On the convergence of certain sums of independent random elements

J.C. Ferrando

Abstract

In this note we investigate the relationship between the convergence of the sequence $\left\{S_{n}\right\}$ of sums of independent random elements of the form $S_{n}=\sum_{i=1}^{n} \varepsilon_{i} x_{i}$ (where ε_{i} takes the values ± 1 with the same probability and x_{i} belongs to a real Banach space X for each $i \in \mathbb{N}$) and the existence of certain weakly unconditionally Cauchy subseries of $\sum_{n=1}^{\infty} x_{n}$.

Keywords: independent random elements, copy of c_{0}, Pettis integrable function, perfect measure space
Classification: 46B15, 46B09

1. Preliminaries

Our notation is standard ([1], [3], [4], [9]). Throughout this note Δ will denote the Cantor space $\{-1,1\}^{\mathbb{N}}, \Sigma$ the σ-algebra of subsets of Δ generated by the n-cylinders of Δ for each $n \in \mathbb{N}$, and ν the Borel probability $\otimes_{i=1}^{\infty} \nu_{i}$ on Σ, where $\nu_{i}: 2^{\{-1,1\}} \rightarrow[0,1]$ is defined by $\nu_{i}(\emptyset)=0, \nu_{i}(\{-1\})=\nu_{i}(\{1\})=1 / 2$ and $\nu_{i}(\{-1,1\})=1$ for each $i \in \mathbb{N}$. In what follows X will be a real Banach space and $L_{0}(\nu, X)$ will stand for the (F)-space over \mathbb{R} of all [classes of] ν-measurable X-valued functions equipped with the (F)-norm

$$
\|f\|_{0}=\int_{\Delta} \frac{\|f(\varepsilon)\|}{1+\|f(\varepsilon)\|} d \nu(\varepsilon)
$$

of the convergence in probability. We shall represent by $P_{1}(\nu, X)$ the (real) normed space consisting of all those [classes of] ν-measurable X-valued Pettis integrable functions f defined on Δ provided with the semivariation norm

$$
\|f\|_{P_{1}(\nu, X)}=\sup \left\{\int_{\Delta}\left|x^{*} f(\omega)\right| d \nu(\omega): x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\}
$$

As it is well known, $P_{1}(\nu, X)$ is not a Banach space whenever X is infinitedimensional. In the sequel we shall shorten by wuC the sentence 'weakly unconditionally Cauchy'.

In [5] we have shown that if a series of independent random elements of the form $\sum_{n=1}^{\infty} f_{n}$, with $f_{n}(\omega)=\omega_{n} x_{n}$ for $\omega \in \Delta$ and $\left\{x_{n}\right\} \subseteq X$, converges ν-almost surely in X, then $\sum_{n=1}^{\infty} x_{n}$ has a subseries which is unconditionally convergent in norm. In this note we continue the investigation on the relationship among the convergence of the functional series $\sum_{n=1}^{\infty} f_{n}$ under different topologies and the existence of certain wuC subseries of $\sum_{n=1}^{\infty} x_{n}$.

2. On certain weakly unconditionally Cauchy subseries

Lemma 2.1. If there are a closed set A in Δ with $\nu(A)>1 / 2$ and a nonempty set $S \subseteq X^{*}$ such that $\sum_{i=1}^{\infty} x^{*} f_{i}(\omega)$ converges for $\omega \in A$ and $x^{*} \in S$, then there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $\sum_{i=1}^{\infty}\left|x^{*} x_{n_{i}}\right|<\infty$ for each $x^{*} \in S$.

Proof: The following fact is contained in the proof of [8, Proposition] (see also [5, Claim]). We shall denote by $C_{i_{1} i_{2} \ldots i_{k}}$ or $C_{i_{1} i_{2} \ldots i_{k}}(\varepsilon)$ any rectangle of Δ with fixed coordinates $i_{1}, i_{2}, \ldots, i_{k}$, i.e., $C_{i_{1} i_{2} \ldots i_{k}}(\varepsilon)=\left\{\omega \in \Delta: \omega_{i_{j}}=\varepsilon_{j}, 1 \leq j \leq k\right\}$ for some $\varepsilon \in \Delta$. On the other hand, given a strictly increasing sequence $Q=\left\{n_{i}\right.$: $i \in \mathbb{N}\}$ of positive integers, for each $\omega \in \Delta$ we shall design by ω^{\prime} (as in [8]) the element of Δ defined by $\omega_{i}^{\prime}=\omega_{i}$ if $i \in Q$ and $\omega_{i}^{\prime}=-\omega_{i}$ if $i \notin Q$.

Fact. Let $A \in \Sigma$. If $\nu(A)>1 / 2$, there is a strictly increasing sequence $\left\{n_{i}\right\}$ of positive integers such that $A \cap A^{\prime} \cap C_{n_{1} n_{2} \ldots n_{k}} \neq \emptyset$ for each $C_{n_{1} n_{2} \ldots n_{k}}$ and each $k \in \mathbb{N}$.

By hypothesis there is a closed set A in Δ with $\nu(A)>1 / 2$ such that $\sum_{n=1}^{\infty} \omega_{n} x^{*} x_{n}$ converges for $\omega \in A$ and $x^{*} \in S$. According to the preceding fact there exists a strictly increasing sequence $Q=\left\{n_{i}\right\}$ of positive integers such that, given $\varepsilon \in \Delta$, then $A \cap A^{\prime} \cap C_{n_{1} n_{2} \ldots n_{k}}(\varepsilon) \neq \emptyset$ for each $k \in \mathbb{N}$. Since $\left\{A \cap A^{\prime} \cap C_{n_{1} n_{2} \ldots n_{k}}(\varepsilon)\right.$: $k \in \mathbb{N}\}$ is a decreasing sequence of nonempty closed sets in the compact space Δ, there is a point ζ (which depends of ε) in Δ which belongs to the intersection $\bigcap_{k=1}^{\infty} A \cap A^{\prime} \cap C_{n_{1} n_{2} \ldots n_{k}}(\varepsilon)$. Hence, for each $x^{*} \in S$ and each pair (r, s) of positive integers, with $s>r$, one has

$$
\left|\sum_{i=r+1}^{s} \varepsilon_{i} x^{*} x_{n_{i}}\right|=\left|\sum_{i=r+1}^{s} \zeta_{n_{i}} x^{*} x_{n_{i}}\right| \leq \frac{1}{2}\left(\left|\sum_{i=n_{r}+1}^{n_{s}} x^{*} f_{i}(\zeta)\right|+\left|\sum_{i=n_{r}+1}^{n_{s}} x^{*} f_{i}\left(\zeta^{\prime}\right)\right|\right)
$$

Since $\zeta, \zeta^{\prime} \in A$ and $x^{*} \in S$, both series $\sum_{i=1}^{\infty} x^{*} f_{i}(\zeta)$ and $\sum_{i=1}^{\infty} x^{*} f_{i}\left(\zeta^{\prime}\right)$ are convergent. So, for a given $\epsilon>0$ there is a $k \in \mathbb{N}$ such that $\left|\sum_{i=n_{r}+1}^{n_{s}} x^{*} f_{i}(\zeta)\right|<\epsilon$ and $\left|\sum_{i=n_{r}+1}^{n_{s}} x^{*} f_{i}\left(\zeta^{\prime}\right)\right|<\epsilon$ for $s>r \geq k$, which implies that $\left|\sum_{i=r+1}^{s} \varepsilon_{i} x^{*} x_{n_{i}}\right|$ $\leq \epsilon$ for $s>r \geq k$. Hence the numerical series $\sum_{i=1}^{\infty} \varepsilon_{i} x^{*} x_{n_{i}}$ converges. Given that this is true for each $\varepsilon \in \Delta$, it follows that $\sum_{i=1}^{\infty}\left|x^{*} x_{n_{i}}\right|<\infty$ for each $x^{*} \in S$ and we are done.

Theorem 2.2. Assume that $\left\|x_{n}\right\|=1$ for each $n \in \mathbb{N}$ and X has a dual unit ball with countably many extreme points. If

$$
\sup _{n \in \mathbb{N}} \int_{\Delta}\left|x^{*} S_{n}(\omega)\right| d \nu(\omega)<\infty
$$

for each $x^{*} \in \operatorname{Ext} B_{X^{*}}$, then X contains a copy of c_{0}.
Proof: By hypothesis, for each $x^{*} \in \operatorname{Ext} B_{X^{*}}$ there exists $C_{x^{*}}>0$ such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int_{\Delta}\left|\sum_{i=1}^{n} x^{*} f_{i}(\omega)\right| d \nu(\omega)<C_{x^{*}} \tag{2.1}
\end{equation*}
$$

Hence, given $x^{*} \in \operatorname{Ext} B_{X^{*}}$, as a consequence of (2.1) and of Khinchine's inequalities there exists a $K>0$ such that

$$
\begin{align*}
\left\{\sum_{i=1}^{n} \sigma^{2}\left(x^{*} f_{i}\right)\right\}^{1 / 2}= & \left\{\sum_{i=1}^{n}\left(x^{*} x_{i}\right)^{2}\right\}^{1 / 2} \tag{2.2}\\
& \leq K \int_{\Delta}\left|\sum_{i=1}^{n} x^{*} f_{i}(\omega)\right| d \nu(\omega)<K C_{x^{*}}
\end{align*}
$$

for each $n \in \mathbb{N}$. Considering that the sequence $\left\{x^{*} f_{i}\right\}$ consists of independent random variables such that

$$
\mathbf{E}\left(x^{*} f_{i}\right)=\int_{\Delta} x^{*} f_{i}(\omega) d \nu(\omega)=0
$$

for each $i \in \mathbb{N}$, according to [7, Section 46, Theorem B] equation (2.2) ensures that $\sum_{i=1}^{\infty} x^{*} f_{i}(\omega)$ converges almost surely for $\omega \in \Delta$. Since Ext $B_{X^{*}}$ is countable, it follows that there exists a ν-null set N such that $\sum_{i=1}^{\infty} x^{*} f_{i}(\omega)$ converges for each $\omega \in \Delta-N$ and each $x^{*} \in \operatorname{Ext} B_{X^{*}}$. So, using inner regularity we may choose a closed set A with $A \subseteq \Delta-N$ and $\nu(A)>1 / 2$ such that $\sum_{i=1}^{\infty} x^{*} f_{i}(\omega)$ converges for each $\omega \in A$ and each $x^{*} \in \operatorname{Ext} B_{X^{*}}$. On the basis of Lemma 2.1, this implies that there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $\sum_{i=1}^{\infty}\left|x^{*} x_{n_{i}}\right|<\infty$ for each $x^{*} \in \operatorname{Ext} B_{X^{*}}$. Since $\sum_{n=1}^{\infty} x_{n}$ diverges, Elton's theorem guarantees that X contains a copy of c_{0}.

Proposition 2.3. If the sums $\left\{S_{n}\right\}$ are bounded inside of a complete linear subspace L of $P_{1}(\nu, X)$, then $\sum_{n=1}^{\infty} x_{n}$ has a wuC subseries.
Proof: Since $\left\{S_{n}\right\}$ is bounded inside of a complete linear subspace L of $P_{1}(\nu, X)$ and given that the canonical inclusion map from $P_{1}(\nu, X)$ into $L_{0}(\nu, X)$ has closed graph ($\left[6\right.$, Lemma 4]), then Banach-Schauder's theorem guarantees that $\left\{S_{n}\right\}$ is stochastically bounded. So, according to [9, Section 5.2.3, Theorem 2.2] the sums $\left\{S_{n}\right\}$ are bounded almost surely, i.e. $\nu\left(\left\{\omega \in \Delta: \sup _{n \in \mathbb{N}}\left\|\sum_{i=1}^{n} f_{i}(\omega)\right\|=\infty\right\}\right)$ $=0$. Hence Kwapień's theorem [8, Proposition] assures the existence of a wuC subseries of $\sum_{n=1}^{\infty} x_{n}$.

Corollary 2.4. Assume that $\left\{f_{n}\right\}$ is a basic sequence in $\widehat{P_{1}(\nu, X)}$ equivalent to the unit vector basis of c_{0}. If $\left[f_{n}\right]$ is contained in $P_{1}(\nu, X)$, then there exists a subsequence $\left\{f_{n_{i}}\right\}$ such that $\left[f_{n_{i}}\right]$ is isomorphic to a complemented copy of c_{0}.
Proof: Since the series $\sum_{i=1}^{\infty} f_{i}$ is wuC in $P_{1}(\nu, X)$, there is $K>0$ such that

$$
\sup _{n \in \mathbb{N}}\left\|\sum_{i=1}^{n} \xi_{i} f_{i}\right\|_{P_{1}(\nu, X)}<K\|\xi\|_{\infty}
$$

for each $\xi \in \ell_{\infty}$. Hence the sums $\left\{S_{n}\right\}$ are bounded in the complete linear subspace $\left[f_{i}\right.$] of $P_{1}(\nu, X)$ and Proposition 2.3 guarantees that $\sum_{n=1}^{\infty} x_{n}$ has a wuC subseries. Since $\left\|x_{n}\right\|=\left\|f_{n}\right\|_{P_{1}(\nu, X)}$ for each $n \in \mathbb{N}$, then $\inf _{n \in \mathbb{N}}\left\|x_{n}\right\|>0$ and the classic Bessaga-Pełczyński allows us to conclude that $\left\{x_{n}\right\}$ contains a subsequence $\left\{x_{n_{i}}\right\}$ equivalent to the unit vector basis of c_{0}. Therefore, there exists a bounded sequence $\left\{y_{i}^{*}\right\}$ in X^{*} such that $y_{i}^{*} x_{n_{j}}=\delta_{i j}$ for each $i, j \in \mathbb{N}$. Assuming without loss of generality that $y_{i} \in B_{X^{*}}$, set $g_{i}(\varepsilon)=\varepsilon_{i} y_{i}^{*}$ for each $i \in \mathbb{N}$ and define

$$
\left\langle g_{i}, f\right\rangle=\int_{\Delta} \varepsilon_{i} y_{i}^{*} f(\varepsilon) d \nu(\varepsilon)
$$

for each $f \in P_{1}(\nu, X)$. So we have $\left\langle g_{i}, f_{n_{j}}\right\rangle=\delta_{i j}$ for each $i, j \in \mathbb{N}$. On the other hand, denoting by C_{n} the rectangle of Δ formed by all those $\varepsilon \in \Delta$ with $\varepsilon_{n}=1$ and noting that $\nu\left(E \cap C_{n}\right) \rightarrow \nu(E) / 2$ for all $E \in \Sigma$, it follows that

$$
\mathbf{E}_{C_{n}}(\varphi)=\frac{1}{\nu\left(C_{n}\right)} \int_{C_{n}} \varphi d \nu \rightarrow \int_{\Delta} \varphi d \nu=\mathbf{E}(\varphi)
$$

for each ν-simple function $\varphi: \Delta \rightarrow \mathbb{R}$. This implies that $\mathbf{E}_{C_{n}}(\varphi) \rightarrow \mathbf{E}(\varphi)$ for each $\varphi \in L_{1}(\nu)$, which leads to $\int_{\Delta} \varepsilon_{i} \varphi(\varepsilon) d \nu \rightarrow 0$ for each $\varphi \in L_{1}(\nu)$. Since, in addition, (Δ, Σ, ν) is a perfect measure space, it can be shown as in [2] that $\left\langle g_{i}, f\right\rangle \rightarrow 0$ for each $f \in P_{1}(\nu, X)$. Consequently the map $P: P_{1}(\nu, X) \rightarrow P_{1}(\nu, X)$ defined by

$$
P f=\sum_{i=1}^{\infty}\left\langle g_{i}, f\right\rangle f_{n_{i}}
$$

is a bounded linear projection operator from the barreled space $P_{1}(\nu, X)$ onto $\left[f_{n_{i}}\right]$.

Proposition 2.5. If there exists a complete linear subspace L in $P_{1}(\nu, X)$ such that $\left\{f_{i}\right\} \subseteq L$ and $\sum_{i=1}^{\infty} f_{i}$ converges in $P_{1}(\nu, X)$ to some separably-valued $f \in L$, then there exists a subseries of $\sum_{i=1}^{\infty} x_{i}$ which is unconditionally convergent in X.

Proof: Given that $\sum_{i=1}^{\infty} f_{i}=f$ in $P_{1}(\nu, X)$ and L is complete, then $\sum_{i=1}^{\infty} f_{i}=f$ in L. Then, using the fact that the inclusion map from $P_{1}(\nu, X)$ into $L_{0}(\nu, X)$ has closed graph together with the Banach-Schauder theorem, we get that $\sum_{i=1}^{\infty} f_{i}=$ f in probability. Since the range of f is separable in norm, then [9, Section 5.2.3, Theorem 2.1] guarantees that the series $\sum_{i=1}^{\infty} f_{i}(\omega)$ converges in X to $f(\omega)$ almost surely for $\omega \in \Delta$. Hence [5, Theorem 2.1] establishes the existence of a subseries of $\sum_{n=1}^{\infty} x_{n}$ which is unconditionally convergent in X.

Question. We do not know whether the statement of Theorem 2.2 is true without the assumption that $B_{X^{*}}$ has countable many extreme points.

References

[1] Cembranos P., Mendoza J., Banach Spaces of Vector-Valued Functions, LNM 1676, Springer, 1997.
[2] Díaz S., Fernández A., Florencio M., Paúl P.J., Complemented copies of c_{0} in the space of Pettis integrable functions, Quaestiones Math. 16 (1993), 61-66.
[3] Diestel J., Sequences and series in Banach spaces, GTM 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984.
[4] Diestel J., Uhl J., Vector measures, Math Surveys 15, Amer. Math. Soc., Providence, 1977.
[5] Ferrando J.C., On a theorem of Kwapień, Quaestiones Math. 24 (2001), 51-54.
[6] Freniche F.J., Embedding c_{0} in the space of Pettis integrable functions, Quaestiones Math. 21 (1998), 261-267.
[7] Halmos P.R., Measure Theory, GTM 18, Springer, New York-Berlin-Heidelberg-Barcelona, 1950.
[8] Kwapień S., On Banach spaces containing c_{0}, Studia Math. 52 (1974), 187-188.
[9] Vakhania N.N., Tarieladze V.I., Chobanian S.A., Probability Distributions on Banach Spaces, D. Reidel Publishing Company, Dordrecht, 1987.

Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche (Alicante), Spain
E-mail: jc.ferrando@umh.es

