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On left distributive left idempotent groupoids

Přemysl Jedlička

Abstract. We study the groupoids satisfying both the left distributivity and the left
idempotency laws. We show that they possess a canonical congruence admitting an
idempotent groupoid as factor. This congruence gives a construction of left idempotent
left distributive groupoids from left distributive idempotent groupoids and right constant
groupoids.
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The left self-distributivity identity

(LD) x · (y · z) = (x · y) · (x · z)

is often studied together with the idempotency identity

(I) x · x = x

giving left distributive idempotent (LDI) groupoids. However, some structures,
for instance the so-called LD-quasigroups [1] (left distributive left quasigroups
equipped with another left distributive operation) satisfy, together with left dis-
tributivity, a weaker version of idempotency only, called left idempotency:

(LI) (x · x) · y = x · y.

The first results about left idempotent left distributive groupoids (LDLI) ap-
peared in Kepka [4] where these groupoids were called pseudoidempotent left
distributive groupoids. However, the first systematic study of these groupoids
seems to have appeared as late as in [2].
In this paper, we study left distributive left idempotent (LDLI) groupoids

and show that there exists a canonical congruence that, in fact, is the smallest
idempotent congruence. Classes of that congruence are right constant groupoids,
i.e., groupoids satisfying the identity

(RC) x · z = y · z.
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This enables us to construct LDLI groupoids starting with an LDI groupoid and
a family of right constant groupoids.
Kepka [3] found a decomposition similar to the current one for left symmetric

left distributive (LSLD) groupoids. These groupoids form a subvariety of LDLI
groupoids given by the identity

(LS) x · xy = y

and our decomposition is a generalization of the decomposition described for
LSLD groupoids.

The smallest idempotent congruence

We begin with technical notes: if not specified differently, each groupoid men-
tioned here is equipped with the binary operation (·). The expression abc stands

for a · (b · c) and similarly ak means a · ak−1.

Lemma 1. Let G be an LI groupoid and let a be in G. Then we have, for all a, b
in G,

akb = ab and (ak)l = ak+l−1.

Proof: First of all we prove akb = ab, for all a, b in G. It is evident for k = 1
and for k > 1 we have

akb = (a · ak−1)b = (ak−1 · ak−1)b = ak−1b = ab.

Now we prove the other result by induction on l. Since it is true for l = 1, we
continue with l > 1:

(ak)l = (ak) · (ak)l−1 = a · ak+l−2 = ak+l−1,

and that is what we wanted to prove. �

Definition 2 ([5]). Let G be an LI groupoid. We define ipG to be the smallest
equivalence relation on G satisfying (a, a2) ∈ ipG.

Lemma 3. Let G be an LI groupoid. Then, for all a, b in G, the following
conditions are equivalent:

(i) (a, b) ∈ ipG;

(ii) there exist positive integers k, l satisfying ak = bl.

Proof: (i)⇒ (ii): The relation (a, b) ∈ ipG means that there exists a sequence
a = a0, a1, . . . , an = b, such that we have ai = a2i−1 or a2i = ai−1, for each
1 6 i 6 n. Using induction on n, we show that there exist positive integers k, l
satisfying ak = bl. The claim is evident for n = 0. Let us suppose n > 1. The
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induction hypothesis tells us that there exist k′, l′ satisfying ak′

= al′

n−1. We have
two possibilities now:

- for b2 = an−1 we have bl′+1 = (b2)l
′

= al′

n−1 = ak′

;

- for b = a2n−1, we have bl′ = (a2n−1)
l′ = (al′

n−1)
2 = (ak′

)2 = ak′+1.

(ii)⇒ (i): Evident. �

Example 4. The relation ipG is not a congruence in general, for instance

· 0 1 2
0 1 0 2
1 1 0 2
2 1 2 2

is a simple LI groupoid with ipG non-trivial. However, the relation ipG is a
congruence on any LDLI groupoid:

Proposition 5. For each LDLI groupoid G, the relation ipG is a congruence
and, for any a, b, c in G with (a, b) ∈ ipG, we have ac = bc.

Proof: Consider (a, b) ∈ ipG in G. Then there exist k, l satisfying ak = bl. Now,
for all c in G, we have

a · c = ak · c = bl · c = b · c,

(c · a)k = c · ak = c · bl = (c · b)l.

This implies that ipG is a congruence. �

Note 6. Kepka and Němec [5] proved Proposition 5 for a left cancellative LDLI
groupoid. They also proved that, in the case of left cancellative LD groupoids,
the LI identity is equivalent to the identity

xx · x = xx.

This result is not true for non-cancellative ones, as we can see on the following
example, which is LD, satisfies the cited identity but it is not LI ((1 ·1) ·0 6= 1 ·0):

· 0 1 2
0 1 2 2
1 1 2 2
2 2 2 2

It is easy to see that, for any LDLI groupoid G, the factor G/ ipG is LDI
and that the equivalence classes are right constant groupoids. Moreover, two ipG
congruent elements satisfy ak = bl for some k and l.
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Decomposition of LDLI groupoids

The result of Proposition 5 leads us to introduce the following definition:

Definition 7. A set A is a connected monounary algebra if it is equipped with
a unary operation α satisfying, for all a, b in A, the relation αk(a) = αl(b) for
some k, l.

Every right constant groupoid G is equipped with a natural operation oG : a 7→
a2 that describes the multiplication on G entirely. On the other hand, we can
build, on every monounary algebra, a structure of left idempotent right constant
groupoid. We say that a right constant groupoid is connected if its corresponding
monounary algebra is connected. If G is an LDLI groupoid, all congruence classes
of ipG are connected right constant groupoids, according to Proposition 5. This
permits us to find a decomposition of the groupoid G.

Proposition 8. (i) Let H be an LDI groupoid and let Aa, with a ∈ H , be a
pairwise disjoint sets. Let fa,b be a mapping from Ab to Aab, for every a, b in H .
Let us define the groupoid B(H, f) to be the set

⋃
a∈H Aa with the operation ∗

defined by x ∗ y = fa,b(y), for x in Aa and y in Ab. Then the groupoid B(H, f)
is LI. Moreover, the mappings fa,b satisfy the identity

(ld) fa,bc ◦ fb,c = fab,ac ◦ fa,c

for all a, b and c in H if and only if the groupoid B(H, f) is LD.

(ii) Let G be an LDLI groupoid. Then G is equal to B(G/ ipG, f), where
fā,b̄(c) = ac and ā stands for the class of ipG containing a.

Proof: (i) Let us take arbitrary a, b, c from H , x from Aa, y from Ab and z from
Ac. The element x ∗ x = fa,a(x) belongs also to Aa because H is idempotent.
Hence we have (x ∗ x) ∗ y = fa,b(y) = x ∗ y. For the left distributivity, since we
have

x ∗ (y ∗ z) = x ∗ fb,c(z) = fa,bc(fb,c(z)) = fab,ac(fa,c(z)),

(x ∗ y) ∗ (x ∗ z) = fa,b(y) ∗ fa,c(z) = fab,ac(fa,c(z)),

the groupoid B(H, f) is LD if and only if Condition (ld) is satisfied.

(ii) We remark first that the definition of fā,b̄ depends neither on the choice

of a, by Proposition 5, nor on the choice of b. The construction yields an LI
groupoid and we want to show that the groupoid B(G/ ipG, f) is equal to (G, ·).
Let us choose arbitrarily a, b in G, c in ā and d in b̄. Then we have

c ∗ d = fā,b̄(d) = a · d = c · d,

which completes the proof. �
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Note 9. For all a in G, we have the equality fā,ā = oG on the equivalence class ā.
And when considering any a, b in G, the mapping fā,b̄ has to be a homomorphism:

fā,b̄(oG(d)) = fā,b̄(fb̄,b̄(d)) = f
ab,ab
(fā,b̄(d)) = oG(fā,b̄(d))

holds for any d in b̄.

In the sequel, each element of the groupoid B(H, f) is denoted by the pair
(a, x) with a in H and x in Aa.

Example 10. Let H be an LDI groupoid and let A be a connected right constant
groupoid. Let us take, for each a in H , a disjoint copy of A, denoted Aa. We
define the mapping fa,b by d 7→ oHb

(d), d in Ab. Then the groupoid B(H, f) is
isomorphic to the product H × A.

We apply the congruence ipG to get a classification of all nonidempotent simple
LDLI groupoids. Although this classification follows directly from the results
about simple LD groupoids presented in [5], we show it here because it uses a
different approach.

Definition 11 ([5]). The groupoid Cycr(n), with n ≥ 1, is the set {0, 1, . . . , n−1}
with the operation i · j = j − 1, for j > 0, and i · 0 = n − 1.
The groupoid Pathr(n), with n ≥ 1, is the set {0, 1, . . . , n−1} with the operation
i · j = j − 1, for j > 0, and i · 0 = 0.

Proposition 12 (Stanovský [6]). The only simple right constant groupoids are,
up to isomorphism, the two-element idempotent right constant groupoid, Pathr(2)
and Cycr(p), for p prime.

Proposition 13. The only simple nonidempotent LDLI groupoids are, up to

isomorphism, Pathr(2), and Cycr(p), for p prime.

Proof: The congruence ipG on an LDLI groupoid G is not trivial, unless G is
idempotent or G is a connected right constant groupoid. The only nonidempotent
simple right constant groupoids are, according to Proposition 12, the groupoids
Pathr(2), and Cycr(p). �
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