revised June 14, 2004)