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ON CONVERGENCE AND ABSOLUTE CONVERGENCE OF
FOURIER SERIES WITH RESPECT TO ORTHOGONAL
POLYNOMIALS

(COMMUNICATED BY FRANCISCO MARCELLAN)

JOSEF OBERMAIER

ABSTRACT. Let p be a probability measure on the Borel o-algebra of R with
compact and infinite support S, and {pn}32, be an orthonormal polynomial
sequence with respect to u. A Banach space B C Li(u) with norm || || is
called harmonic if the set P of polynomials is dense in B, and || f|[1 < ||f]| for
all f € B. We are studying Fourier series of f € B with respect to {pn}>2 .
Equipped with a proper norm the subspaces Bp C B of convergent Fourier
series, and B4 C B of absolute convergent Fourier series are Banach spaces
for its own. We show that in case B is not isomorphic to ¢1 it holds B4 € Bp.
For example this result fits for C(S) which is a harmonic Banach space not
isomorphic to £1. In case p is a Jacobi measures with o« > —1/2or § > —1/2 an
explicit function f € C([—1,1]) with convergent but not absolute convergent
Fourier series is constructed. For that purpose we prove a modification of
Schur’s inequality.

1. INTRODUCTION

In classical Fourier analysis it is well known that there exists a function f € C(T)
such that the partial sums fo:o f(n)e™t of its Fourier series are not uniformly
converging to f. Also there exist uniformly convergent Fourier series which are not
absolutely convergent. For that purpose one can take

fleit) = / o(r)dr (11)

—Tr
with
) cos(nr)
g(r) = —
— In(n+1)
Then by simple means the Fourier series of f is not absolutely convergent. Since f

is of bounded variation the Dirichlet-Jordan convergence criterion [I4] implies that
the Fourier series of f is uniformly convergent. Denoting the set of f with uniformly

(1.2)
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2 J. OBERMAIER

convergent Fourier series by U(T) and those f with absolutely convergent Fourier
series by A(T), we have

A(T) C U(T) € C(T), (1.3)

see [].

We focus on Fourier series with respect to an orthonormal polynomial sequence
{Pn}52y, where the support S C R of the orthogonalization measure p is assumed
to be infinite and compact. It is well-known, that in case S = [—1, 1] there exists
f € C(]—1,1]) such that the Fourier series doesn’t converge uniformly, see [2].
However, there also are systems such that every f € C(S) is represented by its
Fourier series, see [6], [7], [§] and [9]. Now the question is, if there also are systems
such that every uniformly convergent Fourier series is absolute convergent. In
Section[2]we will prove in a more general setting, that this is not the case. Moreover,
in case of Jacobi systems we are able to construct functions f € C([—1,1]) with
uniformly but not absolutely convergent Fourier series, see Section

2. CONVERGENT AND ABSOLUTE CONVERGENT FOURIER SERIES IN HARMONIC
BANACH SPACES

Let u be a probability Borel measure on R with compact and infinite support S.
As usual, let

L= {8 C: [Ifrdn<oo), 12p<c0, (2.1)

with norm ||, = (f |f[7dp)"/", and
C(8)={f:8—=C: f continuous} (2.2)

with norm || f|lec = sup,eg |f(z)|. Furthermore, denote by P the set of algebraic
polynomials in one real variable and complex coefficients. C(S) and L,(p) are
harmonic Banach spaces in the following sense.

Definition 2.1. Let B C Ly(u) be a Banach space with respect to a norm || || such
that P C B is dense in B and

[fllh < fIl for all f € B. (2.3)

Then B is called an harmonic Banach space with respect to p.

By Gram-Schmidt procedure there exists a unique sequence {p,}>2, C P of
orthonormal polynomials with [ pppmdp = 6n,m, degp, = n and p,, has positive
leading coefficient. We call {p,}°, the orthonormal polynomial sequence with
respect to u.

The formal Fourier series of f € B with respect to {p,}>2, is given by

Y b, (2.4)

n=0

where the Fourier coefficients are defined by
fn = /fpndﬂ- (2.5)

If f € B has a representation ZZOZO CnDn, then inequality 1) implies ¢, = fn
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The Nth partial sum of the formal Fourier series of f € B is given by

N
n=0
By simple means Dy is a continuous linear operator from B into B. For to inves-
tigate the subspace of convergent Fourier series we rely on the following lemma.

Lemma 2.2. Let (X,|||) denote a Banach space and {Fn}{_, a sequence of
continuous linear operators from X into X. Set

V={yeX: lim Fy(y) =y}, (2.7)

and
llyll = sup [Enx(y)]- (2.8)
NeNy

Then (Y, || |Il) is @ Banach space, and it holds
lyll < Mllylll - for ally €Y. (2.9)

Since it is standard we omit the proof. Due to Lemma we make the following
definition.

Definition 2.3. Let (B, || ||) be a harmonic Banach space with respect to p. Then
the Banach space

Bp={feB: lm [Dx(f)—f] =0} (2.10)

with norm
I fllp = sup [[Dn(f)ll (2.11)
NeNy

is called space of convergent Fourier series with respect to B.
The absolute convergent Fourier series form a subspace of Bp.

Definition 2.4. Let (B,| ||) be a harmonic Banach space with respect to p. The
Banach space

Ba={f€B:Y | fapall < o0} (2.12)
n=0
with norm -
n=0

is called space of absolute convergent Fourier series with respect to B.

It is easily seen that (By, || ||4) is isometrically isomorphic to the Banach space
(41, ][ 1l1), where

b ={{an}ylg:an, €C andz lan| < oo},

n=0

with norm [[{an }7%0llr = 3272 lan-

Our aim is to give sufficient conditions for B4y C Bp. For instance, if Bp is not
isomorphic to ¢1, then B4 C Bp. Assume as a relation of sets that By = Bp. Then
the identity mapping id : By — Bp is continuous, and due to the open mapping
theorem [3] (14.16)] it is an isomorphism. Thus, Bp is isomorphic to ¢1, which is a
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contradiction.
It is exciting that if B is not isomorphic to ¢;, then B4 C Bp, too. For a proof,
we need the following lemma.

Lemma 2.5. Let (B, | ||) be an harmonic Banach space with respect to p which is
not isomorphic to £1. Then for all N € Ny and all C > 0 there exists M > N and
AN+1,---,ap € C such that

M
> an] > C| Z anH ” (2.14)
n=N+1 n=N+1 Pn

Proof. Suppose that, contrary to our claim, there exists N € Ny and C' > 0 such
that

M
Z lan| < O Z an”p"” for all M > N,an+1,...,anm € C.
n=N+1 n=N+1 Pn

Let us fix such an N and let M € Ny arbitrary. Since norms on finite dimensional
spaces are equivalent, there exists D > 0 such that

N N
Z la,| < D] Zanp—"ﬂ for all ag,...,an € C.

Setting £ = max(C, D) we get

M min(M,N) M

D D
Z|an| SE(H Z CLrbﬁ”—i_n Z anﬁ”)
n=0 n=0 Pn n=N+1 Pn

for all M € Ny, ag,...,ap € C. If id denotes the identity mapping from B — B,
then

M » min(M,N) P
DN( Qn - ) = Gn -
,;0 [[pn ,; llpnl
and
M
Pn
(id — Dn) Z Ay — Z Ap—.

”pn” ne=N41 (28

Hence, there exists F' > 0 such that

M M
3 Janl < FIS an il for all M € No,ag, ..., as € C.

Therefore, {72172, is a basic sequence in B which is equivalent to the standard

unit vector basis of ¢1, see [5], 4.3.6]. Taking into account that P is dense in B, [5]
4.3.2] yields that B is isomorphic to ¢;. This is a contradiction to our assumption.
O

Now, we can state the main result of this section.

Theorem 2.6. Let B be an harmonic Banach space with respect to p. If B is not
isomorphic to 1, then By C Bp.
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Proof. Let us assume B4 = Bp. Then the identity mapping from B4 onto Bp
is continuous. Hence, by the open mapping theorem the norms || |4 and || ||p are
equivalent.

Changing inequality of Lemma into

M

a p 1
Y = <

n=N+1 Zk:N+1 |a| [Pl

shows that we are able to construct polynomials

with u, < lpq1 and Y20, |b| = 1 for all n € N, such that
lim [|Q,| = 0.
n—oo
Obviously it holds
LN
Bl nlla =1
I 3@l

for all N € N. Since

N
n=1

sup ||ZQn Z by p‘“|||

0<mMIN—1,lpm41<r<tUm41

n=1 k=lm+
< S Qnll +1)
(S e
< 1+Z||Qn||7
n=1

we get by a well-known result on Césaro means

m II* Z Qnllp =

This is in contradiction with the equivalence of the norms ||||4 and || ||p. O
For classical Banach spaces we get the following corollary.

Corollary 2.7. In case B=C(S) or B=Ly(n), 1 <p < 00, it holds
Ba C Bp. (2.15)

Proof. Firstly let B =C(S) or B = Ly(u).
Assume T is an isomorphism from ¢; onto B. Since the standard vector basis
{en}52 is an unconditional basis in ¢1, we get by [0, 4.2.14] that {T'(en)}22, is an
unconditional basis in B. This is a contradiction to [I1}, 15.1] and [IT} 15.2].
Secondly let B = L,(u), 1 < p < oo. By [B] 2.8.12] B doesn’t have Schur’s property
[10]. Since ¢; does have Schur’s property, B and ¢; can not be isomorphic. ([l
Note that a proof of A(T) C U(T) in the classical case could also be given along
the lines of above.
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3. JACOBI POLYNOMIALS

Due to Corollarythere exists f € C(S) with uniformly but not absolutely con-
verging Fourier series. The proof, however, has not been constructive. Therefore,
another goal is to detect such a function. In this chapter we will provide a proper

construction for certain Jacobi polynomial systems. The sequence {pgf‘”@ )}?LO=O’
a, f > —1, of orthonormal Jacobi polynomials is defined by the three term recur-
rence relation

P (@) = AaplD (@) + Bupl? (@) + Aoapl (), (3.1)
where p_1 =0, pg = 1,

\ _( dn+1)n+a+B+1)(n+a+)(n+b+1) )5 52)
" 2n+a+B+2)22n+a+B+1)2n+a+B+3) ’
and ) )
B —«
Brn = . (3.3)
2n+a+B)(2n+a+pB+2)
They are orthogonal with respect to the measure
T(a+B+2)
dp(*P) (z) = 1—2)*(1+2)%d 3.4
supported on [—1,1]. It holds the symmetric relation
P (@) = (~1)"plP) (), (35)

see [13].
For our purpose we need a modification of Schur’s inequality [I, Theorem 5.1.9].
Denote by P, C P the set of polynomials of degree less or equal to n, and let

1 (@)oo = supze(—1,1 [/ ()]

Lemma 3.1. Let a,b > 0, ¢ = max(a,b) and p € Py,_1.
If ¢ > 1/2, then

Ip(2)lloo < 217" In?|(1 = 2)*(1 + 2)"p(@) | o, (3.6)
and if ¢ < 1/2, then
Ip(2)l|oe < 217Ple™ 0% (1 = 2)* (1 + 2)"p() oo (3.7)
Proof. Let
Tk :COSW, k=1,2,...,n,

denote the zeros of the Chebyshev polynomials of first kind
T, (x) = cos(n arccos x).

Note that T} (z) = (nsinnf)/(sin ), z = cos.

First, let a = b > 1/2. Without loss of generality we may assume that p € P,,_1
with [[(1 - 2)p(2)]c = 1.

If |y| < x,, then

ply)l < Q-y)*<Q-ap)"

_2a 2 —2a
= (Sin l) < =T =n?e,
2n T 2n
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In case z,, <y <1 we get

To(y)
T (zx)(y — o)

I
[M]=
=

Ip(y)| 1)

|p(xk) (1 — xi)a|(1 _ zﬁ)1/2faT27(y)
Y— Tk

IN
S| ﬁ-
=~

k=1
< = Z(l - xi)l/Q—a n(y) <-(1- xi)1/2—az n(Y)
nk:l Yy— Tk n kzly—xk
1 2\1/2—arpr 2\1/2—a . 1-2a
S nn2a71 — Tl2a,

where Lagrange interpolation has been applied twice time. For —1 < y < x; we
deduce |p(y)| < n?® quite similar.

Secondly, let 0 < a = b < 1/2. The case a = b = 0 is trivial. Otherwise let k be the
least number such that ka > 1/2. Thus the result of above implies

lp(@)[l5% = llp(@)* e < (kn =k +1)%"[(1 = 2®)*p()" ||
< (kn)™|(1 = 2?)*p(2)|| -
Since ka < 1 we get
Ip(@)lloe < E** 2|1 — 2%)"p(@)|loc < a™**n?[|(1 — 2%)"p(@)|oc-
Finally, for the general case we only have to take into account that
(1 = 2®)°p(2)]loe < 271 = 2)*(1 + 2)°p(2) | oo

|

Next we state a result on orthonormal Jacobi polynomials, which is mainly due

to P. K. Suetin [I2] Theorem 7.5], who attributes his result to S. N. Bernstein, and
o [13} (7.32.1), Theorem 7.32.2].

Lemma 3.2. Let a, 8 > —1, o/ = max(a+1/2,0) and ' = max(5+1/2,0). Then
there exists a constant D > 0 with

VI Vita |pef)(z)| < D (3.8)
for all z € [-1,1] and n € Ny.

Using Lemma [3:1] one gets certain uniform bounds for orthonormal Jacobi poly-
nomials.

Lemma 3.3. Let o, > —1, v = max(a — 3/2,8 + 1/2,0) and v = max(5 —
3/2,a+1/2,0). Then there exists a constant C > 0 with

(1 F 2)lpi?) ()] < Cn7% (3.9)
for all x € [-1,1].

Proof. Let o/ = max(a+1/2,0) and ' = max(5 + 1/2,0).
In case o’ < 2 Lemma [3.2] implies

VIta (1—a)pe? (@) < Dy
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for all z € [—1,1]. Thus by Lemma [3.1]it follows
11 = 2)p{P (@)oo < Cn-,
where v_ = max(0, 8') = max(a — 3/2,6 + 1/2,0).
In case o/ > 2 we get by Lemma [3.2]
VI=2" VI (- a)ple ) (@) < Dy
for all z € [—1,1]. Therefore, Lemma [3.1] implies
11 = 2)p{P (@)oo < Cn-,

where y_ = max(a’ — 2, ') = max(a — 3/2,6 4+ 1/2,0).
The remaining assertion with 4 holds due to (3.5). O
Now we are able to show the following theorem.

Theorem 3.4. Let a > f and o > —1/2 and set by, = (—1)" (% + n%‘_l) Then

© psla,ﬂ)

bp————
2 e

n=1

(3.10)

is uniformly but not absolutely converging.

Proof. It holds

(@.8) ()] = ple-B)
_max [pi? ()] = pi? (1),

see [13} (7.32.2)]. Thus
.8)

ZH e ke = Zw | = o0

We will show that {anl bnpna’ﬁ /pﬁla’ﬂ (1)}%_, is a Cauchy sequence with respect
to the sup-Norm. Set
o0 (7
Tn = Z bk ==
k=n

and take M > N > 1. Then we get

M+1 p%a’ﬁ)(.%‘) B M+1 pgla,ﬁ)(x)
> o = 2 =)o
n=N Pn (1) n=N Pn (1)
o, a,B
_ 0@ i)
iy (1) w1

)
o~ (P e @) — o @p Y ()
+ D rn (o) '

o PP (WplD (1)

It is obvious that

P L o P o T
N p (1) (1)

and applying Christoffel-Darboux formula

S <p£f“ﬁ’< i (@) = i @)l ))
2 e ()
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M
Tn+1 (aﬁ (aﬁ
= (@-1 ), : Zp (@)
S P el ()
M

— (w1 Zp(aﬂ) DY LS

e AP (ple P (1)
M

(045 Otﬁ) Tn+1
+(z—-1) Z Px (@)Y B (1))

K=N+1 nk AnDn Py (1)

According to [I3], (4.1.1) and (4.3.3)] we have

(@8)(1) = ((2n+a+6+ DB+ DI (n+a+1DI(n+a+ B+ 1))5
o - Da+ DI (a+B+2)T(n+ DI (n+B+1)

Applying the well-known Stirling’s formula with respect to the asymptotic of the
Gamma function one gets

P (1) = Cn 1L+ O(n ),
where C' > 0 is a constant. Moreover, (3.2) implies
1
A== +0(n?).
2
Due to the fact that {r,}2 is alternating it follows

M

T'n+1 —2a-2
Z < Dk ,
AP (0D (1)

where D > 0 is a constant not depending on M and k. Applying Lemma [3.3] there
exists v < a + % such that

M

@ a, Tn+1
(z — 1) Z p( ﬁ) ( 5)()2 — + _
k=N+1 n= k>\np( ﬁ)( )P£z+ﬂ)( 1)
M P
E Y ktipge = F Z g
k=N+1 k=N+1
and
N : M ,
(=Y o Op"7 @) Y sl <
= o= e WD (1)
N
FY ketagIN—2072 < GNYTOT
k=0
with E, F,G > 0 constants. Therefore, the right hand side of both inequalities
above is tending to zero with N — oc. a

Note that in case @ = 8 > —1/2 by [13, Theorem 4.1] it holds

%) (v, a) [e'e) (@7 2)

p Pon” (@) (256 1)

b~y :Z CE=yya— (3.11)
nm=1 b3, (1) 4 C ()
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and in case a < B and 8 > —1/2 the symmetric relation (3.5) implies

T O I )
Zb" (c,9) =2 T G
=) (1)

n=1 n n=1 n

Hence, due to Theorem 3.4 both series are uniformly but not absolutely convergent.

(3.12)
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