On subsets of Alexandroff duplicates

Takemi Mizokami

Abstract

We characterize the subsets of the Alexandroff duplicate which have a $\mathrm{G}_{\delta^{-}}$ diagonal and the subsets which are M-spaces in the sense of Morita.

Keywords: Alexandroff duplicate, resolution
Classification: 54B99, 54E18

1. Introduction

All spaces are assumed to be regular T_{1}, and all mappings to be continuous. We denote all positive integers, real numbers by \mathbb{N}, \mathbb{R}, respectively.

As it is well known, the Alexandroff duplicate of \mathbb{R} does not have a $\mathrm{G}_{\boldsymbol{\delta}}$-diagonal and the famous Michael line is not an M-space in the sense of Morita, although it is a subspace of the Alexandroff duplicate of \mathbb{R}. So, in this paper, we characterize the subspaces of the Alexandroff duplicate $X \times_{a d}(2)$ which have a G_{δ}-diagonal, where X has a G_{δ}-diagonal, and also characterize the subspaces of $Y \times{ }_{a d}(2)$ which are M-spaces, where X is a metrizable space. The former gives an answer to the problem posed by S. Watson, [3, Problem 3.1.29], where he asks how to characterize the subsets of $[0,1] \times{ }_{a d}(2)$ which have a G_{δ}-diagonal.

As for the properties of G_{δ}-diagonals and M -spaces used here, we refer to Gruenhage [1]. We recall the definition of the Alexandroff duplicate $X \times{ }_{a d}(2)$ of a space X, stated in [3, Definition 3.1.1]. Let (X, τ) be a space. Define the topology on $Z=X \times 2$ by declaring that each $(x, 1)$ is open and that for each open $U \in \tau, U \times 2 \backslash\{(x, 1)\}$ is open. The space Z so defined is denoted by $X \times a d$ (2), where ${ }_{a d}$ stands for Alexandroff duplicate. In the sequel, we write a subspace of $X \times{ }_{a d}(2)$ in the following form:

$$
T(A, B)=A \times\{1\} \cup B \times\{0\},
$$

where $A, B \subset X$.

2. On subspaces of Alexandroff duplicates

For a subset A of a space X, we denote by A^{d} the set of all accumulation points of A in X.

Theorem 2.1. Assume that a space X has a G_{δ}-diagonal and $T(A, B) \subset X \times{ }_{a d}$ (2). Then $T(A, B)$ has a G_{δ}-diagonal if and only if $A \cap B=\bigcup\left\{C_{i}: i \in \mathbb{N}\right\}$ with $\left(C_{i}\right)^{d} \cap B=\emptyset$ for each i.
Proof: Only if part: Let $\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ be a G_{δ}-diagonal sequence for $T(A, B)$. For each $x \in A \cap B$, there exists $n(x) \in \mathbb{N}$ such that

$$
(x, 0) \notin S\left((x, 1), \mathcal{U}_{n(x)}\right)
$$

Let

$$
C_{n}=\{x \in A \cap B: n(x)=n\}, \quad n \in \mathbb{N} .
$$

Then $A \cap B=\bigcup_{n} C_{n}$. Assume that $\left(C_{n}\right)^{d} \cap B \neq \emptyset$ for some n. For a point $x \in\left(C_{n}\right)^{d} \cap B$, there exists $U \in \mathcal{U}_{n}$ such that $(x, 0) \in U$. Since x is an accumulation point of C_{n}, there exists $x^{\prime} \in C_{n}$ such that $\left(x^{\prime}, 0\right),\left(x^{\prime}, 1\right) \in U$, but this is impossible.

If part: Let $\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ be a G_{δ}-diagonal sequence for $A \cup B$. By the assumption, $A \cap B=\bigcup\left\{C_{n}: n \in \mathbb{N}\right\}$, where $\left(C_{n}\right)^{d} \cap B=\emptyset$ for each n. Since C_{n} is discrete in B, there exists a family $\left\{V(x): x \in C_{n}\right\}$ of open subsets of $A \cup B$ such that for each $x \in C_{n}, V(x) \cap B=\{x\}$ and $x \in V(x) \subset U$ for some $U \in \mathcal{U}_{n}$. For each $U \in \mathcal{U}_{n}, n \in \mathbb{N}$, let

$$
\widehat{U}=\left(U \backslash \overline{C_{n}}\right) \times\{0,1\} \cap T(A, B)
$$

For each $x \in C_{n}, n \in \mathbb{N}$, let

$$
\widehat{V}(x)=(V(x) \times\{0,1\} \backslash\{(x, 1)\}) \cap T(A, B) .
$$

For each $n \in \mathbb{N}$, define an open cover

$$
\mathcal{W}(n)=\left\{\widehat{U}: U \in \mathcal{U}_{n}\right\} \cup\left\{\widehat{V}(x): x \in C_{n}\right\} \cup\{\{(x, 1)\}: x \in A\}
$$

We show that $(\mathcal{W}(n))_{n \in \mathbb{N}}$ is a G_{δ}-diagonal sequence for $T(A, B)$. To this end, let

$$
p=(x, s), \quad q=(y, t)
$$

be different points of $T(A, B)$. If $x \neq y$, then there exists $n \in \mathbb{N}$ such that $x \notin S\left(y, \mathcal{U}_{n}\right)$. Then it is easily seen that $p \notin S(q, \mathcal{W}(n))$. If $x=y, s=0, t=1$, then we have $x \in A \cap B$ and $x \in C_{n}$ for some $n \in \mathbb{N}$. In this case, we easily have

$$
p \notin S(q, \mathcal{W}(n))=\widehat{V}(x)
$$

Hence $T(A, B)$ has a G_{δ}-diagonal.
We give a remark to some special cases of X :

Remark 2.1. (1) If $X=\mathbb{R}, T(A, B)$ has a $\mathrm{G}_{\boldsymbol{\delta}}$-diagonal if and only if $A \cap B$ is countable. It is because any uncountable subset of \mathbb{R} has an accumulation point in \mathbb{R}.
(2) If X is metrizable, the above condition for $T(A, B)$ to have a $\mathrm{G}_{\delta^{-}}$diagonal is that for $T(A, B)$ to be submetrizable. This follows from the fact that $T(A, B)$ is paracompact.

Next, we characterize $T(A, B)$ which is an M-space in the sense of Morita. A space X is called an M-space if there exists a sequence $\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ of open covers of X such that for each n, \mathcal{U}_{n+1} star-refines \mathcal{U}_{n} and if $x_{n} \in S\left(x, \mathcal{U}_{n}\right)$, then $\left\{x_{n}: n \in \mathbb{N}\right\}$ clusters in X. Such a sequence $\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ is called an M-sequence for X. On the other hand, in 1963 Arhangel'skiĭ gave the concept of p-spaces. As it is well known, M-spaces and p-spaces are equivalent in the presence of paracompactness [1, Corollary 3.20], and paracompact p-spaces coincide with preimages of a metric space under a perfect mapping [1, Corollary 3.7].

Let (X, d) be a metric space. We denote an open ball with center x and radius r by $B(x, r)$. We note that the projection $\pi: T(A, B) \longrightarrow A \cup B$ is continuous.

In connection with the next theorem, the referee informed us about the interesting fact that E.G. Pytkeev wrote a paper in which he proved that if a space X is a Tychonoff space such that each subspace of X is a paracompact p-space, then the structure of X is very similar to that of the Alexandroff duplicate of a metric space; indeed, then the subspace of all non-isolated points is metrizable.
Theorem 2.2. Let $T(A, B) \subset X \times_{a d}(2)$, where X is a metric space. Then $T(A, B)$ is an M-space if and only if B is a G_{δ}-set in $A \cup B$.
Proof: Only if part: Assume that B were not a $\mathrm{G}_{\boldsymbol{\delta}}$-set. Let $\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ be an M-space for $T(A, B)$. Since X is a metric space, without loss of generality we can assume that if $\left(x_{n}, s_{n}\right) \in S\left((x, s), \mathcal{U}_{n}\right), n \in \mathbb{N}$, then $x_{n} \longrightarrow x$ as $n \longrightarrow \infty$. Let $n \in \mathbb{N}$ be fixed. For each $x \in B$, there exists $U \in \mathcal{U}_{n}$ such that $(x, 0) \in U$. There exists a basic open neighborhood $N(x, r(x))$ of $(x, 0)$ in $X \times{ }_{a d}(2)$ such that

$$
\begin{aligned}
& N(x, r(x))=B(x, r(x)) \times\{0,1\} \backslash\{(x, 1)\}, \\
& \quad N(x, r(x)) \cap T(A, B) \subset U .
\end{aligned}
$$

Let

$$
G_{n}=(\bigcup\{B(x, r(x)): x \in B\}) \cap(A \cup B)
$$

which is open in $A \cup B$. By the assumption, there exists $a \in \bigcap_{n} G_{n} \backslash B$. Then for each $n \in \mathbb{N}$, there exists a point

$$
\left(x_{n}, 0\right) \in B \times\{0\} \cap S\left((a, 1), \mathcal{U}_{n}\right)
$$

Since $\left(\mathcal{U}_{n}\right)$ is an M-sequence and $x_{n} \longrightarrow a$ as $n \longrightarrow \infty,\left\{\left(x_{n}, 0\right): n \in \mathbb{N}\right\}$ clusters at $(a, 1)$, but this is a contradiction because $\{(a, 1)\}$ is open.

If part: Let $B=\bigcap_{n} G_{n}, G_{n+1} \subset G_{n}, n \in \mathbb{N}$, where each G_{n} is open in $A \cup B$. Since $A \cup B$ is a metric space, there exists a development $\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ for $A \cup B$ such that $\mathcal{U}_{n+1}^{*}<\mathcal{U}_{n}, n \in \mathbb{N}$. We construct a sequence $\left(\mathcal{V}_{n}\right)_{n \in \mathbb{N}}$ of open covers of $T(A, B)$ as follows:

$$
\mathcal{V}_{n}=\pi^{-1}\left(\mathcal{U}_{n} \mid G_{n}\right) \cup\left\{\{(x, 1)\} \mid x \in A \backslash G_{n}\right\}, \quad n \in \mathbb{N}
$$

Then it is easily checked that each \mathcal{V}_{n+1} star-refines \mathcal{V}_{n}. We show that $\left(\mathcal{V}_{n}\right)_{n \in \mathbb{N}}$ is an M-sequence for $T(A, B)$. Let

$$
\left(x_{n}, r_{n}\right) \in S\left((x, r), \mathcal{V}_{n}\right), \quad n \in \mathbb{N}
$$

If $x \in B$, then $(x, 0)$ is a cluster point of $\left\{\left(x_{n}, r_{n}\right) \mid n \in \mathbb{N}\right\}$. If $x \in A \backslash B$, then there exists $k \in \mathbb{N}$ such that $x \notin G_{k}$. From the construction of $\left(\mathcal{V}_{n}\right)$, it follows that $\left(x_{n}, r_{n}\right)=(x, 0)$ for $n \geq k$, which means that $\left(x_{n}, r_{n}\right) \longrightarrow(x, 0)$ as $n \longrightarrow \infty$.

Corollary 2.1. Let $T(A, B) \subset X \times_{a d}(2)$, where X is a metric space. Then $T(A, B)$ is metrizable if and only if B is a G_{δ}-set in $A \cup B$ and $A \cap B=\bigcup_{i \in \mathbb{N}} C_{i}$, where for each $i,\left(C_{i}\right)^{d} \cap B=\emptyset$.

Here, we recall the definition of resolutions of spaces. Let X be a space and for each $x \in X$, let $f_{x}: X \backslash\{x\} \longrightarrow Y_{x}$ be a mapping. We topologize

$$
Z=\bigcup\left\{\{x\} \times Y_{x}: x \in X\right\}
$$

by defining an open set $U \otimes V$ for each $x \in X$ and each open subset U of X with $x \in U$ and open subset V of Y_{x} as

$$
U \otimes V=(\{x\} \times V) \cup \bigcup\left\{\{p\} \times Y_{p}: p \in U \cap f_{x}^{-1}(V)\right\}
$$

We call Z thus defined the resolution of X at each point $x \in X$ into Y_{x} by f_{x} [3, Definition 3.1.32], and we denote it by $Z=R\left(X, f_{x}, Y_{x}\right)$. We note that the projection $\pi: Z \longrightarrow X$ defined by $\pi((x, y))=x$ for each $(x, y) \in Z$ is continuous.

Example 2.1. There exists a resolution $Z=R\left(X, f_{x}, Y_{x}\right)$ of a compact space X into paracompact M-spaces $Y_{x}, x \in X$, such that Z is not an M -space.
Proof: Let $X=\omega_{1}+1$ with the order topology. For each $\alpha<\omega_{1}$, let Y_{α} be the copy of \mathbb{R} with the usual topology. Let $f_{\alpha}: X \backslash\{\alpha\} \longrightarrow Y_{\alpha}$ be a constant mapping such that $f_{\alpha}(X \backslash\{\alpha\})=y_{\alpha} \in Y_{\alpha}$. For $\alpha=\omega_{1}, Y_{\omega_{1}}=\left\{\omega_{1}\right\}$ and let $f_{\omega_{1}}: X \backslash\left\{\omega_{1}\right\} \longrightarrow Y_{\omega_{1}}$ be a natural mapping. Let $Z=R\left(X, f_{x}, Y_{x}\right)$. Assume that there exists an M-sequence $\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ for Z. For $p=\left(\omega_{1}, \omega_{1}\right)$, there exists $\alpha \in \omega_{1}$ such that

$$
\{\alpha\} \times Y_{\alpha} \subset \bigcap_{n \in \mathbb{N}} S\left(\left(\omega_{1}, \omega_{1}\right), \mathcal{U}_{n}\right)
$$

Since Y_{α} is not countably compact, this is impossible.
We say that a subset Λ is $\mathrm{F}_{\sigma^{-}}$discrete in X if $\Lambda=\bigcup_{n \in \mathbb{N}} \Lambda_{n}$, where each Λ_{n} is discrete and closed in X. Richardson and Watson showed that if X and each Y_{x} are metrizable and

$$
\Lambda=\left\{x \in X:\left|Y_{x}\right|>1\right\}
$$

is F_{σ}-discrete in X, then $R\left(X, f_{x}, Y_{x}\right)$ is metrizable [2, Proposition 9]. We recall a characterization of paracompact p-spaces: a space X is a paracompact p-space if and only if there exists a perfect mapping of X onto a metric space.

Theorem 2.3. Let X be a metric space and each $Y_{x}, x \in X$, a paracompact p-space. If Λ, defined above, is F_{σ}-discrete in X, then $Z=R\left(X, f_{x}, Y_{x}\right)$ is a paracompact p-space.

Proof: By the above characterization, for each $x \in X$ there exists a perfect mapping $g_{x}: Y_{x} \longrightarrow M_{x}$ with M_{x} metric. By the condition on Λ, the resolution $Z^{\prime}=R\left(X, g_{x} f_{x}, M_{x}\right)$ is a metric space. So, it suffices to show that the mapping $\Phi: Z \longrightarrow Z^{\prime}$ defined by

$$
\Phi(x, y)=\left(x, g_{x}(y)\right), \quad(x, y) \in Z
$$

is a perfect mapping. It is easily checked that Φ is continuous. To see that Φ is closed, let W be an open set of Z containing $\Phi^{-1}\left(x, y^{\prime}\right)=\{x\} \times g_{x}^{-1}\left(y^{\prime}\right)$. There exists a finite open cover $\left\{U_{i} \otimes V_{i} \mid i=1, \ldots, k\right\}$ of $\Phi^{-1}\left(x, y^{\prime}\right)$ in Z such that

$$
\Phi^{-1}\left(x, y^{\prime}\right) \subset \bigcup_{i=1}^{k} U_{i} \otimes V_{i} \subset W
$$

where each U_{i} is an open neighborhood of x in X. Since $g_{x}: Y_{x} \longrightarrow M_{x}$ is a perfect mapping, there exists an open neighborhood O of y^{\prime} in M_{x} such that $g_{x}^{-1}(O) \subset$ $\bigcup_{i=1}^{k} V_{i}$. Then we can easily see that $\left(\bigcap_{i=1}^{k} U_{i}\right) \otimes O$ is an open neighborhood of $\left(x, y^{\prime}\right)$ in Z^{\prime} such that $\Phi^{-1}\left(\left(\bigcap_{i=1}^{k} U_{i}\right) \otimes O\right) \subset W$. Hence Φ is a perfect mapping.

Since $\pi: R\left(X, f_{x}, Y_{x}\right) \longrightarrow X$ is a perfect mapping if each Y_{x} is compact [2, Lemma 6], the following is easy to see:

Theorem 2.4. Let X be an M-space and let each Y_{x} be compact. Then $Z=$ $R\left(X, f_{x}, Y_{x}\right)$ is an M-space.

References

[1] Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology, NorthHolland, 1984, pp. 423-501.
[2] Richardson K., Watson S., Metrisable and discrete special resolutions, Topology Appl. 122 (2002), 605-615.
[3] Watson S., The construction of topological spaces: Planks and resolutions, Recent Progress in General Topology, North-Holland, Amsterdam, 1992, pp.637-757.

Department of Mathematics, Joetsu University of Education, Joetsu, Nifgata Prefecture, 943-8512, Japan
(Received February 19, 2004, revised June 14, 2004)

