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ON CONVERGENCE AND ABSOLUTE CONVERGENCE OF
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POLYNOMIALS

(COMMUNICATED BY FRANCISCO MARCELLAN)

JOSEF OBERMAIER

Abstract. Let µ be a probability measure on the Borel σ-algebra of R with

compact and infinite support S, and {pn}∞n=0 be an orthonormal polynomial

sequence with respect to µ. A Banach space B ⊂ L1(µ) with norm ‖ ‖ is
called harmonic if the set P of polynomials is dense in B, and ‖f‖1 ≤ ‖f‖ for

all f ∈ B. We are studying Fourier series of f ∈ B with respect to {pn}∞n=0.

Equipped with a proper norm the subspaces BD ⊂ B of convergent Fourier
series, and BA ⊂ B of absolute convergent Fourier series are Banach spaces

for its own. We show that in case B is not isomorphic to `1 it holds BA ( BD.
For example this result fits for C(S) which is a harmonic Banach space not

isomorphic to `1. In case µ is a Jacobi measures with α > −1/2 or β > −1/2 an

explicit function f ∈ C([−1, 1]) with convergent but not absolute convergent
Fourier series is constructed. For that purpose we prove a modification of

Schur’s inequality.

1. Introduction

In classical Fourier analysis it is well known that there exists a function f ∈ C(T)

such that the partial sums
∑N
n=0 f̂(n)eint of its Fourier series are not uniformly

converging to f. Also there exist uniformly convergent Fourier series which are not
absolutely convergent. For that purpose one can take

f(eit) =

∫ t

−π
g(r)dr (1.1)

with

g(r) =

∞∑
n=1

cos(nr)

ln(n+ 1)
. (1.2)

Then by simple means the Fourier series of f is not absolutely convergent. Since f
is of bounded variation the Dirichlet-Jordan convergence criterion [14] implies that
the Fourier series of f is uniformly convergent. Denoting the set of f with uniformly
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convergent Fourier series by U(T) and those f with absolutely convergent Fourier
series by A(T), we have

A(T) ( U(T) ( C(T), (1.3)

see [4].
We focus on Fourier series with respect to an orthonormal polynomial sequence

{pn}∞n=0, where the support S ⊂ R of the orthogonalization measure µ is assumed
to be infinite and compact. It is well-known, that in case S = [−1, 1] there exists
f ∈ C([−1, 1]) such that the Fourier series doesn’t converge uniformly, see [2].
However, there also are systems such that every f ∈ C(S) is represented by its
Fourier series, see [6], [7], [8] and [9]. Now the question is, if there also are systems
such that every uniformly convergent Fourier series is absolute convergent. In
Section 2 we will prove in a more general setting, that this is not the case. Moreover,
in case of Jacobi systems we are able to construct functions f ∈ C([−1, 1]) with
uniformly but not absolutely convergent Fourier series, see Section 3.

2. Convergent and absolute convergent Fourier series in harmonic
Banach spaces

Let µ be a probability Borel measure on R with compact and infinite support S.
As usual, let

Lp(µ) = {f : S → C :

∫
|f |pdµ <∞}, 1 ≤ p <∞, (2.1)

with norm ‖f‖p =
(∫
|f |pdµ

)1/p
, and

C(S) = {f : S → C : f continuous} (2.2)

with norm ‖f‖∞ = supx∈S |f(x)|. Furthermore, denote by P the set of algebraic
polynomials in one real variable and complex coefficients. C(S) and Lp(µ) are
harmonic Banach spaces in the following sense.

Definition 2.1. Let B ⊂ L1(µ) be a Banach space with respect to a norm ‖ ‖ such
that P ⊂ B is dense in B and

‖f‖1 ≤ ‖f‖ for all f ∈ B. (2.3)

Then B is called an harmonic Banach space with respect to µ.

By Gram-Schmidt procedure there exists a unique sequence {pn}∞n=0 ⊂ P of
orthonormal polynomials with

∫
pnpmdµ = δn,m, degpn = n and pn has positive

leading coefficient. We call {pn}∞n=0 the orthonormal polynomial sequence with
respect to µ.
The formal Fourier series of f ∈ B with respect to {pn}∞n=0 is given by

f ∼
∞∑
n=0

f̂npn, (2.4)

where the Fourier coefficients are defined by

f̂n =

∫
fpndµ. (2.5)

If f ∈ B has a representation
∑∞
n=0 cnpn, then inequality (2.3) implies cn = f̂n.



ON CONVERGENCE AND ABSOLUTE CONVERGENCE 3

The Nth partial sum of the formal Fourier series of f ∈ B is given by

DN (f) =

N∑
n=0

f̂npn. (2.6)

By simple means DN is a continuous linear operator from B into B. For to inves-
tigate the subspace of convergent Fourier series we rely on the following lemma.

Lemma 2.2. Let (X, ‖ ‖) denote a Banach space and {FN}∞N=0 a sequence of
continuous linear operators from X into X. Set

Y = {y ∈ X : lim
N→∞

FN (y) = y}, (2.7)

and
‖‖y‖‖ = sup

N∈N0

‖FN (y)‖. (2.8)

Then (Y, ‖‖ ‖‖) is a Banach space, and it holds

‖y‖ ≤ ‖‖y‖‖ for all y ∈ Y. (2.9)

Since it is standard we omit the proof. Due to Lemma 2.2 we make the following
definition.

Definition 2.3. Let (B, ‖ ‖) be a harmonic Banach space with respect to µ. Then
the Banach space

BD = {f ∈ B : lim
N→∞

‖DN (f)− f‖ = 0} (2.10)

with norm
‖f‖D = sup

N∈N0

‖DN (f)‖ (2.11)

is called space of convergent Fourier series with respect to B.

The absolute convergent Fourier series form a subspace of BD.

Definition 2.4. Let (B, ‖ ‖) be a harmonic Banach space with respect to µ. The
Banach space

BA = {f ∈ B :

∞∑
n=0

‖f̂npn‖ <∞} (2.12)

with norm

‖f‖A =

∞∑
n=0

‖f̂npn‖ (2.13)

is called space of absolute convergent Fourier series with respect to B.

It is easily seen that (BA, ‖ ‖A) is isometrically isomorphic to the Banach space
(`1, ‖ ‖1), where

`1 = {{an}∞n=0 : an ∈ C and

∞∑
n=0

|an| <∞},

with norm ‖{an}∞n=0‖1 =
∑∞
n=0 |an|.

Our aim is to give sufficient conditions for BA ( BD. For instance, if BD is not
isomorphic to `1, then BA ( BD. Assume as a relation of sets that BA = BD. Then
the identity mapping id : BA → BD is continuous, and due to the open mapping
theorem [3, (14.16)] it is an isomorphism. Thus, BD is isomorphic to `1, which is a
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contradiction.
It is exciting that if B is not isomorphic to `1, then BA ( BD, too. For a proof,
we need the following lemma.

Lemma 2.5. Let (B, ‖ ‖) be an harmonic Banach space with respect to µ which is
not isomorphic to `1. Then for all N ∈ N0 and all C > 0 there exists M > N and
aN+1, . . . , aM ∈ C such that

M∑
n=N+1

|an| > C‖
M∑

n=N+1

an
pn
‖pn‖

‖. (2.14)

Proof. Suppose that, contrary to our claim, there exists N ∈ N0 and C > 0 such
that

M∑
n=N+1

|an| ≤ C‖
M∑

n=N+1

an
pn
‖pn‖

‖ for all M > N, aN+1, . . . , aM ∈ C.

Let us fix such an N and let M ∈ N0 arbitrary. Since norms on finite dimensional
spaces are equivalent, there exists D > 0 such that

N∑
n=0

|an| ≤ D‖
N∑
n=0

an
pn
‖pn‖

‖ for all a0, . . . , aN ∈ C.

Setting E = max(C,D) we get

M∑
n=0

|an| ≤ E(‖
min(M,N)∑

n=0

an
pn
‖pn‖

‖+ ‖
M∑

n=N+1

an
pn
‖pn‖

‖)

for all M ∈ N0, a0, . . . , aM ∈ C. If id denotes the identity mapping from B → B,
then

DN (

M∑
n=0

an
pn
‖pn‖

) =

min(M,N)∑
n=0

an
pn
‖pn‖

and

(id−DN )(

M∑
n=0

an
pn
‖pn‖

) =

M∑
n=N+1

an
pn
‖pn‖

.

Hence, there exists F > 0 such that

M∑
n=0

|an| ≤ F‖
M∑
n=0

an
pn
‖pn‖

‖ for all M ∈ N0, a0, . . . , aM ∈ C.

Therefore, { pn
‖pn‖}

∞
n=0 is a basic sequence in B which is equivalent to the standard

unit vector basis of `1, see [5, 4.3.6]. Taking into account that P is dense in B, [5,
4.3.2] yields that B is isomorphic to `1. This is a contradiction to our assumption.
�

Now, we can state the main result of this section.

Theorem 2.6. Let B be an harmonic Banach space with respect to µ. If B is not
isomorphic to `1, then BA ( BD.
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Proof. Let us assume BA = BD. Then the identity mapping from BA onto BD
is continuous. Hence, by the open mapping theorem the norms ‖ ‖A and ‖ ‖D are
equivalent.
Changing inequality (2.14) of Lemma 2.5 into

‖
M∑

n=N+1

an∑M
k=N+1 |ak|

pn
‖pn‖

‖ < 1

C

shows that we are able to construct polynomials

Qn =

un∑
k=ln

bk
pk
‖pk‖

,

with un < ln+1 and
∑un

k=ln
|bk| = 1 for all n ∈ N, such that

lim
n→∞

‖Qn‖ = 0.

Obviously it holds

‖ 1

N

N∑
n=1

Qn‖A = 1

for all N ∈ N. Since

‖
N∑
n=1

Qn‖D = sup
0≤m≤N−1, lm+1≤r≤um+1

‖
m∑
n=1

Qn +

r∑
k=lm+1

bk
pk
‖pk‖

‖

≤ sup
0≤m≤N−1

(

m∑
n=1

‖Qn‖+ 1)

≤ 1 +

N∑
n=1

‖Qn‖,

we get by a well-known result on Césaro means

lim
N→∞

‖ 1

N

N∑
n=1

Qn‖D = 0.

This is in contradiction with the equivalence of the norms ‖ ‖A and ‖ ‖D. �
For classical Banach spaces we get the following corollary.

Corollary 2.7. In case B = C(S) or B = Lp(µ), 1 ≤ p <∞, it holds

BA ( BD. (2.15)

Proof. Firstly let B = C(S) or B = L1(µ).
Assume T is an isomorphism from `1 onto B. Since the standard vector basis
{en}∞n=0 is an unconditional basis in `1, we get by [5, 4.2.14] that {T (en)}∞n=0 is an
unconditional basis in B. This is a contradiction to [11, 15.1] and [11, 15.2].
Secondly let B = Lp(µ), 1 < p <∞. By [5, 2.8.12] B doesn’t have Schur’s property
[10]. Since `1 does have Schur’s property, B and `1 can not be isomorphic. �

Note that a proof of A(T) ( U(T) in the classical case could also be given along
the lines of above.
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3. Jacobi polynomials

Due to Corollary 2.7 there exists f ∈ C(S) with uniformly but not absolutely con-
verging Fourier series. The proof, however, has not been constructive. Therefore,
another goal is to detect such a function. In this chapter we will provide a proper

construction for certain Jacobi polynomial systems. The sequence {p(α,β)n }∞n=0,
α, β > −1, of orthonormal Jacobi polynomials is defined by the three term recur-
rence relation

xp(α,β)n (x) = λnp
(α,β)
n+1 (x) + βnp

(α,β)
n (x) + λn−1p

(α,β)
n−1 (x), (3.1)

where p−1 = 0, p0 = 1,

λn =

(
4(n+ 1)(n+ α+ β + 1)(n+ α+ 1)(n+ β + 1)

(2n+ α+ β + 2)2(2n+ α+ β + 1)(2n+ α+ β + 3)

) 1
2

(3.2)

and

βn =
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
. (3.3)

They are orthogonal with respect to the measure

dµ(α,β)(x) =
Γ(α+ β + 2)

2α+β+1Γ(α+ 1)Γ(β + 1)
(1− x)α(1 + x)βdx (3.4)

supported on [−1, 1]. It holds the symmetric relation

p(α,β)n (x) = (−1)np(β,α)n (−x), (3.5)

see [13].
For our purpose we need a modification of Schur’s inequality [1, Theorem 5.1.9].
Denote by Pn ⊂ P the set of polynomials of degree less or equal to n, and let
‖f(x)‖∞ = supx∈[−1,1] |f(x)|.

Lemma 3.1. Let a, b ≥ 0, c = max(a, b) and p ∈ Pn−1.
If c ≥ 1/2, then

‖p(x)‖∞ ≤ 2|a−b|n2c‖(1− x)a(1 + x)bp(x)‖∞, (3.6)

and if c < 1/2, then

‖p(x)‖∞ ≤ 2|a−b|c−2cn2c‖(1− x)a(1 + x)bp(x)‖∞. (3.7)

Proof. Let

xk = cos
(2n− 2k + 1)π

2n
, k = 1, 2, . . . , n,

denote the zeros of the Chebyshev polynomials of first kind

Tn(x) = cos(n arccosx).

Note that T ′n(x) = (n sinnθ)/(sin θ), x = cos θ.
First, let a = b ≥ 1/2. Without loss of generality we may assume that p ∈ Pn−1
with ‖(1− x2)ap(x)‖∞ = 1.
If |y| ≤ xn, then

|p(y)| ≤ (1− y2)−a ≤ (1− x2n)−a

=
(

sin
π

2n

)−2a
≤
(

2

π

π

2n

)−2a
= n2a.
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In case xn < y ≤ 1 we get

|p(y)| =

∣∣∣∣∣
n∑
k=1

p(xk)
Tn(y)

T ′n(xk)(y − xk)

∣∣∣∣∣
≤ 1

n

n∑
k=1

|p(xk)(1− x2k)a|(1− x2k)1/2−a
Tn(y)

y − xk

≤ 1

n

n∑
k=1

(1− x2k)1/2−a
Tn(y)

y − xk
≤ 1

n
(1− x2n)1/2−a

n∑
k=1

Tn(y)

y − xk

=
1

n
(1− x2n)1/2−aT ′n(y) ≤ n(1− x2n)1/2−a = n

(
sin

π

2n

)1−2a
≤ nn2a−1 = n2a,

where Lagrange interpolation has been applied twice time. For −1 ≤ y < x1 we
deduce |p(y)| ≤ n2a quite similar.
Secondly, let 0 ≤ a = b < 1/2. The case a = b = 0 is trivial. Otherwise let k be the
least number such that ka ≥ 1/2. Thus the result of above implies

‖p(x)‖k∞ = ‖p(x)k‖∞ ≤ (kn− k + 1)2ka‖(1− x2)kap(x)k‖∞
< (kn)2ka‖(1− x2)ap(x)‖k∞.

Since ka < 1 we get

‖p(x)‖∞ ≤ k2an2a‖(1− x2)ap(x)‖∞ < a−2an2a‖(1− x2)ap(x)‖∞.

Finally, for the general case we only have to take into account that

‖(1− x2)cp(x)‖∞ ≤ 2|a−b|‖(1− x)a(1 + x)bp(x)‖∞.

�
Next we state a result on orthonormal Jacobi polynomials, which is mainly due

to P. K. Suetin [12, Theorem 7.5], who attributes his result to S. N. Bernstein, and
to [13, (7.32.1), Theorem 7.32.2].

Lemma 3.2. Let α, β > −1, α′ = max(α+1/2, 0) and β′ = max(β+1/2, 0). Then
there exists a constant D > 0 with

√
1− xα

′√
1 + x

β′ |p(α,β)n (x)| ≤ D (3.8)

for all x ∈ [−1, 1] and n ∈ N0.

Using Lemma 3.1 one gets certain uniform bounds for orthonormal Jacobi poly-
nomials.

Lemma 3.3. Let α, β > −1, γ− = max(α − 3/2, β + 1/2, 0) and γ+ = max(β −
3/2, α+ 1/2, 0). Then there exists a constant C > 0 with

(1∓ x)|p(α,β)n (x)| ≤ Cnγ∓ (3.9)

for all x ∈ [−1, 1].

Proof. Let α′ = max(α+ 1/2, 0) and β′ = max(β + 1/2, 0).
In case α′ ≤ 2 Lemma 3.2 implies

√
1 + x

β′

(1− x)|p(α,β)n (x)| ≤ D1



8 J. OBERMAIER

for all x ∈ [−1, 1]. Thus by Lemma 3.1 it follows

‖(1− x)p(α,β)n (x)‖∞ ≤ Cnγ− ,
where γ− = max(0, β′) = max(α− 3/2, β + 1/2, 0).
In case α′ > 2 we get by Lemma 3.2

√
1− xα

′−2√
1 + x

β′

(1− x)|p(α,β)n (x)| ≤ D2

for all x ∈ [−1, 1]. Therefore, Lemma 3.1 implies

‖(1− x)p(α,β)n (x)‖∞ ≤ Cnγ− ,
where γ− = max(α′ − 2, β′) = max(α− 3/2, β + 1/2, 0).
The remaining assertion with γ+ holds due to (3.5). �

Now we are able to show the following theorem.

Theorem 3.4. Let α > β and α > −1/2 and set bn = (−1)n
(

1
n + 1

n+1

)
. Then

∞∑
n=1

bn
p
(α,β)
n

p
(α,β)
n (1)

(3.10)

is uniformly but not absolutely converging.

Proof. It holds
max
−1≤x≤1

|p(α,β)n (x)| = p(α,β)n (1),

see [13, (7.32.2)]. Thus
∞∑
n=1

‖bn
p
(α,β)
n

p
(α,β)
n (1)

‖∞ =

∞∑
n=1

|bn| =∞.

We will show that {
∑N
n=1 bnp

(α,β)
n /p

(α,β)
n (1)}∞N=1 is a Cauchy sequence with respect

to the sup-Norm. Set

rn =

∞∑
k=n

bk =
(−1)n

n
,

and take M ≥ N ≥ 1. Then we get

M+1∑
n=N

bn
p
(α,β)
n (x)

p
(α,β)
n (1)

=

M+1∑
n=N

(rn − rn+1)
p
(α,β)
n (x)

p
(α,β)
n (1)

= rN
p
(α,β)
N (x)

p
(α,β)
N (1)

− rM+2

p
(α,β)
M+1(x)

p
(α,β)
M+1(1)

+

M∑
n=N

rn+1

(
p
(α,β)
n (1)p

(α,β)
n+1 (x)− p(α,β)n (x)p

(α,β)
n+1 (1)

p
(α,β)
n (1)p

(α,β)
n+1 (1)

)
.

It is obvious that

lim
N→∞

‖rN
p
(α,β)
N (x)

p
(α,β)
N (1)

− rM+2

p
(α,β)
M+1(x)

p
(α,β)
M+1(1)

‖∞ = 0,

and applying Christoffel-Darboux formula

M∑
n=N

rn+1

(
p
(α,β)
n (1)p

(α,β)
n+1 (x)− p(α,β)n (x)p

(α,β)
n+1 (1)

p
(α,β)
n (1)p

(α,β)
n+1 (1)

)
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= (x− 1)

M∑
n=N

rn+1

λnp
(α,β)
n (1)p

(α,β)
n+1 (1)

n∑
k=0

p
(α,β)
k (1)p

(α,β)
k (x)

= (x− 1)

N∑
k=0

p
(α,β)
k (1)p

(α,β)
k (x)

M∑
n=N

rn+1

λnp
(α,β)
n (1)p

(α,β)
n+1 (1)

+(x− 1)

M∑
k=N+1

p
(α,β)
k (1)p

(α,β)
k (x)

M∑
n=k

rn+1

λnp
(α,β)
n (1)p

(α,β)
n+1 (1)

.

According to [13, (4.1.1) and (4.3.3)] we have

p(α,β)n (1) =

(
(2n+ α+ β + 1)Γ(β + 1)Γ(n+ α+ 1)Γ(n+ α+ β + 1)

Γ(α+ 1)Γ(α+ β + 2)Γ(n+ 1)Γ(n+ β + 1)

) 1
2

.

Applying the well-known Stirling’s formula with respect to the asymptotic of the
Gamma function one gets

p(α,β)n (1) = Cnα+1/2(1 +O(n−1)),

where C > 0 is a constant. Moreover, (3.2) implies

λn =
1

2
+O(n−2).

Due to the fact that {rn}∞n=1 is alternating it follows∣∣∣∣∣
M∑
n=k

rn+1

λnp
(α,β)
n (1)p

(α,β)
n+1 (1)

∣∣∣∣∣ ≤ Dk−2α−2,
where D > 0 is a constant not depending on M and k. Applying Lemma 3.3 there
exists γ < α+ 1

2 such that

|(x− 1)

M∑
k=N+1

p
(α,β)
k (1)p

(α,β)
k (x)

M∑
n=k

rn+1

λnp
(α,β)
n (1)p

(α,β)
n+1 (1)

| ≤

E

M∑
k=N+1

kα+
1
2 kγk−2α−2 = E

M∑
k=N+1

kγ−α−
3
2 ,

and

|(x− 1)

N∑
k=0

p
(α,β)
k (1)p

(α,β)
k (x)

M∑
n=N

rn+1

λnp
(α,β)
n (1)p

(α,β)
n+1 (1)

| ≤

F

N∑
k=0

kα+
1
2 kγN−2α−2 ≤ GNγ−α− 1

2 ,

with E,F,G > 0 constants. Therefore, the right hand side of both inequalities
above is tending to zero with N →∞. �

Note that in case α = β > −1/2 by [13, Theorem 4.1] it holds

∞∑
n=1

bn
p
(α,α)
2n (x)

p
(α,α)
2n (1)

=

∞∑
n=1

bn
p
(α,− 1

2 )
n (2x2 − 1)

p
(α,− 1

2 )
n (1)

, (3.11)
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and in case α < β and β > −1/2 the symmetric relation (3.5) implies
∞∑
n=1

bn
p
(α,β)
n (x)

p
(α,β)
n (−1)

=

∞∑
n=1

bn
p
(β,α)
n (−x)

p
(β,α)
n (1)

. (3.12)

Hence, due to Theorem 3.4 both series are uniformly but not absolutely convergent.
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