Locally compact linearly Lindelöf spaces

KENNETH KUNEN

Abstract. There is a locally compact Hausdorff space which is linearly Lindelöf and not Lindelöf. This answers a question of Arhangel'skii and Buzyakova.

Keywords: linearly Lindelöf, weak P-point

Classification: Primary 54D20, 54D80; Secondary 03C20

This note is devoted to the proof of:

Theorem 1. There is a compact Hausdorff space X and a point p in X such that:

- (1) $\chi(p,X) > \omega;$
- (2) for all regular $\kappa > \omega$, no κ -sequence of points distinct from p converges to p.

As usual, $\chi(p, X)$, the *character* of p in X, is the least size of a local base at p. Regarding (2), if $\vec{q} = \langle q_{\alpha} : \alpha < \kappa \rangle$ is a κ -sequence, we say $\vec{q} \to p$ iff whenever U is a neighborhood of p, $\exists \alpha \forall \beta > \alpha [q_{\beta} \in U]$. Then, (2) asserts that $\vec{q} \neq p$ whenever $\kappa > \omega$ is regular and all the $q_{\alpha} \neq p$. Observe that if $\chi(p, X) = \omega$, then (2) holds trivially.

Theorem 1 answers Question 1 of Arhangel'skii and Buzyakova [1]. They point out that given such an X, p, the space $X \setminus \{p\}$ is linearly Lindelöf (by (2)), not Lindelöf (by (1)), and locally compact.

Note that in any compact Hausdorff space X, if the point x is not isolated, then there is a sequence of type $\operatorname{cf}(\chi(x, X))$ converging to x. Thus, the X, p in Theorem 1 must satisfy $\operatorname{cf}(\chi(p, X)) = \omega$. In our example, $\chi(p, X)$ will be \beth_{ω} .

Our X will be constructed as an inverse limit. We begin by reviewing some basic terminology:

Definition 2. An inverse system is a sequence $\langle X_n, \pi_n^{n+1} : n \in \omega \rangle$, where each X_n is a compact Hausdorff space, and each π_n^{n+1} is a continuous map from X_{n+1} onto X_n .

Such an inverse systems yields a compact Hausdorff space,

$$X_{\omega} = \lim_{n \to \infty} X_n = \{ x \in \prod_n X_n : \forall n \ [x_n = \pi_n^{n+1}(x_{n+1})] \}.$$

Author partially supported by NSF Grant DMS-0097881.

K. Kunen

It also yields the obvious maps $\pi_m^{\omega} : X_{\omega} \twoheadrightarrow X_m$ for $m < \omega$ and $\pi_m^n : X_n \twoheadrightarrow X_m$ for $m \le n < \omega$.

Lemma 3. Suppose that $\langle X_n, \pi_n^{n+1} : n \in \omega \rangle$, is an inverse system and $p = \langle p_n : n \in \omega \rangle \in X = X_\omega$ satisfies:

- (A) each p_n is a weak P_{\square_n} -point in X_n ;
- (B) each $\chi(p_n, X_n) \leq \beth_{n+1}$;
- (C) each $(\pi_0^n)^{-1}{p_0}$ is nowhere dense in X_n .

Then X, p satisfies Theorem 1 with $\chi(p, X) = \beth_{\omega}$.

As usual, $y \in Y$ is a weak P_{κ} -point iff y is not in the closure of any subset of $Y \setminus \{y\}$ of size less than κ , and y is a P_{κ} -point iff the intersection of fewer than κ neighborhoods of y is always a neighborhood of y. In a Hausdorff space, every P_{κ} -point is a weak P_{κ} -point, but note that in (A), the p_n cannot all be P_{\Box_n} -points, as that would contradict (C). Note that (C) cannot be omitted; it is easy to construct an example satisfying (A) and (B) where each X_n is a LOTS and each π_n^{n+1} collapses an interval around p_{n+1} to the point p_n ; then $\chi(p, X) = \omega$.

PROOF OF LEMMA 3: First, note that one local base at any $x \in X$ consists of all the $(\pi_n^{\omega})^{-1}(U)$ such that $n \in \omega$ and U is an open neighborhood of x_n in X_n . It follows that:

- (a) $\chi(p, X_{\omega}) \leq \sup_{n} \chi(p_n, X_n) = \beth_{\omega};$
- (β) $(\pi_0^{\omega})^{-1}\{p_0\}$ is nowhere dense in X_{ω} .

Now, to verify (2) of Theorem 1, assume that $\vec{q} = \langle q_{\alpha} : \alpha < \kappa \rangle \to p$, where $\kappa > \omega$ is regular and all the $q_{\alpha} \neq p$. The definition of $\vec{q} \to p$ implies that $\kappa \leq \chi(p, X)$, so fix m with $\kappa < \beth_m$. Now, $q_{\alpha} \neq p$ implies that $\pi_n^{\omega}(q_{\alpha}) \neq p_n = \pi_n^{\omega}(p)$ for some n, so we can fix $n \geq m$ and an $S \subseteq \kappa$ with $|S| = \kappa$ and $\pi_n^{\omega}(q_{\alpha}) \neq p_n$ for all $\alpha \in S$. But then $p_n \in cl\{\pi_n^{\omega}(q_{\alpha}) : \alpha \in S\}$, contradicting (A).

In view of (α) , to prove that $\chi(p, X) = \beth_{\omega}$, it is sufficient to fix $m < \omega$ and prove that $\chi(p, X) \ge \beth_m$. Suppose that \mathcal{B} were a local base at p in Xwith $|\mathcal{B}| < \beth_m$. Let $F = (\pi_m^{\omega})^{-1} \{p_m\}$. By (β) , F is nowhere dense in X, so for each $U \in \mathcal{B}$, we can choose $y_U \in U \setminus F$. Then $p \in \operatorname{cl}\{y_U : U \in \mathcal{B}\}$, so $p_m = \pi_m^{\omega}(p) \in \operatorname{cl}\{\pi_m^{\omega}(y_U) : U \in \mathcal{B}\}$, contradicting (A). \square

We now need to find an inverse system satisfying the hypotheses of Lemma 3. X_n will be $\beta \beth_n$. In general, $\beta \kappa$ denotes the Čech compactification of a discrete κ ; equivalently, $\beta \kappa$ is the space of ultrafilters on κ ; thus, the remainder, $\kappa^* = \beta \kappa \backslash \kappa$, is the space of non-principal ultrafilters on κ .

The p_n will be good ultrafilters. Following Keisler [5], an ultrafilter x on κ is good (i.e., κ^+ -good) iff given $A_s \in x$ for $s \in [\kappa]^{<\omega}$, there are $B_\alpha \in x$ for $\alpha < \kappa$ such that $\bigcap_{\alpha \in s} B_\alpha \subseteq A_s$ for all non-empty $s \in [\kappa]^{<\omega}$. For every infinite κ , there is a non-principal $x \in \beta \kappa$ such that x is a good ultrafilter (Keisler [5] under GCH and Kunen [7] in ZFC; see also Chang and Keisler [3, Theorem 6.1.4]). The following folklore result about such ultrafilters is proved in [2] and [4]:

Lemma 4. If x is a good ultrafilter on κ , then x is a weak P_{κ} -point in $\beta \kappa$.

Thus, fixing $p_n \in \beta \beth_n$ to be good will handle (A) of Lemma 3, but to get $p = \langle p_n : n \in \omega \rangle$ to really define a point in $X = X_\omega$, we need to choose the $\pi_n^{n+1} : \beta \beth_{n+1} \twoheadrightarrow \beta \beth_n$ such that each $p_n = \pi_n^{n+1}(p_{n+1})$. In fact, π_n^{n+1} will be $\beta(\Pi_n^{n+1})$, where $\Pi_n^{n+1} : \beth_{n+1} \twoheadrightarrow \beth_n$. Here, as usual, if $f : P \to Q$, where P, Q are Tychonov spaces, then $\beta f : \beta P \to \beta Q$ denotes its Čech extension. In the special case of discrete P, Q, where $x \in \beta P$ is an ultrafilter on P, $(\beta f)(x) \in \beta Q$ is the induced measure, $\{B \subseteq Q : f^{-1}(B) \in x\}$. Now, showing that appropriate $\Pi_n^{n+1} : \beth_{n+1} \twoheadrightarrow \beth_n$ can be chosen requires a digression:

Definition 5. An ultrafilter x on κ is regular iff there are $E_{\alpha} \in x$ for $\alpha < \kappa$ such that $\bigcap_{n} E_{\alpha_{n}} = \emptyset$ whenever the α_{n} (for $n \in \omega$) are distinct.

Clearly, such x are countably incomplete. Moreover,

Lemma 6. If x is a countably incomplete good ultrafilter on κ , then x is regular.

This is Exercise 6.1.3 of [3]; a proof is contained in the proof of Lemma 2.1 of Keisler [6]. The proof of universality of regular ultrapowers ([3, Theorem 4.3.12]) is easily modified to produce:

Lemma 7. Suppose that $\kappa \geq 2^{\lambda}$ and y is any ultrafilter on λ . Let x be a regular ultrafilter on κ . Then there is an $f : \kappa \to \lambda$ such that $(\beta f)(x) = y$.

PROOF: Since $\kappa \geq 2^{\lambda}$, we may list the elements of y (possibly with repetitions) as $\{B_{\alpha} : \alpha < \kappa\}$. Let the $E_{\alpha} \subseteq \kappa$ be as in Definition 5. Choose $g : \kappa \to \lambda$ such that $g(\xi)$ is some element of $\bigcap \{B_{\alpha} : \xi \in E_{\alpha}\}$ (observe that this is a finite intersection). Then $(\beta g)(x) = y$ because each $g^{-1}(B_{\alpha}) \supseteq E_{\alpha} \in x$. This g may fail to be onto, but we may now fix a set $A \in x$ with $|\kappa \setminus A| = \kappa$, and choose $f : \kappa \twoheadrightarrow \lambda$ such that $f \upharpoonright A = g \upharpoonright A$, so that $(\beta f)(x) = (\beta g)(x) = y$.

PROOF OF THEOREM 1: We obtain the situation of Lemma 3. Fix $X_n = \beta \beth_n$, and fix $p_n \in \beta \beth_n$ to be good and non-principal (and hence countably incomplete). Applying Lemmas 6 and 7, fix $\Pi_n^{n+1} : \beth_{n+1} \twoheadrightarrow \beth_n$ so that setting $\pi_n^{n+1} = \beta(\Pi_n^{n+1})$ yields $p_n = \pi_n^{n+1}(p_{n+1})$. Then (A) follows by Lemma 4, and (B) is clear, since there is a base for the space X_n of size $2^{\beth_n} = \beth_{n+1}$. Finally, (C) holds because $(\pi_0^n)^{-1} \{p_0\} \subseteq (\beth_n)^*$, which is nowhere dense in $\beta \beth_n$.

References

- Arhangel'skii A.V., Buzyakova R.Z., Convergence in compacta and linear Lindelöfness, Comment. Math. Univ. Carolinae 39 (1998), 159–166.
- [2] Baker J., Kunen K., Limits in the uniform ultrafilters, Trans. Amer. Math. Soc. 353 (2001), 4083–4093.
- [3] Chang C.C., Keisler H.J., Model Theory, Third Edition, North-Holland, 1990.
- [4] Dow A., Good and OK ultrafilters, Trans. Amer. Math. Soc. 290 (1985), 145–160.

K. Kunen

- [5] Keisler H.J., Good ideals in fields of sets, Ann. of Math. 79 (1964), 338-359.
- [6] Keisler H.J., Ultraproducts of finite sets, J. Symbolic Logic 32 (1967), 47-57.
- [7] Kunen K., Ultrafilters and independent sets, Trans. Amer. Math. Soc. 172 (1972), 299-306.

UNIVERSITY OF WISCONSIN, MADISON, WI 53706, U.S.A.

E-mail: kunen@math.wisc.edu

(Received October 11, 2001)