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ON THE GENERALIZED ABSOLUTE SUMMABILITY FACTORS
OF INFINITE SERIES

(COMMUNICATED BY HUSEYIN BOR)

TUBA ARI

ABSTRACT. In this paper, we generalize a known result concerning the absolute
Riesz summability factors of infinite series.

1. INTRODUCTION

Let )" a,, be a given infinite series with partial sums (s, ). We denote by u% and
t& we denote the n-th Cesaro means of order o, with oo > —1, of the sequence (sy,)
and (nay,), respectively, that is (see []),

1 n . 1 n .
ud = yn ;)Ag,vs,, and t& = yn ;Ag,vvav, (tnl =t,) (1.1)

where

AY = (a+1)(a +n2') (a4 n) =0(n%), A%, =0 for n>0. (1.2)

The series Y a,, is said to be summable |C, |y, k > 1, if (see [B [7])

o0 o 1
S o ug — g F =) E|t§|k < 0. (1.3)
n=1 n=1

If we take oo = 1, then |C, o] summability reduces to |C, 1|, summability. Let (py,)
be a sequence of positive real numbers such that

Pn:va%oo as n—oo, (P_yj=p_;=0,i>1). (1.4)
v=0

The sequence-to-sequence transformation
1 n
Wy, = Fn UE_OpUsU (1.5)
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defines the sequence (w,) of the Riesz mean or simply the (N,p,) mean of the
sequence (s,,), generated by the sequence of coefficients (p,) (see [6]). The series
>~ ay is said to be summable | N, py, |, k > 1, if (see [1])

Z(Pn/pn)k71 | wn — wn—1 |*< o0. (1.6)
n=1
In the special case when p, = 1 for all values of n (resp. k = 1), | N,p, |,

summability is the same as | C,1 |, (resp.| N,p, |) summability. Given a normal

matrix A = (an,), we associate two lower semi-matrices A = (@) and A= (Gno)
as follows:

n
Qpy = E [T naU:O;L“' (17)
1=v
and
apo = @po = 00, Gny = Gny — An—1,0, N =1,2,... (1.8)

It may be noted that A and A are the well-known matrices of series-to-sequence
and series-to-series transformations, respectively. Then, we have

An(s) :Zamsv, n=0,1,... (1.9)
v=0

and

An(s) = An1(s) = Y oty (1.10)

v=0

The series Y a,, is said to be summable | A, p, |k, k > 1, if (see [9])

o JE—

> (Pa/pn)f ™ [ AAL(s) < o0, (1.11)

n=1
where

AA,(s) = An(s) — Ap_1(s).
In the special case, for an, = py/Py, |A, pn|r summability is the same as | N, p, |,
summability. For any sequence ()\,) we write that A%\, = A\, — A\,41 and
Adp = A — A1
2. KNOWN RESULTS

The following theorems are known dealing with | N, p,, |, summability factors of
infinite series.

Theorem A ([2]). Let (p,) be a sequence of positive numbers such that
P, = O(np,) as n — oo. (2.1)
If the conditions
An =0(1) as n — oo, (2.2)

> Xy | A%X, |=0(1) as m — 0, (2.3)
n=1
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Z | tn [F= O(X,n) as m — oo, (2.4)

are satisfied, then the series Y. an\, is summable | N, py, |x, k > 1.

If we take p, = 1 for all values of n, then we get the known result of Mazhar
dealing with | C,1 |, summability factors of infinite series (see [§]).

Theorem B ([3]). If the sequences (X,,), (A\n), and (pn) satisfy the conditions
(12)-(14) and

n | tn [
Xk‘ 1

=0(X,) as m — oo, (2.5)

w‘ﬁ

then the series Y an\y, is summable | N, p, |, k > 1.

Remark. It should be noted that condition is reduced to the condition ,
when k = 1. When k > 1, condition is weaker than condition but the

converse is not true (see [3]).

3. MAIN RESULT

The aim of this paper is to prove the following theorem.

Theorem 3.1. Let A = (an,) be a positive normal matriz such that

Gno=1, n=0,1,2, ..., (3.1)

anfl,v Z Anoy f07" n 2 v+ ]- (32)
Pn

o =0 (%) (3.3)

anp+1 = O (V|Apany) - (3.4)

If the sequences (X,,) be a positive non-decreasing sequence. If the sequences (X,,),

(An), and (py) satisfy the conditions (2.1)-(2.9) and (2.5), then the series Y anA,

is summable | A,py, |, k> 1.
We need the following lemma for the proof of our theorem.

Lemma 3.2 ([2]). Under the conditions of the theorem, we get

nX, | A\, |= O(1), as n — oo, (3.5)
> X | ANy < o0, (3.6)
n=1

Xn | An |=0O(1), as n — oo. (3.7)
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4. PROOF OF THE THEOREM

Let (T},) be the A-transform of the series > a,A,. Then, by definition, we have

T,—T,_1 = ZA (anv U) ZTaT AnnAn Zvav
A’Vl’UA’U nnAn
= Z AUL(’U + 1)t, + L(n + 1)t,
v n
Now, since
A dnUAv _ (U + 1)dnv)\v 'Uan,v-i-l)\v—i-l
Y v v(v+1)
(DA (ne) Ao F (V4 1)1 ANy + g, v+1)\v+1
v(v+1)
we have that
T _T (n+ Dapptain —nZ:lA .y )\v+1
n n—1 - n < v\ v
n—1
v+1 1
+ Z G v+1A>\ t + Z Gp v+1>\v+1t

v=1 v=1
= Tn,l + Tn,2 + Tn,S + Tn,4

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to
show that

o] P k—1

Z (") | T |F< 00,  for r=1,2,34. (4.1)
Pn

n=1

Firstly, we have that

m P k—1
Z(p") Tl = 0 Z|An|’“|xn|am|tn|’ﬂ

m

n | tn |*
= 0 [ A | PR
n; Pnthl
pvlt o~ Pn tn
uuz nl 3B

= 0O(1) | AN, | X +O(1) | Ay | X = O(1), as m — oo,

Il
gg

3
Il
—_

3
|

3
Il
_
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by virtue of the hypotheses of the theorem and Lemma. Also, as in T}, 1 we have

that

m+1 P k—1 /n—1 n—1
oy (5) (Z |Av<am>||xv|’<|tvk> x (Z |Avam|>
n=2 n v v=1

m—+1 P —1n—1
0(1) 3 (ann)*? (p) S Bl
n=2 n
m m+1
1>Z\AU|’“*1\AUWU|’“ > 1A (any)]
= n=v+1
po [tol®
Z\)\| Xk1: O(1) as m — 0.

Again, by using (2.1)), we get that

m—+1 P k=1 (n—1 k
O(l) Z <pn> {Z&n,wﬂ | A)\v || Ly |}

n=2 v=1
mAl s p o\ k-1 fnol k
oy (5) (vav(amﬂmmo
n=2 Pn v=1
m4+1 P k-1 /n—1 n—1
om > (p:) (Z(v | AXy D [to|F|Au(a ) (Zm
nm2 : 1m+1
OM)> (| AXy DFIt* D" |Ay(any)]
v=1 n=v+1
o 3ol a2
v=1 : P”X"]’{_l
= prlt | S pultolf
o(1) 2 A(v | AN, Z \mm| T
m—1
O(1) >  A(v| A, )Xy + O(1)m|AN, | X
v=1

O(1) Y vX, | A%\, |)+ 0(1)mz Xo | AN, ) + O(1)m| AN, | X,

O(1) as m — oo,

k—1

)
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by virtue of the hypotheses of the theorem and Lemma. Finally by using (2.1)), as
in T}, 1, we have that

m+1 P k—1 m+1 P k—1 /n—1 a
v, v+1
S () 1tk = X () (X el
n=2

n=2 n Pn v=1

A

Pn

m+1 P k—1 /n—1 n—1
= 0(1) Z <n> z |Av(&n1))||>\v+1|k|tv‘k X Z |Av(&nv)|
n=2 v=1

v=1

m m+1 P k—1
= 0 Pt Pt S () a5 A ()|

v=1 n=v+1 n

Ly
= Z [Avt1] pv;(;‘ ; =0(1), as m— 0.

This completes the proof of the theorem.
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