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Abstract. The main aim of this paper is to generalize the functions of slow
increase to α-slow increase for any α > 0. We investigate some basic properties
of functions of α-slow increase. In addition, the relationship between functions

of α-slow increase and those of slow variation are characterized.

1. Introduction

Functions of α-slow increase are defined as follows.

Definition 1.1. Let f(x) be a function defined on the interval [a,∞) such that
f(x) > 0, limx→∞ f(x) = ∞ and with continuous derivative f ′(x) > 0. For α > 0,
the function f(x) is of α-slow increase if the following condition holds:

lim
x→∞

f ′(x)
f(x)
xα

= 0. (1.1)

Note that the special case of 1-slow increase is introduced recently by R. Jakim-
czuk [3, 4] as a tool to investigate the asymptotic formula of Bell numbers. Further
development on the subject can be found in e.g. [1, 5]. Typical examples for
functions of α-slow increase are as follows:

• f(x) = x is of α-slow increase with α < 1.
• f(x) = lnx and f(x) = ln lnx are of α-slow increase with α ≤ 1.

In the next section, we will study some basic properties for functions of α-slow
increase.

2. Some Properties

Theorem 2.1. Suppose that 0 < α1 < α2. If f(x) is a function of α2-slow increase,
then it is of α1-slow increase.

Proof. It is straightforward to see this by using (1.1). �
Theorem 2.2. Let α1, α2, β > 0 and C ∈ R. If f(x) and g(x) are functions of
α1-slow and α2-slow increase, respectively, then the following statements are true.
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• f(x) + C, Cf(x) and f(x)β are functions of α1-slow increase.
• f(xβ) is a function of ((α1 − 1)β + 1)-slow increase, if (α1 − 1)β > −1.
• f(x)g(x) and f(x) + g(x) are functions of min{α1, α2}-slow increase.

Proof. We prove the second statement as an example. Others can be proved simi-
larly.

By Definition 1.1, we have

lim
x→∞

x(α1−1)β+1 d
dxf(x

β)

f(xβ)
= lim

x→∞

βxα1βf ′(xβ)

f(xβ)

= lim
y→∞

βyα1f ′(y)

f(y)
= 0, (2.1)

which yields that f(xβ) is of ((α1 − 1)β + 1)-slow increase if (α1 − 1)β > −1. �

Theorem 2.3. If f(x) is a function of α-slow increase for α ≥ 1, then the following
limits hold.

(i) limx→∞
ln f(x)
ln x = 0;

(ii) limx→∞
f(x)
xβ = 0 for any β > 0;

(iii) limx→∞ f ′(x) = 0.

Proof. To show (i), we obtain by L’Hôspital’s rule that

lim
x→∞

ln f(x)

lnx
= lim

x→∞

f ′(x)x

f(x)
≤ lim

x→∞

f ′(x)xα

f(x)
= 0, (2.2)

since α ≥ 1 by our assumption.
To see (ii), let 0 < γ < β. By virtue of (2.2), we have f ′(x)x/f(x) < γ for x

large enough. Hence, (
f(x)

xγ

)′

=
f ′(x)xγ − γxγ−1f(x)

x2γ
< 0, (2.3)

for large x. Thus, there exists some 0 < M < ∞ such that 0 < f(x)/xγ < M . We
obtain

lim
x→∞

f(x)

xβ
= lim

x→∞

f(x)

xγ
· 1

xβ−γ
= 0. (2.4)

(iii) is an immediate consequence of (ii) and (1.1). �

Theorem 2.4. Let C ∈ R. If f(x) is a function of α-slow increase for α ≥ 1, then

lim
x→∞

f(x+ C)

f(x)
= 1. (2.5)

Proof. We only prove the case C > 0, and the case C < 0 can be proved likewise.
Applying the Lagrange mean value theorem, we have

0 ≤ f(x+ C)− f(x)

f(x)
=

Cf ′(ξ)

f(x)
, (2.6)

for some x < ξ < x + C. Combining (2.6) with (iii) in Theorem 2.3 readily yields
the limit (2.5). �
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The following result characterizes the relationship between slowly varying func-
tions (see e.g. [2] p. 275) and those of α-slow increase. A function L(x) is said to
be slowly varying if

L(tx)

L(t)
→ 1, (2.7)

as t → ∞, for every x > 0. An application in scale-free networks can be found in
[8].

Theorem 2.5. Let C ∈ R. If f(x) is a function of α-slow increase for α ≥ 1 and
f ′(x) is decreasing, then

lim
x→∞

f(Cx)

f(x)
= 1, (2.8)

that is, f(x) is slowly varying. On the other hand, if f(x) is a slowly varying
function with limx→∞ f(x) = ∞ and continuous derivative f ′(x) > 0 and f ′(x) is
increasing, then f(x) is of α-slow increase for α ≤ 1.

Proof. Suppose that f(x) is of α-slow increase and that C > 1. Applying the
Lagrange mean value theorem, we have

0 ≤ f(Cx)− f(x)

f(x)
=

(Cx− x)f ′(ξ)

f(x)

≤ (C − 1)xf ′(x)

f(x)

≤ (C − 1)xαf ′(x)

f(x)
, (2.9)

for some x < ξ < Cx. Combining (2.9) with Definition 1.1 gives the limit (2.8).
Now suppose that C < 1. Similarly, we can derive

0 ≤ f(x)− f(Cx)

f(Cx)
=

(x− Cx)f ′(ξ)

f(Cx)

≤ 1− C

C
· Cxf ′(Cx)

f(Cx)

≤ 1− C

Cα
· (Cx)αf ′(Cx)

f(Cx)
, (2.10)

for some Cx < ξ < x. Combining (2.10) with Definition 1.1 gives the limit (2.8).
On the other hand, assume that f(x) satisfies (2.8), then by taking C > 1, we

obtain

0 ≤ (C − 1)xαf ′(x)

f(x)
≤ (C − 1)xf ′(x)

f(x)

≤ (C − 1)xf ′(ξ)

f(x)

=
f(Cx)− f(x)

f(x)
→ 0, (2.11)

for some x < ξ < Cx and α ≤ 1. Hence, f(x) is a function of α-slow increase. �

Now recall a well-known lemma (see e.g. [6] p. 332).



FUNCTIONS OF α-SLOW INCREASE 229

Lemma 2.6. If sn is a sequence of positive numbers with limit s, then the sequence

n
√
s1s2 · · · sn

has also limit s.

We conclude the paper by presenting an analogous result for functions of α-slow
increase.

Theorem 2.7. If f(x) is a function of α-slow increase on the interval [a,∞) then
the following asymptotic formula holds

n
√
f(a)f(a+ 1) · · · f(n) ∼ f(n), (2.12)

where a is a positive number.

Proof. Without loss of generality, we assume f(x) > 1 on the interval [a,∞). Since
ln f(x) is increasing and positive, we have by integration by parts

n∑
i=a

ln f(i) =

∫ n

a

ln f(x)dx+O(ln f(n))

= n ln f(n)−
∫ n

a

xf ′(x)

f(x)
dx+O(ln f(n)). (2.13)

From (1.1) and the L’Hôspital rule, we derive that

lim
x→∞

ln f(x)

x
= lim

x→∞

f ′(x)

f(x)
= 0, (2.14)

and hence

ln f(n) = o(n). (2.15)

If the integral
∫ x

a
tf ′(t)
f(t) dt converges, we obtain

lim
x→∞

∫ x

a
tf ′(t)
f(t) dt

x
= 0. (2.16)

On the other hand, if the integral
∫ x

a
tf ′(t)
f(t) dt diverges, we have from (1.1) and the

L’Hôspital rule that

lim
x→∞

∫ x

a
tf ′(t)
f(t) dt

x
= lim

x→∞

xf ′(x)

f(x)
= o(x1−α). (2.17)

Accordingly, from (2.16) and (2.17) we obtain∫ n

a

xf ′(x)

f(x)
dx = o(n1−α). (2.18)

Eqs. (2.13), (2.15) and (2.18) imply that

n∑
i=a

ln f(i) = n ln f(n) + o(n), (2.19)

which is equivalent to

1

n

n∑
i=a

ln f(i) = ln f(n) + o(1). (2.20)

The proof of the theorem is then complete. �
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We mention that another generalization of Lemma 2.6 for prime numbers is
provided in the work [7].
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