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Duality properties and Riesz representation theorem

in the Besicovitch-Orlicz space of almost periodic functions

M. Morsli, F. Bedouhene, F. Boulahia

Abstract. In [6], the classical Riesz representation theorem is extended to the class of
Besicovitch space of almost periodic functions Bq a.p., q ∈]1,+∞[ . It is also shown that
this space is reflexive. We shall consider here such results in the context of Orlicz spaces,
namely in the class of Besicovitch-Orlicz space of almost periodic functions Bφ a.p.,
where φ is an Orlicz function.

Keywords: Besicovitch-Orlicz space, almost periodic function, reflexivity, duality

Classification: 46B20, 42A75

1. Introduction

The class Bq a.p., q ≥ 1 of Besicovitch almost periodic functions was introduced
and developed in [2]. In [1], [4], this class was extended to the context of Orlicz
spaces, namely, the authors introduced the Besicovitch-Orlicz space of almost
periodic functions Bφa.p.
The paper [4] is a large investigation on structure and topological properties

of this space. Some duality properties are also stated using an identification
argument based on the Bohr compactification of the real line.
In [8], we characterized the fundamental metric properties of this space, giving

necessary and sufficient conditions for the strict and uniform convexity.

In this paper, we shall give first, necessary and sufficient conditions for the
reflexivity of Bφa.p. and then state a Riesz type representation theorem in this
space.

2. Preliminaries and notations

2.1 Orlicz functions. In all what follows, the notation φ is used for an Orlicz
function, i.e., a function φ : R → R+ which is even, convex and satisfies φ(0) = 0,

φ(u) > 0 if u 6= 0, moreover limu→0
φ(u)
u = 0, limu→∞

φ(u)
u = +∞.

This function is called of ∆2-type if there exist constants K > 2 and u0 ≥ 0
for which φ(2u) ≤ Kφ(u), ∀u ≥ u0.
We recall here some useful results concerning Orlicz functions (cf. [3], [7], [12]).
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An Orlicz function admits a derivative φ′ unless on a denumerable set of points.
It satisfies φ′(0) = 0, φ′(u) > 0 if u 6= 0, and lim|u|→∞ φ′(|u|) = +∞ so that it is
strictly increasing to infinity.
The derivative satisfies the inequality:

(2.1) uφ′(u) ≤ φ(2u) ≤ 2uφ′(2u), ∀u ≥ 0.

From [3], we know that if φ is an Orlicz function then, for every ε > 0 there
exists an Orlicz function φε with continuous derivative and satisfying

φε(x) ≤ φ(x) ≤ (1 + ε)φε(x), ∀x ∈ R.

In view of this, we may assume in the following φ′ to be continuous.
The function ψ(y) = sup{x|y| − φ(x), x ≥ 0} is called conjugate to φ. It is an

Orlicz function when φ is. The pair (φ, ψ) satisfies the Young’s inequality:

xy ≤ φ(x) + ψ(y), x ∈ R, y ∈ R.

Let us note that equality holds in the Young’s inequality iff x = ψ′(y) or
y = φ′(x).
With each pair (φ, ψ) of conjugate Orlicz functions, we may associate an equiv-

alent normalized pair (φ̃, ψ̃), i.e. such that φ is equivalent to φ̃ (respectively ψ is

equivalent to ψ̃) and φ̃(1)+ ψ̃(1) = 1. The functions φ and φ̃ (respectively ψ and

ψ̃) define the same Orlicz space and the corresponding norms are equivalent (cf.
[12]).
With all these considerations, we may use in the following, without any restric-

tion, normalized pairs of conjugate functions.

2.2 The Besicovitch-Orlicz space of almost periodic functions. LetM(R)
be the set of all real Lebesgue measurable functions. The functional

ρφ :M(R)→ [0,+∞], ρφ(f) = lim
T→+∞

1

2T

∫ +T

−T
φ(|f(t)|) dt

is a pseudomodular (cf. [4], [8]).
The associated modular space,

Bφ(R) =
{
f ∈M(R), lim

α→0
ρφ(αf) = 0

}

=
{
f ∈M(R), ρφ(λf) < +∞, for some λ > 0

}

is called the Besicovitch-Orlicz space.
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This space is endowed with the Luxemburg pseudonorm (cf. [4], [8]),

‖f‖φ = inf

{
k > 0, ρφ

(
f

k

)
≤ φ(1)

}
.

Let P be the set of all generalized trigonometric polynomials, i.e.;

P =

{
P (t) =

n∑

j=1

αj exp(iλjt), λj ∈ R, αj ∈ C, j ∈ N, n ∈ N

}
.

The Besicovitch-Orlicz space of almost periodic functions denoted by Bφ a.p.

(respectively B̃φ a.p.) is the closure of the linear set P in Bφ(R), with respect to
the pseudonorm ‖.‖φ (respectively to the modular convergence), more exactly:

Bφ a.p.=
{
f ∈ Bφ(R), ∃pn ∈ P , n = 1, 2, . . . ; s.t. lim

n→∞
‖f− pn‖φ= 0

}

=
{
f ∈ Bφ(R), ∃pn ∈ P , n = 1, 2, . . . ; s.t. ∀k > 0, lim

n→∞
ρφ(k(f− pn)) = 0

}
,

B̃φ a.p.=
{
f ∈ Bφ(R), ∃pn ∈ P , n = 1, 2, . . . ; s.t. ∃k > 0, lim

n→∞
ρφ(k(f− pn)) = 0

}
,

clearly Bφ a.p. ⊂ B̃φ a.p. and the equality holds when φ ∈ ∆2. Some structural
and topological properties of this spaces are considered in [1], [4].

From [4], [8], we know that φ(|f |) ∈ B1 a.p. if f ∈ Bφa.p. and then (cf. [2]) the
limit exists in the expression of ρφ(f), i.e.:

ρφ(f) = lim
T→+∞

1

2T

∫ +T

−T
φ(|f(t)|) dt, f ∈ Bφa.p.

This fact will be very useful in our computations.
Let us denote by {u.a.p.} the classical algebra of Bohr’s almost periodic func-

tions, or what is the same, the uniform closure of the linear set P . It is known
that if f ∈ {u.a.p.} then

(2.2) φ(|f |) ∈ {u.a.p.}, (cf. [2]).

In [2], the following property is stated:

(2.3) if f ∈ {u.a.p.}, f 6= 0, then M(|f |) > 0,

where M(f) = limT→+∞
1
2T

∫+T
−T f(t) dt.
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Notice that from (2.2) and (2.3), we deduce that ‖.‖φ is in fact a norm on
{u.a.p.}.
From now on, Bφ a.p. will denote the quotient space obtained when identifying

the elements of the subspace {f ∈ Bφa.p.; ‖f‖φ = 0}.

With each f ∈ Bφ a.p., we can associate a formal Fourier series, more precisely:
define the Bohr’s transform of f ,

a(λ, f) =M(f exp(iλt)), λ ∈ R.

There is at most a denumerable set of scalars {λ1, λ2, . . . , λn, . . . } for which
a(λ, f) 6= 0 (these are called the Fourier-Bohr’s exponents). The associated coef-
ficients {a(λi, f)}i≥1 are the Fourier-Bohr’s coefficients.
Questions concerning the convergence of the associated formal Fourier series

S(f)(x) =
∑

n≥1

a(λn, f) exp(iλnx)

are not trivial and only partial results are available.
The Bochner’s approximation result will be of importance here:
Let f ∈ Bφa.p. and Sn(f)(x) =

∑n
k=1 a(λk, f) exp(iλkx) be the partial sums

of its formal Fourier series. Then there exists a sequence

σm(f)(x) =

m∑

k=1

µmka(λk, f) exp(iλkx), (cf. [4])

where the convergence factors {µmk} depend only on the sequence of characteristic
exponents {λk} of the function f and satisfy 0 < µmk ≤ 1.
The sequence {σm(f)} has the following approximation properties (cf. [4]):

1. ‖σm(f)‖φ ≤ ‖f‖φ, m = 1, 2, . . . (ρφ(σm(f)) ≤ ρφ(f)).
2. ‖σm(f) − f‖φ → 0 when m → ∞ (∀α > 0, ρφ(α(σm(f) − f)) → 0
when m→ ∞).

To end this section, we define an Orlicz pseudonorm in the Bφ a.p. space as
usual,

|||f |||φ = sup
{
M(|fg|), g ∈ Bψ a.p., ρψ(g) ≤ 1

}
.

3. Convergence results in the Bφ a.p. space

A sequence {fk}k≥1 from Bφ(R) is called modular convergent to some f ∈

Bφ(R), when limk→∞ ρφ(fk − f) = 0.
Let P (R) be the family of subsets of R and Σ(R) be the Σ-algebra of its

Lebesgue measurable sets. We define the set function
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µ(A) = lim
T→∞

1

2T

∫ +T

−T
χA(t) dt = lim

T→∞

1

2T
µ([−T,+T ]∩A).

Clearly, µ is null on sets with µ-finite measure and is not σ-additive.
As usual, a sequence of Σ-measurable functions {fk}k≥1 will be called µ-

convergent to f when, for all ε > 0,

lim
k→∞

µ {t ∈ R, |fk(t)− f(t)| ≥ ε} = 0.

We now state some fundamental convergence results that will be used below:

Proposition 1. Let {fk}k≥1 be a sequence of functions from Bφ(R). We have
the following (cf. [8], [9], [10]):

(i) Suppose there exist f ∈ Bφ(R) such that limk→∞ ρφ(fk − f) = 0 and

g ∈ Bφ a.p. for which max(|fk|, |f |) ≤ g. Then limk→∞ ρφ(fk) = ρφ(f).

(ii) If f ∈ Bφa.p. and {Pn} is the associated sequence of Bochner-Fejèr’s
polynomials, we have limn→∞ ρφ(Pn) = ρφ(f).

(iii) If f ∈ Bφ a.p. is such that limn→∞ ρφ(fn − f) = 0, then

(a) limn→∞ ρφ(fn) ≥ ρφ(f).

(b) {fn}n≥1 is µ-convergent to f .

4. Auxiliary results

Lemma 1. Let f ∈ Bφa.p., f 6= 0 and {fn}n≥1 be modular convergent to f .
Then there exist constants α1, β1, θ1, with θ1 ∈ ]0, 1[ , 0 < α1 < β1, n1 ∈ N and

Gn = {t ∈ R, α1 ≤ |fn(t)| ≤ β1} such that µ(Gn) ≥ θ1, ∀n ≥ n1.

Proof: By [8], there exist α, β and θ with θ ∈ ]0, 1[ , 0 < α < β and G =

{t ∈ R, α ≤ |f(t)| ≤ β} such that µ(G) ≥ θ. Take α1 =
α

2
, β1 =

α

2
+ β and

θ1 =
θ

2
. Then, since {fn}n≥1 is modular convergent to f , it is also µ-convergent

to f (cf. Proposition 1(iii)) and so,

µ
{
t ∈ R, |fn(t)− f(t)| ≥

α

2

}
<
θ

2
, for n ≥ n1.

Let G′
n = {t ∈ R, |fn(t) − f(t)| ≥ α

2 }, then G\G
′
n ⊂ Gn, ∀n ≥ n1. Indeed,

if t ∈ G\G′
n we have α ≤ |f(t)| ≤ β and |fn(t) − f(t)| ≤ α

2 . It follows that
α1 ≤ |fn(t)| ≤ β1, ∀n ≥ n1, i.e. t ∈ Gn, ∀n ≥ n1. Finally, we get

µ(Gn) ≥ µ(G\G′
n) ≥ µ(G) − µ(G′

n) ≥ θ −
θ

2
= θ1, ∀n ≥ n1. �
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Lemma 2. (i) Let {an}n≥1, an > 0, be a sequence of real numbers. With every
n ≥ 1, we associate a measurable set An ⊂ [0, 1] such that:

(a) Ai ∩Aj = ∅ for i 6= j and
⋃
n≥1An ⊂ [0, α], where 0 < α < 1;

(b)
∑
n≥1 φ(an)µ(An) < +∞.

Consider the function f =
∑
n≥1 anχAn on [0; 1] and let f̃ be its periodic

extension to the whole R, with period τ = 1. Then, f̃ ∈ B̃φ a.p.
(ii) If φ satisfies the ∆2-condition then the mapping

i : (Lφ[0, 1], ‖.‖φ) −→ B̃φ a.p.

f 7→ f̃

where f̃ is the periodic extension of f , is an isometry (and also a modular

isometry). Lφ[0, 1] is the classical Orlicz space on [0, 1].
The result remains true if we take an interval [a, b], a, b ∈ R.

Proof: The part (i) of the lemma is in [8].

(ii) We have only to prove that f̃ ∈ B̃φa.p. Indeed, if f ∈ Lφ[0, 1], then, for
every ε > 0 there exists a step function fε =

∑n
i=1 aiχAi defined on [0, 1] and

such that ‖f − fε‖φ ≤ ε (cf. [12]). Let f̃ and f̃ε be the respective periodic
extension (with the same period τ = 1) of f and fε to the whole R. From (i), we

know that fε ∈ Bφa.p. and then, there exists a trigonometric polynomial Pε such

that ‖f̃ε − Pε‖φ ≤ ε, hence

∥∥f̃ − Pε
∥∥
φ
≤

∥∥f̃ − f̃ε
∥∥
φ
+

∥∥f̃ε − Pε
∥∥
φ

≤
∥∥f − fε

∥∥
Lφ
+

∥∥f̃ε − Pε
∥∥
φ

≤ ε+ ε,

i.e. f̃ ∈ B̃φ a.p. �

Lemma 3. Let (φ, ψ) be a complementary pair of normalized Orlicz functions.
Then:

(i) if f ∈ Bφa.p. and ‖f‖φ 6= 0 we have ρφ
( f
‖f‖φ

)
= φ(1). Moreover if

f ∈ {u.a.p.}, then

ρφ(f) = φ(1)⇐⇒ ‖f‖φ = 1;

(ii) if f ∈ Bφ a.p. and g ∈ Bψ a.p., we have f · g ∈ B1 a.p., and,

(4.1) M(|fg|) ≤ ‖f‖φ · ‖g‖ψ (Hölder’s inequality).
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Proof: (i) Let εn > 0 be such that limn→∞ εn = 0. Then ρφ
( f
‖f‖φ+εn

)
≤ φ(1).

Moreover fn =
f

‖f‖φ+εn
is modular convergent to f

‖f‖φ
since

ρφ

(
f

‖f‖φ + εn
−

f

‖f‖φ

)
= ρφ

(
εnf

‖f‖φ(‖f‖φ + εn)

)
≤ εnρφ

(
f

‖f‖2
φ

)
→ 0 as n→ ∞.

It follows from Proposition 1 that limn→∞ ρφ(fn) = ρφ
( f
‖f‖φ

)
≤ φ(1). On

the other hand, since ρφ
( f
‖f‖φ−εn

)
≥ φ(1), using the same argument we get

ρφ
( f
‖f‖φ

)
≥ φ(1) and finally ρφ

( f
‖f‖φ

)
= φ(1).

Suppose now that f ∈ {u.a.p.} and ρφ
(f
a

)
= φ(1) for some a > 0. The function

φ
( f
a

)
being also u.a.p., from (2.3) we get φ

(f
a

)
= φ

( f
‖f‖φ

)
and then, since φ is

strictly increasing, ‖f‖φ = a.

(ii) If ‖f‖φ 6= 0 and ‖g‖ψ 6= 0, it follows directly from Young’s inequality and (i)
that

M(|fg|) ≤ ‖f‖φ · ‖g‖ψ.

This inequality remains true whenever ‖f‖φ = 0 or (and) ‖g‖ψ = 0.
Let (Pn) and (Qn) be the sequences of Bochner-Fejèr’s polynomials that con-

verge respectively to f and g in the respective norms. We have

M(|fg − PnQn|) ≤M(|f | · |g −Qn|) +M(|Qn| · |f − Pn|)

≤ ‖f‖φ · ‖g −Qn‖ψ + ‖g‖ψ · ‖f − Pn‖φ,

so that M(|fg − PnQn|)→ 0 if n→ ∞, i.e. fg ∈ B1 a.p. �

Lemma 4. For f ∈ Bφa.p., we have:

(i) |||f |||φ = inf
{
1
k
(1 + ρφ(kf)), k > 0

}
.

Moreover, |||f |||φ =
1
k0
(1 + ρφ(k0f)) for some k0 > 0.

(ii) ρφ
( f
|||f |||φ

) ≤ 1, |||f |||φ 6= 0.

(iii) φ(1)‖f‖φ ≤ |||f |||φ ≤ 1
ψ(1)

‖f‖φ.

Proof: (i) The proof will be done in several steps.

(a) From easy computations we get

|||f |||φ = sup
{
M(|fg|), g ∈ Bψ a.p., ρψ(g) ≤ 1

}

≤
1

ψ(1)
sup

{
M(|fh|), h ∈ Bψ a.p., ρψ(h) ≤ ψ(1)

}
.
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Now, since ρψ(h) ≤ ψ(1) implies ‖h‖ψ ≤ 1, using Hölder’s inequality it follows,

(4.2) |||f |||φ ≤
1

ψ(1)
‖f‖φ.

(b) First, we suppose f = P is a trigonometric polynomial.
Consider the function F : [0,+∞[→ [0,+∞[, F (k) = ρψ[φ

′(k|P (t)|)]. If P 6= 0,
by Lemma 1, there exist α, β, θ, with 0 < α < β and θ ∈ (0, 1) such that
µ(G) ≥ θ, where G = {t ∈ R, α ≤ |P (t)| ≤ β}.
It follows then,

ρψ
[
φ′(k|P |)

]
≥ lim
T→+∞

1

2T

∫

[−T,+T ]∩G
ψ(φ′(k|P (x)|)) dx ≥ θ · ψ

[
φ′(kα)

]
.

Now, since an Orlicz function increases to infinity with its derivative (cf. [3],
[11]) we get limk→∞ F (k) = +∞. Let us show that F is continuous. For, let
k0 ∈]0,+∞[ and {kn} be a sequence of scalars converging to k0. A trigonometric
polynomial being uniformly bounded, we put ‖P‖∞ = M . Using the uniform

continuity of φ′ on the interval
[
k0M
2 , 3k0M2

]
, we have: ∀ ε > 0, ∃n0 such that

n ≥ n0 ⇒
∣∣φ′(kn|P |)− φ′(k0|P |)

∣∣ ≤ ψ−1(ε);

hence,

(4.3) ρψ
[
φ′(kn|P |)− φ′(k0|P |)

]
≤ ε.

Let us put fn = φ′(kn|P |) and f = φ′(k0|P |). Then, clearly fn ∈ {u.a.p.} and
f ∈ {u.a.p.}. Since φ′ is increasing, we have moreover fn ≤ φ′(2k0|P |). Now,
from (4.3) we have limn→∞ ρψ(fn − f) = 0. Finally in view of Proposition 1.(i)
we get limn→∞ ρψ(fn) = ρψ(f) and then F is continuous at k0. Consequently,
since F (0) = 0 and limk→∞ F (k) = +∞, there exists k0 ∈]0,+∞[ for which
ρψ[φ

′(k0|P |)] = 1. To end the proof of (b), consider the following inequalities:

M(|Pg|) =
1

k
M(|kPg|) ≤

1

k

[
ρφ(kP ) + ρψ(g)

]
, k > 0.

We get immediately

|||P |||φ ≤ inf
k>0

{
1

k
(1 + ρφ(kP ))

}
.

Now, considering the case of equality in the Young’s inequality, it follows

|||P |||φ ≥
1

k0
M(|k0P | · φ

′(k0|P |))

≥
1

k0
(ρφ(k0P ) + ρψ[φ

′(k0|P |)]) ≥
1

k0
(ρφ(k0P ) + 1)
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and, finally,

|||P |||φ = inf
k>0

{
1

k
(ρφ(kP ) + 1)

}
=
1

k0
(ρφ(k0P ) + 1).

Notice that we have also |||P |||φ =M(|P (x)| · φ
′(k0|P (x)|)).

(c) We now show that the result of (b) remains true for f ∈ Bφ a.p. For, let
{Pn} be the sequence of Bochner-Fejèr’s polynomials of the approximation of f .
From (b) we know that

(4.4) ∀n ≥ 1, ∃ kn ∈]0,+∞[ such that |||Pn|||φ =

{
1

kn
(1 + ρφ(knPn))

}
.

Hence, from (4.2) and the properties of the Bochner-Fejèr’s polynomials
(see 2.2.1.), we get

1

kn
≤ |||Pn|||φ ≤

1

ψ(1)
‖Pn‖φ ≤

1

ψ(1)
‖f‖φ

and thus kn ≥ ψ(1)
‖f‖φ

= c1 > 0. Let us show that kn ≤ c2, ∀n ≥ 0, for some

constant c2. Indeed, if this were not the case, there would exist a subsequence
denoted by {kn} increasing to infinity and then

1 = ρψ
[
φ′(kn|Pn|)

]
≥ lim
T→+∞

1

2T

∫ +T

−T
ψ(φ′(kn|Pn(x)|)) dx

≥ lim
T→+∞

1

2T

∫

Gn

ψ(φ′(kn|Pn(x)|)) dx

≥ lim
T→+∞

1

2T

∫

Gn

ψ(φ′(knα1)) dt ≥ θ1 · ψ
[
φ′(knα1)

]
→ ∞, as n→ ∞,

where Gn, θ1, α1 are defined in Lemma 1. A contradiction. Now the sequence
{kn} being bounded, there exists a subsequence denoted by {kn} that converges
to some k0 with 0 < k0 < +∞. We assert that limn→∞ ρφ(knPn) = ρφ(k0f).
Indeed, we have by 1. and 2. of 2.2.,

ρφ(knPn − k0f) ≤
1

2
ρφ(2(kn − k0)Pn) +

1

2
ρφ(2k0(Pn − f))

≤ |kn − k0|ρφ(f) +
1

2
ρφ(2k0(Pn − f))

and then limn→∞ ρφ(knPn − k0f) = 0. Now, in view of Proposition 1.(iii) it
follows that limn→∞ ρφ(knPn) ≥ ρφ(k0f). On the other hand, from the inequality
ρφ(knPn) ≤ ρφ(knf) (cf. 2.2.1.), we have

lim
n→∞

ρφ(knPn) ≤ lim
n→∞

ρφ(knf) = lim
n→∞

ρφ(knf) = ρφ(k0f).
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Hence,

lim
n→∞

ρφ(knPn) ≤ ρφ(k0f) ≤ lim
n→∞

ρφ(knP ), i.e. lim
n→∞

ρφ(knPn) = ρφ(k0f).

Finally, letting n→ ∞ in (4.4) we get,

|||f |||φ =
1

k0
(ρφ(k0f) + 1).

(ii) Suppose first that f ∈ {u.a.p.}, f 6= 0. Let g ∈ Bψ a.p. Then:

(a) If ρψ(g) ≤ 1, we have M(|fg|) ≤ |||f |||φ.

(b) If ρψ(g) > 1, we have ρψ
( g
ρψ(g)

)
≤ 1

ρψ(g)
· ρψ(g) = 1 and then,

M
(∣∣f g

ρψ(g)

∣∣) ≤ |||f |||φ.

It follows that in all cases, we have M(|fg|) ≤ max(1, ρψ(g)) · |||f |||φ.

Suppose now that g = φ′( f
|||f |||φ

), hence g ∈ {u.a.p.}. Using the case of equality

in the Young’s inequality and the fact that in this case the limits exist, it follows:

ρφ

(
f

|||f |||φ

)
+ ρψ(g) =M

(∣∣∣∣
f

|||f |||φ
· g

∣∣∣∣
)

≤ max(1, ρψ(g))

so that we get ρφ
( f
|||f |||φ

)
≤ 1.

Consider now the case of f ∈ Bφ a.p. Let {Pn} be the sequence of Bochner-Fejèr
polynomials of the approximation of f . We have:

ρφ

(
Pn

|||Pn|||φ

)
≤ 1, ∀n ≥ 1.

But, in view of Lemma 4(i) and 1. of 2.2., we can write:

|||Pn|||φ = inf
k>0

{
1

k
(1 + ρφ(kPn))

}
≤ inf
k>0

{
1

k
(1 + ρφ(kf))

}
= |||f |||φ,

so that,

ρφ

(
Pn

|||f |||φ

)
≤ ρφ

(
Pn

|||Pn|||φ

)
≤ 1,

and then by (ii) of Proposition 1, ρφ
( f
|||f |||φ

)
≤ 1.

(iii) From the inequality ρφ
(φ(1)f
|||f |||φ

)
≤ φ(1) · ρφ

( f
|||f |||φ

)
≤ φ(1) it follows ‖f‖φ ≤

1
φ(1)

|||f |||φ. Now, in view of (4.2), we get φ(1) · ‖f‖φ ≤ |||f |||φ ≤ 1
ψ(1)

‖f‖φ. �
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Lemma 5. If f ∈ Bψ a.p. then

|||f |||ψ = sup
{
|M(fg)|, g ∈ Bφ a.p., ρφ(g) ≤ 1

}

= sup
{
|M(fQ)|, Q ∈ P , ρφ(Q) ≤ 1

}
.

Proof: We consider first the case when f = P ∈ P . In view of (4.1) we have
|M(PQ)| ≤ |||P |||ψ , ∀Q ∈ {u.a.p.}, ρφ(Q) ≤ 1. Moreover, from the proof of
Lemma 4.(i), there exists 0 < k0 < +∞ such that ρψ[φ

′(k0|P |)] = 1 and

|||P |||ψ =M
(
|P | · ψ′(k0|P (x)|)

)
=M

(
P (x) · sign P (x) · ψ′(k0|P (x)|)

)
.

Now, since sign P (x) · ψ′(k0|P (x)|) ∈ {u.a.p.}, it follows that

(4.5) |||P |||ψ = sup
{
|M(PQ)| , Q ∈ {u.a.p.}, ρφ(Q) ≤ 1

}
.

(To see that sign P (x) · ψ′(k0|P (x)|) ∈ {u.a.p.}, note that the function F (u) =

u · ψ
′(k0|u|)
|u|

if u 6= 0 and F (0) = 0 is continuous so that F (P ) ∈ {u.a.p.} if

P ∈ {u.a.p.}.) In fact, we have also |||P |||ψ = sup{|M(PQ)|, Q ∈ P , ρφ(Q) ≤ 1}.
Indeed, from (4.5) we may write: ∀ ε > 0, ∃Qε ∈ {u.a.p.} such that ρφ(Qε) ≤ 1

and |||P |||ψ ≤ |M(PQε)| + ε. But, for Qε ∈ {u.a.p.}, we may find Q̃ε ∈ P with

ρφ(Q̃ε) ≤ ρφ(Qε) ≤ 1 and ‖Q̃ε −Qε‖φ ≤ ε
‖P‖ψ

. It follows then,

|M(PQε)| ≤ |M(PQ̃ε)|+M(|P | · |Qε − Q̃ε|)

≤ |M(PQ̃ε)|+ ‖P‖ψ · ‖Qε − Q̃ε‖φ ≤ |M(PQ̃ε)|+ ε

and then |||P |||ψ ≤ |M(PQ̃ε)| + 2ε. Finally, |||P |||ψ = sup{|M(PQ)|, Q ∈

P , ρφ(Q) ≤ 1}. Consider now the general case of f ∈ Bψ a.p. Let {Pn} be

the sequence of Bochner-Fejèr’s polynomials that converge to f in Bψ a.p. Put

I(f) = sup{|M(fQ)|, Q ∈ P , ρφ(Q) ≤ 1}.

Then I(f) ≤ sup{M(|fQ|), Q ∈ P , ρφ(Q) ≤ 1} ≤ |||f |||ψ . Moreover, ∀ ε >
0, ∃n0 such that ∀n ≥ n0 one has, |||f − Pn|||ψ ≤ ε and |||f |||ψ ≤ |||Pn|||ψ + ε.
Then, using the particular case and Hölder’s inequality,

|||f |||ψ − ε ≤ |||Pn|||ψ = sup{|M(PnQ)|, Q ∈ P , ρφ(Q) ≤ 1}

≤ sup{‖f − Pn‖ψ · ‖Q‖φ, Q ∈ P , ρφ(Q) ≤ 1}

+ sup{|M(fQ)|, Q ∈ P , ρφ(Q) ≤ 1}

≤ I(f) + ε.

Finally, I(f) ≤ |||f |||ψ ≤ I(f) + 2ε. Now, since ε > 0 is arbitrary, we get I(f) =
|||f |||ψ . This is the desired result. �
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5. Reflexivity of the space B̃φ a.p.

Theorem 1. The space B̃φ a.p. is reflexive iff φ ∈ ∆2 ∩ ▽2 (i.e. φ and its con-
jugate ψ satisfy the ∆2-condition).

Proof: Sufficiency. If φ ∈ ∆2∩▽2 then (cf. [5]), there exists an Orlicz function
φ1 equivalent to φ and satisfying the ∆2-condition (with its conjugate function) on
R+ = [0,+∞[ . We also know that we may associate with φ1 an equivalent func-
tion φ2 which is uniformly convex on R+. Clearly φ2 satisfies the ∆2-condition

and is also strictly convex on R+. From [8] the space B̃φ a.p. is then uniformly
convex and hence also reflexive.

Necessity. Suppose that φ does not satisfy the ∆2-condition. We will show

that B̃φa.p. contains an isometric copy of C0, the classical Banach space of se-
quences converging to 0. This leads to a contradiction with the reflexivity of

B̃φ a.p. Let Sn, n ≥ 1, be a family of disjoints subsets of [0, 1[ such that

0 < µ(Sn) ≤
φ(1)
2n and

⋃
n≥1 Sn ⊂ [0, 1[ . Let an,1, n ≥ 1 be a sequence of

real numbers with φ(an,1) >
1

µ(Sn)
≥ 2n

φ(1)
. Since φ does not satisfy the ∆2-

condition, for every fixed n ≥ 1, we may find a sequence (an,k)k≥1 increasing to

infinity and such that φ((1 + 1k )an,k) > 2
kφ(an,k), k ≥ 1. For each n ≥ 1, let

{Sn,k} be a family of disjoint subsets of Sn with µ(Sn,k) =
φ(1)

2n+kφ(an,k)
, and set

fn =
∑
k≥0 an,kχSn,k on [0, 1[ . Let f̃n be the periodic extension of fn to the whole

R, with period τ = 1. By Lemma 2 we know that f̃n ∈ B̃φ a.p., n = 1, 2, . . . .
Moreover,

ρφ(f̃n) =

∫ 1

0
φ(|fn(t)|) dt =

∑

k≥1

φ(an,k)µ(Sn,k)

=
∑

k≥1

φ(1)

2n+k
=
φ(1)

2n
≤ φ(1), n = 1, 2, . . . .

For α > 1 there exists k0 such that 1 +
1
k
< α, ∀ k ≥ k0 and thus,

(5.1)

ρφ(αf̃n) =

∫ 1

0
φ(α|fn(t)|) dt =

∑

k≥1

φ(αan,k)µ(Sn,k)

≥
∑

k≥1

φ

((
1 +
1

k

)
an,k

)
µ(Sn,k)

≥
∑

k≥k0

2kφ(an,k)µ(Sn,k) ≥
∑

k≥k0

φ(1)

2n
= +∞, ∀n ≥ 1.

We get finally ‖f̃n‖φ = 1.
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With each c = (cn)n≥1 ∈ C0 we associate the function f̃c =
∑
n≥1 cnf̃n. We

assert that f̃c ∈ B̃φa.p. Indeed, if f̃N =
∑N
n=1 cnf̃n, we have clearly f̃N ∈ Bφ a.p.

and then it is sufficient to show that the sequence {f̃N} is norm convergent to f̃c
or that for each λ > 0, limN→∞ ρφ(λ(f̃c − f̃N )) = 0.

(5.2)

ρφ(λ(f̃c − f̃N )) = ρφ

( ∑

n≥N

λcnf̃n

)
=

∫ 1

0
φ

( ∑

n≥N

λcnfn

)
dt

=
∑

n≥N

1∫

0

φ(λcnfn) dt.

Take N such that λcn < 1 for n ≥ N , we will have,

(5.2) =
∑

n≥N

∑

k≥1

φ(λcnan,k)µ(Sn,k) ≤
∑

n≥N

∑

k≥1

φ(an,k)µ(Sn,k)

≤
∑

n≥N

( ∑

k≥1

φ(1)

2n+k

)
≤
φ(1)

2N

which tends to zero when N → ∞. Hence, the space being complete (cf. [4]), we

get f̃c ∈ B̃φ a.p. Now consider the mapping,

P : C0 −→ B̃φ a.p.

C = (cn)n≥1 99K f̃c.

We will show that P is an isometry. For λ < ‖c‖∞ there exists an n0 such that
cn0
λ = α0 > 1. Consequently:

ρφ

(
f̃c

λ

)
=

∫ 1

0
φ

( ∑

n≥1

cn

λ
fn

)
dt ≥

∫ 1

0
φ(αn0fn0) dt = +∞, (see (5.1)).

If λ ≥ ‖c‖∞, we will have,

ρφ

(
f̃c

λ

)
=

∫ 1

0
φ

( ∑

n≥1

cn

λ
fn

)
dt ≤

∑

n≥1

∫ 1

0
φ(fn) dt ≤

∑

n≥1

( ∑

k≥1

φ(1)

2n+k

)
≤ φ(1).

Finally, ‖f̃c‖φ = ‖c‖∞ and P is an isometry.

Necessity of the ∆2-condition for ψ. Since φ ∈ ∆2, from Lemma 2.(ii),

B̃φ a.p. contains an isometric copy of Lφ([a, b]) for each a, b ∈ R. Now, the

∆2-condition for ψ is necessary for the reflexivity of the Orlicz spaces L
φ([a, b]),

a, b ∈ R, and hence also for the reflexivity of B̃φa.p. �
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6. Riesz representation theorem in Bφ a.p.

Theorem 2 (Riesz representation theorem). If φ ∈ ∆2 ∩ ▽2 then [B
φ a.p.]∗ is

isomorphically isometric to Bψ a.p. More precisely: If G is a continuous linear
functional on Bφ a.p. then there exists a unique g ∈ Bψ a.p. such that:

(i) G(f) =M(fg), ∀ f ∈ Bφa.p.;
(ii) ‖G‖ = |||g|||ψ .

Conversely, the condition φ ∈ ∆2 ∩▽2 is necessary for this identification.

Proof: Let us consider the linear mapping

A : Bψ a.p. → [Bφ a.p.]∗

g 99K A(g)
, A(g)(f) =M(fg).

A is well defined, and in fact it is an isometry since by Lemma 5:

‖A(g)‖ = sup
ρφ(f)≤1

|M(fg)| = |||g|||ψ .

It remains only to show that A is surjective. Let E = A(Bψ a.p.). Then E is a

complete subspace of [Bφ a.p.]∗. From Banach’s classical results, it is sufficient to

show that for each F ∈ [Bφ a.p.]∗∗ such that F (A(g)) = 0, ∀ g ∈ Bψ a.p., we have

also F ≡ 0 i.e. F (h) = 0, ∀h ∈ [Bφ a.p.]∗. For, let F ∈ [Bφa.p.]∗∗ be such that
F (A(g)) = 0, ∀ g ∈ Bψ a.p. Since Bφa.p. is reflexive, there exists f ∈ Bφ a.p.
such that π(f) = F , (where π is the canonical isometry), i.e.

π(f)(A(g)) = A(g)(f) =M(fg) = 0, ∀ g ∈ Bψ a.p.

It follows immediately (see Lemma 5) that |||f |||φ = 0 and then ‖F‖ = 0.

Conversely, if the identification [Bφ a.p.]∗ = Bψ a.p. holds, we will also have

[Bφ a.p.]∗∗ = [Bψ a.p.]∗ = Bφ a.p.,

so that Bφ a.p. is reflexive and, consequently, φ ∈ ∆2 ∩▽2. �
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