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SOME PROPERTIES OF CERTAIN SUBCLASSES OF

MULTIVALENT FUNCTIONS INVOLVING THE

DZIOK-SRIVASTAVA OPERATOR

ZHI-GANG WANG, HAI-PING SHI

Abstract. The main purpose of the present paper is to derive such results as

inclusion relationships and convolution properties for certain new subclasses
of multivalent analytic functions involving the Dziok-Srivastava operator. The

results presented here would provide extensions of those given in earlier works.
Several other new results are also obtained.

1. Introduction and Preliminaries

Let Ap denote the class of functions of the form

f(z) = zp +

∞∑
n=1

an+pz
n+p (p ∈ ℕ := {1, 2, 3, . . .}), (1.1)

which are analytic in the open unit disk

U := {z : z ∈ ℂ and ∣z∣ < 1}.
For simplicity, we write

A1 =: A.
Let f, g ∈ Ap, where f is given by (1.1) and g is defined by

g(z) = zp +

∞∑
n=1

bn+pz
n+p.

Then the Hadamard product (or convolution) f ∗ g of the functions f and g is
defined by

(f ∗ g)(z) := zp +

∞∑
n=1

an+pbn+pz
n+p =: (g ∗ f)(z).

For parameters

�j ∈ ℂ (j = 1, . . . , l) and �j ∈ ℂ ∖ ℤ−0 (ℤ−0 := {0,−1,−2, . . .}; j = 1, . . . ,m),
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the generalized hypergeometric function

lFm(�1, . . . , �l;�1, . . . , �m; z)

is defined by the following infinite series:

lFm(�1, . . . , �l;�1, . . . , �m; z) :=

∞∑
n=0

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

zn

n!

(l ≦ m+ 1; l,m ∈ ℕ0 := ℕ ∪ {0}; z ∈ U),

where (�)n is the Pochhammer symbol defined by

(�)n :=

⎧⎨⎩ 1 (n = 0),

�(�+ 1) ⋅ ⋅ ⋅ (�+ n− 1) (n ∈ ℕ).

Recently, Dziok and Srivastava [8] introduced a linear operator

Hp(�1, . . . , �l;�, . . . , �m) : Ap −→ Ap
defined by the Hadamard product

Hp(�1, . . . , �l;�1, . . . , �m)f(z) := [zp lFm(�1, . . . , �l;�1, . . . , �m)] ∗ f(z) (1.2)

(l ≦ m+ 1; l,m ∈ ℕ0; z ∈ U).

If f ∈ Ap is given by (1.1), then we have

Hp(�1, . . . , �l;�1, . . . , �m)f(z) = zp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

an+p
zn+p

n!
(n ∈ ℕ).

In order to make the notation simple, we write

H l,m
p (�1) := Hp(�1, . . . , �l;�1, . . . , �m) (l ≦ m+ 1; l,m ∈ ℕ0).

It is easily verified from the definition (1.2) that

z
(
H l,m
p (�1)f

)′
(z) = �1H

l,m
p (�1 + 1)f(z)− (�1 − p)H l,m

p (�1)f(z). (1.3)

Let P denote the class of functions of the form

p(z) = 1 +

∞∑
n=1

pnz
n,

which are analytic and convex in U and satisfy the condition

ℜ(p(z)) > 0 (z ∈ U).

For two functions f and g, analytic in U, we say that the function f is subordinate
to g in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function !, which is analytic in U with

!(0) = 0 and ∣!(z)∣ < 1 (z ∈ U)

such that

f(z) = g
(
!(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).
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Furthermore, if the function g is univalent in U, then we have the following equiv-
alence:

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

Throughout this paper, we assume that

p, k ∈ ℕ, l,m ∈ ℕ0, "k = exp

(
2�i

k

)
,

f l,mp,k (�1; z) =
1

k

k−1∑
j=0

"−jpk

(
H l,m
p (�1)f

)
("jkz) = zp + ⋅ ⋅ ⋅ (f ∈ Ap), (1.4)

gl,mp (�1; z) =
1

2

[
H l,m
p (�1)f(z) +H l,m

p (�1)f(z)
]

= zp + ⋅ ⋅ ⋅ (f ∈ Ap), (1.5)

and

ℎl,mp (�1; z) =
1

2

[
H l,m
p (�1)f(z)−H l,m

p (�1)f(−z)
]

= zp + ⋅ ⋅ ⋅ (f ∈ Ap). (1.6)

Clearly, for k = 1, we have

f l,mp,1 (�1; z) = H l,m
p (�1)f(z).

In recent years, several authors obtained many interesting results involving the
Dziok-Srivastava operator H l,m

p (�1) (see, for details, [1, 2, 3, 4, 6, 7, 8, 9, 11, 13,
14, 15, 17, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34]). In the present paper,
by making use of the Dziok-Srivastava operator H l,m

p (�1) and the above-mentioned
principle of subordination between analytic functions, we introduce and investigate
the following subclasses of the class Ap of p-valent analytic functions.

Definition 1.1. A function f ∈ Ap is said to be in the class ℱ l,mp,k (�;�1;�) if it
satisfies the subordination condition

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

] ≺ �(z) (z ∈ U), (1.7)

where � ∈ P, f l,mp,k (�1; z) is defined by (1.4) and

f l,mp,k (�1 + 1; z) ∕= 0 (z ∈ U).

For simplicity, we write

ℱ l,mp,k (0;�1;�) =: ℱ l,mp,k (�1;�).

Remark 1.1. If we set

p = 1, l = 2, m = 1, and �1 = �2 = �1 = 1

in the class ℱ l,mp,k (�;�1;�), then it reduces to the known class S(k)(�;�) of func-
tions �-starlike with respect to k-symmetric points, which was studied earlier by
Parvatham and Radha [21]. If we set

p = 1, l = 2, m = 1, �1 = �2 = �1 = 1, and � = 0

in the class ℱ l,mp,k (�;�1;�), then it reduces to the class S(k)(�) of functions starlike

with respect to k-symmetric points, which was considered by Wang et al. [33].

Furthermore, we note that the class ℱ l,mp,k (�1;�) was introduced and investigated

recently by Wang et al. [34] (see also Huang and Liu [12] and Xu and Yang [35]).
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Definition 1.2. A function f ∈ Ap is said to be in the class Gl,mp (�;�1;�) if it
satisfies the subordination condition

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)gl,mp (�1; z) + �gl,mp (�1 + 1; z)

] ≺ �(z) (z ∈ U),

where � ∈ P, gl,mp (�1; z) is defined by (1.5) and

gl,mp (�1 + 1; z) ∕= 0 (z ∈ U).

For simplicity, we write

Gl,mp (0;�1;�) =: Gl,mp (�1;�).

Definition 1.3. A function f ∈ Ap is said to be in the class ℋl,mp (�;�1;�) if it
satisfies the subordination condition

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)ℎl,mp (�1; z) + �ℎl,mp (�1 + 1; z)

] ≺ �(z) (z ∈ U),

where � ∈ P, ℎl,mp (�1; z) is defined by (1.6) and

ℎl,mp (�1 + 1; z) ∕= 0 (z ∈ U).

For simplicity, we write

ℋl,mp (0;�1;�) =: ℋl,mp (�1;�).

Remark 1.2. In 1996, Chen et al. [5] introduced and investigated a subclass
S∗sc(�) of A consisting of functions which are �-starlike with respect to symmetric
conjugate points and satisfy the inequality

ℜ
(

z [(1− �)f ′(z) + �(zf ′(z))′]

(1− �)Tscf(z) + �z(Tscf(z))′

)
> 0 ( z ∈ U),

where

Tscf(z) =
1

2

[
f(z)− f(−z)

]
.

It is easy to see that, if we set

p = 1, l = 2, m = 1, �1 = �2 = �1 = 1, and �(z) =
1 + z

1− z
in the class ℋl,mp (�;�1;�), then it reduces to the class S∗sc(�).

Definition 1.4. A function f ∈ Ap is said to be in the class Fl,mp,k (�;�1;�) if it
satisfies the subordination condition

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)fl,mp,k (�1; z) + �fl,mp,k (�1 + 1; z)

] ≺ �(z) (z ∈ U),

where � ∈ P, fl,mp,k (�1; z) is defined as in (1.4) and

fl,mp,k (�1 + 1; z) ∕= 0 (z ∈ U).
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For simplicity, we write

Fl,mp,k (0;�1;�) =: Fl,mp,k (�1;�).

Remark 1.3. If we set

p = 1, l = 2, m = 1, and �1 = �2 = �1 = 1

in the class Fl,mp,k (�;�1;�), then it reduces to the known class C(k)(�, �) of functions
�-close-to-convex with respect to k-symmetric points, which was also studied earlier

by Parvatham and Radha [21]. Furthermore, we also note that the class Fl,mp,k (�1;�)

was introduced and investigated recently by Wang et al. [34].

Definition 1.5. A function f ∈ Ap is said to be in the class Gl,mp (�;�1;�) if it
satisfies the subordination condition

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)gl,mp (�1; z) + �gl,mp (�1 + 1; z)

] ≺ �(z) (z ∈ U),

where � ∈ P, gl,mp (�1; z) is defined as in (1.5) and

gl,mp (�1 + 1; z) ∕= 0 (z ∈ U).

For simplicity, we write

Gl,mp (0;�1;�) =: Gl,mp (�1;�).

Definition 1.6. A function f ∈ Ap is said to be in the class ℌl,mp (�;�1;�) if it
satisfies the subordination condition

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)hl,mp (�1; z) + �hl,mp (�1 + 1; z)

] ≺ �(z) (z ∈ U),

where � ∈ P, hl,mp (�1; z) is defined as in (1.6) and

hl,mp (�1 + 1; z) ∕= 0 (z ∈ U).

For simplicity, we write

ℌl,mp (0;�1;�) =: ℌl,mp (�1;�).

In order to establish our main results, we need the following lemmas.

Lemma 1.1. (See [10, 16]) Let �, 
 ∈ ℂ. Suppose that �(z) is convex and univalent
in U with

�(0) = 1 and ℜ(��(z) + 
) > 0 (z ∈ U).

If p is analytic in U with p(0) = 1, then the subordination

p(z) +
zp′(z)

�p(z) + 

≺ �(z) (z ∈ U)

implies that

p(z) ≺ �(z) (z ∈ U).
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Lemma 1.2. (See [20]) Let �, 
 ∈ ℂ. Suppose that �(z) is convex and univalent
in U with

�(0) = 1 and ℜ(��(z) + 
) > 0 (z ∈ U).

Also let

q(z) ≺ �(z) (z ∈ U).

If p ∈ P and satisfies the subordination

p(z) +
zp′(z)

�q(z) + 

≺ �(z) (z ∈ U),

then

p(z) ≺ �(z) (z ∈ U).

Lemma 1.3. Let f ∈ ℱ l,mp,k (�;�1;�). Then

z

[
(1− �)

(
f l,mp,k (�1)f

)′
(z) + �

(
f l,mp,k (�1 + 1)f

)′
(z)

]
p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

] ≺ �(z) (z ∈ U). (1.8)

Furthermore, if � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then

z
(
f l,mp,k (�1; z)

)′
pf l,mp,k (�1; z)

≺ �(z) (z ∈ U).

Proof. Making use of (1.4), we have

f l,mp,k (�1; "jkz) =
1

k

k−1∑
n=0

"−npk

(
H l,m
p (�1)f

)
("n+jk z)

= "jpk ⋅
1

k

k−1∑
n=0

"
−(n+j)p
k

(
H l,m
p (�1)f

)
("n+jk z)

= "jpk f
l,m
p,k (�1; z) (j ∈ {0, 1, . . . , k − 1}),

(1.9)

and (
f l,mp,k (�1; z)

)′
=

1

k

k−1∑
n=0

"
−j(p−1)
k

(
H l,m
p (�1)f

)
("jkz). (1.10)

Replacing �1 by �1 + 1 in (1.9) and (1.10), respectively, we get

f l,mp,k (�1 + 1; "jkz) = "jpk f
l,m
p,k (�1 + 1; z) (j ∈ {0, 1, . . . , k − 1}), (1.11)

and (
f l,mp,k (�1 + 1; z)

)′
=

1

k

k−1∑
n=0

"
−j(p−1)
k

(
H l,m
p (�1 + 1)f

)
("jkz). (1.12)
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From (1.9) to (1.12), we get

z

[
(1− �)

(
f l,mp,k (�1)f

)′
(z) + �

(
f l,mp,k (�1 + 1)f

)′
(z)

]
p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

]
=

1

k

k−1∑
j=0

"
−j(p−1)
k z

[
(1− �)

(
H l,m
p (�1)f

)′
("jkz) + �

(
H l,m
p (�1 + 1)f

)′
("jkz)

]
p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

]
=

1

k

k−1∑
j=0

"jkz
[
(1− �)

(
H l,m
p (�1)f

)′
("jkz) + �

(
H l,m
p (�1 + 1)f

)′
("jkz)

]
p
[
(1− �)f l,mp,k (�1; "jkz) + �f l,mp,k (�1 + 1; "jkz)

] .

(1.13)

Moreover, since f ∈ ℱq,sp,k(�;�1;�), it follows that

"jkz
[
(1− �)

(
H l,m
p (�1)f

)′
("jkz) + �

(
H l,m
p (�1 + 1)f

)′
("jkz)

]
p
[
(1− �)f l,mp,k (�1; "jkz) + �f l,mp,k (�1 + 1; "jkz)

] ≺ �(z) (1.14)

(z ∈ U; j ∈ {0, 1, . . . , k − 1}).

By noting that �(z) is convex and univalent in U, from (1.13) and (1.14), we
conclude that the assertion (1.8) of Lemma 1.3 holds true.

Next, making use of the relationships (1.3) and (1.4), we know that

z
(
f l,mp,k (�1; z)

)′
+ (�1 − p)f l,mp,k (�1; z) =

�1

k

k−1∑
j=0

"−jpk

(
H l,m
p (�1 + 1)f

)
("jkz)

= �1f
l,m
p,k (�1 + 1; z).

(1.15)

Let f ∈ ℱ l,mp,k (�;�1;�) and suppose that

 (z) =
z
(
f l,mp,k (�1; z)

)′
pf l,mp,k (�1; z)

(z ∈ U). (1.16)

Then  is analytic in U and  (0) = 1. It follows from (1.15) and (1.16) that

�1 − p+ p (z) = �1

f l,mp,k (�1 + 1; z)

f l,mp,k (�1; z)
(z ∈ U). (1.17)

From (1.16) and (1.17), we have

z
(
f l,mp,k (�1 + 1; z)

)′
=

p

�1
[z ′(z) + (�1 − p+ p (z)) (z)]f l,mp,k (�1; z). (1.18)
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It now follows from (1.8), (1.16), (1.17) and (1.18) that

z

[
(1− �)

(
f l,mp,k (�1)f

)′
(z) + �

(
f l,mp,k (�1 + 1)f

)′
(z)

]
p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

]
=
p(1− �) (z)f l,mp,k (�1; z) + �

�1
p[z ′(z) + (�1 − p+ p (z)) (z)]f l,mp,k (�1; z)

p(1− �)f l,mp,k (�1; z) + �
�1
p(�1 − p+ p (z))f l,mp,k (�1; z)

=
(1− �) (z) + �

�1
[z ′(z) + (�1 − p+ p (z)) (z)]

(1− �) + �
�1

(�1 − p+ p (z))

=

�
�1
z ′(z) +

[
(1− �) + �

�1
(�1 − p+ p (z))

]
 (z)

(1− �) + �
�1

(�1 − p+ p (z))

=  (z) +
z ′(z)

�1

� − p+ p (z)
≺ �(z).

(1.19)

Since

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Thus, by (1.19) and Lemma 1.1, we know that

 (z) =
z
(
f l,mp,k (�1; z)

)′
pf l,mp,k (�1; z)

≺ �(z).

This completes the proof of Lemma 1.3. □

By similarly applying the method of proof of Lemma 1.3 for the classes Gl,mp (�;�1;�)

and ℋl,mp (�;�1;�), we get the following results.

Lemma 1.4. Let f ∈ Gl,mp (�;�1;�). Then

z
[
(1− �)

(
gl,mp (�1)f

)′
(z) + �

(
gl,mp (�1 + 1)f

)′
(z)
]

p
[
(1− �)gl,mp (�1; z) + �gl,mp (�1 + 1; z)

] ≺ �(z) (z ∈ U).

Furthermore, if � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then

z
(
gl,mp (�1; z)

)′
pgl,mp (�1; z)

≺ �(z) (z ∈ U).

Lemma 1.5. Let f ∈ ℋl,mp (�;�1;�). Then

z
[
(1− �)

(
ℎl,mp (�1)f

)′
(z) + �

(
ℎl,mp (�1 + 1)f

)′
(z)
]

p
[
(1− �)ℎl,mp (�1; z) + �ℎl,mp (�1 + 1; z)

] ≺ �(z) (z ∈ U).
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Furthermore, if � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then

z
(
ℎl,mp (�1; z)

)′
pℎl,mp (�1; z)

≺ �(z) (z ∈ U).

In the present paper, we aim at proving such results as inclusion relationships

and convolution properties for the function classes ℱ l,mp,k (�;�1;�), Gl,mp (�;�1;�),

ℋl,mp (�;�1;�), Fl,mp,k (�;�1;�), Gl,mp (�;�1;�), and ℌl,mp (�;�1;�). The results pre-
sented here would provide extensions of those given in earlier works. Several other
new results are also obtained.

2. A Set of Inclusion Relationships

At first, we provide some inclusion relationships for the classes ℱ l,mp,k (�;�1;�),

Gl,mp (�;�1;�),ℋl,mp (�;�1;�), Fl,mp,k (�;�1;�),Gl,mp (�;�1;�), and ℌl,mp (�;�1;�), which
were defined in the preceding section.

Theorem 2.1. Let � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then

ℱ l,mp,k (�;�1;�) ⊂ ℱ l,mp,k (�1;�).

Proof. Let f ∈ ℱ l,mp,k (�;�1;�) and suppose that

q(z) =
z
(
H l,m
p (�1; z)f

)′
(z)

pf l,mp,k (�1; z)
(z ∈ U). (2.1)

Then q is analytic in U and q(0) = 1. It follows from (1.3) and (2.1) that

q(z)f l,mp,k (�1; z) =
�1

p
H l,m
p (�1 + 1)f(z)− �1 − p

p
H l,m
p (�1)f(z). (2.2)

Differentiating both sides of (2.2) with respect to z and using (2.1), we have

zq′(z) +

⎛⎜⎝�1 − p+
z
(
f l,mp,k (�1; z)

)′
f l,mp,k (�1; z)

⎞⎟⎠ q(z) =
�1

p

z
(
H l,m
p (�1 + 1)f

)′
(z)

f l,mp,k (�1; z)
. (2.3)
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It now follows from (1.7), (1.17), (2.1) and (2.3) that

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

]
=
p(1− �)q(z)f l,mp,k (�1; z) + �

�1
p [zq′(z) + (�1 − p+ p (z))q(z)] f l,mp,k (�1; z)

p
[
(1− �)f l,mp,k (�1; z) + �

�1
(�1 − p+ p (z))f l,mp,k (�1; z)

]
=

(1− �)q(z) + �
�1

[zq′(z) + (�1 − p+ p (z))q(z)]

(1− �) + �
�1

(�1 − p+ p (z))

=

�
�1
zq′(z) +

[
(1− �) + �

�1
(�1 − p+ p (z))

]
q(z)

(1− �) + �
�1

(�1 − p+ p (z))

= q(z) +
zq′(z)

�1

� − p+ p (z)
≺ �(z) (z ∈ U).

(2.4)

Moreover, since

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U),

by Lemma 1.1, we know that

 (z) =
z
(
f l,mp,k (�1; z)

)′
pf l,mp,k (�1; z)

≺ �(z) (z ∈ U).

Thus, an application of Lemma 1.2 to (2.4), we have

q(z) ≺ �(z) (z ∈ U),

that is f ∈ ℱ l,mp,k (�1;�). This implies that

ℱ l,mp,k (�;�1;�) ⊂ ℱ l,mp,k (�1;�).

Hence the proof of Theorem 2.1 is complete. □

In view of Lemmas 1.4 and 1.5, by similarly applying the method of proof of
Theorem 2.1 for the classes Gl,mp (�;�1;�) and ℋl,mp (�;�1;�), we easily get the
following inclusion relationships.

Corollary 2.1. Let � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then
Gl,mp (�;�1;�) ⊂ Gl,mp (�1;�).

Corollary 2.2. Let � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then
ℋl,mp (�;�1;�) ⊂ ℋl,mp (�1;�).
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Theorem 2.2. Let � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then
Fl,mp,k (�;�1;�) ⊂ Fl,mp,k (�1;�). (2.5)

Proof. Let f ∈ Fl,mp,k (�;�1;�) and suppose that

p(z) =
z
(
H l,m
p (�1; z)f

)′
(z)

pfl,mp,k (�1; z)
(z ∈ U). (2.6)

Then p is analytic in U and p(0) = 1. It follows from (1.3) and (2.6) that

p(z)fl,mp,k (�1; z) =
�1

p
H l,m
p (�1 + 1)f(z)− �1 − p

p
H l,m
p (�1)f(z). (2.7)

Differentiating both sides of (2.7) with respect to z and using (2.6), we have

zp′(z) +

⎛⎜⎝�1 − p+
z
(
fl,mp,k (�1; z)

)′
fl,mp,k (�1; z)

⎞⎟⎠ p(z) =
�1

p

z
(
H l,m
p (�1 + 1)f

)′
(z)

fl,mp,k (�1; z)
.

Furthermore, we suppose that

'(z) =
z
(
fl,mp,k (�1; z)

)′
pfl,mp,k (�1; z)

(z ∈ U).

The remainder of the proof of Theorem 2.2 is similar to that of Theorem 2.1. We,
therefore, choose to omit the analogous details involved. We thus find that

p(z) ≺ �(z) (z ∈ U),

which implies that f ∈ Fl,mp,k (�1;�). The proof of Theorem 2.2 is evidently com-
pleted. □

By similarly applying the method of proof of Theorem 2.1 for the classes Gl,mp (�;�1;�)

and ℌl,mp (�;�1;�), we easily get the following inclusion relationships.

Corollary 2.3. Let � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then
Gl,mp (�;�1;�) ⊂ Gl,mp (�1;�).

Corollary 2.4. Let � ∈ P with

ℜ
(
p�(z) +

�1

�
− p
)
> 0 (� > 0; z ∈ U).

Then
ℌl,mp (�;�1;�) ⊂ ℌl,mp (�1;�).

By similarly applying the method of proof of Theorems 1 and 2 obtained by Wang
et al. [34] for the function classes Gl,mp (�;�1;�), Gl,mp (�;�1;�), ℋl,mp (�;�1;�) and

ℌl,mp (�;�1;�), we also easily get the following inclusion relationships.
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Corollary 2.5. Let � ∈ P with

ℜ(p�(z) + �1 − p) > 0 (z ∈ U).

Then

Gl,mp (�1 + 1;�) ⊂ Gl,mp (�1;�).

Corollary 2.6. Let � ∈ P with

ℜ(p�(z) + �1 − p) > 0 (z ∈ U).

Then

ℋl,mp (�1 + 1;�) ⊂ ℋl,mp (�1;�).

Corollary 2.7. Let � ∈ P with

ℜ(p�(z) + �1 − p) > 0 (z ∈ U).

Then

Gl,mp (�1 + 1;�) ⊂ Gl,mp (�1;�).

Corollary 2.8. Let � ∈ P with

ℜ(p�(z) + �1 − p) > 0 (z ∈ U).

Then

ℌl,mp (�1 + 1;�) ⊂ ℌl,mp (�1;�).

3. Convolution Properties

In this section, we provide some convolution properties for the function classes

ℱ l,mp,k (�;�1;�), Gl,mp (�;�1;�), and ℋl,mp (�;�1;�).

Theorem 3.1. Let f ∈ Ap and � ∈ P. Then f ∈ ℱ l,mp,k (�;�1;�) if and only if

1

z

{
f ∗

[
(1− �)

(
pzp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)

− p (1− �)�(ei�)

(
zp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

1

n!
zn+p

)
∗

(
1

k

k−1∑
�=0

zp

1− "�z

)

+ �

(
pzp +

∞∑
n=1

(�1 + 1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)

− p��(ei�)

(
zp +

∞∑
n=1

(�1 + 1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

1

n!
zn+p

)
∗

(
1

k

k−1∑
�=0

zp

1− "�z

)]}
∕= 0

(z ∈ U; 0 ≦ � < 2�).

Proof. Suppose that f ∈ ℱ l,mp,k (�;�1;�). Since

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

] ≺ �(z) (z ∈ U)
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is equivalent to

z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

] ∕= �(ei�) (0 ≦ � < 2�),

(3.1)
it is easy to see that the condition (3.1) can be written as follows:

1

z

{
z
[
(1− �)

(
H l,m
p (�1)f

)′
(z) + �

(
H l,m
p (�1 + 1)f

)′
(z)
]

− p
[
(1− �)f l,mp,k (�1; z) + �f l,mp,k (�1 + 1; z)

]
�(ei�)

}
∕= 0 (0 ≦ � < 2�).

(3.2)

On the other hand, we know from (1.2) that

z
(
H l,m
p (�1)f

)′
(z) =

(
pzp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)
∗ f(z). (3.3)

Moreover, from the definition of f l,mp,k (�1; z), we have

f l,mp,k (�1; z) = H l,m
p (�1)f(z) ∗

(
1

k

k−1∑
�=0

zp

1− "�z

)

=

(
zp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

1

n!
zn+p

)
∗

(
1

k

k−1∑
�=0

zp

1− "�z

)
∗ f(z).

(3.4)

Replacing �1 by �1 + 1 in (3.3) and (3.4), we know that (3.3) and (3.4) also hold
true, that is,

z
(
H l,m
p (�1 + 1)f

)′
(z) =

(
pzp +

∞∑
n=1

(�1 + 1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)
∗ f(z), (3.5)

and

f l,mp,k (�1 + 1; z) =H l,m
p (�1 + 1)f(z) ∗

(
1

k

k−1∑
�=0

zp

1− "�z

)

=

(
zp +

∞∑
n=1

(�1 + 1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

1

n!
zn+p

)
∗

(
1

k

k−1∑
�=0

zp

1− "�z

)
∗ f(z).

(3.6)

Upon substituting from (3.3) to (3.6) into (3.2), we easily deduce the convolution
property asserted by Theorem 3.1.

By similarly applying the method of proof of Theorem 3.1 for the classes Gl,mp (�;�1;�)

and ℋl,mp (�;�1;�), we easily get the following convolution properties. □
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Corollary 3.1. Let f ∈ Ap and � ∈ P. Then f ∈ Gl,mp (�;�1;�) if and only if

1

z

{
f ∗

[
(1− �)

(
pzp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)
− p(1− �)�(ei�)

2
ℎ1

+ �

(
pzp +

∞∑
n=1

(�1 + 1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)
− p��(ei�)

2
ℎ2

]

− p (1− �)�(ei�)

2
(ℎ1 ∗ f)(z)− p��(ei�)

2
(ℎ2 ∗ f)(z)

}
∕= 0 (0 ≦ � < 2�),

where

ℎ1(z) = zp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

1

n!
zn+p, (3.7)

and

ℎ2(z) = zp +

∞∑
n=1

(�1 + 1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

1

n!
zn+p. (3.8)

Corollary 3.2. Let f ∈ Ap and � ∈ P. Then f ∈ ℋl,mp (�;�1;�) if and only if

1

z

{
f ∗

[
(1− �)

(
pzp +

∞∑
n=1

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)
− p(1− �)�(ei�)

2
ℎ1

+ �

(
pzp +

∞∑
n=1

(�1 + 1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

n+ p

n!
zn+p

)
− p��(ei�)

2
ℎ2

]

+
p(1− �)�(ei�)

2
(ℎ1 ∗ f)(−z) +

p��(ei�)

2
(ℎ2 ∗ f)(−z)

}
∕= 0 (0 ≦ � < 2�),

where ℎ1 and ℎ2 are given by (3.7) and (3.8), respectively.

Theorem 3.2. Let f ∈ ℋl,mp (�1;�). Then

f(z) =

[
p

∫ z

0

�p−1�(!(�)) ⋅ exp

(
p

2

∫ �

0

�(!(�))− �(!(−�))− 2

�
d�

)
d�

]

∗

( ∞∑
n=0

n!(�1)n ⋅ ⋅ ⋅ (�m)n
(�1)n ⋅ ⋅ ⋅ (�l)n

zn+p

)
,

(3.9)

where ! is analytic in U with

!(0) = 0 and ∣!(z)∣ < 1 (z ∈ U).

Proof. From the definition of ℋl,mp (�1;�), we know that

z
(
H l,m
p (�1)f

)′
(z)

pℎl,mp (�1; z)
=

2z
(
H l,m
p (�1)f

)′
(z)

p
[
(H l,m

p (�1)f)(z)− (H l,m
p (�1)f)(−z)

] = �(!(z)), (3.10)

where ! is analytic in U with

!(0) = 0 and ∣!(z)∣ < 1 (z ∈ U).
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From (3.10), we get

2z
(
H l,m
p (�1)f

)′
(−z)

p
[
(H l,m

p (�1)f)(z)− (H l,m
p (�1)f)(−z)

] = �(!(−z)). (3.11)

It now follows from (3.10) and (3.11) that

z
(
ℎl,mp (�1; z)

)′
pℎl,mp (�1; z)

=
1

2

[
�(!(z))− �(!(−z))

]
. (3.12)

We next find from (3.12) that(
ℎl,mp (�1; z)

)′
ℎl,mp (�1; z)

− p

z
=
p

2
⋅ �(!(z))− �(!(−z))− 2

z
. (3.13)

Upon integrating (3.13), we have

log

(
ℎl,mp (�1; z)

zp

)
=
p

2

∫ z

0

�(!(�))− �(!(−�))− 2

�
d�, (3.14)

which implies that

ℎl,mp (�1; z) = zp ⋅ exp

(
p

2

∫ z

0

�(!(�))− �(!(−�))− 2

�
d�

)
. (3.15)

It now follows from (3.10) and (3.15) that(
H l,m
p (�1)f

)′
(z) =

pℎl,mp (�1; z)

z
⋅ �(!(z))

=pzp−1�(!(z)) ⋅ exp

(
p

2

∫ z

0

�(!(�))− �(!(−�))− 2

�
d�

)
.

(3.16)

Upon integrating (3.16), we get

H l,m
p (�1)f(z) = p

∫ z

0

�p−1�(!(�)) ⋅ exp

(
p

2

∫ �

0

�(!(�))− �(!(−�))− 2

�
d�

)
d�.

(3.17)
Combining (1.2) and (3.17), we find that

p

∫ z

0

�p−1�(!(�)) ⋅ exp

(
p

2

∫ �

0

�(!(�))− �(!(−�))− 2

�
d�

)
d�

= [zp lFm(�1, . . . , �l;�1, . . . , �m)] ∗ f(z).

(3.18)

Thus, from (3.18), we easily get the convolution property (3.9). □

Remark 3.1. Putting

p = 1, l = 2, m = 1 and �1 = �2 = �1 = 1

in Theorem 3.2, we get the corresponding result obtained by Ravichandran [25].

By similarly applying the method of proof of Theorem 3.2 for the class Gl,mp (�;�1;�),
we easily get the following convolution property.
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Corollary 3.3. Let f ∈ Gl,mp (�1;�). Then

f(z) =

[
p

∫ z

0

�p−1�(!(�)) ⋅ exp

(
p

2

∫ �

0

�(!(�)) + �(!(�))− 2

�
d�

)
d�

]

∗

( ∞∑
n=0

n!(�1)n ⋅ ⋅ ⋅ (�m)n
(�1)n ⋅ ⋅ ⋅ (�l)n

zn+p

)
,

where ! is analytic in U with

!(0) = 0 and ∣!(z)∣ < 1 (z ∈ U).
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