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Cohomology of BO(n1) × · · · × BO(nm)

with local integer coefficients

Richard Lastovecki

Abstract. Let Z be a set of all possible nonequivalent systems of local integer coefficients
over the classifying space BO(n1) × · · · × BO(nm). We introduce a cohomology ringL

G∈Z
H∗(BO(n1)×· · ·×BO(nm);G), which has a structure of a Z⊕(Z2)m-graded ring,

and describe it in terms of generators and relations. The cohomology ring with integer
coefficients is contained as its subring. This result generalizes both the description of the
cohomology with the nontrivial system of local integer coefficients of BO(n) in [Č] and
the description of the cohomology with integer coefficients of BO(n1) × · · · × BO(nm)
in [M].

Keywords: singular cohomology with local coefficients

Classification: 55R40

1. Introduction

The cohomology rings of the classifying spaces for the groups O(n) and SO(n)
with Z2 and Z[1/2] coefficients were well known very long ago, see [MS]. E. Tho-
mas found the group structure of H∗(BO(n)) with integer and Z2m coefficients in
1960 [T]. The more complicated cohomology ring structure for integer coefficients
was described in terms of generators and relations independently by E.H. Brown
[B] and M. Feshbach [F] in 1982.
Since π1(BO(n)) = Z2, there are two nonequivalent systems of local coefficients

over BO(n), nontrivial one determined by the first Stiefel-Whitney class of the
universal vector bundle over BO(n). The cohomology ring of BO(n) with both
systems of local coefficients was described by M. Čadek in 1999 [Č].
It is easy to show that classifying spaces for the groups O(n1) × · · · × O(nm)

and SO(n1) × · · · × SO(nm) are homotopy equivalent to the spaces BO(n1) ×
· · ·×BO(nm) and BSO(n1)×· · ·×BSO(nm), respectively. Cohomology rings of
these spaces with Z2 coefficients can be easily obtained using Künneth formula.
Extending methods of Brown and Feshbach, in 1985 M. Markl [M] described
cohomology rings of BO(n1) × · · · × BO(nm) and BSO(n1) × · · · × BSO(nm)
with integer coefficients.
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Since π1(BO(n1)×· · ·×BO(nm)) = (Z2)
m, there are just 2m systems of local

integer coefficients over BO(n1)× · · · ×BO(nm). In this paper we generalize the
result from [Č] and describe the cohomology ring of BO(n1)×· · ·×BO(nm) with
all possible local integer coefficients via generators and relations.

2. Preliminaries

We use the definition of local coefficients and singular cohomology groups with
local coefficients from [S] (exercises F in Chapter 1 and J in Chapter 5). In [S] there
is also a theorem on the existence of the Thom class with local integer coefficients
and a version of the Thom isomorphism in the context of local coefficients.
In the sequel, by X we denote a connected CW-complex. Let n be a positive

integer and let ξ = (E
p

−→X) be an n-dimensional vector bundle over X . Denote
E the total space without the zero section, Ex = p

−1(x) the fiber over x ∈ X , Ex

the fiber without the zero element and ix : Ex−→E the inclusion.
Then {Hn(Ex, Ex)} forms a system of local integer coefficients over X , let us

denote it by Zξ . An element t ∈ Hn(E,E; p∗Zξ) such that

i∗xt ∈ Hn(Ex, Ex;Hn(Ex, Ex))

corresponds to the identity in Hom(Hn(Ex, Ex), Hn(Ex, Ex)) for every x ∈ X is
called the Thom class of the vector bundle ξ.

Lemma 1. Let ξ = (E
p

−→X) be an n-dimensional vector bundle over X and
let G be an arbitrary system of local coefficients over X . Then there is a unique
Thom class t and it determines an isomorphism

Φt : H
q(X ;G)−→Hq+n(E,E; p∗G ⊗ Zξ)

defined by the multiplication of t as Φt(x) = p
∗(x) ∪ t.

Let o : (E, ∅)−→(E,E) be an inclusion. Similarly as for group coefficients we
can define the Euler class of the vector bundle ξ to be a class e ∈ Hn(X ;Zξ)
such that p∗(e) = o∗(t). Using this definition, the Thom isomorphism and the
isomorphism p∗ induced by the homotopy equivalence p : E−→X and substituting
them into the long exact sequence of the pair (E,E), we get the long exact Gysin
sequence with local coefficients

∆
// Hq−n(X ;G ⊗ Zξ)

∪e
// Hq(X ;G)

p∗
// Hq(E; p∗G)

∆
��

Hq−n+1(X ;G ⊗ Zξ)
∪e

//
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Since π1(BO(n)) = Z2, we have two nonequivalent systems of local integer
coefficients over BO(n) — the trivial one, denoted by Z, and the nontrivial one,
which we call twisted and denote by Z

t.

In the case of the universal vector bundle γn = (En
p

−→BO(n)) over classifying
space BO(n) the system of local coefficients Zγn is equivalent to the system of

twisted integer coefficients Z
t. Moreover, Zt ⊗ Z

t = Z, Z ⊗ Z
t = Z

t. Since En is
homotopically equivalent to the total space of the sphere bundle SEn, which is
homotopically equivalent to BO(n−1) and the inclusion SEn →֒ En corresponds
to ι : BO(n−1) →֒ BO(n), we can substitute BO(n−1) for En in the long exact
Gysin sequence for the bundle γn and compute cohomology inductively.
Now we generalize this idea. The twisting of integer coefficients over the space

BO(n1)×· · ·×BO(nm) is more complicated, having π1(BO(n1)×· · ·×BO(nm)) =
(Z2)

m. Hence there are 2m nonequivalent systems of local integer coefficients over
BO(n1) × · · · × BO(nm). For a ∈ (Z2)

m we denote by Za the system of local
coefficients in which i-th generator of the π1(BO(n1) × · · · × BO(nm)) acts as
multiplication by −1 if and only if ai = 1. The formula for the tensor product of
the systems of local coefficients then has a form Za ⊗ Zb = Za+b.
For two systems of local coefficients G1, G2 over a space X there is a cup

product in cohomology with local coefficients defined as follows

∪ : Hk(X ;G1)×H l(X ;G2)−→Hk+l(X ;G1 ⊗ G2).

Hence we can construct a ring

h∗(n1, . . . , nm) =
⊕

a∈(Z2)m

H∗(BO(n1)× · · · ×BO(nm);Za),

which is a Z⊕(Z2)
m-graded ring describing the cohomology of the space BO(n1)×

· · · ×BO(nm) with all possible systems of local coefficients.
We can see immediately, that the cohomology ring with the system of local

coefficients Z(0,...,0) is isomorphic to the singular cohomology ring. So, we have

H∗(BO(n1)× · · · ×BO(nm);Z) contained as a subring in h
∗(n1, . . . , nm).

Now let γnm denotes the universal vector bundle over BO(nm). Then π
∗
mγnm

is a vector bundle over BO(n1)× · · · ×BO(nm), where πm denotes a projection
on m-th factor. It is easy to show that the system of the local integer coefficients
Zπ∗

mγnm
is equivalent to Z(0,...,0,1) over BO(n1)× · · · ×BO(nm).

Let us denote by em the Euler class of the vector bundle π
∗
mγnm . In this case

the long exact Gysin sequence for h∗(n1, . . . , nm) can be written in the following
form:

(G)

∆
// hq−nm (n1,...,nm)

∪em
// hq(n1,...,nm)

ι∗
// hq(n1,...,nm−1)

∆
��

hq−nm+1(n1,...,nm) //
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This long exact sequence is a principal tool for the proof of our main result.

In the description of the cohomology ring h∗(n1, . . . , nm) the following facts
about Bockstein homomorphisms play a key role.
Let X be a connected CW-complex with π1(X) = (Z2)

m. The Bockstein
homomorphism associated with the short exact sequence of local coefficients

0 //Za
2×

//Za //Z2
//0

denote by δa : H
q(X ;Z2)−→Hq+1(X ;Za) for arbitrary a ∈ (Z2)

m.
Write ρ

2
: H∗(X ;Za)−→H∗(X ;Z2) the homomorphism induced from the re-

duction modulo 2. We get the following induced long exact sequence

(B) // Hq(X ;Za)
2×

// Hq(X ;Za)
ρ
2

// Hq(X ;Z2)
δa

// Hq+1(X ;Za) //

The immediate consequence of this long exact sequence is the following

Lemma 2. Let X be a path connected topological space with π1(X) = (Z2)
m

and a ∈ (Z2)
m. Suppose that all elements of finite order in H∗(X ;Za) are of

order 2.
Then for x ∈ H∗(X ;Z2) the equality δax = 0 holds if and only if ρ2 ◦

δax = 0. Furthermore, for the torsion subgroup T of H
∗(X ;Za) we obtain

T = δa(H
∗(X ;Z2)) and the homomorphism ρ

2
restricted on T is an injection into

H∗(X ;Z2).

Let pi,s, wi,s and es denote the i-th Pontrjagin, the i-th Stiefel-Whitney and
the Euler class of the vector bundle π∗sγns over BO(n1)× · · · ×BO(nm), respec-
tively. Note that we have ρ

2
pi,s = w22i,s, ρ2es = wns,s by the definition of the

characteristic classes.
In [Č, Lemma 2], it is proved that the system of twisted coefficients over BO(n)

is uniquely determined by the first Stiefel-Whitney class
w1 ∈ H1(BO(n);Z2). Using the obvious generalization of this fact, we can state
following

Lemma 3. The system of twisted coefficients Za over BO(n1) × · · · × BO(nm)
is uniquely determined by the sum of the first Stiefel-Whitney classes

∑

as=1

w1,s ∈ H1(BO(n1)× · · · ×BO(nm);Z2).

Let δa : H
q(BO(n1)× · · · ×BO(nm);Z2)−→Hq+1(BO(n1)× · · · ×BO(nm);Za)

be a Bockstein homomorphism. Then

ρ
2
δax = (ρ2δa1)x+ Sq

1 x
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for all x ∈ Hq(BO(n1)× · · · ×BO(nm);Z2) and moreover,

ρ
2
δa1 =

∑

as=1

w1,s.

So we have a correspondence between Bockstein homomorphisms δa, the sys-
tems of local coefficients Za and the elements

∑
w1,λ.

Notation. In the sequel we abbreviate δ(0,...,0) to δ0. Note that ρ2δ0 = Sq
1.

Denote byM =
⋃m

s=1{1, 2, . . . , [(ns−1)/2]}×{s}. We consider this set ordered
by the lexicographic ordering (i, r) < (j, s) iff i < j or i = j and r < s.
Denote by cλ the element of (Z2)

m with 1 at the λ-th position and zero oth-
erwise. By the symbol I △ J we denote symmetric difference of the sets I and J ,
I △ J = (I ∪ J)− (I ∩ J), by the symbol [x] we denote the integer part of x.
Denote for I ⊆ M, 1 ≤ s ≤ m by

w0,s = w∅ = p0,s = p∅ = 1, wI =
∏

(i,τ)∈I

w2i,τ , pI =
∏

(i,τ)∈I

pi,τ .

Let ι∗ : h(n1, . . . , nm)−→h(n1, . . . , nm−1) denote the homomorphism induced
by the natural inclusion ι : BO(n1)×· · ·×BO(nm−1)−→BO(n1)×· · ·×BO(nm).

In the proof of the Theorem we use following statements:

Lemma 4. In H∗(BO(n1)× · · · ×BO(nm);Z2), the following relations are sat-
isfied:

ρ
2
(δawIδbwJ ) =

∑

(i,τ)∈I

Sq1w2i,τρ2δa+bw(I−{(i,τ)})△Jρ2p(I−{(i,τ)})∩J

+ (ρ
2
δa1)ρ2δbwI△Jρ2pI∩J ,

ρ
2

(
(δa1)(δbwJ )

)
= ρ

2

( ∑

aλ=1

(δcλ
1) · (δa+b+cλ

wI )

)
,

where I ⊆ M and a, b ∈ (Z2)
m.

Proof: Using the relations

Sq1wI Sq
1 wJ =

∑

(i,τ)∈I

Sq1w2i,τ Sq
1 w(I−{(i,τ)})△Jρ2p(I−{(i,τ)})∩J ,

wI Sq
1 wJ =

∑

(i,τ)∈J

Sq1w2i,τw(J−{(i,τ)})△Iρ2p(J−{(i,τ)})∩I ,

proved in [B] and Lemma 3, one can show the first formula. The second one can
be obtained by an elementary calculation. �
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3. Main result

Theorem. Let n1, . . . , nm be positive integers. The cohomology ring

h∗(n1, . . . , nm) is the polynomial ring

Rn1,...,nm = Z
[
pi,τ , es, δawJ | (i, τ) ∈ M, J ⊆ M, a ∈ (Z2)

m, s = 1 . . .m
]

modulo the ideal In1,...,nm generated by the following relations:

δ01 = 0,(1)

2δawJ = 0,(2)

es = δcswns−1,s for ns odd,(3)

δawIδbwJ =
∑

(i,τ)∈I

(δ0w2i,τ )p(I−{(i,τ)})∩J δa+bw(I−{(i,τ)})△J + δa1δbwI△JpI∩J ,

(4)

(δa1)(δbwJ ) =
∑

aλ=1

(δcλ
1)(δa+b+cλ

wJ ),(5)

where I, J ⊆ M, I 6= 0, J can be empty.
Moreover, the following relation is satisfied in Rn1,...,nm for ns even:

(6) pns/2,s = e
2
s.

Remark 1. The relations (4) and (5) can be written together as the relation

δawIδbwJ =
∑

(i,τ)∈I

(δ0w2i,τ )p(I−{(i,τ)})∩J δa+bw(I−{(i,τ)})△J

+ pI∩J

( ∑

aλ=1

(δcλ
1)(δa+b+cλ

wI△J )

)
,

where both I, J ⊆ M can be empty.

Remark 2. The space BO(0) is homotopy equivalent to the space SE1, the total
space of the associated sphere bundle over BO(1). However, SE(1) is homotopy
equivalent to the contractible space S∞. Hence π1(BO(0)) = 0 and there is only
one possible system of local integer coefficients over BO(0). Consequently, for
nm = 1 and a ∈ (Z2)

m, am = 1 we do not have H
∗(BO(n1) × · · · × BO(nm −

1);Za). Let us note that its role in the long exact sequence (G) is played by
H∗(BO(n1)× · · · ×BO(nm − 1);Za+cm), since for the Bockstein homomorphism
δa : H

∗(BO(n1)×· · ·×BO(nm);Z2)−→H∗(BO(n1)×· · ·×BO(nm);Za) we have
ι∗ ◦ δa = δa+cm . In particular, ι

∗ ◦ δcm = δ0.
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4. Proof

Define a ring homomorphism θn1,...,nm : Rn1,...,nm−→h∗(n1, . . . , nm) in the
following way: to each formal generator of Rn1,...,nm we assign the corresponding
characteristic class in h∗(n1, . . . , nm) as follows:

θn1,...,nm(es) = es
(
π∗s (γns)

)
,

θn1,...,nm(pi,τ ) = pi
(
π∗τ (γnτ )

)
and

θn1,...,nm(δawJ ) = δa

( ∏

(j,ζ)∈J

wj,ζ

(
π∗ζ (γnζ

)
))
.

We show by induction on m and nm that θn1,...,nm(In1,...,nm) = 0 and then we

prove that the induced ring homomorphism θn1,...,nm : Rn1,...,nm/In1,...,nm−→
h∗(n1, . . . , nm) is an isomorphism.

We start the induction for m = 1 and n1 = 0, using Remark 2. Due to the
contractibility of BO(0), an inductive step fromm−1 tom, nm = 1 can be carried
out by considering BO(n1) × · · · × BO(nm−1) as BO(n1) × · · · × BO(nm−1) ×
BO(0). Note that the inductive step to BO(n1) × · · · × BO(nm−1) × BO(1) is
slightly different from the inductive step for nm > 1 odd.

Now suppose that Theorem holds for nm − 1 and nm is even.
We have Rn1,...,nm = Rn1,...,nm−1[em], In1,...,nm = In1,...,nm−1, hence

Rn1,...,nm/In1,...,nm = (Rn1,...,nm−1/In1,...,nm−1)[em].

Let ψ : Rn1,...,nm−1−→Rn1,...,nm be the natural inclusion. Then, by the in-
ductive hypothesis, θn1,...,nm−1 = ι∗ ◦ θn1,...,nm ◦ ψ is an epimorphism, hence
ι∗ : h∗(n1, . . . , nm)−→h∗(n1, . . . , nm − 1) is also an epimorphism and from (G)
we get a short exact sequence

(7)
0

−−→ hq−nm(n1, . . . , nm)
∪em−−−→ hq(n1, . . . nm)

ι∗
−→ hq(n1, . . . , nm − 1)

0
−−→

In particular, we get im(ι∗ ◦ θn1,...,nm) = im ι
∗ and one can show that, under this

condition, θn1,...,nm is an epimorphism. Using this condition we will prove later
the surjectivity of θn1,...,nm for the case nm odd.

Now denote by Torh∗(n1, . . . , nm) the subgroup of torsion elements of
h∗(n1, . . . , nm). Since the multiplication by em is injective and θn1,...,nm is an
epimorphism, we get isomorphism of graded groups

h∗(n1, . . . , nm) = Z[pi,τ , es | (i, τ) ∈ M, ns even, s ≤ m]⊕ Torh∗(n1, . . . , nm).

Since for each a ∈ (Z2)
m we have 2δa = 0, all torsion elements are of order 2.

Using Lemma 4 and Lemma 2 we obtain θn1,...,nm(In1,...,nm) = 0.



28 R.Lastovecki

So the induced ring homomorphism
θn1,...,nm : Rn1,...,nm/In1,...,nm−→h∗(n1, . . . , nm) is an epimorphism.

Now since Rn1,...,nm/In1,...,nm ≃ (Rn1,...,nm−1/In1,...,nm−1)[em], we have the
short exact sequence

0
// Rn1,...,nm/In1,...,nm

∪em
// Rn1,...,nm/In1,...,nm

Ψ
��

Rn1,...,nm−1/In1,...,nm−1
0

//

where Ψ = coker(∪em). This exact sequence and (7) fit together into diagram
connected by θn1,...,nm and 5-lemma applied inductively on this diagram yields

that θn1,...,nm is an isomorphism for nm even.

The fact that pnm/2,m = e
2
m can be proved analogously to [Č].

Now suppose Theorem holds for nm − 1 and nm is odd. By the definition of
Thom and Euler classes, we get ρ

2
em = wnm,m. According to Lemma 3,

ρ
2
δcmwnm−1,m = w1,mwnm−1,m + Sq

1wnm−1,m = wnm,m = ρ2em.

Let us note that with respect to the notation w0,m = 1, this equality holds for
nm = 1 as well.
Using the Thom isomorphism and the definition of the Euler class, we get

2em = 0.
Now using the long exact sequences (G) and (B) one can show

(8) em = δcmwnm−1,m.

To prove that θn1,...,nm : Rn1,...,nm−→h∗(n1, . . . , nm) is an epimorphism we
show that im(ι∗ ◦ θn1,...,nm) = ker∆ = im ι

∗.
Let nm > 1 and consider a ∈ (Z2)

m, s < m, ns even and I ⊆ M such
that ((nm − 1)/2,m) /∈ I. Since the elements pI , es and δawI are contained in
Rn1,...,nm−1 by the inductive hypothesis, they are contained in im(ι

∗ ◦ θn1,...,nm)
as well.
Denote by e the Euler class of the bundle π∗mγnm−1 over BO(n1) × · · · ×

BO(nm − 1). We have

(9)

ι∗θn1,...,nm(δa(wIwnm−1,m)) = δawI ∪ e,

ι∗θn1,...,nm(p(nm−1)/2,m) = e
2,

ι∗θn1,...,nm(em) = ι
∗em = ι

∗(1 ∪ em) = 0

by the description of h∗(n1, . . . , nm − 1) and Lemma 2, hence e /∈ im(ι∗◦θn1,...,nm).
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Since em 6= 0 and 2em = 0, exactness of (G) yields ∆e = ±2. So every
element of h∗(n1, . . . , nm − 1) has the form x = x1 + x2 ∪ e, where x1, x2 ∈
im(ι∗ ◦ θn1,...,nm). Thus ∆x = ±2x2. Hence x ∈ ker∆ if and only if 2x2 = 0,
which implies ker∆ = im(ι∗ ◦ θn1,...,nm).

Let nm = 1. Due to Remark 2, the Euler class e of the 0-dimensional vector
bundle π∗mγ0 over BO(n1)×· · ·×BO(nm−1)×BO(0) is equal to ±1 and the first
relation of (9) has the form

ι∗θn1,...,nm(δawI ) = δa+cmwI

for a ∈ (Z2)
m, am = 1. By the same considerations as above we obtain im ι

∗ =
ker∆ = im(ι∗ ◦ θn1,...,nm) as well.
Hence θn1,...,nm : Rn1,...,nm−→h∗(n1, . . . , nm) is an epimorphism.

Using (9) and inductive hypothesis we get isomorphism of graded groups

h∗(n1, . . . , nm) = Z[pi,τ , es | (i, τ) ∈ M, ns even, s < m]⊕ Torh∗(n1, . . . , nm).

By the inductive hypothesis and (8), each torsion element of h∗(n1, . . . , nm) is
of order 2. Applying Lemma 4 and Lemma 2, we obtain θn1,...,nm(In1,...,nm) = 0.

The induced ring homomorphism θn1,...,nm : Rn1,...,nm/In1,...,nm−→
h∗(n1, . . . , nm) is an epimorphism.

To complete the whole proof, it suffices to show that θn1,...,nm :
Rn1,...,nm/In1,...,nm−→h∗(n1, . . . , nm) is a monomorphism. Immediately we get
that it is injective on the free part of Rn1,...,nm/In1,...,nm generated by pi,τ and
es for (i, τ) ∈ M, ns even and s < m.

To prove injectivity of θn1,...,nm on the torsion subgroup ofRn1,...,nm/In1,...,nm ,

we describe an additive basis of TorRn1,...,nm/In1,...,nm and show that ρ2θn1,...,nm

is injective on each part of the graduation of TorRn1,...,nm/In1,...,nm , which proves

the injectivity of θn1,...,nm due to Lemma 2.

Consider the following slight modification of the Stiefel-Whitney classes intro-
duced in [B]. Let

v1,τ = w1,τ , v2i,τ = w2i,τ , v2i+1,τ = w2i+1,τ + w1,τw2i,τ

for (i, τ) ∈ M, so we have

Sq1 v1,τ = v
2
1,τ , Sq1 v2i+1,τ = 0, Sq1 v2i,τ = v2i+1,τ .

The monomials
∏
(i,τ)∈M v

ki,τ

i,τ obviously form a basis of H∗(BO(n1) × · · · ×

BO(nm);Z2). For I ⊆ M put vI = wI and particularly v∅ = 1.
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Then the torsion part of the group h∗(n1, . . . , nm) contains elements

(10)
∑ ∏

(i,τ)∈M

p
χi,τ

i,τ

m−1∏

s=1

eνs
s

∏

l

δµl
vIl

for χi,τ and νs nonnegative integers, µl in (Z2)
m, Il ⊆ M such that if each µl = 0

then at least one of Il is nonempty.

Consider the following elements of Torh∗(n1, . . . , nm):

X(A,K, T,R, a, I) =

m∏

λ=1

(δcλ
1)αλ

∏

(i,τ)∈M

p
ki,τ

i,τ

m−1∏

s=1

etss
∏

(j,ζ)∈M

(δ0v2j,ζ)
rj,ζ δavI ,

Y (A, b,K, T ) =

m∏

λ=1

(δcλ
1)αλ(δb1)

∏

(i,τ)∈M

p
ki,τ

i,τ

m−1∏

s=1

etss ,

Z(A,K, T ) =
m∏

λ=1

(δcλ
1)αλ

∏

(i,τ)∈M

p
ki,τ

i,τ

m−1∏

s=1

etss ,

where αλ are nonnegative integers, a, b ∈ (Z2)
m, b different from any cλ and

nonzero, I ⊆ M nonempty, A, K, T , R are ordered systems of the powers of δcλ
1,

pi,τ , es, δ0v2j,ζ respectively, satisfying following conditions: ts = 1 or 0 for ns even
and ts = 0 for ns odd. Moreover, in X(A,K, T,R, a, I) we have max I ≥ (j0, ζ0),
where (j0, ζ0) ∈ I is the highest index inM such that rj0,ζ0 > 0. In Y (A, b,K, T )
we suppose ακ = 0 for each κ > max{λ | bλ = 1}.
Now we prove that these elements form an additive basis of Torh∗(n1, . . . , nm).

One can decompose a polynomial of the form (10) by successive use of the
relations (3)–(6) to show that the monomials X(A,K, T,R, a, I), Y (A, b,K, T )
and Z(A,K, T ) are generators of Torh∗(n1, . . . , nm).

To show linear independence of these generators of Torh∗(n1, . . . , nm) it is
sufficient to prove that the images in the reduction modulo 2 of the elements with
the same graduation are linearly independent in H∗(BO(n1)×· · ·×BO(nm);Z2).
The group homomorphism ρ

2
maps X(A,K, T,R, a, I) into

m∏

λ=1

vαλ

1,λ

∏

(i,τ)∈M

v
2ki,τ

2i,τ

m−1∏

s=1

vts
ns,s

∏

(j,ζ)∈M

v
rj,ζ

2j+1,ζ ρ2δavI .

Denote (i0, τ0) the highest index in I and let I0 = I−{(i0, τ0)}. Then we have

ρ
2
δavI = (ρ2δa1)vI + v2i0,τ0 Sq

1 vI0 + v2i0+1,τ0vI0

= (ρ
2
δa1)v2i0,τ0vI0 + v2i0,τ0

( ∑

(i,τ)∈I0

v2i+1,τvI0−(i,τ)

)
+ v2i0+1,τ0vI0
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where the last monomial contains v2i0+1,τ0 and does not contain v2i0,τ0 , the other
monomials contain v2i0,τ0 and do not contain v2i0+1,τ0 .
Then the last monomial of ρ

2
X(A,K, T,R, a, I) has the form

(11)
m∏

λ=1

vαλ

1,λ

∏

(i,τ)∈M

v
bki,τ

2i,τ

m−1∏

s=1

vts
ns,s

∏

(j,ζ)∈M

v
brj,ζ

2j+1,ζ

where k̂i,τ = 2ki,τ + 1 for (i, τ) ∈ I0, k̂i,τ = 2ki,τ otherwise, r̂j,ζ = rj,ζ except
r̂i0,τ0 = ri0,τ0 + 1.
The powers of vi,τ , (i, τ) ∈ M, of the monomial (11) determine the sets A,

K, T , R, I of X(A,K, T,R, a, I). One can show by comparing the powers that
X(A,K, T,R, a, I) is determined uniquely up to graduation, hence the elements
X(A,K, T,R, a, I) form a linearly independent set.

Since ρ
2
Y (A, b,K, T ) and ρ

2
Z(A,K, T ) have no nonzero powers of v2i+1,τ

for i > 0, (i, τ) ∈ M, they cannot be any linear combinations of the elements
ρ
2
X(A,K, T,R, a, I) and vice versa.
Hence it remains to show linear independence of the elements Y (A, b,K, T )

and Z(A,K, T ). We get

ρ
2
Y (A, b,K, T ) =

m∏

λ=1

vαλ

1,λ




∑

bκ=1

v1,κ



 ·
∏

(i,τ)∈M

v
2ki,τ

2i,τ ·
m−1∏

s=1

vts
ns,s ,

ρ
2
Z(A,K, T ) =

m∏

λ=1

vαλ

1,λ ·
∏

(i,τ)∈M

v
2ki,τ

2i,τ ·
m−1∏

s=1

vts
ns,s.

Obviously, the elements Z(A,K, T ) are uniquely determined by the monomials
ρ
2
Z(A,K, T ), hence they form a linearly independent set.
Set λ0 = max{λ | bλ = 1}. Then the last summand of ρ2Y (A, b,K, T ) is

(12) v
αλ0
+1

1,λ0
·
λ0−1∏

λ=1

vαλ

1,λ ·
∏

(i,τ)∈M

v
2ki,τ

2i,τ ·
m−1∏

s=1

vts
ns,s

which cannot be reduction modulo 2 of any Z(A,K, T ) with the same graduation
as Y (A, b,K, T ).
By comparing appropriate powers of the monomial (12), one can prove that

the elements Y (A, b,K, T ) form linearly independent set.
So the elements X(A,K, T,R, a, I), Y (A, b,K, T ) and Z(A,K, T ) form a basis

of the group Torh∗(n1, . . . , nm) and the ring homomorphism θn1,...,nm is injective
on Torh∗(n1, . . . , nm).

This completes the proof that θn1,...,nm : Rn1,...,nm/In1,...,nm−→
h∗(n1, . . . , nm) is an isomorphism.
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